xref: /linux/mm/page_isolation.c (revision 6aacab308a5dfd222b2d23662bbae60c11007cfb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/page_isolation.c
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/page-isolation.h>
8 #include <linux/pageblock-flags.h>
9 #include <linux/memory.h>
10 #include <linux/hugetlb.h>
11 #include <linux/page_owner.h>
12 #include <linux/migrate.h>
13 #include "internal.h"
14 
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/page_isolation.h>
17 
18 bool page_is_unmovable(struct zone *zone, struct page *page,
19 		enum pb_isolate_mode mode, unsigned long *step)
20 {
21 	/*
22 	 * Both, bootmem allocations and memory holes are marked
23 	 * PG_reserved and are unmovable. We can even have unmovable
24 	 * allocations inside ZONE_MOVABLE, for example when
25 	 * specifying "movablecore".
26 	 */
27 	if (PageReserved(page))
28 		return true;
29 
30 	/*
31 	 * If the zone is movable and we have ruled out all reserved
32 	 * pages then it should be reasonably safe to assume the rest
33 	 * is movable.
34 	 */
35 	if (zone_idx(zone) == ZONE_MOVABLE)
36 		return false;
37 
38 	/*
39 	 * Hugepages are not in LRU lists, but they're movable.
40 	 * THPs are on the LRU, but need to be counted as #small pages.
41 	 * We need not scan over tail pages because we don't
42 	 * handle each tail page individually in migration.
43 	 */
44 	if (PageHuge(page) || PageCompound(page)) {
45 		struct folio *folio = page_folio(page);
46 
47 		if (folio_test_hugetlb(folio)) {
48 			struct hstate *h;
49 
50 			if (!IS_ENABLED(CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION))
51 				return true;
52 
53 			/*
54 			 * The huge page may be freed so can not
55 			 * use folio_hstate() directly.
56 			 */
57 			h = size_to_hstate(folio_size(folio));
58 			if (h && !hugepage_migration_supported(h))
59 				return true;
60 
61 		} else if (!folio_test_lru(folio)) {
62 			return true;
63 		}
64 
65 		*step = folio_nr_pages(folio) - folio_page_idx(folio, page);
66 		return false;
67 	}
68 
69 	/*
70 	 * We can't use page_count without pin a page
71 	 * because another CPU can free compound page.
72 	 * This check already skips compound tails of THP
73 	 * because their page->_refcount is zero at all time.
74 	 */
75 	if (!page_ref_count(page)) {
76 		if (PageBuddy(page))
77 			*step = (1 << buddy_order(page));
78 		return false;
79 	}
80 
81 	/*
82 	 * The HWPoisoned page may be not in buddy system, and
83 	 * page_count() is not 0.
84 	 */
85 	if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && PageHWPoison(page))
86 		return false;
87 
88 	/*
89 	 * We treat all PageOffline() pages as movable when offlining
90 	 * to give drivers a chance to decrement their reference count
91 	 * in MEM_GOING_OFFLINE in order to indicate that these pages
92 	 * can be offlined as there are no direct references anymore.
93 	 * For actually unmovable PageOffline() where the driver does
94 	 * not support this, we will fail later when trying to actually
95 	 * move these pages that still have a reference count > 0.
96 	 * (false negatives in this function only)
97 	 */
98 	if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) && PageOffline(page))
99 		return false;
100 
101 	if (PageLRU(page) || page_has_movable_ops(page))
102 		return false;
103 
104 	/*
105 	 * If there are RECLAIMABLE pages, we need to check
106 	 * it.  But now, memory offline itself doesn't call
107 	 * shrink_node_slabs() and it still to be fixed.
108 	 */
109 	return true;
110 }
111 
112 /*
113  * This function checks whether the range [start_pfn, end_pfn) includes
114  * unmovable pages or not. The range must fall into a single pageblock and
115  * consequently belong to a single zone.
