xref: /linux/mm/page_isolation.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/page_isolation.c
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/page-isolation.h>
8 #include <linux/pageblock-flags.h>
9 #include <linux/memory.h>
10 #include <linux/hugetlb.h>
11 #include <linux/page_owner.h>
12 #include <linux/migrate.h>
13 #include "internal.h"
14 
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/page_isolation.h>
17 
18 /*
19  * This function checks whether the range [start_pfn, end_pfn) includes
20  * unmovable pages or not. The range must fall into a single pageblock and
21  * consequently belong to a single zone.
22  *
23  * PageLRU check without isolation or lru_lock could race so that
24  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
25  * check without lock_page also may miss some movable non-lru pages at
26  * race condition. So you can't expect this function should be exact.
27  *
28  * Returns a page without holding a reference. If the caller wants to
29  * dereference that page (e.g., dumping), it has to make sure that it
30  * cannot get removed (e.g., via memory unplug) concurrently.
31  *
32  */
33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
34 				int migratetype, int flags)
35 {
36 	struct page *page = pfn_to_page(start_pfn);
37 	struct zone *zone = page_zone(page);
38 	unsigned long pfn;
39 
40 	VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
41 		  pageblock_start_pfn(end_pfn - 1));
42 
43 	if (is_migrate_cma_page(page)) {
44 		/*
45 		 * CMA allocations (alloc_contig_range) really need to mark
46 		 * isolate CMA pageblocks even when they are not movable in fact
47 		 * so consider them movable here.
48 		 */
49 		if (is_migrate_cma(migratetype))
50 			return NULL;
51 
52 		return page;
53 	}
54 
55 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
56 		page = pfn_to_page(pfn);
57 
58 		/*
59 		 * Both, bootmem allocations and memory holes are marked
60 		 * PG_reserved and are unmovable. We can even have unmovable
61 		 * allocations inside ZONE_MOVABLE, for example when
62 		 * specifying "movablecore".
63 		 */
64 		if (PageReserved(page))
65 			return page;
66 
67 		/*
68 		 * If the zone is movable and we have ruled out all reserved
69 		 * pages then it should be reasonably safe to assume the rest
70 		 * is movable.
71 		 */
72 		if (zone_idx(zone) == ZONE_MOVABLE)
73 			continue;
74 
75 		/*
76 		 * Hugepages are not in LRU lists, but they're movable.
77 		 * THPs are on the LRU, but need to be counted as #small pages.
78 		 * We need not scan over tail pages because we don't
79 		 * handle each tail page individually in migration.
80 		 */
81 		if (PageHuge(page) || PageTransCompound(page)) {
82 			struct folio *folio = page_folio(page);
83 			unsigned int skip_pages;
84 
85 			if (PageHuge(page)) {
86 				if (!hugepage_migration_supported(folio_hstate(folio)))
87 					return page;
88 			} else if (!folio_test_lru(folio) && !__folio_test_movable(folio)) {
89 				return page;
90 			}
91 
92 			skip_pages = folio_nr_pages(folio) - folio_page_idx(folio, page);
93 			pfn += skip_pages - 1;
94 			continue;
95 		}
96 
97 		/*
98 		 * We can't use page_count without pin a page
99 		 * because another CPU can free compound page.
100 		 * This check already skips compound tails of THP
101 		 * because their page->_refcount is zero at all time.
102 		 */
103 		if (!page_ref_count(page)) {
104 			if (PageBuddy(page))
105 				pfn += (1 << buddy_order(page)) - 1;
106 			continue;
107 		}
108 
109 		/*
110 		 * The HWPoisoned page may be not in buddy system, and
111 		 * page_count() is not 0.
112 		 */
113 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
114 			continue;
115 
116 		/*
117 		 * We treat all PageOffline() pages as movable when offlining
118 		 * to give drivers a chance to decrement their reference count
119 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
120 		 * can be offlined as there are no direct references anymore.
121 		 * For actually unmovable PageOffline() where the driver does
122 		 * not support this, we will fail later when trying to actually
123 		 * move these pages that still have a reference count > 0.
124 		 * (false negatives in this function only)
125 		 */
126 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
127 			continue;
128 
129 		if (__PageMovable(page) || PageLRU(page))
130 			continue;
131 
132 		/*
133 		 * If there are RECLAIMABLE pages, we need to check
134 		 * it.  But now, memory offline itself doesn't call
135 		 * shrink_node_slabs() and it still to be fixed.
