1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/highmem.h> 4 #include <linux/sched.h> 5 #include <linux/hugetlb.h> 6 #include <linux/swap.h> 7 #include <linux/swapops.h> 8 9 /* 10 * We want to know the real level where a entry is located ignoring any 11 * folding of levels which may be happening. For example if p4d is folded then 12 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). 13 */ 14 static int real_depth(int depth) 15 { 16 if (depth == 3 && PTRS_PER_PMD == 1) 17 depth = 2; 18 if (depth == 2 && PTRS_PER_PUD == 1) 19 depth = 1; 20 if (depth == 1 && PTRS_PER_P4D == 1) 21 depth = 0; 22 return depth; 23 } 24 25 static int walk_pte_range_inner(pte_t *pte, unsigned long addr, 26 unsigned long end, struct mm_walk *walk) 27 { 28 const struct mm_walk_ops *ops = walk->ops; 29 int err = 0; 30 31 for (;;) { 32 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); 33 if (err) 34 break; 35 if (addr >= end - PAGE_SIZE) 36 break; 37 addr += PAGE_SIZE; 38 pte++; 39 } 40 return err; 41 } 42 43 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 44 struct mm_walk *walk) 45 { 46 pte_t *pte; 47 int err = 0; 48 spinlock_t *ptl; 49 50 if (walk->no_vma) { 51 /* 52 * pte_offset_map() might apply user-specific validation. 53 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap() 54 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear), 55 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them. 56 */ 57 if (walk->mm == &init_mm || addr >= TASK_SIZE) 58 pte = pte_offset_kernel(pmd, addr); 59 else 60 pte = pte_offset_map(pmd, addr); 61 if (pte) { 62 err = walk_pte_range_inner(pte, addr, end, walk); 63 if (walk->mm != &init_mm && addr < TASK_SIZE) 64 pte_unmap(pte); 65 } 66 } else { 67 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 68 if (pte) { 69 err = walk_pte_range_inner(pte, addr, end, walk); 70 pte_unmap_unlock(pte, ptl); 71 } 72 } 73 if (!pte) 74 walk->action = ACTION_AGAIN; 75 return err; 76 } 77 78 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 79 struct mm_walk *walk) 80 { 81 pmd_t *pmd; 82 unsigned long next; 83 const struct mm_walk_ops *ops = walk->ops; 84 int err = 0; 85 int depth = real_depth(3); 86 87 pmd = pmd_offset(pud, addr); 88 do { 89 again: 90 next = pmd_addr_end(addr, end); 91 if (pmd_none(*pmd)) { 92 if (ops->pte_hole) 93 err = ops->pte_hole(addr, next, depth, walk); 94 if (err) 95 break; 96 continue; 97 } 98 99 walk->action = ACTION_SUBTREE; 100 101 /* 102 * This implies that each ->pmd_entry() handler 103 * needs to know about pmd_trans_huge() pmds 104 */ 105 if (ops->pmd_entry) 106 err = ops->pmd_entry(pmd, addr, next, walk); 107 if (err) 108 break; 109 110 if (walk->action == ACTION_AGAIN) 111 goto again; 112 113 /* 114 * Check this here so we only break down trans_huge 115 * pages when we _need_ to 116 */ 117 if ((!walk->vma && (pmd_leaf(*pmd) || !pmd_present(*pmd))) || 118 walk->action == ACTION_CONTINUE || 119 !(ops->pte_entry)) 120 continue; 121 122 if (walk->vma) 123 split_huge_pmd(walk->vma, pmd, addr); 124 125 err = walk_pte_range(pmd, addr, next, walk); 126 if (err) 127 break; 128 129 if (walk->action == ACTION_AGAIN) 130 goto again; 131 132 } while (pmd++, addr = next, addr != end); 133 134 return err; 135 } 136 137 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 138 struct mm_walk *walk) 139 { 140 pud_t *pud; 141 unsigned long next; 142 const struct mm_walk_ops *ops = walk->ops; 143 int err = 0; 144 int depth = real_depth(2); 145 146 pud = pud_offset(p4d, addr); 147 do { 148 again: 149 next = pud_addr_end(addr, end); 150 if (pud_none(*pud)) { 151 if (ops->pte_hole) 152 err = ops->pte_hole(addr, next, depth, walk); 153 if (err) 154 break; 155 continue; 156 } 157 158 walk->action = ACTION_SUBTREE; 159 160 if (ops->pud_entry) 161 err = ops->pud_entry(pud, addr, next, walk); 162 if (err) 163 break; 164 165 if (walk->action == ACTION_AGAIN) 166 goto again; 167 168 if ((!walk->vma && (pud_leaf(*pud) || !pud_present(*pud))) || 169 walk->action == ACTION_CONTINUE || 170 !