xref: /linux/mm/page_isolation.c (revision f884ab15afdc5514e88105c92a4e2e1e6539869a)
1 /*
2  * linux/mm/page_isolation.c
3  */
4 
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include "internal.h"
10 
11 int set_migratetype_isolate(struct page *page, bool skip_hwpoisoned_pages)
12 {
13 	struct zone *zone;
14 	unsigned long flags, pfn;
15 	struct memory_isolate_notify arg;
16 	int notifier_ret;
17 	int ret = -EBUSY;
18 
19 	zone = page_zone(page);
20 
21 	spin_lock_irqsave(&zone->lock, flags);
22 
23 	pfn = page_to_pfn(page);
24 	arg.start_pfn = pfn;
25 	arg.nr_pages = pageblock_nr_pages;
26 	arg.pages_found = 0;
27 
28 	/*
29 	 * It may be possible to isolate a pageblock even if the
30 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
31 	 * notifier chain is used by balloon drivers to return the
32 	 * number of pages in a range that are held by the balloon
33 	 * driver to shrink memory. If all the pages are accounted for
34 	 * by balloons, are free, or on the LRU, isolation can continue.
35 	 * Later, for example, when memory hotplug notifier runs, these
36 	 * pages reported as "can be isolated" should be isolated(freed)
37 	 * by the balloon driver through the memory notifier chain.
38 	 */
39 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
40 	notifier_ret = notifier_to_errno(notifier_ret);
41 	if (notifier_ret)
42 		goto out;
43 	/*
44 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
45 	 * We just check MOVABLE pages.
46 	 */
47 	if (!has_unmovable_pages(zone, page, arg.pages_found,
48 				 skip_hwpoisoned_pages))
49 		ret = 0;
50 
51 	/*
52 	 * immobile means "not-on-lru" paes. If immobile is larger than
53 	 * removable-by-driver pages reported by notifier, we'll fail.
54 	 */
55 
56 out:
57 	if (!ret) {
58 		unsigned long nr_pages;
59 		int migratetype = get_pageblock_migratetype(page);
60 
61 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
62 		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
63 
64 		__mod_zone_freepage_state(zone, -nr_pages, migratetype);
65 	}
66 
67 	spin_unlock_irqrestore(&zone->lock, flags);
68 	if (!ret)
69 		drain_all_pages();
70 	return ret;
71 }
72 
73 void unset_migratetype_isolate(struct page *page, unsigned migratetype)
74 {
75 	struct zone *zone;
76 	unsigned long flags, nr_pages;
77 
78 	zone = page_zone(page);
79 	spin_lock_irqsave(&zone->lock, flags);
80 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
81 		goto out;
82 	nr_pages = move_freepages_block(zone, page, migratetype);
83 	__mod_zone_freepage_state(zone, nr_pages, migratetype);
84 	set_pageblock_migratetype(page, migratetype);
85 out:
86 	spin_unlock_irqrestore(&zone->lock, flags);
87 }
88 
89 static inline struct page *
90 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
91 {
92 	int i;
93 	for (i = 0; i < nr_pages; i++)
94 		if (pfn_valid_within(pfn + i))
95 			break;
96 	if (unlikely(i == nr_pages))
97 		return NULL;
98 	return pfn_to_page(pfn + i);
99 }
100 
101 /*
102  * start_isolate_page_range() -- make page-allocation-type of range of pages
103  * to be MIGRATE_ISOLATE.
104  * @start_pfn: The lower PFN of the range to be isolated.
105  * @end_pfn: The upper PFN of the range to be isolated.
106  * @migratetype: migrate type to set in error recovery.
107  *
108  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
109  * the range will never be allocated. Any free pages and pages freed in the
110  * future will not be allocated again.
111  *
112  * start_pfn/end_pfn must be aligned to pageblock_order.