136 		 */
137 		return page;
138 	}
139 	return NULL;
140 }
141 
142 /*
143  * This function set pageblock migratetype to isolate if no unmovable page is
144  * present in [start_pfn, end_pfn). The pageblock must intersect with
145  * [start_pfn, end_pfn).
146  */
147 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
148 			unsigned long start_pfn, unsigned long end_pfn)
149 {
150 	struct zone *zone = page_zone(page);
151 	struct page *unmovable;
152 	unsigned long flags;
153 	unsigned long check_unmovable_start, check_unmovable_end;
154 
155 	spin_lock_irqsave(&zone->lock, flags);
156 
157 	/*
158 	 * We assume the caller intended to SET migrate type to isolate.
159 	 * If it is already set, then someone else must have raced and
160 	 * set it before us.
161 	 */
162 	if (is_migrate_isolate_page(page)) {
163 		spin_unlock_irqrestore(&zone->lock, flags);
164 		return -EBUSY;
165 	}
166 
167 	/*
168 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
169 	 * We just check MOVABLE pages.
170 	 *
171 	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
172 	 * to avoid redundant checks.
173 	 */
174 	check_unmovable_start = max(page_to_pfn(page), start_pfn);
175 	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
176 				  end_pfn);
177 
178 	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
179 			migratetype, isol_flags);
180 	if (!unmovable) {
181 		if (!move_freepages_block_isolate(zone, page, MIGRATE_ISOLATE)) {
182 			spin_unlock_irqrestore(&zone->lock, flags);
183 			return -EBUSY;
184 		}
185 		zone->nr_isolate_pageblock++;
186 		spin_unlock_irqrestore(&zone->lock, flags);
187 		return 0;
188 	}
189 
190 	spin_unlock_irqrestore(&zone->lock, flags);
191 	if (isol_flags & REPORT_FAILURE) {
192 		/*
193 		 * printk() with zone->lock held will likely trigger a
194 		 * lockdep splat, so defer it here.
195 		 */
196 		dump_page(unmovable, "unmovable page");
197 	}
198 
199 	return -EBUSY;
200 }
201 
202 static void unset_migratetype_isolate(struct page *page, int migratetype)
203 {
204 	struct zone *zone;
205 	unsigned long flags;
206 	bool isolated_page = false;
207 	unsigned int order;
208 	struct page *buddy;
209 
210 	zone = page_zone(page);
211 	spin_lock_irqsave(&zone->lock, flags);
212 	if (!is_migrate_isolate_page(page))
213 		goto out;
214 
215 	/*
216 	 * Because freepage with more than pageblock_order on isolated
217 	 * pageblock is restricted to merge due to freepage counting problem,
218 	 * it is possible that there is free buddy page.
219 	 * move_freepages_block() doesn't care of merge so we need other
220 	 * approach in order to merge them. Isolation and free will make
221 	 * these pages to be merged.
222 	 */
223 	if (PageBuddy(page)) {
224 		order = buddy_order(page);
225 		if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
226 			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
227 						    order, NULL);
228 			if (buddy && !is_migrate_isolate_page(buddy)) {
229 				isolated_page = !!__isolate_free_page(page, order);
230 				/*
231 				 * Isolating a free page in an isolated pageblock
232 				 * is expected to always work as watermarks don't
233 				 * apply here.
234 				 */
235 				VM_WARN_ON(!isolated_page);
236 			}
237 		}
238 	}
239 
240 	/*
241 	 * If we isolate freepage with more than pageblock_order, there
242 	 * should be no freepage in the range, so we could avoid costly
243 	 * pageblock scanning for freepage moving.
244 	 *
245 	 * We didn't actually touch any of the isolated pages, so place them
246 	 * to the tail of the freelist. This is an optimization for memory
247 	 * onlining - just onlined memory won't immediately be considered for
248 	 * allocation.
249 	 */
250 	if (!isolated_page) {
251 		/*
252 		 * Isolating this block already succeeded, so this
253 		 * should not fail on zone boundaries.
