1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/pagewalk.h> 3 #include <linux/highmem.h> 4 #include <linux/sched.h> 5 #include <linux/hugetlb.h> 6 #include <linux/mmu_context.h> 7 #include <linux/swap.h> 8 #include <linux/swapops.h> 9 10 #include <asm/tlbflush.h> 11 12 #include "internal.h" 13 14 /* 15 * We want to know the real level where a entry is located ignoring any 16 * folding of levels which may be happening. For example if p4d is folded then 17 * a missing entry found at level 1 (p4d) is actually at level 0 (pgd). 18 */ 19 static int real_depth(int depth) 20 { 21 if (depth == 3 && PTRS_PER_PMD == 1) 22 depth = 2; 23 if (depth == 2 && PTRS_PER_PUD == 1) 24 depth = 1; 25 if (depth == 1 && PTRS_PER_P4D == 1) 26 depth = 0; 27 return depth; 28 } 29 30 static int walk_pte_range_inner(pte_t *pte, unsigned long addr, 31 unsigned long end, struct mm_walk *walk) 32 { 33 const struct mm_walk_ops *ops = walk->ops; 34 int err = 0; 35 36 for (;;) { 37 if (ops->install_pte && pte_none(ptep_get(pte))) { 38 pte_t new_pte; 39 40 err = ops->install_pte(addr, addr + PAGE_SIZE, &new_pte, 41 walk); 42 if (err) 43 break; 44 45 set_pte_at(walk->mm, addr, pte, new_pte); 46 /* Non-present before, so for arches that need it. */ 47 if (!WARN_ON_ONCE(walk->no_vma)) 48 update_mmu_cache(walk->vma, addr, pte); 49 } else { 50 err = ops->pte_entry(pte, addr, addr + PAGE_SIZE, walk); 51 if (err) 52 break; 53 } 54 if (addr >= end - PAGE_SIZE) 55 break; 56 addr += PAGE_SIZE; 57 pte++; 58 } 59 return err; 60 } 61 62 static int walk_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end, 63 struct mm_walk *walk) 64 { 65 pte_t *pte; 66 int err = 0; 67 spinlock_t *ptl; 68 69 if (walk->no_vma) { 70 /* 71 * pte_offset_map() might apply user-specific validation. 72 * Indeed, on x86_64 the pmd entries set up by init_espfix_ap() 73 * fit its pmd_bad() check (_PAGE_NX set and _PAGE_RW clear), 74 * and CONFIG_EFI_PGT_DUMP efi_mm goes so far as to walk them. 75 */ 76 if (walk->mm == &init_mm || addr >= TASK_SIZE) 77 pte = pte_offset_kernel(pmd, addr); 78 else 79 pte = pte_offset_map(pmd, addr); 80 if (pte) { 81 err = walk_pte_range_inner(pte, addr, end, walk); 82 if (walk->mm != &init_mm && addr < TASK_SIZE) 83 pte_unmap(pte); 84 } 85 } else { 86 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 87 if (pte) { 88 err = walk_pte_range_inner(pte, addr, end, walk); 89 pte_unmap_unlock(pte, ptl); 90 } 91 } 92 if (!pte) 93 walk->action = ACTION_AGAIN; 94 return err; 95 } 96 97 static int walk_pmd_range(pud_t *pud, unsigned long addr, unsigned long end, 98 struct mm_walk *walk) 99 { 100 pmd_t *pmd; 101 unsigned long next; 102 const struct mm_walk_ops *ops = walk->ops; 103 bool has_handler = ops->pte_entry; 104 bool has_install = ops->install_pte; 105 int err = 0; 106 int depth = real_depth(3); 107 108 pmd = pmd_offset(pud, addr); 109 do { 110 again: 111 next = pmd_addr_end(addr, end); 112 if (pmd_none(*pmd)) { 113 if (has_install) 114 err = __pte_alloc(walk->mm, pmd); 115 else if (ops->pte_hole) 116 err = ops->pte_hole(addr, next, depth, walk); 117 if (err) 118 break; 119 if (!has_install) 120 continue; 121 } 122 123 walk->action = ACTION_SUBTREE; 124 125 /* 126 * This implies that each ->pmd_entry() handler 127 * needs to know about pmd_trans_huge() pmds 128 */ 129 if (ops->pmd_entry) 130 err = ops->pmd_entry(pmd, addr, next, walk); 131 if (err) 132 break; 133 134 if (walk->action == ACTION_AGAIN) 135 goto again; 136 if (walk->action == ACTION_CONTINUE) 137 continue; 138 139 if (!has_handler) { /* No handlers for lower page tables. */ 140 if (!has_install) 141 continue; /* Nothing to do. */ 142 /* 143 * We are ONLY installing, so avoid unnecessarily 144 * splitting a present huge page. 145 */ 146 if (pmd_present(*pmd) && pmd_trans_huge(*pmd)) 147 continue; 148 } 149 150 if (walk->vma) 151 