xref: /linux/mm/page_isolation.c (revision 6562c9acb43ac69ba5a956b0c3911b883d90541f)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/page_isolation.c
4  */
5 
6 #include <linux/mm.h>
7 #include <linux/page-isolation.h>
8 #include <linux/pageblock-flags.h>
9 #include <linux/memory.h>
10 #include <linux/hugetlb.h>
11 #include <linux/page_owner.h>
12 #include <linux/migrate.h>
13 #include "internal.h"
14 
15 #define CREATE_TRACE_POINTS
16 #include <trace/events/page_isolation.h>
17 
18 /*
19  * This function checks whether the range [start_pfn, end_pfn) includes
20  * unmovable pages or not. The range must fall into a single pageblock and
21  * consequently belong to a single zone.
22  *
23  * PageLRU check without isolation or lru_lock could race so that
24  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
25  * check without lock_page also may miss some movable non-lru pages at
26  * race condition. So you can't expect this function should be exact.
27  *
28  * Returns a page without holding a reference. If the caller wants to
29  * dereference that page (e.g., dumping), it has to make sure that it
30  * cannot get removed (e.g., via memory unplug) concurrently.
31  *
32  */
33 static struct page *has_unmovable_pages(unsigned long start_pfn, unsigned long end_pfn,
34 				int migratetype, int flags)
35 {
36 	struct page *page = pfn_to_page(start_pfn);
37 	struct zone *zone = page_zone(page);
38 	unsigned long pfn;
39 
40 	VM_BUG_ON(ALIGN_DOWN(start_pfn, pageblock_nr_pages) !=
41 		  ALIGN_DOWN(end_pfn - 1, pageblock_nr_pages));
42 
43 	if (is_migrate_cma_page(page)) {
44 		/*
45 		 * CMA allocations (alloc_contig_range) really need to mark
46 		 * isolate CMA pageblocks even when they are not movable in fact
47 		 * so consider them movable here.
48 		 */
49 		if (is_migrate_cma(migratetype))
50 			return NULL;
51 
52 		return page;
53 	}
54 
55 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
56 		page = pfn_to_page(pfn);
57 
58 		/*
59 		 * Both, bootmem allocations and memory holes are marked
60 		 * PG_reserved and are unmovable. We can even have unmovable
61 		 * allocations inside ZONE_MOVABLE, for example when
62 		 * specifying "movablecore".
63 		 */
64 		if (PageReserved(page))
65 			return page;
66 
67 		/*
68 		 * If the zone is movable and we have ruled out all reserved
69 		 * pages then it should be reasonably safe to assume the rest
70 		 * is movable.
71 		 */
72 		if (zone_idx(zone) == ZONE_MOVABLE)
73 			continue;
74 
75 		/*
76 		 * Hugepages are not in LRU lists, but they're movable.
77 		 * THPs are on the LRU, but need to be counted as #small pages.
78 		 * We need not scan over tail pages because we don't
79 		 * handle each tail page individually in migration.
80 		 */
81 		if (PageHuge(page) || PageTransCompound(page)) {
82 			struct page *head = compound_head(page);
83 			unsigned int skip_pages;
84 
85 			if (PageHuge(page)) {
86 				if (!hugepage_migration_supported(page_hstate(head)))
87 					return page;
88 			} else if (!PageLRU(head) && !__PageMovable(head)) {
89 				return page;
90 			}
91 
92 			skip_pages = compound_nr(head) - (page - head);
93 			pfn += skip_pages - 1;
94 			continue;
95 		}
96 
97 		/*
98 		 * We can't use page_count without pin a page
99 		 * because another CPU can free compound page.
100 		 * This check already skips compound tails of THP
101 		 * because their page->_refcount is zero at all time.
102 		 */
103 		if (!page_ref_count(page)) {
104 			if (PageBuddy(page))
105 				pfn += (1 << buddy_order(page)) - 1;
106 			continue;
107 		}
108 
109 		/*
110 		 * The HWPoisoned page may be not in buddy system, and
111 		 * page_count() is not 0.
112 		 */
113 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
114 			continue;
115 
116 		/*
117 		 * We treat all PageOffline() pages as movable when offlining
118 		 * to give drivers a chance to decrement their reference count
119 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
120 		 * can be offlined as there are no direct references anymore.
121 		 * For actually unmovable PageOffline() where the driver does
122 		 * not support this, we will fail later when trying to actually
123 		 * move these pages that still have a reference count > 0.
