xref: /linux/mm/pagewalk.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/highmem.h>
4 #include <linux/sched.h>
5 #include <linux/hugetlb.h>
6 
7 /*
8  * We want to know the real level where a entry is located ignoring any
9  * folding of levels which may be happening. For example if p4d is folded then
10  * a missing entry found at level 1 (p4d) is actually at level 0 (pgd).
11  */
12 static int real_depth(int depth)
13 {
14 	if (depth == 3 && PTRS_PER_PMD == 1)
15 		depth = 2;
16 	if (depth == 2 && PTRS_PER_PUD == 1)
17 		depth = 1;
18 	if (depth == 1 && PTRS_PER_P4D == 1)
19 		depth = 0;
20 	return depth;
21 }
22 
23 static int walk_pte_range_inner(pte_t *pte, unsigned long addr,
24 				unsigned long end, struct mm_walk *walk)
25 {
26 	const struct mm_walk_ops *ops = walk->ops;
27 	int err = 0;
28 
29 	for (;;) {
30 		err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk);
31 		if (err)
32 		       break;
33 		if (addr >= end - PAGE_SIZE)
34 			break;
35 		addr += PAGE_SIZE;
36 		pte++;
37 	}
38 	return err;
39 }
40 
41 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
42 			  struct mm_walk *walk)
43 {
44 	pte_t *pte;
45 	int err = 0;
46 	spinlock_t *ptl;
47 
48 	if (walk->no_vma) {
49 		pte = pte_offset_map(pmd, addr);
50 		err = walk_pte_range_inner(pte, addr, end, walk);
51 		pte_unmap(pte);
52 	} else {
53 		pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
54 		err = walk_pte_range_inner(pte, addr, end, walk);
55 		pte_unmap_unlock(pte, ptl);
56 	}
57 
58 	return err;
59 }
60 
61 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
62 			  struct mm_walk *walk)
63 {
64 	pmd_t *pmd;
65 	unsigned long next;
66 	const struct mm_walk_ops *ops = walk->ops;
67 	int err = 0;
68 	int depth = real_depth(3);
69 
70 	pmd = pmd_offset(pud, addr);
71 	do {
72 again:
73 		next = pmd_addr_end(addr, end);
74 		if (pmd_none(*pmd) || (!walk->vma && !walk->no_vma)) {
75 			if (ops->pte_hole)
76 				err = ops->pte_hole(addr, next, depth, walk);
77 			if (err)
78 				break;
79 			continue;
80 		}
81 
82 		walk->action = ACTION_SUBTREE;
83 
84 		/*
85 		 * This implies that each ->pmd_entry() handler
86 		 * needs to know about pmd_trans_huge() pmds
87 		 */
88 		if (ops->pmd_entry)
89 			err = ops->pmd_entry(pmd, addr, next, walk);
90 		if (err)
91 			break;
92 
93 		if (walk->action == ACTION_AGAIN)
94 			goto again;
95 
96 		/*
97 		 * Check this here so we only break down trans_huge
98 		 * pages when we _need_ to
99 		 */
100 		if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) ||
101 		    walk->action == ACTION_CONTINUE ||
102 		    !(ops->pte_entry))
103 			continue;
104 
105 		if (walk->vma) {
106 			split_huge_pmd(walk->vma, pmd, addr);
107 			if (pmd_trans_unstable(pmd))
108 				goto again;
109 		}
110 
111 		err = walk_pte_range(pmd, addr, next, walk);
112 		if (err)
113 			break;
114 	} while (pmd++, addr = next, addr != end);
115 
116 	return err;
117 }
118 
119 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
120 			  struct mm_walk *walk)
121 {
122 	pud_t *pud;
123 	unsigned long next;
124 	const struct mm_walk_ops *ops = walk->ops;
125 	int err = 0;
126 	int depth = real_depth(2);
127 
128 	pud = pud_offset(p4d, addr);
129 	do {
130  again:
131 		next = pud_addr_end(addr, end);
132 		if (pud_none(*pud) || (!walk->vma && !walk->no_vma)) {
133 			if (ops->pte_hole)
134 				err = ops->pte_hole(addr, next, depth, walk);
135 			if (err)
136 				break;
137 			continue;
138 		}
139 
140 		walk->action = ACTION_SUBTREE;
141 
142 		if (ops->pud_entry)
143 			err = ops->pud_entry(pud, addr, next, walk);
144 		if (err)
145 			break;
146 
147 		if (walk->action == ACTION_AGAIN)
148 			goto again;
149 
