xref: /linux/mm/percpu-vm.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * mm/percpu-vm.c - vmalloc area based chunk allocation
3  *
4  * Copyright (C) 2010		SUSE Linux Products GmbH
5  * Copyright (C) 2010		Tejun Heo <tj@kernel.org>
6  *
7  * This file is released under the GPLv2.
8  *
9  * Chunks are mapped into vmalloc areas and populated page by page.
10  * This is the default chunk allocator.
11  */
12 
13 static struct page *pcpu_chunk_page(struct pcpu_chunk *chunk,
14 				    unsigned int cpu, int page_idx)
15 {
16 	/* must not be used on pre-mapped chunk */
17 	WARN_ON(chunk->immutable);
18 
19 	return vmalloc_to_page((void *)pcpu_chunk_addr(chunk, cpu, page_idx));
20 }
21 
22 /**
23  * pcpu_get_pages - get temp pages array
24  * @chunk: chunk of interest
25  *
26  * Returns pointer to array of pointers to struct page which can be indexed
27  * with pcpu_page_idx().  Note that there is only one array and accesses
28  * should be serialized by pcpu_alloc_mutex.
29  *
30  * RETURNS:
31  * Pointer to temp pages array on success.
32  */
33 static struct page **pcpu_get_pages(struct pcpu_chunk *chunk_alloc)
34 {
35 	static struct page **pages;
36 	size_t pages_size = pcpu_nr_units * pcpu_unit_pages * sizeof(pages[0]);
37 
38 	lockdep_assert_held(&pcpu_alloc_mutex);
39 
40 	if (!pages)
41 		pages = pcpu_mem_zalloc(pages_size);
42 	return pages;
43 }
44 
45 /**
46  * pcpu_free_pages - free pages which were allocated for @chunk
47  * @chunk: chunk pages were allocated for
48  * @pages: array of pages to be freed, indexed by pcpu_page_idx()
49  * @page_start: page index of the first page to be freed
50  * @page_end: page index of the last page to be freed + 1
51  *
52  * Free pages [@page_start and @page_end) in @pages for all units.
53  * The pages were allocated for @chunk.
54  */
55 static void pcpu_free_pages(struct pcpu_chunk *chunk,
56 			    struct page **pages, int page_start, int page_end)
57 {
58 	unsigned int cpu;
59 	int i;
60 
61 	for_each_possible_cpu(cpu) {
62 		for (i = page_start; i < page_end; i++) {
63 			struct page *page = pages[pcpu_page_idx(cpu, i)];
64 
65 			if (page)
66 				__free_page(page);
67 		}
68 	}
69 }
70 
71 /**
72  * pcpu_alloc_pages - allocates pages for @chunk
73  * @chunk: target chunk
74  * @pages: array to put the allocated pages into, indexed by pcpu_page_idx()
75  * @page_start: page index of the first page to be allocated
76  * @page_end: page index of the last page to be allocated + 1
77  *
78  * Allocate pages [@page_start,@page_end) into @pages for all units.
79  * The allocation is for @chunk.  Percpu core doesn't care about the
80  * content of @pages and will pass it verbatim to pcpu_map_pages().
81  */
82 static int pcpu_alloc_pages(struct pcpu_chunk *chunk,
83 			    struct page **pages, int page_start, int page_end)
84 {
85 	const gfp_t gfp = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD;
86 	unsigned int cpu, tcpu;
87 	int i;
88 
89 	for_each_possible_cpu(cpu) {
90 		for (i = page_start; i < page_end; i++) {
91 			struct page **pagep = &pages[pcpu_page_idx(cpu, i)];
92 
93 			*pagep = alloc_pages_node(cpu_to_node(cpu), gfp, 0);
94 			if (!*pagep)
95 				goto err;
96 		}
97 	}
98 	return 0;
99 
100 err:
101 	while (--i >= page_start)
102 		__free_page(pages[pcpu_page_idx(cpu, i)]);
103 
104 	for_each_possible_cpu(tcpu) {
105 		if (tcpu == cpu)
106 			break;
107 		for (i = page_start; i < page_end; i++)
108 			__free_page(pages[pcpu_page_idx(tcpu, i)]);
109 	}
110 	return -ENOMEM;
111 }
112 
113 /**
114  * pcpu_pre_unmap_flush - flush cache prior to unmapping
115  * @chunk: chunk the regions to be flushed belongs to
116  * @page_start: page index of the first page to be flushed
117  * @page_end: page index of the last page to be flushed + 1
118  *
119  * Pages in [@page_start,@page_end) of @chunk are about to be
120  * unmapped.  Flush cache.  As each flushing trial can be very
121  * expensive, issue flush on the whole region at once rather than
122  * doing it for each cpu.  This could be an overkill but is more
123  * scalable.
