xref: /linux/mm/percpu.c (revision 6081089fd6f216b0eb8849205ad0c350cd5ed9bc)
1fbf59bc9STejun Heo /*
2fbf59bc9STejun Heo  * linux/mm/percpu.c - percpu memory allocator
3fbf59bc9STejun Heo  *
4fbf59bc9STejun Heo  * Copyright (C) 2009		SUSE Linux Products GmbH
5fbf59bc9STejun Heo  * Copyright (C) 2009		Tejun Heo <tj@kernel.org>
6fbf59bc9STejun Heo  *
7fbf59bc9STejun Heo  * This file is released under the GPLv2.
8fbf59bc9STejun Heo  *
9fbf59bc9STejun Heo  * This is percpu allocator which can handle both static and dynamic
10fbf59bc9STejun Heo  * areas.  Percpu areas are allocated in chunks in vmalloc area.  Each
112f39e637STejun Heo  * chunk is consisted of boot-time determined number of units and the
122f39e637STejun Heo  * first chunk is used for static percpu variables in the kernel image
132f39e637STejun Heo  * (special boot time alloc/init handling necessary as these areas
142f39e637STejun Heo  * need to be brought up before allocation services are running).
152f39e637STejun Heo  * Unit grows as necessary and all units grow or shrink in unison.
162f39e637STejun Heo  * When a chunk is filled up, another chunk is allocated.  ie. in
172f39e637STejun Heo  * vmalloc area
18fbf59bc9STejun Heo  *
19fbf59bc9STejun Heo  *  c0                           c1                         c2
20fbf59bc9STejun Heo  *  -------------------          -------------------        ------------
21fbf59bc9STejun Heo  * | u0 | u1 | u2 | u3 |        | u0 | u1 | u2 | u3 |      | u0 | u1 | u
22fbf59bc9STejun Heo  *  -------------------  ......  -------------------  ....  ------------
23fbf59bc9STejun Heo  *
24fbf59bc9STejun Heo  * Allocation is done in offset-size areas of single unit space.  Ie,
25fbf59bc9STejun Heo  * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
262f39e637STejun Heo  * c1:u1, c1:u2 and c1:u3.  On UMA, units corresponds directly to
272f39e637STejun Heo  * cpus.  On NUMA, the mapping can be non-linear and even sparse.
282f39e637STejun Heo  * Percpu access can be done by configuring percpu base registers
292f39e637STejun Heo  * according to cpu to unit mapping and pcpu_unit_size.
30fbf59bc9STejun Heo  *
312f39e637STejun Heo  * There are usually many small percpu allocations many of them being
322f39e637STejun Heo  * as small as 4 bytes.  The allocator organizes chunks into lists
33fbf59bc9STejun Heo  * according to free size and tries to allocate from the fullest one.
34fbf59bc9STejun Heo  * Each chunk keeps the maximum contiguous area size hint which is
35fbf59bc9STejun Heo  * guaranteed to be eqaul to or larger than the maximum contiguous
36fbf59bc9STejun Heo  * area in the chunk.  This helps the allocator not to iterate the
37fbf59bc9STejun Heo  * chunk maps unnecessarily.
38fbf59bc9STejun Heo  *
39fbf59bc9STejun Heo  * Allocation state in each chunk is kept using an array of integers
40fbf59bc9STejun Heo  * on chunk->map.  A positive value in the map represents a free
41fbf59bc9STejun Heo  * region and negative allocated.  Allocation inside a chunk is done
42fbf59bc9STejun Heo  * by scanning this map sequentially and serving the first matching
43fbf59bc9STejun Heo  * entry.  This is mostly copied from the percpu_modalloc() allocator.
44e1b9aa3fSChristoph Lameter  * Chunks can be determined from the address using the index field
45e1b9aa3fSChristoph Lameter  * in the page struct. The index field contains a pointer to the chunk.
46fbf59bc9STejun Heo  *
47fbf59bc9STejun Heo  * To use this allocator, arch code should do the followings.
48fbf59bc9STejun Heo  *
49fbf59bc9STejun Heo  * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
50e0100983STejun Heo  *   regular address to percpu pointer and back if they need to be
51e0100983STejun Heo  *   different from the default
52fbf59bc9STejun Heo  *
538d408b4bSTejun Heo  * - use pcpu_setup_first_chunk() during percpu area initialization to
548d408b4bSTejun Heo  *   setup the first chunk containing the kernel static percpu area
55fbf59bc9STejun Heo  */
56fbf59bc9STejun Heo 
57fbf59bc9STejun Heo #include <linux/bitmap.h>
58fbf59bc9STejun Heo #include <linux/bootmem.h>
59fd1e8a1fSTejun Heo #include <linux/err.h>
60fbf59bc9STejun Heo #include <linux/list.h>
61a530b795STejun Heo #include <linux/log2.h>
62fbf59bc9STejun Heo #include <linux/mm.h>
63fbf59bc9STejun Heo #include <linux/module.h>
64fbf59bc9STejun Heo #include <linux/mutex.h>
65fbf59bc9STejun Heo #include <linux/percpu.h>
66fbf59bc9STejun Heo #include <linux/pfn.h>
67fbf59bc9STejun Heo #include <linux/slab.h>
68ccea34b5STejun Heo #include <linux/spinlock.h>
69fbf59bc9STejun Heo #include <linux/vmalloc.h>
70a56dbddfSTejun Heo #include <linux/workqueue.h>
71fbf59bc9STejun Heo 
72fbf59bc9STejun Heo #include <asm/cacheflush.h>
73e0100983STejun Heo #include <asm/sections.h>
74fbf59bc9STejun Heo #include <asm/tlbflush.h>
753b034b0dSVivek Goyal #include <asm/io.h>
76fbf59bc9STejun Heo 
77fbf59bc9STejun Heo #define PCPU_SLOT_BASE_SHIFT		5	/* 1-31 shares the same slot */
78fbf59bc9STejun Heo #define PCPU_DFL_MAP_ALLOC		16	/* start a map with 16 ents */
79fbf59bc9STejun Heo 
80e0100983STejun Heo /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
81e0100983STejun Heo #ifndef __addr_to_pcpu_ptr
82e0100983STejun Heo #define __addr_to_pcpu_ptr(addr)					\
8343cf38ebSTejun Heo 	(void __percpu *)((unsigned long)(addr) -			\
8443cf38ebSTejun Heo 			  (unsigned long)pcpu_base_addr	+		\
8543cf38ebSTejun Heo 			  (unsigned long)__per_cpu_start)
86e0100983STejun Heo #endif
87e0100983STejun Heo #ifndef __pcpu_ptr_to_addr
88e0100983STejun Heo #define __pcpu_ptr_to_addr(ptr)						\
8943cf38ebSTejun Heo 	(void __force *)((unsigned long)(ptr) +				\
9043cf38ebSTejun Heo 			 (unsigned long)pcpu_base_addr -		\
9143cf38ebSTejun Heo 			 (unsigned long)__per_cpu_start)
92e0100983STejun Heo #endif
93e0100983STejun Heo 
94fbf59bc9STejun Heo struct pcpu_chunk {
95fbf59bc9STejun Heo 	struct list_head	list;		/* linked to pcpu_slot lists */
96fbf59bc9STejun Heo 	int			free_size;	/* free bytes in the chunk */
97fbf59bc9STejun Heo 	int			contig_hint;	/* max contiguous size hint */
98bba174f5STejun Heo 	void			*base_addr;	/* base address of this chunk */
99fbf59bc9STejun Heo 	int			map_used;	/* # of map entries used */
100fbf59bc9STejun Heo 	int			map_alloc;	/* # of map entries allocated */
101fbf59bc9STejun Heo 	int			*map;		/* allocation map */
1026563297cSTejun Heo 	struct vm_struct	**vms;		/* mapped vmalloc regions */
1038d408b4bSTejun Heo 	bool			immutable;	/* no [de]population allowed */
104ce3141a2STejun Heo 	unsigned long		populated[];	/* populated bitmap */
105fbf59bc9STejun Heo };
106fbf59bc9STejun Heo 
10740150d37STejun Heo static int pcpu_unit_pages __read_mostly;
10840150d37STejun Heo static int pcpu_unit_size __read_mostly;
1092f39e637STejun Heo static int pcpu_nr_units __read_mostly;
1106563297cSTejun Heo static int pcpu_atom_size __read_mostly;
11140150d37STejun Heo static int pcpu_nr_slots __read_mostly;
11240150d37STejun Heo static size_t pcpu_chunk_struct_size __read_mostly;
113fbf59bc9STejun Heo 
1142f39e637STejun Heo /* cpus with the lowest and highest unit numbers */
1152f39e637STejun Heo static unsigned int pcpu_first_unit_cpu __read_mostly;
1162f39e637STejun Heo static unsigned int pcpu_last_unit_cpu __read_mostly;
1172f39e637STejun Heo 
118fbf59bc9STejun Heo /* the address of the first chunk which starts with the kernel static area */
11940150d37STejun Heo void *pcpu_base_addr __read_mostly;
120fbf59bc9STejun Heo EXPORT_SYMBOL_GPL(pcpu_base_addr);
121fbf59bc9STejun Heo 
122fb435d52STejun Heo static const int *pcpu_unit_map __read_mostly;		/* cpu -> unit */
123fb435d52STejun Heo const unsigned long *pcpu_unit_offsets __read_mostly;	/* cpu -> unit offset */
1242f39e637STejun Heo 
1256563297cSTejun Heo /* group information, used for vm allocation */
1266563297cSTejun Heo static int pcpu_nr_groups __read_mostly;
1276563297cSTejun Heo static const unsigned long *pcpu_group_offsets __read_mostly;
1286563297cSTejun Heo static const size_t *pcpu_group_sizes __read_mostly;
1296563297cSTejun Heo 
130ae9e6bc9STejun Heo /*
131ae9e6bc9STejun Heo  * The first chunk which always exists.  Note that unlike other
132ae9e6bc9STejun Heo  * chunks, this one can be allocated and mapped in several different
133ae9e6bc9STejun Heo  * ways and thus often doesn't live in the vmalloc area.
134ae9e6bc9STejun Heo  */
135ae9e6bc9STejun Heo static struct pcpu_chunk *pcpu_first_chunk;
136ae9e6bc9STejun Heo 
137ae9e6bc9STejun Heo /*
138ae9e6bc9STejun Heo  * Optional reserved chunk.  This chunk reserves part of the first
139ae9e6bc9STejun Heo  * chunk and serves it for reserved allocations.  The amount of
140ae9e6bc9STejun Heo  * reserved offset is in pcpu_reserved_chunk_limit.  When reserved
141ae9e6bc9STejun Heo  * area doesn't exist, the following variables contain NULL and 0
142ae9e6bc9STejun Heo  * respectively.
143ae9e6bc9STejun Heo  */
144edcb4639STejun Heo static struct pcpu_chunk *pcpu_reserved_chunk;
145edcb4639STejun Heo static int pcpu_reserved_chunk_limit;
146edcb4639STejun Heo 
147fbf59bc9STejun Heo /*
148ccea34b5STejun Heo  * Synchronization rules.
149fbf59bc9STejun Heo  *
150ccea34b5STejun Heo  * There are two locks - pcpu_alloc_mutex and pcpu_lock.  The former
151ce3141a2STejun Heo  * protects allocation/reclaim paths, chunks, populated bitmap and
152ce3141a2STejun Heo  * vmalloc mapping.  The latter is a spinlock and protects the index
153ce3141a2STejun Heo  * data structures - chunk slots, chunks and area maps in chunks.
154fbf59bc9STejun Heo  *
155ccea34b5STejun Heo  * During allocation, pcpu_alloc_mutex is kept locked all the time and
156ccea34b5STejun Heo  * pcpu_lock is grabbed and released as necessary.  All actual memory
157403a91b1SJiri Kosina  * allocations are done using GFP_KERNEL with pcpu_lock released.  In
158403a91b1SJiri Kosina  * general, percpu memory can't be allocated with irq off but
159403a91b1SJiri Kosina  * irqsave/restore are still used in alloc path so that it can be used
160403a91b1SJiri Kosina  * from early init path - sched_init() specifically.
161ccea34b5STejun Heo  *
162ccea34b5STejun Heo  * Free path accesses and alters only the index data structures, so it
163ccea34b5STejun Heo  * can be safely called from atomic context.  When memory needs to be
164ccea34b5STejun Heo  * returned to the system, free path schedules reclaim_work which
165ccea34b5STejun Heo  * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be
166ccea34b5STejun Heo  * reclaimed, release both locks and frees the chunks.  Note that it's
167ccea34b5STejun Heo  * necessary to grab both locks to remove a chunk from circulation as
168ccea34b5STejun Heo  * allocation path might be referencing the chunk with only
169ccea34b5STejun Heo  * pcpu_alloc_mutex locked.
170fbf59bc9STejun Heo  */
171ccea34b5STejun Heo static DEFINE_MUTEX(pcpu_alloc_mutex);	/* protects whole alloc and reclaim */
172ccea34b5STejun Heo static DEFINE_SPINLOCK(pcpu_lock);	/* protects index data structures */
173fbf59bc9STejun Heo 
17440150d37STejun Heo static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */
175fbf59bc9STejun Heo 
176a56dbddfSTejun Heo /* reclaim work to release fully free chunks, scheduled from free path */
177a56dbddfSTejun Heo static void pcpu_reclaim(struct work_struct *work);
178a56dbddfSTejun Heo static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim);
179a56dbddfSTejun Heo 
180020ec653STejun Heo static bool pcpu_addr_in_first_chunk(void *addr)
181020ec653STejun Heo {
182020ec653STejun Heo 	void *first_start = pcpu_first_chunk->base_addr;
183020ec653STejun Heo 
184020ec653STejun Heo 	return addr >= first_start && addr < first_start + pcpu_unit_size;
185020ec653STejun Heo }
186020ec653STejun Heo 
187020ec653STejun Heo static bool pcpu_addr_in_reserved_chunk(void *addr)
188020ec653STejun Heo {
189020ec653STejun Heo 	void *first_start = pcpu_first_chunk->base_addr;
190020ec653STejun Heo 
191020ec653STejun Heo 	return addr >= first_start &&
192020ec653STejun Heo 		addr < first_start + pcpu_reserved_chunk_limit;
193020ec653STejun Heo }
194020ec653STejun Heo 
195d9b55eebSTejun Heo static int __pcpu_size_to_slot(int size)
196fbf59bc9STejun Heo {
197cae3aeb8STejun Heo 	int highbit = fls(size);	/* size is in bytes */
198fbf59bc9STejun Heo 	return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1);
199fbf59bc9STejun Heo }
200fbf59bc9STejun Heo 
201d9b55eebSTejun Heo static int pcpu_size_to_slot(int size)
202d9b55eebSTejun Heo {
203d9b55eebSTejun Heo 	if (size == pcpu_unit_size)
204d9b55eebSTejun Heo 		return pcpu_nr_slots - 1;
205d9b55eebSTejun Heo 	return __pcpu_size_to_slot(size);
206d9b55eebSTejun Heo }
207d9b55eebSTejun Heo 
208fbf59bc9STejun Heo static int pcpu_chunk_slot(const struct pcpu_chunk *chunk)
209fbf59bc9STejun Heo {
210fbf59bc9STejun Heo 	if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int))
211fbf59bc9STejun Heo 		return 0;
212fbf59bc9STejun Heo 
213fbf59bc9STejun Heo 	return pcpu_size_to_slot(chunk->free_size);
214fbf59bc9STejun Heo }
215fbf59bc9STejun Heo 
216fbf59bc9STejun Heo static int pcpu_page_idx(unsigned int cpu, int page_idx)
217fbf59bc9STejun Heo {
2182f39e637STejun Heo 	return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx;
219fbf59bc9STejun Heo }
220fbf59bc9STejun Heo 
221fbf59bc9STejun Heo static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk,
222fbf59bc9STejun Heo 				     unsigned int cpu, int page_idx)
223fbf59bc9STejun Heo {
224bba174f5STejun Heo 	return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] +
225fb435d52STejun Heo 		(page_idx << PAGE_SHIFT);
226fbf59bc9STejun Heo }
227fbf59bc9STejun Heo 
228ce3141a2STejun Heo static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
229c8a51be4STejun Heo 				    unsigned int cpu, int page_idx)
230fbf59bc9STejun Heo {
231ce3141a2STejun Heo 	/* must not be used on pre-mapped chunk */
232ce3141a2STejun Heo 	WARN_ON(chunk->immutable);
233c8a51be4STejun Heo 
234ce3141a2STejun Heo 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
235fbf59bc9STejun Heo }
236fbf59bc9STejun Heo 
237e1b9aa3fSChristoph Lameter /* set the pointer to a chunk in a page struct */
238e1b9aa3fSChristoph Lameter static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu)
239e1b9aa3fSChristoph Lameter {
240e1b9aa3fSChristoph Lameter 	page->index = (unsigned long)pcpu;
241e1b9aa3fSChristoph Lameter }
242e1b9aa3fSChristoph Lameter 
243e1b9aa3fSChristoph Lameter /* obtain pointer to a chunk from a page struct */
244e1b9aa3fSChristoph Lameter static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page)
245e1b9aa3fSChristoph Lameter {
246e1b9aa3fSChristoph Lameter 	return (struct pcpu_chunk *)page->index;
247e1b9aa3fSChristoph Lameter }
248e1b9aa3fSChristoph Lameter 
249ce3141a2STejun Heo static void pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
250ce3141a2STejun Heo {
251ce3141a2STejun Heo 	*rs = find_next_zero_bit(chunk->populated, end, *rs);
252ce3141a2STejun Heo 	*re = find_next_bit(chunk->populated, end, *rs + 1);
253ce3141a2STejun Heo }
254ce3141a2STejun Heo 
255ce3141a2STejun Heo static void pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end)
256ce3141a2STejun Heo {
257ce3141a2STejun Heo 	*rs = find_next_bit(chunk->populated, end, *rs);
258ce3141a2STejun Heo 	*re = find_next_zero_bit(chunk->populated, end, *rs + 1);
259ce3141a2STejun Heo }
260ce3141a2STejun Heo 
261ce3141a2STejun Heo /*
262ce3141a2STejun Heo  * (Un)populated page region iterators.  Iterate over (un)populated
263ce3141a2STejun Heo  * page regions betwen @start and @end in @chunk.  @rs and @re should
264ce3141a2STejun Heo  * be integer variables and will be set to start and end page index of
265ce3141a2STejun Heo  * the current region.
