1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_io.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, 8 * Asynchronous swapping added 30.12.95. Stephen Tweedie 9 * Removed race in async swapping. 14.4.1996. Bruno Haible 10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie 11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/gfp.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/bio.h> 20 #include <linux/swapops.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/psi.h> 24 #include <linux/uio.h> 25 #include <linux/sched/task.h> 26 #include <linux/delayacct.h> 27 #include <linux/zswap.h> 28 #include "swap.h" 29 30 static void __end_swap_bio_write(struct bio *bio) 31 { 32 struct folio *folio = bio_first_folio_all(bio); 33 34 if (bio->bi_status) { 35 /* 36 * We failed to write the page out to swap-space. 37 * Re-dirty the page in order to avoid it being reclaimed. 38 * Also print a dire warning that things will go BAD (tm) 39 * very quickly. 40 * 41 * Also clear PG_reclaim to avoid folio_rotate_reclaimable() 42 */ 43 folio_mark_dirty(folio); 44 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n", 45 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 46 (unsigned long long)bio->bi_iter.bi_sector); 47 folio_clear_reclaim(folio); 48 } 49 folio_end_writeback(folio); 50 } 51 52 static void end_swap_bio_write(struct bio *bio) 53 { 54 __end_swap_bio_write(bio); 55 bio_put(bio); 56 } 57 58 static void __end_swap_bio_read(struct bio *bio) 59 { 60 struct folio *folio = bio_first_folio_all(bio); 61 62 if (bio->bi_status) { 63 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n", 64 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 65 (unsigned long long)bio->bi_iter.bi_sector); 66 } else { 67 folio_mark_uptodate(folio); 68 } 69 folio_unlock(folio); 70 } 71 72 static void end_swap_bio_read(struct bio *bio) 73 { 74 __end_swap_bio_read(bio); 75 bio_put(bio); 76 } 77 78 int generic_swapfile_activate(struct swap_info_struct *sis, 79 struct file *swap_file, 80 sector_t *span) 81 { 82 struct address_space *mapping = swap_file->f_mapping; 83 struct inode *inode = mapping->host; 84 unsigned blocks_per_page; 85 unsigned long page_no; 86 unsigned blkbits; 87 sector_t probe_block; 88 sector_t last_block; 89 sector_t lowest_block = -1; 90 sector_t highest_block = 0; 91 int nr_extents = 0; 92 int ret; 93 94 blkbits = inode->i_blkbits; 95 blocks_per_page = PAGE_SIZE >> blkbits; 96 97 /* 98 * Map all the blocks into the extent tree. This code doesn't try 99 * to be very smart. 100 */ 101 probe_block = 0; 102 page_no = 0; 103 last_block = i_size_read(inode) >> blkbits; 104 while ((probe_block + blocks_per_page) <= last_block && 105 page_no < sis->max) { 106 unsigned block_in_page; 107 sector_t first_block; 108 109 cond_resched(); 110 111 first_block = probe_block; 112 ret = bmap(inode, &first_block); 113 if (ret || !first_block) 114 goto bad_bmap; 115 116 /* 117 * It must be PAGE_SIZE aligned on-disk 118 */ 119 if (first_block & (blocks_per_page - 1)) { 120 probe_block++; 121 goto reprobe; 122 } 123 124 for (block_in_page = 1; block_in_page < blocks_per_page; 125 block_in_page++) { 126 sector_t block; 127 128 block = probe_block + block_in_page; 129 ret = bmap(inode, &block); 130 if (ret || !block) 131 goto bad_bmap; 132 133 if (block != first_block + block_in_page) { 134 /* Discontiguity */ 135 probe_block++; 136 goto reprobe; 137 } 138 } 139 140 first_block >>= (PAGE_SHIFT - blkbits); 141 if (page_no) { /* exclude the header page */ 142 if (first_block < lowest_block) 143 lowest_block = first_block; 144 if (first_block > highest_block) 145 highest_block = first_block; 146 } 147 148 /* 149 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 