xref: /linux/mm/page_io.c (revision 9cc8d0ecdd2aad42e377e971e3bb114339df609e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/psi.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <linux/delayacct.h>
27 #include <linux/zswap.h>
28 #include "swap.h"
29 
30 static void __end_swap_bio_write(struct bio *bio)
31 {
32 	struct folio *folio = bio_first_folio_all(bio);
33 
34 	if (bio->bi_status) {
35 		/*
36 		 * We failed to write the page out to swap-space.
37 		 * Re-dirty the page in order to avoid it being reclaimed.
38 		 * Also print a dire warning that things will go BAD (tm)
39 		 * very quickly.
40 		 *
41 		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
42 		 */
43 		folio_mark_dirty(folio);
44 		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
45 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
46 				     (unsigned long long)bio->bi_iter.bi_sector);
47 		folio_clear_reclaim(folio);
48 	}
49 	folio_end_writeback(folio);
50 }
51 
52 static void end_swap_bio_write(struct bio *bio)
53 {
54 	__end_swap_bio_write(bio);
55 	bio_put(bio);
56 }
57 
58 static void __end_swap_bio_read(struct bio *bio)
59 {
60 	struct folio *folio = bio_first_folio_all(bio);
61 
62 	if (bio->bi_status) {
63 		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
64 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65 				     (unsigned long long)bio->bi_iter.bi_sector);
66 	} else {
67 		folio_mark_uptodate(folio);
68 	}
69 	folio_unlock(folio);
70 }
71 
72 static void end_swap_bio_read(struct bio *bio)
73 {
74 	__end_swap_bio_read(bio);
75 	bio_put(bio);
76 }
77 
78 int generic_swapfile_activate(struct swap_info_struct *sis,
79 				struct file *swap_file,
80 				sector_t *span)
81 {
82 	struct address_space *mapping = swap_file->f_mapping;
83 	struct inode *inode = mapping->host;
84 	unsigned blocks_per_page;
85 	unsigned long page_no;
86 	unsigned blkbits;
87 	sector_t probe_block;
88 	sector_t last_block;
89 	sector_t lowest_block = -1;
90 	sector_t highest_block = 0;
91 	int nr_extents = 0;
92 	int ret;
93 
94 	blkbits = inode->i_blkbits;
95 	blocks_per_page = PAGE_SIZE >> blkbits;
96 
97 	/*
98 	 * Map all the blocks into the extent tree.  This code doesn't try
99 	 * to be very smart.
100 	 */
101 	probe_block = 0;
102 	page_no = 0;
103 	last_block = i_size_read(inode) >> blkbits;
104 	while ((probe_block + blocks_per_page) <= last_block &&
105 			page_no < sis->max) {
106 		unsigned block_in_page;
107 		sector_t first_block;
108 
109 		cond_resched();
110 
111 		first_block = probe_block;
112 		ret = bmap(inode, &first_block);
113 		if (ret || !first_block)
114 			goto bad_bmap;
115 
116 		/*
117 		 * It must be PAGE_SIZE aligned on-disk
118 		 */
119 		if (first_block & (blocks_per_page - 1)) {
120 			probe_block++;
121 			goto reprobe;
122 		}
123 
124 		for (block_in_page = 1; block_in_page < blocks_per_page;
125 					block_in_page++) {
126 			sector_t block;
127 
128 			block = probe_block + block_in_page;
129 			ret = bmap(inode, &block);
130 			if (ret || !block)
131 				goto bad_bmap;
132 
133 			if (block != first_block + block_in_page) {
134 				/* Discontiguity */
135 				probe_block++;
136 				goto reprobe;
137 			}
138 		}
139 
140 		first_block >>= (PAGE_SHIFT - blkbits);
141 		if (page_no) {	/* exclude the header page */
142 			if (first_block < lowest_block)
143 				lowest_block = first_block;
144 			if (first_block > highest_block)
145 				highest_block = first_block;
146 		}
147 
148 		/*
149 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
150 		 */
151 		ret = add_swap_extent(sis, page_no, 1, first_block);
152 		if (ret < 0)
153 			goto out;
154 		nr_extents += ret;
155 		page_no++;
156 		probe_block += blocks_per_page;
157 reprobe:
158 		continue;
159 	}
160 	ret = nr_extents;
161 	*span = 1 + highest_block - lowest_block;
162 	if (page_no == 0)
163 		page_no = 1;	/* force Empty message */
164 	sis->max = page_no;
165 	sis->pages = page_no - 1;
166 	sis->highest_bit = page_no - 1;
167 out:
168 	return ret;
169 bad_bmap:
170 	pr_err("swapon: swapfile has holes\n");
171 	ret = -EINVAL;
172 	goto out;
173 }
174 
175 static bool is_folio_zero_filled(struct folio *folio)
176 {
177 	unsigned int pos, last_pos;
178 	unsigned long *data;
179 	unsigned int i;
180 
181 	last_pos = PAGE_SIZE / sizeof(*data) - 1;
182 	for (i = 0; i < folio_nr_pages(folio); i++) {
183 		data = kmap_local_folio(folio, i * PAGE_SIZE);
184 		/*
185 		 * Check last word first, incase the page is zero-filled at
186 		 * the start and has non-zero data at the end, which is common
187 		 * in real-world workloads.
