xref: /linux/mm/pagewalk.c (revision c2a96b7f187fb6a455836d4a6e113947ff11de97)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6 
7 /*
8  * We want to know the real level where a entry is located ignoring any
9  * folding of levels which may be happening. For example if p4d is folded then
10  * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11  */
12 static int real_depth(int depth)
13 {
14 	if (depth == 3 && PTRS_PER_PMD == 1)
15 		depth = 2;
16 	if (depth == 2 && PTRS_PER_PUD == 1)
17 		depth = 1;
18 	if (depth == 1 && PTRS_PER_P4D == 1)
19 		depth = 0;
20 	return depth;
21 }
22 
23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24 				unsigned long end, struct mm_walk *walk)
25 {
26 	const struct mm_walk_ops *ops = walk->ops;
27 	int err = 0;
28 
29 	for (;;) {
30 		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31 		if (err)
32 		       break;
33 		if (addr >= end - PAGE_SIZE)
34 			break;
35 		addr += PAGE_SIZE;
36 		pte++;
37 	}
38 	return err;
39 }
40 
41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42 			  struct mm_walk *walk)
43 {
44 	pte_t *pte;
45 	int err = 0;
46 	spinlock_t *ptl;
47 
48 	if (walk->no_vma) {
49 		/*
50 		 * pte_offset_map() might apply user-specific validation.
51 		 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap()
52 		 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear),
53 		 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them.
54 		 */
55 		if (walk->mm == &init_mm || addr >= TASK_SIZE)
56 			pte = pte_offset_kernel(pmd, addr);
57 		else
58 			pte = pte_offset_map(pmd, addr);
59 		if (pte) {
60 			err = walk_pte_range_inner(pte, addr, end, walk);
61 			if (walk->mm != &init_mm && addr < TASK_SIZE)
62 				pte_unmap(pte);
63 		}
64 	} else {
65 		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
66 		if (pte) {
67 			err = walk_pte_range_inner(pte, addr, end, walk);
68 			pte_unmap_unlock(pte, ptl);
69 		}
70 	}
71 	if (!pte)
72 		walk->action = ACTION_AGAIN;
73 	return err;
74 }
75 
76 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
77 			  struct mm_walk *walk)
78 {
79 	pmd_t *pmd;
80 	unsigned long next;
81 	const struct mm_walk_ops *ops = walk->ops;
82 	int err = 0;
83 	int depth = real_depth(3);
84 
85 	pmd = pmd_offset(pud, addr);
86 	do {
87 again:
88 		next = pmd_addr_end(addr, end);
89 		if (pmd_none(*pmd)) {
90 			if (ops->pte_hole)
91 				err = ops->pte_hole(addr, next, depth, walk);
92 			if (err)
93 				break;
94 			continue;
95 		}
96 
97 		walk->action = ACTION_SUBTREE;
98 
99 		/*
100 		 * This implies that each ->pmd_entry() handler
101 		 * needs to know about pmd_trans_huge() pmds
102 		 */
103 		if (ops->pmd_entry)
104 			err = ops->pmd_entry(pmd, addr, next, walk);
105 		if (err)
106 			break;
107 
108 		if (walk->action == ACTION_AGAIN)
109 			goto again;
110 
111 		/*
112 		 * Check this here so we only break down trans_huge
113 		 * pages when we _need_ to
114 		 */
115 		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
116 		    walk->action == ACTION_CONTINUE ||
117 		    !(ops->pte_entry))
118 			continue;
119 
120 		if (walk->vma)
121 			split_huge_pmd(walk->vma, pmd, addr);
122 
123 		err = walk_pte_range(pmd, addr, next, walk);
124 		if (err)
125 			break;
126 
127 		if (walk->action == ACTION_AGAIN)
128 			goto again;
129 
130 	} while (pmd++, addr = next, addr != end);
131 
132 	return err;
133 }
134 
135 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
136 			  struct mm_walk *walk)
137 {
138 	pud_t *pud;
139 	unsigned long next;
140 	const struct mm_walk_ops *ops = walk->ops;
141 	int err = 0;
142 	int depth = real_depth(2);
143 
144 	pud = pud_offset(p4d, addr);
145 	do {
146  again:
147 		next = pud_addr_end(addr, end);
148 		if (pud_none(*pud)) {
149 			if (ops->pte_hole)
150 				err = ops->pte_hole(addr, next, depth, walk);
151 			if (err)
152 				break;
153 			continue;
154 		}
155 
156 		walk->action = ACTION_SUBTREE;