266ce3141a2STejun Heo  */
267ce3141a2STejun Heo #define pcpu_for_each_unpop_region(chunk, rs, re, start, end)		    \
268ce3141a2STejun Heo 	for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
269ce3141a2STejun Heo 	     (rs) < (re);						    \
270ce3141a2STejun Heo 	     (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
271ce3141a2STejun Heo 
272ce3141a2STejun Heo #define pcpu_for_each_pop_region(chunk, rs, re, start, end)		    \
273ce3141a2STejun Heo 	for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end));   \
274ce3141a2STejun Heo 	     (rs) < (re);						    \
275ce3141a2STejun Heo 	     (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
276ce3141a2STejun Heo 
277fbf59bc9STejun Heo /**
2781880d93bSTejun Heo  * pcpu_mem_alloc - allocate memory
2791880d93bSTejun Heo  * @size: bytes to allocate
280fbf59bc9STejun Heo  *
2811880d93bSTejun Heo  * Allocate @size bytes.  If @size is smaller than PAGE_SIZE,
2821880d93bSTejun Heo  * kzalloc() is used; otherwise, vmalloc() is used.  The returned
2831880d93bSTejun Heo  * memory is always zeroed.
284fbf59bc9STejun Heo  *
285ccea34b5STejun Heo  * CONTEXT:
286ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
287ccea34b5STejun Heo  *
288fbf59bc9STejun Heo  * RETURNS:
2891880d93bSTejun Heo  * Pointer to the allocated area on success, NULL on failure.
290fbf59bc9STejun Heo  */
2911880d93bSTejun Heo static void *pcpu_mem_alloc(size_t size)
292fbf59bc9STejun Heo {
293fbf59bc9STejun Heo 	if (size <= PAGE_SIZE)
2941880d93bSTejun Heo 		return kzalloc(size, GFP_KERNEL);
2951880d93bSTejun Heo 	else {
2961880d93bSTejun Heo 		void *ptr = vmalloc(size);
2971880d93bSTejun Heo 		if (ptr)
2981880d93bSTejun Heo 			memset(ptr, 0, size);
2991880d93bSTejun Heo 		return ptr;
3001880d93bSTejun Heo 	}
3011880d93bSTejun Heo }
302fbf59bc9STejun Heo 
3031880d93bSTejun Heo /**
3041880d93bSTejun Heo  * pcpu_mem_free - free memory
3051880d93bSTejun Heo  * @ptr: memory to free
3061880d93bSTejun Heo  * @size: size of the area
3071880d93bSTejun Heo  *
3081880d93bSTejun Heo  * Free @ptr.  @ptr should have been allocated using pcpu_mem_alloc().
3091880d93bSTejun Heo  */
3101880d93bSTejun Heo static void pcpu_mem_free(void *ptr, size_t size)
3111880d93bSTejun Heo {
3121880d93bSTejun Heo 	if (size <= PAGE_SIZE)
3131880d93bSTejun Heo 		kfree(ptr);
3141880d93bSTejun Heo 	else
3151880d93bSTejun Heo 		vfree(ptr);
316fbf59bc9STejun Heo }
317fbf59bc9STejun Heo 
318fbf59bc9STejun Heo /**
319fbf59bc9STejun Heo  * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
320fbf59bc9STejun Heo  * @chunk: chunk of interest
321fbf59bc9STejun Heo  * @oslot: the previous slot it was on
322fbf59bc9STejun Heo  *
323fbf59bc9STejun Heo  * This function is called after an allocation or free changed @chunk.
324fbf59bc9STejun Heo  * New slot according to the changed state is determined and @chunk is
325edcb4639STejun Heo  * moved to the slot.  Note that the reserved chunk is never put on
326edcb4639STejun Heo  * chunk slots.
327ccea34b5STejun Heo  *
328ccea34b5STejun Heo  * CONTEXT:
329ccea34b5STejun Heo  * pcpu_lock.
330fbf59bc9STejun Heo  */
331fbf59bc9STejun Heo static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot)
332fbf59bc9STejun Heo {
333fbf59bc9STejun Heo 	int nslot = pcpu_chunk_slot(chunk);
334fbf59bc9STejun Heo 
335edcb4639STejun Heo 	if (chunk != pcpu_reserved_chunk && oslot != nslot) {
336fbf59bc9STejun Heo 		if (oslot < nslot)
337fbf59bc9STejun Heo 			list_move(&chunk->list, &pcpu_slot[nslot]);
338fbf59bc9STejun Heo 		else
339fbf59bc9STejun Heo 			list_move_tail(&chunk->list, &pcpu_slot[nslot]);
340fbf59bc9STejun Heo 	}
341fbf59bc9STejun Heo }
342fbf59bc9STejun Heo 
343fbf59bc9STejun Heo /**
344e1b9aa3fSChristoph Lameter  * pcpu_chunk_addr_search - determine chunk containing specified address
345e1b9aa3fSChristoph Lameter  * @addr: address for which the chunk needs to be determined.
346ccea34b5STejun Heo  *
347fbf59bc9STejun Heo  * RETURNS:
348fbf59bc9STejun Heo  * The address of the found chunk.
349fbf59bc9STejun Heo  */
350fbf59bc9STejun Heo static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr)
351fbf59bc9STejun Heo {
352ae9e6bc9STejun Heo 	/* is it in the first chunk? */
353020ec653STejun Heo 	if (pcpu_addr_in_first_chunk(addr)) {
354ae9e6bc9STejun Heo 		/* is it in the reserved area? */
355020ec653STejun Heo 		if (pcpu_addr_in_reserved_chunk(addr))
356edcb4639STejun Heo 			return pcpu_reserved_chunk;
357ae9e6bc9STejun Heo 		return pcpu_first_chunk;
358edcb4639STejun Heo 	}
359edcb4639STejun Heo 
36004a13c7cSTejun Heo 	/*
36104a13c7cSTejun Heo 	 * The address is relative to unit0 which might be unused and
36204a13c7cSTejun Heo 	 * thus unmapped.  Offset the address to the unit space of the
36304a13c7cSTejun Heo 	 * current processor before looking it up in the vmalloc
36404a13c7cSTejun Heo 	 * space.  Note that any possible cpu id can be used here, so
36504a13c7cSTejun Heo 	 * there's no need to worry about preemption or cpu hotplug.
36604a13c7cSTejun Heo 	 */
3675579fd7eSTejun Heo 	addr += pcpu_unit_offsets[raw_smp_processor_id()];
368e1b9aa3fSChristoph Lameter 	return pcpu_get_page_chunk(vmalloc_to_page(addr));
369fbf59bc9STejun Heo }
370fbf59bc9STejun Heo 
371fbf59bc9STejun Heo /**
372833af842STejun Heo  * pcpu_need_to_extend - determine whether chunk area map needs to be extended
373833af842STejun Heo  * @chunk: chunk of interest
3749f7dcf22STejun Heo  *
375833af842STejun Heo  * Determine whether area map of @chunk needs to be extended to
376833af842STejun Heo  * accomodate a new allocation.
3779f7dcf22STejun Heo  *
378ccea34b5STejun Heo  * CONTEXT:
379833af842STejun Heo  * pcpu_lock.
380ccea34b5STejun Heo  *
3819f7dcf22STejun Heo  * RETURNS:
382833af842STejun Heo  * New target map allocation length if extension is necessary, 0
383833af842STejun Heo  * otherwise.
3849f7dcf22STejun Heo  */
385833af842STejun Heo static int pcpu_need_to_extend(struct pcpu_chunk *chunk)
3869f7dcf22STejun Heo {
3879f7dcf22STejun Heo 	int new_alloc;
3889f7dcf22STejun Heo 
3899f7dcf22STejun Heo 	if (chunk->map_alloc >= chunk->map_used + 2)
3909f7dcf22STejun Heo 		return 0;
3919f7dcf22STejun Heo 
3929f7dcf22STejun Heo 	new_alloc = PCPU_DFL_MAP_ALLOC;
3939f7dcf22STejun Heo 	while (new_alloc < chunk->map_used + 2)
3949f7dcf22STejun Heo 		new_alloc *= 2;
3959f7dcf22STejun Heo 
396833af842STejun Heo 	return new_alloc;
397ccea34b5STejun Heo }
398ccea34b5STejun Heo 
399833af842STejun Heo /**
400833af842STejun Heo  * pcpu_extend_area_map - extend area map of a chunk
401833af842STejun Heo  * @chunk: chunk of interest
402833af842STejun Heo  * @new_alloc: new target allocation length of the area map
403833af842STejun Heo  *
404833af842STejun Heo  * Extend area map of @chunk to have @new_alloc entries.
405833af842STejun Heo  *
406833af842STejun Heo  * CONTEXT:
407833af842STejun Heo  * Does GFP_KERNEL allocation.  Grabs and releases pcpu_lock.
408833af842STejun Heo  *
409833af842STejun Heo  * RETURNS:
410833af842STejun Heo  * 0 on success, -errno on failure.
411ccea34b5STejun Heo  */
412833af842STejun Heo static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc)
413833af842STejun Heo {
414833af842STejun Heo 	int *old = NULL, *new = NULL;
415833af842STejun Heo 	size_t old_size = 0, new_size = new_alloc * sizeof(new[0]);
416833af842STejun Heo 	unsigned long flags;
4179f7dcf22STejun Heo 
418833af842STejun Heo 	new = pcpu_mem_alloc(new_size);
419833af842STejun Heo 	if (!new)
420833af842STejun Heo 		return -ENOMEM;
421833af842STejun Heo 
422833af842STejun Heo 	/* acquire pcpu_lock and switch to new area map */
423833af842STejun Heo 	spin_lock_irqsave(&pcpu_lock, flags);
424833af842STejun Heo 
425833af842STejun Heo 	if (new_alloc <= chunk->map_alloc)
426833af842STejun Heo 		goto out_unlock;
427833af842STejun Heo 
428833af842STejun Heo 	old_size = chunk->map_alloc * sizeof(chunk->map[0]);
429833af842STejun Heo 	memcpy(new, chunk->map, old_size);
4309f7dcf22STejun Heo 
4319f7dcf22STejun Heo 	/*
4329f7dcf22STejun Heo 	 * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is
4339f7dcf22STejun Heo 	 * one of the first chunks and still using static map.
4349f7dcf22STejun Heo 	 */
4359f7dcf22STejun Heo 	if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC)
436833af842STejun Heo 		old = chunk->map;
4379f7dcf22STejun Heo 
4389f7dcf22STejun Heo 	chunk->map_alloc = new_alloc;
4399f7dcf22STejun Heo 	chunk->map = new;
440833af842STejun Heo 	new = NULL;
441833af842STejun Heo 
442833af842STejun Heo out_unlock:
443833af842STejun Heo 	spin_unlock_irqrestore(&pcpu_lock, flags);
444833af842STejun Heo 
445833af842STejun Heo 	/*
446833af842STejun Heo 	 * pcpu_mem_free() might end up calling vfree() which uses
447833af842STejun Heo 	 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
448833af842STejun Heo 	 */
449833af842STejun Heo 	pcpu_mem_free(old, old_size);
450833af842STejun Heo 	pcpu_mem_free(new, new_size);
451833af842STejun Heo 
4529f7dcf22STejun Heo 	return 0;
4539f7dcf22STejun Heo }
4549f7dcf22STejun Heo 
4559f7dcf22STejun Heo /**
456fbf59bc9STejun Heo  * pcpu_split_block - split a map block
457fbf59bc9STejun Heo  * @chunk: chunk of interest
458fbf59bc9STejun Heo  * @i: index of map block to split
459cae3aeb8STejun Heo  * @head: head size in bytes (can be 0)
460cae3aeb8STejun Heo  * @tail: tail size in bytes (can be 0)
461fbf59bc9STejun Heo  *
462fbf59bc9STejun Heo  * Split the @i'th map block into two or three blocks.  If @head is
463fbf59bc9STejun Heo  * non-zero, @head bytes block is inserted before block @i moving it
464fbf59bc9STejun Heo  * to @i+1 and reducing its size by @head bytes.
465fbf59bc9STejun Heo  *
466fbf59bc9STejun Heo  * If @tail is non-zero, the target block, which can be @i or @i+1
467fbf59bc9STejun Heo  * depending on @head, is reduced by @tail bytes and @tail byte block
468fbf59bc9STejun Heo  * is inserted after the target block.
469fbf59bc9STejun Heo  *
4709f7dcf22STejun Heo  * @chunk->map must have enough free slots to accomodate the split.
471ccea34b5STejun Heo  *
472ccea34b5STejun Heo  * CONTEXT:
473ccea34b5STejun Heo  * pcpu_lock.
474fbf59bc9STejun Heo  */
4759f7dcf22STejun Heo static void pcpu_split_block(struct pcpu_chunk *chunk, int i,
4769f7dcf22STejun Heo 			     int head, int tail)
477fbf59bc9STejun Heo {
478fbf59bc9STejun Heo 	int nr_extra = !!head + !!tail;
479fbf59bc9STejun Heo 
4809f7dcf22STejun Heo 	BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra);
481fbf59bc9STejun Heo 
4829f7dcf22STejun Heo 	/* insert new subblocks */
483fbf59bc9STejun Heo 	memmove(&chunk->map[i + nr_extra], &chunk->map[i],
484fbf59bc9STejun Heo 		sizeof(chunk->map[0]) * (chunk->map_used - i));
485fbf59bc9STejun Heo 	chunk->map_used += nr_extra;
486fbf59bc9STejun Heo 
487fbf59bc9STejun Heo 	if (head) {
488fbf59bc9STejun Heo 		chunk->map[i + 1] = chunk->map[i] - head;
489fbf59bc9STejun Heo 		chunk->map[i++] = head;
490fbf59bc9STejun Heo 	}
491fbf59bc9STejun Heo 	if (tail) {
492fbf59bc9STejun Heo 		chunk->map[i++] -= tail;
493fbf59bc9STejun Heo 		chunk->map[i] = tail;
494fbf59bc9STejun Heo 	}
495fbf59bc9STejun Heo }
496fbf59bc9STejun Heo 
497fbf59bc9STejun Heo /**
498fbf59bc9STejun Heo  * pcpu_alloc_area - allocate area from a pcpu_chunk
499fbf59bc9STejun Heo  * @chunk: chunk of interest
500cae3aeb8STejun Heo  * @size: wanted size in bytes
501fbf59bc9STejun Heo  * @align: wanted align
502fbf59bc9STejun Heo  *
503fbf59bc9STejun Heo  * Try to allocate @size bytes area aligned at @align from @chunk.
504fbf59bc9STejun Heo  * Note that this function only allocates the offset.  It doesn't
505fbf59bc9STejun Heo  * populate or map the area.
506fbf59bc9STejun Heo  *
5079f7dcf22STejun Heo  * @chunk->map must have at least two free slots.
5089f7dcf22STejun Heo  *
509ccea34b5STejun Heo  * CONTEXT:
510ccea34b5STejun Heo  * pcpu_lock.
511ccea34b5STejun Heo  *
512fbf59bc9STejun Heo  * RETURNS:
5139f7dcf22STejun Heo  * Allocated offset in @chunk on success, -1 if no matching area is
5149f7dcf22STejun Heo  * found.
515fbf59bc9STejun Heo  */
516fbf59bc9STejun Heo static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align)
517fbf59bc9STejun Heo {
518fbf59bc9STejun Heo 	int oslot = pcpu_chunk_slot(chunk);
519fbf59bc9STejun Heo 	int max_contig = 0;
520fbf59bc9STejun Heo 	int i, off;
521fbf59bc9STejun Heo 
522fbf59bc9STejun Heo 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) {
523fbf59bc9STejun Heo 		bool is_last = i + 1 == chunk->map_used;
524fbf59bc9STejun Heo 		int head, tail;
525fbf59bc9STejun Heo 
526fbf59bc9STejun Heo 		/* extra for alignment requirement */
527fbf59bc9STejun Heo 		head = ALIGN(off, align) - off;
528fbf59bc9STejun Heo 		BUG_ON(i == 0 && head != 0);
529fbf59bc9STejun Heo 
530fbf59bc9STejun Heo 		if (chunk->map[i] < 0)
531fbf59bc9STejun Heo 			continue;
532fbf59bc9STejun Heo 		if (chunk->map[i] < head + size) {
533fbf59bc9STejun Heo 			max_contig = max(chunk->map[i], max_contig);
534fbf59bc9STejun Heo 			continue;
535fbf59bc9STejun Heo 		}
536fbf59bc9STejun Heo 
537fbf59bc9STejun Heo 		/*
538fbf59bc9STejun Heo 		 * If head is small or the previous block is free,
539fbf59bc9STejun Heo 		 * merge'em.  Note that 'small' is defined as smaller
540fbf59bc9STejun Heo 		 * than sizeof(int), which is very small but isn't too
541fbf59bc9STejun Heo 		 * uncommon for percpu allocations.