113  * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
114  */
115 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
116 			     unsigned migratetype, bool skip_hwpoisoned_pages)
117 {
118 	unsigned long pfn;
119 	unsigned long undo_pfn;
120 	struct page *page;
121 
122 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
123 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
124 
125 	for (pfn = start_pfn;
126 	     pfn < end_pfn;
127 	     pfn += pageblock_nr_pages) {
128 		page = __first_valid_page(pfn, pageblock_nr_pages);
129 		if (page &&
130 		    set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
131 			undo_pfn = pfn;
132 			goto undo;
133 		}
134 	}
135 	return 0;
136 undo:
137 	for (pfn = start_pfn;
138 	     pfn < undo_pfn;
139 	     pfn += pageblock_nr_pages)
140 		unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
141 
142 	return -EBUSY;
143 }
144 
145 /*
146  * Make isolated pages available again.
147  */
148 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
149 			    unsigned migratetype)
150 {
151 	unsigned long pfn;
152 	struct page *page;
153 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
154 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
155 	for (pfn = start_pfn;
156 	     pfn < end_pfn;
157 	     pfn += pageblock_nr_pages) {
158 		page = __first_valid_page(pfn, pageblock_nr_pages);
159 		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
160 			continue;
161 		unset_migratetype_isolate(page, migratetype);
162 	}
163 	return 0;
164 }
165 /*
166  * Test all pages in the range is free(means isolated) or not.
167  * all pages in [start_pfn...end_pfn) must be in the same zone.
168  * zone->lock must be held before call this.
169  *
170  * Returns 1 if all pages in the range are isolated.
171  */
172 static int
173 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
174 				  bool skip_hwpoisoned_pages)
175 {
176 	struct page *page;
177 
178 	while (pfn < end_pfn) {
179 		if (!pfn_valid_within(pfn)) {
180 			pfn++;
181 			continue;
182 		}
183 		page = pfn_to_page(pfn);
184 		if (PageBuddy(page)) {
185 			/*
186 			 * If race between isolatation and allocation happens,
187 			 * some free pages could be in MIGRATE_MOVABLE list
188 			 * although pageblock's migratation type of the page
189 			 * is MIGRATE_ISOLATE. Catch it and move the page into
190 			 * MIGRATE_ISOLATE list.
191 			 */
192 			if (get_freepage_migratetype(page) != MIGRATE_ISOLATE) {
193 				struct page *end_page;
194 
195 				end_page = page + (1 << page_order(page)) - 1;
196 				move_freepages(page_zone(page), page, end_page,
197 						MIGRATE_ISOLATE);
198 			}
199 			pfn += 1 << page_order(page);
200 		}
201 		else if (page_count(page) == 0 &&
202 			get_freepage_migratetype(page) == MIGRATE_ISOLATE)
203 			pfn += 1;
204 		else if (skip_hwpoisoned_pages && PageHWPoison(page)) {
205 			/*
206 			 * The HWPoisoned page may be not in buddy
207 			 * system, and page_count() is not 0.
208 			 */
209 			pfn++;
210 			continue;
211 		}
212 		else
213 			break;
214 	}
215 	if (pfn < end_pfn)
216 		return 0;
217 	return 1;
218 }
219 
220 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
221 			bool skip_hwpoisoned_pages)
222 {
223 	unsigned long pfn, flags;
224 	struct page *page;
225 	struct zone *zone;
226 	int ret;
227 
228 	/*
229 	 * Note: pageblock_nr_page != MAX_ORDER. Then, chunks of free page
230 	 * is not aligned to pageblock_nr_pages.
231 	 * Then we just check pagetype fist.
232 	 */
233 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
234 		page = __first_valid_page(pfn, pageblock_nr_pages);
235 		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
236 			break;
237 	}
238 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
239 	if ((pfn < end_pfn) || !page)
240 		return -EBUSY;
241 	/* Check all pages are free or Marked as ISOLATED */
242 	zone = page_zone(page);
243 	spin_lock_irqsave(&zone->lock, flags);
244 	ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
245 						skip_hwpoisoned_pages);
246 	spin_unlock_irqrestore(&zone->lock, flags);
247 	return ret ? 0 : -EBUSY;
248 }
249 
250 struct page *alloc_migrate_target(struct page *page, unsigned long private,
251 				  int **resultp)
252 {
253 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
254 
255 	if (PageHighMem(page))
256 		gfp_mask |= __GFP_HIGHMEM;
257 
258 	return alloc_page(gfp_mask);
259 }
260