(ops->pmd_entry || ops->pte_entry)) 171 continue; 172 173 if (walk->vma) 174 split_huge_pud(walk->vma, pud, addr); 175 if (pud_none(*pud)) 176 goto again; 177 178 err = walk_pmd_range(pud, addr, next, walk); 179 if (err) 180 break; 181 } while (pud++, addr = next, addr != end); 182 183 return err; 184 } 185 186 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 187 struct mm_walk *walk) 188 { 189 p4d_t *p4d; 190 unsigned long next; 191 const struct mm_walk_ops *ops = walk->ops; 192 int err = 0; 193 int depth = real_depth(1); 194 195 p4d = p4d_offset(pgd, addr); 196 do { 197 next = p4d_addr_end(addr, end); 198 if (p4d_none_or_clear_bad(p4d)) { 199 if (ops->pte_hole) 200 err = ops->pte_hole(addr, next, depth, walk); 201 if (err) 202 break; 203 continue; 204 } 205 if (ops->p4d_entry) { 206 err = ops->p4d_entry(p4d, addr, next, walk); 207 if (err) 208 break; 209 } 210 if (ops->pud_entry || ops->pmd_entry || ops->pte_entry) 211 err = walk_pud_range(p4d, addr, next, walk); 212 if (err) 213 break; 214 } while (p4d++, addr = next, addr != end); 215 216 return err; 217 } 218 219 static int walk_pgd_range(unsigned long addr, unsigned long end, 220 struct mm_walk *walk) 221 { 222 pgd_t *pgd; 223 unsigned long next; 224 const struct mm_walk_ops *ops = walk->ops; 225 int err = 0; 226 227 if (walk->pgd) 228 pgd = walk->pgd + pgd_index(addr); 229 else 230 pgd = pgd_offset(walk->mm, addr); 231 do { 232 next = pgd_addr_end(addr, end); 233 if (pgd_none_or_clear_bad(pgd)) { 234 if (ops->pte_hole) 235 err = ops->pte_hole(addr, next, 0, walk); 236 if (err) 237 break; 238 continue; 239 } 240 if (ops->pgd_entry) { 241 err = ops->pgd_entry(pgd, addr, next, walk); 242 if (err) 243 break; 244 } 245 if (ops->p4d_entry || ops->pud_entry || ops->pmd_entry || ops->pte_entry) 246 err = walk_p4d_range(pgd, addr, next, walk); 247 if (err) 248 break; 249 } while (pgd++, addr = next, addr != end); 250 251 return err; 252 } 253 254 #ifdef CONFIG_HUGETLB_PAGE 255 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, 256 unsigned long end) 257 { 258 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); 259 return boundary < end ? boundary : end; 260 } 261 262 static int walk_hugetlb_range(unsigned long addr, unsigned long end, 263 struct mm_walk *walk) 264 { 265 struct vm_area_struct *vma = walk->vma; 266 struct hstate *h = hstate_vma(vma); 267 unsigned long next; 268 unsigned long hmask = huge_page_mask(h); 269 unsigned long sz = huge_page_size(h); 270 pte_t *pte; 271 const struct mm_walk_ops *ops = walk->ops; 272 int err = 0; 273 274 hugetlb_vma_lock_read(vma); 275 do { 276 next = hugetlb_entry_end(h, addr, end); 277 pte = hugetlb_walk(vma, addr & hmask, sz); 278 if (pte) 279 err = ops->hugetlb_entry(pte, hmask, addr, next, walk); 280 else if (ops->pte_hole) 281 err = ops->pte_hole(addr, next, -1, walk); 282 if (err) 283 break; 284 } while (addr = next, addr != end); 285 hugetlb_vma_unlock_read(vma); 286 287 return err; 288 } 289 290 #else /* CONFIG_HUGETLB_PAGE */ 291 static int walk_hugetlb_range(unsigned long addr, unsigned long end, 292 struct mm_walk *walk) 293 { 294 return 0; 295 } 296 297 #endif /* CONFIG_HUGETLB_PAGE */ 298 299 /* 300 * Decide whether we really walk over the current vma on [@start, @end) 301 * or