542fbf59bc9STejun Heo 		 */
543fbf59bc9STejun Heo 		if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) {
544fbf59bc9STejun Heo 			if (chunk->map[i - 1] > 0)
545fbf59bc9STejun Heo 				chunk->map[i - 1] += head;
546fbf59bc9STejun Heo 			else {
547fbf59bc9STejun Heo 				chunk->map[i - 1] -= head;
548fbf59bc9STejun Heo 				chunk->free_size -= head;
549fbf59bc9STejun Heo 			}
550fbf59bc9STejun Heo 			chunk->map[i] -= head;
551fbf59bc9STejun Heo 			off += head;
552fbf59bc9STejun Heo 			head = 0;
553fbf59bc9STejun Heo 		}
554fbf59bc9STejun Heo 
555fbf59bc9STejun Heo 		/* if tail is small, just keep it around */
556fbf59bc9STejun Heo 		tail = chunk->map[i] - head - size;
557fbf59bc9STejun Heo 		if (tail < sizeof(int))
558fbf59bc9STejun Heo 			tail = 0;
559fbf59bc9STejun Heo 
560fbf59bc9STejun Heo 		/* split if warranted */
561fbf59bc9STejun Heo 		if (head || tail) {
5629f7dcf22STejun Heo 			pcpu_split_block(chunk, i, head, tail);
563fbf59bc9STejun Heo 			if (head) {
564fbf59bc9STejun Heo 				i++;
565fbf59bc9STejun Heo 				off += head;
566fbf59bc9STejun Heo 				max_contig = max(chunk->map[i - 1], max_contig);
567fbf59bc9STejun Heo 			}
568fbf59bc9STejun Heo 			if (tail)
569fbf59bc9STejun Heo 				max_contig = max(chunk->map[i + 1], max_contig);
570fbf59bc9STejun Heo 		}
571fbf59bc9STejun Heo 
572fbf59bc9STejun Heo 		/* update hint and mark allocated */
573fbf59bc9STejun Heo 		if (is_last)
574fbf59bc9STejun Heo 			chunk->contig_hint = max_contig; /* fully scanned */
575fbf59bc9STejun Heo 		else
576fbf59bc9STejun Heo 			chunk->contig_hint = max(chunk->contig_hint,
577fbf59bc9STejun Heo 						 max_contig);
578fbf59bc9STejun Heo 
579fbf59bc9STejun Heo 		chunk->free_size -= chunk->map[i];
580fbf59bc9STejun Heo 		chunk->map[i] = -chunk->map[i];
581fbf59bc9STejun Heo 
582fbf59bc9STejun Heo 		pcpu_chunk_relocate(chunk, oslot);
583fbf59bc9STejun Heo 		return off;
584fbf59bc9STejun Heo 	}
585fbf59bc9STejun Heo 
586fbf59bc9STejun Heo 	chunk->contig_hint = max_contig;	/* fully scanned */
587fbf59bc9STejun Heo 	pcpu_chunk_relocate(chunk, oslot);
588fbf59bc9STejun Heo 
5899f7dcf22STejun Heo 	/* tell the upper layer that this chunk has no matching area */
5909f7dcf22STejun Heo 	return -1;
591fbf59bc9STejun Heo }
592fbf59bc9STejun Heo 
593fbf59bc9STejun Heo /**
594fbf59bc9STejun Heo  * pcpu_free_area - free area to a pcpu_chunk
595fbf59bc9STejun Heo  * @chunk: chunk of interest
596fbf59bc9STejun Heo  * @freeme: offset of area to free
597fbf59bc9STejun Heo  *
598fbf59bc9STejun Heo  * Free area starting from @freeme to @chunk.  Note that this function
599fbf59bc9STejun Heo  * only modifies the allocation map.  It doesn't depopulate or unmap
600fbf59bc9STejun Heo  * the area.
601ccea34b5STejun Heo  *
602ccea34b5STejun Heo  * CONTEXT:
603ccea34b5STejun Heo  * pcpu_lock.
604fbf59bc9STejun Heo  */
605fbf59bc9STejun Heo static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme)
606fbf59bc9STejun Heo {
607fbf59bc9STejun Heo 	int oslot = pcpu_chunk_slot(chunk);
608fbf59bc9STejun Heo 	int i, off;
609fbf59bc9STejun Heo 
610fbf59bc9STejun Heo 	for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++]))
611fbf59bc9STejun Heo 		if (off == freeme)
612fbf59bc9STejun Heo 			break;
613fbf59bc9STejun Heo 	BUG_ON(off != freeme);
614fbf59bc9STejun Heo 	BUG_ON(chunk->map[i] > 0);
615fbf59bc9STejun Heo 
616fbf59bc9STejun Heo 	chunk->map[i] = -chunk->map[i];
617fbf59bc9STejun Heo 	chunk->free_size += chunk->map[i];
618fbf59bc9STejun Heo 
619fbf59bc9STejun Heo 	/* merge with previous? */
620fbf59bc9STejun Heo 	if (i > 0 && chunk->map[i - 1] >= 0) {
621fbf59bc9STejun Heo 		chunk->map[i - 1] += chunk->map[i];
622fbf59bc9STejun Heo 		chunk->map_used--;
623fbf59bc9STejun Heo 		memmove(&chunk->map[i], &chunk->map[i + 1],
624fbf59bc9STejun Heo 			(chunk->map_used - i) * sizeof(chunk->map[0]));
625fbf59bc9STejun Heo 		i--;
626fbf59bc9STejun Heo 	}
627fbf59bc9STejun Heo 	/* merge with next? */
628fbf59bc9STejun Heo 	if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) {
629fbf59bc9STejun Heo 		chunk->map[i] += chunk->map[i + 1];
630fbf59bc9STejun Heo 		chunk->map_used--;
631fbf59bc9STejun Heo 		memmove(&chunk->map[i + 1], &chunk->map[i + 2],
632fbf59bc9STejun Heo 			(chunk->map_used - (i + 1)) * sizeof(chunk->map[0]));
633fbf59bc9STejun Heo 	}
634fbf59bc9STejun Heo 
635fbf59bc9STejun Heo 	chunk->contig_hint = max(chunk->map[i], chunk->contig_hint);
636fbf59bc9STejun Heo 	pcpu_chunk_relocate(chunk, oslot);
637fbf59bc9STejun Heo }
638fbf59bc9STejun Heo 
639*6081089fSTejun Heo static struct pcpu_chunk *pcpu_alloc_chunk(void)
640*6081089fSTejun Heo {
641*6081089fSTejun Heo 	struct pcpu_chunk *chunk;
642*6081089fSTejun Heo 
643*6081089fSTejun Heo 	chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL);
644*6081089fSTejun Heo 	if (!chunk)
645*6081089fSTejun Heo 		return NULL;
646*6081089fSTejun Heo 
647*6081089fSTejun Heo 	chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0]));
648*6081089fSTejun Heo 	if (!chunk->map) {
649*6081089fSTejun Heo 		kfree(chunk);
650*6081089fSTejun Heo 		return NULL;
651*6081089fSTejun Heo 	}
652*6081089fSTejun Heo 
653*6081089fSTejun Heo 	chunk->map_alloc = PCPU_DFL_MAP_ALLOC;
654*6081089fSTejun Heo 	chunk->map[chunk->map_used++] = pcpu_unit_size;
655*6081089fSTejun Heo 
656*6081089fSTejun Heo 	INIT_LIST_HEAD(&chunk->list);
657*6081089fSTejun Heo 	chunk->free_size = pcpu_unit_size;
658*6081089fSTejun Heo 	chunk->contig_hint = pcpu_unit_size;
659*6081089fSTejun Heo 
660*6081089fSTejun Heo 	return chunk;
661*6081089fSTejun Heo }
662*6081089fSTejun Heo 
663*6081089fSTejun Heo static void pcpu_free_chunk(struct pcpu_chunk *chunk)
664*6081089fSTejun Heo {
665*6081089fSTejun Heo 	if (!chunk)
666*6081089fSTejun Heo 		return;
667*6081089fSTejun Heo 	pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0]));
668*6081089fSTejun Heo 	kfree(chunk);
669*6081089fSTejun Heo }
670*6081089fSTejun Heo 
671fbf59bc9STejun Heo /**
672ce3141a2STejun Heo  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
673fbf59bc9STejun Heo  * @chunk: chunk of interest
674ce3141a2STejun Heo  * @bitmapp: output parameter for bitmap
675ce3141a2STejun Heo  * @may_alloc: may allocate the array
676fbf59bc9STejun Heo  *
677ce3141a2STejun Heo  * Returns pointer to array of pointers to struct page and bitmap,
678ce3141a2STejun Heo  * both of which can be indexed with pcpu_page_idx().  The returned
679ce3141a2STejun Heo  * array is cleared to zero and *@bitmapp is copied from
680ce3141a2STejun Heo  * @chunk->populated.  Note that there is only one array and bitmap
681ce3141a2STejun Heo  * and access exclusion is the caller's responsibility.
682ce3141a2STejun Heo  *
683ce3141a2STejun Heo  * CONTEXT:
684ce3141a2STejun Heo  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
685ce3141a2STejun Heo  * Otherwise, don't care.
686ce3141a2STejun Heo  *
687ce3141a2STejun Heo  * RETURNS:
688ce3141a2STejun Heo  * Pointer to temp pages array on success, NULL on failure.
689fbf59bc9STejun Heo  */
690ce3141a2STejun Heo static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
691ce3141a2STejun Heo 					       unsigned long **bitmapp,
692ce3141a2STejun Heo 					       bool may_alloc)
693ce3141a2STejun Heo {
694ce3141a2STejun Heo 	static struct page **pages;
695ce3141a2STejun Heo 	static unsigned long *bitmap;
6962f39e637STejun Heo 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
697ce3141a2STejun Heo 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
698ce3141a2STejun Heo 			     sizeof(unsigned long);
699ce3141a2STejun Heo 
700ce3141a2STejun Heo 	if (!pages || !bitmap) {
701ce3141a2STejun Heo 		if (may_alloc && !pages)
702ce3141a2STejun Heo 			pages = pcpu_mem_alloc(pages_size);
703ce3141a2STejun Heo 		if (may_alloc && !bitmap)
704ce3141a2STejun Heo 			bitmap = pcpu_mem_alloc(bitmap_size);
705ce3141a2STejun Heo 		if (!pages || !bitmap)
706ce3141a2STejun Heo 			return NULL;
707ce3141a2STejun Heo 	}
708ce3141a2STejun Heo 
709ce3141a2STejun Heo 	memset(pages, 0, pages_size);
710ce3141a2STejun Heo 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
711ce3141a2STejun Heo 
712ce3141a2STejun Heo 	*bitmapp = bitmap;
713ce3141a2STejun Heo 	return pages;
714ce3141a2STejun Heo }
715ce3141a2STejun Heo 
716ce3141a2STejun Heo /**
717ce3141a2STejun Heo  * pcpu_free_pages - free pages which were allocated for @chunk
718ce3141a2STejun Heo  * @chunk: chunk pages were allocated for
719ce3141a2STejun Heo  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
720ce3141a2STejun Heo  * @populated: populated bitmap
721ce3141a2STejun Heo  * @page_start: page index of the first page to be freed
722ce3141a2STejun Heo  * @page_end: page index of the last page to be freed + 1
723ce3141a2STejun Heo  *
724ce3141a2STejun Heo  * Free pages [@page_start and @page_end) in @pages for all units.
725ce3141a2STejun Heo  * The pages were allocated for @chunk.
726ce3141a2STejun Heo  */
727ce3141a2STejun Heo static void pcpu_free_pages(struct pcpu_chunk *chunk,
728ce3141a2STejun Heo 			    struct page **pages, unsigned long *populated,
729ce3141a2STejun Heo 			    int page_start, int page_end)
730ce3141a2STejun Heo {
731ce3141a2STejun Heo 	unsigned int cpu;
732ce3141a2STejun Heo 	int i;
733ce3141a2STejun Heo 
734ce3141a2STejun Heo 	for_each_possible_cpu(cpu) {
735ce3141a2STejun Heo 		for (i = page_start; i < page_end; i++) {
736ce3141a2STejun Heo 			struct page *page = pages[pcpu_page_idx(cpu, i)];
737ce3141a2STejun Heo 
738ce3141a2STejun Heo 			if (page)
739ce3141a2STejun Heo 				__free_page(page);
740ce3141a2STejun Heo 		}
741ce3141a2STejun Heo 	}
742ce3141a2STejun Heo }
743ce3141a2STejun Heo 
744ce3141a2STejun Heo /**
745ce3141a2STejun Heo  * pcpu_alloc_pages - allocates pages for @chunk
746ce3141a2STejun Heo  * @chunk: target chunk
747ce3141a2STejun Heo  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
748ce3141a2STejun Heo  * @populated: populated bitmap
749ce3141a2STejun Heo  * @page_start: page index of the first page to be allocated
750ce3141a2STejun Heo  * @page_end: page index of the last page to be allocated + 1
751ce3141a2STejun Heo  *
752ce3141a2STejun Heo  * Allocate pages [@page_start,@page_end) into @pages for all units.
753ce3141a2STejun Heo  * The allocation is for @chunk.  Percpu core doesn't care about the
754ce3141a2STejun Heo  * content of @pages and will pass it verbatim to pcpu_map_pages().
755ce3141a2STejun Heo  */
756ce3141a2STejun Heo static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
757ce3141a2STejun Heo 			    struct page **pages, unsigned long *populated,
758ce3141a2STejun Heo 			    int page_start, int page_end)
759ce3141a2STejun Heo {
760ce3141a2STejun Heo 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
761ce3141a2STejun Heo 	unsigned int cpu;
762ce3141a2STejun Heo 	int i;
763ce3141a2STejun Heo 
764ce3141a2STejun Heo 	for_each_possible_cpu(cpu) {
765ce3141a2STejun Heo 		for (i = page_start; i < page_end; i++) {
766ce3141a2STejun Heo 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
767ce3141a2STejun Heo 
768ce3141a2STejun Heo 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
769ce3141a2STejun Heo 			if (!*pagep) {
770ce3141a2STejun Heo 				pcpu_free_pages(chunk, pages, populated,
771ce3141a2STejun Heo 						page_start, page_end);
772ce3141a2STejun Heo 				return -ENOMEM;
773ce3141a2STejun Heo 			}
774ce3141a2STejun Heo 		}
775ce3141a2STejun Heo 	}
776ce3141a2STejun Heo 	return 0;
777ce3141a2STejun Heo }
778ce3141a2STejun Heo 
779ce3141a2STejun Heo /**
780ce3141a2STejun Heo  * pcpu_pre_unmap_flush - flush cache prior to unmapping
781ce3141a2STejun Heo  * @chunk: chunk the regions to be flushed belongs to
782ce3141a2STejun Heo  * @page_start: page index of the first page to be flushed
783ce3141a2STejun Heo  * @page_end: page index of the last page to be flushed + 1
784ce3141a2STejun Heo  *
785ce3141a2STejun Heo  * Pages in [@page_start,@page_end) of @chunk are about to be
786ce3141a2STejun Heo  * unmapped.  Flush cache.  As each flushing trial can be very
787ce3141a2STejun Heo  * expensive, issue flush on the whole region at once rather than
788ce3141a2STejun Heo  * doing it for each cpu.  This could be an overkill but is more
789ce3141a2STejun Heo  * scalable.
790ce3141a2STejun Heo  */
791ce3141a2STejun Heo static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
792ce3141a2STejun Heo 				 int page_start, int page_end)
793fbf59bc9STejun Heo {
7942f39e637STejun Heo 	flush_cache_vunmap(
7952f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
7962f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
797ce3141a2STejun Heo }
798fbf59bc9STejun Heo 
799ce3141a2STejun Heo static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
800ce3141a2STejun Heo {
801ce3141a2STejun Heo 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
802ce3141a2STejun Heo }
803fbf59bc9STejun Heo 
804ce3141a2STejun Heo /**
805ce3141a2STejun Heo  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
806ce3141a2STejun Heo  * @chunk: chunk of interest
807ce3141a2STejun Heo  * @pages: pages array which can be used to pass information to free
808ce3141a2STejun Heo  * @populated: populated bitmap
809fbf59bc9STejun Heo  * @page_start: page index of the first page to unmap
810fbf59bc9STejun Heo  * @page_end: page index of the last page to unmap + 1
811fbf59bc9STejun Heo  *
812fbf59bc9STejun Heo  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
813ce3141a2STejun Heo  * Corresponding elements in @pages were cleared by the caller and can
814ce3141a2STejun Heo  * be used to carry information to pcpu_free_pages() which will be
815ce3141a2STejun Heo  * called after all unmaps are finished.  The caller should call
816ce3141a2STejun Heo  * proper pre/post flush functions.
817fbf59bc9STejun Heo  */
818ce3141a2STejun Heo static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
819ce3141a2STejun Heo 			     struct page **pages, unsigned long *populated,
820ce3141a2STejun Heo 			     int page_start, int page_end)
821fbf59bc9STejun Heo {
822fbf59bc9STejun Heo 	unsigned int cpu;
823ce3141a2STejun Heo 	int i;
824fbf59bc9STejun Heo 
825ce3141a2STejun Heo 	for_each_possible_cpu(cpu) {
826ce3141a2STejun Heo 		for (i = page_start; i < page_end; i++) {
827ce3141a2STejun Heo 			struct page *page;
828fbf59bc9STejun Heo 
829ce3141a2STejun Heo 			page = pcpu_chunk_page(chunk, cpu, i);
830ce3141a2STejun Heo 			WARN_ON(!page);
831ce3141a2STejun Heo 			pages[pcpu_page_idx(cpu, i)] = page;
832ce3141a2STejun Heo 		}
833ce3141a2STejun Heo 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
834ce3141a2STejun Heo 				   page_end - page_start);
835ce3141a2STejun Heo 	}
836ce3141a2STejun Heo 
837ce3141a2STejun Heo 	for (i = page_start; i < page_end; i++)
838ce3141a2STejun Heo 		__clear_bit(i, populated);
839ce3141a2STejun Heo }
840ce3141a2STejun Heo 
841ce3141a2STejun Heo /**
842ce3141a2STejun Heo  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
843ce3141a2STejun Heo  * @chunk: pcpu_chunk the regions to be flushed belong to
844ce3141a2STejun Heo  * @page_start: page index of the first page to be flushed
845ce3141a2STejun Heo  * @page_end: page index of the last page to be flushed + 1
846ce3141a2STejun Heo  *
847ce3141a2STejun Heo  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
848ce3141a2STejun Heo  * TLB for the regions.  This can be skipped if the area is to be
849ce3141a2STejun Heo  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
850ce3141a2STejun Heo  *
851ce3141a2STejun Heo  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
852ce3141a2STejun Heo  * for the whole region.