254 		 */
255 		WARN_ON_ONCE(!move_freepages_block_isolate(zone, page, migratetype));
256 	} else {
257 		set_pageblock_migratetype(page, migratetype);
258 		__putback_isolated_page(page, order, migratetype);
259 	}
260 	zone->nr_isolate_pageblock--;
261 out:
262 	spin_unlock_irqrestore(&zone->lock, flags);
263 }
264 
265 static inline struct page *
266 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
267 {
268 	int i;
269 
270 	for (i = 0; i < nr_pages; i++) {
271 		struct page *page;
272 
273 		page = pfn_to_online_page(pfn + i);
274 		if (!page)
275 			continue;
276 		return page;
277 	}
278 	return NULL;
279 }
280 
281 /**
282  * isolate_single_pageblock() -- tries to isolate a pageblock that might be
283  * within a free or in-use page.
284  * @boundary_pfn:		pageblock-aligned pfn that a page might cross
285  * @flags:			isolation flags
286  * @gfp_flags:			GFP flags used for migrating pages
287  * @isolate_before:	isolate the pageblock before the boundary_pfn
288  * @skip_isolation:	the flag to skip the pageblock isolation in second
289  *			isolate_single_pageblock()
290  * @migratetype:	migrate type to set in error recovery.
291  *
292  * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
293  * pageblock. When not all pageblocks within a page are isolated at the same
294  * time, free page accounting can go wrong. For example, in the case of
295  * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
296  * pagelbocks.
297  * [      MAX_PAGE_ORDER         ]
298  * [  pageblock0  |  pageblock1  ]
299  * When either pageblock is isolated, if it is a free page, the page is not
300  * split into separate migratetype lists, which is supposed to; if it is an
301  * in-use page and freed later, __free_one_page() does not split the free page
302  * either. The function handles this by splitting the free page or migrating
303  * the in-use page then splitting the free page.
304  */
305 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
306 			gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
307 			int migratetype)
308 {
309 	unsigned long start_pfn;
310 	unsigned long isolate_pageblock;
311 	unsigned long pfn;
312 	struct zone *zone;
313 	int ret;
314 
315 	VM_BUG_ON(!pageblock_aligned(boundary_pfn));
316 
317 	if (isolate_before)
318 		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
319 	else
320 		isolate_pageblock = boundary_pfn;
321 
322 	/*
323 	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
324 	 * only isolating a subset of pageblocks from a bigger than pageblock
325 	 * free or in-use page. Also make sure all to-be-isolated pageblocks
326 	 * are within the same zone.
327 	 */
328 	zone  = page_zone(pfn_to_page(isolate_pageblock));
329 	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
330 				      zone->zone_start_pfn);
331 
332 	if (skip_isolation) {
333 		int mt __maybe_unused = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
334 
335 		VM_BUG_ON(!is_migrate_isolate(mt));
336 	} else {
337 		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
338 				flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
339 
340 		if (ret)
341 			return ret;
342 	}
343 
344 	/*
345 	 * Bail out early when the to-be-isolated pageblock does not form
346 	 * a free or in-use page across boundary_pfn:
347 	 *
348 	 * 1. isolate before boundary_pfn: the page after is not online
349 	 * 2. isolate after boundary_pfn: the page before is not online
350 	 *
351 	 * This also ensures correctness. Without it, when isolate after
352 	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
353 	 * __first_valid_page() will return unexpected NULL in the for loop
354 	 * below.
355 	 */
356 	if (isolate_before) {
357 		if (!pfn_to_online_page(boundary_pfn))
358 			return 0;
359 	} else {
360 		if (!pfn_to_online_page(boundary_pfn - 1))
361 			return 0;
362 	}
363 
364 	for (pfn = start_pfn; pfn < boundary_pfn;) {
365 		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
366 
367 		VM_BUG_ON(!page);
368 		pfn = page_to_pfn(page);
369 
370 		if (PageBuddy(page)) {
371 			int order = buddy_order(page);
372 
373 			/* move_freepages_block_isolate() handled this */
374 			VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
375 
376 			pfn += 1UL << order;
377 			continue;
378 		}
379 
380 		/*
381 		 * If a compound page is straddling our block, attempt
382 		 * to migrate it out of the way.
383 		 *
384 		 * We don't have to worry about this creating a large
385 		 * free page that straddles into our block: gigantic
386 		 * pages are freed as order-0 chunks, and LRU pages
387 		 * (currently) do not exceed pageblock_order.
388 		 *
389 		 * The block of interest has already been marked
390 		 * MIGRATE_ISOLATE above, so when migration is done it
391 		 * will free its pages onto the correct freelists.