124  */
125 static void pcpu_pre_unmap_flush(struct pcpu_chunk *chunk,
126 				 int page_start, int page_end)
127 {
128 	flush_cache_vunmap(
129 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
130 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
131 }
132 
133 static void __pcpu_unmap_pages(unsigned long addr, int nr_pages)
134 {
135 	unmap_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT);
136 }
137 
138 /**
139  * pcpu_unmap_pages - unmap pages out of a pcpu_chunk
140  * @chunk: chunk of interest
141  * @pages: pages array which can be used to pass information to free
142  * @page_start: page index of the first page to unmap
143  * @page_end: page index of the last page to unmap + 1
144  *
145  * For each cpu, unmap pages [@page_start,@page_end) out of @chunk.
146  * Corresponding elements in @pages were cleared by the caller and can
147  * be used to carry information to pcpu_free_pages() which will be
148  * called after all unmaps are finished.  The caller should call
149  * proper pre/post flush functions.
150  */
151 static void pcpu_unmap_pages(struct pcpu_chunk *chunk,
152 			     struct page **pages, int page_start, int page_end)
153 {
154 	unsigned int cpu;
155 	int i;
156 
157 	for_each_possible_cpu(cpu) {
158 		for (i = page_start; i < page_end; i++) {
159 			struct page *page;
160 
161 			page = pcpu_chunk_page(chunk, cpu, i);
162 			WARN_ON(!page);
163 			pages[pcpu_page_idx(cpu, i)] = page;
164 		}
165 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, cpu, page_start),
166 				   page_end - page_start);
167 	}
168 }
169 
170 /**
171  * pcpu_post_unmap_tlb_flush - flush TLB after unmapping
172  * @chunk: pcpu_chunk the regions to be flushed belong to
173  * @page_start: page index of the first page to be flushed
174  * @page_end: page index of the last page to be flushed + 1
175  *
176  * Pages [@page_start,@page_end) of @chunk have been unmapped.  Flush
177  * TLB for the regions.  This can be skipped if the area is to be
178  * returned to vmalloc as vmalloc will handle TLB flushing lazily.
179  *
180  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
181  * for the whole region.
182  */
183 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk *chunk,
184 				      int page_start, int page_end)
185 {
186 	flush_tlb_kernel_range(
187 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
188 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
189 }
190 
191 static int __pcpu_map_pages(unsigned long addr, struct page **pages,
192 			    int nr_pages)
193 {
194 	return map_kernel_range_noflush(addr, nr_pages << PAGE_SHIFT,
195 					PAGE_KERNEL, pages);
196 }
197 
198 /**
199  * pcpu_map_pages - map pages into a pcpu_chunk
200  * @chunk: chunk of interest
201  * @pages: pages array containing pages to be mapped
202  * @page_start: page index of the first page to map
203  * @page_end: page index of the last page to map + 1
204  *
205  * For each cpu, map pages [@page_start,@page_end) into @chunk.  The
206  * caller is responsible for calling pcpu_post_map_flush() after all
207  * mappings are complete.
208  *
209  * This function is responsible for setting up whatever is necessary for
210  * reverse lookup (addr -> chunk).
211  */
212 static int pcpu_map_pages(struct pcpu_chunk *chunk,
213 			  struct page **pages, int page_start, int page_end)
214 {
215 	unsigned int cpu, tcpu;
216 	int i, err;
217 
218 	for_each_possible_cpu(cpu) {
219 		err = __pcpu_map_pages(pcpu_chunk_addr(chunk, cpu, page_start),
220 				       &pages[pcpu_page_idx(cpu, page_start)],
221 				       page_end - page_start);
222 		if (err < 0)
223 			goto err;
224 
225 		for (i = page_start; i < page_end; i++)
226 			pcpu_set_page_chunk(pages[pcpu_page_idx(cpu, i)],
227 					    chunk);
228 	}
229 	return 0;
230 err:
231 	for_each_possible_cpu(tcpu) {
232 		if (tcpu == cpu)
233 			break;
234 		__pcpu_unmap_pages(pcpu_chunk_addr(chunk, tcpu, page_start),
235 				   page_end - page_start);
236 	}
237 	pcpu_post_unmap_tlb_flush(chunk, page_start, page_end);
238 	return err;
239 }
240 
241 /**
242  * pcpu_post_map_flush - flush cache after mapping
243  * @chunk: pcpu_chunk the regions to be flushed belong to
244  * @page_start: page index of the first page to be flushed
245  * @page_end: page index of the last page to be flushed + 1
246  *
247  * Pages [@page_start,@page_end) of @chunk have been mapped.  Flush
248  * cache.
