xref: /linux/mm/percpu.c (revision 971f3918a5a8febbbab355079972fb31ee7c0f33)
1fbf59bc9STejun Heo /*
2fbf59bc9STejun Heo  * linux/mm/percpu.c - percpu memory allocator
3fbf59bc9STejun Heo  *
4fbf59bc9STejun Heo  * Copyright (C) 2009		SUSE Linux Products GmbH
5fbf59bc9STejun Heo  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6fbf59bc9STejun Heo  *
7fbf59bc9STejun Heo  * This file is released under the GPLv2.
8fbf59bc9STejun Heo  *
9fbf59bc9STejun Heo  * This is percpu allocator which can handle both static and dynamic
10fbf59bc9STejun Heo  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
112f39e637STejun Heo  * chunk is consisted of boot-time determined number of units and the
122f39e637STejun Heo  * first chunk is used for static percpu variables in the kernel image
132f39e637STejun Heo  * (special boot time alloc/init handling necessary as these areas
142f39e637STejun Heo  * need to be brought up before allocation services are running).
152f39e637STejun Heo  * Unit grows as necessary and all units grow or shrink in unison.
162f39e637STejun Heo  * When a chunk is filled up, another chunk is allocated.  ie. in
172f39e637STejun Heo  * vmalloc area
18fbf59bc9STejun Heo  *
19fbf59bc9STejun Heo  *  c0                           c1                         c2
20fbf59bc9STejun Heo  *  -------------------          -------------------        ------------
21fbf59bc9STejun Heo  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22fbf59bc9STejun Heo  *  -------------------  ......  -------------------  ....  ------------
23fbf59bc9STejun Heo  *
24fbf59bc9STejun Heo  * Allocation is done in offset-size areas of single unit space.  Ie,
25fbf59bc9STejun Heo  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
262f39e637STejun Heo  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
272f39e637STejun Heo  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
282f39e637STejun Heo  * Percpu access can be done by configuring percpu base registers
292f39e637STejun Heo  * according to cpu to unit mapping and pcpu_unit_size.
30fbf59bc9STejun Heo  *
312f39e637STejun Heo  * There are usually many small percpu allocations many of them being
322f39e637STejun Heo  * as small as 4 bytes.  The allocator organizes chunks into lists
33fbf59bc9STejun Heo  * according to free size and tries to allocate from the fullest one.
34fbf59bc9STejun Heo  * Each chunk keeps the maximum contiguous area size hint which is
35fbf59bc9STejun Heo  * guaranteed to be eqaul to or larger than the maximum contiguous
36fbf59bc9STejun Heo  * area in the chunk.  This helps the allocator not to iterate the
37fbf59bc9STejun Heo  * chunk maps unnecessarily.
38fbf59bc9STejun Heo  *
39fbf59bc9STejun Heo  * Allocation state in each chunk is kept using an array of integers
40fbf59bc9STejun Heo  * on chunk->map.  A positive value in the map represents a free
41fbf59bc9STejun Heo  * region and negative allocated.  Allocation inside a chunk is done
42fbf59bc9STejun Heo  * by scanning this map sequentially and serving the first matching
43fbf59bc9STejun Heo  * entry.  This is mostly copied from the percpu_modalloc() allocator.
44e1b9aa3fSChristoph Lameter  * Chunks can be determined from the address using the index field
45e1b9aa3fSChristoph Lameter  * in the page struct. The index field contains a pointer to the chunk.
46fbf59bc9STejun Heo  *
47fbf59bc9STejun Heo  * To use this allocator, arch code should do the followings.
48fbf59bc9STejun Heo  *
49e74e3962STejun Heo  * - drop CONFIG_HAVE_LEGACY_PER_CPU_AREA
50fbf59bc9STejun Heo  *
51fbf59bc9STejun Heo  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
52e0100983STejun Heo  *   regular address to percpu pointer and back if they need to be
53e0100983STejun Heo  *   different from the default
54fbf59bc9STejun Heo  *
558d408b4bSTejun Heo  * - use pcpu_setup_first_chunk() during percpu area initialization to
568d408b4bSTejun Heo  *   setup the first chunk containing the kernel static percpu area
57fbf59bc9STejun Heo  */
58fbf59bc9STejun Heo 
59fbf59bc9STejun Heo #include <linux/bitmap.h>
60fbf59bc9STejun Heo #include <linux/bootmem.h>
61fbf59bc9STejun Heo #include <linux/list.h>
62a530b795STejun Heo #include <linux/log2.h>
63fbf59bc9STejun Heo #include <linux/mm.h>
64fbf59bc9STejun Heo #include <linux/module.h>
65fbf59bc9STejun Heo #include <linux/mutex.h>
66fbf59bc9STejun Heo #include <linux/percpu.h>
67fbf59bc9STejun Heo #include <linux/pfn.h>
68fbf59bc9STejun Heo #include <linux/slab.h>
69ccea34b5STejun Heo #include <linux/spinlock.h>
70fbf59bc9STejun Heo #include <linux/vmalloc.h>
71a56dbddfSTejun Heo #include <linux/workqueue.h>
72fbf59bc9STejun Heo 
73fbf59bc9STejun Heo #include <asm/cacheflush.h>
74e0100983STejun Heo #include <asm/sections.h>
75fbf59bc9STejun Heo #include <asm/tlbflush.h>
76fbf59bc9STejun Heo 
77fbf59bc9STejun Heo #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78fbf59bc9STejun Heo #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79fbf59bc9STejun Heo 
80e0100983STejun Heo /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81e0100983STejun Heo #ifndef __addr_to_pcpu_ptr
82e0100983STejun Heo #define __addr_to_pcpu_ptr(addr)					\
83e0100983STejun Heo 	(void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr	\
84e0100983STejun Heo 		 + (unsigned long)__per_cpu_start)
85e0100983STejun Heo #endif
86e0100983STejun Heo #ifndef __pcpu_ptr_to_addr
87e0100983STejun Heo #define __pcpu_ptr_to_addr(ptr)						\
88e0100983STejun Heo 	(void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr	\
89e0100983STejun Heo 		 - (unsigned long)__per_cpu_start)
90e0100983STejun Heo #endif
91e0100983STejun Heo 
92fbf59bc9STejun Heo struct pcpu_chunk {
93fbf59bc9STejun Heo 	struct list_head	list;		/* linked to pcpu_slot lists */
94fbf59bc9STejun Heo 	int			free_size;	/* free bytes in the chunk */
95fbf59bc9STejun Heo 	int			contig_hint;	/* max contiguous size hint */
96fbf59bc9STejun Heo 	struct vm_struct	*vm;		/* mapped vmalloc region */
97fbf59bc9STejun Heo 	int			map_used;	/* # of map entries used */
98fbf59bc9STejun Heo 	int			map_alloc;	/* # of map entries allocated */
99fbf59bc9STejun Heo 	int			*map;		/* allocation map */
1008d408b4bSTejun Heo 	bool			immutable;	/* no [de]population allowed */
101ce3141a2STejun Heo 	unsigned long		populated[];	/* populated bitmap */
102fbf59bc9STejun Heo };
103fbf59bc9STejun Heo 
10440150d37STejun Heo static int pcpu_unit_pages __read_mostly;
10540150d37STejun Heo static int pcpu_unit_size __read_mostly;
1062f39e637STejun Heo static int pcpu_nr_units __read_mostly;
10740150d37STejun Heo static int pcpu_chunk_size __read_mostly;
10840150d37STejun Heo static int pcpu_nr_slots __read_mostly;
10940150d37STejun Heo static size_t pcpu_chunk_struct_size __read_mostly;
110fbf59bc9STejun Heo 
1112f39e637STejun Heo /* cpus with the lowest and highest unit numbers */
1122f39e637STejun Heo static unsigned int pcpu_first_unit_cpu __read_mostly;
1132f39e637STejun Heo static unsigned int pcpu_last_unit_cpu __read_mostly;
1142f39e637STejun Heo 
115fbf59bc9STejun Heo /* the address of the first chunk which starts with the kernel static area */
11640150d37STejun Heo void *pcpu_base_addr __read_mostly;
117fbf59bc9STejun Heo EXPORT_SYMBOL_GPL(pcpu_base_addr);
118fbf59bc9STejun Heo 
1192f39e637STejun Heo /* cpu -> unit map */
1202f39e637STejun Heo const int *pcpu_unit_map __read_mostly;
1212f39e637STejun Heo 
122ae9e6bc9STejun Heo /*
123ae9e6bc9STejun Heo  * The first chunk which always exists.  Note that unlike other
124ae9e6bc9STejun Heo  * chunks, this one can be allocated and mapped in several different
125ae9e6bc9STejun Heo  * ways and thus often doesn't live in the vmalloc area.
126ae9e6bc9STejun Heo  */
127ae9e6bc9STejun Heo static struct pcpu_chunk *pcpu_first_chunk;
128ae9e6bc9STejun Heo 
129ae9e6bc9STejun Heo /*
130ae9e6bc9STejun Heo  * Optional reserved chunk.  This chunk reserves part of the first
131ae9e6bc9STejun Heo  * chunk and serves it for reserved allocations.  The amount of
132ae9e6bc9STejun Heo  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
133ae9e6bc9STejun Heo  * area doesn't exist, the following variables contain NULL and 0
134ae9e6bc9STejun Heo  * respectively.
135ae9e6bc9STejun Heo  */
136edcb4639STejun Heo static struct pcpu_chunk *pcpu_reserved_chunk;
137edcb4639STejun Heo static int pcpu_reserved_chunk_limit;
138edcb4639STejun Heo 
139fbf59bc9STejun Heo /*
140ccea34b5STejun Heo  * Synchronization rules.
141fbf59bc9STejun Heo  *
142ccea34b5STejun Heo  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
143ce3141a2STejun Heo  * protects allocation/reclaim paths, chunks, populated bitmap and
144ce3141a2STejun Heo  * vmalloc mapping.  The latter is a spinlock and protects the index
145ce3141a2STejun Heo  * data structures - chunk slots, chunks and area maps in chunks.
146fbf59bc9STejun Heo  *
147ccea34b5STejun Heo  * During allocation, pcpu_alloc_mutex is kept locked all the time and
148ccea34b5STejun Heo  * pcpu_lock is grabbed and released as necessary.  All actual memory
149ccea34b5STejun Heo  * allocations are done using GFP_KERNEL with pcpu_lock released.
150ccea34b5STejun Heo  *
151ccea34b5STejun Heo  * Free path accesses and alters only the index data structures, so it
152ccea34b5STejun Heo  * can be safely called from atomic context.  When memory needs to be
153ccea34b5STejun Heo  * returned to the system, free path schedules reclaim_work which
154ccea34b5STejun Heo  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
155ccea34b5STejun Heo  * reclaimed, release both locks and frees the chunks.  Note that it's
156ccea34b5STejun Heo  * necessary to grab both locks to remove a chunk from circulation as
157ccea34b5STejun Heo  * allocation path might be referencing the chunk with only
158ccea34b5STejun Heo  * pcpu_alloc_mutex locked.
159fbf59bc9STejun Heo  */
160ccea34b5STejun Heo static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
161ccea34b5STejun Heo static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
162fbf59bc9STejun Heo 
16340150d37STejun Heo static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
164fbf59bc9STejun Heo 
165a56dbddfSTejun Heo /* reclaim work to release fully free chunks, scheduled from free path */
166a56dbddfSTejun Heo static void pcpu_reclaim(struct work_struct *work);
167a56dbddfSTejun Heo static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
168a56dbddfSTejun Heo 
169d9b55eebSTejun Heo static int __pcpu_size_to_slot(int size)
170fbf59bc9STejun Heo {
171cae3aeb8STejun Heo 	int highbit = fls(size);	/* size is in bytes */
172fbf59bc9STejun Heo 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
173fbf59bc9STejun Heo }
174fbf59bc9STejun Heo 
175d9b55eebSTejun Heo static int pcpu_size_to_slot(int size)
176d9b55eebSTejun Heo {
177d9b55eebSTejun Heo 	if (size == pcpu_unit_size)
178d9b55eebSTejun Heo 		return pcpu_nr_slots - 1;
179d9b55eebSTejun Heo 	return __pcpu_size_to_slot(size);
180d9b55eebSTejun Heo }
181d9b55eebSTejun Heo 
182fbf59bc9STejun Heo static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
183fbf59bc9STejun Heo {
184fbf59bc9STejun Heo 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
185fbf59bc9STejun Heo 		return 0;
186fbf59bc9STejun Heo 
187fbf59bc9STejun Heo 	return pcpu_size_to_slot(chunk->free_size);
188fbf59bc9STejun Heo }
189fbf59bc9STejun Heo 
190fbf59bc9STejun Heo static int pcpu_page_idx(unsigned int cpu, int page_idx)
191fbf59bc9STejun Heo {
1922f39e637STejun Heo 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
193fbf59bc9STejun Heo }
194fbf59bc9STejun Heo 
195fbf59bc9STejun Heo static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
196fbf59bc9STejun Heo 				     unsigned int cpu, int page_idx)
197fbf59bc9STejun Heo {
198fbf59bc9STejun Heo 	return (unsigned long)chunk->vm->addr +
199fbf59bc9STejun Heo 		(pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT);
200fbf59bc9STejun Heo }
201fbf59bc9STejun Heo 
202ce3141a2STejun Heo static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
203c8a51be4STejun Heo 				    unsigned int cpu, int page_idx)
204c8a51be4STejun Heo {
205ce3141a2STejun Heo 	/* must not be used on pre-mapped chunk */
206ce3141a2STejun Heo 	WARN_ON(chunk->immutable);
207c8a51be4STejun Heo 
208ce3141a2STejun Heo 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
209fbf59bc9STejun Heo }
210fbf59bc9STejun Heo 
211e1b9aa3fSChristoph Lameter /* set the pointer to a chunk in a page struct */
212e1b9aa3fSChristoph Lameter static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
213e1b9aa3fSChristoph Lameter {
214e1b9aa3fSChristoph Lameter 	page->index = (unsigned long)pcpu;
215e1b9aa3fSChristoph Lameter }
216e1b9aa3fSChristoph Lameter 
217e1b9aa3fSChristoph Lameter /* obtain pointer to a chunk from a page struct */
218e1b9aa3fSChristoph Lameter static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
219e1b9aa3fSChristoph Lameter {
220e1b9aa3fSChristoph Lameter 	return (struct pcpu_chunk *)page->index;
221e1b9aa3fSChristoph Lameter }
222e1b9aa3fSChristoph Lameter 
223ce3141a2STejun Heo static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
224ce3141a2STejun Heo {
225ce3141a2STejun Heo 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
226ce3141a2STejun Heo 	*re = find_next_bit(chunk->populated, end, *rs + 1);
227ce3141a2STejun Heo }
228ce3141a2STejun Heo 
229ce3141a2STejun Heo static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
230ce3141a2STejun Heo {
231ce3141a2STejun Heo 	*rs = find_next_bit(chunk->populated, end, *rs);
232ce3141a2STejun Heo 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
233ce3141a2STejun Heo }
234ce3141a2STejun Heo 
235ce3141a2STejun Heo /*
236ce3141a2STejun Heo  * (Un)populated page region iterators.  Iterate over (un)populated
237ce3141a2STejun Heo  * page regions betwen @start and @end in @chunk.  @rs and @re should
238ce3141a2STejun Heo  * be integer variables and will be set to start and end page index of
239ce3141a2STejun Heo  * the current region.
240ce3141a2STejun Heo  */
241ce3141a2STejun Heo #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
242ce3141a2STejun Heo 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
243ce3141a2STejun Heo 	     (rs) < (re);						    \
244ce3141a2STejun Heo 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
245ce3141a2STejun Heo 
246ce3141a2STejun Heo #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
247ce3141a2STejun Heo 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
248ce3141a2STejun Heo 	     (rs) < (re);						    \
249ce3141a2STejun Heo 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
250ce3141a2STejun Heo 
251fbf59bc9STejun Heo /**
2521880d93bSTejun Heo  * pcpu_mem_alloc - allocate memory
2531880d93bSTejun Heo  * @size: bytes to allocate
254fbf59bc9STejun Heo  *
2551880d93bSTejun Heo  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
2561880d93bSTejun Heo  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
2571880d93bSTejun Heo  * memory is always zeroed.
