1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_isolation.c 4 */ 5 6 #include <linux/mm.h> 7 #include <linux/page-isolation.h> 8 #include <linux/pageblock-flags.h> 9 #include <linux/memory.h> 10 #include <linux/hugetlb.h> 11 #include <linux/page_owner.h> 12 #include <linux/migrate.h> 13 #include "internal.h" 14 15 #define CREATE_TRACE_POINTS 16 #include <trace/events/page_isolation.h> 17 18 /* 19 * This function checks whether the range [start_pfn, end_pfn) includes 20 * unmovable pages or not. The range must fall into a single pageblock and 21 * consequently belong to a single zone. 22 * 23 * PageLRU check without isolation or lru_lock could race so that 24 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 25 * check without lock_page also may miss some movable non-lru pages at 26 * race condition. So you can't expect this function should be exact. 27 * 28 * Returns a page without holding a reference. If the caller wants to 29 * dereference that page (e.g., dumping), it has to make sure that it 30 * cannot get removed (e.g., via memory unplug) concurrently. 31 * 32 */ 33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn, 34 int migratetype, int flags) 35 { 36 struct page *page = pfn_to_page(start_pfn); 37 struct zone *zone = page_zone(page); 38 unsigned long pfn; 39 40 VM_BUG_ON(pageblock_start_pfn(start_pfn) != 41 pageblock_start_pfn(end_pfn - 1)); 42 43 if (is_migrate_cma_page(page)) { 44 /* 45 * CMA allocations (alloc_contig_range) really need to mark 46 * isolate CMA pageblocks even when they are not movable in fact 47 * so consider them movable here. 48 */ 49 if (is_migrate_cma(migratetype)) 50 return NULL; 51 52 return page; 53 } 54 55 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 56 page = pfn_to_page(pfn); 57 58 /* 59 * Both, bootmem allocations and memory holes are marked 60 * PG_reserved and are unmovable. We can even have unmovable 61 * allocations inside ZONE_MOVABLE, for example when 62 * specifying "movablecore". 63 */ 64 if (PageReserved(page)) 65 return page; 66 67 /* 68 * If the zone is movable and we have ruled out all reserved 69 * pages then it should be reasonably safe to assume the rest 70 * is movable. 71 */ 72 if (zone_idx(zone) == ZONE_MOVABLE) 73 continue; 74 75 /* 76 * Hugepages are not in LRU lists, but they're movable. 77 * THPs are on the LRU, but need to be counted as #small pages. 78 * We need not scan over tail pages because we don't 79 * handle each tail page individually in migration. 80 */ 81 if (PageHuge(page) || PageTransCompound(page)) { 82 struct folio *folio = page_folio(page); 83 unsigned int skip_pages; 84 85 if (PageHuge(page)) { 86 if (!hugepage_migration_supported(folio_hstate(folio))) 87 return page; 88 } else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) { 89 return page; 90 } 91 92 skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page); 93 pfn += skip_pages - 1; 94 continue; 95 } 96 97 /* 98 * We can't use page_count without pin a page 99 * because another CPU can free compound page. 100 * This check already skips compound tails of THP 101 * because their page->_refcount is zero at all time. 102 */ 103 if (!page_ref_count(page)) { 104 if (PageBuddy(page)) 105 pfn += (1 << buddy_order(page)) - 1; 106 continue; 107 } 108 109 /* 110 * The HWPoisoned page may be not in buddy system, and 111 * page_count() is not 0. 112 */ 113 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 114 continue; 115 116 /* 117 * We treat all PageOffline() pages as movable when offlining 118 * to give drivers a chance to decrement their reference count 119 * in MEM_GOING_OFFLINE in order to indicate that these pages 120 * can be offlined as there are no direct references anymore. 121 * For actually unmovable PageOffline() where the driver does 122 * not support this, we will fail later when trying to actually 123 * move these pages that still have a reference count > 0. 124 * (false negatives in this function only) 125 */ 126 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 127 continue; 128 129 if (__PageMovable(page) || PageLRU(page)) 130 continue; 131 132 /* 133 * If there are RECLAIMABLE pages, we need to check 134 * it. But now, memory offline itself doesn't call 135 * shrink_node_slabs() and it still to be fixed. 