392 		 */
393 		if (PageCompound(page)) {
394 			struct page *head = compound_head(page);
395 			unsigned long head_pfn = page_to_pfn(head);
396 			unsigned long nr_pages = compound_nr(head);
397 
398 			if (head_pfn + nr_pages <= boundary_pfn) {
399 				pfn = head_pfn + nr_pages;
400 				continue;
401 			}
402 
403 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
404 			if (PageHuge(page)) {
405 				int page_mt = get_pageblock_migratetype(page);
406 				struct compact_control cc = {
407 					.nr_migratepages = 0,
408 					.order = -1,
409 					.zone = page_zone(pfn_to_page(head_pfn)),
410 					.mode = MIGRATE_SYNC,
411 					.ignore_skip_hint = true,
412 					.no_set_skip_hint = true,
413 					.gfp_mask = gfp_flags,
414 					.alloc_contig = true,
415 				};
416 				INIT_LIST_HEAD(&cc.migratepages);
417 
418 				ret = __alloc_contig_migrate_range(&cc, head_pfn,
419 							head_pfn + nr_pages, page_mt);
420 				if (ret)
421 					goto failed;
422 				pfn = head_pfn + nr_pages;
423 				continue;
424 			}
425 
426 			/*
427 			 * These pages are movable too, but they're
428 			 * not expected to exceed pageblock_order.
429 			 *
430 			 * Let us know when they do, so we can add
431 			 * proper free and split handling for them.
432 			 */
433 			VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
434 			VM_WARN_ON_ONCE_PAGE(__PageMovable(page), page);
435 #endif
436 			goto failed;
437 		}
438 
439 		pfn++;
440 	}
441 	return 0;
442 failed:
443 	/* restore the original migratetype */
444 	if (!skip_isolation)
445 		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
446 	return -EBUSY;
447 }
448 
449 /**
450  * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
451  * @start_pfn:		The first PFN of the range to be isolated.
452  * @end_pfn:		The last PFN of the range to be isolated.
453  * @migratetype:	Migrate type to set in error recovery.
454  * @flags:		The following flags are allowed (they can be combined in
455  *			a bit mask)
456  *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
457  *					 e.g., skip over PageHWPoison() pages
458  *					 and PageOffline() pages.
459  *			REPORT_FAILURE - report details about the failure to
460  *			isolate the range
461  * @gfp_flags:		GFP flags used for migrating pages that sit across the
462  *			range boundaries.
463  *
464  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
465  * the range will never be allocated. Any free pages and pages freed in the
466  * future will not be allocated again. If specified range includes migrate types
467  * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
468  * pages in the range finally, the caller have to free all pages in the range.
469  * test_page_isolated() can be used for test it.
470  *
471  * The function first tries to isolate the pageblocks at the beginning and end
472  * of the range, since there might be pages across the range boundaries.
473  * Afterwards, it isolates the rest of the range.
474  *
475  * There is no high level synchronization mechanism that prevents two threads
476  * from trying to isolate overlapping ranges. If this happens, one thread
477  * will notice pageblocks in the overlapping range already set to isolate.
478  * This happens in set_migratetype_isolate, and set_migratetype_isolate
479  * returns an error. We then clean up by restoring the migration type on
480  * pageblocks we may have modified and return -EBUSY to caller. This
481  * prevents two threads from simultaneously working on overlapping ranges.
482  *
483  * Please note that there is no strong synchronization with the page allocator
484  * either. Pages might be freed while their page blocks are marked ISOLATED.
485  * A call to drain_all_pages() after isolation can flush most of them. However
486  * in some cases pages might still end up on pcp lists and that would allow
487  * for their allocation even when they are in fact isolated already. Depending
488  * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
489  * might be used to flush and disable pcplist before isolation and enable after
490  * unisolation.