150 */ 151 ret = add_swap_extent(sis, page_no, 1, first_block); 152 if (ret < 0) 153 goto out; 154 nr_extents += ret; 155 page_no++; 156 probe_block += blocks_per_page; 157 reprobe: 158 continue; 159 } 160 ret = nr_extents; 161 *span = 1 + highest_block - lowest_block; 162 if (page_no == 0) 163 page_no = 1; /* force Empty message */ 164 sis->max = page_no; 165 sis->pages = page_no - 1; 166 sis->highest_bit = page_no - 1; 167 out: 168 return ret; 169 bad_bmap: 170 pr_err("swapon: swapfile has holes\n"); 171 ret = -EINVAL; 172 goto out; 173 } 174 175 static bool is_folio_zero_filled(struct folio *folio) 176 { 177 unsigned int pos, last_pos; 178 unsigned long *data; 179 unsigned int i; 180 181 last_pos = PAGE_SIZE / sizeof(*data) - 1; 182 for (i = 0; i < folio_nr_pages(folio); i++) { 183 data = kmap_local_folio(folio, i * PAGE_SIZE); 184 /* 185 * Check last word first, incase the page is zero-filled at 186 * the start and has non-zero data at the end, which is common 187 * in real-world workloads. 188 */ 189 if (data[last_pos]) { 190 kunmap_local(data); 191 return false; 192 } 193 for (pos = 0; pos < last_pos; pos++) { 194 if (data[pos]) { 195 kunmap_local(data); 196 return false; 197 } 198 } 199 kunmap_local(data); 200 } 201 202 return true; 203 } 204 205 static void swap_zeromap_folio_set(struct folio *folio) 206 { 207 struct swap_info_struct *sis = swp_swap_info(folio->swap); 208 swp_entry_t entry; 209 unsigned int i; 210 211 for (i = 0; i < folio_nr_pages(folio); i++) { 212 entry = page_swap_entry(folio_page(folio, i)); 213 set_bit(swp_offset(entry), sis->zeromap); 214 } 215 } 216 217 static void swap_zeromap_folio_clear(struct folio *folio) 218 { 219 struct swap_info_struct *sis = swp_swap_info(folio->swap); 220 swp_entry_t entry; 221 unsigned int i; 222 223 for (i = 0; i < folio_nr_pages(folio); i++) { 224 entry = page_swap_entry(folio_page(folio, i)); 225 clear_bit(swp_offset(entry), sis->zeromap); 226 } 227 } 228 229 /* 230 * Return the index of the first subpage which is not zero-filled 231 * according to swap_info_struct->zeromap. 232 * If all pages are zero-filled according to zeromap, it will return 233 * folio_nr_pages(folio). 234 */ 235 static unsigned int swap_zeromap_folio_test(struct folio *folio) 236 { 237 struct swap_info_struct *sis = swp_swap_info(folio->swap); 238 swp_entry_t entry; 239 unsigned int i; 240 241 for (i = 0; i < folio_nr_pages(folio); i++) { 242 entry = page_swap_entry(folio_page(folio, i)); 243 if (!test_bit(swp_offset(entry), sis->zeromap)) 244 return i; 245 } 246 return i; 247 } 248 249 /* 250 * We may have stale swap cache pages in memory: notice 251 * them here and get rid of the unnecessary final write. 252 */ 253 int swap_writepage(struct page *page, struct writeback_control *wbc) 254 { 255 struct folio *folio = page_folio(page); 256 int ret; 257 258 if (folio_free_swap(folio)) { 259 folio_unlock(folio); 260 return 0; 261 } 262 /* 263 * Arch code may have to preserve more data than just the page 264 * contents, e.g. memory tags. 265 */ 266 ret = arch_prepare_to_swap(folio); 267 if (ret) { 268 folio_mark_dirty(folio); 269 folio_unlock(folio); 270 return ret; 271 } 272 273 /* 274 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages. 275 * The bits in zeromap are protected by the locked swapcache folio 276 * and atomic updates are used to protect against read-modify-write 277 * corruption due to other zero swap entries seeing concurrent updates. 278 */ 279 if (is_folio_zero_filled(folio)) { 280 swap_zeromap_folio_set(folio); 281 folio_unlock(folio); 282 return 0; 283 } else { 284 /* 285 * Clear bits this folio occupies in the zeromap to prevent 286 * zero data being read in from any previous zero writes that 287 * occupied the same swap entries. 