124 		 * (false negatives in this function only)
125 		 */
126 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
127 			continue;
128 
129 		if (__PageMovable(page) || PageLRU(page))
130 			continue;
131 
132 		/*
133 		 * If there are RECLAIMABLE pages, we need to check
134 		 * it.  But now, memory offline itself doesn't call
135 		 * shrink_node_slabs() and it still to be fixed.
136 		 */
137 		return page;
138 	}
139 	return NULL;
140 }
141 
142 /*
143  * This function set pageblock migratetype to isolate if no unmovable page is
144  * present in [start_pfn, end_pfn). The pageblock must intersect with
145  * [start_pfn, end_pfn).
146  */
147 static int set_migratetype_isolate(struct page *page, int migratetype, int isol_flags,
148 			unsigned long start_pfn, unsigned long end_pfn)
149 {
150 	struct zone *zone = page_zone(page);
151 	struct page *unmovable;
152 	unsigned long flags;
153 	unsigned long check_unmovable_start, check_unmovable_end;
154 
155 	spin_lock_irqsave(&zone->lock, flags);
156 
157 	/*
158 	 * We assume the caller intended to SET migrate type to isolate.
159 	 * If it is already set, then someone else must have raced and
160 	 * set it before us.
161 	 */
162 	if (is_migrate_isolate_page(page)) {
163 		spin_unlock_irqrestore(&zone->lock, flags);
164 		return -EBUSY;
165 	}
166 
167 	/*
168 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
169 	 * We just check MOVABLE pages.
170 	 *
171 	 * Pass the intersection of [start_pfn, end_pfn) and the page's pageblock
172 	 * to avoid redundant checks.
173 	 */
174 	check_unmovable_start = max(page_to_pfn(page), start_pfn);
175 	check_unmovable_end = min(ALIGN(page_to_pfn(page) + 1, pageblock_nr_pages),
176 				  end_pfn);
177 
178 	unmovable = has_unmovable_pages(check_unmovable_start, check_unmovable_end,
179 			migratetype, isol_flags);
180 	if (!unmovable) {
181 		unsigned long nr_pages;
182 		int mt = get_pageblock_migratetype(page);
183 
184 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
185 		zone->nr_isolate_pageblock++;
186 		nr_pages = move_freepages_block(zone, page, MIGRATE_ISOLATE,
187 									NULL);
188 
189 		__mod_zone_freepage_state(zone, -nr_pages, mt);
190 		spin_unlock_irqrestore(&zone->lock, flags);
191 		return 0;
192 	}
193 
194 	spin_unlock_irqrestore(&zone->lock, flags);
195 	if (isol_flags & REPORT_FAILURE) {
196 		/*
197 		 * printk() with zone->lock held will likely trigger a
198 		 * lockdep splat, so defer it here.
199 		 */
200 		dump_page(unmovable, "unmovable page");
201 	}
202 
203 	return -EBUSY;
204 }
205 
206 static void unset_migratetype_isolate(struct page *page, int migratetype)
207 {
208 	struct zone *zone;
209 	unsigned long flags, nr_pages;
210 	bool isolated_page = false;
211 	unsigned int order;
212 	struct page *buddy;
213 
214 	zone = page_zone(page);
215 	spin_lock_irqsave(&zone->lock, flags);
216 	if (!is_migrate_isolate_page(page))
217 		goto out;
218 
219 	/*
220 	 * Because freepage with more than pageblock_order on isolated
221 	 * pageblock is restricted to merge due to freepage counting problem,
222 	 * it is possible that there is free buddy page.
223 	 * move_freepages_block() doesn't care of merge so we need other
224 	 * approach in order to merge them. Isolation and free will make
225 	 * these pages to be merged.
226 	 */
227 	if (PageBuddy(page)) {
228 		order = buddy_order(page);
229 		if (order >= pageblock_order && order < MAX_ORDER - 1) {
230 			buddy = find_buddy_page_pfn(page, page_to_pfn(page),
231 						    order, NULL);
232 			if (buddy && !is_migrate_isolate_page(buddy)) {
233 				isolated_page = !!__isolate_free_page(page, order);
234 				/*
235 				 * Isolating a free page in an isolated pageblock
236 				 * is expected to always work as watermarks don't
237 				 * apply here.