116  *
117  * PageLRU check without isolation or lru_lock could race so that
118  * MIGRATE_MOVABLE block might include unmovable pages. Similarly, pages
119  * with movable_ops can only be identified some time after they were
120  * allocated. So you can't expect this function should be exact.
121  *
122  * Returns a page without holding a reference. If the caller wants to
123  * dereference that page (e.g., dumping), it has to make sure that it
124  * cannot get removed (e.g., via memory unplug) concurrently.
125  *
126  */
127 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
128 				enum pb_isolate_mode mode)
129 {
130 	struct page *page = pfn_to_page(start_pfn);
131 	struct zone *zone = page_zone(page);
132 
133 	VM_BUG_ON(pageblock_start_pfn(start_pfn) !=
134 		  pageblock_start_pfn(end_pfn - 1));
135 
136 	if (is_migrate_cma_page(page)) {
137 		/*
138 		 * CMA allocations (alloc_contig_range) really need to mark
139 		 * isolate CMA pageblocks even when they are not movable in fact
140 		 * so consider them movable here.
141 		 */
142 		if (mode == PB_ISOLATE_MODE_CMA_ALLOC)
143 			return NULL;
144 
145 		return page;
146 	}
147 
148 	while (start_pfn < end_pfn) {
149 		unsigned long step = 1;
150 
151 		page = pfn_to_page(start_pfn);
152 		if (page_is_unmovable(zone, page, mode, &step))
153 			return page;
154 
155 		start_pfn += step;
156 	}
157 	return NULL;
158 }
159 
160 /*
161  * This function set pageblock migratetype to isolate if no unmovable page is
162  * present in [start_pfn, end_pfn). The pageblock must intersect with
163  * [start_pfn, end_pfn).
164  */
165 static int set_migratetype_isolate(struct page *page, enum pb_isolate_mode mode,
166 			unsigned long start_pfn, unsigned long end_pfn)
167 {
168 	struct zone *zone = page_zone(page);
169 	struct page *unmovable;
170 	unsigned long flags;
171 	unsigned long check_unmovable_start, check_unmovable_end;
172 
173 	if (PageUnaccepted(page))
174 		accept_page(page);
175 
176 	spin_lock_irqsave(&zone->lock, flags);
177 
178 	/*
179 	 * We assume the caller intended to SET migrate type to isolate.
180 	 * If it is already set, then someone else must have raced and
181 	 * set it before us.
182 	 */
183 	if (is_migrate_isolate_page(page)) {
184 		spin_unlock_irqrestore(&zone->lock, flags);
185 		return -EBUSY;
186 	}
187 
188 	/*
189 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
190 	 * We just check MOVABLE pages.
191 	 *
192 	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
193 	 * to avoid redundant checks.
194 	 */
195 	check_unmovable_start = max(page_to_pfn(page), start_pfn);
196 	check_unmovable_end = min(pageblock_end_pfn(page_to_pfn(page)),
197 				  end_pfn);
198 
199 	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
200 			mode);
201 	if (!unmovable) {
202 		if (!pageblock_isolate_and_move_free_pages(zone, page)) {
203 			spin_unlock_irqrestore(&zone->lock, flags);
204 			return -EBUSY;
205 		}
206 		zone->nr_isolate_pageblock++;
207 		spin_unlock_irqrestore(&zone->lock, flags);
208 		return 0;
209 	}
210 
211 	spin_unlock_irqrestore(&zone->lock, flags);
212 	if (mode == PB_ISOLATE_MODE_MEM_OFFLINE) {
213 		/*
214 		 * printk() with zone->lock held will likely trigger a
215 		 * lockdep splat, so defer it here.