157 
158 		if (ops->pud_entry)
159 			err = ops->pud_entry(pud, addr, next, walk);
160 		if (err)
161 			break;
162 
163 		if (walk->action == ACTION_AGAIN)
164 			goto again;
165 
166 		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
167 		    walk->action == ACTION_CONTINUE ||
168 		    !(ops->pmd_entry || ops->pte_entry))
169 			continue;
170 
171 		if (walk->vma)
172 			split_huge_pud(walk->vma, pud, addr);
173 		if (pud_none(*pud))
174 			goto again;
175 
176 		err = walk_pmd_range(pud, addr, next, walk);
177 		if (err)
178 			break;
179 	} while (pud++, addr = next, addr != end);
180 
181 	return err;
182 }
183 
184 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
185 			  struct mm_walk *walk)
186 {
187 	p4d_t *p4d;
188 	unsigned long next;
189 	const struct mm_walk_ops *ops = walk->ops;
190 	int err = 0;
191 	int depth = real_depth(1);
192 
193 	p4d = p4d_offset(pgd, addr);
194 	do {
195 		next = p4d_addr_end(addr, end);
196 		if (p4d_none_or_clear_bad(p4d)) {
197 			if (ops->pte_hole)
198 				err = ops->pte_hole(addr, next, depth, walk);
199 			if (err)
200 				break;
201 			continue;
202 		}
203 		if (ops->p4d_entry) {
204 			err = ops->p4d_entry(p4d, addr, next, walk);
205 			if (err)
206 				break;
207 		}
208 		if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
209 			err = walk_pud_range(p4d, addr, next, walk);
210 		if (err)
211 			break;
212 	} while (p4d++, addr = next, addr != end);
213 
214 	return err;
215 }
216 
217 static int walk_pgd_range(unsigned long addr, unsigned long end,
218 			  struct mm_walk *walk)
219 {
220 	pgd_t *pgd;
221 	unsigned long next;
222 	const struct mm_walk_ops *ops = walk->ops;
223 	int err = 0;
224 
225 	if (walk->pgd)
226 		pgd = walk->pgd + pgd_index(addr);
227 	else
228 		pgd = pgd_offset(walk->mm, addr);
229 	do {
230 		next = pgd_addr_end(addr, end);
231 		if (pgd_none_or_clear_bad(pgd)) {
232 			if (ops->pte_hole)
233 				err = ops->pte_hole(addr, next, 0, walk);
234 			if (err)
235 				break;
236 			continue;
237 		}
238 		if (ops->pgd_entry) {
239 			err = ops->pgd_entry(pgd, addr, next, walk);
240 			if (err)
241 				break;
242 		}
243 		if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry)
244 			err = walk_p4d_range(pgd, addr, next, walk);
245 		if (err)
246 			break;
247 	} while (pgd++, addr = next, addr != end);
248 
249 	return err;
250 }
251 
252 #ifdef CONFIG_HUGETLB_PAGE
253 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
254 				       unsigned long end)
255 {
256 	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
257 	return boundary < end ? boundary : end;
258 }
259 
260 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
261 			      struct mm_walk *walk)
262 {
263 	struct vm_area_struct *vma = walk->vma;
264 	struct hstate *h = hstate_vma(vma);
265 	unsigned long next;
266 	unsigned long hmask = huge_page_mask(h);
267 	unsigned long sz = huge_page_size(h);
268 	pte_t *pte;
269 	const struct mm_walk_ops *ops = walk->ops;
270 	int err = 0;
271 
272 	hugetlb_vma_lock_read(vma);
273 	do {
274 		next = hugetlb_entry_end(h, addr, end);
275 		pte = hugetlb_walk(vma, addr & hmask, sz);
276 		if (pte)
277 			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
278 		else if (ops->pte_hole)
279 			err = ops->pte_hole(addr, next, -1, walk);
280 		if (err)
281 			break;
282 	} while (addr = next, addr != end);
283 	hugetlb_vma_unlock_read(vma);
284 
285 	return err;
286 }
287 
288 #else /* CONFIG_HUGETLB_PAGE */
289 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
290 			      struct mm_walk *walk)
291 {
292 	return 0;
293 }
294 
295 #endif /* CONFIG_HUGETLB_PAGE */
296 
297 /*
298  * Decide whether we really walk over the current vma on [@start, @end)
299  * or skip it via the returned value. Return 0 if we do walk over the
300  * current vma, and return 1 if we skip the vma. Negative values means
301  * error, where we abort the current walk.