853fbf59bc9STejun Heo  */
854ce3141a2STejun Heo static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
855ce3141a2STejun Heo 				      int page_start, int page_end)
856ce3141a2STejun Heo {
8572f39e637STejun Heo 	flush_tlb_kernel_range(
8582f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
8592f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
860fbf59bc9STejun Heo }
861fbf59bc9STejun Heo 
862c8a51be4STejun Heo static int __pcpu_map_pages(unsigned long addr, struct page **pages,
863c8a51be4STejun Heo 			    int nr_pages)
864c8a51be4STejun Heo {
865c8a51be4STejun Heo 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
866c8a51be4STejun Heo 					PAGE_KERNEL, pages);
867c8a51be4STejun Heo }
868c8a51be4STejun Heo 
869c8a51be4STejun Heo /**
870ce3141a2STejun Heo  * pcpu_map_pages - map pages into a pcpu_chunk
871c8a51be4STejun Heo  * @chunk: chunk of interest
872ce3141a2STejun Heo  * @pages: pages array containing pages to be mapped
873ce3141a2STejun Heo  * @populated: populated bitmap
874c8a51be4STejun Heo  * @page_start: page index of the first page to map
875c8a51be4STejun Heo  * @page_end: page index of the last page to map + 1
876c8a51be4STejun Heo  *
877ce3141a2STejun Heo  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
878ce3141a2STejun Heo  * caller is responsible for calling pcpu_post_map_flush() after all
879ce3141a2STejun Heo  * mappings are complete.
880ce3141a2STejun Heo  *
881ce3141a2STejun Heo  * This function is responsible for setting corresponding bits in
882ce3141a2STejun Heo  * @chunk->populated bitmap and whatever is necessary for reverse
883ce3141a2STejun Heo  * lookup (addr -> chunk).
884c8a51be4STejun Heo  */
885ce3141a2STejun Heo static int pcpu_map_pages(struct pcpu_chunk *chunk,
886ce3141a2STejun Heo 			  struct page **pages, unsigned long *populated,
887ce3141a2STejun Heo 			  int page_start, int page_end)
888c8a51be4STejun Heo {
889ce3141a2STejun Heo 	unsigned int cpu, tcpu;
890ce3141a2STejun Heo 	int i, err;
891c8a51be4STejun Heo 
892c8a51be4STejun Heo 	for_each_possible_cpu(cpu) {
893c8a51be4STejun Heo 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
894ce3141a2STejun Heo 				       &pages[pcpu_page_idx(cpu, page_start)],
895c8a51be4STejun Heo 				       page_end - page_start);
896c8a51be4STejun Heo 		if (err < 0)
897ce3141a2STejun Heo 			goto err;
898ce3141a2STejun Heo 	}
899ce3141a2STejun Heo 
900ce3141a2STejun Heo 	/* mapping successful, link chunk and mark populated */
901ce3141a2STejun Heo 	for (i = page_start; i < page_end; i++) {
902fbf59bc9STejun Heo 		for_each_possible_cpu(cpu)
903ce3141a2STejun Heo 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
904ce3141a2STejun Heo 					    chunk);
905ce3141a2STejun Heo 		__set_bit(i, populated);
906ce3141a2STejun Heo 	}
907fbf59bc9STejun Heo 
908ce3141a2STejun Heo 	return 0;
909ce3141a2STejun Heo 
910ce3141a2STejun Heo err:
911ce3141a2STejun Heo 	for_each_possible_cpu(tcpu) {
912ce3141a2STejun Heo 		if (tcpu == cpu)
913ce3141a2STejun Heo 			break;
914ce3141a2STejun Heo 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
915ce3141a2STejun Heo 				   page_end - page_start);
916ce3141a2STejun Heo 	}
917c8a51be4STejun Heo 	return err;
918c8a51be4STejun Heo }
919c8a51be4STejun Heo 
920ce3141a2STejun Heo /**
921ce3141a2STejun Heo  * pcpu_post_map_flush - flush cache after mapping
922ce3141a2STejun Heo  * @chunk: pcpu_chunk the regions to be flushed belong to
923ce3141a2STejun Heo  * @page_start: page index of the first page to be flushed
924ce3141a2STejun Heo  * @page_end: page index of the last page to be flushed + 1
925ce3141a2STejun Heo  *
926ce3141a2STejun Heo  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
927ce3141a2STejun Heo  * cache.
928ce3141a2STejun Heo  *
929ce3141a2STejun Heo  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
930ce3141a2STejun Heo  * for the whole region.
931ce3141a2STejun Heo  */
932ce3141a2STejun Heo static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
933ce3141a2STejun Heo 				int page_start, int page_end)
934ce3141a2STejun Heo {
9352f39e637STejun Heo 	flush_cache_vmap(
9362f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_first_unit_cpu, page_start),
9372f39e637STejun Heo 		pcpu_chunk_addr(chunk, pcpu_last_unit_cpu, page_end));
938fbf59bc9STejun Heo }
939fbf59bc9STejun Heo 
940fbf59bc9STejun Heo /**
941fbf59bc9STejun Heo  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
942fbf59bc9STejun Heo  * @chunk: chunk to depopulate
943fbf59bc9STejun Heo  * @off: offset to the area to depopulate
944cae3aeb8STejun Heo  * @size: size of the area to depopulate in bytes
945fbf59bc9STejun Heo  * @flush: whether to flush cache and tlb or not
946fbf59bc9STejun Heo  *
947fbf59bc9STejun Heo  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
948fbf59bc9STejun Heo  * from @chunk.  If @flush is true, vcache is flushed before unmapping
949fbf59bc9STejun Heo  * and tlb after.
950ccea34b5STejun Heo  *
951ccea34b5STejun Heo  * CONTEXT:
952ccea34b5STejun Heo  * pcpu_alloc_mutex.
953fbf59bc9STejun Heo  */
954ce3141a2STejun Heo static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
955fbf59bc9STejun Heo {
956fbf59bc9STejun Heo 	int page_start = PFN_DOWN(off);
957fbf59bc9STejun Heo 	int page_end = PFN_UP(off + size);
958ce3141a2STejun Heo 	struct page **pages;
959ce3141a2STejun Heo 	unsigned long *populated;
960ce3141a2STejun Heo 	int rs, re;
961fbf59bc9STejun Heo 
962ce3141a2STejun Heo 	/* quick path, check whether it's empty already */
96322b737f4SWANG Cong 	rs = page_start;
96422b737f4SWANG Cong 	pcpu_next_unpop(chunk, &rs, &re, page_end);
965ce3141a2STejun Heo 	if (rs == page_start && re == page_end)
966ce3141a2STejun Heo 		return;
967fbf59bc9STejun Heo 
968ce3141a2STejun Heo 	/* immutable chunks can't be depopulated */
9698d408b4bSTejun Heo 	WARN_ON(chunk->immutable);
9708d408b4bSTejun Heo 
971fbf59bc9STejun Heo 	/*
972ce3141a2STejun Heo 	 * If control reaches here, there must have been at least one
973ce3141a2STejun Heo 	 * successful population attempt so the temp pages array must
974ce3141a2STejun Heo 	 * be available now.
975fbf59bc9STejun Heo 	 */
976ce3141a2STejun Heo 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
977ce3141a2STejun Heo 	BUG_ON(!pages);
978fbf59bc9STejun Heo 
979ce3141a2STejun Heo 	/* unmap and free */
980ce3141a2STejun Heo 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
981fbf59bc9STejun Heo 
982ce3141a2STejun Heo 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
983ce3141a2STejun Heo 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
984ce3141a2STejun Heo 
985ce3141a2STejun Heo 	/* no need to flush tlb, vmalloc will handle it lazily */
986ce3141a2STejun Heo 
987ce3141a2STejun Heo 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
988ce3141a2STejun Heo 		pcpu_free_pages(chunk, pages, populated, rs, re);
989ce3141a2STejun Heo 
990ce3141a2STejun Heo 	/* commit new bitmap */
991ce3141a2STejun Heo 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
992fbf59bc9STejun Heo }
993fbf59bc9STejun Heo 
994fbf59bc9STejun Heo /**
995fbf59bc9STejun Heo  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
996fbf59bc9STejun Heo  * @chunk: chunk of interest
997fbf59bc9STejun Heo  * @off: offset to the area to populate
998cae3aeb8STejun Heo  * @size: size of the area to populate in bytes
999fbf59bc9STejun Heo  *
1000fbf59bc9STejun Heo  * For each cpu, populate and map pages [@page_start,@page_end) into
1001fbf59bc9STejun Heo  * @chunk.  The area is cleared on return.
1002ccea34b5STejun Heo  *
1003ccea34b5STejun Heo  * CONTEXT:
1004ccea34b5STejun Heo  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
1005fbf59bc9STejun Heo  */
1006fbf59bc9STejun Heo static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
1007fbf59bc9STejun Heo {
1008fbf59bc9STejun Heo 	int page_start = PFN_DOWN(off);
1009fbf59bc9STejun Heo 	int page_end = PFN_UP(off + size);
1010ce3141a2STejun Heo 	int free_end = page_start, unmap_end = page_start;
1011ce3141a2STejun Heo 	struct page **pages;
1012ce3141a2STejun Heo 	unsigned long *populated;
1013fbf59bc9STejun Heo 	unsigned int cpu;
1014ce3141a2STejun Heo 	int rs, re, rc;
1015fbf59bc9STejun Heo 
1016ce3141a2STejun Heo 	/* quick path, check whether all pages are already there */
101722b737f4SWANG Cong 	rs = page_start;
101822b737f4SWANG Cong 	pcpu_next_pop(chunk, &rs, &re, page_end);
1019ce3141a2STejun Heo 	if (rs == page_start && re == page_end)
1020ce3141a2STejun Heo 		goto clear;
1021fbf59bc9STejun Heo 
1022ce3141a2STejun Heo 	/* need to allocate and map pages, this chunk can't be immutable */
1023ce3141a2STejun Heo 	WARN_ON(chunk->immutable);
1024fbf59bc9STejun Heo 
1025ce3141a2STejun Heo 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
1026ce3141a2STejun Heo 	if (!pages)
1027fbf59bc9STejun Heo 		return -ENOMEM;
1028fbf59bc9STejun Heo 
1029ce3141a2STejun Heo 	/* alloc and map */
1030ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1031ce3141a2STejun Heo 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
1032ce3141a2STejun Heo 		if (rc)
1033ce3141a2STejun Heo 			goto err_free;
1034ce3141a2STejun Heo 		free_end = re;
1035fbf59bc9STejun Heo 	}
1036fbf59bc9STejun Heo 
1037ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
1038ce3141a2STejun Heo 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
1039ce3141a2STejun Heo 		if (rc)
1040ce3141a2STejun Heo 			goto err_unmap;
1041ce3141a2STejun Heo 		unmap_end = re;
1042ce3141a2STejun Heo 	}
1043ce3141a2STejun Heo 	pcpu_post_map_flush(chunk, page_start, page_end);
1044fbf59bc9STejun Heo 
1045ce3141a2STejun Heo 	/* commit new bitmap */
1046ce3141a2STejun Heo 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
1047ce3141a2STejun Heo clear:
1048fbf59bc9STejun Heo 	for_each_possible_cpu(cpu)
10492f39e637STejun Heo 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
1050fbf59bc9STejun Heo 	return 0;
1051ce3141a2STejun Heo 
1052ce3141a2STejun Heo err_unmap:
1053ce3141a2STejun Heo 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
1054ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
1055ce3141a2STejun Heo 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
1056ce3141a2STejun Heo 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
1057ce3141a2STejun Heo err_free:
1058ce3141a2STejun Heo 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
1059ce3141a2STejun Heo 		pcpu_free_pages(chunk, pages, populated, rs, re);
1060ce3141a2STejun Heo 	return rc;
1061fbf59bc9STejun Heo }
1062fbf59bc9STejun Heo 
1063*6081089fSTejun Heo static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
1064fbf59bc9STejun Heo {
1065*6081089fSTejun Heo 	if (chunk && chunk->vms)
10666563297cSTejun Heo 		pcpu_free_vm_areas(chunk->vms, pcpu_nr_groups);
1067*6081089fSTejun Heo 	pcpu_free_chunk(chunk);
1068fbf59bc9STejun Heo }
1069fbf59bc9STejun Heo 
1070*6081089fSTejun Heo static struct pcpu_chunk *pcpu_create_chunk(void)
1071fbf59bc9STejun Heo {
1072fbf59bc9STejun Heo 	struct pcpu_chunk *chunk;
1073*6081089fSTejun Heo 	struct vm_struct **vms;
1074fbf59bc9STejun Heo 
1075*6081089fSTejun Heo 	chunk = pcpu_alloc_chunk();
1076fbf59bc9STejun Heo 	if (!chunk)
1077fbf59bc9STejun Heo 		return NULL;
1078fbf59bc9STejun Heo 
1079*6081089fSTejun Heo 	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
1080*6081089fSTejun Heo 				pcpu_nr_groups, pcpu_atom_size, GFP_KERNEL);
1081*6081089fSTejun Heo 	if (!vms) {
1082*6081089fSTejun Heo 		pcpu_free_chunk(chunk);
1083fbf59bc9STejun Heo 		return NULL;
1084fbf59bc9STejun Heo 	}
1085fbf59bc9STejun Heo 
1086*6081089fSTejun Heo 	chunk->vms = vms;
1087*6081089fSTejun Heo 	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
1088fbf59bc9STejun Heo 	return chunk;
1089fbf59bc9STejun Heo }
1090fbf59bc9STejun Heo 
1091fbf59bc9STejun Heo /**
1092edcb4639STejun Heo  * pcpu_alloc - the percpu allocator
1093cae3aeb8STejun Heo  * @size: size of area to allocate in bytes
1094fbf59bc9STejun Heo  * @align: alignment of area (max PAGE_SIZE)
1095edcb4639STejun Heo  * @reserved: allocate from the reserved chunk if available
1096fbf59bc9STejun Heo  *
1097ccea34b5STejun Heo  * Allocate percpu area of @size bytes aligned at @align.
1098ccea34b5STejun Heo  *
1099ccea34b5STejun Heo  * CONTEXT:
1100ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
1101fbf59bc9STejun Heo  *
1102fbf59bc9STejun Heo  * RETURNS:
1103fbf59bc9STejun Heo  * Percpu pointer to the allocated area on success, NULL on failure.
1104fbf59bc9STejun Heo  */
110543cf38ebSTejun Heo static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved)
1106fbf59bc9STejun Heo {
1107f2badb0cSTejun Heo 	static int warn_limit = 10;
1108fbf59bc9STejun Heo 	struct pcpu_chunk *chunk;
1109f2badb0cSTejun Heo 	const char *err;
1110833af842STejun Heo 	int slot, off, new_alloc;
1111403a91b1SJiri Kosina 	unsigned long flags;
1112fbf59bc9STejun Heo 
11138d408b4bSTejun Heo 	if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) {
1114fbf59bc9STejun Heo 		WARN(true, "illegal size (%zu) or align (%zu) for "
1115fbf59bc9STejun Heo 		     "percpu allocation\n", size, align);
1116fbf59bc9STejun Heo 		return NULL;
1117fbf59bc9STejun Heo 	}
1118fbf59bc9STejun Heo 
1119ccea34b5STejun Heo 	mutex_lock(&pcpu_alloc_mutex);
1120403a91b1SJiri Kosina 	spin_lock_irqsave(&pcpu_lock, flags);
1121fbf59bc9STejun Heo 
1122edcb4639STejun Heo 	/* serve reserved allocations from the reserved chunk if available */
1123edcb4639STejun Heo 	if (reserved && pcpu_reserved_chunk) {
1124edcb4639STejun Heo 		chunk = pcpu_reserved_chunk;
1125833af842STejun Heo 
1126833af842STejun Heo 		if (size > chunk->contig_hint) {
1127833af842STejun Heo 			err = "alloc from reserved chunk failed";
1128ccea34b5STejun Heo 			goto fail_unlock;
1129f2badb0cSTejun Heo 		}
1130833af842STejun Heo 
1131833af842STejun Heo 		while ((new_alloc = pcpu_need_to_extend(chunk))) {
1132833af842STejun Heo 			spin_unlock_irqrestore(&pcpu_lock, flags);
1133833af842STejun Heo 			if (pcpu_extend_area_map(chunk, new_alloc) < 0) {
1134833af842STejun Heo 				err = "failed to extend area map of reserved chunk";
1135833af842STejun Heo 				goto fail_unlock_mutex;
1136833af842STejun Heo 			}
1137833af842STejun Heo 			spin_lock_irqsave(&pcpu_lock, flags);
1138833af842STejun Heo 		}
1139833af842STejun Heo 
1140edcb4639STejun Heo 		off = pcpu_alloc_area(chunk, size, align);
1141edcb4639STejun Heo 		if (off >= 0)
1142edcb4639STejun Heo 			goto area_found;
1143833af842STejun Heo 
1144f2badb0cSTejun Heo 		err = "alloc from reserved chunk failed";
1145ccea34b5STejun Heo 		goto fail_unlock;
1146edcb4639STejun Heo 	}
1147edcb4639STejun Heo 
1148ccea34b5STejun Heo restart:
1149edcb4639STejun Heo 	/* search through normal chunks */
1150fbf59bc9STejun Heo 	for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) {
1151fbf59bc9STejun Heo 		list_for_each_entry(chunk, &pcpu_slot[slot], list) {
1152fbf59bc9STejun Heo 			if (size > chunk->contig_hint)
1153fbf59bc9STejun Heo 				continue;
1154ccea34b5STejun Heo 
1155833af842STejun Heo 			new_alloc = pcpu_need_to_extend(chunk);
1156833af842STejun Heo 			if (new_alloc) {
1157833af842STejun Heo 				spin_unlock_irqrestore(&pcpu_lock, flags);
1158833af842STejun Heo 				if (pcpu_extend_area_map(chunk,
1159833af842STejun Heo 							 new_alloc) < 0) {
1160f2badb0cSTejun Heo 					err = "failed to extend area map";
1161833af842STejun Heo 					goto fail_unlock_mutex;
1162833af842STejun Heo 				}
1163833af842STejun Heo 				spin_lock_irqsave(&pcpu_lock, flags);
1164833af842STejun Heo 				/*
1165833af842STejun Heo 				 * pcpu_lock has been dropped, need to
1166833af842STejun Heo 				 * restart cpu_slot list walking.