238 				 */
239 				VM_WARN_ON(!isolated_page);
240 			}
241 		}
242 	}
243 
244 	/*
245 	 * If we isolate freepage with more than pageblock_order, there
246 	 * should be no freepage in the range, so we could avoid costly
247 	 * pageblock scanning for freepage moving.
248 	 *
249 	 * We didn't actually touch any of the isolated pages, so place them
250 	 * to the tail of the freelist. This is an optimization for memory
251 	 * onlining - just onlined memory won't immediately be considered for
252 	 * allocation.
253 	 */
254 	if (!isolated_page) {
255 		nr_pages = move_freepages_block(zone, page, migratetype, NULL);
256 		__mod_zone_freepage_state(zone, nr_pages, migratetype);
257 	}
258 	set_pageblock_migratetype(page, migratetype);
259 	if (isolated_page)
260 		__putback_isolated_page(page, order, migratetype);
261 	zone->nr_isolate_pageblock--;
262 out:
263 	spin_unlock_irqrestore(&zone->lock, flags);
264 }
265 
266 static inline struct page *
267 __first_valid_page(unsigned long pfn, unsigned long nr_pages)
268 {
269 	int i;
270 
271 	for (i = 0; i < nr_pages; i++) {
272 		struct page *page;
273 
274 		page = pfn_to_online_page(pfn + i);
275 		if (!page)
276 			continue;
277 		return page;
278 	}
279 	return NULL;
280 }
281 
282 /**
283  * isolate_single_pageblock() -- tries to isolate a pageblock that might be
284  * within a free or in-use page.
285  * @boundary_pfn:		pageblock-aligned pfn that a page might cross
286  * @flags:			isolation flags
287  * @gfp_flags:			GFP flags used for migrating pages
288  * @isolate_before:	isolate the pageblock before the boundary_pfn
289  * @skip_isolation:	the flag to skip the pageblock isolation in second
290  *			isolate_single_pageblock()
291  * @migratetype:	migrate type to set in error recovery.
292  *
293  * Free and in-use pages can be as big as MAX_ORDER-1 and contain more than one
294  * pageblock. When not all pageblocks within a page are isolated at the same
295  * time, free page accounting can go wrong. For example, in the case of
296  * MAX_ORDER-1 = pageblock_order + 1, a MAX_ORDER-1 page has two pagelbocks.
297  * [         MAX_ORDER-1         ]
298  * [  pageblock0  |  pageblock1  ]
299  * When either pageblock is isolated, if it is a free page, the page is not
300  * split into separate migratetype lists, which is supposed to; if it is an
301  * in-use page and freed later, __free_one_page() does not split the free page
302  * either. The function handles this by splitting the free page or migrating
303  * the in-use page then splitting the free page.
304  */
305 static int isolate_single_pageblock(unsigned long boundary_pfn, int flags,
306 			gfp_t gfp_flags, bool isolate_before, bool skip_isolation,
307 			int migratetype)
308 {
309 	unsigned long start_pfn;
310 	unsigned long isolate_pageblock;
311 	unsigned long pfn;
312 	struct zone *zone;
313 	int ret;
314 
315 	VM_BUG_ON(!IS_ALIGNED(boundary_pfn, pageblock_nr_pages));
316 
317 	if (isolate_before)
318 		isolate_pageblock = boundary_pfn - pageblock_nr_pages;
319 	else
320 		isolate_pageblock = boundary_pfn;
321 
322 	/*
323 	 * scan at the beginning of MAX_ORDER_NR_PAGES aligned range to avoid
324 	 * only isolating a subset of pageblocks from a bigger than pageblock
325 	 * free or in-use page. Also make sure all to-be-isolated pageblocks
326 	 * are within the same zone.
327 	 */
328 	zone  = page_zone(pfn_to_page(isolate_pageblock));
329 	start_pfn  = max(ALIGN_DOWN(isolate_pageblock, MAX_ORDER_NR_PAGES),
330 				      zone->zone_start_pfn);
331 
332 	if (skip_isolation) {
333 		int mt = get_pageblock_migratetype(pfn_to_page(isolate_pageblock));
334 
335 		VM_BUG_ON(!is_migrate_isolate(mt));
336 	} else {
337 		ret = set_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype,
338 				flags, isolate_pageblock, isolate_pageblock + pageblock_nr_pages);
339 
340 		if (ret)
341 			return ret;
342 	}
343 
344 	/*
345 	 * Bail out early when the to-be-isolated pageblock does not form
346 	 * a free or in-use page across boundary_pfn:
347 	 *
348 	 * 1. isolate before boundary_pfn: the page after is not online
349 	 * 2. isolate after boundary_pfn: the page before is not online
350 	 *
351 	 * This also ensures correctness. Without it, when isolate after
352 	 * boundary_pfn and [start_pfn, boundary_pfn) are not online,
353 	 * __first_valid_page() will return unexpected NULL in the for loop
354 	 * below.