258fbf59bc9STejun Heo  *
259ccea34b5STejun Heo  * CONTEXT:
260ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
261ccea34b5STejun Heo  *
262fbf59bc9STejun Heo  * RETURNS:
2631880d93bSTejun Heo  * Pointer to the allocated area on success, NULL on failure.
264fbf59bc9STejun Heo  */
2651880d93bSTejun Heo static void *pcpu_mem_alloc(size_t size)
266fbf59bc9STejun Heo {
267fbf59bc9STejun Heo 	if (size <= PAGE_SIZE)
2681880d93bSTejun Heo 		return kzalloc(size, GFP_KERNEL);
2691880d93bSTejun Heo 	else {
2701880d93bSTejun Heo 		void *ptr = vmalloc(size);
2711880d93bSTejun Heo 		if (ptr)
2721880d93bSTejun Heo 			memset(ptr, 0, size);
2731880d93bSTejun Heo 		return ptr;
2741880d93bSTejun Heo 	}
2751880d93bSTejun Heo }
276fbf59bc9STejun Heo 
2771880d93bSTejun Heo /**
2781880d93bSTejun Heo  * pcpu_mem_free - free memory
2791880d93bSTejun Heo  * @ptr: memory to free
2801880d93bSTejun Heo  * @size: size of the area
2811880d93bSTejun Heo  *
2821880d93bSTejun Heo  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
2831880d93bSTejun Heo  */
2841880d93bSTejun Heo static void pcpu_mem_free(void *ptr, size_t size)
2851880d93bSTejun Heo {
2861880d93bSTejun Heo 	if (size <= PAGE_SIZE)
2871880d93bSTejun Heo 		kfree(ptr);
2881880d93bSTejun Heo 	else
2891880d93bSTejun Heo 		vfree(ptr);
290fbf59bc9STejun Heo }
291fbf59bc9STejun Heo 
292fbf59bc9STejun Heo /**
293fbf59bc9STejun Heo  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
294fbf59bc9STejun Heo  * @chunk: chunk of interest
295fbf59bc9STejun Heo  * @oslot: the previous slot it was on
296fbf59bc9STejun Heo  *
297fbf59bc9STejun Heo  * This function is called after an allocation or free changed @chunk.
298fbf59bc9STejun Heo  * New slot according to the changed state is determined and @chunk is
299edcb4639STejun Heo  * moved to the slot.  Note that the reserved chunk is never put on
300edcb4639STejun Heo  * chunk slots.
301ccea34b5STejun Heo  *
302ccea34b5STejun Heo  * CONTEXT:
303ccea34b5STejun Heo  * pcpu_lock.
304fbf59bc9STejun Heo  */
305fbf59bc9STejun Heo static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
306fbf59bc9STejun Heo {
307fbf59bc9STejun Heo 	int nslot = pcpu_chunk_slot(chunk);
308fbf59bc9STejun Heo 
309edcb4639STejun Heo 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
310fbf59bc9STejun Heo 		if (oslot < nslot)
311fbf59bc9STejun Heo 			list_move(&chunk->list, &pcpu_slot[nslot]);
312fbf59bc9STejun Heo 		else
313fbf59bc9STejun Heo 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
314fbf59bc9STejun Heo 	}
315fbf59bc9STejun Heo }
316fbf59bc9STejun Heo 
317fbf59bc9STejun Heo /**
318e1b9aa3fSChristoph Lameter  * pcpu_chunk_addr_search - determine chunk containing specified address
319e1b9aa3fSChristoph Lameter  * @addr: address for which the chunk needs to be determined.
320ccea34b5STejun Heo  *
321fbf59bc9STejun Heo  * RETURNS:
322fbf59bc9STejun Heo  * The address of the found chunk.
323fbf59bc9STejun Heo  */
324fbf59bc9STejun Heo static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
325fbf59bc9STejun Heo {
326ae9e6bc9STejun Heo 	void *first_start = pcpu_first_chunk->vm->addr;
327fbf59bc9STejun Heo 
328ae9e6bc9STejun Heo 	/* is it in the first chunk? */
32979ba6ac8STejun Heo 	if (addr >= first_start && addr < first_start + pcpu_unit_size) {
330ae9e6bc9STejun Heo 		/* is it in the reserved area? */
331ae9e6bc9STejun Heo 		if (addr < first_start + pcpu_reserved_chunk_limit)
332edcb4639STejun Heo 			return pcpu_reserved_chunk;
333ae9e6bc9STejun Heo 		return pcpu_first_chunk;
334edcb4639STejun Heo 	}
335edcb4639STejun Heo 
3362f39e637STejun Heo 	/*
3372f39e637STejun Heo 	 * The address is relative to unit0 which might be unused and
3382f39e637STejun Heo 	 * thus unmapped.  Offset the address to the unit space of the
3392f39e637STejun Heo 	 * current processor before looking it up in the vmalloc
3402f39e637STejun Heo 	 * space.  Note that any possible cpu id can be used here, so
3412f39e637STejun Heo 	 * there's no need to worry about preemption or cpu hotplug.
3422f39e637STejun Heo 	 */
3432f39e637STejun Heo 	addr += pcpu_unit_map[smp_processor_id()] * pcpu_unit_size;
344e1b9aa3fSChristoph Lameter 	return pcpu_get_page_chunk(vmalloc_to_page(addr));
345fbf59bc9STejun Heo }
346fbf59bc9STejun Heo 
347fbf59bc9STejun Heo /**
3489f7dcf22STejun Heo  * pcpu_extend_area_map - extend area map for allocation
3499f7dcf22STejun Heo  * @chunk: target chunk
3509f7dcf22STejun Heo  *
3519f7dcf22STejun Heo  * Extend area map of @chunk so that it can accomodate an allocation.
3529f7dcf22STejun Heo  * A single allocation can split an area into three areas, so this
3539f7dcf22STejun Heo  * function makes sure that @chunk->map has at least two extra slots.
3549f7dcf22STejun Heo  *
355ccea34b5STejun Heo  * CONTEXT:
356ccea34b5STejun Heo  * pcpu_alloc_mutex, pcpu_lock.  pcpu_lock is released and reacquired
357ccea34b5STejun Heo  * if area map is extended.
358ccea34b5STejun Heo  *
3599f7dcf22STejun Heo  * RETURNS:
3609f7dcf22STejun Heo  * 0 if noop, 1 if successfully extended, -errno on failure.
3619f7dcf22STejun Heo  */
3629f7dcf22STejun Heo static int pcpu_extend_area_map(struct pcpu_chunk *chunk)
3639f7dcf22STejun Heo {
3649f7dcf22STejun Heo 	int new_alloc;
3659f7dcf22STejun Heo 	int *new;
3669f7dcf22STejun Heo 	size_t size;
3679f7dcf22STejun Heo 
3689f7dcf22STejun Heo 	/* has enough? */
3699f7dcf22STejun Heo 	if (chunk->map_alloc >= chunk->map_used + 2)
3709f7dcf22STejun Heo 		return 0;
3719f7dcf22STejun Heo 
372ccea34b5STejun Heo 	spin_unlock_irq(&pcpu_lock);
373ccea34b5STejun Heo 
3749f7dcf22STejun Heo 	new_alloc = PCPU_DFL_MAP_ALLOC;
3759f7dcf22STejun Heo 	while (new_alloc < chunk->map_used + 2)
3769f7dcf22STejun Heo 		new_alloc *= 2;
3779f7dcf22STejun Heo 
3789f7dcf22STejun Heo 	new = pcpu_mem_alloc(new_alloc * sizeof(new[0]));
379ccea34b5STejun Heo 	if (!new) {
380ccea34b5STejun Heo 		spin_lock_irq(&pcpu_lock);
3819f7dcf22STejun Heo 		return -ENOMEM;
382ccea34b5STejun Heo 	}
383ccea34b5STejun Heo 
384ccea34b5STejun Heo 	/*
385ccea34b5STejun Heo 	 * Acquire pcpu_lock and switch to new area map.  Only free
386ccea34b5STejun Heo 	 * could have happened inbetween, so map_used couldn't have
387ccea34b5STejun Heo 	 * grown.
388ccea34b5STejun Heo 	 */
389ccea34b5STejun Heo 	spin_lock_irq(&pcpu_lock);
390ccea34b5STejun Heo 	BUG_ON(new_alloc < chunk->map_used + 2);
3919f7dcf22STejun Heo 
3929f7dcf22STejun Heo 	size = chunk->map_alloc * sizeof(chunk->map[0]);
3939f7dcf22STejun Heo 	memcpy(new, chunk->map, size);
3949f7dcf22STejun Heo 
3959f7dcf22STejun Heo 	/*
3969f7dcf22STejun Heo 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
3979f7dcf22STejun Heo 	 * one of the first chunks and still using static map.
3989f7dcf22STejun Heo 	 */
3999f7dcf22STejun Heo 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
4009f7dcf22STejun Heo 		pcpu_mem_free(chunk->map, size);
4019f7dcf22STejun Heo 
4029f7dcf22STejun Heo 	chunk->map_alloc = new_alloc;
4039f7dcf22STejun Heo 	chunk->map = new;
4049f7dcf22STejun Heo 	return 0;
4059f7dcf22STejun Heo }
4069f7dcf22STejun Heo 
4079f7dcf22STejun Heo /**
408fbf59bc9STejun Heo  * pcpu_split_block - split a map block
409fbf59bc9STejun Heo  * @chunk: chunk of interest
410fbf59bc9STejun Heo  * @i: index of map block to split
411cae3aeb8STejun Heo  * @head: head size in bytes (can be 0)
412cae3aeb8STejun Heo  * @tail: tail size in bytes (can be 0)
413fbf59bc9STejun Heo  *
414fbf59bc9STejun Heo  * Split the @i'th map block into two or three blocks.  If @head is
415fbf59bc9STejun Heo  * non-zero, @head bytes block is inserted before block @i moving it
416fbf59bc9STejun Heo  * to @i+1 and reducing its size by @head bytes.
417fbf59bc9STejun Heo  *
418fbf59bc9STejun Heo  * If @tail is non-zero, the target block, which can be @i or @i+1
419fbf59bc9STejun Heo  * depending on @head, is reduced by @tail bytes and @tail byte block
420fbf59bc9STejun Heo  * is inserted after the target block.
421fbf59bc9STejun Heo  *
4229f7dcf22STejun Heo  * @chunk->map must have enough free slots to accomodate the split.
423ccea34b5STejun Heo  *
424ccea34b5STejun Heo  * CONTEXT:
425ccea34b5STejun Heo  * pcpu_lock.
426fbf59bc9STejun Heo  */
4279f7dcf22STejun Heo static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
4289f7dcf22STejun Heo 			     int head, int tail)
429fbf59bc9STejun Heo {
430fbf59bc9STejun Heo 	int nr_extra = !!head + !!tail;
431fbf59bc9STejun Heo 
4329f7dcf22STejun Heo 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
433fbf59bc9STejun Heo 
4349f7dcf22STejun Heo 	/* insert new subblocks */
435fbf59bc9STejun Heo 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
436fbf59bc9STejun Heo 		sizeof(chunk->map[0]) * (chunk->map_used - i));
437fbf59bc9STejun Heo 	chunk->map_used += nr_extra;
438fbf59bc9STejun Heo 
439fbf59bc9STejun Heo 	if (head) {
440fbf59bc9STejun Heo 		chunk->map[i + 1] = chunk->map[i] - head;
441fbf59bc9STejun Heo 		chunk->map[i++] = head;
442fbf59bc9STejun Heo 	}
443fbf59bc9STejun Heo 	if (tail) {
444fbf59bc9STejun Heo 		chunk->map[i++] -= tail;
445fbf59bc9STejun Heo 		chunk->map[i] = tail;
446fbf59bc9STejun Heo 	}
447fbf59bc9STejun Heo }
448fbf59bc9STejun Heo 
449fbf59bc9STejun Heo /**
450fbf59bc9STejun Heo  * pcpu_alloc_area - allocate area from a pcpu_chunk
451fbf59bc9STejun Heo  * @chunk: chunk of interest
452cae3aeb8STejun Heo  * @size: wanted size in bytes
453fbf59bc9STejun Heo  * @align: wanted align
454fbf59bc9STejun Heo  *
455fbf59bc9STejun Heo  * Try to allocate @size bytes area aligned at @align from @chunk.
456fbf59bc9STejun Heo  * Note that this function only allocates the offset.  It doesn't
457fbf59bc9STejun Heo  * populate or map the area.
458fbf59bc9STejun Heo  *
4599f7dcf22STejun Heo  * @chunk->map must have at least two free slots.
4609f7dcf22STejun Heo  *
461ccea34b5STejun Heo  * CONTEXT:
462ccea34b5STejun Heo  * pcpu_lock.
463ccea34b5STejun Heo  *
464fbf59bc9STejun Heo  * RETURNS:
4659f7dcf22STejun Heo  * Allocated offset in @chunk on success, -1 if no matching area is
4669f7dcf22STejun Heo  * found.
467fbf59bc9STejun Heo  */
468fbf59bc9STejun Heo static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
469fbf59bc9STejun Heo {
470fbf59bc9STejun Heo 	int oslot = pcpu_chunk_slot(chunk);
471fbf59bc9STejun Heo 	int max_contig = 0;
472fbf59bc9STejun Heo 	int i, off;
473fbf59bc9STejun Heo 
474fbf59bc9STejun Heo 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
475fbf59bc9STejun Heo 		bool is_last = i + 1 == chunk->map_used;
476fbf59bc9STejun Heo 		int head, tail;
477fbf59bc9STejun Heo 
478fbf59bc9STejun Heo 		/* extra for alignment requirement */
479fbf59bc9STejun Heo 		head = ALIGN(off, align) - off;
480fbf59bc9STejun Heo 		BUG_ON(i == 0 && head != 0);
481fbf59bc9STejun Heo 
482fbf59bc9STejun Heo 		if (chunk->map[i] < 0)
483fbf59bc9STejun Heo 			continue;
484fbf59bc9STejun Heo 		if (chunk->map[i] < head + size) {
485fbf59bc9STejun Heo 			max_contig = max(chunk->map[i], max_contig);
486fbf59bc9STejun Heo 			continue;
487fbf59bc9STejun Heo 		}
488fbf59bc9STejun Heo 
489fbf59bc9STejun Heo 		/*
490fbf59bc9STejun Heo 		 * If head is small or the previous block is free,
491fbf59bc9STejun Heo 		 * merge'em.  Note that 'small' is defined as smaller
492fbf59bc9STejun Heo 		 * than sizeof(int), which is very small but isn't too
493fbf59bc9STejun Heo 		 * uncommon for percpu allocations.
