1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_io.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, 8 * Asynchronous swapping added 30.12.95. Stephen Tweedie 9 * Removed race in async swapping. 14.4.1996. Bruno Haible 10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie 11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/gfp.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/bio.h> 20 #include <linux/swapops.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/psi.h> 24 #include <linux/uio.h> 25 #include <linux/sched/task.h> 26 #include <linux/delayacct.h> 27 #include <linux/zswap.h> 28 #include "swap.h" 29 30 static void __end_swap_bio_write(struct bio *bio) 31 { 32 struct folio *folio = bio_first_folio_all(bio); 33 34 if (bio->bi_status) { 35 /* 36 * We failed to write the page out to swap-space. 37 * Re-dirty the page in order to avoid it being reclaimed. 38 * Also print a dire warning that things will go BAD (tm) 39 * very quickly. 40 * 41 * Also clear PG_reclaim to avoid folio_rotate_reclaimable() 42 */ 43 folio_mark_dirty(folio); 44 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n", 45 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 46 (unsigned long long)bio->bi_iter.bi_sector); 47 folio_clear_reclaim(folio); 48 } 49 folio_end_writeback(folio); 50 } 51 52 static void end_swap_bio_write(struct bio *bio) 53 { 54 __end_swap_bio_write(bio); 55 bio_put(bio); 56 } 57 58 static void __end_swap_bio_read(struct bio *bio) 59 { 60 struct folio *folio = bio_first_folio_all(bio); 61 62 if (bio->bi_status) { 63 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n", 64 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 65 (unsigned long long)bio->bi_iter.bi_sector); 66 } else { 67 folio_mark_uptodate(folio); 68 } 69 folio_unlock(folio); 70 } 71 72 static void end_swap_bio_read(struct bio *bio) 73 { 74 __end_swap_bio_read(bio); 75 bio_put(bio); 76 } 77 78 int generic_swapfile_activate(struct swap_info_struct *sis, 79 struct file *swap_file, 80 sector_t *span) 81 { 82 struct address_space *mapping = swap_file->f_mapping; 83 struct inode *inode = mapping->host; 84 unsigned blocks_per_page; 85 unsigned long page_no; 86 unsigned blkbits; 87 sector_t probe_block; 88 sector_t last_block; 89 sector_t lowest_block = -1; 90 sector_t highest_block = 0; 91 int nr_extents = 0; 92 int ret; 93 94 blkbits = inode->i_blkbits; 95 blocks_per_page = PAGE_SIZE >> blkbits; 96 97 /* 98 * Map all the blocks into the extent tree. This code doesn't try 99 * to be very smart. 100 */ 101 probe_block = 0; 102 page_no = 0; 103 last_block = i_size_read(inode) >> blkbits; 104 while ((probe_block + blocks_per_page) <= last_block && 105 page_no < sis->max) { 106 unsigned block_in_page; 107 sector_t first_block; 108 109 cond_resched(); 110 111 first_block = probe_block; 112 ret = bmap(inode, &first_block); 113 if (ret || !first_block) 114 goto bad_bmap; 115 116 /* 117 * It must be PAGE_SIZE aligned on-disk 118 */ 119 if (first_block & (blocks_per_page - 1)) { 120 probe_block++; 121 goto reprobe; 122 } 123 124 for (block_in_page = 1; block_in_page < blocks_per_page; 125 block_in_page++) { 126 sector_t block; 127 128 block = probe_block + block_in_page; 129 ret = bmap(inode, &block); 130 if (ret || !block) 131 goto bad_bmap; 132 133 if (block != first_block + block_in_page) { 134 /* Discontiguity */ 135 probe_block++; 136 goto reprobe; 137 } 138 } 139 140 first_block >>= (PAGE_SHIFT - blkbits); 141 if (page_no) { /* exclude the header page */ 142 if (first_block < lowest_block) 143 lowest_block = first_block; 144 if (first_block > highest_block) 145 highest_block = first_block; 146 } 147 148 /* 149 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 150 */ 151 ret = add_swap_extent(sis, page_no, 1, first_block); 152 if (ret < 0) 153 goto out; 154 nr_extents += ret; 155 page_no++; 156 probe_block += blocks_per_page; 157 reprobe: 158 continue; 159 } 160 ret = nr_extents; 161 *span = 1 + highest_block - lowest_block; 162 if (page_no == 0) 163 page_no = 1; /* force Empty message */ 164 sis->max = page_no; 165 sis->pages = page_no - 1; 166 sis->highest_bit = page_no - 1; 167 out: 168 return ret; 169 bad_bmap: 170 pr_err("swapon: swapfile has holes\n"); 171 ret = -EINVAL; 172 goto out; 173 } 174 175 static bool is_folio_zero_filled(struct folio *folio) 176 { 177 unsigned int pos, last_pos; 178 unsigned long *data; 179 unsigned int i; 180 181 last_pos = PAGE_SIZE / sizeof(*data) - 1; 182 for (i = 0; i < folio_nr_pages(folio); i++) { 183 data = kmap_local_folio(folio, i * PAGE_SIZE); 184 /* 185 * Check last word first, incase the page is zero-filled at 186 * the start and has non-zero data at the end, which is common 187 * in real-world workloads. 188 */ 189 if (data[last_pos]) { 190 kunmap_local(data); 191 return false; 192 } 193 for (pos = 0; pos < last_pos; pos++) { 194 if (data[pos]) { 195 kunmap_local(data); 196 return false; 197 } 198 } 199 kunmap_local(data); 200 } 201 202 return true; 203 } 204 205 static void swap_zeromap_folio_set(struct folio *folio) 206 { 207 struct swap_info_struct *sis = swp_swap_info(folio->swap); 208 swp_entry_t entry; 209 unsigned int i; 210 211 for (i = 0; i < folio_nr_pages(folio); i++) { 212 entry = page_swap_entry(folio_page(folio, i)); 213 set_bit(swp_offset(entry), sis->zeromap); 214 } 215 } 216 217 static void swap_zeromap_folio_clear(struct folio *folio) 218 { 219 struct swap_info_struct *sis = swp_swap_info(folio->swap); 220 swp_entry_t entry; 221 unsigned int i; 222 223 for (i = 0; i < folio_nr_pages(folio); i++) { 224 entry = page_swap_entry(folio_page(folio, i)); 225 clear_bit(swp_offset(entry), sis->zeromap); 226 } 227 } 228 229 /* 230 * We may have stale swap cache pages in memory: notice 231 * them here and get rid of the unnecessary final write. 232 */ 233 int swap_writepage(struct page *page, struct writeback_control *wbc) 234 { 235 struct folio *folio = page_folio(page); 236 int ret; 237 238 if (folio_free_swap(folio)) { 239 folio_unlock(folio); 240 return 0; 241 } 242 /* 243 * Arch code may have to preserve more data than just the page 244 * contents, e.g. memory tags. 245 */ 246 ret = arch_prepare_to_swap(folio); 247 if (ret) { 248 folio_mark_dirty(folio); 249 folio_unlock(folio); 250 return ret; 251 } 252 253 /* 254 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages. 255 * The bits in zeromap are protected by the locked swapcache folio 256 * and atomic updates are used to protect against read-modify-write 257 * corruption due to other zero swap entries seeing concurrent updates. 258 */ 259 if (is_folio_zero_filled(folio)) { 260 swap_zeromap_folio_set(folio); 261 folio_unlock(folio); 262 return 0; 263 } else { 264 /* 265 * Clear bits this folio occupies in the zeromap to prevent 266 * zero data being read in from any previous zero writes that 267 * occupied the same swap entries. 