1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/mm/page_io.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 * 7 * Swap reorganised 29.12.95, 8 * Asynchronous swapping added 30.12.95. Stephen Tweedie 9 * Removed race in async swapping. 14.4.1996. Bruno Haible 10 * Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie 11 * Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman 12 */ 13 14 #include <linux/mm.h> 15 #include <linux/kernel_stat.h> 16 #include <linux/gfp.h> 17 #include <linux/pagemap.h> 18 #include <linux/swap.h> 19 #include <linux/bio.h> 20 #include <linux/swapops.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/psi.h> 24 #include <linux/uio.h> 25 #include <linux/sched/task.h> 26 #include <linux/delayacct.h> 27 #include <linux/zswap.h> 28 #include "swap.h" 29 30 static void __end_swap_bio_write(struct bio *bio) 31 { 32 struct folio *folio = bio_first_folio_all(bio); 33 34 if (bio->bi_status) { 35 /* 36 * We failed to write the page out to swap-space. 37 * Re-dirty the page in order to avoid it being reclaimed. 38 * Also print a dire warning that things will go BAD (tm) 39 * very quickly. 40 * 41 * Also clear PG_reclaim to avoid folio_rotate_reclaimable() 42 */ 43 folio_mark_dirty(folio); 44 pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n", 45 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 46 (unsigned long long)bio->bi_iter.bi_sector); 47 folio_clear_reclaim(folio); 48 } 49 folio_end_writeback(folio); 50 } 51 52 static void end_swap_bio_write(struct bio *bio) 53 { 54 __end_swap_bio_write(bio); 55 bio_put(bio); 56 } 57 58 static void __end_swap_bio_read(struct bio *bio) 59 { 60 struct folio *folio = bio_first_folio_all(bio); 61 62 if (bio->bi_status) { 63 pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n", 64 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)), 65 (unsigned long long)bio->bi_iter.bi_sector); 66 } else { 67 folio_mark_uptodate(folio); 68 } 69 folio_unlock(folio); 70 } 71 72 static void end_swap_bio_read(struct bio *bio) 73 { 74 __end_swap_bio_read(bio); 75 bio_put(bio); 76 } 77 78 int generic_swapfile_activate(struct swap_info_struct *sis, 79 struct file *swap_file, 80 sector_t *span) 81 { 82 struct address_space *mapping = swap_file->f_mapping; 83 struct inode *inode = mapping->host; 84 unsigned blocks_per_page; 85 unsigned long page_no; 86 unsigned blkbits; 87 sector_t probe_block; 88 sector_t last_block; 89 sector_t lowest_block = -1; 90 sector_t highest_block = 0; 91 int nr_extents = 0; 92 int ret; 93 94 blkbits = inode->i_blkbits; 95 blocks_per_page = PAGE_SIZE >> blkbits; 96 97 /* 98 * Map all the blocks into the extent tree. This code doesn't try 99 * to be very smart. 100 */ 101 probe_block = 0; 102 page_no = 0; 103 last_block = i_size_read(inode) >> blkbits; 104 while ((probe_block + blocks_per_page) <= last_block && 105 page_no < sis->max) { 106 unsigned block_in_page; 107 sector_t first_block; 108 109 cond_resched(); 110 111 first_block = probe_block; 112 ret = bmap(inode, &first_block); 113 if (ret || !first_block) 114 goto bad_bmap; 115 116 /* 117 * It must be PAGE_SIZE aligned on-disk 118 */ 119 if (first_block & (blocks_per_page - 1)) { 120 probe_block++; 121 goto reprobe; 122 } 123 124 for (block_in_page = 1; block_in_page < blocks_per_page; 125 block_in_page++) { 126 sector_t block; 127 128 block = probe_block + block_in_page; 129 ret = bmap(inode, &block); 130 if (ret || !block) 131 goto bad_bmap; 132 133 if (block != first_block + block_in_page) { 134 /* Discontiguity */ 135 probe_block++; 136 goto reprobe; 137 } 138 } 139 140 first_block >>= (PAGE_SHIFT - blkbits); 141 if (page_no) { /* exclude the header page */ 142 if (first_block < lowest_block) 143 lowest_block = first_block; 