136 */ 137 return page; 138 } 139 return NULL; 140 } 141 142 /* 143 * This function set pageblock migratetype to isolate if no unmovable page is 144 * present in [start_pfn, end_pfn). The pageblock must intersect with 145 * [start_pfn, end_pfn). 146 */ 147 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags, 148 unsigned long start_pfn, unsigned long end_pfn) 149 { 150 struct zone *zone = page_zone(page); 151 struct page *unmovable; 152 unsigned long flags; 153 unsigned long check_unmovable_start, check_unmovable_end; 154 155 spin_lock_irqsave(&zone->lock, flags); 156 157 /* 158 * We assume the caller intended to SET migrate type to isolate. 159 * If it is already set, then someone else must have raced and 160 * set it before us. 161 */ 162 if (is_migrate_isolate_page(page)) { 163 spin_unlock_irqrestore(&zone->lock, flags); 164 return -EBUSY; 165 } 166 167 /* 168 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself. 169 * We just check MOVABLE pages. 170 * 171 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock 172 * to avoid redundant checks. 173 */ 174 check_unmovable_start = max(page_to_pfn(page), start_pfn); 175 check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)), 176 end_pfn); 177 178 unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end, 179 migratetype, isol_flags); 180 if (!unmovable) { 181 if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) { 182 spin_unlock_irqrestore(&zone->lock, flags); 183 return -EBUSY; 184 } 185 zone->nr_isolate_pageblock++; 186 spin_unlock_irqrestore(&zone->lock, flags); 187 return 0; 188 } 189 190 spin_unlock_irqrestore(&zone->lock, flags); 191 if (isol_flags & REPORT_FAILURE) { 192 /* 193 * printk() with zone->lock held will likely trigger a 194 * lockdep splat, so defer it here. 195 */ 196 dump_page(unmovable, "unmovable page"); 197 } 198 199 return -EBUSY; 200 } 201 202 static void unset_migratetype_isolate(struct page *page, int migratetype) 203 { 204 struct zone *zone; 205 unsigned long flags; 206 bool isolated_page = false; 207 unsigned int order; 208 struct page *buddy; 209 210 zone = page_zone(page); 211 spin_lock_irqsave(&zone->lock, flags); 212 if (!is_migrate_isolate_page(page)) 213 goto out; 214 215 /* 216 * Because freepage with more than pageblock_order on isolated 217 * pageblock is restricted to merge due to freepage counting problem, 218 * it is possible that there is free buddy page. 219 * move_freepages_block() doesn't care of merge so we need other 220 * approach in order to merge them. Isolation and free will make 221 * these pages to be merged. 222 */ 223 if (PageBuddy(page)) { 224 order = buddy_order(page); 225 if (order >= pageblock_order && order < MAX_PAGE_ORDER) { 226 buddy = find_buddy_page_pfn(page, page_to_pfn(page), 227 order, NULL); 228 if (buddy && !is_migrate_isolate_page(buddy)) { 229 isolated_page = !!__isolate_free_page(page, order); 230 /* 231 * Isolating a free page in an isolated pageblock 232 * is expected to always work as watermarks don't 233 * apply here. 234 */ 235 VM_WARN_ON(!isolated_page); 236 } 237 } 238 } 239 240 /* 241 * If we isolate freepage with more than pageblock_order, there 242 * should be no freepage in the range, so we could avoid costly 243 * pageblock scanning for freepage moving. 244 * 245 * We didn't actually touch any of the isolated pages, so place them 246 * to the tail of the freelist. This is an optimization for memory 247 * onlining - just onlined memory won't immediately be considered for 248 * allocation. 249 */ 250 if (!isolated_page) { 251 /* 252 * Isolating this block already succeeded, so this 253 * should not fail on zone boundaries. 254 */ 255 WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype)); 256 } else { 257 set_pageblock_migratetype(page, migratetype); 258 __putback_isolated_page(page, order, migratetype); 259 } 260 zone->nr_isolate_pageblock--; 261 out: 262 spin_unlock_irqrestore(&zone->lock, flags); 263 } 264 265 static inline struct page * 266 __first_valid_page(unsigned long pfn, unsigned long nr_pages) 267 { 268 int i; 269 270 for (i = 0; i < nr_pages; i++) { 271 struct page *page; 272 273 page = pfn_to_online_page(pfn + i); 274 if (!page) 275 continue; 276 return page; 277 } 278 return NULL; 279 } 280 281 /** 282 * isolate_single_pageblock() -- tries to isolate a pageblock that might be 283 * within a free or in-use page. 284 * @boundary_pfn: pageblock-aligned pfn that a page might cross 285 * @flags: isolation flags 286 * @gfp_flags: GFP flags used for migrating pages 287 * @isolate_before: isolate the pageblock before the boundary_pfn 288 * @skip_isolation: the flag to skip the pageblock isolation in second 289 * isolate_single_pageblock() 290 * @migratetype: migrate type to set in error recovery. 