288 */ 289 swap_zeromap_folio_clear(folio); 290 } 291 if (zswap_store(folio)) { 292 folio_unlock(folio); 293 return 0; 294 } 295 if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) { 296 folio_mark_dirty(folio); 297 return AOP_WRITEPAGE_ACTIVATE; 298 } 299 300 __swap_writepage(folio, wbc); 301 return 0; 302 } 303 304 static inline void count_swpout_vm_event(struct folio *folio) 305 { 306 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 307 if (unlikely(folio_test_pmd_mappable(folio))) { 308 count_memcg_folio_events(folio, THP_SWPOUT, 1); 309 count_vm_event(THP_SWPOUT); 310 } 311 count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT); 312 #endif 313 count_vm_events(PSWPOUT, folio_nr_pages(folio)); 314 } 315 316 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 317 static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio) 318 { 319 struct cgroup_subsys_state *css; 320 struct mem_cgroup *memcg; 321 322 memcg = folio_memcg(folio); 323 if (!memcg) 324 return; 325 326 rcu_read_lock(); 327 css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys); 328 bio_associate_blkg_from_css(bio, css); 329 rcu_read_unlock(); 330 } 331 #else 332 #define bio_associate_blkg_from_page(bio, folio) do { } while (0) 333 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */ 334 335 struct swap_iocb { 336 struct kiocb iocb; 337 struct bio_vec bvec[SWAP_CLUSTER_MAX]; 338 int pages; 339 int len; 340 }; 341 static mempool_t *sio_pool; 342 343 int sio_pool_init(void) 344 { 345 if (!sio_pool) { 346 mempool_t *pool = mempool_create_kmalloc_pool( 347 SWAP_CLUSTER_MAX, sizeof(struct swap_iocb)); 348 if (cmpxchg(&sio_pool, NULL, pool)) 349 mempool_destroy(pool); 350 } 351 if (!sio_pool) 352 return -ENOMEM; 353 return 0; 354 } 355 356 static void sio_write_complete(struct kiocb *iocb, long ret) 357 { 358 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 359 struct page *page = sio->bvec[0].bv_page; 360 int p; 361 362 if (ret != sio->len) { 363 /* 364 * In the case of swap-over-nfs, this can be a 365 * temporary failure if the system has limited 366 * memory for allocating transmit buffers. 367 * Mark the page dirty and avoid 368 * folio_rotate_reclaimable but rate-limit the 369 * messages. 370 */ 371 pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n", 372 ret, swap_dev_pos(page_swap_entry(page))); 373 for (p = 0; p < sio->pages; p++) { 374 page = sio->bvec[p].bv_page; 375 set_page_dirty(page); 376 ClearPageReclaim(page); 377 } 378 } 379 380 for (p = 0; p < sio->pages; p++) 381 end_page_writeback(sio->bvec[p].bv_page); 382 383 mempool_free(sio, sio_pool); 384 } 385 386 static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc) 387 { 388 struct swap_iocb *sio = NULL; 389 struct swap_info_struct *sis = swp_swap_info(folio->swap); 390 struct file *swap_file = sis->swap_file; 391 loff_t pos = swap_dev_pos(folio->swap); 392 393 count_swpout_vm_event(folio); 394 folio_start_writeback(folio); 395 folio_unlock(folio); 396 if (wbc->swap_plug) 397 sio = *wbc->swap_plug; 398 if (sio) { 399 if (sio->iocb.ki_filp != swap_file || 400 sio->iocb.ki_pos + sio->len != pos) { 401 swap_write_unplug(sio); 402 sio = NULL; 403 } 404 } 405 if (!sio) { 406 sio = mempool_alloc(sio_pool, GFP_NOIO); 407 init_sync_kiocb(&sio->iocb, swap_file); 408 sio->iocb.ki_complete = sio_write_complete; 409 sio->iocb.ki_pos = pos; 410 sio->pages = 0; 411 sio->len = 0; 412 } 413 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0); 414 sio->len += folio_size(folio); 415 sio->pages += 1; 416 if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) { 417 swap_write_unplug(sio); 418 sio = NULL; 419 } 420 if (wbc->swap_plug) 