268 */ 269 swap_zeromap_folio_clear(folio); 270 } 271 if (zswap_store(folio)) { 272 folio_unlock(folio); 273 return 0; 274 } 275 if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) { 276 folio_mark_dirty(folio); 277 return AOP_WRITEPAGE_ACTIVATE; 278 } 279 280 __swap_writepage(folio, wbc); 281 return 0; 282 } 283 284 static inline void count_swpout_vm_event(struct folio *folio) 285 { 286 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 287 if (unlikely(folio_test_pmd_mappable(folio))) { 288 count_memcg_folio_events(folio, THP_SWPOUT, 1); 289 count_vm_event(THP_SWPOUT); 290 } 291 count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT); 292 #endif 293 count_vm_events(PSWPOUT, folio_nr_pages(folio)); 294 } 295 296 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 297 static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio) 298 { 299 struct cgroup_subsys_state *css; 300 struct mem_cgroup *memcg; 301 302 memcg = folio_memcg(folio); 303 if (!memcg) 304 return; 305 306 rcu_read_lock(); 307 css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys); 308 bio_associate_blkg_from_css(bio, css); 309 rcu_read_unlock(); 310 } 311 #else 312 #define bio_associate_blkg_from_page(bio, folio) do { } while (0) 313 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */ 314 315 struct swap_iocb { 316 struct kiocb iocb; 317 struct bio_vec bvec[SWAP_CLUSTER_MAX]; 318 int pages; 319 int len; 320 }; 321 static mempool_t *sio_pool; 322 323 int sio_pool_init(void) 324 { 325 if (!sio_pool) { 326 mempool_t *pool = mempool_create_kmalloc_pool( 327 SWAP_CLUSTER_MAX, sizeof(struct swap_iocb)); 328 if (cmpxchg(&sio_pool, NULL, pool)) 329 mempool_destroy(pool); 330 } 331 if (!sio_pool) 332 return -ENOMEM; 333 return 0; 334 } 335 336 static void sio_write_complete(struct kiocb *iocb, long ret) 337 { 338 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 339 struct page *page = sio->bvec[0].bv_page; 340 int p; 341 342 if (ret != sio->len) { 343 /* 344 * In the case of swap-over-nfs, this can be a 345 * temporary failure if the system has limited 346 * memory for allocating transmit buffers. 347 * Mark the page dirty and avoid 348 * folio_rotate_reclaimable but rate-limit the 349 * messages. 350 */ 351 pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n", 352 ret, swap_dev_pos(page_swap_entry(page))); 353 for (p = 0; p < sio->pages; p++) { 354 page = sio->bvec[p].bv_page; 355 set_page_dirty(page); 356 ClearPageReclaim(page); 357 } 358 } 359 360 for (p = 0; p < sio->pages; p++) 361 end_page_writeback(sio->bvec[p].bv_page); 362 363 mempool_free(sio, sio_pool); 364 } 365 366 static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc) 367 { 368 struct swap_iocb *sio = NULL; 369 struct swap_info_struct *sis = swp_swap_info(folio->swap); 370 struct file *swap_file = sis->swap_file; 371 loff_t pos = swap_dev_pos(folio->swap); 372 373 count_swpout_vm_event(folio); 374 folio_start_writeback(folio); 375 folio_unlock(folio); 376 if (wbc->swap_plug) 377 sio = *wbc->swap_plug; 378 if (sio) { 379 if (sio->iocb.ki_filp != swap_file || 380 sio->iocb.ki_pos + sio->len != pos) { 381 swap_write_unplug(sio); 382 sio = NULL; 383 } 384 } 385 if (!sio) { 386 sio = mempool_alloc(sio_pool, GFP_NOIO); 387 init_sync_kiocb(&sio->iocb, swap_file); 388 sio->iocb.ki_complete = sio_write_complete; 389 sio->iocb.ki_pos = pos; 390 sio->pages = 0; 391 sio->len = 0; 392 } 393 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0); 394 sio->len += folio_size(folio); 395 sio->pages += 1; 396 if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) { 397 swap_write_unplug(sio); 398 sio = NULL; 399 } 400 if (wbc->swap_plug) 401 *wbc->swap_plug = sio; 402 } 403 404 static void swap_writepage_bdev_sync(struct folio *folio, 405 struct writeback_control *wbc, struct swap_info_struct *sis) 406 { 407 struct bio_vec bv; 408 struct bio bio; 409 410 bio_init(&bio, sis->bdev, &bv, 1, 411 