150 		if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) ||
151 		    walk->action == ACTION_CONTINUE ||
152 		    !(ops->pmd_entry || ops->pte_entry))
153 			continue;
154 
155 		if (walk->vma)
156 			split_huge_pud(walk->vma, pud, addr);
157 		if (pud_none(*pud))
158 			goto again;
159 
160 		err = walk_pmd_range(pud, addr, next, walk);
161 		if (err)
162 			break;
163 	} while (pud++, addr = next, addr != end);
164 
165 	return err;
166 }
167 
168 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
169 			  struct mm_walk *walk)
170 {
171 	p4d_t *p4d;
172 	unsigned long next;
173 	const struct mm_walk_ops *ops = walk->ops;
174 	int err = 0;
175 	int depth = real_depth(1);
176 
177 	p4d = p4d_offset(pgd, addr);
178 	do {
179 		next = p4d_addr_end(addr, end);
180 		if (p4d_none_or_clear_bad(p4d)) {
181 			if (ops->pte_hole)
182 				err = ops->pte_hole(addr, next, depth, walk);
183 			if (err)
184 				break;
185 			continue;
186 		}
187 		if (ops->p4d_entry) {
188 			err = ops->p4d_entry(p4d, addr, next, walk);
189 			if (err)
190 				break;
191 		}
192 		if (ops->pud_entry || ops->pmd_entry || ops->pte_entry)
193 			err = walk_pud_range(p4d, addr, next, walk);
194 		if (err)
195 			break;
196 	} while (p4d++, addr = next, addr != end);
197 
198 	return err;
199 }
200 
201 static int walk_pgd_range(unsigned long addr, unsigned long end,
202 			  struct mm_walk *walk)
203 {
204 	pgd_t *pgd;
205 	unsigned long next;
206 	const struct mm_walk_ops *ops = walk->ops;
207 	int err = 0;
208 
209 	if (walk->pgd)
210 		pgd = walk->pgd + pgd_index(addr);
211 	else
212 		pgd = pgd_offset(walk->mm, addr);
213 	do {
214 		next = pgd_addr_end(addr, end);
215 		if (pgd_none_or_clear_bad(pgd)) {
216 			if (ops->pte_hole)
217 				err = ops->pte_hole(addr, next, 0, walk);
218 			if (err)
219 				break;
220 			continue;
221 		}
222 		if (ops->pgd_entry) {
223 			err = ops->pgd_entry(pgd, addr, next, walk);
224 			if (err)
225 				break;
226 		}
227 		if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry ||
228 		    ops->pte_entry)
229 			err = walk_p4d_range(pgd, addr, next, walk);
230 		if (err)
231 			break;
232 	} while (pgd++, addr = next, addr != end);
233 
234 	return err;
235 }
236 
237 #ifdef CONFIG_HUGETLB_PAGE
238 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr,
239 				       unsigned long end)
240 {
241 	unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h);
242 	return boundary < end ? boundary : end;
243 }
244 
245 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
246 			      struct mm_walk *walk)
247 {
248 	struct vm_area_struct *vma = walk->vma;
249 	struct hstate *h = hstate_vma(vma);
250 	unsigned long next;
251 	unsigned long hmask = huge_page_mask(h);
252 	unsigned long sz = huge_page_size(h);
253 	pte_t *pte;
254 	const struct mm_walk_ops *ops = walk->ops;
255 	int err = 0;
256 
257 	do {
258 		next = hugetlb_entry_end(h, addr, end);
259 		pte = huge_pte_offset(walk->mm, addr & hmask, sz);
260 
261 		if (pte)
262 			err = ops->hugetlb_entry(pte, hmask, addr, next, walk);
263 		else if (ops->pte_hole)
264 			err = ops->pte_hole(addr, next, -1, walk);
265 
266 		if (err)
267 			break;
268 	} while (addr = next, addr != end);
269 
270 	return err;
271 }
272 
273 #else /* CONFIG_HUGETLB_PAGE */
274 static int walk_hugetlb_range(unsigned long addr, unsigned long end,
275 			      struct mm_walk *walk)
276 {
277 	return 0;
278 }
279 
280 #endif /* CONFIG_HUGETLB_PAGE */
281 
282 /*
283  * Decide whether we really walk over the current vma on [@start, @end)
284  * or skip it via the returned value. Return 0 if we do walk over the
285  * current vma, and return 1 if we skip the vma. Negative values means
286  * error, where we abort the current walk.
