xref: /linux/mm/page_isolation.c (revision a2cce7a9f1b8cc3d4edce106fb971529f1d4d9ce)
1 /*
2  * linux/mm/page_isolation.c
3  */
4 
5 #include <linux/mm.h>
6 #include <linux/page-isolation.h>
7 #include <linux/pageblock-flags.h>
8 #include <linux/memory.h>
9 #include <linux/hugetlb.h>
10 #include "internal.h"
11 
12 static int set_migratetype_isolate(struct page *page,
13 				bool skip_hwpoisoned_pages)
14 {
15 	struct zone *zone;
16 	unsigned long flags, pfn;
17 	struct memory_isolate_notify arg;
18 	int notifier_ret;
19 	int ret = -EBUSY;
20 
21 	zone = page_zone(page);
22 
23 	spin_lock_irqsave(&zone->lock, flags);
24 
25 	pfn = page_to_pfn(page);
26 	arg.start_pfn = pfn;
27 	arg.nr_pages = pageblock_nr_pages;
28 	arg.pages_found = 0;
29 
30 	/*
31 	 * It may be possible to isolate a pageblock even if the
32 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
33 	 * notifier chain is used by balloon drivers to return the
34 	 * number of pages in a range that are held by the balloon
35 	 * driver to shrink memory. If all the pages are accounted for
36 	 * by balloons, are free, or on the LRU, isolation can continue.
37 	 * Later, for example, when memory hotplug notifier runs, these
38 	 * pages reported as "can be isolated" should be isolated(freed)
39 	 * by the balloon driver through the memory notifier chain.
40 	 */
41 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
42 	notifier_ret = notifier_to_errno(notifier_ret);
43 	if (notifier_ret)
44 		goto out;
45 	/*
46 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
47 	 * We just check MOVABLE pages.
48 	 */
49 	if (!has_unmovable_pages(zone, page, arg.pages_found,
50 				 skip_hwpoisoned_pages))
51 		ret = 0;
52 
53 	/*
54 	 * immobile means "not-on-lru" paes. If immobile is larger than
55 	 * removable-by-driver pages reported by notifier, we'll fail.
56 	 */
57 
58 out:
59 	if (!ret) {
60 		unsigned long nr_pages;
61 		int migratetype = get_pageblock_migratetype(page);
62 
63 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
64 		zone->nr_isolate_pageblock++;
65 		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE);
66 
67 		__mod_zone_freepage_state(zone, -nr_pages, migratetype);
68 	}
69 
70 	spin_unlock_irqrestore(&zone->lock, flags);
71 	if (!ret)
72 		drain_all_pages(zone);
73 	return ret;
74 }
75 
76 static void unset_migratetype_isolate(struct page *page, unsigned migratetype)
77 {
78 	struct zone *zone;
79 	unsigned long flags, nr_pages;
80 	struct page *isolated_page = NULL;
81 	unsigned int order;
82 	unsigned long page_idx, buddy_idx;
83 	struct page *buddy;
84 
85 	zone = page_zone(page);
86 	spin_lock_irqsave(&zone->lock, flags);
87 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
88 		goto out;
89 
90 	/*
91 	 * Because freepage with more than pageblock_order on isolated
92 	 * pageblock is restricted to merge due to freepage counting problem,
93 	 * it is possible that there is free buddy page.
94 	 * move_freepages_block() doesn't care of merge so we need other
95 	 * approach in order to merge them. Isolation and free will make
96 	 * these pages to be merged.
97 	 */
98 	if (PageBuddy(page)) {
99 		order = page_order(page);
100 		if (order >= pageblock_order) {
101 			page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
102 			buddy_idx = __find_buddy_index(page_idx, order);
103 			buddy = page + (buddy_idx - page_idx);
104 
105 			if (pfn_valid_within(page_to_pfn(buddy)) &&
106 			    !is_migrate_isolate_page(buddy)) {
107 				__isolate_free_page(page, order);
108 				kernel_map_pages(page, (1 << order), 1);
109 				set_page_refcounted(page);
110 				isolated_page = page;
111 			}
112 		}
113 	}
114 
115 	/*
116 	 * If we isolate freepage with more than pageblock_order, there
117 	 * should be no freepage in the range, so we could avoid costly
118 	 * pageblock scanning for freepage moving.
119 	 */
120 	if (!isolated_page) {
121 		nr_pages = move_freepages_block(zone, page, migratetype);
122 		__mod_zone_freepage_state(zone, nr_pages, migratetype);
123 	}
124 	set_pageblock_migratetype(page, migratetype);
125 	zone->nr_isolate_pageblock--;
126 out:
127 	spin_unlock_irqrestore(&zone->lock, flags);
128 	if (isolated_page)
129 		__free_pages(isolated_page, order);
130 }
131 
132 static inline struct page *
133 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
134 {
135 	int i;
136 	for (i = 0; i < nr_pages; i++)
137 		if (pfn_valid_within(pfn + i))
138 			break;
139 	if (unlikely(i == nr_pages))
140 		return NULL;
141 	return pfn_to_page(pfn + i);
142 }
143 
144 /*
145  * start_isolate_page_range() -- make page-allocation-type of range of pages
146  * to be MIGRATE_ISOLATE.