split_huge_pmd(walk->vma, pmd, addr); 152 else if (pmd_leaf(*pmd) || !pmd_present(*pmd)) 153 continue; /* Nothing to do. */ 154 155 err = walk_pte_range(pmd, addr, next, walk); 156 if (err) 157 break; 158 159 if (walk->action == ACTION_AGAIN) 160 goto again; 161 162 } while (pmd++, addr = next, addr != end); 163 164 return err; 165 } 166 167 static int walk_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end, 168 struct mm_walk *walk) 169 { 170 pud_t *pud; 171 unsigned long next; 172 const struct mm_walk_ops *ops = walk->ops; 173 bool has_handler = ops->pmd_entry || ops->pte_entry; 174 bool has_install = ops->install_pte; 175 int err = 0; 176 int depth = real_depth(2); 177 178 pud = pud_offset(p4d, addr); 179 do { 180 again: 181 next = pud_addr_end(addr, end); 182 if (pud_none(*pud)) { 183 if (has_install) 184 err = __pmd_alloc(walk->mm, pud, addr); 185 else if (ops->pte_hole) 186 err = ops->pte_hole(addr, next, depth, walk); 187 if (err) 188 break; 189 if (!has_install) 190 continue; 191 } 192 193 walk->action = ACTION_SUBTREE; 194 195 if (ops->pud_entry) 196 err = ops->pud_entry(pud, addr, next, walk); 197 if (err) 198 break; 199 200 if (walk->action == ACTION_AGAIN) 201 goto again; 202 if (walk->action == ACTION_CONTINUE) 203 continue; 204 205 if (!has_handler) { /* No handlers for lower page tables. */ 206 if (!has_install) 207 continue; /* Nothing to do. */ 208 /* 209 * We are ONLY installing, so avoid unnecessarily 210 * splitting a present huge page. 211 */ 212 if (pud_present(*pud) && pud_trans_huge(*pud)) 213 continue; 214 } 215 216 if (walk->vma) 217 split_huge_pud(walk->vma, pud, addr); 218 else if (pud_leaf(*pud) || !pud_present(*pud)) 219 continue; /* Nothing to do. */ 220 221 if (pud_none(*pud)) 222 goto again; 223 224 err = walk_pmd_range(pud, addr, next, walk); 225 if (err) 226 break; 227 } while (pud++, addr = next, addr != end); 228 229 return err; 230 } 231 232 static int walk_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end, 233 struct mm_walk *walk) 234 { 235 p4d_t *p4d; 236 unsigned long next; 237 const struct mm_walk_ops *ops = walk->ops; 238 bool has_handler = ops->pud_entry || ops->pmd_entry || ops->pte_entry; 239 bool has_install = ops->install_pte; 240 int err = 0; 241 int depth = real_depth(1); 242 243 p4d = p4d_offset(pgd, addr); 244 do { 245 next = p4d_addr_end(addr, end); 246 if (p4d_none_or_clear_bad(p4d)) { 247 if (has_install) 248 err = __pud_alloc(walk->mm, p4d, addr); 249 else if (ops->pte_hole) 250 err = ops->pte_hole(addr, next, depth, walk); 251 if (err) 252 break; 253 if (!has_install) 254 continue; 255 } 256 if (ops->p4d_entry) { 257 err = ops->p4d_entry(p4d, addr, next, walk); 258 if (err) 259 break; 260 } 261 if (has_handler || has_install) 262 err = walk_pud_range(p4d, addr, next, walk); 263 if (err) 264 break; 265 } while (p4d++, addr = next, addr != end); 266 267 return err; 268 } 269 270 static int walk_pgd_range(unsigned long addr, unsigned long end, 271 struct mm_walk *walk) 272 { 273 pgd_t *pgd; 274 unsigned long next; 275 const struct mm_walk_ops *ops = walk->ops; 276 bool has_handler = ops->p4d_entry || ops->pud_entry || ops->pmd_entry || 277 ops->pte_entry; 278 bool has_install = ops->install_pte; 279 int err = 0; 280 281 if (walk->pgd) 282 pgd = walk->pgd + pgd_index(addr); 283 else 284 pgd = pgd_offset(walk->mm, addr); 285 do { 286 next = pgd_addr_end(addr, end); 287 if (pgd_none_or_clear_bad(pgd)) { 288 if (has_install) 289 err = __p4d_alloc(walk->mm, pgd, addr); 290 else if (ops->pte_hole) 291 err = ops->pte_hole(addr, next, 0, walk); 292 if (err) 293 break; 294 if (!has_install) 295 continue; 296 } 297 if (ops->pgd_entry) { 298 err = ops->pgd_entry(pgd, addr, next, walk); 299 if (err) 300 break; 301 } 302 if (has_handler || has_install) 303 err = walk_p4d_range(pgd, addr, next, walk); 304 