355 	 */
356 	if (isolate_before) {
357 		if (!pfn_to_online_page(boundary_pfn))
358 			return 0;
359 	} else {
360 		if (!pfn_to_online_page(boundary_pfn - 1))
361 			return 0;
362 	}
363 
364 	for (pfn = start_pfn; pfn < boundary_pfn;) {
365 		struct page *page = __first_valid_page(pfn, boundary_pfn - pfn);
366 
367 		VM_BUG_ON(!page);
368 		pfn = page_to_pfn(page);
369 		/*
370 		 * start_pfn is MAX_ORDER_NR_PAGES aligned, if there is any
371 		 * free pages in [start_pfn, boundary_pfn), its head page will
372 		 * always be in the range.
373 		 */
374 		if (PageBuddy(page)) {
375 			int order = buddy_order(page);
376 
377 			if (pfn + (1UL << order) > boundary_pfn) {
378 				/* free page changed before split, check it again */
379 				if (split_free_page(page, order, boundary_pfn - pfn))
380 					continue;
381 			}
382 
383 			pfn += 1UL << order;
384 			continue;
385 		}
386 		/*
387 		 * migrate compound pages then let the free page handling code
388 		 * above do the rest. If migration is not possible, just fail.
389 		 */
390 		if (PageCompound(page)) {
391 			struct page *head = compound_head(page);
392 			unsigned long head_pfn = page_to_pfn(head);
393 			unsigned long nr_pages = compound_nr(head);
394 
395 			if (head_pfn + nr_pages <= boundary_pfn) {
396 				pfn = head_pfn + nr_pages;
397 				continue;
398 			}
399 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
400 			/*
401 			 * hugetlb, lru compound (THP), and movable compound pages
402 			 * can be migrated. Otherwise, fail the isolation.
403 			 */
404 			if (PageHuge(page) || PageLRU(page) || __PageMovable(page)) {
405 				int order;
406 				unsigned long outer_pfn;
407 				int page_mt = get_pageblock_migratetype(page);
408 				bool isolate_page = !is_migrate_isolate_page(page);
409 				struct compact_control cc = {
410 					.nr_migratepages = 0,
411 					.order = -1,
412 					.zone = page_zone(pfn_to_page(head_pfn)),
413 					.mode = MIGRATE_SYNC,
414 					.ignore_skip_hint = true,
415 					.no_set_skip_hint = true,
416 					.gfp_mask = gfp_flags,
417 					.alloc_contig = true,
418 				};
419 				INIT_LIST_HEAD(&cc.migratepages);
420 
421 				/*
422 				 * XXX: mark the page as MIGRATE_ISOLATE so that
423 				 * no one else can grab the freed page after migration.
424 				 * Ideally, the page should be freed as two separate
425 				 * pages to be added into separate migratetype free
426 				 * lists.
427 				 */
428 				if (isolate_page) {
429 					ret = set_migratetype_isolate(page, page_mt,
430 						flags, head_pfn, head_pfn + nr_pages);
431 					if (ret)
432 						goto failed;
433 				}
434 
435 				ret = __alloc_contig_migrate_range(&cc, head_pfn,
436 							head_pfn + nr_pages);
437 
438 				/*
439 				 * restore the page's migratetype so that it can
440 				 * be split into separate migratetype free lists
441 				 * later.
442 				 */
443 				if (isolate_page)
444 					unset_migratetype_isolate(page, page_mt);
445 
446 				if (ret)
447 					goto failed;
448 				/*
449 				 * reset pfn to the head of the free page, so
450 				 * that the free page handling code above can split
451 				 * the free page to the right migratetype list.
452 				 *
453 				 * head_pfn is not used here as a hugetlb page order
454 				 * can be bigger than MAX_ORDER-1, but after it is
455 				 * freed, the free page order is not. Use pfn within
456 				 * the range to find the head of the free page.