1167833af842STejun Heo 				 */
1168833af842STejun Heo 				goto restart;
1169ccea34b5STejun Heo 			}
1170ccea34b5STejun Heo 
1171fbf59bc9STejun Heo 			off = pcpu_alloc_area(chunk, size, align);
1172fbf59bc9STejun Heo 			if (off >= 0)
1173fbf59bc9STejun Heo 				goto area_found;
1174fbf59bc9STejun Heo 		}
1175fbf59bc9STejun Heo 	}
1176fbf59bc9STejun Heo 
1177fbf59bc9STejun Heo 	/* hmmm... no space left, create a new chunk */
1178403a91b1SJiri Kosina 	spin_unlock_irqrestore(&pcpu_lock, flags);
1179ccea34b5STejun Heo 
1180*6081089fSTejun Heo 	chunk = pcpu_create_chunk();
1181f2badb0cSTejun Heo 	if (!chunk) {
1182f2badb0cSTejun Heo 		err = "failed to allocate new chunk";
1183ccea34b5STejun Heo 		goto fail_unlock_mutex;
1184f2badb0cSTejun Heo 	}
1185ccea34b5STejun Heo 
1186403a91b1SJiri Kosina 	spin_lock_irqsave(&pcpu_lock, flags);
1187fbf59bc9STejun Heo 	pcpu_chunk_relocate(chunk, -1);
1188ccea34b5STejun Heo 	goto restart;
1189fbf59bc9STejun Heo 
1190fbf59bc9STejun Heo area_found:
1191403a91b1SJiri Kosina 	spin_unlock_irqrestore(&pcpu_lock, flags);
1192ccea34b5STejun Heo 
1193fbf59bc9STejun Heo 	/* populate, map and clear the area */
1194fbf59bc9STejun Heo 	if (pcpu_populate_chunk(chunk, off, size)) {
1195403a91b1SJiri Kosina 		spin_lock_irqsave(&pcpu_lock, flags);
1196fbf59bc9STejun Heo 		pcpu_free_area(chunk, off);
1197f2badb0cSTejun Heo 		err = "failed to populate";
1198ccea34b5STejun Heo 		goto fail_unlock;
1199fbf59bc9STejun Heo 	}
1200fbf59bc9STejun Heo 
1201ccea34b5STejun Heo 	mutex_unlock(&pcpu_alloc_mutex);
1202ccea34b5STejun Heo 
1203bba174f5STejun Heo 	/* return address relative to base address */
1204bba174f5STejun Heo 	return __addr_to_pcpu_ptr(chunk->base_addr + off);
1205ccea34b5STejun Heo 
1206ccea34b5STejun Heo fail_unlock:
1207403a91b1SJiri Kosina 	spin_unlock_irqrestore(&pcpu_lock, flags);
1208ccea34b5STejun Heo fail_unlock_mutex:
1209ccea34b5STejun Heo 	mutex_unlock(&pcpu_alloc_mutex);
1210f2badb0cSTejun Heo 	if (warn_limit) {
1211f2badb0cSTejun Heo 		pr_warning("PERCPU: allocation failed, size=%zu align=%zu, "
1212f2badb0cSTejun Heo 			   "%s\n", size, align, err);
1213f2badb0cSTejun Heo 		dump_stack();
1214f2badb0cSTejun Heo 		if (!--warn_limit)
1215f2badb0cSTejun Heo 			pr_info("PERCPU: limit reached, disable warning\n");
1216f2badb0cSTejun Heo 	}
1217ccea34b5STejun Heo 	return NULL;
1218fbf59bc9STejun Heo }
1219edcb4639STejun Heo 
1220edcb4639STejun Heo /**
1221edcb4639STejun Heo  * __alloc_percpu - allocate dynamic percpu area
1222edcb4639STejun Heo  * @size: size of area to allocate in bytes
1223edcb4639STejun Heo  * @align: alignment of area (max PAGE_SIZE)
1224edcb4639STejun Heo  *
1225edcb4639STejun Heo  * Allocate percpu area of @size bytes aligned at @align.  Might
1226edcb4639STejun Heo  * sleep.  Might trigger writeouts.
1227edcb4639STejun Heo  *
1228ccea34b5STejun Heo  * CONTEXT:
1229ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
1230ccea34b5STejun Heo  *
1231edcb4639STejun Heo  * RETURNS:
1232edcb4639STejun Heo  * Percpu pointer to the allocated area on success, NULL on failure.
1233edcb4639STejun Heo  */
123443cf38ebSTejun Heo void __percpu *__alloc_percpu(size_t size, size_t align)
1235edcb4639STejun Heo {
1236edcb4639STejun Heo 	return pcpu_alloc(size, align, false);
1237edcb4639STejun Heo }
1238fbf59bc9STejun Heo EXPORT_SYMBOL_GPL(__alloc_percpu);
1239fbf59bc9STejun Heo 
1240edcb4639STejun Heo /**
1241edcb4639STejun Heo  * __alloc_reserved_percpu - allocate reserved percpu area
1242edcb4639STejun Heo  * @size: size of area to allocate in bytes
1243edcb4639STejun Heo  * @align: alignment of area (max PAGE_SIZE)
1244edcb4639STejun Heo  *
1245edcb4639STejun Heo  * Allocate percpu area of @size bytes aligned at @align from reserved
1246edcb4639STejun Heo  * percpu area if arch has set it up; otherwise, allocation is served
1247edcb4639STejun Heo  * from the same dynamic area.  Might sleep.  Might trigger writeouts.
1248edcb4639STejun Heo  *
1249ccea34b5STejun Heo  * CONTEXT:
1250ccea34b5STejun Heo  * Does GFP_KERNEL allocation.
1251ccea34b5STejun Heo  *
1252edcb4639STejun Heo  * RETURNS:
1253edcb4639STejun Heo  * Percpu pointer to the allocated area on success, NULL on failure.
1254edcb4639STejun Heo  */
125543cf38ebSTejun Heo void __percpu *__alloc_reserved_percpu(size_t size, size_t align)
1256edcb4639STejun Heo {
1257edcb4639STejun Heo 	return pcpu_alloc(size, align, true);
1258edcb4639STejun Heo }
1259edcb4639STejun Heo 
1260a56dbddfSTejun Heo /**
1261a56dbddfSTejun Heo  * pcpu_reclaim - reclaim fully free chunks, workqueue function
1262a56dbddfSTejun Heo  * @work: unused
1263a56dbddfSTejun Heo  *
1264a56dbddfSTejun Heo  * Reclaim all fully free chunks except for the first one.
1265ccea34b5STejun Heo  *
1266ccea34b5STejun Heo  * CONTEXT:
1267ccea34b5STejun Heo  * workqueue context.
1268a56dbddfSTejun Heo  */
1269a56dbddfSTejun Heo static void pcpu_reclaim(struct work_struct *work)
1270fbf59bc9STejun Heo {
1271a56dbddfSTejun Heo 	LIST_HEAD(todo);
1272a56dbddfSTejun Heo 	struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1];
1273a56dbddfSTejun Heo 	struct pcpu_chunk *chunk, *next;
1274a56dbddfSTejun Heo 
1275ccea34b5STejun Heo 	mutex_lock(&pcpu_alloc_mutex);
1276ccea34b5STejun Heo 	spin_lock_irq(&pcpu_lock);
1277a56dbddfSTejun Heo 
1278a56dbddfSTejun Heo 	list_for_each_entry_safe(chunk, next, head, list) {
12798d408b4bSTejun Heo 		WARN_ON(chunk->immutable);
1280a56dbddfSTejun Heo 
1281a56dbddfSTejun Heo 		/* spare the first one */
1282a56dbddfSTejun Heo 		if (chunk == list_first_entry(head, struct pcpu_chunk, list))
1283a56dbddfSTejun Heo 			continue;
1284a56dbddfSTejun Heo 
1285a56dbddfSTejun Heo 		list_move(&chunk->list, &todo);
1286a56dbddfSTejun Heo 	}
1287a56dbddfSTejun Heo 
1288ccea34b5STejun Heo 	spin_unlock_irq(&pcpu_lock);
1289a56dbddfSTejun Heo 
1290a56dbddfSTejun Heo 	list_for_each_entry_safe(chunk, next, &todo, list) {
1291ce3141a2STejun Heo 		pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size);
1292*6081089fSTejun Heo 		pcpu_destroy_chunk(chunk);
1293fbf59bc9STejun Heo 	}
1294971f3918STejun Heo 
1295971f3918STejun Heo 	mutex_unlock(&pcpu_alloc_mutex);
1296a56dbddfSTejun Heo }
1297fbf59bc9STejun Heo 
1298fbf59bc9STejun Heo /**
1299fbf59bc9STejun Heo  * free_percpu - free percpu area
1300fbf59bc9STejun Heo  * @ptr: pointer to area to free
1301fbf59bc9STejun Heo  *
1302ccea34b5STejun Heo  * Free percpu area @ptr.
1303ccea34b5STejun Heo  *
1304ccea34b5STejun Heo  * CONTEXT:
1305ccea34b5STejun Heo  * Can be called from atomic context.
1306fbf59bc9STejun Heo  */
130743cf38ebSTejun Heo void free_percpu(void __percpu *ptr)
1308fbf59bc9STejun Heo {
1309129182e5SAndrew Morton 	void *addr;
1310fbf59bc9STejun Heo 	struct pcpu_chunk *chunk;
1311ccea34b5STejun Heo 	unsigned long flags;
1312fbf59bc9STejun Heo 	int off;
1313fbf59bc9STejun Heo 
1314fbf59bc9STejun Heo 	if (!ptr)
1315fbf59bc9STejun Heo 		return;
1316fbf59bc9STejun Heo 
1317129182e5SAndrew Morton 	addr = __pcpu_ptr_to_addr(ptr);
1318129182e5SAndrew Morton 
1319ccea34b5STejun Heo 	spin_lock_irqsave(&pcpu_lock, flags);
1320fbf59bc9STejun Heo 
1321fbf59bc9STejun Heo 	chunk = pcpu_chunk_addr_search(addr);
1322bba174f5STejun Heo 	off = addr - chunk->base_addr;
1323fbf59bc9STejun Heo 
1324fbf59bc9STejun Heo 	pcpu_free_area(chunk, off);
1325fbf59bc9STejun Heo 
1326a56dbddfSTejun Heo 	/* if there are more than one fully free chunks, wake up grim reaper */
1327fbf59bc9STejun Heo 	if (chunk->free_size == pcpu_unit_size) {
1328fbf59bc9STejun Heo 		struct pcpu_chunk *pos;
1329fbf59bc9STejun Heo 
1330a56dbddfSTejun Heo 		list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list)
1331fbf59bc9STejun Heo 			if (pos != chunk) {
1332a56dbddfSTejun Heo 				schedule_work(&pcpu_reclaim_work);
1333fbf59bc9STejun Heo 				break;
1334fbf59bc9STejun Heo 			}
1335fbf59bc9STejun Heo 	}
1336fbf59bc9STejun Heo 
1337ccea34b5STejun Heo 	spin_unlock_irqrestore(&pcpu_lock, flags);
1338fbf59bc9STejun Heo }
1339fbf59bc9STejun Heo EXPORT_SYMBOL_GPL(free_percpu);
1340fbf59bc9STejun Heo 
13413b034b0dSVivek Goyal /**
134210fad5e4STejun Heo  * is_kernel_percpu_address - test whether address is from static percpu area
134310fad5e4STejun Heo  * @addr: address to test
134410fad5e4STejun Heo  *
134510fad5e4STejun Heo  * Test whether @addr belongs to in-kernel static percpu area.  Module
134610fad5e4STejun Heo  * static percpu areas are not considered.  For those, use
134710fad5e4STejun Heo  * is_module_percpu_address().
134810fad5e4STejun Heo  *
134910fad5e4STejun Heo  * RETURNS:
135010fad5e4STejun Heo  * %true if @addr is from in-kernel static percpu area, %false otherwise.
135110fad5e4STejun Heo  */
135210fad5e4STejun Heo bool is_kernel_percpu_address(unsigned long addr)
135310fad5e4STejun Heo {
135410fad5e4STejun Heo 	const size_t static_size = __per_cpu_end - __per_cpu_start;
135510fad5e4STejun Heo 	void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr);
135610fad5e4STejun Heo 	unsigned int cpu;
135710fad5e4STejun Heo 
135810fad5e4STejun Heo 	for_each_possible_cpu(cpu) {
135910fad5e4STejun Heo 		void *start = per_cpu_ptr(base, cpu);
136010fad5e4STejun Heo 
136110fad5e4STejun Heo 		if ((void *)addr >= start && (void *)addr < start + static_size)
136210fad5e4STejun Heo 			return true;
136310fad5e4STejun Heo         }
136410fad5e4STejun Heo 	return false;
136510fad5e4STejun Heo }
136610fad5e4STejun Heo 
136710fad5e4STejun Heo /**
13683b034b0dSVivek Goyal  * per_cpu_ptr_to_phys - convert translated percpu address to physical address
13693b034b0dSVivek Goyal  * @addr: the address to be converted to physical address
13703b034b0dSVivek Goyal  *
13713b034b0dSVivek Goyal  * Given @addr which is dereferenceable address obtained via one of
13723b034b0dSVivek Goyal  * percpu access macros, this function translates it into its physical
13733b034b0dSVivek Goyal  * address.  The caller is responsible for ensuring @addr stays valid
13743b034b0dSVivek Goyal  * until this function finishes.
13753b034b0dSVivek Goyal  *
13763b034b0dSVivek Goyal  * RETURNS:
13773b034b0dSVivek Goyal  * The physical address for @addr.
13783b034b0dSVivek Goyal  */
13793b034b0dSVivek Goyal phys_addr_t per_cpu_ptr_to_phys(void *addr)
13803b034b0dSVivek Goyal {
1381020ec653STejun Heo 	if (pcpu_addr_in_first_chunk(addr)) {
13823b034b0dSVivek Goyal 		if ((unsigned long)addr < VMALLOC_START ||
13833b034b0dSVivek Goyal 		    (unsigned long)addr >= VMALLOC_END)
13843b034b0dSVivek Goyal 			return __pa(addr);
13853b034b0dSVivek Goyal 		else
13863b034b0dSVivek Goyal 			return page_to_phys(vmalloc_to_page(addr));
1387020ec653STejun Heo 	} else
1388020ec653STejun Heo 		return page_to_phys(vmalloc_to_page(addr));
13893b034b0dSVivek Goyal }
13903b034b0dSVivek Goyal 
1391033e48fbSTejun Heo static inline size_t pcpu_calc_fc_sizes(size_t static_size,
1392033e48fbSTejun Heo 					size_t reserved_size,
1393033e48fbSTejun Heo 					ssize_t *dyn_sizep)
1394033e48fbSTejun Heo {
1395033e48fbSTejun Heo 	size_t size_sum;
1396033e48fbSTejun Heo 
1397033e48fbSTejun Heo 	size_sum = PFN_ALIGN(static_size + reserved_size +
1398033e48fbSTejun Heo 			     (*dyn_sizep >= 0 ? *dyn_sizep : 0));
1399033e48fbSTejun Heo 	if (*dyn_sizep != 0)
1400033e48fbSTejun Heo 		*dyn_sizep = size_sum - static_size - reserved_size;
1401033e48fbSTejun Heo 
1402033e48fbSTejun Heo 	return size_sum;
1403033e48fbSTejun Heo }
1404033e48fbSTejun Heo 
1405fbf59bc9STejun Heo /**
1406fd1e8a1fSTejun Heo  * pcpu_alloc_alloc_info - allocate percpu allocation info
1407fd1e8a1fSTejun Heo  * @nr_groups: the number of groups
1408fd1e8a1fSTejun Heo  * @nr_units: the number of units
1409033e48fbSTejun Heo  *
1410fd1e8a1fSTejun Heo  * Allocate ai which is large enough for @nr_groups groups containing
1411fd1e8a1fSTejun Heo  * @nr_units units.  The returned ai's groups[0].cpu_map points to the
1412fd1e8a1fSTejun Heo  * cpu_map array which is long enough for @nr_units and filled with
1413fd1e8a1fSTejun Heo  * NR_CPUS.  It's the caller's responsibility to initialize cpu_map
1414fd1e8a1fSTejun Heo  * pointer of other groups.
1415033e48fbSTejun Heo  *
1416033e48fbSTejun Heo  * RETURNS:
1417fd1e8a1fSTejun Heo  * Pointer to the allocated pcpu_alloc_info on success, NULL on
1418fd1e8a1fSTejun Heo  * failure.