491  *
492  * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
493  */
494 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
495 			     int migratetype, int flags, gfp_t gfp_flags)
496 {
497 	unsigned long pfn;
498 	struct page *page;
499 	/* isolation is done at page block granularity */
500 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
501 	unsigned long isolate_end = pageblock_align(end_pfn);
502 	int ret;
503 	bool skip_isolation = false;
504 
505 	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
506 	ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
507 			skip_isolation, migratetype);
508 	if (ret)
509 		return ret;
510 
511 	if (isolate_start == isolate_end - pageblock_nr_pages)
512 		skip_isolation = true;
513 
514 	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
515 	ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
516 			skip_isolation, migratetype);
517 	if (ret) {
518 		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
519 		return ret;
520 	}
521 
522 	/* skip isolated pageblocks at the beginning and end */
523 	for (pfn = isolate_start + pageblock_nr_pages;
524 	     pfn < isolate_end - pageblock_nr_pages;
525 	     pfn += pageblock_nr_pages) {
526 		page = __first_valid_page(pfn, pageblock_nr_pages);
527 		if (page && set_migratetype_isolate(page, migratetype, flags,
528 					start_pfn, end_pfn)) {
529 			undo_isolate_page_range(isolate_start, pfn, migratetype);
530 			unset_migratetype_isolate(
531 				pfn_to_page(isolate_end - pageblock_nr_pages),
532 				migratetype);
533 			return -EBUSY;
534 		}
535 	}
536 	return 0;
537 }
538 
539 /**
540  * undo_isolate_page_range - undo effects of start_isolate_page_range()
541  * @start_pfn:		The first PFN of the isolated range
542  * @end_pfn:		The last PFN of the isolated range
543  * @migratetype:	New migrate type to set on the range
544  *
545  * This finds every MIGRATE_ISOLATE page block in the given range
546  * and switches it to @migratetype.
547  */
548 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
549 			    int migratetype)
550 {
551 	unsigned long pfn;
552 	struct page *page;
553 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
554 	unsigned long isolate_end = pageblock_align(end_pfn);
555 
556 	for (pfn = isolate_start;
557 	     pfn < isolate_end;
558 	     pfn += pageblock_nr_pages) {
559 		page = __first_valid_page(pfn, pageblock_nr_pages);
560 		if (!page || !is_migrate_isolate_page(page))
561 			continue;
562 		unset_migratetype_isolate(page, migratetype);
563 	}
564 }
565 /*
566  * Test all pages in the range is free(means isolated) or not.
567  * all pages in [start_pfn...end_pfn) must be in the same zone.
568  * zone->lock must be held before call this.
569  *
570  * Returns the last tested pfn.
571  */
572 static unsigned long
573 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
574 				  int flags)
575 {
576 	struct page *page;
577 
578 	while (pfn < end_pfn) {
579 		page = pfn_to_page(pfn);
580 		if (PageBuddy(page))
581 			/*
582 			 * If the page is on a free list, it has to be on
583 			 * the correct MIGRATE_ISOLATE freelist. There is no
584 			 * simple way to verify that as VM_BUG_ON(), though.
585 			 */
586 			pfn += 1 << buddy_order(page);
587 		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
588 			/* A HWPoisoned page cannot be also PageBuddy */
589 			pfn++;
590 		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
591 			 !page_count(page))
592 			/*
593 			 * The responsible driver agreed to skip PageOffline()
594 			 * pages when offlining memory by dropping its
595 			 * reference in MEM_GOING_OFFLINE.
596 			 */
597 			pfn++;
598 		else
599 			break;
600 	}
601 
602 	return pfn;
603 }
604 
605 /**
606  * test_pages_isolated - check if pageblocks in range are isolated
607  * @start_pfn:		The first PFN of the isolated range
608  * @end_pfn:		The first PFN *after* the isolated range
609  * @isol_flags:		Testing mode flags
610  *
611  * This tests if all in the specified range are free.
612  *
613  * If %MEMORY_OFFLINE is specified in @flags, it will consider
614  * poisoned and offlined pages free as well.
615  *
616  * Caller must ensure the requested range doesn't span zones.
617  *
618  * Returns 0 if true, -EBUSY if one or more pages are in use.
619  */
620 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
621 			int isol_flags)
622 {
623 	unsigned long pfn, flags;
624 	struct page *page;
625 	struct zone *zone;
626 	int ret;
627 
628 	/*
629 	 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
630 	 * pages are not aligned to pageblock_nr_pages.
631 	 * Then we just check migratetype first.
632 	 */
633 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
634 		page = __first_valid_page(pfn, pageblock_nr_pages);
635 		if (page && !is_migrate_isolate_page(page))
636 			break;
637 	}
638 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
639 	if ((pfn < end_pfn) || !page) {
640 		ret = -EBUSY;
641 		goto out;
642 	}
643 
644 	/* Check all pages are free or marked as ISOLATED */
645 	zone = page_zone(page);
646 	spin_lock_irqsave(&zone->lock, flags);
647 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
648 	spin_unlock_irqrestore(&zone->lock, flags);
649 
650 	ret = pfn < end_pfn ? -EBUSY : 0;
651 
652 out:
653 	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
654 
655 	return ret;
656 }
657