skip it via the returned value. Return 0 if we do walk over the 302 * current vma, and return 1 if we skip the vma. Negative values means 303 * error, where we abort the current walk. 304 */ 305 static int walk_page_test(unsigned long start, unsigned long end, 306 struct mm_walk *walk) 307 { 308 struct vm_area_struct *vma = walk->vma; 309 const struct mm_walk_ops *ops = walk->ops; 310 311 if (ops->test_walk) 312 return ops->test_walk(start, end, walk); 313 314 /* 315 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP 316 * range, so we don't walk over it as we do for normal vmas. However, 317 * Some callers are interested in handling hole range and they don't 318 * want to just ignore any single address range. Such users certainly 319 * define their ->pte_hole() callbacks, so let's delegate them to handle 320 * vma(VM_PFNMAP). 321 */ 322 if (vma->vm_flags & VM_PFNMAP) { 323 int err = 1; 324 if (ops->pte_hole) 325 err = ops->pte_hole(start, end, -1, walk); 326 return err ? err : 1; 327 } 328 return 0; 329 } 330 331 static int __walk_page_range(unsigned long start, unsigned long end, 332 struct mm_walk *walk) 333 { 334 int err = 0; 335 struct vm_area_struct *vma = walk->vma; 336 const struct mm_walk_ops *ops = walk->ops; 337 338 if (ops->pre_vma) { 339 err = ops->pre_vma(start, end, walk); 340 if (err) 341 return err; 342 } 343 344 if (is_vm_hugetlb_page(vma)) { 345 if (ops->hugetlb_entry) 346 err = walk_hugetlb_range(start, end, walk); 347 } else 348 err = walk_pgd_range(start, end, walk); 349 350 if (ops->post_vma) 351 ops->post_vma(walk); 352 353 return err; 354 } 355 356 static inline void process_mm_walk_lock(struct mm_struct *mm, 357 enum page_walk_lock walk_lock) 358 { 359 if (walk_lock == PGWALK_RDLOCK) 360 mmap_assert_locked(mm); 361 else 362 mmap_assert_write_locked(mm); 363 } 364 365 static inline void process_vma_walk_lock(struct vm_area_struct *vma, 366 enum page_walk_lock walk_lock) 367 { 368 #ifdef CONFIG_PER_VMA_LOCK 369 switch (walk_lock) { 370 case PGWALK_WRLOCK: 371 vma_start_write(vma); 372 break; 373 case PGWALK_WRLOCK_VERIFY: 374 vma_assert_write_locked(vma); 375 break; 376 case PGWALK_RDLOCK: 377 /* PGWALK_RDLOCK is handled by process_mm_walk_lock */ 378 break; 379 } 380 #endif 381 } 382 383 /** 384 * walk_page_range - walk page table with caller specific callbacks 385 * @mm: mm_struct representing the target process of page table walk 386 * @start: start address of the virtual address range 387 * @end: end address of the virtual address range 388 * @ops: operation to call during the walk 389 * @private: private data for callbacks' usage 390 * 391 * Recursively walk the page table tree of the process represented by @mm 392 * within the virtual address range [@start, @end). During walking, we can do 393 * some caller-specific works for each entry, by setting up pmd_entry(), 394 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these 395 * callbacks, the associated entries/pages are just ignored. 396 * The return values of these callbacks are commonly defined like below: 397 * 398 * - 0 : succeeded to handle the current entry, and if you don't reach the 399 * end address yet, continue to walk. 400 * - >0 : succeeded to handle the current entry, and return to the caller 401 * with caller specific value. 402 * - <0 : failed to handle the current entry, and return to the caller 403 * with error code. 404 * 405 * Before starting to walk page table, some callers want to check whether 406 * they really want to walk over the current vma, typically by checking 407 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this 408 * purpose. 