494fbf59bc9STejun Heo 		 */
495fbf59bc9STejun Heo 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
496fbf59bc9STejun Heo 			if (chunk->map[i - 1] > 0)
497fbf59bc9STejun Heo 				chunk->map[i - 1] += head;
498fbf59bc9STejun Heo 			else {
499fbf59bc9STejun Heo 				chunk->map[i - 1] -= head;
500fbf59bc9STejun Heo 				chunk->free_size -= head;
501fbf59bc9STejun Heo 			}
502fbf59bc9STejun Heo 			chunk->map[i] -= head;
503fbf59bc9STejun Heo 			off += head;
504fbf59bc9STejun Heo 			head = 0;
505fbf59bc9STejun Heo 		}
506fbf59bc9STejun Heo 
507fbf59bc9STejun Heo 		/* if tail is small, just keep it around */
508fbf59bc9STejun Heo 		tail = chunk->map[i] - head - size;
509fbf59bc9STejun Heo 		if (tail < sizeof(int))
510fbf59bc9STejun Heo 			tail = 0;
511fbf59bc9STejun Heo 
512fbf59bc9STejun Heo 		/* split if warranted */
513fbf59bc9STejun Heo 		if (head || tail) {
5149f7dcf22STejun Heo 			pcpu_split_block(chunk, i, head, tail);
515fbf59bc9STejun Heo 			if (head) {
516fbf59bc9STejun Heo 				i++;
517fbf59bc9STejun Heo 				off += head;
518fbf59bc9STejun Heo 				max_contig = max(chunk->map[i - 1], max_contig);
519fbf59bc9STejun Heo 			}
520fbf59bc9STejun Heo 			if (tail)
521fbf59bc9STejun Heo 				max_contig = max(chunk->map[i + 1], max_contig);
522fbf59bc9STejun Heo 		}
523fbf59bc9STejun Heo 
524fbf59bc9STejun Heo 		/* update hint and mark allocated */
525fbf59bc9STejun Heo 		if (is_last)
526fbf59bc9STejun Heo 			chunk->contig_hint = max_contig; /* fully scanned */
527fbf59bc9STejun Heo 		else
528fbf59bc9STejun Heo 			chunk->contig_hint = max(chunk->contig_hint,
529fbf59bc9STejun Heo 						 max_contig);
530fbf59bc9STejun Heo 
531fbf59bc9STejun Heo 		chunk->free_size -= chunk->map[i];
532fbf59bc9STejun Heo 		chunk->map[i] = -chunk->map[i];
533fbf59bc9STejun Heo 
534fbf59bc9STejun Heo 		pcpu_chunk_relocate(chunk, oslot);
535fbf59bc9STejun Heo 		return off;
536fbf59bc9STejun Heo 	}
537fbf59bc9STejun Heo 
538fbf59bc9STejun Heo 	chunk->contig_hint = max_contig;	/* fully scanned */
539fbf59bc9STejun Heo 	pcpu_chunk_relocate(chunk, oslot);
540fbf59bc9STejun Heo 
5419f7dcf22STejun Heo 	/* tell the upper layer that this chunk has no matching area */
5429f7dcf22STejun Heo 	return -1;
543fbf59bc9STejun Heo }
544fbf59bc9STejun Heo 
545fbf59bc9STejun Heo /**
546fbf59bc9STejun Heo  * pcpu_free_area - free area to a pcpu_chunk
547fbf59bc9STejun Heo  * @chunk: chunk of interest
548fbf59bc9STejun Heo  * @freeme: offset of area to free
549fbf59bc9STejun Heo  *
550fbf59bc9STejun Heo  * Free area starting from @freeme to @chunk.  Note that this function
551fbf59bc9STejun Heo  * only modifies the allocation map.  It doesn't depopulate or unmap
552fbf59bc9STejun Heo  * the area.
553ccea34b5STejun Heo  *
554ccea34b5STejun Heo  * CONTEXT:
555ccea34b5STejun Heo  * pcpu_lock.
556fbf59bc9STejun Heo  */
557fbf59bc9STejun Heo static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
558fbf59bc9STejun Heo {
559fbf59bc9STejun Heo 	int oslot = pcpu_chunk_slot(chunk);
560fbf59bc9STejun Heo 	int i, off;
561fbf59bc9STejun Heo 
562fbf59bc9STejun Heo 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
563fbf59bc9STejun Heo 		if (off == freeme)
564fbf59bc9STejun Heo 			break;
565fbf59bc9STejun Heo 	BUG_ON(off != freeme);
566fbf59bc9STejun Heo 	BUG_ON(chunk->map[i] > 0);
567fbf59bc9STejun Heo 
568fbf59bc9STejun Heo 	chunk->map[i] = -chunk->map[i];
569fbf59bc9STejun Heo 	chunk->free_size += chunk->map[i];
570fbf59bc9STejun Heo 
571fbf59bc9STejun Heo 	/* merge with previous? */
572fbf59bc9STejun Heo 	if (i > 0 && chunk->map[i - 1] >= 0) {
573fbf59bc9STejun Heo 		chunk->map[i - 1] += chunk->map[i];
574fbf59bc9STejun Heo 		chunk->map_used--;
575fbf59bc9STejun Heo 		memmove(&chunk->map[i], &chunk->map[i + 1],
576fbf59bc9STejun Heo 			(chunk->map_used - i) * sizeof(chunk->map[0]));
577fbf59bc9STejun Heo 		i--;
578fbf59bc9STejun Heo 	}
579fbf59bc9STejun Heo 	/* merge with next? */
580fbf59bc9STejun Heo 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
581fbf59bc9STejun Heo 		chunk->map[i] += chunk->map[i + 1];
582fbf59bc9STejun Heo 		chunk->map_used--;
583fbf59bc9STejun Heo 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
584fbf59bc9STejun Heo 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
585fbf59bc9STejun Heo 	}
586fbf59bc9STejun Heo 
587fbf59bc9STejun Heo 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
588fbf59bc9STejun Heo 	pcpu_chunk_relocate(chunk, oslot);
589fbf59bc9STejun Heo }
590fbf59bc9STejun Heo 
591fbf59bc9STejun Heo /**
592ce3141a2STejun Heo  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
593fbf59bc9STejun Heo  * @chunk: chunk of interest
594ce3141a2STejun Heo  * @bitmapp: output parameter for bitmap
595ce3141a2STejun Heo  * @may_alloc: may allocate the array
596fbf59bc9STejun Heo  *
597ce3141a2STejun Heo  * Returns pointer to array of pointers to struct page and bitmap,
598ce3141a2STejun Heo  * both of which can be indexed with pcpu_page_idx().  The returned
599ce3141a2STejun Heo  * array is cleared to zero and *@bitmapp is copied from
600ce3141a2STejun Heo  * @chunk->populated.  Note that there is only one array and bitmap
601ce3141a2STejun Heo  * and access exclusion is the caller's responsibility.
602ce3141a2STejun Heo  *
603ce3141a2STejun Heo  * CONTEXT:
604ce3141a2STejun Heo  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
605ce3141a2STejun Heo  * Otherwise, don't care.
606ce3141a2STejun Heo  *
607ce3141a2STejun Heo  * RETURNS:
608ce3141a2STejun Heo  * Pointer to temp pages array on success, NULL on failure.
609fbf59bc9STejun Heo  */
610ce3141a2STejun Heo static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
611ce3141a2STejun Heo 					       unsigned long **bitmapp,
612ce3141a2STejun Heo 					       bool may_alloc)
613ce3141a2STejun Heo {
614ce3141a2STejun Heo 	static struct page **pages;
615ce3141a2STejun Heo 	static unsigned long *bitmap;
6162f39e637STejun Heo 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
617ce3141a2STejun Heo 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
618ce3141a2STejun Heo 			     sizeof(unsigned long);
619ce3141a2STejun Heo 
620ce3141a2STejun Heo 	if (!pages || !bitmap) {
621ce3141a2STejun Heo 		if (may_alloc && !pages)
622ce3141a2STejun Heo 			pages = pcpu_mem_alloc(pages_size);
623ce3141a2STejun Heo 		if (may_alloc && !bitmap)
624ce3141a2STejun Heo 			bitmap = pcpu_mem_alloc(bitmap_size);
625ce3141a2STejun Heo 		if (!pages || !bitmap)
626ce3141a2STejun Heo 			return NULL;
627ce3141a2STejun Heo 	}
628ce3141a2STejun Heo 
629ce3141a2STejun Heo 	memset(pages, 0, pages_size);
630ce3141a2STejun Heo 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
631ce3141a2STejun Heo 
632ce3141a2STejun Heo 	*bitmapp = bitmap;
633ce3141a2STejun Heo 	return pages;
634ce3141a2STejun Heo }
635ce3141a2STejun Heo 
636ce3141a2STejun Heo /**
637ce3141a2STejun Heo  * pcpu_free_pages - free pages which were allocated for @chunk
638ce3141a2STejun Heo  * @chunk: chunk pages were allocated for
639ce3141a2STejun Heo  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
640ce3141a2STejun Heo  * @populated: populated bitmap
641ce3141a2STejun Heo  * @page_start: page index of the first page to be freed
642ce3141a2STejun Heo  * @page_end: page index of the last page to be freed + 1
643ce3141a2STejun Heo  *
644ce3141a2STejun Heo  * Free pages [@page_start and @page_end) in @pages for all units.
645ce3141a2STejun Heo  * The pages were allocated for @chunk.
646ce3141a2STejun Heo  */
647ce3141a2STejun Heo static void pcpu_free_pages(struct pcpu_chunk *chunk,
648ce3141a2STejun Heo 			    struct page **pages, unsigned long *populated,
649ce3141a2STejun Heo 			    int page_start, int page_end)
650ce3141a2STejun Heo {
651ce3141a2STejun Heo 	unsigned int cpu;
652ce3141a2STejun Heo 	int i;
653ce3141a2STejun Heo 
654ce3141a2STejun Heo 	for_each_possible_cpu(cpu) {
655ce3141a2STejun Heo 		for (i = page_start; i < page_end; i++) {
656ce3141a2STejun Heo 			struct page *page = pages[pcpu_page_idx(cpu, i)];
657ce3141a2STejun Heo 
658ce3141a2STejun Heo 			if (page)
659ce3141a2STejun Heo 				__free_page(page);
660ce3141a2STejun Heo 		}
661ce3141a2STejun Heo 	}
662ce3141a2STejun Heo }
663ce3141a2STejun Heo 
664ce3141a2STejun Heo /**
665ce3141a2STejun Heo  * pcpu_alloc_pages - allocates pages for @chunk
666ce3141a2STejun Heo  * @chunk: target chunk
667ce3141a2STejun Heo  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
668ce3141a2STejun Heo  * @populated: populated bitmap
669ce3141a2STejun Heo  * @page_start: page index of the first page to be allocated
670ce3141a2STejun Heo  * @page_end: page index of the last page to be allocated + 1
671ce3141a2STejun Heo  *
672ce3141a2STejun Heo  * Allocate pages [@page_start,@page_end) into @pages for all units.
673ce3141a2STejun Heo  * The allocation is for @chunk.  Percpu core doesn't care about the
674ce3141a2STejun Heo  * content of @pages and will pass it verbatim to pcpu_map_pages().
675ce3141a2STejun Heo  */
676ce3141a2STejun Heo static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
677ce3141a2STejun Heo 			    struct page **pages, unsigned long *populated,
678ce3141a2STejun Heo 			    int page_start, int page_end)
679ce3141a2STejun Heo {
680ce3141a2STejun Heo 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
681ce3141a2STejun Heo 	unsigned int cpu;
682ce3141a2STejun Heo 	int i;
683ce3141a2STejun Heo 
684ce3141a2STejun Heo 	for_each_possible_cpu(cpu) {
685ce3141a2STejun Heo 		for (i = page_start; i < page_end; i++) {
686ce3141a2STejun Heo 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
687ce3141a2STejun Heo 
688ce3141a2STejun Heo 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
689ce3141a2STejun Heo 			if (!*pagep) {
690ce3141a2STejun Heo 				pcpu_free_pages(chunk, pages, populated,
691ce3141a2STejun Heo 						page_start, page_end);
692ce3141a2STejun Heo 				return -ENOMEM;
693ce3141a2STejun Heo 			}
694ce3141a2STejun Heo 		}
695ce3141a2STejun Heo 	}
696ce3141a2STejun Heo 	return 0;
697ce3141a2STejun Heo }
698ce3141a2STejun Heo 
699ce3141a2STejun Heo /**
700ce3141a2STejun Heo  * pcpu_pre_unmap_flush - flush cache prior to unmapping
701ce3141a2STejun Heo  * @chunk: chunk the regions to be flushed belongs to
702ce3141a2STejun Heo  * @page_start: page index of the first page to be flushed
703ce3141a2STejun Heo  * @page_end: page index of the last page to be flushed + 1
704ce3141a2STejun Heo  *
705ce3141a2STejun Heo  * Pages in [@page_start,@page_end) of @chunk are about to be
706ce3141a2STejun Heo  * unmapped.  Flush cache.  As each flushing trial can be very
707ce3141a2STejun Heo  * expensive, issue flush on the whole region at once rather than
708ce3141a2STejun Heo  * doing it for each cpu.  This could be an overkill but is more
709ce3141a2STejun Heo  * scalable.
710ce3141a2STejun Heo  */
711ce3141a2STejun Heo static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
712ce3141a2STejun Heo 				 int page_start, int page_end)
713fbf59bc9STejun Heo {
7142f39e637STejun Heo 	flush_cache_vunmap(
7152f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
7162f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
717ce3141a2STejun Heo }
718fbf59bc9STejun Heo 
719ce3141a2STejun Heo static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
720ce3141a2STejun Heo {
721ce3141a2STejun Heo 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
722ce3141a2STejun Heo }
723fbf59bc9STejun Heo 
724ce3141a2STejun Heo /**
725ce3141a2STejun Heo  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
726ce3141a2STejun Heo  * @chunk: chunk of interest
727ce3141a2STejun Heo  * @pages: pages array which can be used to pass information to free
728ce3141a2STejun Heo  * @populated: populated bitmap
729ce3141a2STejun Heo  * @page_start: page index of the first page to unmap
730ce3141a2STejun Heo  * @page_end: page index of the last page to unmap + 1
731ce3141a2STejun Heo  *
732ce3141a2STejun Heo  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
733ce3141a2STejun Heo  * Corresponding elements in @pages were cleared by the caller and can
734ce3141a2STejun Heo  * be used to carry information to pcpu_free_pages() which will be
735ce3141a2STejun Heo  * called after all unmaps are finished.  The caller should call
736ce3141a2STejun Heo  * proper pre/post flush functions.
737ce3141a2STejun Heo  */
738ce3141a2STejun Heo static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
739ce3141a2STejun Heo 			     struct page **pages, unsigned long *populated,
740ce3141a2STejun Heo 			     int page_start, int page_end)
741ce3141a2STejun Heo {
742ce3141a2STejun Heo 	unsigned int cpu;
743ce3141a2STejun Heo 	int i;
744ce3141a2STejun Heo 
745ce3141a2STejun Heo 	for_each_possible_cpu(cpu) {
746ce3141a2STejun Heo 		for (i = page_start; i < page_end; i++) {
747ce3141a2STejun Heo 			struct page *page;
748ce3141a2STejun Heo 
749ce3141a2STejun Heo 			page = pcpu_chunk_page(chunk, cpu, i);
750ce3141a2STejun Heo 			WARN_ON(!page);
751ce3141a2STejun Heo 			pages[pcpu_page_idx(cpu, i)] = page;
752ce3141a2STejun Heo 		}
753ce3141a2STejun Heo 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
754ce3141a2STejun Heo 				   page_end - page_start);
755ce3141a2STejun Heo 	}
756ce3141a2STejun Heo 
757ce3141a2STejun Heo 	for (i = page_start; i < page_end; i++)
758ce3141a2STejun Heo 		__clear_bit(i, populated);
759ce3141a2STejun Heo }
760ce3141a2STejun Heo 
761ce3141a2STejun Heo /**
762ce3141a2STejun Heo  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
763ce3141a2STejun Heo  * @chunk: pcpu_chunk the regions to be flushed belong to
764ce3141a2STejun Heo  * @page_start: page index of the first page to be flushed
765ce3141a2STejun Heo  * @page_end: page index of the last page to be flushed + 1
766ce3141a2STejun Heo  *
767ce3141a2STejun Heo  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
768ce3141a2STejun Heo  * TLB for the regions.  This can be skipped if the area is to be
769ce3141a2STejun Heo  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
770ce3141a2STejun Heo  *
771ce3141a2STejun Heo  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
772ce3141a2STejun Heo  * for the whole region.