291 * 292 * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one 293 * pageblock. When not all pageblocks within a page are isolated at the same 294 * time, free page accounting can go wrong. For example, in the case of 295 * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two 296 * pagelbocks. 297 * [ MAX_PAGE_ORDER ] 298 * [ pageblock0 | pageblock1 ] 299 * When either pageblock is isolated, if it is a free page, the page is not 300 * split into separate migratetype lists, which is supposed to; if it is an 301 * in-use page and freed later, __free_one_page() does not split the free page 302 * either. The function handles this by splitting the free page or migrating 303 * the in-use page then splitting the free page. 304 */ 305 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags, 306 gfp_t gfp_flags, bool isolate_before, bool skip_isolation, 307 int migratetype) 308 { 309 unsigned long start_pfn; 310 unsigned long isolate_pageblock; 311 unsigned long pfn; 312 struct zone *zone; 313 int ret; 314 315 VM_BUG_ON(!pageblock_aligned(boundary_pfn)); 316 317 if (isolate_before) 318 isolate_pageblock = boundary_pfn - pageblock_nr_pages; 319 else 320 isolate_pageblock = boundary_pfn; 321 322 /* 323 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid 324 * only isolating a subset of pageblocks from a bigger than pageblock 325 * free or in-use page. Also make sure all to-be-isolated pageblocks 326 * are within the same zone. 327 */ 328 zone = page_zone(pfn_to_page(isolate_pageblock)); 329 start_pfn = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES), 330 zone->zone_start_pfn); 331 332 if (skip_isolation) { 333 int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock)); 334 335 VM_BUG_ON(!is_migrate_isolate(mt)); 336 } else { 337 ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype, 338 flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages); 339 340 if (ret) 341 return ret; 342 } 343 344 /* 345 * Bail out early when the to-be-isolated pageblock does not form 346 * a free or in-use page across boundary_pfn: 347 * 348 * 1. isolate before boundary_pfn: the page after is not online 349 * 2. isolate after boundary_pfn: the page before is not online 350 * 351 * This also ensures correctness. Without it, when isolate after 352 * boundary_pfn and [start_pfn, boundary_pfn) are not online, 353 * __first_valid_page() will return unexpected NULL in the for loop 354 * below. 355 */ 356 if (isolate_before) { 357 if (!pfn_to_online_page(boundary_pfn)) 358 return 0; 359 } else { 360 if (!pfn_to_online_page(boundary_pfn - 1)) 361 return 0; 362 } 363 364 for (pfn = start_pfn; pfn < boundary_pfn;) { 365 struct page *page = __first_valid_page(pfn, boundary_pfn - pfn); 366 367 VM_BUG_ON(!page); 368 pfn = page_to_pfn(page); 369 370 if (PageBuddy(page)) { 371 int order = buddy_order(page); 372 373 /* move_freepages_block_isolate() handled this */ 374 VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn); 375 376 pfn += 1UL << order; 377 continue; 378 } 379 380 /* 381 * If a compound page is straddling our block, attempt 382 * to migrate it out of the way. 383 * 384 * We don't have to worry about this creating a large 385 * free page that straddles into our block: gigantic 386 * pages are freed as order-0 chunks, and LRU pages 387 * (currently) do not exceed pageblock_order. 388 * 389 * The block of interest has already been marked 390 * MIGRATE_ISOLATE above, so when migration is done it 391 * will free its pages onto the correct freelists. 