if (err) 305 break; 306 } while (pgd++, addr = next, addr != end); 307 308 return err; 309 } 310 311 #ifdef CONFIG_HUGETLB_PAGE 312 static unsigned long hugetlb_entry_end(struct hstate *h, unsigned long addr, 313 unsigned long end) 314 { 315 unsigned long boundary = (addr & huge_page_mask(h)) + huge_page_size(h); 316 return boundary < end ? boundary : end; 317 } 318 319 static int walk_hugetlb_range(unsigned long addr, unsigned long end, 320 struct mm_walk *walk) 321 { 322 struct vm_area_struct *vma = walk->vma; 323 struct hstate *h = hstate_vma(vma); 324 unsigned long next; 325 unsigned long hmask = huge_page_mask(h); 326 unsigned long sz = huge_page_size(h); 327 pte_t *pte; 328 const struct mm_walk_ops *ops = walk->ops; 329 int err = 0; 330 331 hugetlb_vma_lock_read(vma); 332 do { 333 next = hugetlb_entry_end(h, addr, end); 334 pte = hugetlb_walk(vma, addr & hmask, sz); 335 if (pte) 336 err = ops->hugetlb_entry(pte, hmask, addr, next, walk); 337 else if (ops->pte_hole) 338 err = ops->pte_hole(addr, next, -1, walk); 339 if (err) 340 break; 341 } while (addr = next, addr != end); 342 hugetlb_vma_unlock_read(vma); 343 344 return err; 345 } 346 347 #else /* CONFIG_HUGETLB_PAGE */ 348 static int walk_hugetlb_range(unsigned long addr, unsigned long end, 349 struct mm_walk *walk) 350 { 351 return 0; 352 } 353 354 #endif /* CONFIG_HUGETLB_PAGE */ 355 356 /* 357 * Decide whether we really walk over the current vma on [@start, @end) 358 * or skip it via the returned value. Return 0 if we do walk over the 359 * current vma, and return 1 if we skip the vma. Negative values means 360 * error, where we abort the current walk. 361 */ 362 static int walk_page_test(unsigned long start, unsigned long end, 363 struct mm_walk *walk) 364 { 365 struct vm_area_struct *vma = walk->vma; 366 const struct mm_walk_ops *ops = walk->ops; 367 368 if (ops->test_walk) 369 return ops->test_walk(start, end, walk); 370 371 /* 372 * vma(VM_PFNMAP) doesn't have any valid struct pages behind VM_PFNMAP 373 * range, so we don't walk over it as we do for normal vmas. However, 374 * Some callers are interested in handling hole range and they don't 375 * want to just ignore any single address range. Such users certainly 376 * define their ->pte_hole() callbacks, so let's delegate them to handle 377 * vma(VM_PFNMAP). 378 */ 379 if (vma->vm_flags & VM_PFNMAP) { 380 int err = 1; 381 if (ops->pte_hole) 382 err = ops->pte_hole(start, end, -1, walk); 383 return err ? err : 1; 384 } 385 return 0; 386 } 387 388 static int __walk_page_range(unsigned long start, unsigned long end, 389 struct mm_walk *walk) 390 { 391 int err = 0; 392 struct vm_area_struct *vma = walk->vma; 393 const struct mm_walk_ops *ops = walk->ops; 394 bool is_hugetlb = is_vm_hugetlb_page(vma); 395 396 /* We do not support hugetlb PTE installation. */ 397 if (ops->install_pte && is_hugetlb) 398 return -EINVAL; 399 400 if (ops->pre_vma) { 401 err = ops->pre_vma(start, end, walk); 402 if (err) 403 return err; 404 } 405 406 if (is_hugetlb) { 407 if (ops->hugetlb_entry) 408 err = walk_hugetlb_range(start, end, walk); 409 } else 410 err = walk_pgd_range(start, end, walk); 411 412 if (ops->post_vma) 413 ops->post_vma(walk); 414 415 return err; 416 } 417 418 static inline void process_mm_walk_lock(struct mm_struct *mm, 419 enum page_walk_lock walk_lock) 420 { 421 if (walk_lock == PGWALK_RDLOCK) 422 mmap_assert_locked(mm); 423 else if (walk_lock != PGWALK_VMA_RDLOCK_VERIFY) 424 mmap_assert_write_locked(mm); 425 } 426 427 static inline void process_vma_walk_lock(struct vm_area_struct *vma, 428 enum page_walk_lock walk_lock) 429 { 430 #ifdef CONFIG_PER_VMA_LOCK 431 switch (walk_lock) { 432 case PGWALK_WRLOCK: 433 vma_start_write(vma); 434 break; 435 case PGWALK_WRLOCK_VERIFY: 436 vma_assert_write_locked(vma); 437 break; 438 case PGWALK_VMA_RDLOCK_VERIFY: 439 vma_assert_locked(vma); 440 break; 441 case PGWALK_RDLOCK: 442 /* PGWALK_RDLOCK is handled by process_mm_walk_lock */ 443 break; 444 } 445 #endif 446 } 447 448 /* 449 * See the comment for walk_page_range(), this performs the heavy lifting of the 450 * operation, only sets no restrictions on how the walk proceeds. 