144 if (first_block > highest_block) 145 highest_block = first_block; 146 } 147 148 /* 149 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks 150 */ 151 ret = add_swap_extent(sis, page_no, 1, first_block); 152 if (ret < 0) 153 goto out; 154 nr_extents += ret; 155 page_no++; 156 probe_block += blocks_per_page; 157 reprobe: 158 continue; 159 } 160 ret = nr_extents; 161 *span = 1 + highest_block - lowest_block; 162 if (page_no == 0) 163 page_no = 1; /* force Empty message */ 164 sis->max = page_no; 165 sis->pages = page_no - 1; 166 sis->highest_bit = page_no - 1; 167 out: 168 return ret; 169 bad_bmap: 170 pr_err("swapon: swapfile has holes\n"); 171 ret = -EINVAL; 172 goto out; 173 } 174 175 static bool is_folio_zero_filled(struct folio *folio) 176 { 177 unsigned int pos, last_pos; 178 unsigned long *data; 179 unsigned int i; 180 181 last_pos = PAGE_SIZE / sizeof(*data) - 1; 182 for (i = 0; i < folio_nr_pages(folio); i++) { 183 data = kmap_local_folio(folio, i * PAGE_SIZE); 184 /* 185 * Check last word first, incase the page is zero-filled at 186 * the start and has non-zero data at the end, which is common 187 * in real-world workloads. 188 */ 189 if (data[last_pos]) { 190 kunmap_local(data); 191 return false; 192 } 193 for (pos = 0; pos < last_pos; pos++) { 194 if (data[pos]) { 195 kunmap_local(data); 196 return false; 197 } 198 } 199 kunmap_local(data); 200 } 201 202 return true; 203 } 204 205 static void swap_zeromap_folio_set(struct folio *folio) 206 { 207 struct obj_cgroup *objcg = get_obj_cgroup_from_folio(folio); 208 struct swap_info_struct *sis = swp_swap_info(folio->swap); 209 int nr_pages = folio_nr_pages(folio); 210 swp_entry_t entry; 211 unsigned int i; 212 213 for (i = 0; i < folio_nr_pages(folio); i++) { 214 entry = page_swap_entry(folio_page(folio, i)); 215 set_bit(swp_offset(entry), sis->zeromap); 216 } 217 218 count_vm_events(SWPOUT_ZERO, nr_pages); 219 if (objcg) { 220 count_objcg_events(objcg, SWPOUT_ZERO, nr_pages); 221 obj_cgroup_put(objcg); 222 } 223 } 224 225 static void swap_zeromap_folio_clear(struct folio *folio) 226 { 227 struct swap_info_struct *sis = swp_swap_info(folio->swap); 228 swp_entry_t entry; 229 unsigned int i; 230 231 for (i = 0; i < folio_nr_pages(folio); i++) { 232 entry = page_swap_entry(folio_page(folio, i)); 233 clear_bit(swp_offset(entry), sis->zeromap); 234 } 235 } 236 237 /* 238 * We may have stale swap cache pages in memory: notice 239 * them here and get rid of the unnecessary final write. 240 */ 241 int swap_writepage(struct page *page, struct writeback_control *wbc) 242 { 243 struct folio *folio = page_folio(page); 244 int ret; 245 246 if (folio_free_swap(folio)) { 247 folio_unlock(folio); 248 return 0; 249 } 250 /* 251 * Arch code may have to preserve more data than just the page 252 * contents, e.g. memory tags. 253 */ 254 ret = arch_prepare_to_swap(folio); 255 if (ret) { 256 folio_mark_dirty(folio); 257 folio_unlock(folio); 258 return ret; 259 } 260 261 /* 262 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages. 263 * The bits in zeromap are protected by the locked swapcache folio 264 * and atomic updates are used to protect against read-modify-write 265 * corruption due to other zero swap entries seeing concurrent updates. 266 */ 267 if (is_folio_zero_filled(folio)) { 268 swap_zeromap_folio_set(folio); 269 folio_unlock(folio); 270 return 0; 271 } else { 272 /* 273 * Clear bits this folio occupies in the zeromap to prevent 274 * zero data being read in from any previous zero writes that 275 * occupied the same swap entries. 