249  *
250  * As with pcpu_pre_unmap_flush(), TLB flushing also is done at once
251  * for the whole region.
252  */
253 static void pcpu_post_map_flush(struct pcpu_chunk *chunk,
254 				int page_start, int page_end)
255 {
256 	flush_cache_vmap(
257 		pcpu_chunk_addr(chunk, pcpu_low_unit_cpu, page_start),
258 		pcpu_chunk_addr(chunk, pcpu_high_unit_cpu, page_end));
259 }
260 
261 /**
262  * pcpu_populate_chunk - populate and map an area of a pcpu_chunk
263  * @chunk: chunk of interest
264  * @page_start: the start page
265  * @page_end: the end page
266  *
267  * For each cpu, populate and map pages [@page_start,@page_end) into
268  * @chunk.
269  *
270  * CONTEXT:
271  * pcpu_alloc_mutex, does GFP_KERNEL allocation.
272  */
273 static int pcpu_populate_chunk(struct pcpu_chunk *chunk,
274 			       int page_start, int page_end)
275 {
276 	struct page **pages;
277 
278 	pages = pcpu_get_pages(chunk);
279 	if (!pages)
280 		return -ENOMEM;
281 
282 	if (pcpu_alloc_pages(chunk, pages, page_start, page_end))
283 		return -ENOMEM;
284 
285 	if (pcpu_map_pages(chunk, pages, page_start, page_end)) {
286 		pcpu_free_pages(chunk, pages, page_start, page_end);
287 		return -ENOMEM;
288 	}
289 	pcpu_post_map_flush(chunk, page_start, page_end);
290 
291 	return 0;
292 }
293 
294 /**
295  * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk
296  * @chunk: chunk to depopulate
297  * @page_start: the start page
298  * @page_end: the end page
299  *
300  * For each cpu, depopulate and unmap pages [@page_start,@page_end)
301  * from @chunk.
302  *
303  * CONTEXT:
304  * pcpu_alloc_mutex.
305  */
306 static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk,
307 				  int page_start, int page_end)
308 {
309 	struct page **pages;
310 
311 	/*
312 	 * If control reaches here, there must have been at least one
313 	 * successful population attempt so the temp pages array must
314 	 * be available now.
315 	 */
316 	pages = pcpu_get_pages(chunk);
317 	BUG_ON(!pages);
318 
319 	/* unmap and free */
320 	pcpu_pre_unmap_flush(chunk, page_start, page_end);
321 
322 	pcpu_unmap_pages(chunk, pages, page_start, page_end);
323 
324 	/* no need to flush tlb, vmalloc will handle it lazily */
325 
326 	pcpu_free_pages(chunk, pages, page_start, page_end);
327 }
328 
329 static struct pcpu_chunk *pcpu_create_chunk(void)
330 {
331 	struct pcpu_chunk *chunk;
332 	struct vm_struct **vms;
333 
334 	chunk = pcpu_alloc_chunk();
335 	if (!chunk)
336 		return NULL;
337 
338 	vms = pcpu_get_vm_areas(pcpu_group_offsets, pcpu_group_sizes,
339 				pcpu_nr_groups, pcpu_atom_size);
340 	if (!vms) {
341 		pcpu_free_chunk(chunk);
342 		return NULL;
343 	}
344 
345 	chunk->data = vms;
346 	chunk->base_addr = vms[0]->addr - pcpu_group_offsets[0];
347 	return chunk;
348 }
349 
350 static void pcpu_destroy_chunk(struct pcpu_chunk *chunk)
351 {
352 	if (chunk && chunk->data)
353 		pcpu_free_vm_areas(chunk->data, pcpu_nr_groups);
354 	pcpu_free_chunk(chunk);
355 }
356 
357 static struct page *pcpu_addr_to_page(void *addr)
358 {
359 	return vmalloc_to_page(addr);
360 }
361 
362 static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai)
363 {
364 	/* no extra restriction */
365 	return 0;
366 }
367