xref: /linux/mm/percpu-vm.c (revision b43ab901d671e3e3cad425ea5e9a3c74e266dcdd)
1 /*
2  * mm/percpu-vm.c - vmalloc area based chunk allocation
3  *
4  * Copyright (C) 2010		SUSE Linux Products GmbH
5  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * Chunks are mapped into vmalloc areas and populated page by page.
10  * This is the default chunk allocator.
11  */
12 
13 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14 				    unsigned int cpu, int page_idx)
15 {
16 	/* must not be used on pre-mapped chunk */
17 	WARN_ON(chunk->immutable);
18 
19 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 }
21 
22 /**
23  * pcpu_get_pages_and_bitmap - get temp pages array and bitmap
24  * @chunk: chunk of interest
25  * @bitmapp: output parameter for bitmap
26  * @may_alloc: may allocate the array
27  *
28  * Returns pointer to array of pointers to struct page and bitmap,
29  * both of which can be indexed with pcpu_page_idx().  The returned
30  * array is cleared to zero and *@bitmapp is copied from
31  * @chunk->populated.  Note that there is only one array and bitmap
32  * and access exclusion is the caller's responsibility.
33  *
34  * CONTEXT:
35  * pcpu_alloc_mutex and does GFP_KERNEL allocation if @may_alloc.
36  * Otherwise, don't care.
37  *
38  * RETURNS:
39  * Pointer to temp pages array on success, NULL on failure.
40  */
41 static struct page **pcpu_get_pages_and_bitmap(struct pcpu_chunk *chunk,
42 					       unsigned long **bitmapp,
43 					       bool may_alloc)
44 {
45 	static struct page **pages;
46 	static unsigned long *bitmap;
47 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
48 	size_t bitmap_size = BITS_TO_LONGS(pcpu_unit_pages) *
49 			     sizeof(unsigned long);
50 
51 	if (!pages || !bitmap) {
52 		if (may_alloc && !pages)
53 			pages = pcpu_mem_zalloc(pages_size);
54 		if (may_alloc && !bitmap)
55 			bitmap = pcpu_mem_zalloc(bitmap_size);
56 		if (!pages || !bitmap)
57 			return NULL;
58 	}
59 
60 	bitmap_copy(bitmap, chunk->populated, pcpu_unit_pages);
61 
62 	*bitmapp = bitmap;
63 	return pages;
64 }
65 
66 /**
67  * pcpu_free_pages - free pages which were allocated for @chunk
68  * @chunk: chunk pages were allocated for
69  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
70  * @populated: populated bitmap
71  * @page_start: page index of the first page to be freed
72  * @page_end: page index of the last page to be freed + 1
73  *
74  * Free pages [@page_start and @page_end) in @pages for all units.
75  * The pages were allocated for @chunk.
76  */
77 static void pcpu_free_pages(struct pcpu_chunk *chunk,
78 			    struct page **pages, unsigned long *populated,
79 			    int page_start, int page_end)
80 {
81 	unsigned int cpu;
82 	int i;
83 
84 	for_each_possible_cpu(cpu) {
85 		for (i = page_start; i < page_end; i++) {
86 			struct page *page = pages[pcpu_page_idx(cpu, i)];
87 
88 			if (page)
89 				__free_page(page);
90 		}
91 	}
92 }
93 
94 /**
95  * pcpu_alloc_pages - allocates pages for @chunk
96  * @chunk: target chunk
97  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
98  * @populated: populated bitmap
99  * @page_start: page index of the first page to be allocated
100  * @page_end: page index of the last page to be allocated + 1
101  *
102  * Allocate pages [@page_start,@page_end) into @pages for all units.
103  * The allocation is for @chunk.  Percpu core doesn't care about the
104  * content of @pages and will pass it verbatim to pcpu_map_pages().
105  */
106 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
107 			    struct page **pages, unsigned long *populated,
108 			    int page_start, int page_end)
109 {
110 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
111 	unsigned int cpu;
112 	int i;
113 
114 	for_each_possible_cpu(cpu) {
115 		for (i = page_start; i < page_end; i++) {
116 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
117 
118 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
119 			if (!*pagep) {
120 				pcpu_free_pages(chunk, pages, populated,
121 						page_start, page_end);
122 				return -ENOMEM;
123 			}
124 		}
125 	}
126 	return 0;
127 }
128 
129 /**
130  * pcpu_pre_unmap_flush - flush cache prior to unmapping
131  * @chunk: chunk the regions to be flushed belongs to
132  * @page_start: page index of the first page to be flushed
133  * @page_end: page index of the last page to be flushed + 1
134  *
135  * Pages in [@page_start,@page_end) of @chunk are about to be
136  * unmapped.  Flush cache.  As each flushing trial can be very
137  * expensive, issue flush on the whole region at once rather than
138  * doing it for each cpu.  This could be an overkill but is more
139  * scalable.