421 *wbc->swap_plug = sio; 422 } 423 424 static void swap_writepage_bdev_sync(struct folio *folio, 425 struct writeback_control *wbc, struct swap_info_struct *sis) 426 { 427 struct bio_vec bv; 428 struct bio bio; 429 430 bio_init(&bio, sis->bdev, &bv, 1, 431 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc)); 432 bio.bi_iter.bi_sector = swap_folio_sector(folio); 433 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0); 434 435 bio_associate_blkg_from_page(&bio, folio); 436 count_swpout_vm_event(folio); 437 438 folio_start_writeback(folio); 439 folio_unlock(folio); 440 441 submit_bio_wait(&bio); 442 __end_swap_bio_write(&bio); 443 } 444 445 static void swap_writepage_bdev_async(struct folio *folio, 446 struct writeback_control *wbc, struct swap_info_struct *sis) 447 { 448 struct bio *bio; 449 450 bio = bio_alloc(sis->bdev, 1, 451 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc), 452 GFP_NOIO); 453 bio->bi_iter.bi_sector = swap_folio_sector(folio); 454 bio->bi_end_io = end_swap_bio_write; 455 bio_add_folio_nofail(bio, folio, folio_size(folio), 0); 456 457 bio_associate_blkg_from_page(bio, folio); 458 count_swpout_vm_event(folio); 459 folio_start_writeback(folio); 460 folio_unlock(folio); 461 submit_bio(bio); 462 } 463 464 void __swap_writepage(struct folio *folio, struct writeback_control *wbc) 465 { 466 struct swap_info_struct *sis = swp_swap_info(folio->swap); 467 468 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 469 /* 470 * ->flags can be updated non-atomicially (scan_swap_map_slots), 471 * but that will never affect SWP_FS_OPS, so the data_race 472 * is safe. 473 */ 474 if (data_race(sis->flags & SWP_FS_OPS)) 475 swap_writepage_fs(folio, wbc); 476 /* 477 * ->flags can be updated non-atomicially (scan_swap_map_slots), 478 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race 479 * is safe. 480 */ 481 else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO)) 482 swap_writepage_bdev_sync(folio, wbc, sis); 483 else 484 swap_writepage_bdev_async(folio, wbc, sis); 485 } 486 487 void swap_write_unplug(struct swap_iocb *sio) 488 { 489 struct iov_iter from; 490 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 491 int ret; 492 493 iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len); 494 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 495 if (ret != -EIOCBQUEUED) 496 sio_write_complete(&sio->iocb, ret); 497 } 498 499 static void sio_read_complete(struct kiocb *iocb, long ret) 500 { 501 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 502 int p; 503 504 if (ret == sio->len) { 505 for (p = 0; p < sio->pages; p++) { 506 struct folio *folio = page_folio(sio->bvec[p].bv_page); 507 508 folio_mark_uptodate(folio); 509 folio_unlock(folio); 510 } 511 count_vm_events(PSWPIN, sio->pages); 512 } else { 513 for (p = 0; p < sio->pages; p++) { 514 struct folio *folio = page_folio(sio->bvec[p].bv_page); 515 516 folio_unlock(folio); 517 } 518 pr_alert_ratelimited("Read-error on swap-device\n"); 519 } 520 mempool_free(sio, sio_pool); 521 } 522 523 static bool swap_read_folio_zeromap(struct folio *folio) 524 { 525 unsigned int idx = swap_zeromap_folio_test(folio); 526 527 if (idx == 0) 528 return false; 529 530 /* 531 * Swapping in a large folio that is partially in the zeromap is not 532 * currently handled. Return true without marking the folio uptodate so 533 * that an IO error is emitted (e.g. do_swap_page() will sigbus). 