287  */
288 static int walk_page_test(unsigned long start, unsigned long end,
289 			struct mm_walk *walk)
290 {
291 	struct vm_area_struct *vma = walk->vma;
292 	const struct mm_walk_ops *ops = walk->ops;
293 
294 	if (ops->test_walk)
295 		return ops->test_walk(start, end, walk);
296 
297 	/*
298 	 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP
299 	 * range, so we don't walk over it as we do for normal vmas. However,
300 	 * Some callers are interested in handling hole range and they don't
301 	 * want to just ignore any single address range. Such users certainly
302 	 * define their ->pte_hole() callbacks, so let's delegate them to handle
303 	 * vma(VM_PFNMAP).
304 	 */
305 	if (vma->vm_flags & VM_PFNMAP) {
306 		int err = 1;
307 		if (ops->pte_hole)
308 			err = ops->pte_hole(start, end, -1, walk);
309 		return err ? err : 1;
310 	}
311 	return 0;
312 }
313 
314 static int __walk_page_range(unsigned long start, unsigned long end,
315 			struct mm_walk *walk)
316 {
317 	int err = 0;
318 	struct vm_area_struct *vma = walk->vma;
319 	const struct mm_walk_ops *ops = walk->ops;
320 
321 	if (vma && ops->pre_vma) {
322 		err = ops->pre_vma(start, end, walk);
323 		if (err)
324 			return err;
325 	}
326 
327 	if (vma && is_vm_hugetlb_page(vma)) {
328 		if (ops->hugetlb_entry)
329 			err = walk_hugetlb_range(start, end, walk);
330 	} else
331 		err = walk_pgd_range(start, end, walk);
332 
333 	if (vma && ops->post_vma)
334 		ops->post_vma(walk);
335 
336 	return err;
337 }
338 
339 /**
340  * walk_page_range - walk page table with caller specific callbacks
341  * @mm:		mm_struct representing the target process of page table walk
342  * @start:	start address of the virtual address range
343  * @end:	end address of the virtual address range
344  * @ops:	operation to call during the walk
345  * @private:	private data for callbacks' usage
346  *
347  * Recursively walk the page table tree of the process represented by @mm
348  * within the virtual address range [@start, @end). During walking, we can do
349  * some caller-specific works for each entry, by setting up pmd_entry(),
350  * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these
351  * callbacks, the associated entries/pages are just ignored.
352  * The return values of these callbacks are commonly defined like below:
353  *
354  *  - 0  : succeeded to handle the current entry, and if you don't reach the
355  *         end address yet, continue to walk.
356  *  - >0 : succeeded to handle the current entry, and return to the caller
357  *         with caller specific value.
358  *  - <0 : failed to handle the current entry, and return to the caller
359  *         with error code.
360  *
361  * Before starting to walk page table, some callers want to check whether
362  * they really want to walk over the current vma, typically by checking
363  * its vm_flags. walk_page_test() and @ops->test_walk() are used for this
364  * purpose.
365  *
366  * If operations need to be staged before and committed after a vma is walked,
367  * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(),
368  * since it is intended to handle commit-type operations, can't return any
369  * errors.
370  *
371  * struct mm_walk keeps current values of some common data like vma and pmd,
372  * which are useful for the access from callbacks. If you want to pass some
373  * caller-specific data to callbacks, @private should be helpful.
374  *
375  * Locking:
376  *   Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock,
377  *   because these function traverse vma list and/or access to vma's data.
378  */
379 int walk_page_range(struct mm_struct *mm, unsigned long start,
380 		unsigned long end, const struct mm_walk_ops *ops,
381 		void *private)
382 {
383 	int err = 0;
384 	unsigned long next;
385 	struct vm_area_struct *vma;
386 	struct mm_walk walk = {
387 		.ops		= ops,
388 		.mm		= mm,
389 		.private	= private,
390 	};
391 
392 	if (start >= end)
393 		return -EINVAL;
394 
395 	if (!walk.mm)
396 		return -EINVAL;
397 
398 	mmap_assert_locked(walk.mm);
399 
400 	vma = find_vma(walk.mm, start);
401 	do {
402 		if (!vma) { /* after the last vma */
403 			walk.vma = NULL;
404 			next = end;
405 		} else if (start < vma->vm_start) { /* outside vma */
406 			walk.vma = NULL;
407 			next = min(end, vma->vm_start);
408 		} else { /* inside vma */
409 			walk.vma = vma;
410 			next = min(end, vma->vm_end);
411 			vma = vma->vm_next;
412 
413 			err = walk_page_test(start, next, &walk);
414 			if (err > 0) {
415 				/*
416 				 * positive return values are purely for
417 				 * controlling the pagewalk, so should never
418 				 * be passed to the callers.