188 		 */
189 		if (data[last_pos]) {
190 			kunmap_local(data);
191 			return false;
192 		}
193 		for (pos = 0; pos < last_pos; pos++) {
194 			if (data[pos]) {
195 				kunmap_local(data);
196 				return false;
197 			}
198 		}
199 		kunmap_local(data);
200 	}
201 
202 	return true;
203 }
204 
205 static void swap_zeromap_folio_set(struct folio *folio)
206 {
207 	struct obj_cgroup *objcg = get_obj_cgroup_from_folio(folio);
208 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
209 	int nr_pages = folio_nr_pages(folio);
210 	swp_entry_t entry;
211 	unsigned int i;
212 
213 	for (i = 0; i < folio_nr_pages(folio); i++) {
214 		entry = page_swap_entry(folio_page(folio, i));
215 		set_bit(swp_offset(entry), sis->zeromap);
216 	}
217 
218 	count_vm_events(SWPOUT_ZERO, nr_pages);
219 	if (objcg) {
220 		count_objcg_events(objcg, SWPOUT_ZERO, nr_pages);
221 		obj_cgroup_put(objcg);
222 	}
223 }
224 
225 static void swap_zeromap_folio_clear(struct folio *folio)
226 {
227 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
228 	swp_entry_t entry;
229 	unsigned int i;
230 
231 	for (i = 0; i < folio_nr_pages(folio); i++) {
232 		entry = page_swap_entry(folio_page(folio, i));
233 		clear_bit(swp_offset(entry), sis->zeromap);
234 	}
235 }
236 
237 /*
238  * We may have stale swap cache pages in memory: notice
239  * them here and get rid of the unnecessary final write.
240  */
241 int swap_writepage(struct page *page, struct writeback_control *wbc)
242 {
243 	struct folio *folio = page_folio(page);
244 	int ret;
245 
246 	if (folio_free_swap(folio)) {
247 		folio_unlock(folio);
248 		return 0;
249 	}
250 	/*
251 	 * Arch code may have to preserve more data than just the page
252 	 * contents, e.g. memory tags.
253 	 */
254 	ret = arch_prepare_to_swap(folio);
255 	if (ret) {
256 		folio_mark_dirty(folio);
257 		folio_unlock(folio);
258 		return ret;
259 	}
260 
261 	/*
262 	 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages.
263 	 * The bits in zeromap are protected by the locked swapcache folio
264 	 * and atomic updates are used to protect against read-modify-write
265 	 * corruption due to other zero swap entries seeing concurrent updates.
266 	 */
267 	if (is_folio_zero_filled(folio)) {
268 		swap_zeromap_folio_set(folio);
269 		folio_unlock(folio);
270 		return 0;
271 	} else {
272 		/*
273 		 * Clear bits this folio occupies in the zeromap to prevent
274 		 * zero data being read in from any previous zero writes that
275 		 * occupied the same swap entries.
