xref: /linux/mm/percpu-stats.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/percpu-debug.c
4  *
5  * Copyright (C) 2017		Facebook Inc.
6  * Copyright (C) 2017		Dennis Zhou <dennis@kernel.org>
7  *
8  * Prints statistics about the percpu allocator and backing chunks.
9  */
10 #include <linux/debugfs.h>
11 #include <linux/list.h>
12 #include <linux/percpu.h>
13 #include <linux/seq_file.h>
14 #include <linux/sort.h>
15 #include <linux/vmalloc.h>
16 
17 #include "percpu-internal.h"
18 
19 #define P(X, Y) \
20 	seq_printf(m, "  %-20s: %12lld\n", X, (long long int)Y)
21 
22 struct percpu_stats pcpu_stats;
23 struct pcpu_alloc_info pcpu_stats_ai;
24 
25 static int cmpint(const void *a, const void *b)
26 {
27 	return *(int *)a - *(int *)b;
28 }
29 
30 /*
31  * Iterates over all chunks to find the max nr_alloc entries.
32  */
33 static int find_max_nr_alloc(void)
34 {
35 	struct pcpu_chunk *chunk;
36 	int slot, max_nr_alloc;
37 	enum pcpu_chunk_type type;
38 
39 	max_nr_alloc = 0;
40 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
41 		for (slot = 0; slot < pcpu_nr_slots; slot++)
42 			list_for_each_entry(chunk, &pcpu_chunk_list(type)[slot],
43 					    list)
44 				max_nr_alloc = max(max_nr_alloc,
45 						   chunk->nr_alloc);
46 
47 	return max_nr_alloc;
48 }
49 
50 /*
51  * Prints out chunk state. Fragmentation is considered between
52  * the beginning of the chunk to the last allocation.
53  *
54  * All statistics are in bytes unless stated otherwise.
55  */
56 static void chunk_map_stats(struct seq_file *m, struct pcpu_chunk *chunk,
57 			    int *buffer)
58 {
59 	struct pcpu_block_md *chunk_md = &chunk->chunk_md;
60 	int i, last_alloc, as_len, start, end;
61 	int *alloc_sizes, *p;
62 	/* statistics */
63 	int sum_frag = 0, max_frag = 0;
64 	int cur_min_alloc = 0, cur_med_alloc = 0, cur_max_alloc = 0;
65 
66 	alloc_sizes = buffer;
67 
68 	/*
69 	 * find_last_bit returns the start value if nothing found.
70 	 * Therefore, we must determine if it is a failure of find_last_bit
71 	 * and set the appropriate value.
72 	 */
73 	last_alloc = find_last_bit(chunk->alloc_map,
74 				   pcpu_chunk_map_bits(chunk) -
75 				   chunk->end_offset / PCPU_MIN_ALLOC_SIZE - 1);
76 	last_alloc = test_bit(last_alloc, chunk->alloc_map) ?
77 		     last_alloc + 1 : 0;
78 
79 	as_len = 0;
80 	start = chunk->start_offset / PCPU_MIN_ALLOC_SIZE;
81 
82 	/*
83 	 * If a bit is set in the allocation map, the bound_map identifies
84 	 * where the allocation ends.  If the allocation is not set, the
85 	 * bound_map does not identify free areas as it is only kept accurate
86 	 * on allocation, not free.
87 	 *
88 	 * Positive values are allocations and negative values are free
89 	 * fragments.
90 	 */
91 	while (start < last_alloc) {
92 		if (test_bit(start, chunk->alloc_map)) {
93 			end = find_next_bit(chunk->bound_map, last_alloc,
94 					    start + 1);
95 			alloc_sizes[as_len] = 1;
96 		} else {
97 			end = find_next_bit(chunk->alloc_map, last_alloc,
98 					    start + 1);
99 			alloc_sizes[as_len] = -1;
100 		}
101 
102 		alloc_sizes[as_len++] *= (end - start) * PCPU_MIN_ALLOC_SIZE;
103 
104 		start = end;
105 	}
106 
107 	/*
108 	 * The negative values are free fragments and thus sorting gives the
109 	 * free fragments at the beginning in largest first order.