392 */ 393 if (PageCompound(page)) { 394 struct page *head = compound_head(page); 395 unsigned long head_pfn = page_to_pfn(head); 396 unsigned long nr_pages = compound_nr(head); 397 398 if (head_pfn + nr_pages <= boundary_pfn) { 399 pfn = head_pfn + nr_pages; 400 continue; 401 } 402 403 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 404 if (PageHuge(page)) { 405 int page_mt = get_pageblock_migratetype(page); 406 struct compact_control cc = { 407 .nr_migratepages = 0, 408 .order = -1, 409 .zone = page_zone(pfn_to_page(head_pfn)), 410 .mode = MIGRATE_SYNC, 411 .ignore_skip_hint = true, 412 .no_set_skip_hint = true, 413 .gfp_mask = gfp_flags, 414 .alloc_contig = true, 415 }; 416 INIT_LIST_HEAD(&cc.migratepages); 417 418 ret = __alloc_contig_migrate_range(&cc, head_pfn, 419 head_pfn + nr_pages, page_mt); 420 if (ret) 421 goto failed; 422 pfn = head_pfn + nr_pages; 423 continue; 424 } 425 426 /* 427 * These pages are movable too, but they're 428 * not expected to exceed pageblock_order. 429 * 430 * Let us know when they do, so we can add 431 * proper free and split handling for them. 432 */ 433 VM_WARN_ON_ONCE_PAGE(PageLRU(page), page); 434 VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page); 435 #endif 436 goto failed; 437 } 438 439 pfn++; 440 } 441 return 0; 442 failed: 443 /* restore the original migratetype */ 444 if (!skip_isolation) 445 unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype); 446 return -EBUSY; 447 } 448 449 /** 450 * start_isolate_page_range() - mark page range MIGRATE_ISOLATE 451 * @start_pfn: The first PFN of the range to be isolated. 452 * @end_pfn: The last PFN of the range to be isolated. 453 * @migratetype: Migrate type to set in error recovery. 454 * @flags: The following flags are allowed (they can be combined in 455 * a bit mask) 456 * MEMORY_OFFLINE - isolate to offline (!allocate) memory 457 * e.g., skip over PageHWPoison() pages 458 * and PageOffline() pages. 459 * REPORT_FAILURE - report details about the failure to 460 * isolate the range 461 * @gfp_flags: GFP flags used for migrating pages that sit across the 462 * range boundaries. 463 * 464 * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in 465 * the range will never be allocated. Any free pages and pages freed in the 466 * future will not be allocated again. If specified range includes migrate types 467 * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all 468 * pages in the range finally, the caller have to free all pages in the range. 469 * test_page_isolated() can be used for test it. 470 * 471 * The function first tries to isolate the pageblocks at the beginning and end 472 * of the range, since there might be pages across the range boundaries. 473 * Afterwards, it isolates the rest of the range. 474 * 475 * There is no high level synchronization mechanism that prevents two threads 476 * from trying to isolate overlapping ranges. If this happens, one thread 477 * will notice pageblocks in the overlapping range already set to isolate. 478 * This happens in set_migratetype_isolate, and set_migratetype_isolate 479 * returns an error. We then clean up by restoring the migration type on 480 * pageblocks we may have modified and return -EBUSY to caller. This 481 * prevents two threads from simultaneously working on overlapping ranges. 482 * 483 * Please note that there is no strong synchronization with the page allocator 484 * either. Pages might be freed while their page blocks are marked ISOLATED. 485 * A call to drain_all_pages() after isolation can flush most of them. However 486 * in some cases pages might still end up on pcp lists and that would allow 487 * for their allocation even when they are in fact isolated already. Depending 488 * on how strong of a guarantee the caller needs, zone_pcp_disable/enable() 489 * might be used to flush and disable pcplist before isolation and enable after 490 * unisolation. 491 * 492 * Return: 0 on success and -EBUSY if any part of range cannot be isolated. 493 */ 494 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, 495 int migratetype, int flags, gfp_t gfp_flags) 496 { 497 unsigned long pfn; 498 struct page *page; 499 /* isolation is done at page block granularity */ 500 unsigned long isolate_start = pageblock_start_pfn(start_pfn); 501 unsigned long isolate_end = pageblock_align(end_pfn); 502 int ret; 503 bool skip_isolation = false; 504 505 /* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */ 506 ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false, 507 skip_isolation, migratetype); 508 if (ret) 509 return ret; 510 511 if (isolate_start == isolate_end - pageblock_nr_pages) 512 skip_isolation = true; 513 514 /* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */ 515 ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true, 