140  */
141 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
142 				 int page_start, int page_end)
143 {
144 	flush_cache_vunmap(
145 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
146 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
147 }
148 
149 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
150 {
151 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
152 }
153 
154 /**
155  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
156  * @chunk: chunk of interest
157  * @pages: pages array which can be used to pass information to free
158  * @populated: populated bitmap
159  * @page_start: page index of the first page to unmap
160  * @page_end: page index of the last page to unmap + 1
161  *
162  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
163  * Corresponding elements in @pages were cleared by the caller and can
164  * be used to carry information to pcpu_free_pages() which will be
165  * called after all unmaps are finished.  The caller should call
166  * proper pre/post flush functions.
167  */
168 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
169 			     struct page **pages, unsigned long *populated,
170 			     int page_start, int page_end)
171 {
172 	unsigned int cpu;
173 	int i;
174 
175 	for_each_possible_cpu(cpu) {
176 		for (i = page_start; i < page_end; i++) {
177 			struct page *page;
178 
179 			page = pcpu_chunk_page(chunk, cpu, i);
180 			WARN_ON(!page);
181 			pages[pcpu_page_idx(cpu, i)] = page;
182 		}
183 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
184 				   page_end - page_start);
185 	}
186 
187 	for (i = page_start; i < page_end; i++)
188 		__clear_bit(i, populated);
189 }
190 
191 /**
192  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
193  * @chunk: pcpu_chunk the regions to be flushed belong to
194  * @page_start: page index of the first page to be flushed
195  * @page_end: page index of the last page to be flushed + 1
196  *
197  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
198  * TLB for the regions.  This can be skipped if the area is to be
199  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
200  *
201  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
202  * for the whole region.
203  */
204 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
205 				      int page_start, int page_end)
206 {
207 	flush_tlb_kernel_range(
208 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
209 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
210 }
211 
212 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
213 			    int nr_pages)
214 {
215 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
216 					PAGE_KERNEL, pages);
217 }
218 
219 /**
220  * pcpu_map_pages - map pages into a pcpu_chunk
221  * @chunk: chunk of interest
222  * @pages: pages array containing pages to be mapped
223  * @populated: populated bitmap
224  * @page_start: page index of the first page to map
225  * @page_end: page index of the last page to map + 1
226  *
227  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
228  * caller is responsible for calling pcpu_post_map_flush() after all
229  * mappings are complete.
230  *
231  * This function is responsible for setting corresponding bits in
232  * @chunk->populated bitmap and whatever is necessary for reverse
233  * lookup (addr -> chunk).
234  */
235 static int pcpu_map_pages(struct pcpu_chunk *chunk,
236 			  struct page **pages, unsigned long *populated,
237 			  int page_start, int page_end)
238 {
239 	unsigned int cpu, tcpu;
240 	int i, err;
241 
242 	for_each_possible_cpu(cpu) {
243 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
244 				       &pages[pcpu_page_idx(cpu, page_start)],
245 				       page_end - page_start);
246 		if (err < 0)
247 			goto err;
248 	}
249 
250 	/* mapping successful, link chunk and mark populated */
251 	for (i = page_start; i < page_end; i++) {
252 		for_each_possible_cpu(cpu)
253 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
254 					    chunk);
255 		__set_bit(i, populated);
256 	}
257 
258 	return 0;
259 
260 err:
261 	for_each_possible_cpu(tcpu) {
262 		if (tcpu == cpu)
263 			break;
264 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
265 				   page_end - page_start);
266 	}
267 	return err;
268 }
269 
270 /**
271  * pcpu_post_map_flush - flush cache after mapping
272  * @chunk: pcpu_chunk the regions to be flushed belong to
273  * @page_start: page index of the first page to be flushed
274  * @page_end: page index of the last page to be flushed + 1
275  *
276  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
277  * cache.
278  *
279  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
280  * for the whole region.
281  */
282 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
283 				int page_start, int page_end)
284 {
285 	flush_cache_vmap(
286 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
287 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
288 }
289 
290 /**
291  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
292  * @chunk: chunk of interest
293  * @off: offset to the area to populate
294  * @size: size of the area to populate in bytes
295  *
296  * For each cpu, populate and map pages [@page_start,@page_end) into
297  * @chunk.  The area is cleared on return.