451 * 452 * We usually restrict the ability to install PTEs, but this functionality is 453 * available to internal memory management code and provided in mm/internal.h. 454 */ 455 int walk_page_range_mm(struct mm_struct *mm, unsigned long start, 456 unsigned long end, const struct mm_walk_ops *ops, 457 void *private) 458 { 459 int err = 0; 460 unsigned long next; 461 struct vm_area_struct *vma; 462 struct mm_walk walk = { 463 .ops = ops, 464 .mm = mm, 465 .private = private, 466 }; 467 468 if (start >= end) 469 return -EINVAL; 470 471 if (!walk.mm) 472 return -EINVAL; 473 474 process_mm_walk_lock(walk.mm, ops->walk_lock); 475 476 vma = find_vma(walk.mm, start); 477 do { 478 if (!vma) { /* after the last vma */ 479 walk.vma = NULL; 480 next = end; 481 if (ops->pte_hole) 482 err = ops->pte_hole(start, next, -1, &walk); 483 } else if (start < vma->vm_start) { /* outside vma */ 484 walk.vma = NULL; 485 next = min(end, vma->vm_start); 486 if (ops->pte_hole) 487 err = ops->pte_hole(start, next, -1, &walk); 488 } else { /* inside vma */ 489 process_vma_walk_lock(vma, ops->walk_lock); 490 walk.vma = vma; 491 next = min(end, vma->vm_end); 492 vma = find_vma(mm, vma->vm_end); 493 494 err = walk_page_test(start, next, &walk); 495 if (err > 0) { 496 /* 497 * positive return values are purely for 498 * controlling the pagewalk, so should never 499 * be passed to the callers. 500 */ 501 err = 0; 502 continue; 503 } 504 if (err < 0) 505 break; 506 err = __walk_page_range(start, next, &walk); 507 } 508 if (err) 509 break; 510 } while (start = next, start < end); 511 return err; 512 } 513 514 /* 515 * Determine if the walk operations specified are permitted to be used for a 516 * page table walk. 517 * 518 * This check is performed on all functions which are parameterised by walk 519 * operations and exposed in include/linux/pagewalk.h. 520 * 521 * Internal memory management code can use the walk_page_range_mm() function to 522 * be able to use all page walking operations. 523 */ 524 static bool check_ops_valid(const struct mm_walk_ops *ops) 525 { 526 /* 527 * The installation of PTEs is solely under the control of memory 528 * management logic and subject to many subtle locking, security and 529 * cache considerations so we cannot permit other users to do so, and 530 * certainly not for exported symbols. 531 */ 532 if (ops->install_pte) 533 return false; 534 535 return true; 536 } 537 538 /** 539 * walk_page_range - walk page table with caller specific callbacks 540 * @mm: mm_struct representing the target process of page table walk 541 * @start: start address of the virtual address range 542 * @end: end address of the virtual address range 543 * @ops: operation to call during the walk 544 * @private: private data for callbacks' usage 545 * 546 * Recursively walk the page table tree of the process represented by @mm 547 * within the virtual address range [@start, @end). During walking, we can do 548 * some caller-specific works for each entry, by setting up pmd_entry(), 549 * pte_entry(), and/or hugetlb_entry(). If you don't set up for some of these 550 * callbacks, the associated entries/pages are just ignored. 551 * The return values of these callbacks are commonly defined like below: 552 * 553 * - 0 : succeeded to handle the current entry, and if you don't reach the 554 * end address yet, continue to walk. 555 * - >0 : succeeded to handle the current entry, and return to the caller 556 * with caller specific value. 