276 */ 277 swap_zeromap_folio_clear(folio); 278 } 279 if (zswap_store(folio)) { 280 folio_unlock(folio); 281 return 0; 282 } 283 if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) { 284 folio_mark_dirty(folio); 285 return AOP_WRITEPAGE_ACTIVATE; 286 } 287 288 __swap_writepage(folio, wbc); 289 return 0; 290 } 291 292 static inline void count_swpout_vm_event(struct folio *folio) 293 { 294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 295 if (unlikely(folio_test_pmd_mappable(folio))) { 296 count_memcg_folio_events(folio, THP_SWPOUT, 1); 297 count_vm_event(THP_SWPOUT); 298 } 299 count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT); 300 #endif 301 count_vm_events(PSWPOUT, folio_nr_pages(folio)); 302 } 303 304 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP) 305 static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio) 306 { 307 struct cgroup_subsys_state *css; 308 struct mem_cgroup *memcg; 309 310 memcg = folio_memcg(folio); 311 if (!memcg) 312 return; 313 314 rcu_read_lock(); 315 css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys); 316 bio_associate_blkg_from_css(bio, css); 317 rcu_read_unlock(); 318 } 319 #else 320 #define bio_associate_blkg_from_page(bio, folio) do { } while (0) 321 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */ 322 323 struct swap_iocb { 324 struct kiocb iocb; 325 struct bio_vec bvec[SWAP_CLUSTER_MAX]; 326 int pages; 327 int len; 328 }; 329 static mempool_t *sio_pool; 330 331 int sio_pool_init(void) 332 { 333 if (!sio_pool) { 334 mempool_t *pool = mempool_create_kmalloc_pool( 335 SWAP_CLUSTER_MAX, sizeof(struct swap_iocb)); 336 if (cmpxchg(&sio_pool, NULL, pool)) 337 mempool_destroy(pool); 338 } 339 if (!sio_pool) 340 return -ENOMEM; 341 return 0; 342 } 343 344 static void sio_write_complete(struct kiocb *iocb, long ret) 345 { 346 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 347 struct page *page = sio->bvec[0].bv_page; 348 int p; 349 350 if (ret != sio->len) { 351 /* 352 * In the case of swap-over-nfs, this can be a 353 * temporary failure if the system has limited 354 * memory for allocating transmit buffers. 355 * Mark the page dirty and avoid 356 * folio_rotate_reclaimable but rate-limit the 357 * messages. 358 */ 359 pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n", 360 ret, swap_dev_pos(page_swap_entry(page))); 361 for (p = 0; p < sio->pages; p++) { 362 page = sio->bvec[p].bv_page; 363 set_page_dirty(page); 364 ClearPageReclaim(page); 365 } 366 } 367 368 for (p = 0; p < sio->pages; p++) 369 end_page_writeback(sio->bvec[p].bv_page); 370 371 mempool_free(sio, sio_pool); 372 } 373 374 static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc) 375 { 376 struct swap_iocb *sio = NULL; 377 struct swap_info_struct *sis = swp_swap_info(folio->swap); 378 struct file *swap_file = sis->swap_file; 379 loff_t pos = swap_dev_pos(folio->swap); 380 381 count_swpout_vm_event(folio); 382 folio_start_writeback(folio); 383 folio_unlock(folio); 384 if (wbc->swap_plug) 385 sio = *wbc->swap_plug; 386 if (sio) { 387 if (sio->iocb.ki_filp != swap_file || 388 sio->iocb.ki_pos + sio->len != pos) { 389 swap_write_unplug(sio); 390 sio = NULL; 391 } 392 } 393 if (!sio) { 394 sio = mempool_alloc(sio_pool, GFP_NOIO); 395 init_sync_kiocb(&sio->iocb, swap_file); 396 sio->iocb.ki_complete = sio_write_complete; 397 sio->iocb.ki_pos = pos; 398 sio->pages = 0; 399 sio->len = 0; 400 } 401 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0); 402 sio->len += folio_size(folio); 403 sio->pages += 1; 404 if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) { 405 swap_write_unplug(sio); 406 sio = NULL; 407 } 408 if (wbc->swap_plug) 409 *wbc->swap_plug = sio; 410 } 411 412 static void swap_writepage_bdev_sync(struct folio *folio, 413 struct writeback_control *wbc, struct swap_info_struct *sis) 414 { 415 struct bio_vec bv; 416 struct bio bio; 417 418 bio_init(&bio, sis->bdev, &bv, 1, 419 