534 */ 535 if (WARN_ON_ONCE(idx < folio_nr_pages(folio))) 536 return true; 537 538 folio_zero_range(folio, 0, folio_size(folio)); 539 folio_mark_uptodate(folio); 540 return true; 541 } 542 543 static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug) 544 { 545 struct swap_info_struct *sis = swp_swap_info(folio->swap); 546 struct swap_iocb *sio = NULL; 547 loff_t pos = swap_dev_pos(folio->swap); 548 549 if (plug) 550 sio = *plug; 551 if (sio) { 552 if (sio->iocb.ki_filp != sis->swap_file || 553 sio->iocb.ki_pos + sio->len != pos) { 554 swap_read_unplug(sio); 555 sio = NULL; 556 } 557 } 558 if (!sio) { 559 sio = mempool_alloc(sio_pool, GFP_KERNEL); 560 init_sync_kiocb(&sio->iocb, sis->swap_file); 561 sio->iocb.ki_pos = pos; 562 sio->iocb.ki_complete = sio_read_complete; 563 sio->pages = 0; 564 sio->len = 0; 565 } 566 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0); 567 sio->len += folio_size(folio); 568 sio->pages += 1; 569 if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) { 570 swap_read_unplug(sio); 571 sio = NULL; 572 } 573 if (plug) 574 *plug = sio; 575 } 576 577 static void swap_read_folio_bdev_sync(struct folio *folio, 578 struct swap_info_struct *sis) 579 { 580 struct bio_vec bv; 581 struct bio bio; 582 583 bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ); 584 bio.bi_iter.bi_sector = swap_folio_sector(folio); 585 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0); 586 /* 587 * Keep this task valid during swap readpage because the oom killer may 588 * attempt to access it in the page fault retry time check. 589 */ 590 get_task_struct(current); 591 count_vm_event(PSWPIN); 592 submit_bio_wait(&bio); 593 __end_swap_bio_read(&bio); 594 put_task_struct(current); 595 } 596 597 static void swap_read_folio_bdev_async(struct folio *folio, 598 struct swap_info_struct *sis) 599 { 600 struct bio *bio; 601 602 bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL); 603 bio->bi_iter.bi_sector = swap_folio_sector(folio); 604 bio->bi_end_io = end_swap_bio_read; 605 bio_add_folio_nofail(bio, folio, folio_size(folio), 0); 606 count_vm_event(PSWPIN); 607 submit_bio(bio); 608 } 609 610 void swap_read_folio(struct folio *folio, struct swap_iocb **plug) 611 { 612 struct swap_info_struct *sis = swp_swap_info(folio->swap); 613 bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO; 614 bool workingset = folio_test_workingset(folio); 615 unsigned long pflags; 616 bool in_thrashing; 617 618 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio); 619 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 620 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 621 622 /* 623 * Count submission time as memory stall and delay. When the device 624 * is congested, or the submitting cgroup IO-throttled, submission 625 * can be a significant part of overall IO time. 626 */ 627 if (workingset) { 628 delayacct_thrashing_start(&in_thrashing); 629 psi_memstall_enter(&pflags); 630 } 631 delayacct_swapin_start(); 632 633 if (swap_read_folio_zeromap(folio)) { 634 folio_unlock(folio); 635 goto finish; 636 } else if (zswap_load(folio)) { 637 folio_unlock(folio); 638 goto finish; 639 } 640 641 /* We have to read from slower devices. Increase zswap protection. */ 642 zswap_folio_swapin(folio); 643 644 if (data_race(sis->flags & SWP_FS_OPS)) { 645 swap_read_folio_fs(folio, plug); 646 } else if (synchronous) { 647 swap_read_folio_bdev_sync(folio, sis); 648 } else { 649 swap_read_folio_bdev_async(folio, sis); 650 } 651 652 finish: 653 if (workingset) { 654 delayacct_thrashing_end(&in_thrashing); 655 psi_memstall_leave(&pflags); 656 } 657 delayacct_swapin_end(); 658 } 659 660 void __swap_read_unplug(struct swap_iocb *sio) 661 { 662 struct iov_iter from; 663 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 664 int ret; 665 666 iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len); 667 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 668 if (ret != -EIOCBQUEUED) 669 sio_read_complete(&sio->iocb, ret); 670 } 671