457 				 */
458 				order = 0;
459 				outer_pfn = pfn;
460 				while (!PageBuddy(pfn_to_page(outer_pfn))) {
461 					/* stop if we cannot find the free page */
462 					if (++order >= MAX_ORDER)
463 						goto failed;
464 					outer_pfn &= ~0UL << order;
465 				}
466 				pfn = outer_pfn;
467 				continue;
468 			} else
469 #endif
470 				goto failed;
471 		}
472 
473 		pfn++;
474 	}
475 	return 0;
476 failed:
477 	/* restore the original migratetype */
478 	if (!skip_isolation)
479 		unset_migratetype_isolate(pfn_to_page(isolate_pageblock), migratetype);
480 	return -EBUSY;
481 }
482 
483 /**
484  * start_isolate_page_range() - make page-allocation-type of range of pages to
485  * be MIGRATE_ISOLATE.
486  * @start_pfn:		The lower PFN of the range to be isolated.
487  * @end_pfn:		The upper PFN of the range to be isolated.
488  * @migratetype:	Migrate type to set in error recovery.
489  * @flags:		The following flags are allowed (they can be combined in
490  *			a bit mask)
491  *			MEMORY_OFFLINE - isolate to offline (!allocate) memory
492  *					 e.g., skip over PageHWPoison() pages
493  *					 and PageOffline() pages.
494  *			REPORT_FAILURE - report details about the failure to
495  *			isolate the range
496  * @gfp_flags:		GFP flags used for migrating pages that sit across the
497  *			range boundaries.
498  *
499  * Making page-allocation-type to be MIGRATE_ISOLATE means free pages in
500  * the range will never be allocated. Any free pages and pages freed in the
501  * future will not be allocated again. If specified range includes migrate types
502  * other than MOVABLE or CMA, this will fail with -EBUSY. For isolating all
503  * pages in the range finally, the caller have to free all pages in the range.
504  * test_page_isolated() can be used for test it.
505  *
506  * The function first tries to isolate the pageblocks at the beginning and end
507  * of the range, since there might be pages across the range boundaries.
508  * Afterwards, it isolates the rest of the range.
509  *
510  * There is no high level synchronization mechanism that prevents two threads
511  * from trying to isolate overlapping ranges. If this happens, one thread
512  * will notice pageblocks in the overlapping range already set to isolate.
513  * This happens in set_migratetype_isolate, and set_migratetype_isolate
514  * returns an error. We then clean up by restoring the migration type on
515  * pageblocks we may have modified and return -EBUSY to caller. This
516  * prevents two threads from simultaneously working on overlapping ranges.
517  *
518  * Please note that there is no strong synchronization with the page allocator
519  * either. Pages might be freed while their page blocks are marked ISOLATED.
520  * A call to drain_all_pages() after isolation can flush most of them. However
521  * in some cases pages might still end up on pcp lists and that would allow
522  * for their allocation even when they are in fact isolated already. Depending
523  * on how strong of a guarantee the caller needs, zone_pcp_disable/enable()
524  * might be used to flush and disable pcplist before isolation and enable after
525  * unisolation.
526  *
527  * Return: 0 on success and -EBUSY if any part of range cannot be isolated.
528  */
529 int start_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
530 			     int migratetype, int flags, gfp_t gfp_flags)
531 {
532 	unsigned long pfn;
533 	struct page *page;
534 	/* isolation is done at page block granularity */
535 	unsigned long isolate_start = ALIGN_DOWN(start_pfn, pageblock_nr_pages);
536 	unsigned long isolate_end = ALIGN(end_pfn, pageblock_nr_pages);
537 	int ret;
538 	bool skip_isolation = false;
539 
540 	/* isolate [isolate_start, isolate_start + pageblock_nr_pages) pageblock */
541 	ret = isolate_single_pageblock(isolate_start, flags, gfp_flags, false,
542 			skip_isolation, migratetype);
543 	if (ret)
544 		return ret;
545 
546 	if (isolate_start == isolate_end - pageblock_nr_pages)
547 		skip_isolation = true;
548 
549 	/* isolate [isolate_end - pageblock_nr_pages, isolate_end) pageblock */
550 	ret = isolate_single_pageblock(isolate_end, flags, gfp_flags, true,
551 			skip_isolation, migratetype);
552 	if (ret) {
553 		unset_migratetype_isolate(pfn_to_page(isolate_start), migratetype);
554 		return ret;
555 	}
556 
557 	/* skip isolated pageblocks at the beginning and end */
558 	for (pfn = isolate_start + pageblock_nr_pages;
559 	     pfn < isolate_end - pageblock_nr_pages;
560 	     pfn += pageblock_nr_pages) {
561 		page = __first_valid_page(pfn, pageblock_nr_pages);
562 		if (page && set_migratetype_isolate(page, migratetype, flags,
563 					start_pfn, end_pfn)) {
564 			undo_isolate_page_range(isolate_start, pfn, migratetype);
565 			unset_migratetype_isolate(
566 				pfn_to_page(isolate_end - pageblock_nr_pages),
567 				migratetype);
568 			return -EBUSY;
569 		}
570 	}
571 	return 0;
572 }
573 
574 /*
575  * Make isolated pages available again.