557 * - <0 : failed to handle the current entry, and return to the caller 558 * with error code. 559 * 560 * Before starting to walk page table, some callers want to check whether 561 * they really want to walk over the current vma, typically by checking 562 * its vm_flags. walk_page_test() and @ops->test_walk() are used for this 563 * purpose. 564 * 565 * If operations need to be staged before and committed after a vma is walked, 566 * there are two callbacks, pre_vma() and post_vma(). Note that post_vma(), 567 * since it is intended to handle commit-type operations, can't return any 568 * errors. 569 * 570 * struct mm_walk keeps current values of some common data like vma and pmd, 571 * which are useful for the access from callbacks. If you want to pass some 572 * caller-specific data to callbacks, @private should be helpful. 573 * 574 * Locking: 575 * Callers of walk_page_range() and walk_page_vma() should hold @mm->mmap_lock, 576 * because these function traverse vma list and/or access to vma's data. 577 */ 578 int walk_page_range(struct mm_struct *mm, unsigned long start, 579 unsigned long end, const struct mm_walk_ops *ops, 580 void *private) 581 { 582 if (!check_ops_valid(ops)) 583 return -EINVAL; 584 585 return walk_page_range_mm(mm, start, end, ops, private); 586 } 587 588 /** 589 * walk_kernel_page_table_range - walk a range of kernel pagetables. 590 * @start: start address of the virtual address range 591 * @end: end address of the virtual address range 592 * @ops: operation to call during the walk 593 * @pgd: pgd to walk if different from mm->pgd 594 * @private: private data for callbacks' usage 595 * 596 * Similar to walk_page_range() but can walk any page tables even if they are 597 * not backed by VMAs. Because 'unusual' entries may be walked this function 598 * will also not lock the PTEs for the pte_entry() callback. This is useful for 599 * walking kernel pages tables or page tables for firmware. 600 * 601 * Note: Be careful to walk the kernel pages tables, the caller may be need to 602 * take other effective approaches (mmap lock may be insufficient) to prevent 603 * the intermediate kernel page tables belonging to the specified address range 604 * from being freed (e.g. memory hot-remove). 605 */ 606 int walk_kernel_page_table_range(unsigned long start, unsigned long end, 607 const struct mm_walk_ops *ops, pgd_t *pgd, void *private) 608 { 609 struct mm_struct *mm = &init_mm; 610 struct mm_walk walk = { 611 .ops = ops, 612 .mm = mm, 613 .pgd = pgd, 614 .private = private, 615 .no_vma = true 616 }; 617 618 if (start >= end) 619 return -EINVAL; 620 if (!check_ops_valid(ops)) 621 return -EINVAL; 622 623 /* 624 * Kernel intermediate page tables are usually not freed, so the mmap 625 * read lock is sufficient. But there are some exceptions. 626 * E.g. memory hot-remove. In which case, the mmap lock is insufficient 627 * to prevent the intermediate kernel pages tables belonging to the 628 * specified address range from being freed. The caller should take 629 * other actions to prevent this race. 630 */ 631 mmap_assert_locked(mm); 632 633 return walk_pgd_range(start, end, &walk); 634 } 635 636 /** 637 * walk_page_range_debug - walk a range of pagetables not backed by a vma 638 * @mm: mm_struct representing the target process of page table walk 639 * @start: start address of the virtual address range 640 * @end: end address of the virtual address range 641 * @ops: operation to call during the walk 642 * @pgd: pgd to walk if different from mm->pgd 643 * @private: private data for callbacks' usage 644 * 645 * Similar to walk_page_range() but can walk any page tables even if they are 646 * not backed by VMAs. Because 'unusual' entries may be walked this function 647 * will also not lock the PTEs for the pte_entry() callback. 