1419033e48fbSTejun Heo  */
1420fd1e8a1fSTejun Heo struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups,
1421fd1e8a1fSTejun Heo 						      int nr_units)
1422fd1e8a1fSTejun Heo {
1423fd1e8a1fSTejun Heo 	struct pcpu_alloc_info *ai;
1424fd1e8a1fSTejun Heo 	size_t base_size, ai_size;
1425fd1e8a1fSTejun Heo 	void *ptr;
1426fd1e8a1fSTejun Heo 	int unit;
1427fd1e8a1fSTejun Heo 
1428fd1e8a1fSTejun Heo 	base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]),
1429fd1e8a1fSTejun Heo 			  __alignof__(ai->groups[0].cpu_map[0]));
1430fd1e8a1fSTejun Heo 	ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]);
1431fd1e8a1fSTejun Heo 
1432fd1e8a1fSTejun Heo 	ptr = alloc_bootmem_nopanic(PFN_ALIGN(ai_size));
1433fd1e8a1fSTejun Heo 	if (!ptr)
1434fd1e8a1fSTejun Heo 		return NULL;
1435fd1e8a1fSTejun Heo 	ai = ptr;
1436fd1e8a1fSTejun Heo 	ptr += base_size;
1437fd1e8a1fSTejun Heo 
1438fd1e8a1fSTejun Heo 	ai->groups[0].cpu_map = ptr;
1439fd1e8a1fSTejun Heo 
1440fd1e8a1fSTejun Heo 	for (unit = 0; unit < nr_units; unit++)
1441fd1e8a1fSTejun Heo 		ai->groups[0].cpu_map[unit] = NR_CPUS;
1442fd1e8a1fSTejun Heo 
1443fd1e8a1fSTejun Heo 	ai->nr_groups = nr_groups;
1444fd1e8a1fSTejun Heo 	ai->__ai_size = PFN_ALIGN(ai_size);
1445fd1e8a1fSTejun Heo 
1446fd1e8a1fSTejun Heo 	return ai;
1447fd1e8a1fSTejun Heo }
1448fd1e8a1fSTejun Heo 
1449fd1e8a1fSTejun Heo /**
1450fd1e8a1fSTejun Heo  * pcpu_free_alloc_info - free percpu allocation info
1451fd1e8a1fSTejun Heo  * @ai: pcpu_alloc_info to free
1452fd1e8a1fSTejun Heo  *
1453fd1e8a1fSTejun Heo  * Free @ai which was allocated by pcpu_alloc_alloc_info().
1454fd1e8a1fSTejun Heo  */
1455fd1e8a1fSTejun Heo void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai)
1456fd1e8a1fSTejun Heo {
1457fd1e8a1fSTejun Heo 	free_bootmem(__pa(ai), ai->__ai_size);
1458fd1e8a1fSTejun Heo }
1459fd1e8a1fSTejun Heo 
1460fd1e8a1fSTejun Heo /**
1461fd1e8a1fSTejun Heo  * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1462edcb4639STejun Heo  * @reserved_size: the size of reserved percpu area in bytes
1463cafe8816STejun Heo  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1464fd1e8a1fSTejun Heo  * @atom_size: allocation atom size
1465fd1e8a1fSTejun Heo  * @cpu_distance_fn: callback to determine distance between cpus, optional
1466fd1e8a1fSTejun Heo  *
1467fd1e8a1fSTejun Heo  * This function determines grouping of units, their mappings to cpus
1468fd1e8a1fSTejun Heo  * and other parameters considering needed percpu size, allocation
1469fd1e8a1fSTejun Heo  * atom size and distances between CPUs.
1470fd1e8a1fSTejun Heo  *
1471fd1e8a1fSTejun Heo  * Groups are always mutliples of atom size and CPUs which are of
1472fd1e8a1fSTejun Heo  * LOCAL_DISTANCE both ways are grouped together and share space for
1473fd1e8a1fSTejun Heo  * units in the same group.  The returned configuration is guaranteed
1474fd1e8a1fSTejun Heo  * to have CPUs on different nodes on different groups and >=75% usage
1475fd1e8a1fSTejun Heo  * of allocated virtual address space.
1476fd1e8a1fSTejun Heo  *
1477fd1e8a1fSTejun Heo  * RETURNS:
1478fd1e8a1fSTejun Heo  * On success, pointer to the new allocation_info is returned.  On
1479fd1e8a1fSTejun Heo  * failure, ERR_PTR value is returned.
1480fd1e8a1fSTejun Heo  */
1481fd1e8a1fSTejun Heo struct pcpu_alloc_info * __init pcpu_build_alloc_info(
1482fd1e8a1fSTejun Heo 				size_t reserved_size, ssize_t dyn_size,
1483fd1e8a1fSTejun Heo 				size_t atom_size,
1484033e48fbSTejun Heo 				pcpu_fc_cpu_distance_fn_t cpu_distance_fn)
1485033e48fbSTejun Heo {
1486033e48fbSTejun Heo 	static int group_map[NR_CPUS] __initdata;
1487033e48fbSTejun Heo 	static int group_cnt[NR_CPUS] __initdata;
1488033e48fbSTejun Heo 	const size_t static_size = __per_cpu_end - __per_cpu_start;
1489fd1e8a1fSTejun Heo 	int group_cnt_max = 0, nr_groups = 1, nr_units = 0;
1490033e48fbSTejun Heo 	size_t size_sum, min_unit_size, alloc_size;
1491033e48fbSTejun Heo 	int upa, max_upa, uninitialized_var(best_upa);	/* units_per_alloc */
1492fd1e8a1fSTejun Heo 	int last_allocs, group, unit;
1493033e48fbSTejun Heo 	unsigned int cpu, tcpu;
1494fd1e8a1fSTejun Heo 	struct pcpu_alloc_info *ai;
1495fd1e8a1fSTejun Heo 	unsigned int *cpu_map;
1496033e48fbSTejun Heo 
1497fb59e72eSTejun Heo 	/* this function may be called multiple times */
1498fb59e72eSTejun Heo 	memset(group_map, 0, sizeof(group_map));
1499fb59e72eSTejun Heo 	memset(group_cnt, 0, sizeof(group_map));
1500fb59e72eSTejun Heo 
1501033e48fbSTejun Heo 	/*
1502033e48fbSTejun Heo 	 * Determine min_unit_size, alloc_size and max_upa such that
1503fd1e8a1fSTejun Heo 	 * alloc_size is multiple of atom_size and is the smallest
1504033e48fbSTejun Heo 	 * which can accomodate 4k aligned segments which are equal to
1505033e48fbSTejun Heo 	 * or larger than min_unit_size.
1506033e48fbSTejun Heo 	 */
1507fd1e8a1fSTejun Heo 	size_sum = pcpu_calc_fc_sizes(static_size, reserved_size, &dyn_size);
1508033e48fbSTejun Heo 	min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE);
1509033e48fbSTejun Heo 
1510fd1e8a1fSTejun Heo 	alloc_size = roundup(min_unit_size, atom_size);
1511033e48fbSTejun Heo 	upa = alloc_size / min_unit_size;
1512033e48fbSTejun Heo 	while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1513033e48fbSTejun Heo 		upa--;
1514033e48fbSTejun Heo 	max_upa = upa;
1515033e48fbSTejun Heo 
1516033e48fbSTejun Heo 	/* group cpus according to their proximity */
1517033e48fbSTejun Heo 	for_each_possible_cpu(cpu) {
1518033e48fbSTejun Heo 		group = 0;
1519033e48fbSTejun Heo 	next_group:
1520033e48fbSTejun Heo 		for_each_possible_cpu(tcpu) {
1521033e48fbSTejun Heo 			if (cpu == tcpu)
1522033e48fbSTejun Heo 				break;
1523fd1e8a1fSTejun Heo 			if (group_map[tcpu] == group && cpu_distance_fn &&
1524033e48fbSTejun Heo 			    (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE ||
1525033e48fbSTejun Heo 			     cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) {
1526033e48fbSTejun Heo 				group++;
1527fd1e8a1fSTejun Heo 				nr_groups = max(nr_groups, group + 1);
1528033e48fbSTejun Heo 				goto next_group;
1529033e48fbSTejun Heo 			}
1530033e48fbSTejun Heo 		}
1531033e48fbSTejun Heo 		group_map[cpu] = group;
1532033e48fbSTejun Heo 		group_cnt[group]++;
1533033e48fbSTejun Heo 		group_cnt_max = max(group_cnt_max, group_cnt[group]);
1534033e48fbSTejun Heo 	}
1535033e48fbSTejun Heo 
1536033e48fbSTejun Heo 	/*
1537033e48fbSTejun Heo 	 * Expand unit size until address space usage goes over 75%
1538033e48fbSTejun Heo 	 * and then as much as possible without using more address
1539033e48fbSTejun Heo 	 * space.
1540033e48fbSTejun Heo 	 */
1541033e48fbSTejun Heo 	last_allocs = INT_MAX;
1542033e48fbSTejun Heo 	for (upa = max_upa; upa; upa--) {
1543033e48fbSTejun Heo 		int allocs = 0, wasted = 0;
1544033e48fbSTejun Heo 
1545033e48fbSTejun Heo 		if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK))
1546033e48fbSTejun Heo 			continue;
1547033e48fbSTejun Heo 
1548fd1e8a1fSTejun Heo 		for (group = 0; group < nr_groups; group++) {
1549033e48fbSTejun Heo 			int this_allocs = DIV_ROUND_UP(group_cnt[group], upa);
1550033e48fbSTejun Heo 			allocs += this_allocs;
1551033e48fbSTejun Heo 			wasted += this_allocs * upa - group_cnt[group];
1552033e48fbSTejun Heo 		}
1553033e48fbSTejun Heo 
1554033e48fbSTejun Heo 		/*
1555033e48fbSTejun Heo 		 * Don't accept if wastage is over 25%.  The
1556033e48fbSTejun Heo 		 * greater-than comparison ensures upa==1 always
1557033e48fbSTejun Heo 		 * passes the following check.
1558033e48fbSTejun Heo 		 */
1559033e48fbSTejun Heo 		if (wasted > num_possible_cpus() / 3)
1560033e48fbSTejun Heo 			continue;
1561033e48fbSTejun Heo 
1562033e48fbSTejun Heo 		/* and then don't consume more memory */
1563033e48fbSTejun Heo 		if (allocs > last_allocs)
1564033e48fbSTejun Heo 			break;
1565033e48fbSTejun Heo 		last_allocs = allocs;
1566033e48fbSTejun Heo 		best_upa = upa;
1567033e48fbSTejun Heo 	}
1568fd1e8a1fSTejun Heo 	upa = best_upa;
1569033e48fbSTejun Heo 
1570fd1e8a1fSTejun Heo 	/* allocate and fill alloc_info */
1571fd1e8a1fSTejun Heo 	for (group = 0; group < nr_groups; group++)
1572fd1e8a1fSTejun Heo 		nr_units += roundup(group_cnt[group], upa);
1573fd1e8a1fSTejun Heo 
1574fd1e8a1fSTejun Heo 	ai = pcpu_alloc_alloc_info(nr_groups, nr_units);
1575fd1e8a1fSTejun Heo 	if (!ai)
1576fd1e8a1fSTejun Heo 		return ERR_PTR(-ENOMEM);
1577fd1e8a1fSTejun Heo 	cpu_map = ai->groups[0].cpu_map;
1578fd1e8a1fSTejun Heo 
1579fd1e8a1fSTejun Heo 	for (group = 0; group < nr_groups; group++) {
1580fd1e8a1fSTejun Heo 		ai->groups[group].cpu_map = cpu_map;
1581fd1e8a1fSTejun Heo 		cpu_map += roundup(group_cnt[group], upa);
1582fd1e8a1fSTejun Heo 	}
1583fd1e8a1fSTejun Heo 
1584fd1e8a1fSTejun Heo 	ai->static_size = static_size;
1585fd1e8a1fSTejun Heo 	ai->reserved_size = reserved_size;
1586fd1e8a1fSTejun Heo 	ai->dyn_size = dyn_size;
1587fd1e8a1fSTejun Heo 	ai->unit_size = alloc_size / upa;
1588fd1e8a1fSTejun Heo 	ai->atom_size = atom_size;
1589fd1e8a1fSTejun Heo 	ai->alloc_size = alloc_size;
1590fd1e8a1fSTejun Heo 
1591fd1e8a1fSTejun Heo 	for (group = 0, unit = 0; group_cnt[group]; group++) {
1592fd1e8a1fSTejun Heo 		struct pcpu_group_info *gi = &ai->groups[group];
1593fd1e8a1fSTejun Heo 
1594fd1e8a1fSTejun Heo 		/*
1595fd1e8a1fSTejun Heo 		 * Initialize base_offset as if all groups are located
1596fd1e8a1fSTejun Heo 		 * back-to-back.  The caller should update this to
1597fd1e8a1fSTejun Heo 		 * reflect actual allocation.
1598fd1e8a1fSTejun Heo 		 */
1599fd1e8a1fSTejun Heo 		gi->base_offset = unit * ai->unit_size;
1600fd1e8a1fSTejun Heo 
1601033e48fbSTejun Heo 		for_each_possible_cpu(cpu)
1602033e48fbSTejun Heo 			if (group_map[cpu] == group)
1603fd1e8a1fSTejun Heo 				gi->cpu_map[gi->nr_units++] = cpu;
1604fd1e8a1fSTejun Heo 		gi->nr_units = roundup(gi->nr_units, upa);
1605fd1e8a1fSTejun Heo 		unit += gi->nr_units;
1606fd1e8a1fSTejun Heo 	}
1607fd1e8a1fSTejun Heo 	BUG_ON(unit != nr_units);
1608fd1e8a1fSTejun Heo 
1609fd1e8a1fSTejun Heo 	return ai;
1610033e48fbSTejun Heo }
1611033e48fbSTejun Heo 
1612fd1e8a1fSTejun Heo /**
1613fd1e8a1fSTejun Heo  * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1614fd1e8a1fSTejun Heo  * @lvl: loglevel
1615fd1e8a1fSTejun Heo  * @ai: allocation info to dump
1616fd1e8a1fSTejun Heo  *
1617fd1e8a1fSTejun Heo  * Print out information about @ai using loglevel @lvl.
1618fd1e8a1fSTejun Heo  */
1619fd1e8a1fSTejun Heo static void pcpu_dump_alloc_info(const char *lvl,
1620fd1e8a1fSTejun Heo 				 const struct pcpu_alloc_info *ai)
1621033e48fbSTejun Heo {
1622fd1e8a1fSTejun Heo 	int group_width = 1, cpu_width = 1, width;
1623033e48fbSTejun Heo 	char empty_str[] = "--------";
1624fd1e8a1fSTejun Heo 	int alloc = 0, alloc_end = 0;
1625fd1e8a1fSTejun Heo 	int group, v;
1626fd1e8a1fSTejun Heo 	int upa, apl;	/* units per alloc, allocs per line */
1627033e48fbSTejun Heo 
1628fd1e8a1fSTejun Heo 	v = ai->nr_groups;
1629033e48fbSTejun Heo 	while (v /= 10)
1630fd1e8a1fSTejun Heo 		group_width++;
1631033e48fbSTejun Heo 
1632fd1e8a1fSTejun Heo 	v = num_possible_cpus();
1633fd1e8a1fSTejun Heo 	while (v /= 10)
1634fd1e8a1fSTejun Heo 		cpu_width++;
1635fd1e8a1fSTejun Heo 	empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0';
1636033e48fbSTejun Heo 
1637fd1e8a1fSTejun Heo 	upa = ai->alloc_size / ai->unit_size;
1638fd1e8a1fSTejun Heo 	width = upa * (cpu_width + 1) + group_width + 3;
1639fd1e8a1fSTejun Heo 	apl = rounddown_pow_of_two(max(60 / width, 1));
1640033e48fbSTejun Heo 
1641fd1e8a1fSTejun Heo 	printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1642fd1e8a1fSTejun Heo 	       lvl, ai->static_size, ai->reserved_size, ai->dyn_size,
1643fd1e8a1fSTejun Heo 	       ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size);
1644fd1e8a1fSTejun Heo 
1645fd1e8a1fSTejun Heo 	for (group = 0; group < ai->nr_groups; group++) {
1646fd1e8a1fSTejun Heo 		const struct pcpu_group_info *gi = &ai->groups[group];
1647fd1e8a1fSTejun Heo 		int unit = 0, unit_end = 0;
1648fd1e8a1fSTejun Heo 
1649fd1e8a1fSTejun Heo 		BUG_ON(gi->nr_units % upa);
1650fd1e8a1fSTejun Heo 		for (alloc_end += gi->nr_units / upa;
1651fd1e8a1fSTejun Heo 		     alloc < alloc_end; alloc++) {
1652fd1e8a1fSTejun Heo 			if (!(alloc % apl)) {
1653033e48fbSTejun Heo 				printk("\n");
1654fd1e8a1fSTejun Heo 				printk("%spcpu-alloc: ", lvl);
1655033e48fbSTejun Heo 			}
1656fd1e8a1fSTejun Heo 			printk("[%0*d] ", group_width, group);
1657fd1e8a1fSTejun Heo 
1658fd1e8a1fSTejun Heo 			for (unit_end += upa; unit < unit_end; unit++)
1659fd1e8a1fSTejun Heo 				if (gi->cpu_map[unit] != NR_CPUS)
1660fd1e8a1fSTejun Heo 					printk("%0*d ", cpu_width,
1661fd1e8a1fSTejun Heo 					       gi->cpu_map[unit]);
1662033e48fbSTejun Heo 				else
1663033e48fbSTejun Heo 					printk("%s ", empty_str);
1664033e48fbSTejun Heo 		}
1665fd1e8a1fSTejun Heo 	}
1666033e48fbSTejun Heo 	printk("\n");
1667033e48fbSTejun Heo }
1668033e48fbSTejun Heo 
1669fbf59bc9STejun Heo /**
16708d408b4bSTejun Heo  * pcpu_setup_first_chunk - initialize the first percpu chunk
1671fd1e8a1fSTejun Heo  * @ai: pcpu_alloc_info describing how to percpu area is shaped
167238a6be52STejun Heo  * @base_addr: mapped address
1673fbf59bc9STejun Heo  *
16748d408b4bSTejun Heo  * Initialize the first percpu chunk which contains the kernel static
16758d408b4bSTejun Heo  * perpcu area.  This function is to be called from arch percpu area
167638a6be52STejun Heo  * setup path.
16778d408b4bSTejun Heo  *
1678fd1e8a1fSTejun Heo  * @ai contains all information necessary to initialize the first
1679fd1e8a1fSTejun Heo  * chunk and prime the dynamic percpu allocator.
16808d408b4bSTejun Heo  *
1681fd1e8a1fSTejun Heo  * @ai->static_size is the size of static percpu area.
