xref: /linux/mm/pagewalk.c (revision e58e871becec2d3b04ed91c0c16fe8deac9c9dfa)
1 #include <linux/mm.h>
2 #include <linux/highmem.h>
3 #include <linux/sched.h>
4 #include <linux/hugetlb.h>
5 
6 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
7 			  struct mm_walk *walk)
8 {
9 	pte_t *pte;
10 	int err = 0;
11 
12 	pte = pte_offset_map(pmd, addr);
13 	for (;;) {
14 		err = walk->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
15 		if (err)
16 		       break;
17 		addr += PAGE_SIZE;
18 		if (addr == end)
19 			break;
20 		pte++;
21 	}
22 
23 	pte_unmap(pte);
24 	return err;
25 }
26 
27 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
28 			  struct mm_walk *walk)
29 {
30 	pmd_t *pmd;
31 	unsigned long next;
32 	int err = 0;
33 
34 	pmd = pmd_offset(pud, addr);
35 	do {
36 again:
37 		next = pmd_addr_end(addr, end);
38 		if (pmd_none(*pmd) || !walk->vma) {
39 			if (walk->pte_hole)
40 				err = walk->pte_hole(addr, next, walk);
41 			if (err)
42 				break;
43 			continue;
44 		}
45 		/*
46 		 * This implies that each ->pmd_entry() handler
47 		 * needs to know about pmd_trans_huge() pmds
48 		 */
49 		if (walk->pmd_entry)
50 			err = walk->pmd_entry(pmd, addr, next, walk);
51 		if (err)
52 			break;
53 
54 		/*
55 		 * Check this here so we only break down trans_huge
56 		 * pages when we _need_ to
57 		 */
58 		if (!walk->pte_entry)
59 			continue;
60 
61 		split_huge_pmd(walk->vma, pmd, addr);
62 		if (pmd_trans_unstable(pmd))
63 			goto again;
64 		err = walk_pte_range(pmd, addr, next, walk);
65 		if (err)
66 			break;
67 	} while (pmd++, addr = next, addr != end);
68 
69 	return err;
70 }
71 
72 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
73 			  struct mm_walk *walk)
74 {
75 	pud_t *pud;
76 	unsigned long next;
77 	int err = 0;
78 
79 	pud = pud_offset(p4d, addr);
80 	do {
81  again:
82 		next = pud_addr_end(addr, end);
83 		if (pud_none(*pud) || !walk->vma) {
84 			if (walk->pte_hole)
85 				err = walk->pte_hole(addr, next, walk);
86 			if (err)
87 				break;
88 			continue;
89 		}
90 
91 		if (walk->pud_entry) {
92 			spinlock_t *ptl = pud_trans_huge_lock(pud, walk->vma);
93 
94 			if (ptl) {
95 				err = walk->pud_entry(pud, addr, next, walk);
96 				spin_unlock(ptl);
97 				if (err)
98 					break;
99 				continue;
100 			}
101 		}
102 
103 		split_huge_pud(walk->vma, pud, addr);
104 		if (pud_none(*pud))
105 			goto again;
106 
107 		if (walk->pmd_entry || walk->pte_entry)
108 			err = walk_pmd_range(pud, addr, next, walk);
109 		if (err)
110 			break;
111 	} while (pud++, addr = next, addr != end);
112 
113 	return err;
114 }
115 
116 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
117 			  struct mm_walk *walk)
118 {
119 	p4d_t *p4d;
120 	unsigned long next;
121 	int err = 0;
122 
123 	p4d = p4d_offset(pgd, addr);
124 	do {
125 		next = p4d_addr_end(addr, end);
126 		if (p4d_none_or_clear_bad(p4d)) {
127 			if (walk->pte_hole)
128 				err = walk->pte_hole(addr, next, walk);
129 			if (err)
130 				break;
131 			continue;
132 		}
133 		if (walk->pmd_entry || walk->pte_entry)
134 			err = walk_pud_range(p4d, addr, next, walk);
135 		if (err)
136 			break;
137 	} while (p4d++, addr = next, addr != end);
138 
139 	return err;
140 }
141 
142 static int walk_pgd_range(unsigned long addr, unsigned long end,
143 			  struct mm_walk *walk)
144 {
145 	pgd_t *pgd;
146 	unsigned long next;
147 	int err = 0;
148 
149 	pgd = pgd_offset(walk->mm, addr);
150 	do {
151 		next = pgd_addr_end(addr, end);
152 		if (pgd_none_or_clear_bad(pgd)) {
153 			if (walk->pte_hole)
154 				err = walk->pte_hole(addr, next, walk);
155 			if (err)
156 				break;
157 			continue;
158 		}
159 		if (walk->pmd_entry || walk->pte_entry)
160 			err = walk_p4d_range(pgd, addr, next, walk);
161 		if (err)
162 			break;
163 	} while (pgd++, addr = next, addr != end);
164 
165 	return err;
166 }
167 
168 #ifdef CONFIG_HUGETLB_PAGE
169 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
170 				       unsigned long end)
171 {
172 	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
173 	return boundary < end ? boundary : end;
174 }
175 
176 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
177 			      struct mm_walk *walk)
178 {
179 	struct vm_area_struct *vma = walk->vma;
180 	struct hstate *h = hstate_vma(vma);
181 	unsigned long next;
182 	unsigned long hmask = huge_page_mask(h);
183 	pte_t *pte;
184 	int err = 0;
185 
186 	do {
187 		next = hugetlb_entry_end(h, addr, end);
188 		pte = huge_pte_offset(walk->mm, addr & hmask);
189 		if (pte && walk->hugetlb_entry)
190 			err = walk->hugetlb_entry(pte, hmask, addr, next, walk);
191 		if (err)
192 			break;
193 	} while (addr = next, addr != end);
194 
195 	return err;
196 }
197 
198 #else /* CONFIG_HUGETLB_PAGE */
199 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
200 			      struct mm_walk *walk)
201 {
202 	return 0;
203 }
204 
205 #endif /* CONFIG_HUGETLB_PAGE */
206 
207 /*
208  * Decide whether we really walk over the current vma on [@start, @end)
209  * or skip it via the returned value. Return 0 if we do walk over the
210  * current vma, and return 1 if we skip the vma. Negative values means
211  * error, where we abort the current walk.