409 * 410 * If operations need to be staged before and committed after a vma is walked, 411 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), 412 * since it is intended to handle commit-type operations, can't return any 413 * errors. 414 * 415 * struct mm_walk keeps current values of some common data like vma and pmd, 416 * which are useful for the access from callbacks. If you want to pass some 417 * caller-specific data to callbacks, @private should be helpful. 418 * 419 * Locking: 420 * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, 421 * because these function traverse vma list and/or access to vma's data. 422 */ 423 int walk_page_range(struct mm_struct *mm, unsigned long start, 424 unsigned long end, const struct mm_walk_ops *ops, 425 void *private) 426 { 427 int err = 0; 428 unsigned long next; 429 struct vm_area_struct *vma; 430 struct mm_walk walk = { 431 .ops = ops, 432 .mm = mm, 433 .private = private, 434 }; 435 436 if (start >= end) 437 return -EINVAL; 438 439 if (!walk.mm) 440 return -EINVAL; 441 442 process_mm_walk_lock(walk.mm, ops->walk_lock); 443 444 vma = find_vma(walk.mm, start); 445 do { 446 if (!vma) { /* after the last vma */ 447 walk.vma = NULL; 448 next = end; 449 if (ops->pte_hole) 450 err = ops->pte_hole(start, next, -1, &walk); 451 } else if (start < vma->vm_start) { /* outside vma */ 452 walk.vma = NULL; 453 next = min(end, vma->vm_start); 454 if (ops->pte_hole) 455 err = ops->pte_hole(start, next, -1, &walk); 456 } else { /* inside vma */ 457 process_vma_walk_lock(vma, ops->walk_lock); 458 walk.vma = vma; 459 next = min(end, vma->vm_end); 460 vma = find_vma(mm, vma->vm_end); 461 462 err = walk_page_test(start, next, &walk); 463 if (err > 0) { 464 /* 465 * positive return values are purely for 466 * controlling the pagewalk, so should never 467 * be passed to the callers. 468 */ 469 err = 0; 470 continue; 471 } 472 if (err < 0) 473 break; 474 err = __walk_page_range(start, next, &walk); 475 } 476 if (err) 477 break; 478 } while (start = next, start < end); 479 return err; 480 } 481 482 /** 483 * walk_page_range_novma - walk a range of pagetables not backed by a vma 484 * @mm: mm_struct representing the target process of page table walk 485 * @start: start address of the virtual address range 486 * @end: end address of the virtual address range 487 * @ops: operation to call during the walk 488 * @pgd: pgd to walk if different from mm->pgd 489 * @private: private data for callbacks' usage 490 * 491 * Similar to walk_page_range() but can walk any page tables even if they are 492 * not backed by VMAs. Because 'unusual' entries may be walked this function 493 * will also not lock the PTEs for the pte_entry() callback. This is useful for 494 * walking the kernel pages tables or page tables for firmware. 495 * 496 * Note: Be careful to walk the kernel pages tables, the caller may be need to 497 * take other effective approache (mmap lock may be insufficient) to prevent 498 * the intermediate kernel page tables belonging to the specified address range 499 * from being freed (e.g. memory hot-remove). 500 */ 501 int walk_page_range_novma(struct mm_struct *mm, unsigned long start, 502 unsigned long end, const struct mm_walk_ops *ops, 503 pgd_t *pgd, 504 void *private) 505 { 506 struct mm_walk walk = { 507 .ops = ops, 508 .mm = mm, 509 .pgd = pgd, 510 .private = private, 511 .no_vma = true 512 }; 513 514 if (start >= end || !walk.mm) 515 return -EINVAL; 516 517 /* 518 * 1) For walking the user virtual address space: 519 * 520 * The mmap lock protects the page walker from changes to the page 521 * tables during the walk. However a read lock is insufficient to 522 * protect those areas which don't have a VMA as munmap() detaches 523 * the VMAs before downgrading to a read lock and actually tearing 524 * down PTEs/page tables. In which case, the mmap write lock should 525 * be hold. 526 * 527 * 2) For walking the kernel virtual address space: 528 * 529 * The kernel intermediate page tables usually do not be freed, so 530 * the mmap map read lock is sufficient. But there are some exceptions. 