773ce3141a2STejun Heo  */
774ce3141a2STejun Heo static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
775ce3141a2STejun Heo 				      int page_start, int page_end)
776ce3141a2STejun Heo {
7772f39e637STejun Heo 	flush_tlb_kernel_range(
7782f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
7792f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
780fbf59bc9STejun Heo }
781fbf59bc9STejun Heo 
782c8a51be4STejun Heo static int __pcpu_map_pages(unsigned long addr, struct page **pages,
783c8a51be4STejun Heo 			    int nr_pages)
784c8a51be4STejun Heo {
785c8a51be4STejun Heo 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
786c8a51be4STejun Heo 					PAGE_KERNEL, pages);
787c8a51be4STejun Heo }
788c8a51be4STejun Heo 
789c8a51be4STejun Heo /**
790ce3141a2STejun Heo  * pcpu_map_pages - map pages into a pcpu_chunk
791c8a51be4STejun Heo  * @chunk: chunk of interest
792ce3141a2STejun Heo  * @pages: pages array containing pages to be mapped
793ce3141a2STejun Heo  * @populated: populated bitmap
794c8a51be4STejun Heo  * @page_start: page index of the first page to map
795c8a51be4STejun Heo  * @page_end: page index of the last page to map + 1
796c8a51be4STejun Heo  *
797ce3141a2STejun Heo  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
798ce3141a2STejun Heo  * caller is responsible for calling pcpu_post_map_flush() after all
799ce3141a2STejun Heo  * mappings are complete.
800ce3141a2STejun Heo  *
801ce3141a2STejun Heo  * This function is responsible for setting corresponding bits in
802ce3141a2STejun Heo  * @chunk->populated bitmap and whatever is necessary for reverse
803ce3141a2STejun Heo  * lookup (addr -> chunk).
804c8a51be4STejun Heo  */
805ce3141a2STejun Heo static int pcpu_map_pages(struct pcpu_chunk *chunk,
806ce3141a2STejun Heo 			  struct page **pages, unsigned long *populated,
807ce3141a2STejun Heo 			  int page_start, int page_end)
808c8a51be4STejun Heo {
809ce3141a2STejun Heo 	unsigned int cpu, tcpu;
810ce3141a2STejun Heo 	int i, err;
811c8a51be4STejun Heo 
812c8a51be4STejun Heo 	for_each_possible_cpu(cpu) {
813c8a51be4STejun Heo 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
814ce3141a2STejun Heo 				       &pages[pcpu_page_idx(cpu, page_start)],
815c8a51be4STejun Heo 				       page_end - page_start);
816c8a51be4STejun Heo 		if (err < 0)
817ce3141a2STejun Heo 			goto err;
818ce3141a2STejun Heo 	}
819ce3141a2STejun Heo 
820ce3141a2STejun Heo 	/* mapping successful, link chunk and mark populated */
821ce3141a2STejun Heo 	for (i = page_start; i < page_end; i++) {
822ce3141a2STejun Heo 		for_each_possible_cpu(cpu)
823ce3141a2STejun Heo 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
824ce3141a2STejun Heo 					    chunk);
825ce3141a2STejun Heo 		__set_bit(i, populated);
826ce3141a2STejun Heo 	}
827ce3141a2STejun Heo 
828ce3141a2STejun Heo 	return 0;
829ce3141a2STejun Heo 
830ce3141a2STejun Heo err:
831ce3141a2STejun Heo 	for_each_possible_cpu(tcpu) {
832ce3141a2STejun Heo 		if (tcpu == cpu)
833ce3141a2STejun Heo 			break;
834ce3141a2STejun Heo 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
835ce3141a2STejun Heo 				   page_end - page_start);
836ce3141a2STejun Heo 	}
837c8a51be4STejun Heo 	return err;
838c8a51be4STejun Heo }
839c8a51be4STejun Heo 
840ce3141a2STejun Heo /**
841ce3141a2STejun Heo  * pcpu_post_map_flush - flush cache after mapping
842ce3141a2STejun Heo  * @chunk: pcpu_chunk the regions to be flushed belong to
843ce3141a2STejun Heo  * @page_start: page index of the first page to be flushed
844ce3141a2STejun Heo  * @page_end: page index of the last page to be flushed + 1
845ce3141a2STejun Heo  *
846ce3141a2STejun Heo  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
847ce3141a2STejun Heo  * cache.
848ce3141a2STejun Heo  *
849ce3141a2STejun Heo  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
850ce3141a2STejun Heo  * for the whole region.
851ce3141a2STejun Heo  */
852ce3141a2STejun Heo static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
853ce3141a2STejun Heo 				int page_start, int page_end)
854ce3141a2STejun Heo {
8552f39e637STejun Heo 	flush_cache_vmap(
8562f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
8572f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
858c8a51be4STejun Heo }
859c8a51be4STejun Heo 
860fbf59bc9STejun Heo /**
861fbf59bc9STejun Heo  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
862fbf59bc9STejun Heo  * @chunk: chunk to depopulate
863fbf59bc9STejun Heo  * @off: offset to the area to depopulate
864cae3aeb8STejun Heo  * @size: size of the area to depopulate in bytes
865fbf59bc9STejun Heo  * @flush: whether to flush cache and tlb or not
866fbf59bc9STejun Heo  *
867fbf59bc9STejun Heo  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
868fbf59bc9STejun Heo  * from @chunk.  If @flush is true, vcache is flushed before unmapping
869fbf59bc9STejun Heo  * and tlb after.
870ccea34b5STejun Heo  *
871ccea34b5STejun Heo  * CONTEXT:
872ccea34b5STejun Heo  * pcpu_alloc_mutex.
873fbf59bc9STejun Heo  */
874ce3141a2STejun Heo static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
875fbf59bc9STejun Heo {
876fbf59bc9STejun Heo 	int page_start = PFN_DOWN(off);
877fbf59bc9STejun Heo 	int page_end = PFN_UP(off + size);
878ce3141a2STejun Heo 	struct page **pages;
879ce3141a2STejun Heo 	unsigned long *populated;
880ce3141a2STejun Heo 	int rs, re;
881fbf59bc9STejun Heo 
882ce3141a2STejun Heo 	/* quick path, check whether it's empty already */
883ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
884ce3141a2STejun Heo 		if (rs == page_start && re == page_end)
885ce3141a2STejun Heo 			return;
886ce3141a2STejun Heo 		break;
887ce3141a2STejun Heo 	}
888fbf59bc9STejun Heo 
889ce3141a2STejun Heo 	/* immutable chunks can't be depopulated */
890ce3141a2STejun Heo 	WARN_ON(chunk->immutable);
891fbf59bc9STejun Heo 
892fbf59bc9STejun Heo 	/*
893ce3141a2STejun Heo 	 * If control reaches here, there must have been at least one
894ce3141a2STejun Heo 	 * successful population attempt so the temp pages array must
895ce3141a2STejun Heo 	 * be available now.
896fbf59bc9STejun Heo 	 */
897ce3141a2STejun Heo 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
898ce3141a2STejun Heo 	BUG_ON(!pages);
899fbf59bc9STejun Heo 
900ce3141a2STejun Heo 	/* unmap and free */
901ce3141a2STejun Heo 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
902fbf59bc9STejun Heo 
903ce3141a2STejun Heo 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
904ce3141a2STejun Heo 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
905ce3141a2STejun Heo 
906ce3141a2STejun Heo 	/* no need to flush tlb, vmalloc will handle it lazily */
907ce3141a2STejun Heo 
908ce3141a2STejun Heo 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
909ce3141a2STejun Heo 		pcpu_free_pages(chunk, pages, populated, rs, re);
910ce3141a2STejun Heo 
911ce3141a2STejun Heo 	/* commit new bitmap */
912ce3141a2STejun Heo 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
913fbf59bc9STejun Heo }
914fbf59bc9STejun Heo 
915fbf59bc9STejun Heo /**
916fbf59bc9STejun Heo  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
917fbf59bc9STejun Heo  * @chunk: chunk of interest
918fbf59bc9STejun Heo  * @off: offset to the area to populate
919cae3aeb8STejun Heo  * @size: size of the area to populate in bytes
920fbf59bc9STejun Heo  *
921fbf59bc9STejun Heo  * For each cpu, populate and map pages [@page_start,@page_end) into
922fbf59bc9STejun Heo  * @chunk.  The area is cleared on return.
923ccea34b5STejun Heo  *
924ccea34b5STejun Heo  * CONTEXT:
925ccea34b5STejun Heo  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
926fbf59bc9STejun Heo  */
927fbf59bc9STejun Heo static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
928fbf59bc9STejun Heo {
929fbf59bc9STejun Heo 	int page_start = PFN_DOWN(off);
930fbf59bc9STejun Heo 	int page_end = PFN_UP(off + size);
931ce3141a2STejun Heo 	int free_end = page_start, unmap_end = page_start;
932ce3141a2STejun Heo 	struct page **pages;
933ce3141a2STejun Heo 	unsigned long *populated;
934fbf59bc9STejun Heo 	unsigned int cpu;
935ce3141a2STejun Heo 	int rs, re, rc;
936fbf59bc9STejun Heo 
937ce3141a2STejun Heo 	/* quick path, check whether all pages are already there */
938ce3141a2STejun Heo 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end) {
939ce3141a2STejun Heo 		if (rs == page_start && re == page_end)
940ce3141a2STejun Heo 			goto clear;
941ce3141a2STejun Heo 		break;
942fbf59bc9STejun Heo 	}
943fbf59bc9STejun Heo 
944ce3141a2STejun Heo 	/* need to allocate and map pages, this chunk can't be immutable */
945ce3141a2STejun Heo 	WARN_ON(chunk->immutable);
946fbf59bc9STejun Heo 
947ce3141a2STejun Heo 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
948ce3141a2STejun Heo 	if (!pages)
949ce3141a2STejun Heo 		return -ENOMEM;
950fbf59bc9STejun Heo 
951ce3141a2STejun Heo 	/* alloc and map */
952ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
953ce3141a2STejun Heo 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
954ce3141a2STejun Heo 		if (rc)
955ce3141a2STejun Heo 			goto err_free;
956ce3141a2STejun Heo 		free_end = re;
957fbf59bc9STejun Heo 	}
958fbf59bc9STejun Heo 
959ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
960ce3141a2STejun Heo 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
961ce3141a2STejun Heo 		if (rc)
962ce3141a2STejun Heo 			goto err_unmap;
963ce3141a2STejun Heo 		unmap_end = re;
964ce3141a2STejun Heo 	}
965ce3141a2STejun Heo 	pcpu_post_map_flush(chunk, page_start, page_end);
966fbf59bc9STejun Heo 
967ce3141a2STejun Heo 	/* commit new bitmap */
968ce3141a2STejun Heo 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
969ce3141a2STejun Heo clear:
970fbf59bc9STejun Heo 	for_each_possible_cpu(cpu)
9712f39e637STejun Heo 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
972fbf59bc9STejun Heo 	return 0;
973ce3141a2STejun Heo 
974ce3141a2STejun Heo err_unmap:
975ce3141a2STejun Heo 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
976ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
977ce3141a2STejun Heo 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
978ce3141a2STejun Heo 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
979ce3141a2STejun Heo err_free:
980ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
981ce3141a2STejun Heo 		pcpu_free_pages(chunk, pages, populated, rs, re);
982ce3141a2STejun Heo 	return rc;
983fbf59bc9STejun Heo }
984fbf59bc9STejun Heo 
985fbf59bc9STejun Heo static void free_pcpu_chunk(struct pcpu_chunk *chunk)
986fbf59bc9STejun Heo {
987fbf59bc9STejun Heo 	if (!chunk)
988fbf59bc9STejun Heo 		return;
989fbf59bc9STejun Heo 	if (chunk->vm)
990fbf59bc9STejun Heo 		free_vm_area(chunk->vm);
9911880d93bSTejun Heo 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
992fbf59bc9STejun Heo 	kfree(chunk);
993fbf59bc9STejun Heo }
994fbf59bc9STejun Heo 
995fbf59bc9STejun Heo static struct pcpu_chunk *alloc_pcpu_chunk(void)
996fbf59bc9STejun Heo {
997fbf59bc9STejun Heo 	struct pcpu_chunk *chunk;
998fbf59bc9STejun Heo 
999fbf59bc9STejun Heo 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
1000fbf59bc9STejun Heo 	if (!chunk)
1001fbf59bc9STejun Heo 		return NULL;
1002fbf59bc9STejun Heo 
10031880d93bSTejun Heo 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
1004fbf59bc9STejun Heo 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
1005fbf59bc9STejun Heo 	chunk->map[chunk->map_used++] = pcpu_unit_size;
1006fbf59bc9STejun Heo 
1007142d44b0SAmerigo Wang 	chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC);
1008fbf59bc9STejun Heo 	if (!chunk->vm) {
1009fbf59bc9STejun Heo 		free_pcpu_chunk(chunk);
1010fbf59bc9STejun Heo 		return NULL;
1011fbf59bc9STejun Heo 	}
1012fbf59bc9STejun Heo 
1013fbf59bc9STejun Heo 	INIT_LIST_HEAD(&chunk->list);
1014fbf59bc9STejun Heo 	chunk->free_size = pcpu_unit_size;
1015fbf59bc9STejun Heo 	chunk->contig_hint = pcpu_unit_size;
1016fbf59bc9STejun Heo 
1017fbf59bc9STejun Heo 	return chunk;
1018fbf59bc9STejun Heo }
1019fbf59bc9STejun Heo 
1020fbf59bc9STejun Heo /**
1021edcb4639STejun Heo  * pcpu_alloc - the percpu allocator
1022cae3aeb8STejun Heo  * @size: size of area to allocate in bytes
1023fbf59bc9STejun Heo  * @align: alignment of area (max PAGE_SIZE)
1024edcb4639STejun Heo  * @reserved: allocate from the reserved chunk if available
1025fbf59bc9STejun Heo  *
1026ccea34b5STejun Heo  * Allocate percpu area of @size bytes aligned at @align.
1027ccea34b5STejun Heo  *
1028ccea34b5STejun Heo  * CONTEXT:
1029ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
1030fbf59bc9STejun Heo  *
1031fbf59bc9STejun Heo  * RETURNS:
1032fbf59bc9STejun Heo  * Percpu pointer to the allocated area on success, NULL on failure.