216 		 */
217 		dump_page(unmovable, "unmovable page");
218 	}
219 
220 	return -EBUSY;
221 }
222 
223 static void unset_migratetype_isolate(struct page *page)
224 {
225 	struct zone *zone;
226 	unsigned long flags;
227 	bool isolated_page = false;
228 	unsigned int order;
229 	struct page *buddy;
230 
231 	zone = page_zone(page);
232 	spin_lock_irqsave(&zone->lock, flags);
233 	if (!is_migrate_isolate_page(page))
234 		goto out;
235 
236 	/*
237 	 * Because freepage with more than pageblock_order on isolated
238 	 * pageblock is restricted to merge due to freepage counting problem,
239 	 * it is possible that there is free buddy page.
240 	 * move_freepages_block() doesn't care of merge so we need other
241 	 * approach in order to merge them. Isolation and free will make
242 	 * these pages to be merged.
243 	 */
244 	if (PageBuddy(page)) {
245 		order = buddy_order(page);
246 		if (order >= pageblock_order && order < MAX_PAGE_ORDER) {
247 			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
248 						    order, NULL);
249 			if (buddy && !is_migrate_isolate_page(buddy)) {
250 				isolated_page = !!__isolate_free_page(page, order);
251 				/*
252 				 * Isolating a free page in an isolated pageblock
253 				 * is expected to always work as watermarks don't
254 				 * apply here.
255 				 */
256 				VM_WARN_ON(!isolated_page);
257 			}
258 		}
259 	}
260 
261 	/*
262 	 * If we isolate freepage with more than pageblock_order, there
263 	 * should be no freepage in the range, so we could avoid costly
264 	 * pageblock scanning for freepage moving.
265 	 *
266 	 * We didn't actually touch any of the isolated pages, so place them
267 	 * to the tail of the freelist. This is an optimization for memory
268 	 * onlining - just onlined memory won't immediately be considered for
269 	 * allocation.
270 	 */
271 	if (!isolated_page) {
272 		/*
273 		 * Isolating this block already succeeded, so this
274 		 * should not fail on zone boundaries.
275 		 */
276 		WARN_ON_ONCE(!pageblock_unisolate_and_move_free_pages(zone, page));
277 	} else {
278 		clear_pageblock_isolate(page);
279 		__putback_isolated_page(page, order, get_pageblock_migratetype(page));
280 	}
281 	zone->nr_isolate_pageblock--;
282 out:
283 	spin_unlock_irqrestore(&zone->lock, flags);
284 }
285 
286 static inline struct page *
287 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
288 {
289 	int i;
290 
291 	for (i = 0; i < nr_pages; i++) {
292 		struct page *page;
293 
294 		page = pfn_to_online_page(pfn + i);
295 		if (!page)
296 			continue;
297 		return page;
298 	}
299 	return NULL;
300 }
301 
302 /**
303  * isolate_single_pageblock() -- tries to isolate a pageblock that might be
304  * within a free or in-use page.
305  * @boundary_pfn:		pageblock-aligned pfn that a page might cross
306  * @mode:			isolation mode
307  * @isolate_before:	isolate the pageblock before the boundary_pfn
308  * @skip_isolation:	the flag to skip the pageblock isolation in second
309  *			isolate_single_pageblock()
310  *
311  * Free and in-use pages can be as big as MAX_PAGE_ORDER and contain more than one
312  * pageblock. When not all pageblocks within a page are isolated at the same
313  * time, free page accounting can go wrong. For example, in the case of
314  * MAX_PAGE_ORDER = pageblock_order + 1, a MAX_PAGE_ORDER page has two
315  * pageblocks.
316  * [      MAX_PAGE_ORDER         ]
317  * [  pageblock0  |  pageblock1  ]
318  * When either pageblock is isolated, if it is a free page, the page is not
319  * split into separate migratetype lists, which is supposed to; if it is an
320  * in-use page and freed later, __free_one_page() does not split the free page
321  * either. The function handles this by splitting the free page or migrating
322  * the in-use page then splitting the free page.