276 		 */
277 		swap_zeromap_folio_clear(folio);
278 	}
279 	if (zswap_store(folio)) {
280 		folio_unlock(folio);
281 		return 0;
282 	}
283 	if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
284 		folio_mark_dirty(folio);
285 		return AOP_WRITEPAGE_ACTIVATE;
286 	}
287 
288 	__swap_writepage(folio, wbc);
289 	return 0;
290 }
291 
292 static inline void count_swpout_vm_event(struct folio *folio)
293 {
294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
295 	if (unlikely(folio_test_pmd_mappable(folio))) {
296 		count_memcg_folio_events(folio, THP_SWPOUT, 1);
297 		count_vm_event(THP_SWPOUT);
298 	}
299 	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT);
300 #endif
301 	count_vm_events(PSWPOUT, folio_nr_pages(folio));
302 }
303 
304 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
305 static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
306 {
307 	struct cgroup_subsys_state *css;
308 	struct mem_cgroup *memcg;
309 
310 	memcg = folio_memcg(folio);
311 	if (!memcg)
312 		return;
313 
314 	rcu_read_lock();
315 	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
316 	bio_associate_blkg_from_css(bio, css);
317 	rcu_read_unlock();
318 }
319 #else
320 #define bio_associate_blkg_from_page(bio, folio)		do { } while (0)
321 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
322 
323 struct swap_iocb {
324 	struct kiocb		iocb;
325 	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
326 	int			pages;
327 	int			len;
328 };
329 static mempool_t *sio_pool;
330 
331 int sio_pool_init(void)
332 {
333 	if (!sio_pool) {
334 		mempool_t *pool = mempool_create_kmalloc_pool(
335 			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
336 		if (cmpxchg(&sio_pool, NULL, pool))
337 			mempool_destroy(pool);
338 	}
339 	if (!sio_pool)
340 		return -ENOMEM;
341 	return 0;
342 }
343 
344 static void sio_write_complete(struct kiocb *iocb, long ret)
345 {
346 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
347 	struct page *page = sio->bvec[0].bv_page;
348 	int p;
349 
350 	if (ret != sio->len) {
351 		/*
352 		 * In the case of swap-over-nfs, this can be a
353 		 * temporary failure if the system has limited
354 		 * memory for allocating transmit buffers.
355 		 * Mark the page dirty and avoid
356 		 * folio_rotate_reclaimable but rate-limit the
357 		 * messages.
358 		 */
359 		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
360 				   ret, swap_dev_pos(page_swap_entry(page)));
361 		for (p = 0; p < sio->pages; p++) {
362 			page = sio->bvec[p].bv_page;
363 			set_page_dirty(page);
364 			ClearPageReclaim(page);
365 		}
366 	}
367 
368 	for (p = 0; p < sio->pages; p++)
369 		end_page_writeback(sio->bvec[p].bv_page);
370 
371 	mempool_free(sio, sio_pool);
372 }
373 
374 static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
375 {
376 	struct swap_iocb *sio = NULL;
377 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
378 	struct file *swap_file = sis->swap_file;
379 	loff_t pos = swap_dev_pos(folio->swap);
380 
381 	count_swpout_vm_event(folio);
382 	folio_start_writeback(folio);
383 	folio_unlock(folio);
384 	if (wbc->swap_plug)
385 		sio = *wbc->swap_plug;
386 	if (sio) {
387 		if (sio->iocb.ki_filp != swap_file ||
388 		    sio->iocb.ki_pos + sio->len != pos) {
389 			swap_write_unplug(sio);
390 			sio = NULL;
391 		}
392 	}
393 	if (!sio) {
394 		sio = mempool_alloc(sio_pool, GFP_NOIO);
395 		init_sync_kiocb(&sio->iocb, swap_file);
396 		sio->iocb.ki_complete = sio_write_complete;
397 		sio->iocb.ki_pos = pos;
398 		sio->pages = 0;
399 		sio->len = 0;
400 	}
401 	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
402 	sio->len += folio_size(folio);