1033fbf59bc9STejun Heo  */
1034edcb4639STejun Heo static void *pcpu_alloc(size_t size, size_t align, bool reserved)
1035fbf59bc9STejun Heo {
1036fbf59bc9STejun Heo 	struct pcpu_chunk *chunk;
1037fbf59bc9STejun Heo 	int slot, off;
1038fbf59bc9STejun Heo 
10398d408b4bSTejun Heo 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1040fbf59bc9STejun Heo 		WARN(true, "illegal size (%zu) or align (%zu) for "
1041fbf59bc9STejun Heo 		     "percpu allocation\n", size, align);
1042fbf59bc9STejun Heo 		return NULL;
1043fbf59bc9STejun Heo 	}
1044fbf59bc9STejun Heo 
1045ccea34b5STejun Heo 	mutex_lock(&pcpu_alloc_mutex);
1046ccea34b5STejun Heo 	spin_lock_irq(&pcpu_lock);
1047fbf59bc9STejun Heo 
1048edcb4639STejun Heo 	/* serve reserved allocations from the reserved chunk if available */
1049edcb4639STejun Heo 	if (reserved && pcpu_reserved_chunk) {
1050edcb4639STejun Heo 		chunk = pcpu_reserved_chunk;
10519f7dcf22STejun Heo 		if (size > chunk->contig_hint ||
10529f7dcf22STejun Heo 		    pcpu_extend_area_map(chunk) < 0)
1053ccea34b5STejun Heo 			goto fail_unlock;
1054edcb4639STejun Heo 		off = pcpu_alloc_area(chunk, size, align);
1055edcb4639STejun Heo 		if (off >= 0)
1056edcb4639STejun Heo 			goto area_found;
1057ccea34b5STejun Heo 		goto fail_unlock;
1058edcb4639STejun Heo 	}
1059edcb4639STejun Heo 
1060ccea34b5STejun Heo restart:
1061edcb4639STejun Heo 	/* search through normal chunks */
1062fbf59bc9STejun Heo 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1063fbf59bc9STejun Heo 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1064fbf59bc9STejun Heo 			if (size > chunk->contig_hint)
1065fbf59bc9STejun Heo 				continue;
1066ccea34b5STejun Heo 
1067ccea34b5STejun Heo 			switch (pcpu_extend_area_map(chunk)) {
1068ccea34b5STejun Heo 			case 0:
1069ccea34b5STejun Heo 				break;
1070ccea34b5STejun Heo 			case 1:
1071ccea34b5STejun Heo 				goto restart;	/* pcpu_lock dropped, restart */
1072ccea34b5STejun Heo 			default:
1073ccea34b5STejun Heo 				goto fail_unlock;
1074ccea34b5STejun Heo 			}
1075ccea34b5STejun Heo 
1076fbf59bc9STejun Heo 			off = pcpu_alloc_area(chunk, size, align);
1077fbf59bc9STejun Heo 			if (off >= 0)
1078fbf59bc9STejun Heo 				goto area_found;
1079fbf59bc9STejun Heo 		}
1080fbf59bc9STejun Heo 	}
1081fbf59bc9STejun Heo 
1082fbf59bc9STejun Heo 	/* hmmm... no space left, create a new chunk */
1083ccea34b5STejun Heo 	spin_unlock_irq(&pcpu_lock);
1084ccea34b5STejun Heo 
1085fbf59bc9STejun Heo 	chunk = alloc_pcpu_chunk();
1086fbf59bc9STejun Heo 	if (!chunk)
1087ccea34b5STejun Heo 		goto fail_unlock_mutex;
1088ccea34b5STejun Heo 
1089ccea34b5STejun Heo 	spin_lock_irq(&pcpu_lock);
1090fbf59bc9STejun Heo 	pcpu_chunk_relocate(chunk, -1);
1091ccea34b5STejun Heo 	goto restart;
1092fbf59bc9STejun Heo 
1093fbf59bc9STejun Heo area_found:
1094ccea34b5STejun Heo 	spin_unlock_irq(&pcpu_lock);
1095ccea34b5STejun Heo 
1096fbf59bc9STejun Heo 	/* populate, map and clear the area */
1097fbf59bc9STejun Heo 	if (pcpu_populate_chunk(chunk, off, size)) {
1098ccea34b5STejun Heo 		spin_lock_irq(&pcpu_lock);
1099fbf59bc9STejun Heo 		pcpu_free_area(chunk, off);
1100ccea34b5STejun Heo 		goto fail_unlock;
1101fbf59bc9STejun Heo 	}
1102fbf59bc9STejun Heo 
1103ccea34b5STejun Heo 	mutex_unlock(&pcpu_alloc_mutex);
1104ccea34b5STejun Heo 
11052f39e637STejun Heo 	/* return address relative to unit0 */
1106ccea34b5STejun Heo 	return __addr_to_pcpu_ptr(chunk->vm->addr + off);
1107ccea34b5STejun Heo 
1108ccea34b5STejun Heo fail_unlock:
1109ccea34b5STejun Heo 	spin_unlock_irq(&pcpu_lock);
1110ccea34b5STejun Heo fail_unlock_mutex:
1111ccea34b5STejun Heo 	mutex_unlock(&pcpu_alloc_mutex);
1112ccea34b5STejun Heo 	return NULL;
1113fbf59bc9STejun Heo }
1114edcb4639STejun Heo 
1115edcb4639STejun Heo /**
1116edcb4639STejun Heo  * __alloc_percpu - allocate dynamic percpu area
1117edcb4639STejun Heo  * @size: size of area to allocate in bytes
1118edcb4639STejun Heo  * @align: alignment of area (max PAGE_SIZE)
1119edcb4639STejun Heo  *
1120edcb4639STejun Heo  * Allocate percpu area of @size bytes aligned at @align.  Might
1121edcb4639STejun Heo  * sleep.  Might trigger writeouts.
1122edcb4639STejun Heo  *
1123ccea34b5STejun Heo  * CONTEXT:
1124ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
1125ccea34b5STejun Heo  *
1126edcb4639STejun Heo  * RETURNS:
1127edcb4639STejun Heo  * Percpu pointer to the allocated area on success, NULL on failure.
1128edcb4639STejun Heo  */
1129edcb4639STejun Heo void *__alloc_percpu(size_t size, size_t align)
1130edcb4639STejun Heo {
1131edcb4639STejun Heo 	return pcpu_alloc(size, align, false);
1132edcb4639STejun Heo }
1133fbf59bc9STejun Heo EXPORT_SYMBOL_GPL(__alloc_percpu);
1134fbf59bc9STejun Heo 
1135edcb4639STejun Heo /**
1136edcb4639STejun Heo  * __alloc_reserved_percpu - allocate reserved percpu area
1137edcb4639STejun Heo  * @size: size of area to allocate in bytes
1138edcb4639STejun Heo  * @align: alignment of area (max PAGE_SIZE)
1139edcb4639STejun Heo  *
1140edcb4639STejun Heo  * Allocate percpu area of @size bytes aligned at @align from reserved
1141edcb4639STejun Heo  * percpu area if arch has set it up; otherwise, allocation is served
1142edcb4639STejun Heo  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1143edcb4639STejun Heo  *
1144ccea34b5STejun Heo  * CONTEXT:
1145ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
1146ccea34b5STejun Heo  *
1147edcb4639STejun Heo  * RETURNS:
1148edcb4639STejun Heo  * Percpu pointer to the allocated area on success, NULL on failure.
1149edcb4639STejun Heo  */
1150edcb4639STejun Heo void *__alloc_reserved_percpu(size_t size, size_t align)
1151edcb4639STejun Heo {
1152edcb4639STejun Heo 	return pcpu_alloc(size, align, true);
1153edcb4639STejun Heo }
1154edcb4639STejun Heo 
1155a56dbddfSTejun Heo /**
1156a56dbddfSTejun Heo  * pcpu_reclaim - reclaim fully free chunks, workqueue function
1157a56dbddfSTejun Heo  * @work: unused
1158a56dbddfSTejun Heo  *
1159a56dbddfSTejun Heo  * Reclaim all fully free chunks except for the first one.
1160ccea34b5STejun Heo  *
1161ccea34b5STejun Heo  * CONTEXT:
1162ccea34b5STejun Heo  * workqueue context.
1163a56dbddfSTejun Heo  */
1164a56dbddfSTejun Heo static void pcpu_reclaim(struct work_struct *work)
1165fbf59bc9STejun Heo {
1166a56dbddfSTejun Heo 	LIST_HEAD(todo);
1167a56dbddfSTejun Heo 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1168a56dbddfSTejun Heo 	struct pcpu_chunk *chunk, *next;
1169a56dbddfSTejun Heo 
1170ccea34b5STejun Heo 	mutex_lock(&pcpu_alloc_mutex);
1171ccea34b5STejun Heo 	spin_lock_irq(&pcpu_lock);
1172a56dbddfSTejun Heo 
1173a56dbddfSTejun Heo 	list_for_each_entry_safe(chunk, next, head, list) {
11748d408b4bSTejun Heo 		WARN_ON(chunk->immutable);
1175a56dbddfSTejun Heo 
1176a56dbddfSTejun Heo 		/* spare the first one */
1177a56dbddfSTejun Heo 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1178a56dbddfSTejun Heo 			continue;
1179a56dbddfSTejun Heo 
1180a56dbddfSTejun Heo 		list_move(&chunk->list, &todo);
1181a56dbddfSTejun Heo 	}
1182a56dbddfSTejun Heo 
1183ccea34b5STejun Heo 	spin_unlock_irq(&pcpu_lock);
1184a56dbddfSTejun Heo 
1185a56dbddfSTejun Heo 	list_for_each_entry_safe(chunk, next, &todo, list) {
1186ce3141a2STejun Heo 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1187fbf59bc9STejun Heo 		free_pcpu_chunk(chunk);
1188fbf59bc9STejun Heo 	}
1189*971f3918STejun Heo 
1190*971f3918STejun Heo 	mutex_unlock(&pcpu_alloc_mutex);
1191a56dbddfSTejun Heo }
1192fbf59bc9STejun Heo 
1193fbf59bc9STejun Heo /**
1194fbf59bc9STejun Heo  * free_percpu - free percpu area
1195fbf59bc9STejun Heo  * @ptr: pointer to area to free
1196fbf59bc9STejun Heo  *
1197ccea34b5STejun Heo  * Free percpu area @ptr.
1198ccea34b5STejun Heo  *
1199ccea34b5STejun Heo  * CONTEXT:
1200ccea34b5STejun Heo  * Can be called from atomic context.
1201fbf59bc9STejun Heo  */
1202fbf59bc9STejun Heo void free_percpu(void *ptr)
1203fbf59bc9STejun Heo {
1204fbf59bc9STejun Heo 	void *addr = __pcpu_ptr_to_addr(ptr);
1205fbf59bc9STejun Heo 	struct pcpu_chunk *chunk;
1206ccea34b5STejun Heo 	unsigned long flags;
1207fbf59bc9STejun Heo 	int off;
1208fbf59bc9STejun Heo 
1209fbf59bc9STejun Heo 	if (!ptr)
1210fbf59bc9STejun Heo 		return;
1211fbf59bc9STejun Heo 
1212ccea34b5STejun Heo 	spin_lock_irqsave(&pcpu_lock, flags);
1213fbf59bc9STejun Heo 
1214fbf59bc9STejun Heo 	chunk = pcpu_chunk_addr_search(addr);
1215fbf59bc9STejun Heo 	off = addr - chunk->vm->addr;
1216fbf59bc9STejun Heo 
1217fbf59bc9STejun Heo 	pcpu_free_area(chunk, off);
1218fbf59bc9STejun Heo 
1219a56dbddfSTejun Heo 	/* if there are more than one fully free chunks, wake up grim reaper */
1220fbf59bc9STejun Heo 	if (chunk->free_size == pcpu_unit_size) {
1221fbf59bc9STejun Heo 		struct pcpu_chunk *pos;
1222fbf59bc9STejun Heo 
1223a56dbddfSTejun Heo 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1224fbf59bc9STejun Heo 			if (pos != chunk) {
1225a56dbddfSTejun Heo 				schedule_work(&pcpu_reclaim_work);
1226fbf59bc9STejun Heo 				break;
1227fbf59bc9STejun Heo 			}
1228fbf59bc9STejun Heo 	}
1229fbf59bc9STejun Heo 
1230ccea34b5STejun Heo 	spin_unlock_irqrestore(&pcpu_lock, flags);
1231fbf59bc9STejun Heo }
1232fbf59bc9STejun Heo EXPORT_SYMBOL_GPL(free_percpu);
1233fbf59bc9STejun Heo 
1234fbf59bc9STejun Heo /**
12358d408b4bSTejun Heo  * pcpu_setup_first_chunk - initialize the first percpu chunk
12368d408b4bSTejun Heo  * @static_size: the size of static percpu area in bytes
123738a6be52STejun Heo  * @reserved_size: the size of reserved percpu area in bytes, 0 for none
1238cafe8816STejun Heo  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
123938a6be52STejun Heo  * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE
124038a6be52STejun Heo  * @base_addr: mapped address
12412f39e637STejun Heo  * @unit_map: cpu -> unit map, NULL for sequential mapping
1242fbf59bc9STejun Heo  *
12438d408b4bSTejun Heo  * Initialize the first percpu chunk which contains the kernel static
12448d408b4bSTejun Heo  * perpcu area.  This function is to be called from arch percpu area
124538a6be52STejun Heo  * setup path.
12468d408b4bSTejun Heo  *
1247edcb4639STejun Heo  * @reserved_size, if non-zero, specifies the amount of bytes to
1248edcb4639STejun Heo  * reserve after the static area in the first chunk.  This reserves
1249edcb4639STejun Heo  * the first chunk such that it's available only through reserved
1250edcb4639STejun Heo  * percpu allocation.  This is primarily used to serve module percpu
1251edcb4639STejun Heo  * static areas on architectures where the addressing model has
1252edcb4639STejun Heo  * limited offset range for symbol relocations to guarantee module
1253edcb4639STejun Heo  * percpu symbols fall inside the relocatable range.
1254edcb4639STejun Heo  *
12556074d5b0STejun Heo  * @dyn_size, if non-negative, determines the number of bytes
12566074d5b0STejun Heo  * available for dynamic allocation in the first chunk.  Specifying
12576074d5b0STejun Heo  * non-negative value makes percpu leave alone the area beyond
12586074d5b0STejun Heo  * @static_size + @reserved_size + @dyn_size.
12596074d5b0STejun Heo  *
126038a6be52STejun Heo  * @unit_size specifies unit size and must be aligned to PAGE_SIZE and
126138a6be52STejun Heo  * equal to or larger than @static_size + @reserved_size + if
126238a6be52STejun Heo  * non-negative, @dyn_size.
12638d408b4bSTejun Heo  *
126438a6be52STejun Heo  * The caller should have mapped the first chunk at @base_addr and
126538a6be52STejun Heo  * copied static data to each unit.
1266fbf59bc9STejun Heo  *
1267edcb4639STejun Heo  * If the first chunk ends up with both reserved and dynamic areas, it
1268edcb4639STejun Heo  * is served by two chunks - one to serve the core static and reserved
1269edcb4639STejun Heo  * areas and the other for the dynamic area.  They share the same vm
1270edcb4639STejun Heo  * and page map but uses different area allocation map to stay away
1271edcb4639STejun Heo  * from each other.  The latter chunk is circulated in the chunk slots
1272edcb4639STejun Heo  * and available for dynamic allocation like any other chunks.
1273edcb4639STejun Heo  *
1274fbf59bc9STejun Heo  * RETURNS:
1275fbf59bc9STejun Heo  * The determined pcpu_unit_size which can be used to initialize
1276fbf59bc9STejun Heo  * percpu access.