516 skip_isolation, migratetype); 517 if (ret) { 518 unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype); 519 return ret; 520 } 521 522 /* skip isolated pageblocks at the beginning and end */ 523 for (pfn = isolate_start + pageblock_nr_pages; 524 pfn < isolate_end - pageblock_nr_pages; 525 pfn += pageblock_nr_pages) { 526 page = __first_valid_page(pfn, pageblock_nr_pages); 527 if (page && set_migratetype_isolate(page, migratetype, flags, 528 start_pfn, end_pfn)) { 529 undo_isolate_page_range(isolate_start, pfn, migratetype); 530 unset_migratetype_isolate( 531 pfn_to_page(isolate_end - pageblock_nr_pages), 532 migratetype); 533 return -EBUSY; 534 } 535 } 536 return 0; 537 } 538 539 /** 540 * undo_isolate_page_range - undo effects of start_isolate_page_range() 541 * @start_pfn: The first PFN of the isolated range 542 * @end_pfn: The last PFN of the isolated range 543 * @migratetype: New migrate type to set on the range 544 * 545 * This finds every MIGRATE_ISOLATE page block in the given range 546 * and switches it to @migratetype. 547 */ 548 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn, 549 int migratetype) 550 { 551 unsigned long pfn; 552 struct page *page; 553 unsigned long isolate_start = pageblock_start_pfn(start_pfn); 554 unsigned long isolate_end = pageblock_align(end_pfn); 555 556 for (pfn = isolate_start; 557 pfn < isolate_end; 558 pfn += pageblock_nr_pages) { 559 page = __first_valid_page(pfn, pageblock_nr_pages); 560 if (!page || !is_migrate_isolate_page(page)) 561 continue; 562 unset_migratetype_isolate(page, migratetype); 563 } 564 } 565 /* 566 * Test all pages in the range is free(means isolated) or not. 567 * all pages in [start_pfn...end_pfn) must be in the same zone. 568 * zone->lock must be held before call this. 569 * 570 * Returns the last tested pfn. 571 */ 572 static unsigned long 573 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn, 574 int flags) 575 { 576 struct page *page; 577 578 while (pfn < end_pfn) { 579 page = pfn_to_page(pfn); 580 if (PageBuddy(page)) 581 /* 582 * If the page is on a free list, it has to be on 583 * the correct MIGRATE_ISOLATE freelist. There is no 584 * simple way to verify that as VM_BUG_ON(), though. 585 */ 586 pfn += 1 << buddy_order(page); 587 else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 588 /* A HWPoisoned page cannot be also PageBuddy */ 589 pfn++; 590 else if ((flags & MEMORY_OFFLINE) && PageOffline(page) && 591 !page_count(page)) 592 /* 593 * The responsible driver agreed to skip PageOffline() 594 * pages when offlining memory by dropping its 595 * reference in MEM_GOING_OFFLINE. 596 */ 597 pfn++; 598 else 599 break; 600 } 601 602 return pfn; 603 } 604 605 /** 606 * test_pages_isolated - check if pageblocks in range are isolated 607 * @start_pfn: The first PFN of the isolated range 608 * @end_pfn: The first PFN *after* the isolated range 609 * @isol_flags: Testing mode flags 610 * 611 * This tests if all in the specified range are free. 612 * 613 * If %MEMORY_OFFLINE is specified in @flags, it will consider 614 * poisoned and offlined pages free as well. 615 * 616 * Caller must ensure the requested range doesn't span zones. 617 * 618 * Returns 0 if true, -EBUSY if one or more pages are in use. 619 */ 620 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn, 621 int isol_flags) 622 { 623 unsigned long pfn, flags; 624 struct page *page; 625 struct zone *zone; 626 int ret; 627 628 /* 629 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free 630 * pages are not aligned to pageblock_nr_pages. 631 * Then we just check migratetype first. 632 */ 633 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 634 page = __first_valid_page(pfn, pageblock_nr_pages); 635 if (page && !is_migrate_isolate_page(page)) 636 break; 637 } 638 page = __first_valid_page(start_pfn, end_pfn - start_pfn); 639 if ((pfn < end_pfn) || !page) { 640 ret = -EBUSY; 641 goto out; 642 } 643 644 /* Check all pages are free or marked as ISOLATED */ 645 zone = page_zone(page); 646 spin_lock_irqsave(&zone->lock, flags); 647 pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags); 648 spin_unlock_irqrestore(&zone->lock, flags); 649 650 ret = pfn < end_pfn ? -EBUSY : 0; 651 652 out: 653 trace_test_pages_isolated(start_pfn, end_pfn, pfn); 654 655 return ret; 656 } 657