110 	 */
111 	if (as_len > 0) {
112 		sort(alloc_sizes, as_len, sizeof(int), cmpint, NULL);
113 
114 		/* iterate through the unallocated fragments */
115 		for (i = 0, p = alloc_sizes; *p < 0 && i < as_len; i++, p++) {
116 			sum_frag -= *p;
117 			max_frag = max(max_frag, -1 * (*p));
118 		}
119 
120 		cur_min_alloc = alloc_sizes[i];
121 		cur_med_alloc = alloc_sizes[(i + as_len - 1) / 2];
122 		cur_max_alloc = alloc_sizes[as_len - 1];
123 	}
124 
125 	P("nr_alloc", chunk->nr_alloc);
126 	P("max_alloc_size", chunk->max_alloc_size);
127 	P("empty_pop_pages", chunk->nr_empty_pop_pages);
128 	P("first_bit", chunk_md->first_free);
129 	P("free_bytes", chunk->free_bytes);
130 	P("contig_bytes", chunk_md->contig_hint * PCPU_MIN_ALLOC_SIZE);
131 	P("sum_frag", sum_frag);
132 	P("max_frag", max_frag);
133 	P("cur_min_alloc", cur_min_alloc);
134 	P("cur_med_alloc", cur_med_alloc);
135 	P("cur_max_alloc", cur_max_alloc);
136 #ifdef CONFIG_MEMCG_KMEM
137 	P("memcg_aware", pcpu_is_memcg_chunk(pcpu_chunk_type(chunk)));
138 #endif
139 	seq_putc(m, '\n');
140 }
141 
142 static int percpu_stats_show(struct seq_file *m, void *v)
143 {
144 	struct pcpu_chunk *chunk;
145 	int slot, max_nr_alloc;
146 	int *buffer;
147 	enum pcpu_chunk_type type;
148 	int nr_empty_pop_pages;
149 
150 alloc_buffer:
151 	spin_lock_irq(&pcpu_lock);
152 	max_nr_alloc = find_max_nr_alloc();
153 	spin_unlock_irq(&pcpu_lock);
154 
155 	/* there can be at most this many free and allocated fragments */
156 	buffer = vmalloc(array_size(sizeof(int), (2 * max_nr_alloc + 1)));
157 	if (!buffer)
158 		return -ENOMEM;
159 
160 	spin_lock_irq(&pcpu_lock);
161 
162 	/* if the buffer allocated earlier is too small */
163 	if (max_nr_alloc < find_max_nr_alloc()) {
164 		spin_unlock_irq(&pcpu_lock);
165 		vfree(buffer);
166 		goto alloc_buffer;
167 	}
168 
169 	nr_empty_pop_pages = 0;
170 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++)
171 		nr_empty_pop_pages += pcpu_nr_empty_pop_pages[type];
172 
173 #define PL(X)								\
174 	seq_printf(m, "  %-20s: %12lld\n", #X, (long long int)pcpu_stats_ai.X)
175 
176 	seq_printf(m,
177 			"Percpu Memory Statistics\n"
178 			"Allocation Info:\n"
179 			"----------------------------------------\n");
180 	PL(unit_size);
181 	PL(static_size);
182 	PL(reserved_size);
183 	PL(dyn_size);
184 	PL(atom_size);
185 	PL(alloc_size);
186 	seq_putc(m, '\n');
187 
188 #undef PL
189 
190 #define PU(X) \
191 	seq_printf(m, "  %-20s: %12llu\n", #X, (unsigned long long)pcpu_stats.X)
192 
193 	seq_printf(m,
194 			"Global Stats:\n"
195 			"----------------------------------------\n");
196 	PU(nr_alloc);
197 	PU(nr_dealloc);
198 	PU(nr_cur_alloc);
199 	PU(nr_max_alloc);
200 	PU(nr_chunks);
201 	PU(nr_max_chunks);
202 	PU(min_alloc_size);
203 	PU(max_alloc_size);
204 	P("empty_pop_pages", nr_empty_pop_pages);
205 	seq_putc(m, '\n');
206 
207 #undef PU
208 
209 	seq_printf(m,
210 			"Per Chunk Stats:\n"
211 			"----------------------------------------\n");
212 
213 	if (pcpu_reserved_chunk) {
214 		seq_puts(m, "Chunk: <- Reserved Chunk\n");
215 		chunk_map_stats(m, pcpu_reserved_chunk, buffer);
216 	}
217 
218 	for (type = 0; type < PCPU_NR_CHUNK_TYPES; type++) {
219 		for (slot = 0; slot < pcpu_nr_slots; slot++) {
220 			list_for_each_entry(chunk, &pcpu_chunk_list(type)[slot],
221 					    list) {
222 				if (chunk == pcpu_first_chunk) {
223 					seq_puts(m, "Chunk: <- First Chunk\n");
224 					chunk_map_stats(m, chunk, buffer);
225 				} else {
226 					seq_puts(m, "Chunk:\n");
227 					chunk_map_stats(m, chunk, buffer);
228 				}
229 			}
230 		}
231 	}
232 
233 	spin_unlock_irq(&pcpu_lock);
234 
235 	vfree(buffer);
236 
237 	return 0;
238 }
239 DEFINE_SHOW_ATTRIBUTE(percpu_stats);
240 
241 static int __init init_percpu_stats_debugfs(void)
242 {
243 	debugfs_create_file("percpu_stats", 0444, NULL, NULL,
244 			&percpu_stats_fops);
245 
246 	return 0;
247 }
248 
249 late_initcall(init_percpu_stats_debugfs);
250