298  *
299  * CONTEXT:
300  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
301  */
302 static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size)
303 {
304 	int page_start = PFN_DOWN(off);
305 	int page_end = PFN_UP(off + size);
306 	int free_end = page_start, unmap_end = page_start;
307 	struct page **pages;
308 	unsigned long *populated;
309 	unsigned int cpu;
310 	int rs, re, rc;
311 
312 	/* quick path, check whether all pages are already there */
313 	rs = page_start;
314 	pcpu_next_pop(chunk, &rs, &re, page_end);
315 	if (rs == page_start && re == page_end)
316 		goto clear;
317 
318 	/* need to allocate and map pages, this chunk can't be immutable */
319 	WARN_ON(chunk->immutable);
320 
321 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, true);
322 	if (!pages)
323 		return -ENOMEM;
324 
325 	/* alloc and map */
326 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
327 		rc = pcpu_alloc_pages(chunk, pages, populated, rs, re);
328 		if (rc)
329 			goto err_free;
330 		free_end = re;
331 	}
332 
333 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) {
334 		rc = pcpu_map_pages(chunk, pages, populated, rs, re);
335 		if (rc)
336 			goto err_unmap;
337 		unmap_end = re;
338 	}
339 	pcpu_post_map_flush(chunk, page_start, page_end);
340 
341 	/* commit new bitmap */
342 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
343 clear:
344 	for_each_possible_cpu(cpu)
345 		memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size);
346 	return 0;
347 
348 err_unmap:
349 	pcpu_pre_unmap_flush(chunk, page_start, unmap_end);
350 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, unmap_end)
351 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
352 	pcpu_post_unmap_tlb_flush(chunk, page_start, unmap_end);
353 err_free:
354 	pcpu_for_each_unpop_region(chunk, rs, re, page_start, free_end)
355 		pcpu_free_pages(chunk, pages, populated, rs, re);
356 	return rc;
357 }
358 
359 /**
360  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
361  * @chunk: chunk to depopulate
362  * @off: offset to the area to depopulate
363  * @size: size of the area to depopulate in bytes
364  * @flush: whether to flush cache and tlb or not
365  *
366  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
367  * from @chunk.  If @flush is true, vcache is flushed before unmapping
368  * and tlb after.
369  *
370  * CONTEXT:
371  * pcpu_alloc_mutex.
372  */
373 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size)
374 {
375 	int page_start = PFN_DOWN(off);
376 	int page_end = PFN_UP(off + size);
377 	struct page **pages;
378 	unsigned long *populated;
379 	int rs, re;
380 
381 	/* quick path, check whether it's empty already */
382 	rs = page_start;
383 	pcpu_next_unpop(chunk, &rs, &re, page_end);
384 	if (rs == page_start && re == page_end)
385 		return;
386 
387 	/* immutable chunks can't be depopulated */
388 	WARN_ON(chunk->immutable);
389 
390 	/*
391 	 * If control reaches here, there must have been at least one
392 	 * successful population attempt so the temp pages array must
393 	 * be available now.
394 	 */
395 	pages = pcpu_get_pages_and_bitmap(chunk, &populated, false);
396 	BUG_ON(!pages);
397 
398 	/* unmap and free */
399 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
400 
401 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
402 		pcpu_unmap_pages(chunk, pages, populated, rs, re);
403 
404 	/* no need to flush tlb, vmalloc will handle it lazily */
405 
406 	pcpu_for_each_pop_region(chunk, rs, re, page_start, page_end)
407 		pcpu_free_pages(chunk, pages, populated, rs, re);
408 
409 	/* commit new bitmap */
410 	bitmap_copy(chunk->populated, populated, pcpu_unit_pages);
411 }
412 
413 static struct pcpu_chunk *pcpu_create_chunk(void)
414 {
415 	struct pcpu_chunk *chunk;
416 	struct vm_struct **vms;
417 
418 	chunk = pcpu_alloc_chunk();
419 	if (!chunk)
420 		return NULL;
421 
422 	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
423 				pcpu_nr_groups, pcpu_atom_size);
424 	if (!vms) {
425 		pcpu_free_chunk(chunk);
426 		return NULL;
427 	}
428 
429 	chunk->data = vms;
430 	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
431 	return chunk;
432 }
433 
434 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
435 {
436 	if (chunk && chunk->data)
437 		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
438 	pcpu_free_chunk(chunk);
439 }
440 
441 static struct page *pcpu_addr_to_page(void *addr)
442 {
443 	return vmalloc_to_page(addr);
444 }
445 
446 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
447 {
448 	/* no extra restriction */
449 	return 0;
450 }
451