323  */
324 static int isolate_single_pageblock(unsigned long boundary_pfn,
325 			enum pb_isolate_mode mode, bool isolate_before,
326 			bool skip_isolation)
327 {
328 	unsigned long start_pfn;
329 	unsigned long isolate_pageblock;
330 	unsigned long pfn;
331 	struct zone *zone;
332 	int ret;
333 
334 	VM_BUG_ON(!pageblock_aligned(boundary_pfn));
335 
336 	if (isolate_before)
337 		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
338 	else
339 		isolate_pageblock = boundary_pfn;
340 
341 	/*
342 	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
343 	 * only isolating a subset of pageblocks from a bigger than pageblock
344 	 * free or in-use page. Also make sure all to-be-isolated pageblocks
345 	 * are within the same zone.
346 	 */
347 	zone  = page_zone(pfn_to_page(isolate_pageblock));
348 	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
349 				      zone->zone_start_pfn);
350 
351 	if (skip_isolation) {
352 		VM_BUG_ON(!get_pageblock_isolate(pfn_to_page(isolate_pageblock)));
353 	} else {
354 		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock),
355 				mode, isolate_pageblock,
356 				isolate_pageblock + pageblock_nr_pages);
357 
358 		if (ret)
359 			return ret;
360 	}
361 
362 	/*
363 	 * Bail out early when the to-be-isolated pageblock does not form
364 	 * a free or in-use page across boundary_pfn:
365 	 *
366 	 * 1. isolate before boundary_pfn: the page after is not online
367 	 * 2. isolate after boundary_pfn: the page before is not online
368 	 *
369 	 * This also ensures correctness. Without it, when isolate after
370 	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
371 	 * __first_valid_page() will return unexpected NULL in the for loop
372 	 * below.
373 	 */
374 	if (isolate_before) {
375 		if (!pfn_to_online_page(boundary_pfn))
376 			return 0;
377 	} else {
378 		if (!pfn_to_online_page(boundary_pfn - 1))
379 			return 0;
380 	}
381 
382 	for (pfn = start_pfn; pfn < boundary_pfn;) {
383 		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
384 
385 		VM_BUG_ON(!page);
386 		pfn = page_to_pfn(page);
387 
388 		if (PageUnaccepted(page)) {
389 			pfn += MAX_ORDER_NR_PAGES;
390 			continue;
391 		}
392 
393 		if (PageBuddy(page)) {
394 			int order = buddy_order(page);
395 
396 			/* pageblock_isolate_and_move_free_pages() handled this */
397 			VM_WARN_ON_ONCE(pfn + (1 << order) > boundary_pfn);
398 
399 			pfn += 1UL << order;
400 			continue;
401 		}
402 
403 		/*
404 		 * If a compound page is straddling our block, attempt
405 		 * to migrate it out of the way.
406 		 *
407 		 * We don't have to worry about this creating a large
408 		 * free page that straddles into our block: gigantic
409 		 * pages are freed as order-0 chunks, and LRU pages
410 		 * (currently) do not exceed pageblock_order.
411 		 *
412 		 * The block of interest has already been marked
413 		 * MIGRATE_ISOLATE above, so when migration is done it
414 		 * will free its pages onto the correct freelists.
415 		 */
416 		if (PageCompound(page)) {
417 			struct page *head = compound_head(page);
418 			unsigned long head_pfn = page_to_pfn(head);
419 			unsigned long nr_pages = compound_nr(head);
420 
421 			if (head_pfn + nr_pages <= boundary_pfn ||
422 			    PageHuge(page)) {
423 				pfn = head_pfn + nr_pages;
424 				continue;
425 			}
426 
427 			/*
428 			 * These pages are movable too, but they're
429 			 * not expected to exceed pageblock_order.
430 			 *
431 			 * Let us know when they do, so we can add
432 			 * proper free and split handling for them.
433 			 */
434 			VM_WARN_ON_ONCE_PAGE(PageLRU(page), page);
435 			VM_WARN_ON_ONCE_PAGE(page_has_movable_ops(page), page);
436 
437 			goto failed;
438 		}
439 
440 		pfn++;
441 	}
442 	return 0;
443 failed:
444 	/* restore the original migratetype */
445 	if (!skip_isolation)
446 		unset_migratetype_isolate(pfn_to_page(isolate_pageblock));
447 	return -EBUSY;
448 }
449 
450 /**
451  * start_isolate_page_range() - mark page range MIGRATE_ISOLATE
452  * @start_pfn:		The first PFN of the range to be isolated.