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc)); 420 bio.bi_iter.bi_sector = swap_folio_sector(folio); 421 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0); 422 423 bio_associate_blkg_from_page(&bio, folio); 424 count_swpout_vm_event(folio); 425 426 folio_start_writeback(folio); 427 folio_unlock(folio); 428 429 submit_bio_wait(&bio); 430 __end_swap_bio_write(&bio); 431 } 432 433 static void swap_writepage_bdev_async(struct folio *folio, 434 struct writeback_control *wbc, struct swap_info_struct *sis) 435 { 436 struct bio *bio; 437 438 bio = bio_alloc(sis->bdev, 1, 439 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc), 440 GFP_NOIO); 441 bio->bi_iter.bi_sector = swap_folio_sector(folio); 442 bio->bi_end_io = end_swap_bio_write; 443 bio_add_folio_nofail(bio, folio, folio_size(folio), 0); 444 445 bio_associate_blkg_from_page(bio, folio); 446 count_swpout_vm_event(folio); 447 folio_start_writeback(folio); 448 folio_unlock(folio); 449 submit_bio(bio); 450 } 451 452 void __swap_writepage(struct folio *folio, struct writeback_control *wbc) 453 { 454 struct swap_info_struct *sis = swp_swap_info(folio->swap); 455 456 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio); 457 /* 458 * ->flags can be updated non-atomicially (scan_swap_map_slots), 459 * but that will never affect SWP_FS_OPS, so the data_race 460 * is safe. 461 */ 462 if (data_race(sis->flags & SWP_FS_OPS)) 463 swap_writepage_fs(folio, wbc); 464 /* 465 * ->flags can be updated non-atomicially (scan_swap_map_slots), 466 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race 467 * is safe. 468 */ 469 else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO)) 470 swap_writepage_bdev_sync(folio, wbc, sis); 471 else 472 swap_writepage_bdev_async(folio, wbc, sis); 473 } 474 475 void swap_write_unplug(struct swap_iocb *sio) 476 { 477 struct iov_iter from; 478 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 479 int ret; 480 481 iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len); 482 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 483 if (ret != -EIOCBQUEUED) 484 sio_write_complete(&sio->iocb, ret); 485 } 486 487 static void sio_read_complete(struct kiocb *iocb, long ret) 488 { 489 struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb); 490 int p; 491 492 if (ret == sio->len) { 493 for (p = 0; p < sio->pages; p++) { 494 struct folio *folio = page_folio(sio->bvec[p].bv_page); 495 496 folio_mark_uptodate(folio); 497 folio_unlock(folio); 498 } 499 count_vm_events(PSWPIN, sio->pages); 500 } else { 501 for (p = 0; p < sio->pages; p++) { 502 struct folio *folio = page_folio(sio->bvec[p].bv_page); 503 504 folio_unlock(folio); 505 } 506 pr_alert_ratelimited("Read-error on swap-device\n"); 507 } 508 mempool_free(sio, sio_pool); 509 } 510 511 static bool swap_read_folio_zeromap(struct folio *folio) 512 { 513 int nr_pages = folio_nr_pages(folio); 514 struct obj_cgroup *objcg; 515 bool is_zeromap; 516 517 /* 518 * Swapping in a large folio that is partially in the zeromap is not 519 * currently handled. Return true without marking the folio uptodate so 520 * that an IO error is emitted (e.g. do_swap_page() will sigbus). 521 */ 522 if (WARN_ON_ONCE(swap_zeromap_batch(folio->swap, nr_pages, 523 &is_zeromap) != nr_pages)) 524 return true; 525 526 if (!is_zeromap) 527 return false; 528 529 objcg = get_obj_cgroup_from_folio(folio); 530 count_vm_events(SWPIN_ZERO, nr_pages); 531 if (objcg) { 532 count_objcg_events(objcg, SWPIN_ZERO, nr_pages); 533 obj_cgroup_put(objcg); 534 } 535 536 folio_zero_range(folio, 0, folio_size(folio)); 537 folio_mark_uptodate(folio); 538 return true; 539 } 540 541 static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug) 542 { 543 struct swap_info_struct *sis = swp_swap_info(folio->swap); 544 struct swap_iocb *sio = NULL; 545 loff_t pos = swap_dev_pos(folio->swap); 546 547 if (plug) 548 sio = *plug; 549 if (sio) { 550 if (sio->iocb.ki_filp != sis->swap_file || 551 sio->iocb.ki_pos + sio->len != pos) { 552 swap_read_unplug(sio); 553 sio = NULL; 554 } 555 } 556 if (!sio) { 557 sio = mempool_alloc(sio_pool, GFP_KERNEL); 558 init_sync_kiocb(&sio->iocb, sis->swap_file); 559 sio->iocb.ki_pos = pos; 560 sio->iocb.ki_complete = sio_read_complete; 561 sio->pages = 0; 562 sio->len = 0; 563 } 564 bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0); 565 sio->len += folio_size(folio); 566 sio->pages += 1; 567 if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) { 568 swap_read_unplug(sio); 569 sio = NULL; 570 } 571 if (plug) 572 *plug = sio; 573 } 574 575 static void swap_read_folio_bdev_sync(struct folio *folio, 576 struct swap_info_struct *sis) 577 { 578 struct bio_vec bv; 579 struct bio bio; 580 581 bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ); 582 bio.bi_iter.bi_sector = swap_folio_sector(folio); 583 bio_add_folio_nofail(&bio, folio, folio_size(folio), 0); 584 /* 585 * Keep this task valid during swap readpage because the oom killer may 586 * attempt to access it in the page fault retry time check. 587 */ 588 get_task_struct(current); 589 count_vm_events(PSWPIN, folio_nr_pages(folio)); 590 submit_bio_wait(&bio); 591 __end_swap_bio_read(&bio); 592 put_task_struct(current); 593 } 594 595 static void swap_read_folio_bdev_async(struct folio *folio, 596 struct swap_info_struct *sis) 597 { 598 struct bio *bio; 599 600 bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL); 601 bio->bi_iter.bi_sector = swap_folio_sector(folio); 602 bio->bi_end_io = end_swap_bio_read; 603 bio_add_folio_nofail(bio, folio, folio_size(folio), 0); 604 count_vm_events(PSWPIN, folio_nr_pages(folio)); 605 submit_bio(bio); 606 } 607 608 void swap_read_folio(struct folio *folio, struct swap_iocb **plug) 609 { 610 struct swap_info_struct *sis = swp_swap_info(folio->swap); 611 bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO; 612 bool workingset = folio_test_workingset(folio); 613 unsigned long pflags; 614 bool in_thrashing; 615 616 VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio); 617 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 618 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 619 620 /* 621 * Count submission time as memory stall and delay. When the device 622 * is congested, or the submitting cgroup IO-throttled, submission 623 * can be a significant part of overall IO time. 624 */ 625 if (workingset) { 626 delayacct_thrashing_start(&in_thrashing); 627 psi_memstall_enter(&pflags); 628 } 629 delayacct_swapin_start(); 630 631 if (swap_read_folio_zeromap(folio)) { 632 folio_unlock(folio); 633 goto finish; 634 } else if (zswap_load(folio)) { 635 folio_unlock(folio); 636 goto finish; 637 } 638 639 /* We have to read from slower devices. Increase zswap protection. */ 640 zswap_folio_swapin(folio); 641 642 if (data_race(sis->flags & SWP_FS_OPS)) { 643 swap_read_folio_fs(folio, plug); 644 } else if (synchronous) { 645 swap_read_folio_bdev_sync(folio, sis); 646 } else { 647 swap_read_folio_bdev_async(folio, sis); 648 } 649 650 finish: 651 if (workingset) { 652 delayacct_thrashing_end(&in_thrashing); 653 psi_memstall_leave(&pflags); 654 } 655 delayacct_swapin_end(); 656 } 657 658 void __swap_read_unplug(struct swap_iocb *sio) 659 { 660 struct iov_iter from; 661 struct address_space *mapping = sio->iocb.ki_filp->f_mapping; 662 int ret; 663 664 iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len); 665 ret = mapping->a_ops->swap_rw(&sio->iocb, &from); 666 if (ret != -EIOCBQUEUED) 667 sio_read_complete(&sio->iocb, ret); 668 } 669