212  */
213 static int walk_page_test(unsigned long start, unsigned long end,
214 			struct mm_walk *walk)
215 {
216 	struct vm_area_struct *vma = walk->vma;
217 
218 	if (walk->test_walk)
219 		return walk->test_walk(start, end, walk);
220 
221 	/*
222 	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
223 	 * range, so we don't walk over it as we do for normal vmas. However,
224 	 * Some callers are interested in handling hole range and they don't
225 	 * want to just ignore any single address range. Such users certainly
226 	 * define their ->pte_hole() callbacks, so let's delegate them to handle
227 	 * vma(VM_PFNMAP).
228 	 */
229 	if (vma->vm_flags & VM_PFNMAP) {
230 		int err = 1;
231 		if (walk->pte_hole)
232 			err = walk->pte_hole(start, end, walk);
233 		return err ? err : 1;
234 	}
235 	return 0;
236 }
237 
238 static int __walk_page_range(unsigned long start, unsigned long end,
239 			struct mm_walk *walk)
240 {
241 	int err = 0;
242 	struct vm_area_struct *vma = walk->vma;
243 
244 	if (vma && is_vm_hugetlb_page(vma)) {
245 		if (walk->hugetlb_entry)
246 			err = walk_hugetlb_range(start, end, walk);
247 	} else
248 		err = walk_pgd_range(start, end, walk);
249 
250 	return err;
251 }
252 
253 /**
254  * walk_page_range - walk page table with caller specific callbacks
255  *
256  * Recursively walk the page table tree of the process represented by @walk->mm
257  * within the virtual address range [@start, @end). During walking, we can do
258  * some caller-specific works for each entry, by setting up pmd_entry(),
259  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
260  * callbacks, the associated entries/pages are just ignored.
261  * The return values of these callbacks are commonly defined like below:
262  *  - 0  : succeeded to handle the current entry, and if you don't reach the
263  *         end address yet, continue to walk.
264  *  - >0 : succeeded to handle the current entry, and return to the caller
265  *         with caller specific value.
266  *  - <0 : failed to handle the current entry, and return to the caller
267  *         with error code.
268  *
269  * Before starting to walk page table, some callers want to check whether
270  * they really want to walk over the current vma, typically by checking
271  * its vm_flags. walk_page_test() and @walk->test_walk() are used for this
272  * purpose.
273  *
274  * struct mm_walk keeps current values of some common data like vma and pmd,
275  * which are useful for the access from callbacks. If you want to pass some
276  * caller-specific data to callbacks, @walk->private should be helpful.
277  *
278  * Locking:
279  *   Callers of walk_page_range() and walk_page_vma() should hold
280  *   @walk->mm->mmap_sem, because these function traverse vma list and/or
281  *   access to vma's data.
282  */
283 int walk_page_range(unsigned long start, unsigned long end,
284 		    struct mm_walk *walk)
285 {
286 	int err = 0;
287 	unsigned long next;
288 	struct vm_area_struct *vma;
289 
290 	if (start >= end)
291 		return -EINVAL;
292 
293 	if (!walk->mm)
294 		return -EINVAL;
295 
296 	VM_BUG_ON_MM(!rwsem_is_locked(&walk->mm->mmap_sem), walk->mm);
297 
298 	vma = find_vma(walk->mm, start);
299 	do {
300 		if (!vma) { /* after the last vma */
301 			walk->vma = NULL;
302 			next = end;
303 		} else if (start < vma->vm_start) { /* outside vma */
304 			walk->vma = NULL;
305 			next = min(end, vma->vm_start);
306 		} else { /* inside vma */
307 			walk->vma = vma;
308 			next = min(end, vma->vm_end);
309 			vma = vma->vm_next;
310 
311 			err = walk_page_test(start, next, walk);
312 			if (err > 0) {
313 				/*
314 				 * positive return values are purely for
315 				 * controlling the pagewalk, so should never
316 				 * be passed to the callers.
317 				 */
318 				err = 0;
319 				continue;
320 			}
321 			if (err < 0)
322 				break;
323 		}
324 		if (walk->vma || walk->pte_hole)
325 			err = __walk_page_range(start, next, walk);
326 		if (err)
327 			break;
328 	} while (start = next, start < end);
329 	return err;
330 }
331 
332 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk)
333 {
334 	int err;
335 
336 	if (!walk->mm)
337 		return -EINVAL;
338 
339 	VM_BUG_ON(!rwsem_is_locked(&walk->mm->mmap_sem));
340 	VM_BUG_ON(!vma);
341 	walk->vma = vma;
342 	err = walk_page_test(vma->vm_start, vma->vm_end, walk);
343 	if (err > 0)
344 		return 0;
345 	if (err < 0)
346 		return err;
347 	return __walk_page_range(vma->vm_start, vma->vm_end, walk);
348 }
349