1682fd1e8a1fSTejun Heo  *
1683fd1e8a1fSTejun Heo  * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1684edcb4639STejun Heo  * reserve after the static area in the first chunk.  This reserves
1685edcb4639STejun Heo  * the first chunk such that it's available only through reserved
1686edcb4639STejun Heo  * percpu allocation.  This is primarily used to serve module percpu
1687edcb4639STejun Heo  * static areas on architectures where the addressing model has
1688edcb4639STejun Heo  * limited offset range for symbol relocations to guarantee module
1689edcb4639STejun Heo  * percpu symbols fall inside the relocatable range.
1690edcb4639STejun Heo  *
1691fd1e8a1fSTejun Heo  * @ai->dyn_size determines the number of bytes available for dynamic
1692fd1e8a1fSTejun Heo  * allocation in the first chunk.  The area between @ai->static_size +
1693fd1e8a1fSTejun Heo  * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
16946074d5b0STejun Heo  *
1695fd1e8a1fSTejun Heo  * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1696fd1e8a1fSTejun Heo  * and equal to or larger than @ai->static_size + @ai->reserved_size +
1697fd1e8a1fSTejun Heo  * @ai->dyn_size.
16988d408b4bSTejun Heo  *
1699fd1e8a1fSTejun Heo  * @ai->atom_size is the allocation atom size and used as alignment
1700fd1e8a1fSTejun Heo  * for vm areas.
17018d408b4bSTejun Heo  *
1702fd1e8a1fSTejun Heo  * @ai->alloc_size is the allocation size and always multiple of
1703fd1e8a1fSTejun Heo  * @ai->atom_size.  This is larger than @ai->atom_size if
1704fd1e8a1fSTejun Heo  * @ai->unit_size is larger than @ai->atom_size.
1705fd1e8a1fSTejun Heo  *
1706fd1e8a1fSTejun Heo  * @ai->nr_groups and @ai->groups describe virtual memory layout of
1707fd1e8a1fSTejun Heo  * percpu areas.  Units which should be colocated are put into the
1708fd1e8a1fSTejun Heo  * same group.  Dynamic VM areas will be allocated according to these
1709fd1e8a1fSTejun Heo  * groupings.  If @ai->nr_groups is zero, a single group containing
1710fd1e8a1fSTejun Heo  * all units is assumed.
17118d408b4bSTejun Heo  *
171238a6be52STejun Heo  * The caller should have mapped the first chunk at @base_addr and
171338a6be52STejun Heo  * copied static data to each unit.
1714fbf59bc9STejun Heo  *
1715edcb4639STejun Heo  * If the first chunk ends up with both reserved and dynamic areas, it
1716edcb4639STejun Heo  * is served by two chunks - one to serve the core static and reserved
1717edcb4639STejun Heo  * areas and the other for the dynamic area.  They share the same vm
1718edcb4639STejun Heo  * and page map but uses different area allocation map to stay away
1719edcb4639STejun Heo  * from each other.  The latter chunk is circulated in the chunk slots
1720edcb4639STejun Heo  * and available for dynamic allocation like any other chunks.
1721edcb4639STejun Heo  *
1722fbf59bc9STejun Heo  * RETURNS:
1723fb435d52STejun Heo  * 0 on success, -errno on failure.
1724fbf59bc9STejun Heo  */
1725fb435d52STejun Heo int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai,
1726fd1e8a1fSTejun Heo 				  void *base_addr)
1727fbf59bc9STejun Heo {
1728635b75fcSTejun Heo 	static char cpus_buf[4096] __initdata;
1729edcb4639STejun Heo 	static int smap[2], dmap[2];
1730fd1e8a1fSTejun Heo 	size_t dyn_size = ai->dyn_size;
1731fd1e8a1fSTejun Heo 	size_t size_sum = ai->static_size + ai->reserved_size + dyn_size;
1732edcb4639STejun Heo 	struct pcpu_chunk *schunk, *dchunk = NULL;
17336563297cSTejun Heo 	unsigned long *group_offsets;
17346563297cSTejun Heo 	size_t *group_sizes;
1735fb435d52STejun Heo 	unsigned long *unit_off;
1736fbf59bc9STejun Heo 	unsigned int cpu;
1737fd1e8a1fSTejun Heo 	int *unit_map;
1738fd1e8a1fSTejun Heo 	int group, unit, i;
1739fbf59bc9STejun Heo 
1740635b75fcSTejun Heo 	cpumask_scnprintf(cpus_buf, sizeof(cpus_buf), cpu_possible_mask);
1741635b75fcSTejun Heo 
1742635b75fcSTejun Heo #define PCPU_SETUP_BUG_ON(cond)	do {					\
1743635b75fcSTejun Heo 	if (unlikely(cond)) {						\
1744635b75fcSTejun Heo 		pr_emerg("PERCPU: failed to initialize, %s", #cond);	\
1745635b75fcSTejun Heo 		pr_emerg("PERCPU: cpu_possible_mask=%s\n", cpus_buf);	\
1746635b75fcSTejun Heo 		pcpu_dump_alloc_info(KERN_EMERG, ai);			\
1747635b75fcSTejun Heo 		BUG();							\
1748635b75fcSTejun Heo 	}								\
1749635b75fcSTejun Heo } while (0)
1750635b75fcSTejun Heo 
17512f39e637STejun Heo 	/* sanity checks */
1752edcb4639STejun Heo 	BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC ||
1753edcb4639STejun Heo 		     ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC);
1754635b75fcSTejun Heo 	PCPU_SETUP_BUG_ON(ai->nr_groups <= 0);
1755635b75fcSTejun Heo 	PCPU_SETUP_BUG_ON(!ai->static_size);
1756635b75fcSTejun Heo 	PCPU_SETUP_BUG_ON(!base_addr);
1757635b75fcSTejun Heo 	PCPU_SETUP_BUG_ON(ai->unit_size < size_sum);
1758635b75fcSTejun Heo 	PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK);
1759635b75fcSTejun Heo 	PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE);
17608d408b4bSTejun Heo 
17616563297cSTejun Heo 	/* process group information and build config tables accordingly */
17626563297cSTejun Heo 	group_offsets = alloc_bootmem(ai->nr_groups * sizeof(group_offsets[0]));
17636563297cSTejun Heo 	group_sizes = alloc_bootmem(ai->nr_groups * sizeof(group_sizes[0]));
1764fd1e8a1fSTejun Heo 	unit_map = alloc_bootmem(nr_cpu_ids * sizeof(unit_map[0]));
1765fb435d52STejun Heo 	unit_off = alloc_bootmem(nr_cpu_ids * sizeof(unit_off[0]));
17662f39e637STejun Heo 
1767fd1e8a1fSTejun Heo 	for (cpu = 0; cpu < nr_cpu_ids; cpu++)
1768ffe0d5a5STejun Heo 		unit_map[cpu] = UINT_MAX;
1769fd1e8a1fSTejun Heo 	pcpu_first_unit_cpu = NR_CPUS;
17702f39e637STejun Heo 
1771fd1e8a1fSTejun Heo 	for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) {
1772fd1e8a1fSTejun Heo 		const struct pcpu_group_info *gi = &ai->groups[group];
17732f39e637STejun Heo 
17746563297cSTejun Heo 		group_offsets[group] = gi->base_offset;
17756563297cSTejun Heo 		group_sizes[group] = gi->nr_units * ai->unit_size;
17766563297cSTejun Heo 
1777fd1e8a1fSTejun Heo 		for (i = 0; i < gi->nr_units; i++) {
1778fd1e8a1fSTejun Heo 			cpu = gi->cpu_map[i];
1779fd1e8a1fSTejun Heo 			if (cpu == NR_CPUS)
1780fd1e8a1fSTejun Heo 				continue;
1781fd1e8a1fSTejun Heo 
1782635b75fcSTejun Heo 			PCPU_SETUP_BUG_ON(cpu > nr_cpu_ids);
1783635b75fcSTejun Heo 			PCPU_SETUP_BUG_ON(!cpu_possible(cpu));
1784635b75fcSTejun Heo 			PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX);
1785fd1e8a1fSTejun Heo 
1786fd1e8a1fSTejun Heo 			unit_map[cpu] = unit + i;
1787fb435d52STejun Heo 			unit_off[cpu] = gi->base_offset + i * ai->unit_size;
1788fb435d52STejun Heo 
1789fd1e8a1fSTejun Heo 			if (pcpu_first_unit_cpu == NR_CPUS)
17902f39e637STejun Heo 				pcpu_first_unit_cpu = cpu;
17912f39e637STejun Heo 		}
1792fd1e8a1fSTejun Heo 	}
17932f39e637STejun Heo 	pcpu_last_unit_cpu = cpu;
1794fd1e8a1fSTejun Heo 	pcpu_nr_units = unit;
17952f39e637STejun Heo 
17962f39e637STejun Heo 	for_each_possible_cpu(cpu)
1797635b75fcSTejun Heo 		PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX);
1798635b75fcSTejun Heo 
1799635b75fcSTejun Heo 	/* we're done parsing the input, undefine BUG macro and dump config */
1800635b75fcSTejun Heo #undef PCPU_SETUP_BUG_ON
1801635b75fcSTejun Heo 	pcpu_dump_alloc_info(KERN_INFO, ai);
18022f39e637STejun Heo 
18036563297cSTejun Heo 	pcpu_nr_groups = ai->nr_groups;
18046563297cSTejun Heo 	pcpu_group_offsets = group_offsets;
18056563297cSTejun Heo 	pcpu_group_sizes = group_sizes;
1806fd1e8a1fSTejun Heo 	pcpu_unit_map = unit_map;
1807fb435d52STejun Heo 	pcpu_unit_offsets = unit_off;
18082f39e637STejun Heo 
18092f39e637STejun Heo 	/* determine basic parameters */
1810fd1e8a1fSTejun Heo 	pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT;
1811d9b55eebSTejun Heo 	pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT;
18126563297cSTejun Heo 	pcpu_atom_size = ai->atom_size;
1813ce3141a2STejun Heo 	pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) +
1814ce3141a2STejun Heo 		BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long);
1815cafe8816STejun Heo 
1816d9b55eebSTejun Heo 	/*
1817d9b55eebSTejun Heo 	 * Allocate chunk slots.  The additional last slot is for
1818d9b55eebSTejun Heo 	 * empty chunks.
1819d9b55eebSTejun Heo 	 */
1820d9b55eebSTejun Heo 	pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2;
1821fbf59bc9STejun Heo 	pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0]));
1822fbf59bc9STejun Heo 	for (i = 0; i < pcpu_nr_slots; i++)
1823fbf59bc9STejun Heo 		INIT_LIST_HEAD(&pcpu_slot[i]);
1824fbf59bc9STejun Heo 
1825edcb4639STejun Heo 	/*
1826edcb4639STejun Heo 	 * Initialize static chunk.  If reserved_size is zero, the
1827edcb4639STejun Heo 	 * static chunk covers static area + dynamic allocation area
1828edcb4639STejun Heo 	 * in the first chunk.  If reserved_size is not zero, it
1829edcb4639STejun Heo 	 * covers static area + reserved area (mostly used for module
1830edcb4639STejun Heo 	 * static percpu allocation).
1831edcb4639STejun Heo 	 */
18322441d15cSTejun Heo 	schunk = alloc_bootmem(pcpu_chunk_struct_size);
18332441d15cSTejun Heo 	INIT_LIST_HEAD(&schunk->list);
1834bba174f5STejun Heo 	schunk->base_addr = base_addr;
183561ace7faSTejun Heo 	schunk->map = smap;
183661ace7faSTejun Heo 	schunk->map_alloc = ARRAY_SIZE(smap);
183738a6be52STejun Heo 	schunk->immutable = true;
1838ce3141a2STejun Heo 	bitmap_fill(schunk->populated, pcpu_unit_pages);
1839edcb4639STejun Heo 
1840fd1e8a1fSTejun Heo 	if (ai->reserved_size) {
1841fd1e8a1fSTejun Heo 		schunk->free_size = ai->reserved_size;
1842ae9e6bc9STejun Heo 		pcpu_reserved_chunk = schunk;
1843fd1e8a1fSTejun Heo 		pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size;
1844edcb4639STejun Heo 	} else {
18452441d15cSTejun Heo 		schunk->free_size = dyn_size;
1846edcb4639STejun Heo 		dyn_size = 0;			/* dynamic area covered */
1847edcb4639STejun Heo 	}
18482441d15cSTejun Heo 	schunk->contig_hint = schunk->free_size;
1849fbf59bc9STejun Heo 
1850fd1e8a1fSTejun Heo 	schunk->map[schunk->map_used++] = -ai->static_size;
185161ace7faSTejun Heo 	if (schunk->free_size)
185261ace7faSTejun Heo 		schunk->map[schunk->map_used++] = schunk->free_size;
185361ace7faSTejun Heo 
1854edcb4639STejun Heo 	/* init dynamic chunk if necessary */
1855edcb4639STejun Heo 	if (dyn_size) {
1856ce3141a2STejun Heo 		dchunk = alloc_bootmem(pcpu_chunk_struct_size);
1857edcb4639STejun Heo 		INIT_LIST_HEAD(&dchunk->list);
1858bba174f5STejun Heo 		dchunk->base_addr = base_addr;
1859edcb4639STejun Heo 		dchunk->map = dmap;
1860edcb4639STejun Heo 		dchunk->map_alloc = ARRAY_SIZE(dmap);
186138a6be52STejun Heo 		dchunk->immutable = true;
1862ce3141a2STejun Heo 		bitmap_fill(dchunk->populated, pcpu_unit_pages);
1863edcb4639STejun Heo 
1864edcb4639STejun Heo 		dchunk->contig_hint = dchunk->free_size = dyn_size;
1865edcb4639STejun Heo 		dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit;
1866edcb4639STejun Heo 		dchunk->map[dchunk->map_used++] = dchunk->free_size;
1867edcb4639STejun Heo 	}
1868edcb4639STejun Heo 
18692441d15cSTejun Heo 	/* link the first chunk in */
1870ae9e6bc9STejun Heo 	pcpu_first_chunk = dchunk ?: schunk;
1871ae9e6bc9STejun Heo 	pcpu_chunk_relocate(pcpu_first_chunk, -1);
1872fbf59bc9STejun Heo 
1873fbf59bc9STejun Heo 	/* we're done */
1874bba174f5STejun Heo 	pcpu_base_addr = base_addr;
1875fb435d52STejun Heo 	return 0;
1876fbf59bc9STejun Heo }
187766c3a757STejun Heo 
1878f58dc01bSTejun Heo const char *pcpu_fc_names[PCPU_FC_NR] __initdata = {
1879f58dc01bSTejun Heo 	[PCPU_FC_AUTO]	= "auto",
1880f58dc01bSTejun Heo 	[PCPU_FC_EMBED]	= "embed",
1881f58dc01bSTejun Heo 	[PCPU_FC_PAGE]	= "page",
1882f58dc01bSTejun Heo };
188366c3a757STejun Heo 
1884f58dc01bSTejun Heo enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO;
1885f58dc01bSTejun Heo 
1886f58dc01bSTejun Heo static int __init percpu_alloc_setup(char *str)
188766c3a757STejun Heo {
1888f58dc01bSTejun Heo 	if (0)
1889f58dc01bSTejun Heo 		/* nada */;
1890f58dc01bSTejun Heo #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1891f58dc01bSTejun Heo 	else if (!strcmp(str, "embed"))
1892f58dc01bSTejun Heo 		pcpu_chosen_fc = PCPU_FC_EMBED;
1893f58dc01bSTejun Heo #endif
1894f58dc01bSTejun Heo #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1895f58dc01bSTejun Heo 	else if (!strcmp(str, "page"))
1896f58dc01bSTejun Heo 		pcpu_chosen_fc = PCPU_FC_PAGE;
1897f58dc01bSTejun Heo #endif
1898f58dc01bSTejun Heo 	else
1899f58dc01bSTejun Heo 		pr_warning("PERCPU: unknown allocator %s specified\n", str);
190066c3a757STejun Heo 
1901f58dc01bSTejun Heo 	return 0;
190266c3a757STejun Heo }
1903f58dc01bSTejun Heo early_param("percpu_alloc", percpu_alloc_setup);
190466c3a757STejun Heo 
190508fc4580STejun Heo #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
190608fc4580STejun Heo 	!defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
190766c3a757STejun Heo /**
190866c3a757STejun Heo  * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
190966c3a757STejun Heo  * @reserved_size: the size of reserved percpu area in bytes
191066c3a757STejun Heo  * @dyn_size: free size for dynamic allocation in bytes, -1 for auto
1911c8826dd5STejun Heo  * @atom_size: allocation atom size
1912c8826dd5STejun Heo  * @cpu_distance_fn: callback to determine distance between cpus, optional
1913c8826dd5STejun Heo  * @alloc_fn: function to allocate percpu page
1914c8826dd5STejun Heo  * @free_fn: funtion to free percpu page
191566c3a757STejun Heo  *
191666c3a757STejun Heo  * This is a helper to ease setting up embedded first percpu chunk and
191766c3a757STejun Heo  * can be called where pcpu_setup_first_chunk() is expected.
191866c3a757STejun Heo  *
191966c3a757STejun Heo  * If this function is used to setup the first chunk, it is allocated
1920c8826dd5STejun Heo  * by calling @alloc_fn and used as-is without being mapped into
1921c8826dd5STejun Heo  * vmalloc area.  Allocations are always whole multiples of @atom_size
1922c8826dd5STejun Heo  * aligned to @atom_size.
1923c8826dd5STejun Heo  *
1924c8826dd5STejun Heo  * This enables the first chunk to piggy back on the linear physical
1925c8826dd5STejun Heo  * mapping which often uses larger page size.  Please note that this
1926c8826dd5STejun Heo  * can result in very sparse cpu->unit mapping on NUMA machines thus
1927c8826dd5STejun Heo  * requiring large vmalloc address space.  Don't use this allocator if
1928c8826dd5STejun Heo  * vmalloc space is not orders of magnitude larger than distances
1929c8826dd5STejun Heo  * between node memory addresses (ie. 32bit NUMA machines).