648 * 649 * This is for debugging purposes ONLY. 650 */ 651 int walk_page_range_debug(struct mm_struct *mm, unsigned long start, 652 unsigned long end, const struct mm_walk_ops *ops, 653 pgd_t *pgd, void *private) 654 { 655 struct mm_walk walk = { 656 .ops = ops, 657 .mm = mm, 658 .pgd = pgd, 659 .private = private, 660 .no_vma = true 661 }; 662 663 /* For convenience, we allow traversal of kernel mappings. */ 664 if (mm == &init_mm) 665 return walk_kernel_page_table_range(start, end, ops, 666 pgd, private); 667 if (start >= end || !walk.mm) 668 return -EINVAL; 669 if (!check_ops_valid(ops)) 670 return -EINVAL; 671 672 /* 673 * The mmap lock protects the page walker from changes to the page 674 * tables during the walk. However a read lock is insufficient to 675 * protect those areas which don't have a VMA as munmap() detaches 676 * the VMAs before downgrading to a read lock and actually tearing 677 * down PTEs/page tables. In which case, the mmap write lock should 678 * be held. 679 */ 680 mmap_assert_write_locked(mm); 681 682 return walk_pgd_range(start, end, &walk); 683 } 684 685 int walk_page_range_vma(struct vm_area_struct *vma, unsigned long start, 686 unsigned long end, const struct mm_walk_ops *ops, 687 void *private) 688 { 689 struct mm_walk walk = { 690 .ops = ops, 691 .mm = vma->vm_mm, 692 .vma = vma, 693 .private = private, 694 }; 695 696 if (start >= end || !walk.mm) 697 return -EINVAL; 698 if (start < vma->vm_start || end > vma->vm_end) 699 return -EINVAL; 700 if (!check_ops_valid(ops)) 701 return -EINVAL; 702 703 process_mm_walk_lock(walk.mm, ops->walk_lock); 704 process_vma_walk_lock(vma, ops->walk_lock); 705 return __walk_page_range(start, end, &walk); 706 } 707 708 int walk_page_vma(struct vm_area_struct *vma, const struct mm_walk_ops *ops, 709 void *private) 710 { 711 struct mm_walk walk = { 712 .ops = ops, 713 .mm = vma->vm_mm, 714 .vma = vma, 715 .private = private, 716 }; 717 718 if (!walk.mm) 719 return -EINVAL; 720 if (!check_ops_valid(ops)) 721 return -EINVAL; 722 723 process_mm_walk_lock(walk.mm, ops->walk_lock); 724 process_vma_walk_lock(vma, ops->walk_lock); 725 return __walk_page_range(vma->vm_start, vma->vm_end, &walk); 726 } 727 728 /** 729 * walk_page_mapping - walk all memory areas mapped into a struct address_space. 730 * @mapping: Pointer to the struct address_space 731 * @first_index: First page offset in the address_space 732 * @nr: Number of incremental page offsets to cover 733 * @ops: operation to call during the walk 734 * @private: private data for callbacks' usage 735 * 736 * This function walks all memory areas mapped into a struct address_space. 737 * The walk is limited to only the given page-size index range, but if 738 * the index boundaries cross a huge page-table entry, that entry will be 739 * included. 740 * 741 * Also see walk_page_range() for additional information. 742 * 743 * Locking: 744 * This function can't require that the struct mm_struct::mmap_lock is held, 745 * since @mapping may be mapped by multiple processes. Instead 746 * @mapping->i_mmap_rwsem must be held. This might have implications in the 747 * callbacks, and it's up tho the caller to ensure that the 748 * struct mm_struct::mmap_lock is not needed. 749 * 750 * Also this means that a caller can't rely on the struct 751 * vm_area_struct::vm_flags to be constant across a call, 752 * except for immutable flags. Callers requiring this shouldn't use 753 * this function. 754 * 755 * Return: 0 on success, negative error code on failure, positive number on 756 * caller defined premature termination. 