1277fbf59bc9STejun Heo  */
1278ce3141a2STejun Heo size_t __init pcpu_setup_first_chunk(size_t static_size, size_t reserved_size,
127938a6be52STejun Heo 				     ssize_t dyn_size, size_t unit_size,
12802f39e637STejun Heo 				     void *base_addr, const int *unit_map)
1281fbf59bc9STejun Heo {
12822441d15cSTejun Heo 	static struct vm_struct first_vm;
1283edcb4639STejun Heo 	static int smap[2], dmap[2];
12846074d5b0STejun Heo 	size_t size_sum = static_size + reserved_size +
12856074d5b0STejun Heo 			  (dyn_size >= 0 ? dyn_size : 0);
1286edcb4639STejun Heo 	struct pcpu_chunk *schunk, *dchunk = NULL;
12872f39e637STejun Heo 	unsigned int cpu, tcpu;
1288ce3141a2STejun Heo 	int i;
1289fbf59bc9STejun Heo 
12902f39e637STejun Heo 	/* sanity checks */
1291edcb4639STejun Heo 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1292edcb4639STejun Heo 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
12938d408b4bSTejun Heo 	BUG_ON(!static_size);
129438a6be52STejun Heo 	BUG_ON(!base_addr);
12956074d5b0STejun Heo 	BUG_ON(unit_size < size_sum);
12968d408b4bSTejun Heo 	BUG_ON(unit_size & ~PAGE_MASK);
12976074d5b0STejun Heo 	BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE);
1298fbf59bc9STejun Heo 
12992f39e637STejun Heo 	/* determine number of units and verify and initialize pcpu_unit_map */
13002f39e637STejun Heo 	if (unit_map) {
13012f39e637STejun Heo 		int first_unit = INT_MAX, last_unit = INT_MIN;
13022f39e637STejun Heo 
13032f39e637STejun Heo 		for_each_possible_cpu(cpu) {
13042f39e637STejun Heo 			int unit = unit_map[cpu];
13052f39e637STejun Heo 
13062f39e637STejun Heo 			BUG_ON(unit < 0);
13072f39e637STejun Heo 			for_each_possible_cpu(tcpu) {
13082f39e637STejun Heo 				if (tcpu == cpu)
13092f39e637STejun Heo 					break;
13102f39e637STejun Heo 				/* the mapping should be one-to-one */
13112f39e637STejun Heo 				BUG_ON(unit_map[tcpu] == unit);
13122f39e637STejun Heo 			}
13132f39e637STejun Heo 
13142f39e637STejun Heo 			if (unit < first_unit) {
13152f39e637STejun Heo 				pcpu_first_unit_cpu = cpu;
13162f39e637STejun Heo 				first_unit = unit;
13172f39e637STejun Heo 			}
13182f39e637STejun Heo 			if (unit > last_unit) {
13192f39e637STejun Heo 				pcpu_last_unit_cpu = cpu;
13202f39e637STejun Heo 				last_unit = unit;
13212f39e637STejun Heo 			}
13222f39e637STejun Heo 		}
13232f39e637STejun Heo 		pcpu_nr_units = last_unit + 1;
13242f39e637STejun Heo 		pcpu_unit_map = unit_map;
13252f39e637STejun Heo 	} else {
13262f39e637STejun Heo 		int *identity_map;
13272f39e637STejun Heo 
13282f39e637STejun Heo 		/* #units == #cpus, identity mapped */
1329384be2b1STejun Heo 		identity_map = alloc_bootmem(nr_cpu_ids *
13302f39e637STejun Heo 					     sizeof(identity_map[0]));
13312f39e637STejun Heo 
13322f39e637STejun Heo 		for_each_possible_cpu(cpu)
13332f39e637STejun Heo 			identity_map[cpu] = cpu;
13342f39e637STejun Heo 
13352f39e637STejun Heo 		pcpu_first_unit_cpu = 0;
13362f39e637STejun Heo 		pcpu_last_unit_cpu = pcpu_nr_units - 1;
1337384be2b1STejun Heo 		pcpu_nr_units = nr_cpu_ids;
13382f39e637STejun Heo 		pcpu_unit_map = identity_map;
13392f39e637STejun Heo 	}
13402f39e637STejun Heo 
13412f39e637STejun Heo 	/* determine basic parameters */
13428d408b4bSTejun Heo 	pcpu_unit_pages = unit_size >> PAGE_SHIFT;
1343d9b55eebSTejun Heo 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
13442f39e637STejun Heo 	pcpu_chunk_size = pcpu_nr_units * pcpu_unit_size;
1345ce3141a2STejun Heo 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1346ce3141a2STejun Heo 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1347fbf59bc9STejun Heo 
1348cafe8816STejun Heo 	if (dyn_size < 0)
1349edcb4639STejun Heo 		dyn_size = pcpu_unit_size - static_size - reserved_size;
1350cafe8816STejun Heo 
135138a6be52STejun Heo 	first_vm.flags = VM_ALLOC;
135238a6be52STejun Heo 	first_vm.size = pcpu_chunk_size;
135338a6be52STejun Heo 	first_vm.addr = base_addr;
135438a6be52STejun Heo 
1355d9b55eebSTejun Heo 	/*
1356d9b55eebSTejun Heo 	 * Allocate chunk slots.  The additional last slot is for
1357d9b55eebSTejun Heo 	 * empty chunks.
1358d9b55eebSTejun Heo 	 */
1359d9b55eebSTejun Heo 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1360fbf59bc9STejun Heo 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1361fbf59bc9STejun Heo 	for (i = 0; i < pcpu_nr_slots; i++)
1362fbf59bc9STejun Heo 		INIT_LIST_HEAD(&pcpu_slot[i]);
1363fbf59bc9STejun Heo 
1364edcb4639STejun Heo 	/*
1365edcb4639STejun Heo 	 * Initialize static chunk.  If reserved_size is zero, the
1366edcb4639STejun Heo 	 * static chunk covers static area + dynamic allocation area
1367edcb4639STejun Heo 	 * in the first chunk.  If reserved_size is not zero, it
1368edcb4639STejun Heo 	 * covers static area + reserved area (mostly used for module
1369edcb4639STejun Heo 	 * static percpu allocation).
1370edcb4639STejun Heo 	 */
13712441d15cSTejun Heo 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
13722441d15cSTejun Heo 	INIT_LIST_HEAD(&schunk->list);
13732441d15cSTejun Heo 	schunk->vm = &first_vm;
137461ace7faSTejun Heo 	schunk->map = smap;
137561ace7faSTejun Heo 	schunk->map_alloc = ARRAY_SIZE(smap);
137638a6be52STejun Heo 	schunk->immutable = true;
1377ce3141a2STejun Heo 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1378edcb4639STejun Heo 
1379edcb4639STejun Heo 	if (reserved_size) {
1380edcb4639STejun Heo 		schunk->free_size = reserved_size;
1381ae9e6bc9STejun Heo 		pcpu_reserved_chunk = schunk;
1382ae9e6bc9STejun Heo 		pcpu_reserved_chunk_limit = static_size + reserved_size;
1383edcb4639STejun Heo 	} else {
13842441d15cSTejun Heo 		schunk->free_size = dyn_size;
1385edcb4639STejun Heo 		dyn_size = 0;			/* dynamic area covered */
1386edcb4639STejun Heo 	}
13872441d15cSTejun Heo 	schunk->contig_hint = schunk->free_size;
1388fbf59bc9STejun Heo 
138961ace7faSTejun Heo 	schunk->map[schunk->map_used++] = -static_size;
139061ace7faSTejun Heo 	if (schunk->free_size)
139161ace7faSTejun Heo 		schunk->map[schunk->map_used++] = schunk->free_size;
139261ace7faSTejun Heo 
1393edcb4639STejun Heo 	/* init dynamic chunk if necessary */
1394edcb4639STejun Heo 	if (dyn_size) {
1395ce3141a2STejun Heo 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1396edcb4639STejun Heo 		INIT_LIST_HEAD(&dchunk->list);
1397edcb4639STejun Heo 		dchunk->vm = &first_vm;
1398edcb4639STejun Heo 		dchunk->map = dmap;
1399edcb4639STejun Heo 		dchunk->map_alloc = ARRAY_SIZE(dmap);
140038a6be52STejun Heo 		dchunk->immutable = true;
1401ce3141a2STejun Heo 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1402edcb4639STejun Heo 
1403edcb4639STejun Heo 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1404edcb4639STejun Heo 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1405edcb4639STejun Heo 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1406edcb4639STejun Heo 	}
1407edcb4639STejun Heo 
14082441d15cSTejun Heo 	/* link the first chunk in */
1409ae9e6bc9STejun Heo 	pcpu_first_chunk = dchunk ?: schunk;
1410ae9e6bc9STejun Heo 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1411fbf59bc9STejun Heo 
1412fbf59bc9STejun Heo 	/* we're done */
14132f39e637STejun Heo 	pcpu_base_addr = schunk->vm->addr;
1414fbf59bc9STejun Heo 	return pcpu_unit_size;
1415fbf59bc9STejun Heo }
141666c3a757STejun Heo 
14178c4bfc6eSTejun Heo static size_t pcpu_calc_fc_sizes(size_t static_size, size_t reserved_size,
14188c4bfc6eSTejun Heo 				 ssize_t *dyn_sizep)
14198c4bfc6eSTejun Heo {
14208c4bfc6eSTejun Heo 	size_t size_sum;
14218c4bfc6eSTejun Heo 
14228c4bfc6eSTejun Heo 	size_sum = PFN_ALIGN(static_size + reserved_size +
14238c4bfc6eSTejun Heo 			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
14248c4bfc6eSTejun Heo 	if (*dyn_sizep != 0)
14258c4bfc6eSTejun Heo 		*dyn_sizep = size_sum - static_size - reserved_size;
14268c4bfc6eSTejun Heo 
14278c4bfc6eSTejun Heo 	return size_sum;
14288c4bfc6eSTejun Heo }
14298c4bfc6eSTejun Heo 
143066c3a757STejun Heo /**
143166c3a757STejun Heo  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
143266c3a757STejun Heo  * @static_size: the size of static percpu area in bytes
143366c3a757STejun Heo  * @reserved_size: the size of reserved percpu area in bytes
143466c3a757STejun Heo  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
143566c3a757STejun Heo  *
143666c3a757STejun Heo  * This is a helper to ease setting up embedded first percpu chunk and
143766c3a757STejun Heo  * can be called where pcpu_setup_first_chunk() is expected.
143866c3a757STejun Heo  *
143966c3a757STejun Heo  * If this function is used to setup the first chunk, it is allocated
144066c3a757STejun Heo  * as a contiguous area using bootmem allocator and used as-is without
144166c3a757STejun Heo  * being mapped into vmalloc area.  This enables the first chunk to
144266c3a757STejun Heo  * piggy back on the linear physical mapping which often uses larger
144366c3a757STejun Heo  * page size.
144466c3a757STejun Heo  *
144566c3a757STejun Heo  * When @dyn_size is positive, dynamic area might be larger than
1446788e5abcSTejun Heo  * specified to fill page alignment.  When @dyn_size is auto,
1447788e5abcSTejun Heo  * @dyn_size is just big enough to fill page alignment after static
1448788e5abcSTejun Heo  * and reserved areas.
144966c3a757STejun Heo  *
145066c3a757STejun Heo  * If the needed size is smaller than the minimum or specified unit
145166c3a757STejun Heo  * size, the leftover is returned to the bootmem allocator.
145266c3a757STejun Heo  *
145366c3a757STejun Heo  * RETURNS:
145466c3a757STejun Heo  * The determined pcpu_unit_size which can be used to initialize
145566c3a757STejun Heo  * percpu access on success, -errno on failure.
145666c3a757STejun Heo  */
145766c3a757STejun Heo ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size,
1458788e5abcSTejun Heo 				      ssize_t dyn_size)
145966c3a757STejun Heo {
1460ce3141a2STejun Heo 	size_t size_sum, unit_size, chunk_size;
1461ce3141a2STejun Heo 	void *base;
146266c3a757STejun Heo 	unsigned int cpu;
146366c3a757STejun Heo 
146466c3a757STejun Heo 	/* determine parameters and allocate */
1465ce3141a2STejun Heo 	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
146666c3a757STejun Heo 
1467ce3141a2STejun Heo 	unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1468384be2b1STejun Heo 	chunk_size = unit_size * nr_cpu_ids;
1469fa8a7094STejun Heo 
1470ce3141a2STejun Heo 	base = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE,
1471fa8a7094STejun Heo 				       __pa(MAX_DMA_ADDRESS));
1472ce3141a2STejun Heo 	if (!base) {
1473fa8a7094STejun Heo 		pr_warning("PERCPU: failed to allocate %zu bytes for "
1474fa8a7094STejun Heo 			   "embedding\n", chunk_size);
147566c3a757STejun Heo 		return -ENOMEM;
1476fa8a7094STejun Heo 	}
147766c3a757STejun Heo 
147866c3a757STejun Heo 	/* return the leftover and copy */
147974d46d6bSTejun Heo 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1480ce3141a2STejun Heo 		void *ptr = base + cpu * unit_size;
148166c3a757STejun Heo 
148274d46d6bSTejun Heo 		if (cpu_possible(cpu)) {
1483384be2b1STejun Heo 			free_bootmem(__pa(ptr + size_sum),
1484384be2b1STejun Heo 				     unit_size - size_sum);
148566c3a757STejun Heo 			memcpy(ptr, __per_cpu_load, static_size);
148674d46d6bSTejun Heo 		} else
1487384be2b1STejun Heo 			free_bootmem(__pa(ptr), unit_size);
148866c3a757STejun Heo 	}
148966c3a757STejun Heo 
149066c3a757STejun Heo 	/* we're ready, commit */
149166c3a757STejun Heo 	pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n",
1492ce3141a2STejun Heo 		size_sum >> PAGE_SHIFT, base, static_size);
149366c3a757STejun Heo 
1494ce3141a2STejun Heo 	return pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
14952f39e637STejun Heo 				      unit_size, base, NULL);
1496d4b95f80STejun Heo }
1497d4b95f80STejun Heo 
1498d4b95f80STejun Heo /**
1499d4b95f80STejun Heo  * pcpu_4k_first_chunk - map the first chunk using PAGE_SIZE pages
1500d4b95f80STejun Heo  * @static_size: the size of static percpu area in bytes
1501d4b95f80STejun Heo  * @reserved_size: the size of reserved percpu area in bytes
1502d4b95f80STejun Heo  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
1503d4b95f80STejun Heo  * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
1504d4b95f80STejun Heo  * @populate_pte_fn: function to populate pte
1505d4b95f80STejun Heo  *
1506d4b95f80STejun Heo  * This is a helper to ease setting up embedded first percpu chunk and
1507d4b95f80STejun Heo  * can be called where pcpu_setup_first_chunk() is expected.
1508d4b95f80STejun Heo  *
1509d4b95f80STejun Heo  * This is the basic allocator.  Static percpu area is allocated
1510d4b95f80STejun Heo  * page-by-page into vmalloc area.
1511d4b95f80STejun Heo  *
1512d4b95f80STejun Heo  * RETURNS:
1513d4b95f80STejun Heo  * The determined pcpu_unit_size which can be used to initialize
1514d4b95f80STejun Heo  * percpu access on success, -errno on failure.
1515d4b95f80STejun Heo  */
1516d4b95f80STejun Heo ssize_t __init pcpu_4k_first_chunk(size_t static_size, size_t reserved_size,
1517d4b95f80STejun Heo 				   pcpu_fc_alloc_fn_t alloc_fn,
1518d4b95f80STejun Heo 				   pcpu_fc_free_fn_t free_fn,
1519d4b95f80STejun Heo 				   pcpu_fc_populate_pte_fn_t populate_pte_fn)
1520d4b95f80STejun Heo {
15218f05a6a6STejun Heo 	static struct vm_struct vm;
1522ce3141a2STejun Heo 	int unit_pages;
1523d4b95f80STejun Heo 	size_t pages_size;
1524ce3141a2STejun Heo 	struct page **pages;
1525d4b95f80STejun Heo 	unsigned int cpu;
1526d4b95f80STejun Heo 	int i, j;
1527d4b95f80STejun Heo 	ssize_t ret;
1528d4b95f80STejun Heo 
1529ce3141a2STejun Heo 	unit_pages = PFN_UP(max_t(size_t, static_size + reserved_size,
15308f05a6a6STejun Heo 				  PCPU_MIN_UNIT_SIZE));
1531d4b95f80STejun Heo 
1532d4b95f80STejun Heo 	/* unaligned allocations can't be freed, round up to page size */
1533384be2b1STejun Heo 	pages_size = PFN_ALIGN(unit_pages * nr_cpu_ids * sizeof(pages[0]));
1534ce3141a2STejun Heo 	pages = alloc_bootmem(pages_size);
1535d4b95f80STejun Heo 
15368f05a6a6STejun Heo 	/* allocate pages */
1537d4b95f80STejun Heo 	j = 0;
1538d4b95f80STejun Heo 	for_each_possible_cpu(cpu)
1539ce3141a2STejun Heo 		for (i = 0; i < unit_pages; i++) {
1540d4b95f80STejun Heo 			void *ptr;
1541d4b95f80STejun Heo 
1542d4b95f80STejun Heo 			ptr = alloc_fn(cpu, PAGE_SIZE);
1543d4b95f80STejun Heo 			if (!ptr) {
1544d4b95f80STejun Heo 				pr_warning("PERCPU: failed to allocate "
1545d4b95f80STejun Heo 					   "4k page for cpu%u\n", cpu);
1546d4b95f80STejun Heo 				goto enomem;
1547d4b95f80STejun Heo 			}
1548ce3141a2STejun Heo 			pages[j++] = virt_to_page(ptr);
1549d4b95f80STejun Heo 		}
1550d4b95f80STejun Heo 
15518f05a6a6STejun Heo 	/* allocate vm area, map the pages and copy static data */
15528f05a6a6STejun Heo 	vm.flags = VM_ALLOC;
1553384be2b1STejun Heo 	vm.size = nr_cpu_ids * unit_pages << PAGE_SHIFT;
15548f05a6a6STejun Heo 	vm_area_register_early(&vm, PAGE_SIZE);
15558f05a6a6STejun Heo 
15568f05a6a6STejun Heo 	for_each_possible_cpu(cpu) {
15578f05a6a6STejun Heo 		unsigned long unit_addr = (unsigned long)vm.addr +
1558ce3141a2STejun Heo 			(cpu * unit_pages << PAGE_SHIFT);
15598f05a6a6STejun Heo 
1560ce3141a2STejun Heo 		for (i = 0; i < unit_pages; i++)
15618f05a6a6STejun Heo 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
15628f05a6a6STejun Heo 
15638f05a6a6STejun Heo 		/* pte already populated, the following shouldn't fail */
1564ce3141a2STejun Heo 		ret = __pcpu_map_pages(unit_addr, &pages[cpu * unit_pages],
1565ce3141a2STejun Heo 				       unit_pages);
15668f05a6a6STejun Heo 		if (ret < 0)
15678f05a6a6STejun Heo 			panic("failed to map percpu area, err=%zd\n", ret);
15688f05a6a6STejun Heo 
15698f05a6a6STejun Heo 		/*
15708f05a6a6STejun Heo 		 * FIXME: Archs with virtual cache should flush local
15718f05a6a6STejun Heo 		 * cache for the linear mapping here - something
15728f05a6a6STejun Heo 		 * equivalent to flush_cache_vmap() on the local cpu.