576  */
577 void undo_isolate_page_range(unsigned long start_pfn, unsigned long end_pfn,
578 			    int migratetype)
579 {
580 	unsigned long pfn;
581 	struct page *page;
582 	unsigned long isolate_start = ALIGN_DOWN(start_pfn, pageblock_nr_pages);
583 	unsigned long isolate_end = ALIGN(end_pfn, pageblock_nr_pages);
584 
585 
586 	for (pfn = isolate_start;
587 	     pfn < isolate_end;
588 	     pfn += pageblock_nr_pages) {
589 		page = __first_valid_page(pfn, pageblock_nr_pages);
590 		if (!page || !is_migrate_isolate_page(page))
591 			continue;
592 		unset_migratetype_isolate(page, migratetype);
593 	}
594 }
595 /*
596  * Test all pages in the range is free(means isolated) or not.
597  * all pages in [start_pfn...end_pfn) must be in the same zone.
598  * zone->lock must be held before call this.
599  *
600  * Returns the last tested pfn.
601  */
602 static unsigned long
603 __test_page_isolated_in_pageblock(unsigned long pfn, unsigned long end_pfn,
604 				  int flags)
605 {
606 	struct page *page;
607 
608 	while (pfn < end_pfn) {
609 		page = pfn_to_page(pfn);
610 		if (PageBuddy(page))
611 			/*
612 			 * If the page is on a free list, it has to be on
613 			 * the correct MIGRATE_ISOLATE freelist. There is no
614 			 * simple way to verify that as VM_BUG_ON(), though.
615 			 */
616 			pfn += 1 << buddy_order(page);
617 		else if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
618 			/* A HWPoisoned page cannot be also PageBuddy */
619 			pfn++;
620 		else if ((flags & MEMORY_OFFLINE) && PageOffline(page) &&
621 			 !page_count(page))
622 			/*
623 			 * The responsible driver agreed to skip PageOffline()
624 			 * pages when offlining memory by dropping its
625 			 * reference in MEM_GOING_OFFLINE.
626 			 */
627 			pfn++;
628 		else
629 			break;
630 	}
631 
632 	return pfn;
633 }
634 
635 /* Caller should ensure that requested range is in a single zone */
636 int test_pages_isolated(unsigned long start_pfn, unsigned long end_pfn,
637 			int isol_flags)
638 {
639 	unsigned long pfn, flags;
640 	struct page *page;
641 	struct zone *zone;
642 	int ret;
643 
644 	/*
645 	 * Note: pageblock_nr_pages != MAX_ORDER. Then, chunks of free pages
646 	 * are not aligned to pageblock_nr_pages.
647 	 * Then we just check migratetype first.
648 	 */
649 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
650 		page = __first_valid_page(pfn, pageblock_nr_pages);
651 		if (page && !is_migrate_isolate_page(page))
652 			break;
653 	}
654 	page = __first_valid_page(start_pfn, end_pfn - start_pfn);
655 	if ((pfn < end_pfn) || !page) {
656 		ret = -EBUSY;
657 		goto out;
658 	}
659 
660 	/* Check all pages are free or marked as ISOLATED */
661 	zone = page_zone(page);
662 	spin_lock_irqsave(&zone->lock, flags);
663 	pfn = __test_page_isolated_in_pageblock(start_pfn, end_pfn, isol_flags);
664 	spin_unlock_irqrestore(&zone->lock, flags);
665 
666 	ret = pfn < end_pfn ? -EBUSY : 0;
667 
668 out:
669 	trace_test_pages_isolated(start_pfn, end_pfn, pfn);
670 
671 	return ret;
672 }
673