147  * @start_pfn: The lower PFN of the range to be isolated.
148  * @end_pfn: The upper PFN of the range to be isolated.
149  * @migratetype: migrate type to set in error recovery.
150  *
151  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
152  * the range will never be allocated. Any free pages and pages freed in the
153  * future will not be allocated again.
154  *
155  * start_pfn/end_pfn must be aligned to pageblock_order.
156  * Returns 0 on success and -EBUSY if any part of range cannot be isolated.
157  */
158 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
159 			     unsigned migratetype, bool skip_hwpoisoned_pages)
160 {
161 	unsigned long pfn;
162 	unsigned long undo_pfn;
163 	struct page *page;
164 
165 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
166 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
167 
168 	for (pfn = start_pfn;
169 	     pfn < end_pfn;
170 	     pfn += pageblock_nr_pages) {
171 		page = __first_valid_page(pfn, pageblock_nr_pages);
172 		if (page &&
173 		    set_migratetype_isolate(page, skip_hwpoisoned_pages)) {
174 			undo_pfn = pfn;
175 			goto undo;
176 		}
177 	}
178 	return 0;
179 undo:
180 	for (pfn = start_pfn;
181 	     pfn < undo_pfn;
182 	     pfn += pageblock_nr_pages)
183 		unset_migratetype_isolate(pfn_to_page(pfn), migratetype);
184 
185 	return -EBUSY;
186 }
187 
188 /*
189  * Make isolated pages available again.
190  */
191 int undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
192 			    unsigned migratetype)
193 {
194 	unsigned long pfn;
195 	struct page *page;
196 	BUG_ON((start_pfn) & (pageblock_nr_pages - 1));
197 	BUG_ON((end_pfn) & (pageblock_nr_pages - 1));
198 	for (pfn = start_pfn;
199 	     pfn < end_pfn;
200 	     pfn += pageblock_nr_pages) {
201 		page = __first_valid_page(pfn, pageblock_nr_pages);
202 		if (!page || get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
203 			continue;
204 		unset_migratetype_isolate(page, migratetype);
205 	}
206 	return 0;
207 }
208 /*
209  * Test all pages in the range is free(means isolated) or not.
210  * all pages in [start_pfn...end_pfn) must be in the same zone.
211  * zone->lock must be held before call this.
212  *
213  * Returns 1 if all pages in the range are isolated.
214  */
215 static int
216 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
217 				  bool skip_hwpoisoned_pages)
218 {
219 	struct page *page;
220 
221 	while (pfn < end_pfn) {
222 		if (!pfn_valid_within(pfn)) {
223 			pfn++;
224 			continue;
225 		}
226 		page = pfn_to_page(pfn);
227 		if (PageBuddy(page))
228 			/*
229 			 * If the page is on a free list, it has to be on
230 			 * the correct MIGRATE_ISOLATE freelist. There is no
231 			 * simple way to verify that as VM_BUG_ON(), though.
232 			 */
233 			pfn += 1 << page_order(page);
234 		else if (skip_hwpoisoned_pages && PageHWPoison(page))
235 			/* A HWPoisoned page cannot be also PageBuddy */
236 			pfn++;
237 		else
238 			break;
239 	}
240 	if (pfn < end_pfn)
241 		return 0;
242 	return 1;
243 }
244 
245 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
246 			bool skip_hwpoisoned_pages)
247 {
248 	unsigned long pfn, flags;
249 	struct page *page;
250 	struct zone *zone;
251 	int ret;
252 
253 	/*
254 	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
255 	 * are not aligned to pageblock_nr_pages.
256 	 * Then we just check migratetype first.
257 	 */
258 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
259 		page = __first_valid_page(pfn, pageblock_nr_pages);
260 		if (page && get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
261 			break;
262 	}
263 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
264 	if ((pfn < end_pfn) || !page)
265 		return -EBUSY;
266 	/* Check all pages are free or marked as ISOLATED */
267 	zone = page_zone(page);
268 	spin_lock_irqsave(&zone->lock, flags);
269 	ret = __test_page_isolated_in_pageblock(start_pfn, end_pfn,
270 						skip_hwpoisoned_pages);
271 	spin_unlock_irqrestore(&zone->lock, flags);
272 	return ret ? 0 : -EBUSY;
273 }
274 
275 struct page *alloc_migrate_target(struct page *page, unsigned long private,
276 				  int **resultp)
277 {
278 	gfp_t gfp_mask = GFP_USER | __GFP_MOVABLE;
279 
280 	/*
281 	 * TODO: allocate a destination hugepage from a nearest neighbor node,
282 	 * accordance with memory policy of the user process if possible. For
283 	 * now as a simple work-around, we use the next node for destination.
284 	 */
285 	if (PageHuge(page)) {
286 		nodemask_t src = nodemask_of_node(page_to_nid(page));
287 		nodemask_t dst;
288 		nodes_complement(dst, src);
289 		return alloc_huge_page_node(page_hstate(compound_head(page)),
290 					    next_node(page_to_nid(page), dst));
291 	}
292 
293 	if (PageHighMem(page))
294 		gfp_mask |= __GFP_HIGHMEM;
295 
296 	return alloc_page(gfp_mask);
297 }
298