531 * E.g. memory hot-remove. In which case, the mmap lock is insufficient 532 * to prevent the intermediate kernel pages tables belonging to the 533 * specified address range from being freed. The caller should take 534 * other actions to prevent this race. 535 */ 536 if (mm == &init_mm) 537 mmap_assert_locked(walk.mm); 538 else 539 mmap_assert_write_locked(walk.mm); 540 541 return walk_pgd_range(start, end, &walk); 542 } 543 544 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start, 545 unsigned long end, const struct mm_walk_ops *ops, 546 void *private) 547 { 548 struct mm_walk walk = { 549 .ops = ops, 550 .mm = vma->vm_mm, 551 .vma = vma, 552 .private = private, 553 }; 554 555 if (start >= end || !walk.mm) 556 return -EINVAL; 557 if (start < vma->vm_start || end > vma->vm_end) 558 return -EINVAL; 559 560 process_mm_walk_lock(walk.mm, ops->walk_lock); 561 process_vma_walk_lock(vma, ops->walk_lock); 562 return __walk_page_range(start, end, &walk); 563 } 564 565 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, 566 void *private) 567 { 568 struct mm_walk walk = { 569 .ops = ops, 570 .mm = vma->vm_mm, 571 .vma = vma, 572 .private = private, 573 }; 574 575 if (!walk.mm) 576 return -EINVAL; 577 578 process_mm_walk_lock(walk.mm, ops->walk_lock); 579 process_vma_walk_lock(vma, ops->walk_lock); 580 return __walk_page_range(vma->vm_start, vma->vm_end, &walk); 581 } 582 583 /** 584 * walk_page_mapping - walk all memory areas mapped into a struct address_space. 585 * @mapping: Pointer to the struct address_space 586 * @first_index: First page offset in the address_space 587 * @nr: Number of incremental page offsets to cover 588 * @ops: operation to call during the walk 589 * @private: private data for callbacks' usage 590 * 591 * This function walks all memory areas mapped into a struct address_space. 592 * The walk is limited to only the given page-size index range, but if 593 * the index boundaries cross a huge page-table entry, that entry will be 594 * included. 595 * 596 * Also see walk_page_range() for additional information. 597 * 598 * Locking: 599 * This function can't require that the struct mm_struct::mmap_lock is held, 600 * since @mapping may be mapped by multiple processes. Instead 601 * @mapping->i_mmap_rwsem must be held. This might have implications in the 602 * callbacks, and it's up tho the caller to ensure that the 603 * struct mm_struct::mmap_lock is not needed. 604 * 605 * Also this means that a caller can't rely on the struct 606 * vm_area_struct::vm_flags to be constant across a call, 607 * except for immutable flags. Callers requiring this shouldn't use 608 * this function. 609 * 610 * Return: 0 on success, negative error code on failure, positive number on 611 * caller defined premature termination. 