403 	sio->pages += 1;
404 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
405 		swap_write_unplug(sio);
406 		sio = NULL;
407 	}
408 	if (wbc->swap_plug)
409 		*wbc->swap_plug = sio;
410 }
411 
412 static void swap_writepage_bdev_sync(struct folio *folio,
413 		struct writeback_control *wbc, struct swap_info_struct *sis)
414 {
415 	struct bio_vec bv;
416 	struct bio bio;
417 
418 	bio_init(&bio, sis->bdev, &bv, 1,
419 		 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
420 	bio.bi_iter.bi_sector = swap_folio_sector(folio);
421 	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
422 
423 	bio_associate_blkg_from_page(&bio, folio);
424 	count_swpout_vm_event(folio);
425 
426 	folio_start_writeback(folio);
427 	folio_unlock(folio);
428 
429 	submit_bio_wait(&bio);
430 	__end_swap_bio_write(&bio);
431 }
432 
433 static void swap_writepage_bdev_async(struct folio *folio,
434 		struct writeback_control *wbc, struct swap_info_struct *sis)
435 {
436 	struct bio *bio;
437 
438 	bio = bio_alloc(sis->bdev, 1,
439 			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
440 			GFP_NOIO);
441 	bio->bi_iter.bi_sector = swap_folio_sector(folio);
442 	bio->bi_end_io = end_swap_bio_write;
443 	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
444 
445 	bio_associate_blkg_from_page(bio, folio);
446 	count_swpout_vm_event(folio);
447 	folio_start_writeback(folio);
448 	folio_unlock(folio);
449 	submit_bio(bio);
450 }
451 
452 void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
453 {
454 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
455 
456 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
457 	/*
458 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
459 	 * but that will never affect SWP_FS_OPS, so the data_race
460 	 * is safe.
461 	 */
462 	if (data_race(sis->flags & SWP_FS_OPS))
463 		swap_writepage_fs(folio, wbc);
464 	/*
465 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
466 	 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race
467 	 * is safe.
468 	 */
469 	else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO))
470 		swap_writepage_bdev_sync(folio, wbc, sis);
471 	else
472 		swap_writepage_bdev_async(folio, wbc, sis);
473 }
474 
475 void swap_write_unplug(struct swap_iocb *sio)
476 {
477 	struct iov_iter from;
478 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
479 	int ret;
480 
481 	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
482 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
483 	if (ret != -EIOCBQUEUED)
484 		sio_write_complete(&sio->iocb, ret);
485 }
486 
487 static void sio_read_complete(struct kiocb *iocb, long ret)
488 {
489 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
490 	int p;
491 
492 	if (ret == sio->len) {
493 		for (p = 0; p < sio->pages; p++) {
494 			struct folio *folio = page_folio(sio->bvec[p].bv_page);
495 
496 			folio_mark_uptodate(folio);
497 			folio_unlock(folio);
498 		}
499 		count_vm_events(PSWPIN, sio->pages);
500 	} else {
501 		for (p = 0; p < sio->pages; p++) {
502 			struct folio *folio = page_folio(sio->bvec[p].bv_page);
503 
504 			folio_unlock(folio);
505 		}
506 		pr_alert_ratelimited("Read-error on swap-device\n");
507 	}
508 	mempool_free(sio, sio_pool);
509 }
510 
511 static bool swap_read_folio_zeromap(struct folio *folio)
512 {
513 	int nr_pages = folio_nr_pages(folio);
514 	struct obj_cgroup *objcg;
515 	bool is_zeromap;
516 
517 	/*
518 	 * Swapping in a large folio that is partially in the zeromap is not
519 	 * currently handled. Return true without marking the folio uptodate so
520 	 * that an IO error is emitted (e.g. do_swap_page() will sigbus).