302  */
303 static int walk_page_test(unsigned long start, unsigned long end,
304 			struct mm_walk *walk)
305 {
306 	struct vm_area_struct *vma = walk->vma;
307 	const struct mm_walk_ops *ops = walk->ops;
308 
309 	if (ops->test_walk)
310 		return ops->test_walk(start, end, walk);
311 
312 	/*
313 	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
314 	 * range, so we don't walk over it as we do for normal vmas. However,
315 	 * Some callers are interested in handling hole range and they don't
316 	 * want to just ignore any single address range. Such users certainly
317 	 * define their ->pte_hole() callbacks, so let's delegate them to handle
318 	 * vma(VM_PFNMAP).
319 	 */
320 	if (vma->vm_flags & VM_PFNMAP) {
321 		int err = 1;
322 		if (ops->pte_hole)
323 			err = ops->pte_hole(start, end, -1, walk);
324 		return err ? err : 1;
325 	}
326 	return 0;
327 }
328 
329 static int __walk_page_range(unsigned long start, unsigned long end,
330 			struct mm_walk *walk)
331 {
332 	int err = 0;
333 	struct vm_area_struct *vma = walk->vma;
334 	const struct mm_walk_ops *ops = walk->ops;
335 
336 	if (ops->pre_vma) {
337 		err = ops->pre_vma(start, end, walk);
338 		if (err)
339 			return err;
340 	}
341 
342 	if (is_vm_hugetlb_page(vma)) {
343 		if (ops->hugetlb_entry)
344 			err = walk_hugetlb_range(start, end, walk);
345 	} else
346 		err = walk_pgd_range(start, end, walk);
347 
348 	if (ops->post_vma)
349 		ops->post_vma(walk);
350 
351 	return err;
352 }
353 
354 static inline void process_mm_walk_lock(struct mm_struct *mm,
355 					enum page_walk_lock walk_lock)
356 {
357 	if (walk_lock == PGWALK_RDLOCK)
358 		mmap_assert_locked(mm);
359 	else
360 		mmap_assert_write_locked(mm);
361 }
362 
363 static inline void process_vma_walk_lock(struct vm_area_struct *vma,
364 					 enum page_walk_lock walk_lock)
365 {
366 #ifdef CONFIG_PER_VMA_LOCK
367 	switch (walk_lock) {
368 	case PGWALK_WRLOCK:
369 		vma_start_write(vma);
370 		break;
371 	case PGWALK_WRLOCK_VERIFY:
372 		vma_assert_write_locked(vma);
373 		break;
374 	case PGWALK_RDLOCK:
375 		/* PGWALK_RDLOCK is handled by process_mm_walk_lock */
376 		break;
377 	}
378 #endif
379 }
380 
381 /**
382  * walk_page_range - walk page table with caller specific callbacks
383  * @mm:		mm_struct representing the target process of page table walk
384  * @start:	start address of the virtual address range
385  * @end:	end address of the virtual address range
386  * @ops:	operation to call during the walk
387  * @private:	private data for callbacks' usage
388  *
389  * Recursively walk the page table tree of the process represented by @mm
390  * within the virtual address range [@start, @end). During walking, we can do
391  * some caller-specific works for each entry, by setting up pmd_entry(),
392  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
393  * callbacks, the associated entries/pages are just ignored.
394  * The return values of these callbacks are commonly defined like below:
395  *
396  *  - 0  : succeeded to handle the current entry, and if you don't reach the
397  *         end address yet, continue to walk.
398  *  - >0 : succeeded to handle the current entry, and return to the caller
399  *         with caller specific value.
400  *  - <0 : failed to handle the current entry, and return to the caller
401  *         with error code.
402  *
403  * Before starting to walk page table, some callers want to check whether
404  * they really want to walk over the current vma, typically by checking
405  * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
406  * purpose.