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc)); 412 bio.bi_iter.bi_sector = swap_folio_sector(folio); 413 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0); 414 415 bio_associate_blkg_from_page(&bio, folio); 416 count_swpout_vm_event(folio); 417 418 folio_start_writeback(folio); 419 folio_unlock(folio); 420 421 submit_bio_wait(&bio); 422 __end_swap_bio_write(&bio); 423 } 424 425 static void swap_writepage_bdev_async(struct folio *folio, 426 struct writeback_control *wbc, struct swap_info_struct *sis) 427 { 428 struct bio *bio; 429 430 bio = bio_alloc(sis->bdev, 1, 431 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc), 432 GFP_NOIO); 433 bio->bi_iter.bi_sector = swap_folio_sector(folio); 434 bio->bi_end_io = end_swap_bio_write; 435 bio_add_folio_nofail(bio, folio, folio_size(folio), 0); 436 437 bio_associate_blkg_from_page(bio, folio); 438 count_swpout_vm_event(folio); 439 folio_start_writeback(folio); 440 folio_unlock(folio); 441 submit_bio(bio); 442 } 443 444 void __swap_writepage(struct folio *folio, struct writeback_control *wbc) 445 { 446 struct swap_info_struct *sis = swp_swap_info(folio->swap); 447 448 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 449 /* 450 * ->flags can be updated non-atomicially (scan_swap_map_slots), 451 * but that will never affect SWP_FS_OPS, so the data_race 452 * is safe. 453 */ 454 if (data_race(sis->flags & SWP_FS_OPS)) 455 swap_writepage_fs(folio, wbc); 456 /* 457 * ->flags can be updated non-atomicially (scan_swap_map_slots), 458 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race 459 * is safe. 460 */ 461 else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO)) 462 swap_writepage_bdev_sync(folio, wbc, sis); 463 else 464 swap_writepage_bdev_async(folio, wbc, sis); 465 } 466 467 void swap_write_unplug(struct swap_iocb *sio) 468 { 469 struct iov_iter from; 470 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 471 int ret; 472 473 iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len); 474 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 475 if (ret != -EIOCBQUEUED) 476 sio_write_complete(&sio->iocb, ret); 477 } 478 479 static void sio_read_complete(struct kiocb *iocb, long ret) 480 { 481 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 482 int p; 483 484 if (ret == sio->len) { 485 for (p = 0; p < sio->pages; p++) { 486 struct folio *folio = page_folio(sio->bvec[p].bv_page); 487 488 folio_mark_uptodate(folio); 489 folio_unlock(folio); 490 } 491 count_vm_events(PSWPIN, sio->pages); 492 } else { 493 for (p = 0; p < sio->pages; p++) { 494 struct folio *folio = page_folio(sio->bvec[p].bv_page); 495 496 folio_unlock(folio); 497 } 498 pr_alert_ratelimited("Read-error on swap-device\n"); 499 } 500 mempool_free(sio, sio_pool); 501 } 502 503 static bool swap_read_folio_zeromap(struct folio *folio) 504 { 505 int nr_pages = folio_nr_pages(folio); 506 bool is_zeromap; 507 508 /* 509 * Swapping in a large folio that is partially in the zeromap is not 510 * currently handled. Return true without marking the folio uptodate so 511 * that an IO error is emitted (e.g. do_swap_page() will sigbus). 