521 	 */
522 	if (WARN_ON_ONCE(swap_zeromap_batch(folio->swap, nr_pages,
523 			&is_zeromap) != nr_pages))
524 		return true;
525 
526 	if (!is_zeromap)
527 		return false;
528 
529 	objcg = get_obj_cgroup_from_folio(folio);
530 	count_vm_events(SWPIN_ZERO, nr_pages);
531 	if (objcg) {
532 		count_objcg_events(objcg, SWPIN_ZERO, nr_pages);
533 		obj_cgroup_put(objcg);
534 	}
535 
536 	folio_zero_range(folio, 0, folio_size(folio));
537 	folio_mark_uptodate(folio);
538 	return true;
539 }
540 
541 static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
542 {
543 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
544 	struct swap_iocb *sio = NULL;
545 	loff_t pos = swap_dev_pos(folio->swap);
546 
547 	if (plug)
548 		sio = *plug;
549 	if (sio) {
550 		if (sio->iocb.ki_filp != sis->swap_file ||
551 		    sio->iocb.ki_pos + sio->len != pos) {
552 			swap_read_unplug(sio);
553 			sio = NULL;
554 		}
555 	}
556 	if (!sio) {
557 		sio = mempool_alloc(sio_pool, GFP_KERNEL);
558 		init_sync_kiocb(&sio->iocb, sis->swap_file);
559 		sio->iocb.ki_pos = pos;
560 		sio->iocb.ki_complete = sio_read_complete;
561 		sio->pages = 0;
562 		sio->len = 0;
563 	}
564 	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
565 	sio->len += folio_size(folio);
566 	sio->pages += 1;
567 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
568 		swap_read_unplug(sio);
569 		sio = NULL;
570 	}
571 	if (plug)
572 		*plug = sio;
573 }
574 
575 static void swap_read_folio_bdev_sync(struct folio *folio,
576 		struct swap_info_struct *sis)
577 {
578 	struct bio_vec bv;
579 	struct bio bio;
580 
581 	bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
582 	bio.bi_iter.bi_sector = swap_folio_sector(folio);
583 	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
584 	/*
585 	 * Keep this task valid during swap readpage because the oom killer may
586 	 * attempt to access it in the page fault retry time check.
587 	 */
588 	get_task_struct(current);
589 	count_vm_events(PSWPIN, folio_nr_pages(folio));
590 	submit_bio_wait(&bio);
591 	__end_swap_bio_read(&bio);
592 	put_task_struct(current);
593 }
594 
595 static void swap_read_folio_bdev_async(struct folio *folio,
596 		struct swap_info_struct *sis)
597 {
598 	struct bio *bio;
599 
600 	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
601 	bio->bi_iter.bi_sector = swap_folio_sector(folio);
602 	bio->bi_end_io = end_swap_bio_read;
603 	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
604 	count_vm_events(PSWPIN, folio_nr_pages(folio));
605 	submit_bio(bio);
606 }
607 
608 void swap_read_folio(struct folio *folio, struct swap_iocb **plug)
609 {
610 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
611 	bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO;
612 	bool workingset = folio_test_workingset(folio);
613 	unsigned long pflags;
614 	bool in_thrashing;
615 
616 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
617 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
618 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
619 
620 	/*
621 	 * Count submission time as memory stall and delay. When the device
622 	 * is congested, or the submitting cgroup IO-throttled, submission
623 	 * can be a significant part of overall IO time.
624 	 */
625 	if (workingset) {
626 		delayacct_thrashing_start(&in_thrashing);
627 		psi_memstall_enter(&pflags);
628 	}
629 	delayacct_swapin_start();
630 
631 	if (swap_read_folio_zeromap(folio)) {
632 		folio_unlock(folio);
633 		goto finish;
634 	} else if (zswap_load(folio)) {
635 		folio_unlock(folio);
636 		goto finish;
637 	}
638 
639 	/* We have to read from slower devices. Increase zswap protection. */
640 	zswap_folio_swapin(folio);
641 
642 	if (data_race(sis->flags & SWP_FS_OPS)) {
643 		swap_read_folio_fs(folio, plug);
644 	} else if (synchronous) {
645 		swap_read_folio_bdev_sync(folio, sis);
646 	} else {
647 		swap_read_folio_bdev_async(folio, sis);
648 	}
649 
650 finish:
651 	if (workingset) {
652 		delayacct_thrashing_end(&in_thrashing);
653 		psi_memstall_leave(&pflags);
654 	}
655 	delayacct_swapin_end();
656 }
657 
658 void __swap_read_unplug(struct swap_iocb *sio)
659 {
660 	struct iov_iter from;
661 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
662 	int ret;
663 
664 	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
665 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
666 	if (ret != -EIOCBQUEUED)
667 		sio_read_complete(&sio->iocb, ret);
668 }
669