407  *
408  * If operations need to be staged before and committed after a vma is walked,
409  * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
410  * since it is intended to handle commit-type operations, can't return any
411  * errors.
412  *
413  * struct mm_walk keeps current values of some common data like vma and pmd,
414  * which are useful for the access from callbacks. If you want to pass some
415  * caller-specific data to callbacks, @private should be helpful.
416  *
417  * Locking:
418  *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
419  *   because these function traverse vma list and/or access to vma's data.
420  */
421 int walk_page_range(struct mm_struct *mm, unsigned long start,
422 		unsigned long end, const struct mm_walk_ops *ops,
423 		void *private)
424 {
425 	int err = 0;
426 	unsigned long next;
427 	struct vm_area_struct *vma;
428 	struct mm_walk walk = {
429 		.ops		= ops,
430 		.mm		= mm,
431 		.private	= private,
432 	};
433 
434 	if (start >= end)
435 		return -EINVAL;
436 
437 	if (!walk.mm)
438 		return -EINVAL;
439 
440 	process_mm_walk_lock(walk.mm, ops->walk_lock);
441 
442 	vma = find_vma(walk.mm, start);
443 	do {
444 		if (!vma) { /* after the last vma */
445 			walk.vma = NULL;
446 			next = end;
447 			if (ops->pte_hole)
448 				err = ops->pte_hole(start, next, -1, &walk);
449 		} else if (start < vma->vm_start) { /* outside vma */
450 			walk.vma = NULL;
451 			next = min(end, vma->vm_start);
452 			if (ops->pte_hole)
453 				err = ops->pte_hole(start, next, -1, &walk);
454 		} else { /* inside vma */
455 			process_vma_walk_lock(vma, ops->walk_lock);
456 			walk.vma = vma;
457 			next = min(end, vma->vm_end);
458 			vma = find_vma(mm, vma->vm_end);
459 
460 			err = walk_page_test(start, next, &walk);
461 			if (err > 0) {
462 				/*
463 				 * positive return values are purely for
464 				 * controlling the pagewalk, so should never
465 				 * be passed to the callers.
466 				 */
467 				err = 0;
468 				continue;
469 			}
470 			if (err < 0)
471 				break;
472 			err = __walk_page_range(start, next, &walk);
473 		}
474 		if (err)
475 			break;
476 	} while (start = next, start < end);
477 	return err;
478 }
479 
480 /**
481  * walk_page_range_novma - walk a range of pagetables not backed by a vma
482  * @mm:		mm_struct representing the target process of page table walk
483  * @start:	start address of the virtual address range
484  * @end:	end address of the virtual address range
485  * @ops:	operation to call during the walk
486  * @pgd:	pgd to walk if different from mm->pgd
487  * @private:	private data for callbacks' usage
488  *
489  * Similar to walk_page_range() but can walk any page tables even if they are
490  * not backed by VMAs. Because 'unusual' entries may be walked this function
491  * will also not lock the PTEs for the pte_entry() callback. This is useful for
492  * walking the kernel pages tables or page tables for firmware.
493  *
494  * Note: Be careful to walk the kernel pages tables, the caller may be need to
495  * take other effective approache (mmap lock may be insufficient) to prevent
496  * the intermediate kernel page tables belonging to the specified address range
497  * from being freed (e.g. memory hot-remove).
498  */
499 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
500 			  unsigned long end, const struct mm_walk_ops *ops,
501 			  pgd_t *pgd,
502 			  void *private)
503 {
504 	struct mm_walk walk = {
505 		.ops		= ops,
506 		.mm		= mm,
507 		.pgd		= pgd,
508 		.private	= private,
509 		.no_vma		= true
510 	};
511 
512 	if (start >= end || !walk.mm)
513 		return -EINVAL;
514 
515 	/*
516 	 * 1) For walking the user virtual address space:
517 	 *
518 	 * The mmap lock protects the page walker from changes to the page
519 	 * tables during the walk.  However a read lock is insufficient to
520 	 * protect those areas which don't have a VMA as munmap() detaches
521 	 * the VMAs before downgrading to a read lock and actually tearing
522 	 * down PTEs/page tables. In which case, the mmap write lock should
523 	 * be hold.
524 	 *
525 	 * 2) For walking the kernel virtual address space:
526 	 *
527 	 * The kernel intermediate page tables usually do not be freed, so
528 	 * the mmap map read lock is sufficient. But there are some exceptions.