757 */ 758 int walk_page_mapping(struct address_space *mapping, pgoff_t first_index, 759 pgoff_t nr, const struct mm_walk_ops *ops, 760 void *private) 761 { 762 struct mm_walk walk = { 763 .ops = ops, 764 .private = private, 765 }; 766 struct vm_area_struct *vma; 767 pgoff_t vba, vea, cba, cea; 768 unsigned long start_addr, end_addr; 769 int err = 0; 770 771 if (!check_ops_valid(ops)) 772 return -EINVAL; 773 774 lockdep_assert_held(&mapping->i_mmap_rwsem); 775 vma_interval_tree_foreach(vma, &mapping->i_mmap, first_index, 776 first_index + nr - 1) { 777 /* Clip to the vma */ 778 vba = vma->vm_pgoff; 779 vea = vba + vma_pages(vma); 780 cba = first_index; 781 cba = max(cba, vba); 782 cea = first_index + nr; 783 cea = min(cea, vea); 784 785 start_addr = ((cba - vba) << PAGE_SHIFT) + vma->vm_start; 786 end_addr = ((cea - vba) << PAGE_SHIFT) + vma->vm_start; 787 if (start_addr >= end_addr) 788 continue; 789 790 walk.vma = vma; 791 walk.mm = vma->vm_mm; 792 793 err = walk_page_test(vma->vm_start, vma->vm_end, &walk); 794 if (err > 0) { 795 err = 0; 796 break; 797 } else if (err < 0) 798 break; 799 800 err = __walk_page_range(start_addr, end_addr, &walk); 801 if (err) 802 break; 803 } 804 805 return err; 806 } 807 808 /** 809 * folio_walk_start - walk the page tables to a folio 810 * @fw: filled with information on success. 811 * @vma: the VMA. 812 * @addr: the virtual address to use for the page table walk. 813 * @flags: flags modifying which folios to walk to. 814 * 815 * Walk the page tables using @addr in a given @vma to a mapped folio and 816 * return the folio, making sure that the page table entry referenced by 817 * @addr cannot change until folio_walk_end() was called. 818 * 819 * As default, this function returns only folios that are not special (e.g., not 820 * the zeropage) and never returns folios that are supposed to be ignored by the 821 * VM as documented by vm_normal_page(). If requested, zeropages will be 822 * returned as well. 823 * 824 * As default, this function only considers present page table entries. 825 * If requested, it will also consider migration entries. 826 * 827 * If this function returns NULL it might either indicate "there is nothing" or 828 * "there is nothing suitable". 829 * 830 * On success, @fw is filled and the function returns the folio while the PTL 831 * is still held and folio_walk_end() must be called to clean up, 832 * releasing any held locks. The returned folio must *not* be used after the 833 * call to folio_walk_end(), unless a short-term folio reference is taken before 834 * that call. 835 * 836 * @fw->page will correspond to the page that is effectively referenced by 837 * @addr. However, for migration entries and shared zeropages @fw->page is 838 * set to NULL. Note that large folios might be mapped by multiple page table 839 * entries, and this function will always only lookup a single entry as 840 * specified by @addr, which might or might not cover more than a single page of 841 * the returned folio. 842 * 843 * This function must *not* be used as a naive replacement for 844 * get_user_pages() / pin_user_pages(), especially not to perform DMA or 845 * to carelessly modify page content. This function may *only* be used to grab 846 * short-term folio references, never to grab long-term folio references. 847 * 848 * Using the page table entry pointers in @fw for reading or modifying the 849 * entry should be avoided where possible: however, there might be valid 850 * use cases. 851 * 852 * WARNING: Modifying page table entries in hugetlb VMAs requires a lot of care. 853 * For example, PMD page table sharing might require prior unsharing. Also, 854 * logical hugetlb entries might span multiple physical page table entries, 855 * which *must* be modified in a single operation (set_huge_pte_at(), 856 * huge_ptep_set_*, ...). Note that the page table entry stored in @fw might 857 * not correspond to the first physical entry of a logical hugetlb entry. 