15738f05a6a6STejun Heo 		 * flush_cache_vmap() can't be used as most supporting
15748f05a6a6STejun Heo 		 * data structures are not set up yet.
15758f05a6a6STejun Heo 		 */
15768f05a6a6STejun Heo 
15778f05a6a6STejun Heo 		/* copy static data */
15788f05a6a6STejun Heo 		memcpy((void *)unit_addr, __per_cpu_load, static_size);
15798f05a6a6STejun Heo 	}
15808f05a6a6STejun Heo 
1581d4b95f80STejun Heo 	/* we're ready, commit */
15828f05a6a6STejun Heo 	pr_info("PERCPU: %d 4k pages per cpu, static data %zu bytes\n",
1583ce3141a2STejun Heo 		unit_pages, static_size);
1584d4b95f80STejun Heo 
1585ce3141a2STejun Heo 	ret = pcpu_setup_first_chunk(static_size, reserved_size, -1,
15862f39e637STejun Heo 				     unit_pages << PAGE_SHIFT, vm.addr, NULL);
1587d4b95f80STejun Heo 	goto out_free_ar;
1588d4b95f80STejun Heo 
1589d4b95f80STejun Heo enomem:
1590d4b95f80STejun Heo 	while (--j >= 0)
1591ce3141a2STejun Heo 		free_fn(page_address(pages[j]), PAGE_SIZE);
1592d4b95f80STejun Heo 	ret = -ENOMEM;
1593d4b95f80STejun Heo out_free_ar:
1594ce3141a2STejun Heo 	free_bootmem(__pa(pages), pages_size);
1595d4b95f80STejun Heo 	return ret;
1596d4b95f80STejun Heo }
1597d4b95f80STejun Heo 
1598d4b95f80STejun Heo /*
15998c4bfc6eSTejun Heo  * Large page remapping first chunk setup helper
16008c4bfc6eSTejun Heo  */
16018c4bfc6eSTejun Heo #ifdef CONFIG_NEED_MULTIPLE_NODES
1602a530b795STejun Heo 
1603a530b795STejun Heo /**
1604a530b795STejun Heo  * pcpu_lpage_build_unit_map - build unit_map for large page remapping
1605a530b795STejun Heo  * @static_size: the size of static percpu area in bytes
1606a530b795STejun Heo  * @reserved_size: the size of reserved percpu area in bytes
1607a530b795STejun Heo  * @dyn_sizep: in/out parameter for dynamic size, -1 for auto
1608a530b795STejun Heo  * @unit_sizep: out parameter for unit size
1609a530b795STejun Heo  * @unit_map: unit_map to be filled
1610a530b795STejun Heo  * @cpu_distance_fn: callback to determine distance between cpus
1611a530b795STejun Heo  *
1612a530b795STejun Heo  * This function builds cpu -> unit map and determine other parameters
1613a530b795STejun Heo  * considering needed percpu size, large page size and distances
1614a530b795STejun Heo  * between CPUs in NUMA.
1615a530b795STejun Heo  *
1616a530b795STejun Heo  * CPUs which are of LOCAL_DISTANCE both ways are grouped together and
1617a530b795STejun Heo  * may share units in the same large page.  The returned configuration
1618a530b795STejun Heo  * is guaranteed to have CPUs on different nodes on different large
1619a530b795STejun Heo  * pages and >=75% usage of allocated virtual address space.
1620a530b795STejun Heo  *
1621a530b795STejun Heo  * RETURNS:
1622a530b795STejun Heo  * On success, fills in @unit_map, sets *@dyn_sizep, *@unit_sizep and
1623a530b795STejun Heo  * returns the number of units to be allocated.  -errno on failure.
1624a530b795STejun Heo  */
1625a530b795STejun Heo int __init pcpu_lpage_build_unit_map(size_t static_size, size_t reserved_size,
1626a530b795STejun Heo 				     ssize_t *dyn_sizep, size_t *unit_sizep,
1627a530b795STejun Heo 				     size_t lpage_size, int *unit_map,
1628a530b795STejun Heo 				     pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1629a530b795STejun Heo {
1630a530b795STejun Heo 	static int group_map[NR_CPUS] __initdata;
1631a530b795STejun Heo 	static int group_cnt[NR_CPUS] __initdata;
1632a530b795STejun Heo 	int group_cnt_max = 0;
1633a530b795STejun Heo 	size_t size_sum, min_unit_size, alloc_size;
1634a530b795STejun Heo 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1635a530b795STejun Heo 	int last_allocs;
1636a530b795STejun Heo 	unsigned int cpu, tcpu;
1637a530b795STejun Heo 	int group, unit;
1638a530b795STejun Heo 
1639a530b795STejun Heo 	/*
1640a530b795STejun Heo 	 * Determine min_unit_size, alloc_size and max_upa such that
1641a530b795STejun Heo 	 * alloc_size is multiple of lpage_size and is the smallest
1642a530b795STejun Heo 	 * which can accomodate 4k aligned segments which are equal to
1643a530b795STejun Heo 	 * or larger than min_unit_size.
1644a530b795STejun Heo 	 */
1645a530b795STejun Heo 	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, dyn_sizep);
1646a530b795STejun Heo 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1647a530b795STejun Heo 
1648a530b795STejun Heo 	alloc_size = roundup(min_unit_size, lpage_size);
1649a530b795STejun Heo 	upa = alloc_size / min_unit_size;
1650a530b795STejun Heo 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1651a530b795STejun Heo 		upa--;
1652a530b795STejun Heo 	max_upa = upa;
1653a530b795STejun Heo 
1654a530b795STejun Heo 	/* group cpus according to their proximity */
1655a530b795STejun Heo 	for_each_possible_cpu(cpu) {
1656a530b795STejun Heo 		group = 0;
1657a530b795STejun Heo 	next_group:
1658a530b795STejun Heo 		for_each_possible_cpu(tcpu) {
1659a530b795STejun Heo 			if (cpu == tcpu)
1660a530b795STejun Heo 				break;
1661a530b795STejun Heo 			if (group_map[tcpu] == group &&
1662a530b795STejun Heo 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1663a530b795STejun Heo 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1664a530b795STejun Heo 				group++;
1665a530b795STejun Heo 				goto next_group;
1666a530b795STejun Heo 			}
1667a530b795STejun Heo 		}
1668a530b795STejun Heo 		group_map[cpu] = group;
1669a530b795STejun Heo 		group_cnt[group]++;
1670a530b795STejun Heo 		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1671a530b795STejun Heo 	}
1672a530b795STejun Heo 
1673a530b795STejun Heo 	/*
1674a530b795STejun Heo 	 * Expand unit size until address space usage goes over 75%
1675a530b795STejun Heo 	 * and then as much as possible without using more address
1676a530b795STejun Heo 	 * space.
1677a530b795STejun Heo 	 */
1678a530b795STejun Heo 	last_allocs = INT_MAX;
1679a530b795STejun Heo 	for (upa = max_upa; upa; upa--) {
1680a530b795STejun Heo 		int allocs = 0, wasted = 0;
1681a530b795STejun Heo 
1682a530b795STejun Heo 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1683a530b795STejun Heo 			continue;
1684a530b795STejun Heo 
1685a530b795STejun Heo 		for (group = 0; group_cnt[group]; group++) {
1686a530b795STejun Heo 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1687a530b795STejun Heo 			allocs += this_allocs;
1688a530b795STejun Heo 			wasted += this_allocs * upa - group_cnt[group];
1689a530b795STejun Heo 		}
1690a530b795STejun Heo 
1691a530b795STejun Heo 		/*
1692a530b795STejun Heo 		 * Don't accept if wastage is over 25%.  The
1693a530b795STejun Heo 		 * greater-than comparison ensures upa==1 always
1694a530b795STejun Heo 		 * passes the following check.
1695a530b795STejun Heo 		 */
1696a530b795STejun Heo 		if (wasted > num_possible_cpus() / 3)
1697a530b795STejun Heo 			continue;
1698a530b795STejun Heo 
1699a530b795STejun Heo 		/* and then don't consume more memory */
1700a530b795STejun Heo 		if (allocs > last_allocs)
1701a530b795STejun Heo 			break;
1702a530b795STejun Heo 		last_allocs = allocs;
1703a530b795STejun Heo 		best_upa = upa;
1704a530b795STejun Heo 	}
1705a530b795STejun Heo 	*unit_sizep = alloc_size / best_upa;
1706a530b795STejun Heo 
1707a530b795STejun Heo 	/* assign units to cpus accordingly */
1708a530b795STejun Heo 	unit = 0;
1709a530b795STejun Heo 	for (group = 0; group_cnt[group]; group++) {
1710a530b795STejun Heo 		for_each_possible_cpu(cpu)
1711a530b795STejun Heo 			if (group_map[cpu] == group)
1712a530b795STejun Heo 				unit_map[cpu] = unit++;
1713a530b795STejun Heo 		unit = roundup(unit, best_upa);
1714a530b795STejun Heo 	}
1715a530b795STejun Heo 
1716a530b795STejun Heo 	return unit;	/* unit contains aligned number of units */
1717a530b795STejun Heo }
1718a530b795STejun Heo 
17198c4bfc6eSTejun Heo struct pcpul_ent {
17208c4bfc6eSTejun Heo 	void		*ptr;
1721a530b795STejun Heo 	void		*map_addr;
17228c4bfc6eSTejun Heo };
17238c4bfc6eSTejun Heo 
17248c4bfc6eSTejun Heo static size_t pcpul_size;
1725a530b795STejun Heo static size_t pcpul_lpage_size;
1726a530b795STejun Heo static int pcpul_nr_lpages;
17278c4bfc6eSTejun Heo static struct pcpul_ent *pcpul_map;
1728a530b795STejun Heo 
1729a530b795STejun Heo static bool __init pcpul_unit_to_cpu(int unit, const int *unit_map,
1730a530b795STejun Heo 				     unsigned int *cpup)
1731a530b795STejun Heo {
1732a530b795STejun Heo 	unsigned int cpu;
1733a530b795STejun Heo 
1734a530b795STejun Heo 	for_each_possible_cpu(cpu)
1735a530b795STejun Heo 		if (unit_map[cpu] == unit) {
1736a530b795STejun Heo 			if (cpup)
1737a530b795STejun Heo 				*cpup = cpu;
1738a530b795STejun Heo 			return true;
1739a530b795STejun Heo 		}
1740a530b795STejun Heo 
1741a530b795STejun Heo 	return false;
1742a530b795STejun Heo }
1743a530b795STejun Heo 
1744a530b795STejun Heo static void __init pcpul_lpage_dump_cfg(const char *lvl, size_t static_size,
1745a530b795STejun Heo 					size_t reserved_size, size_t dyn_size,
1746a530b795STejun Heo 					size_t unit_size, size_t lpage_size,
1747a530b795STejun Heo 					const int *unit_map, int nr_units)
1748a530b795STejun Heo {
1749a530b795STejun Heo 	int width = 1, v = nr_units;
1750a530b795STejun Heo 	char empty_str[] = "--------";
1751a530b795STejun Heo 	int upl, lpl;	/* units per lpage, lpage per line */
1752a530b795STejun Heo 	unsigned int cpu;
1753a530b795STejun Heo 	int lpage, unit;
1754a530b795STejun Heo 
1755a530b795STejun Heo 	while (v /= 10)
1756a530b795STejun Heo 		width++;
1757a530b795STejun Heo 	empty_str[min_t(int, width, sizeof(empty_str) - 1)] = '\0';
1758a530b795STejun Heo 
1759a530b795STejun Heo 	upl = max_t(int, lpage_size / unit_size, 1);
1760a530b795STejun Heo 	lpl = rounddown_pow_of_two(max_t(int, 60 / (upl * (width + 1) + 2), 1));
1761a530b795STejun Heo 
1762a530b795STejun Heo 	printk("%spcpu-lpage: sta/res/dyn=%zu/%zu/%zu unit=%zu lpage=%zu", lvl,
1763a530b795STejun Heo 	       static_size, reserved_size, dyn_size, unit_size, lpage_size);
1764a530b795STejun Heo 
1765a530b795STejun Heo 	for (lpage = 0, unit = 0; unit < nr_units; unit++) {
1766a530b795STejun Heo 		if (!(unit % upl)) {
1767a530b795STejun Heo 			if (!(lpage++ % lpl)) {
1768a530b795STejun Heo 				printk("\n");
1769a530b795STejun Heo 				printk("%spcpu-lpage: ", lvl);
1770a530b795STejun Heo 			} else
1771a530b795STejun Heo 				printk("| ");
1772a530b795STejun Heo 		}
1773a530b795STejun Heo 		if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
1774a530b795STejun Heo 			printk("%0*d ", width, cpu);
1775a530b795STejun Heo 		else
1776a530b795STejun Heo 			printk("%s ", empty_str);
1777a530b795STejun Heo 	}
1778a530b795STejun Heo 	printk("\n");
1779a530b795STejun Heo }
17808c4bfc6eSTejun Heo 
17818c4bfc6eSTejun Heo /**
17828c4bfc6eSTejun Heo  * pcpu_lpage_first_chunk - remap the first percpu chunk using large page
17838c4bfc6eSTejun Heo  * @static_size: the size of static percpu area in bytes
17848c4bfc6eSTejun Heo  * @reserved_size: the size of reserved percpu area in bytes
1785a530b795STejun Heo  * @dyn_size: free size for dynamic allocation in bytes
1786a530b795STejun Heo  * @unit_size: unit size in bytes
17878c4bfc6eSTejun Heo  * @lpage_size: the size of a large page
1788a530b795STejun Heo  * @unit_map: cpu -> unit mapping
1789a530b795STejun Heo  * @nr_units: the number of units
17908c4bfc6eSTejun Heo  * @alloc_fn: function to allocate percpu lpage, always called with lpage_size
17918c4bfc6eSTejun Heo  * @free_fn: function to free percpu memory, @size <= lpage_size
17928c4bfc6eSTejun Heo  * @map_fn: function to map percpu lpage, always called with lpage_size
17938c4bfc6eSTejun Heo  *
1794a530b795STejun Heo  * This allocator uses large page to build and map the first chunk.