529 	 * E.g. memory hot-remove. In which case, the mmap lock is insufficient
530 	 * to prevent the intermediate kernel pages tables belonging to the
531 	 * specified address range from being freed. The caller should take
532 	 * other actions to prevent this race.
533 	 */
534 	if (mm == &init_mm)
535 		mmap_assert_locked(walk.mm);
536 	else
537 		mmap_assert_write_locked(walk.mm);
538 
539 	return walk_pgd_range(start, end, &walk);
540 }
541 
542 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start,
543 			unsigned long end, const struct mm_walk_ops *ops,
544 			void *private)
545 {
546 	struct mm_walk walk = {
547 		.ops		= ops,
548 		.mm		= vma->vm_mm,
549 		.vma		= vma,
550 		.private	= private,
551 	};
552 
553 	if (start >= end || !walk.mm)
554 		return -EINVAL;
555 	if (start < vma->vm_start || end > vma->vm_end)
556 		return -EINVAL;
557 
558 	process_mm_walk_lock(walk.mm, ops->walk_lock);
559 	process_vma_walk_lock(vma, ops->walk_lock);
560 	return __walk_page_range(start, end, &walk);
561 }
562 
563 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
564 		void *private)
565 {
566 	struct mm_walk walk = {
567 		.ops		= ops,
568 		.mm		= vma->vm_mm,
569 		.vma		= vma,
570 		.private	= private,
571 	};
572 
573 	if (!walk.mm)
574 		return -EINVAL;
575 
576 	process_mm_walk_lock(walk.mm, ops->walk_lock);
577 	process_vma_walk_lock(vma, ops->walk_lock);
578 	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
579 }
580 
581 /**
582  * walk_page_mapping - walk all memory areas mapped into a struct address_space.
583  * @mapping: Pointer to the struct address_space
584  * @first_index: First page offset in the address_space
585  * @nr: Number of incremental page offsets to cover
586  * @ops:	operation to call during the walk
587  * @private:	private data for callbacks' usage
588  *
589  * This function walks all memory areas mapped into a struct address_space.
590  * The walk is limited to only the given page-size index range, but if
591  * the index boundaries cross a huge page-table entry, that entry will be
592  * included.
593  *
594  * Also see walk_page_range() for additional information.
595  *
596  * Locking:
597  *   This function can't require that the struct mm_struct::mmap_lock is held,
598  *   since @mapping may be mapped by multiple processes. Instead
599  *   @mapping->i_mmap_rwsem must be held. This might have implications in the
600  *   callbacks, and it's up tho the caller to ensure that the
601  *   struct mm_struct::mmap_lock is not needed.
602  *
603  *   Also this means that a caller can't rely on the struct
604  *   vm_area_struct::vm_flags to be constant across a call,
605  *   except for immutable flags. Callers requiring this shouldn't use
606  *   this function.
607  *
608  * Return: 0 on success, negative error code on failure, positive number on
609  * caller defined premature termination.
610  */
611 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
612 		      pgoff_t nr, const struct mm_walk_ops *ops,
613 		      void *private)
614 {
615 	struct mm_walk walk = {
616 		.ops		= ops,
617 		.private	= private,
618 	};
619 	struct vm_area_struct *vma;
620 	pgoff_t vba, vea, cba, cea;
621 	unsigned long start_addr, end_addr;
622 	int err = 0;
623 
624 	lockdep_assert_held(&mapping->i_mmap_rwsem);
625 	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
626 				  first_index + nr - 1) {
627 		/* Clip to the vma */
628 		vba = vma->vm_pgoff;
629 		vea = vba + vma_pages(vma);
630 		cba = first_index;
631 		cba = max(cba, vba);
632 		cea = first_index + nr;
633 		cea = min(cea, vea);
634 
635 		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
636 		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
637 		if (start_addr >= end_addr)
638 			continue;
639 
640 		walk.vma = vma;
641 		walk.mm = vma->vm_mm;
642 
643 		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
644 		if (err > 0) {
645 			err = 0;
646 			break;
647 		} else if (err < 0)
648 			break;
649 
650 		err = __walk_page_range(start_addr, end_addr, &walk);
651 		if (err)
652 			break;
653 	}
654 
655 	return err;
656 }
657