858 * 859 * The mmap lock must be held in read mode. 860 * 861 * Return: folio pointer on success, otherwise NULL. 862 */ 863 struct folio *folio_walk_start(struct folio_walk *fw, 864 struct vm_area_struct *vma, unsigned long addr, 865 folio_walk_flags_t flags) 866 { 867 unsigned long entry_size; 868 bool expose_page = true; 869 struct page *page; 870 pud_t *pudp, pud; 871 pmd_t *pmdp, pmd; 872 pte_t *ptep, pte; 873 spinlock_t *ptl; 874 pgd_t *pgdp; 875 p4d_t *p4dp; 876 877 mmap_assert_locked(vma->vm_mm); 878 vma_pgtable_walk_begin(vma); 879 880 if (WARN_ON_ONCE(addr < vma->vm_start || addr >= vma->vm_end)) 881 goto not_found; 882 883 pgdp = pgd_offset(vma->vm_mm, addr); 884 if (pgd_none_or_clear_bad(pgdp)) 885 goto not_found; 886 887 p4dp = p4d_offset(pgdp, addr); 888 if (p4d_none_or_clear_bad(p4dp)) 889 goto not_found; 890 891 pudp = pud_offset(p4dp, addr); 892 pud = pudp_get(pudp); 893 if (pud_none(pud)) 894 goto not_found; 895 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && 896 (!pud_present(pud) || pud_leaf(pud))) { 897 ptl = pud_lock(vma->vm_mm, pudp); 898 pud = pudp_get(pudp); 899 900 entry_size = PUD_SIZE; 901 fw->level = FW_LEVEL_PUD; 902 fw->pudp = pudp; 903 fw->pud = pud; 904 905 /* 906 * TODO: FW_MIGRATION support for PUD migration entries 907 * once there are relevant users. 908 */ 909 if (!pud_present(pud) || pud_special(pud)) { 910 spin_unlock(ptl); 911 goto not_found; 912 } else if (!pud_leaf(pud)) { 913 spin_unlock(ptl); 914 goto pmd_table; 915 } 916 /* 917 * TODO: vm_normal_page_pud() will be handy once we want to 918 * support PUD mappings in VM_PFNMAP|VM_MIXEDMAP VMAs. 919 */ 920 page = pud_page(pud); 921 goto found; 922 } 923 924 pmd_table: 925 VM_WARN_ON_ONCE(!pud_present(pud) || pud_leaf(pud)); 926 pmdp = pmd_offset(pudp, addr); 927 pmd = pmdp_get_lockless(pmdp); 928 if (pmd_none(pmd)) 929 goto not_found; 930 if (IS_ENABLED(CONFIG_PGTABLE_HAS_HUGE_LEAVES) && 931 (!pmd_present(pmd) || pmd_leaf(pmd))) { 932 ptl = pmd_lock(vma->vm_mm, pmdp); 933 pmd = pmdp_get(pmdp); 934 935 entry_size = PMD_SIZE; 936 fw->level = FW_LEVEL_PMD; 937 fw->pmdp = pmdp; 938 fw->pmd = pmd; 939 940 if (pmd_none(pmd)) { 941 spin_unlock(ptl); 942 goto not_found; 943 } else if (pmd_present(pmd) && !pmd_leaf(pmd)) { 944 spin_unlock(ptl); 945 goto pte_table; 946 } else if (pmd_present(pmd)) { 947 page = vm_normal_page_pmd(vma, addr, pmd); 948 if (page) { 949 goto found; 950 } else if ((flags & FW_ZEROPAGE) && 951 is_huge_zero_pmd(pmd)) { 952 page = pfn_to_page(pmd_pfn(pmd)); 953 expose_page = false; 954 goto found; 955 } 956 } else if ((flags & FW_MIGRATION) && 957 is_pmd_migration_entry(pmd)) { 958 swp_entry_t entry = pmd_to_swp_entry(pmd); 959 960 page = pfn_swap_entry_to_page(entry); 961 expose_page = false; 962 goto found; 963 } 964 spin_unlock(ptl); 965 goto not_found; 966 } 967 968 pte_table: 969 VM_WARN_ON_ONCE(!pmd_present(pmd) || pmd_leaf(pmd)); 970 ptep = pte_offset_map_lock(vma->vm_mm, pmdp, addr, &ptl); 971 if (!ptep) 972 goto not_found; 973 pte = ptep_get(ptep); 974 975 entry_size = PAGE_SIZE; 976 fw->level = FW_LEVEL_PTE; 977 fw->ptep = ptep; 978 fw->pte = pte; 979 980 if (pte_present(pte)) { 981 page = vm_normal_page(vma, addr, pte); 982 if (page) 983 goto found; 984 if ((flags & FW_ZEROPAGE) && 985 is_zero_pfn(pte_pfn(pte))) { 986 page = pfn_to_page(pte_pfn(pte)); 987 expose_page = false; 988 goto found; 989 } 990 } else if (!pte_none(pte)) { 991 swp_entry_t entry = pte_to_swp_entry(pte); 992 993 if ((flags & FW_MIGRATION) && 994 is_migration_entry(entry)) { 995 page = pfn_swap_entry_to_page(entry); 996 expose_page = false; 997 goto found; 998 } 999 } 1000 pte_unmap_unlock(ptep, ptl); 1001 not_found: 1002 vma_pgtable_walk_end(vma); 1003 return NULL; 1004 found: 1005 if (expose_page) 1006 /* Note: Offset from the mapped page, not the folio start. */ 1007 fw->page = nth_page(page, (addr & (entry_size - 1)) >> PAGE_SHIFT); 1008 else 1009 fw->page = NULL; 1010 fw->ptl = ptl; 1011 return page_folio(page); 1012 } 1013