1795a530b795STejun Heo  * Unlike other helpers, the caller should always specify @dyn_size
1796a530b795STejun Heo  * and @unit_size.  These parameters along with @unit_map and
1797a530b795STejun Heo  * @nr_units can be determined using pcpu_lpage_build_unit_map().
1798a530b795STejun Heo  * This two stage initialization is to allow arch code to evaluate the
1799a530b795STejun Heo  * parameters before committing to it.
18008c4bfc6eSTejun Heo  *
1801a530b795STejun Heo  * Large pages are allocated as directed by @unit_map and other
1802a530b795STejun Heo  * parameters and mapped to vmalloc space.  Unused holes are returned
1803a530b795STejun Heo  * to the page allocator.  Note that these holes end up being actively
1804a530b795STejun Heo  * mapped twice - once to the physical mapping and to the vmalloc area
1805a530b795STejun Heo  * for the first percpu chunk.  Depending on architecture, this might
1806a530b795STejun Heo  * cause problem when changing page attributes of the returned area.
1807a530b795STejun Heo  * These double mapped areas can be detected using
1808a530b795STejun Heo  * pcpu_lpage_remapped().
18098c4bfc6eSTejun Heo  *
18108c4bfc6eSTejun Heo  * RETURNS:
18118c4bfc6eSTejun Heo  * The determined pcpu_unit_size which can be used to initialize
18128c4bfc6eSTejun Heo  * percpu access on success, -errno on failure.
18138c4bfc6eSTejun Heo  */
18148c4bfc6eSTejun Heo ssize_t __init pcpu_lpage_first_chunk(size_t static_size, size_t reserved_size,
1815a530b795STejun Heo 				      size_t dyn_size, size_t unit_size,
1816a530b795STejun Heo 				      size_t lpage_size, const int *unit_map,
1817a530b795STejun Heo 				      int nr_units,
18188c4bfc6eSTejun Heo 				      pcpu_fc_alloc_fn_t alloc_fn,
18198c4bfc6eSTejun Heo 				      pcpu_fc_free_fn_t free_fn,
18208c4bfc6eSTejun Heo 				      pcpu_fc_map_fn_t map_fn)
18218c4bfc6eSTejun Heo {
1822a530b795STejun Heo 	static struct vm_struct vm;
1823a530b795STejun Heo 	size_t chunk_size = unit_size * nr_units;
18248c4bfc6eSTejun Heo 	size_t map_size;
18258c4bfc6eSTejun Heo 	unsigned int cpu;
18268c4bfc6eSTejun Heo 	ssize_t ret;
1827a530b795STejun Heo 	int i, j, unit;
18288c4bfc6eSTejun Heo 
1829a530b795STejun Heo 	pcpul_lpage_dump_cfg(KERN_DEBUG, static_size, reserved_size, dyn_size,
1830a530b795STejun Heo 			     unit_size, lpage_size, unit_map, nr_units);
18318c4bfc6eSTejun Heo 
1832a530b795STejun Heo 	BUG_ON(chunk_size % lpage_size);
1833a530b795STejun Heo 
1834a530b795STejun Heo 	pcpul_size = static_size + reserved_size + dyn_size;
1835a530b795STejun Heo 	pcpul_lpage_size = lpage_size;
1836a530b795STejun Heo 	pcpul_nr_lpages = chunk_size / lpage_size;
18378c4bfc6eSTejun Heo 
18388c4bfc6eSTejun Heo 	/* allocate pointer array and alloc large pages */
1839a530b795STejun Heo 	map_size = pcpul_nr_lpages * sizeof(pcpul_map[0]);
18408c4bfc6eSTejun Heo 	pcpul_map = alloc_bootmem(map_size);
18418c4bfc6eSTejun Heo 
1842a530b795STejun Heo 	/* allocate all pages */
1843a530b795STejun Heo 	for (i = 0; i < pcpul_nr_lpages; i++) {
1844a530b795STejun Heo 		size_t offset = i * lpage_size;
1845a530b795STejun Heo 		int first_unit = offset / unit_size;
1846a530b795STejun Heo 		int last_unit = (offset + lpage_size - 1) / unit_size;
18478c4bfc6eSTejun Heo 		void *ptr;
18488c4bfc6eSTejun Heo 
1849a530b795STejun Heo 		/* find out which cpu is mapped to this unit */
1850a530b795STejun Heo 		for (unit = first_unit; unit <= last_unit; unit++)
1851a530b795STejun Heo 			if (pcpul_unit_to_cpu(unit, unit_map, &cpu))
1852a530b795STejun Heo 				goto found;
1853a530b795STejun Heo 		continue;
1854a530b795STejun Heo 	found:
18558c4bfc6eSTejun Heo 		ptr = alloc_fn(cpu, lpage_size);
18568c4bfc6eSTejun Heo 		if (!ptr) {
18578c4bfc6eSTejun Heo 			pr_warning("PERCPU: failed to allocate large page "
18588c4bfc6eSTejun Heo 				   "for cpu%u\n", cpu);
18598c4bfc6eSTejun Heo 			goto enomem;
18608c4bfc6eSTejun Heo 		}
18618c4bfc6eSTejun Heo 
1862a530b795STejun Heo 		pcpul_map[i].ptr = ptr;
18638c4bfc6eSTejun Heo 	}
18648c4bfc6eSTejun Heo 
1865a530b795STejun Heo 	/* return unused holes */
1866a530b795STejun Heo 	for (unit = 0; unit < nr_units; unit++) {
1867a530b795STejun Heo 		size_t start = unit * unit_size;
1868a530b795STejun Heo 		size_t end = start + unit_size;
1869a530b795STejun Heo 		size_t off, next;
1870a530b795STejun Heo 
1871a530b795STejun Heo 		/* don't free used part of occupied unit */
1872a530b795STejun Heo 		if (pcpul_unit_to_cpu(unit, unit_map, NULL))
1873a530b795STejun Heo 			start += pcpul_size;
1874a530b795STejun Heo 
1875a530b795STejun Heo 		/* unit can span more than one page, punch the holes */
1876a530b795STejun Heo 		for (off = start; off < end; off = next) {
1877a530b795STejun Heo 			void *ptr = pcpul_map[off / lpage_size].ptr;
1878a530b795STejun Heo 			next = min(roundup(off + 1, lpage_size), end);
1879a530b795STejun Heo 			if (ptr)
1880a530b795STejun Heo 				free_fn(ptr + off % lpage_size, next - off);
1881a530b795STejun Heo 		}
1882a530b795STejun Heo 	}
1883a530b795STejun Heo 
1884a530b795STejun Heo 	/* allocate address, map and copy */
1885a530b795STejun Heo 	vm.flags = VM_ALLOC;
1886a530b795STejun Heo 	vm.size = chunk_size;
1887a530b795STejun Heo 	vm_area_register_early(&vm, unit_size);
1888a530b795STejun Heo 
1889a530b795STejun Heo 	for (i = 0; i < pcpul_nr_lpages; i++) {
1890a530b795STejun Heo 		if (!pcpul_map[i].ptr)
1891a530b795STejun Heo 			continue;
1892a530b795STejun Heo 		pcpul_map[i].map_addr = vm.addr + i * lpage_size;
1893a530b795STejun Heo 		map_fn(pcpul_map[i].ptr, lpage_size, pcpul_map[i].map_addr);
1894a530b795STejun Heo 	}
18958c4bfc6eSTejun Heo 
18968c4bfc6eSTejun Heo 	for_each_possible_cpu(cpu)
1897a530b795STejun Heo 		memcpy(vm.addr + unit_map[cpu] * unit_size, __per_cpu_load,
1898a530b795STejun Heo 		       static_size);
18998c4bfc6eSTejun Heo 
19008c4bfc6eSTejun Heo 	/* we're ready, commit */
19018c4bfc6eSTejun Heo 	pr_info("PERCPU: Remapped at %p with large pages, static data "
1902a530b795STejun Heo 		"%zu bytes\n", vm.addr, static_size);
19038c4bfc6eSTejun Heo 
1904ce3141a2STejun Heo 	ret = pcpu_setup_first_chunk(static_size, reserved_size, dyn_size,
1905a530b795STejun Heo 				     unit_size, vm.addr, unit_map);
19068c4bfc6eSTejun Heo 
1907a530b795STejun Heo 	/*
1908a530b795STejun Heo 	 * Sort pcpul_map array for pcpu_lpage_remapped().  Unmapped
1909a530b795STejun Heo 	 * lpages are pushed to the end and trimmed.
1910a530b795STejun Heo 	 */
1911a530b795STejun Heo 	for (i = 0; i < pcpul_nr_lpages - 1; i++)
1912a530b795STejun Heo 		for (j = i + 1; j < pcpul_nr_lpages; j++) {
1913a530b795STejun Heo 			struct pcpul_ent tmp;
1914a530b795STejun Heo 
1915a530b795STejun Heo 			if (!pcpul_map[j].ptr)
1916a530b795STejun Heo 				continue;
1917a530b795STejun Heo 			if (pcpul_map[i].ptr &&
1918a530b795STejun Heo 			    pcpul_map[i].ptr < pcpul_map[j].ptr)
1919a530b795STejun Heo 				continue;
1920a530b795STejun Heo 
1921a530b795STejun Heo 			tmp = pcpul_map[i];
19228c4bfc6eSTejun Heo 			pcpul_map[i] = pcpul_map[j];
19238c4bfc6eSTejun Heo 			pcpul_map[j] = tmp;
19248c4bfc6eSTejun Heo 		}
19258c4bfc6eSTejun Heo 
1926a530b795STejun Heo 	while (pcpul_nr_lpages && !pcpul_map[pcpul_nr_lpages - 1].ptr)
1927a530b795STejun Heo 		pcpul_nr_lpages--;
1928a530b795STejun Heo 
19298c4bfc6eSTejun Heo 	return ret;
19308c4bfc6eSTejun Heo 
19318c4bfc6eSTejun Heo enomem:
1932a530b795STejun Heo 	for (i = 0; i < pcpul_nr_lpages; i++)
1933a530b795STejun Heo 		if (pcpul_map[i].ptr)
1934a530b795STejun Heo 			free_fn(pcpul_map[i].ptr, lpage_size);
19358c4bfc6eSTejun Heo 	free_bootmem(__pa(pcpul_map), map_size);
19368c4bfc6eSTejun Heo 	return -ENOMEM;
19378c4bfc6eSTejun Heo }
19388c4bfc6eSTejun Heo 
19398c4bfc6eSTejun Heo /**
19408c4bfc6eSTejun Heo  * pcpu_lpage_remapped - determine whether a kaddr is in pcpul recycled area
19418c4bfc6eSTejun Heo  * @kaddr: the kernel address in question
19428c4bfc6eSTejun Heo  *
19438c4bfc6eSTejun Heo  * Determine whether @kaddr falls in the pcpul recycled area.  This is
19448c4bfc6eSTejun Heo  * used by pageattr to detect VM aliases and break up the pcpu large
19458c4bfc6eSTejun Heo  * page mapping such that the same physical page is not mapped under
19468c4bfc6eSTejun Heo  * different attributes.
19478c4bfc6eSTejun Heo  *
19488c4bfc6eSTejun Heo  * The recycled area is always at the tail of a partially used large
19498c4bfc6eSTejun Heo  * page.
19508c4bfc6eSTejun Heo  *
19518c4bfc6eSTejun Heo  * RETURNS:
19528c4bfc6eSTejun Heo  * Address of corresponding remapped pcpu address if match is found;
19538c4bfc6eSTejun Heo  * otherwise, NULL.
19548c4bfc6eSTejun Heo  */
19558c4bfc6eSTejun Heo void *pcpu_lpage_remapped(void *kaddr)
19568c4bfc6eSTejun Heo {
1957a530b795STejun Heo 	unsigned long lpage_mask = pcpul_lpage_size - 1;
1958a530b795STejun Heo 	void *lpage_addr = (void *)((unsigned long)kaddr & ~lpage_mask);
1959a530b795STejun Heo 	unsigned long offset = (unsigned long)kaddr & lpage_mask;
1960a530b795STejun Heo 	int left = 0, right = pcpul_nr_lpages - 1;
19618c4bfc6eSTejun Heo 	int pos;
19628c4bfc6eSTejun Heo 
19638c4bfc6eSTejun Heo 	/* pcpul in use at all? */
19648c4bfc6eSTejun Heo 	if (!pcpul_map)
19658c4bfc6eSTejun Heo 		return NULL;
19668c4bfc6eSTejun Heo 
19678c4bfc6eSTejun Heo 	/* okay, perform binary search */
19688c4bfc6eSTejun Heo 	while (left <= right) {
19698c4bfc6eSTejun Heo 		pos = (left + right) / 2;
19708c4bfc6eSTejun Heo 
19718c4bfc6eSTejun Heo 		if (pcpul_map[pos].ptr < lpage_addr)
19728c4bfc6eSTejun Heo 			left = pos + 1;
19738c4bfc6eSTejun Heo 		else if (pcpul_map[pos].ptr > lpage_addr)
19748c4bfc6eSTejun Heo 			right = pos - 1;
1975a530b795STejun Heo 		else
1976a530b795STejun Heo 			return pcpul_map[pos].map_addr + offset;
19778c4bfc6eSTejun Heo 	}
19788c4bfc6eSTejun Heo 
19798c4bfc6eSTejun Heo 	return NULL;
19808c4bfc6eSTejun Heo }
19818c4bfc6eSTejun Heo #endif
19828c4bfc6eSTejun Heo 
19838c4bfc6eSTejun Heo /*
1984e74e3962STejun Heo  * Generic percpu area setup.
1985e74e3962STejun Heo  *
1986e74e3962STejun Heo  * The embedding helper is used because its behavior closely resembles
1987e74e3962STejun Heo  * the original non-dynamic generic percpu area setup.  This is
1988e74e3962STejun Heo  * important because many archs have addressing restrictions and might
1989e74e3962STejun Heo  * fail if the percpu area is located far away from the previous
1990e74e3962STejun Heo  * location.  As an added bonus, in non-NUMA cases, embedding is
1991e74e3962STejun Heo  * generally a good idea TLB-wise because percpu area can piggy back
1992e74e3962STejun Heo  * on the physical linear memory mapping which uses large page
1993e74e3962STejun Heo  * mappings on applicable archs.
1994e74e3962STejun Heo  */
1995e74e3962STejun Heo #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
1996e74e3962STejun Heo unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
1997e74e3962STejun Heo EXPORT_SYMBOL(__per_cpu_offset);
1998e74e3962STejun Heo 
1999e74e3962STejun Heo void __init setup_per_cpu_areas(void)
2000e74e3962STejun Heo {
2001e74e3962STejun Heo 	size_t static_size = __per_cpu_end - __per_cpu_start;
2002e74e3962STejun Heo 	ssize_t unit_size;
2003e74e3962STejun Heo 	unsigned long delta;
2004e74e3962STejun Heo 	unsigned int cpu;
2005e74e3962STejun Heo 
2006e74e3962STejun Heo 	/*
2007e74e3962STejun Heo 	 * Always reserve area for module percpu variables.  That's
2008e74e3962STejun Heo 	 * what the legacy allocator did.
2009e74e3962STejun Heo 	 */
2010e74e3962STejun Heo 	unit_size = pcpu_embed_first_chunk(static_size, PERCPU_MODULE_RESERVE,
2011788e5abcSTejun Heo 					   PERCPU_DYNAMIC_RESERVE);
2012e74e3962STejun Heo 	if (unit_size < 0)
2013e74e3962STejun Heo 		panic("Failed to initialized percpu areas.");
2014e74e3962STejun Heo 
2015e74e3962STejun Heo 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2016e74e3962STejun Heo 	for_each_possible_cpu(cpu)
2017e74e3962STejun Heo 		__per_cpu_offset[cpu] = delta + cpu * unit_size;
2018e74e3962STejun Heo }
2019e74e3962STejun Heo #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2020