419 				 */
420 				err = 0;
421 				continue;
422 			}
423 			if (err < 0)
424 				break;
425 		}
426 		if (walk.vma || walk.ops->pte_hole)
427 			err = __walk_page_range(start, next, &walk);
428 		if (err)
429 			break;
430 	} while (start = next, start < end);
431 	return err;
432 }
433 
434 /*
435  * Similar to walk_page_range() but can walk any page tables even if they are
436  * not backed by VMAs. Because 'unusual' entries may be walked this function
437  * will also not lock the PTEs for the pte_entry() callback. This is useful for
438  * walking the kernel pages tables or page tables for firmware.
439  */
440 int walk_page_range_novma(struct mm_struct *mm, unsigned long start,
441 			  unsigned long end, const struct mm_walk_ops *ops,
442 			  pgd_t *pgd,
443 			  void *private)
444 {
445 	struct mm_walk walk = {
446 		.ops		= ops,
447 		.mm		= mm,
448 		.pgd		= pgd,
449 		.private	= private,
450 		.no_vma		= true
451 	};
452 
453 	if (start >= end || !walk.mm)
454 		return -EINVAL;
455 
456 	mmap_assert_locked(walk.mm);
457 
458 	return __walk_page_range(start, end, &walk);
459 }
460 
461 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops,
462 		void *private)
463 {
464 	struct mm_walk walk = {
465 		.ops		= ops,
466 		.mm		= vma->vm_mm,
467 		.vma		= vma,
468 		.private	= private,
469 	};
470 	int err;
471 
472 	if (!walk.mm)
473 		return -EINVAL;
474 
475 	mmap_assert_locked(walk.mm);
476 
477 	err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
478 	if (err > 0)
479 		return 0;
480 	if (err < 0)
481 		return err;
482 	return __walk_page_range(vma->vm_start, vma->vm_end, &walk);
483 }
484 
485 /**
486  * walk_page_mapping - walk all memory areas mapped into a struct address_space.
487  * @mapping: Pointer to the struct address_space
488  * @first_index: First page offset in the address_space
489  * @nr: Number of incremental page offsets to cover
490  * @ops:	operation to call during the walk
491  * @private:	private data for callbacks' usage
492  *
493  * This function walks all memory areas mapped into a struct address_space.
494  * The walk is limited to only the given page-size index range, but if
495  * the index boundaries cross a huge page-table entry, that entry will be
496  * included.
497  *
498  * Also see walk_page_range() for additional information.
499  *
500  * Locking:
501  *   This function can't require that the struct mm_struct::mmap_lock is held,
502  *   since @mapping may be mapped by multiple processes. Instead
503  *   @mapping->i_mmap_rwsem must be held. This might have implications in the
504  *   callbacks, and it's up tho the caller to ensure that the
505  *   struct mm_struct::mmap_lock is not needed.
506  *
507  *   Also this means that a caller can't rely on the struct
508  *   vm_area_struct::vm_flags to be constant across a call,
509  *   except for immutable flags. Callers requiring this shouldn't use
510  *   this function.
511  *
512  * Return: 0 on success, negative error code on failure, positive number on
513  * caller defined premature termination.
514  */
515 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index,
516 		      pgoff_t nr, const struct mm_walk_ops *ops,
517 		      void *private)
518 {
519 	struct mm_walk walk = {
520 		.ops		= ops,
521 		.private	= private,
522 	};
523 	struct vm_area_struct *vma;
524 	pgoff_t vba, vea, cba, cea;
525 	unsigned long start_addr, end_addr;
526 	int err = 0;
527 
528 	lockdep_assert_held(&mapping->i_mmap_rwsem);
529 	vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index,
530 				  first_index + nr - 1) {
531 		/* Clip to the vma */
532 		vba = vma->vm_pgoff;
533 		vea = vba + vma_pages(vma);
534 		cba = first_index;
535 		cba = max(cba, vba);
536 		cea = first_index + nr;
537 		cea = min(cea, vea);
538 
539 		start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start;
540 		end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start;
541 		if (start_addr >= end_addr)
542 			continue;
543 
544 		walk.vma = vma;
545 		walk.mm = vma->vm_mm;
546 
547 		err = walk_page_test(vma->vm_start, vma->vm_end, &walk);
548 		if (err > 0) {
549 			err = 0;
550 			break;
551 		} else if (err < 0)
552 			break;
553 
554 		err = __walk_page_range(start_addr, end_addr, &walk);
555 		if (err)
556 			break;
557 	}
558 
559 	return err;
560 }
561