612 */ 613 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, 614 pgoff_t nr, const struct mm_walk_ops *ops, 615 void *private) 616 { 617 struct mm_walk walk = { 618 .ops = ops, 619 .private = private, 620 }; 621 struct vm_area_struct *vma; 622 pgoff_t vba, vea, cba, cea; 623 unsigned long start_addr, end_addr; 624 int err = 0; 625 626 lockdep_assert_held(&mapping->i_mmap_rwsem); 627 vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, 628 first_index + nr - 1) { 629 /* Clip to the vma */ 630 vba = vma->vm_pgoff; 631 vea = vba + vma_pages(vma); 632 cba = first_index; 633 cba = max(cba, vba); 634 cea = first_index + nr; 635 cea = min(cea, vea); 636 637 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; 638 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; 639 if (start_addr >= end_addr) 640 continue; 641 642 walk.vma = vma; 643 walk.mm = vma->vm_mm; 644 645 err = walk_page_test(vma->vm_start, vma->vm_end, &walk); 646 if (err > 0) { 647 err = 0; 648 break; 649 } else if (err < 0) 650 break; 651 652 err = __walk_page_range(start_addr, end_addr, &walk); 653 if (err) 654 break; 655 } 656 657 return err; 658 } 659 660 /** 661 * folio_walk_start - walk the page tables to a folio 662 * @fw: filled with information on success. 663 * @vma: the VMA. 664 * @addr: the virtual address to use for the page table walk. 665 * @flags: flags modifying which folios to walk to. 666 * 667 * Walk the page tables using @addr in a given @vma to a mapped folio and 668 * return the folio, making sure that the page table entry referenced by 669 * @addr cannot change until folio_walk_end() was called. 670 * 671 * As default, this function returns only folios that are not special (e.g., not 672 * the zeropage) and never returns folios that are supposed to be ignored by the 673 * VM as documented by vm_normal_page(). If requested, zeropages will be 674 * returned as well. 675 * 676 * As default, this function only considers present page table entries. 677 * If requested, it will also consider migration entries. 678 * 679 * If this function returns NULL it might either indicate "there is nothing" or 680 * "there is nothing suitable". 681 * 682 * On success, @fw is filled and the function returns the folio while the PTL 683 * is still held and folio_walk_end() must be called to clean up, 684 * releasing any held locks. The returned folio must *not* be used after the 685 * call to folio_walk_end(), unless a short-term folio reference is taken before 686 * that call. 687 * 688 * @fw->page will correspond to the page that is effectively referenced by 689 * @addr. However, for migration entries and shared zeropages @fw->page is 690 * set to NULL. Note that large folios might be mapped by multiple page table 691 * entries, and this function will always only lookup a single entry as 692 * specified by @addr, which might or might not cover more than a single page of 693 * the returned folio. 694 * 695 * This function must *not* be used as a naive replacement for 696 * get_user_pages() / pin_user_pages(), especially not to perform DMA or 697 * to carelessly modify page content. This function may *only* be used to grab 698 * short-term folio references, never to grab long-term folio references. 699 * 700 * Using the page table entry pointers in @fw for reading or modifying the 701 * entry should be avoided where possible: however, there might be valid 702 * use cases. 703 * 704 * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care. 705 * For example, PMD page table sharing might require prior unsharing. Also, 706 * logical hugetlb entries might span multiple physical page table entries, 707 * which *must* be modified in a single operation (set_huge_pte_at(), 708 * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might 709 * not correspond to the first physical entry of a logical hugetlb entry. 