193066c3a757STejun Heo  *
193166c3a757STejun Heo  * When @dyn_size is positive, dynamic area might be larger than
1932788e5abcSTejun Heo  * specified to fill page alignment.  When @dyn_size is auto,
1933788e5abcSTejun Heo  * @dyn_size is just big enough to fill page alignment after static
1934788e5abcSTejun Heo  * and reserved areas.
193566c3a757STejun Heo  *
193666c3a757STejun Heo  * If the needed size is smaller than the minimum or specified unit
1937c8826dd5STejun Heo  * size, the leftover is returned using @free_fn.
193866c3a757STejun Heo  *
193966c3a757STejun Heo  * RETURNS:
1940fb435d52STejun Heo  * 0 on success, -errno on failure.
194166c3a757STejun Heo  */
1942c8826dd5STejun Heo int __init pcpu_embed_first_chunk(size_t reserved_size, ssize_t dyn_size,
1943c8826dd5STejun Heo 				  size_t atom_size,
1944c8826dd5STejun Heo 				  pcpu_fc_cpu_distance_fn_t cpu_distance_fn,
1945c8826dd5STejun Heo 				  pcpu_fc_alloc_fn_t alloc_fn,
1946c8826dd5STejun Heo 				  pcpu_fc_free_fn_t free_fn)
194766c3a757STejun Heo {
1948c8826dd5STejun Heo 	void *base = (void *)ULONG_MAX;
1949c8826dd5STejun Heo 	void **areas = NULL;
1950fd1e8a1fSTejun Heo 	struct pcpu_alloc_info *ai;
19516ea529a2STejun Heo 	size_t size_sum, areas_size, max_distance;
1952c8826dd5STejun Heo 	int group, i, rc;
195366c3a757STejun Heo 
1954c8826dd5STejun Heo 	ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size,
1955c8826dd5STejun Heo 				   cpu_distance_fn);
1956fd1e8a1fSTejun Heo 	if (IS_ERR(ai))
1957fd1e8a1fSTejun Heo 		return PTR_ERR(ai);
195866c3a757STejun Heo 
1959fd1e8a1fSTejun Heo 	size_sum = ai->static_size + ai->reserved_size + ai->dyn_size;
1960c8826dd5STejun Heo 	areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *));
196166c3a757STejun Heo 
1962c8826dd5STejun Heo 	areas = alloc_bootmem_nopanic(areas_size);
1963c8826dd5STejun Heo 	if (!areas) {
1964fb435d52STejun Heo 		rc = -ENOMEM;
1965c8826dd5STejun Heo 		goto out_free;
1966fa8a7094STejun Heo 	}
196766c3a757STejun Heo 
1968c8826dd5STejun Heo 	/* allocate, copy and determine base address */
1969c8826dd5STejun Heo 	for (group = 0; group < ai->nr_groups; group++) {
1970c8826dd5STejun Heo 		struct pcpu_group_info *gi = &ai->groups[group];
1971c8826dd5STejun Heo 		unsigned int cpu = NR_CPUS;
1972c8826dd5STejun Heo 		void *ptr;
197366c3a757STejun Heo 
1974c8826dd5STejun Heo 		for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++)
1975c8826dd5STejun Heo 			cpu = gi->cpu_map[i];
1976c8826dd5STejun Heo 		BUG_ON(cpu == NR_CPUS);
1977c8826dd5STejun Heo 
1978c8826dd5STejun Heo 		/* allocate space for the whole group */
1979c8826dd5STejun Heo 		ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size);
1980c8826dd5STejun Heo 		if (!ptr) {
1981c8826dd5STejun Heo 			rc = -ENOMEM;
1982c8826dd5STejun Heo 			goto out_free_areas;
1983c8826dd5STejun Heo 		}
1984c8826dd5STejun Heo 		areas[group] = ptr;
1985c8826dd5STejun Heo 
1986c8826dd5STejun Heo 		base = min(ptr, base);
1987c8826dd5STejun Heo 
1988c8826dd5STejun Heo 		for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) {
1989c8826dd5STejun Heo 			if (gi->cpu_map[i] == NR_CPUS) {
1990c8826dd5STejun Heo 				/* unused unit, free whole */
1991c8826dd5STejun Heo 				free_fn(ptr, ai->unit_size);
1992c8826dd5STejun Heo 				continue;
1993c8826dd5STejun Heo 			}
1994c8826dd5STejun Heo 			/* copy and return the unused part */
1995fd1e8a1fSTejun Heo 			memcpy(ptr, __per_cpu_load, ai->static_size);
1996c8826dd5STejun Heo 			free_fn(ptr + size_sum, ai->unit_size - size_sum);
1997c8826dd5STejun Heo 		}
199866c3a757STejun Heo 	}
199966c3a757STejun Heo 
2000c8826dd5STejun Heo 	/* base address is now known, determine group base offsets */
20016ea529a2STejun Heo 	max_distance = 0;
20026ea529a2STejun Heo 	for (group = 0; group < ai->nr_groups; group++) {
2003c8826dd5STejun Heo 		ai->groups[group].base_offset = areas[group] - base;
20041a0c3298STejun Heo 		max_distance = max_t(size_t, max_distance,
20051a0c3298STejun Heo 				     ai->groups[group].base_offset);
20066ea529a2STejun Heo 	}
20076ea529a2STejun Heo 	max_distance += ai->unit_size;
20086ea529a2STejun Heo 
20096ea529a2STejun Heo 	/* warn if maximum distance is further than 75% of vmalloc space */
20106ea529a2STejun Heo 	if (max_distance > (VMALLOC_END - VMALLOC_START) * 3 / 4) {
20111a0c3298STejun Heo 		pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc "
20126ea529a2STejun Heo 			   "space 0x%lx\n",
20136ea529a2STejun Heo 			   max_distance, VMALLOC_END - VMALLOC_START);
20146ea529a2STejun Heo #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
20156ea529a2STejun Heo 		/* and fail if we have fallback */
20166ea529a2STejun Heo 		rc = -EINVAL;
20176ea529a2STejun Heo 		goto out_free;
20186ea529a2STejun Heo #endif
20196ea529a2STejun Heo 	}
2020c8826dd5STejun Heo 
2021004018e2STejun Heo 	pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2022fd1e8a1fSTejun Heo 		PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size,
2023fd1e8a1fSTejun Heo 		ai->dyn_size, ai->unit_size);
202466c3a757STejun Heo 
2025fb435d52STejun Heo 	rc = pcpu_setup_first_chunk(ai, base);
2026c8826dd5STejun Heo 	goto out_free;
2027c8826dd5STejun Heo 
2028c8826dd5STejun Heo out_free_areas:
2029c8826dd5STejun Heo 	for (group = 0; group < ai->nr_groups; group++)
2030c8826dd5STejun Heo 		free_fn(areas[group],
2031c8826dd5STejun Heo 			ai->groups[group].nr_units * ai->unit_size);
2032c8826dd5STejun Heo out_free:
2033fd1e8a1fSTejun Heo 	pcpu_free_alloc_info(ai);
2034c8826dd5STejun Heo 	if (areas)
2035c8826dd5STejun Heo 		free_bootmem(__pa(areas), areas_size);
2036fb435d52STejun Heo 	return rc;
2037d4b95f80STejun Heo }
203808fc4580STejun Heo #endif /* CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK ||
203908fc4580STejun Heo 	  !CONFIG_HAVE_SETUP_PER_CPU_AREA */
2040d4b95f80STejun Heo 
204108fc4580STejun Heo #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2042d4b95f80STejun Heo /**
204300ae4064STejun Heo  * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2044d4b95f80STejun Heo  * @reserved_size: the size of reserved percpu area in bytes
2045d4b95f80STejun Heo  * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2046d4b95f80STejun Heo  * @free_fn: funtion to free percpu page, always called with PAGE_SIZE
2047d4b95f80STejun Heo  * @populate_pte_fn: function to populate pte
2048d4b95f80STejun Heo  *
204900ae4064STejun Heo  * This is a helper to ease setting up page-remapped first percpu
205000ae4064STejun Heo  * chunk and can be called where pcpu_setup_first_chunk() is expected.
2051d4b95f80STejun Heo  *
2052d4b95f80STejun Heo  * This is the basic allocator.  Static percpu area is allocated
2053d4b95f80STejun Heo  * page-by-page into vmalloc area.
2054d4b95f80STejun Heo  *
2055d4b95f80STejun Heo  * RETURNS:
2056fb435d52STejun Heo  * 0 on success, -errno on failure.
2057d4b95f80STejun Heo  */
2058fb435d52STejun Heo int __init pcpu_page_first_chunk(size_t reserved_size,
2059d4b95f80STejun Heo 				 pcpu_fc_alloc_fn_t alloc_fn,
2060d4b95f80STejun Heo 				 pcpu_fc_free_fn_t free_fn,
2061d4b95f80STejun Heo 				 pcpu_fc_populate_pte_fn_t populate_pte_fn)
2062d4b95f80STejun Heo {
20638f05a6a6STejun Heo 	static struct vm_struct vm;
2064fd1e8a1fSTejun Heo 	struct pcpu_alloc_info *ai;
206500ae4064STejun Heo 	char psize_str[16];
2066ce3141a2STejun Heo 	int unit_pages;
2067d4b95f80STejun Heo 	size_t pages_size;
2068ce3141a2STejun Heo 	struct page **pages;
2069fb435d52STejun Heo 	int unit, i, j, rc;
2070d4b95f80STejun Heo 
207100ae4064STejun Heo 	snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10);
207200ae4064STejun Heo 
2073fd1e8a1fSTejun Heo 	ai = pcpu_build_alloc_info(reserved_size, -1, PAGE_SIZE, NULL);
2074fd1e8a1fSTejun Heo 	if (IS_ERR(ai))
2075fd1e8a1fSTejun Heo 		return PTR_ERR(ai);
2076fd1e8a1fSTejun Heo 	BUG_ON(ai->nr_groups != 1);
2077fd1e8a1fSTejun Heo 	BUG_ON(ai->groups[0].nr_units != num_possible_cpus());
2078fd1e8a1fSTejun Heo 
2079fd1e8a1fSTejun Heo 	unit_pages = ai->unit_size >> PAGE_SHIFT;
2080d4b95f80STejun Heo 
2081d4b95f80STejun Heo 	/* unaligned allocations can't be freed, round up to page size */
2082fd1e8a1fSTejun Heo 	pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() *
2083fd1e8a1fSTejun Heo 			       sizeof(pages[0]));
2084ce3141a2STejun Heo 	pages = alloc_bootmem(pages_size);
2085d4b95f80STejun Heo 
20868f05a6a6STejun Heo 	/* allocate pages */
2087d4b95f80STejun Heo 	j = 0;
2088fd1e8a1fSTejun Heo 	for (unit = 0; unit < num_possible_cpus(); unit++)
2089ce3141a2STejun Heo 		for (i = 0; i < unit_pages; i++) {
2090fd1e8a1fSTejun Heo 			unsigned int cpu = ai->groups[0].cpu_map[unit];
2091d4b95f80STejun Heo 			void *ptr;
2092d4b95f80STejun Heo 
20933cbc8565STejun Heo 			ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE);
2094d4b95f80STejun Heo 			if (!ptr) {
209500ae4064STejun Heo 				pr_warning("PERCPU: failed to allocate %s page "
209600ae4064STejun Heo 					   "for cpu%u\n", psize_str, cpu);
2097d4b95f80STejun Heo 				goto enomem;
2098d4b95f80STejun Heo 			}
2099ce3141a2STejun Heo 			pages[j++] = virt_to_page(ptr);
2100d4b95f80STejun Heo 		}
2101d4b95f80STejun Heo 
21028f05a6a6STejun Heo 	/* allocate vm area, map the pages and copy static data */
21038f05a6a6STejun Heo 	vm.flags = VM_ALLOC;
2104fd1e8a1fSTejun Heo 	vm.size = num_possible_cpus() * ai->unit_size;
21058f05a6a6STejun Heo 	vm_area_register_early(&vm, PAGE_SIZE);
21068f05a6a6STejun Heo 
2107fd1e8a1fSTejun Heo 	for (unit = 0; unit < num_possible_cpus(); unit++) {
21081d9d3257STejun Heo 		unsigned long unit_addr =
2109fd1e8a1fSTejun Heo 			(unsigned long)vm.addr + unit * ai->unit_size;
21108f05a6a6STejun Heo 
2111ce3141a2STejun Heo 		for (i = 0; i < unit_pages; i++)
21128f05a6a6STejun Heo 			populate_pte_fn(unit_addr + (i << PAGE_SHIFT));
21138f05a6a6STejun Heo 
21148f05a6a6STejun Heo 		/* pte already populated, the following shouldn't fail */
2115fb435d52STejun Heo 		rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages],
2116ce3141a2STejun Heo 				      unit_pages);
2117fb435d52STejun Heo 		if (rc < 0)
2118fb435d52STejun Heo 			panic("failed to map percpu area, err=%d\n", rc);
21198f05a6a6STejun Heo 
21208f05a6a6STejun Heo 		/*
21218f05a6a6STejun Heo 		 * FIXME: Archs with virtual cache should flush local
21228f05a6a6STejun Heo 		 * cache for the linear mapping here - something
21238f05a6a6STejun Heo 		 * equivalent to flush_cache_vmap() on the local cpu.
21248f05a6a6STejun Heo 		 * flush_cache_vmap() can't be used as most supporting
21258f05a6a6STejun Heo 		 * data structures are not set up yet.
21268f05a6a6STejun Heo 		 */
21278f05a6a6STejun Heo 
21288f05a6a6STejun Heo 		/* copy static data */
2129fd1e8a1fSTejun Heo 		memcpy((void *)unit_addr, __per_cpu_load, ai->static_size);
213066c3a757STejun Heo 	}
213166c3a757STejun Heo 
213266c3a757STejun Heo 	/* we're ready, commit */
21331d9d3257STejun Heo 	pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n",
2134fd1e8a1fSTejun Heo 		unit_pages, psize_str, vm.addr, ai->static_size,
2135fd1e8a1fSTejun Heo 		ai->reserved_size, ai->dyn_size);
213666c3a757STejun Heo 
2137fb435d52STejun Heo 	rc = pcpu_setup_first_chunk(ai, vm.addr);
2138d4b95f80STejun Heo 	goto out_free_ar;
2139d4b95f80STejun Heo 
2140d4b95f80STejun Heo enomem:
2141d4b95f80STejun Heo 	while (--j >= 0)
2142ce3141a2STejun Heo 		free_fn(page_address(pages[j]), PAGE_SIZE);
2143fb435d52STejun Heo 	rc = -ENOMEM;
2144d4b95f80STejun Heo out_free_ar:
2145ce3141a2STejun Heo 	free_bootmem(__pa(pages), pages_size);
2146fd1e8a1fSTejun Heo 	pcpu_free_alloc_info(ai);
2147fb435d52STejun Heo 	return rc;
214866c3a757STejun Heo }
214908fc4580STejun Heo #endif /* CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK */
2150d4b95f80STejun Heo 
21518c4bfc6eSTejun Heo /*
2152e74e3962STejun Heo  * Generic percpu area setup.
2153e74e3962STejun Heo  *
2154e74e3962STejun Heo  * The embedding helper is used because its behavior closely resembles
2155e74e3962STejun Heo  * the original non-dynamic generic percpu area setup.  This is
2156e74e3962STejun Heo  * important because many archs have addressing restrictions and might
2157e74e3962STejun Heo  * fail if the percpu area is located far away from the previous
2158e74e3962STejun Heo  * location.  As an added bonus, in non-NUMA cases, embedding is
2159e74e3962STejun Heo  * generally a good idea TLB-wise because percpu area can piggy back
2160e74e3962STejun Heo  * on the physical linear memory mapping which uses large page
2161e74e3962STejun Heo  * mappings on applicable archs.
2162e74e3962STejun Heo  */
2163e74e3962STejun Heo #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2164e74e3962STejun Heo unsigned long __per_cpu_offset[NR_CPUS] __read_mostly;
2165e74e3962STejun Heo EXPORT_SYMBOL(__per_cpu_offset);
2166e74e3962STejun Heo 
2167c8826dd5STejun Heo static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size,
2168c8826dd5STejun Heo 				       size_t align)
2169c8826dd5STejun Heo {
2170c8826dd5STejun Heo 	return __alloc_bootmem_nopanic(size, align, __pa(MAX_DMA_ADDRESS));
2171c8826dd5STejun Heo }
2172c8826dd5STejun Heo 
2173c8826dd5STejun Heo static void __init pcpu_dfl_fc_free(void *ptr, size_t size)
2174c8826dd5STejun Heo {
2175c8826dd5STejun Heo 	free_bootmem(__pa(ptr), size);
2176c8826dd5STejun Heo }
2177c8826dd5STejun Heo 
2178e74e3962STejun Heo void __init setup_per_cpu_areas(void)
2179e74e3962STejun Heo {
2180e74e3962STejun Heo 	unsigned long delta;
2181e74e3962STejun Heo 	unsigned int cpu;
2182fb435d52STejun Heo 	int rc;
2183e74e3962STejun Heo 
2184e74e3962STejun Heo 	/*
2185e74e3962STejun Heo 	 * Always reserve area for module percpu variables.  That's
2186e74e3962STejun Heo 	 * what the legacy allocator did.
2187e74e3962STejun Heo 	 */
2188fb435d52STejun Heo 	rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
2189c8826dd5STejun Heo 				    PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL,
2190c8826dd5STejun Heo 				    pcpu_dfl_fc_alloc, pcpu_dfl_fc_free);
2191fb435d52STejun Heo 	if (rc < 0)
2192e74e3962STejun Heo 		panic("Failed to initialized percpu areas.");
2193e74e3962STejun Heo 
2194e74e3962STejun Heo 	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
2195e74e3962STejun Heo 	for_each_possible_cpu(cpu)
2196fb435d52STejun Heo 		__per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu];
2197e74e3962STejun Heo }
2198e74e3962STejun Heo #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2199