512 */ 513 if (WARN_ON_ONCE(swap_zeromap_batch(folio->swap, nr_pages, 514 &is_zeromap) != nr_pages)) 515 return true; 516 517 if (!is_zeromap) 518 return false; 519 520 folio_zero_range(folio, 0, folio_size(folio)); 521 folio_mark_uptodate(folio); 522 return true; 523 } 524 525 static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug) 526 { 527 struct swap_info_struct *sis = swp_swap_info(folio->swap); 528 struct swap_iocb *sio = NULL; 529 loff_t pos = swap_dev_pos(folio->swap); 530 531 if (plug) 532 sio = *plug; 533 if (sio) { 534 if (sio->iocb.ki_filp != sis->swap_file || 535 sio->iocb.ki_pos + sio->len != pos) { 536 swap_read_unplug(sio); 537 sio = NULL; 538 } 539 } 540 if (!sio) { 541 sio = mempool_alloc(sio_pool, GFP_KERNEL); 542 init_sync_kiocb(&sio->iocb, sis->swap_file); 543 sio->iocb.ki_pos = pos; 544 sio->iocb.ki_complete = sio_read_complete; 545 sio->pages = 0; 546 sio->len = 0; 547 } 548 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0); 549 sio->len += folio_size(folio); 550 sio->pages += 1; 551 if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) { 552 swap_read_unplug(sio); 553 sio = NULL; 554 } 555 if (plug) 556 *plug = sio; 557 } 558 559 static void swap_read_folio_bdev_sync(struct folio *folio, 560 struct swap_info_struct *sis) 561 { 562 struct bio_vec bv; 563 struct bio bio; 564 565 bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ); 566 bio.bi_iter.bi_sector = swap_folio_sector(folio); 567 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0); 568 /* 569 * Keep this task valid during swap readpage because the oom killer may 570 * attempt to access it in the page fault retry time check. 571 */ 572 get_task_struct(current); 573 count_vm_event(PSWPIN); 574 submit_bio_wait(&bio); 575 __end_swap_bio_read(&bio); 576 put_task_struct(current); 577 } 578 579 static void swap_read_folio_bdev_async(struct folio *folio, 580 struct swap_info_struct *sis) 581 { 582 struct bio *bio; 583 584 bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL); 585 bio->bi_iter.bi_sector = swap_folio_sector(folio); 586 bio->bi_end_io = end_swap_bio_read; 587 bio_add_folio_nofail(bio, folio, folio_size(folio), 0); 588 count_vm_event(PSWPIN); 589 submit_bio(bio); 590 } 591 592 void swap_read_folio(struct folio *folio, struct swap_iocb **plug) 593 { 594 struct swap_info_struct *sis = swp_swap_info(folio->swap); 595 bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO; 596 bool workingset = folio_test_workingset(folio); 597 unsigned long pflags; 598 bool in_thrashing; 599 600 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio); 601 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 602 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 603 604 /* 605 * Count submission time as memory stall and delay. When the device 606 * is congested, or the submitting cgroup IO-throttled, submission 607 * can be a significant part of overall IO time. 608 */ 609 if (workingset) { 610 delayacct_thrashing_start(&in_thrashing); 611 psi_memstall_enter(&pflags); 612 } 613 delayacct_swapin_start(); 614 615 if (swap_read_folio_zeromap(folio)) { 616 folio_unlock(folio); 617 goto finish; 618 } else if (zswap_load(folio)) { 619 folio_unlock(folio); 620 goto finish; 621 } 622 623 /* We have to read from slower devices. Increase zswap protection. */ 624 zswap_folio_swapin(folio); 625 626 if (data_race(sis->flags & SWP_FS_OPS)) { 627 swap_read_folio_fs(folio, plug); 628 } else if (synchronous) { 629 swap_read_folio_bdev_sync(folio, sis); 630 } else { 631 swap_read_folio_bdev_async(folio, sis); 632 } 633 634 finish: 635 if (workingset) { 636 delayacct_thrashing_end(&in_thrashing); 637 psi_memstall_leave(&pflags); 638 } 639 delayacct_swapin_end(); 640 } 641 642 void __swap_read_unplug(struct swap_iocb *sio) 643 { 644 struct iov_iter from; 645 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 646 int ret; 647 648 iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len); 649 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 650 if (ret != -EIOCBQUEUED) 651 sio_read_complete(&sio->iocb, ret); 652 } 653