453  * @end_pfn:		The last PFN of the range to be isolated.
454  * @mode:		isolation mode
455  *
456  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
457  * the range will never be allocated. Any free pages and pages freed in the
458  * future will not be allocated again. If specified range includes migrate types
459  * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
460  * pages in the range finally, the caller have to free all pages in the range.
461  * test_page_isolated() can be used for test it.
462  *
463  * The function first tries to isolate the pageblocks at the beginning and end
464  * of the range, since there might be pages across the range boundaries.
465  * Afterwards, it isolates the rest of the range.
466  *
467  * There is no high level synchronization mechanism that prevents two threads
468  * from trying to isolate overlapping ranges. If this happens, one thread
469  * will notice pageblocks in the overlapping range already set to isolate.
470  * This happens in set_migratetype_isolate, and set_migratetype_isolate
471  * returns an error. We then clean up by restoring the migration type on
472  * pageblocks we may have modified and return -EBUSY to caller. This
473  * prevents two threads from simultaneously working on overlapping ranges.
474  *
475  * Please note that there is no strong synchronization with the page allocator
476  * either. Pages might be freed while their page blocks are marked ISOLATED.
477  * A call to drain_all_pages() after isolation can flush most of them. However
478  * in some cases pages might still end up on pcp lists and that would allow
479  * for their allocation even when they are in fact isolated already. Depending
480  * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
481  * might be used to flush and disable pcplist before isolation and enable after
482  * unisolation.
483  *
484  * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
485  */
486 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
487 			     enum pb_isolate_mode mode)
488 {
489 	unsigned long pfn;
490 	struct page *page;
491 	/* isolation is done at page block granularity */
492 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
493 	unsigned long isolate_end = pageblock_align(end_pfn);
494 	int ret;
495 	bool skip_isolation = false;
496 
497 	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
498 	ret = isolate_single_pageblock(isolate_start, mode, false,
499 			skip_isolation);
500 	if (ret)
501 		return ret;
502 
503 	if (isolate_start == isolate_end - pageblock_nr_pages)
504 		skip_isolation = true;
505 
506 	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
507 	ret = isolate_single_pageblock(isolate_end, mode, true, skip_isolation);
508 	if (ret) {
509 		unset_migratetype_isolate(pfn_to_page(isolate_start));
510 		return ret;
511 	}
512 
513 	/* skip isolated pageblocks at the beginning and end */
514 	for (pfn = isolate_start + pageblock_nr_pages;
515 	     pfn < isolate_end - pageblock_nr_pages;
516 	     pfn += pageblock_nr_pages) {
517 		page = __first_valid_page(pfn, pageblock_nr_pages);
518 		if (page && set_migratetype_isolate(page, mode, start_pfn,
519 					end_pfn)) {
520 			undo_isolate_page_range(isolate_start, pfn);
521 			unset_migratetype_isolate(
522 				pfn_to_page(isolate_end - pageblock_nr_pages));
523 			return -EBUSY;
524 		}
525 	}
526 	return 0;
527 }
528 
529 /**
530  * undo_isolate_page_range - undo effects of start_isolate_page_range()
531  * @start_pfn:		The first PFN of the isolated range
532  * @end_pfn:		The last PFN of the isolated range
533  *
534  * This finds and unsets every MIGRATE_ISOLATE page block in the given range
535  */
536 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn)
537 {
538 	unsigned long pfn;
539 	struct page *page;
540 	unsigned long isolate_start = pageblock_start_pfn(start_pfn);
541 	unsigned long isolate_end = pageblock_align(end_pfn);
542 
543 	for (pfn = isolate_start;
544 	     pfn < isolate_end;
545 	     pfn += pageblock_nr_pages) {
546 		page = __first_valid_page(pfn, pageblock_nr_pages);
547 		if (!page || !is_migrate_isolate_page(page))
548 			continue;
549 		unset_migratetype_isolate(page);
550 	}
551 }
552 /*
553  * Test all pages in the range is free(means isolated) or not.