710 * 711 * The mmap lock must be held in read mode. 712 * 713 * Return: folio pointer on success, otherwise NULL. 714 */ 715 struct folio *folio_walk_start(struct folio_walk *fw, 716 struct vm_area_struct *vma, unsigned long addr, 717 folio_walk_flags_t flags) 718 { 719 unsigned long entry_size; 720 bool expose_page = true; 721 struct page *page; 722 pud_t *pudp, pud; 723 pmd_t *pmdp, pmd; 724 pte_t *ptep, pte; 725 spinlock_t *ptl; 726 pgd_t *pgdp; 727 p4d_t *p4dp; 728 729 mmap_assert_locked(vma->vm_mm); 730 vma_pgtable_walk_begin(vma); 731 732 if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end)) 733 goto not_found; 734 735 pgdp = pgd_offset(vma->vm_mm, addr); 736 if (pgd_none_or_clear_bad(pgdp)) 737 goto not_found; 738 739 p4dp = p4d_offset(pgdp, addr); 740 if (p4d_none_or_clear_bad(p4dp)) 741 goto not_found; 742 743 pudp = pud_offset(p4dp, addr); 744 pud = pudp_get(pudp); 745 if (pud_none(pud)) 746 goto not_found; 747 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && pud_leaf(pud)) { 748 ptl = pud_lock(vma->vm_mm, pudp); 749 pud = pudp_get(pudp); 750 751 entry_size = PUD_SIZE; 752 fw->level = FW_LEVEL_PUD; 753 fw->pudp = pudp; 754 fw->pud = pud; 755 756 if (!pud_present(pud) || pud_devmap(pud) || pud_special(pud)) { 757 spin_unlock(ptl); 758 goto not_found; 759 } else if (!pud_leaf(pud)) { 760 spin_unlock(ptl); 761 goto pmd_table; 762 } 763 /* 764 * TODO: vm_normal_page_pud() will be handy once we want to 765 * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs. 766 */ 767 page = pud_page(pud); 768 goto found; 769 } 770 771 pmd_table: 772 VM_WARN_ON_ONCE(pud_leaf(*pudp)); 773 pmdp = pmd_offset(pudp, addr); 774 pmd = pmdp_get_lockless(pmdp); 775 if (pmd_none(pmd)) 776 goto not_found; 777 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && pmd_leaf(pmd)) { 778 ptl = pmd_lock(vma->vm_mm, pmdp); 779 pmd = pmdp_get(pmdp); 780 781 entry_size = PMD_SIZE; 782 fw->level = FW_LEVEL_PMD; 783 fw->pmdp = pmdp; 784 fw->pmd = pmd; 785 786 if (pmd_none(pmd)) { 787 spin_unlock(ptl); 788 goto not_found; 789 } else if (!pmd_leaf(pmd)) { 790 spin_unlock(ptl); 791 goto pte_table; 792 } else if (pmd_present(pmd)) { 793 page = vm_normal_page_pmd(vma, addr, pmd); 794 if (page) { 795 goto found; 796 } else if ((flags & FW_ZEROPAGE) && 797 is_huge_zero_pmd(pmd)) { 798 page = pfn_to_page(pmd_pfn(pmd)); 799 expose_page = false; 800 goto found; 801 } 802 } else if ((flags & FW_MIGRATION) && 803 is_pmd_migration_entry(pmd)) { 804 swp_entry_t entry = pmd_to_swp_entry(pmd); 805 806 page = pfn_swap_entry_to_page(entry); 807 expose_page = false; 808 goto found; 809 } 810 spin_unlock(ptl); 811 goto not_found; 812 } 813 814 pte_table: 815 VM_WARN_ON_ONCE(pmd_leaf(pmdp_get_lockless(pmdp))); 816 ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl); 817 if (!ptep) 818 goto not_found; 819 pte = ptep_get(ptep); 820 821 entry_size = PAGE_SIZE; 822 fw->level = FW_LEVEL_PTE; 823 fw->ptep = ptep; 824 fw->pte = pte; 825 826 if (pte_present(pte)) { 827 page = vm_normal_page(vma, addr, pte); 828 if (page) 829 goto found; 830 if ((flags & FW_ZEROPAGE) && 831 is_zero_pfn(pte_pfn(pte))) { 832 page = pfn_to_page(pte_pfn(pte)); 833 expose_page = false; 834 goto found; 835 } 836 } else if (!pte_none(pte)) { 837 swp_entry_t entry = pte_to_swp_entry(pte); 838 839 if ((flags & FW_MIGRATION) && 840 is_migration_entry(entry)) { 841 page = pfn_swap_entry_to_page(entry); 842 expose_page = false; 843 goto found; 844 } 845 } 846 pte_unmap_unlock(ptep, ptl); 847 not_found: 848 vma_pgtable_walk_end(vma); 849 return NULL; 850 found: 851 if (expose_page) 852 /* Note: Offset from the mapped page, not the folio start. */ 853 fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT); 854 else 855 fw->page = NULL; 856 fw->ptl = ptl; 857 return page_folio(page); 858 } 859