554  * all pages in [start_pfn...end_pfn) must be in the same zone.
555  * zone->lock must be held before call this.
556  *
557  * Returns the last tested pfn.
558  */
559 static unsigned long
560 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
561 				  enum pb_isolate_mode mode)
562 {
563 	struct page *page;
564 
565 	while (pfn < end_pfn) {
566 		page = pfn_to_page(pfn);
567 		if (PageBuddy(page))
568 			/*
569 			 * If the page is on a free list, it has to be on
570 			 * the correct MIGRATE_ISOLATE freelist. There is no
571 			 * simple way to verify that as VM_BUG_ON(), though.
572 			 */
573 			pfn += 1 << buddy_order(page);
574 		else if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) &&
575 			 PageHWPoison(page))
576 			/* A HWPoisoned page cannot be also PageBuddy */
577 			pfn++;
578 		else if ((mode == PB_ISOLATE_MODE_MEM_OFFLINE) &&
579 			 PageOffline(page) && !page_count(page))
580 			/*
581 			 * The responsible driver agreed to skip PageOffline()
582 			 * pages when offlining memory by dropping its
583 			 * reference in MEM_GOING_OFFLINE.
584 			 */
585 			pfn++;
586 		else
587 			break;
588 	}
589 
590 	return pfn;
591 }
592 
593 /**
594  * test_pages_isolated - check if pageblocks in range are isolated
595  * @start_pfn:		The first PFN of the isolated range
596  * @end_pfn:		The first PFN *after* the isolated range
597  * @mode:		Testing mode
598  *
599  * This tests if all in the specified range are free.
600  *
601  * If %PB_ISOLATE_MODE_MEM_OFFLINE specified in @mode, it will consider
602  * poisoned and offlined pages free as well.
603  *
604  * Caller must ensure the requested range doesn't span zones.
605  *
606  * Returns 0 if true, -EBUSY if one or more pages are in use.
607  */
608 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
609 			enum pb_isolate_mode mode)
610 {
611 	unsigned long pfn, flags;
612 	struct page *page;
613 	struct zone *zone;
614 	int ret;
615 
616 	/*
617 	 * Due to the deferred freeing of hugetlb folios, the hugepage folios may
618 	 * not immediately release to the buddy system. This can cause PageBuddy()
619 	 * to fail in __test_page_isolated_in_pageblock(). To ensure that the
620 	 * hugetlb folios are properly released back to the buddy system, we
621 	 * invoke the wait_for_freed_hugetlb_folios() function to wait for the
622 	 * release to complete.
623 	 */
624 	wait_for_freed_hugetlb_folios();
625 
626 	/*
627 	 * Note: pageblock_nr_pages != MAX_PAGE_ORDER. Then, chunks of free
628 	 * pages are not aligned to pageblock_nr_pages.
629 	 * Then we just check migratetype first.
630 	 */
631 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
632 		page = __first_valid_page(pfn, pageblock_nr_pages);
633 		if (page && !is_migrate_isolate_page(page))
634 			break;
635 	}
636 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
637 	if ((pfn < end_pfn) || !page) {
638 		ret = -EBUSY;
639 		goto out;
640 	}
641 
642 	/* Check all pages are free or marked as ISOLATED */
643 	zone = page_zone(page);
644 	spin_lock_irqsave(&zone->lock, flags);
645 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, mode);
646 	spin_unlock_irqrestore(&zone->lock, flags);
647 
648 	ret = pfn < end_pfn ? -EBUSY : 0;
649 
650 out:
651 	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
652 
653 	return ret;
654 }
655