xref: /linux/mm/page_io.c (revision 4745dc8abb0a0a9851c07265eea01d844886d5c8)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/frontswap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uio.h>
26 #include <linux/sched/task.h>
27 #include <asm/pgtable.h>
28 
29 static struct bio *get_swap_bio(gfp_t gfp_flags,
30 				struct page *page, bio_end_io_t end_io)
31 {
32 	struct bio *bio;
33 
34 	bio = bio_alloc(gfp_flags, 1);
35 	if (bio) {
36 		struct block_device *bdev;
37 
38 		bio->bi_iter.bi_sector = map_swap_page(page, &bdev);
39 		bio_set_dev(bio, bdev);
40 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
41 		bio->bi_end_io = end_io;
42 
43 		bio_add_page(bio, page, PAGE_SIZE * hpage_nr_pages(page), 0);
44 	}
45 	return bio;
46 }
47 
48 void end_swap_bio_write(struct bio *bio)
49 {
50 	struct page *page = bio_first_page_all(bio);
51 
52 	if (bio->bi_status) {
53 		SetPageError(page);
54 		/*
55 		 * We failed to write the page out to swap-space.
56 		 * Re-dirty the page in order to avoid it being reclaimed.
57 		 * Also print a dire warning that things will go BAD (tm)
58 		 * very quickly.
59 		 *
60 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
61 		 */
62 		set_page_dirty(page);
63 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
64 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65 			 (unsigned long long)bio->bi_iter.bi_sector);
66 		ClearPageReclaim(page);
67 	}
68 	end_page_writeback(page);
69 	bio_put(bio);
70 }
71 
72 static void swap_slot_free_notify(struct page *page)
73 {
74 	struct swap_info_struct *sis;
75 	struct gendisk *disk;
76 
77 	/*
78 	 * There is no guarantee that the page is in swap cache - the software
79 	 * suspend code (at least) uses end_swap_bio_read() against a non-
80 	 * swapcache page.  So we must check PG_swapcache before proceeding with
81 	 * this optimization.
82 	 */
83 	if (unlikely(!PageSwapCache(page)))
84 		return;
85 
86 	sis = page_swap_info(page);
87 	if (!(sis->flags & SWP_BLKDEV))
88 		return;
89 
90 	/*
91 	 * The swap subsystem performs lazy swap slot freeing,
92 	 * expecting that the page will be swapped out again.
93 	 * So we can avoid an unnecessary write if the page
94 	 * isn't redirtied.
95 	 * This is good for real swap storage because we can
96 	 * reduce unnecessary I/O and enhance wear-leveling
97 	 * if an SSD is used as the as swap device.
98 	 * But if in-memory swap device (eg zram) is used,
99 	 * this causes a duplicated copy between uncompressed
100 	 * data in VM-owned memory and compressed data in
101 	 * zram-owned memory.  So let's free zram-owned memory
102 	 * and make the VM-owned decompressed page *dirty*,
103 	 * so the page should be swapped out somewhere again if
104 	 * we again wish to reclaim it.
105 	 */
106 	disk = sis->bdev->bd_disk;
107 	if (disk->fops->swap_slot_free_notify) {
108 		swp_entry_t entry;
109 		unsigned long offset;
110 
111 		entry.val = page_private(page);
112 		offset = swp_offset(entry);
113 
114 		SetPageDirty(page);
115 		disk->fops->swap_slot_free_notify(sis->bdev,
116 				offset);
117 	}
118 }
119 
120 static void end_swap_bio_read(struct bio *bio)
121 {
122 	struct page *page = bio_first_page_all(bio);
123 	struct task_struct *waiter = bio->bi_private;
124 
125 	if (bio->bi_status) {
126 		SetPageError(page);
127 		ClearPageUptodate(page);
128 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
129 			 MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
130 			 (unsigned long long)bio->bi_iter.bi_sector);
131 		goto out;
132 	}
133 
134 	SetPageUptodate(page);
135 	swap_slot_free_notify(page);
136 out:
137 	unlock_page(page);
138 	WRITE_ONCE(bio->bi_private, NULL);
139 	bio_put(bio);
140 	if (waiter) {
141 		blk_wake_io_task(waiter);
142 		put_task_struct(waiter);
143 	}
144 }
145 
146 int generic_swapfile_activate(struct swap_info_struct *sis,
147 				struct file *swap_file,
148 				sector_t *span)
149 {
150 	struct address_space *mapping = swap_file->f_mapping;
151 	struct inode *inode = mapping->host;
152 	unsigned blocks_per_page;
153 	unsigned long page_no;
154 	unsigned blkbits;
155 	sector_t probe_block;
156 	sector_t last_block;
157 	sector_t lowest_block = -1;
158 	sector_t highest_block = 0;
159 	int nr_extents = 0;
160 	int ret;
161 
162 	blkbits = inode->i_blkbits;
163 	blocks_per_page = PAGE_SIZE >> blkbits;
164 
165 	/*
166 	 * Map all the blocks into the extent tree.  This code doesn't try
167 	 * to be very smart.
168 	 */
169 	probe_block = 0;
170 	page_no = 0;
171 	last_block = i_size_read(inode) >> blkbits;
172 	while ((probe_block + blocks_per_page) <= last_block &&
173 			page_no < sis->max) {
174 		unsigned block_in_page;
175 		sector_t first_block;
176 
177 		cond_resched();
178 
179 		first_block = bmap(inode, probe_block);
180 		if (first_block == 0)
181 			goto bad_bmap;
182 
183 		/*
184 		 * It must be PAGE_SIZE aligned on-disk
185 		 */
186 		if (first_block & (blocks_per_page - 1)) {
187 			probe_block++;
188 			goto reprobe;
189 		}
190 
191 		for (block_in_page = 1; block_in_page < blocks_per_page;
192 					block_in_page++) {
193 			sector_t block;
194 
195 			block = bmap(inode, probe_block + block_in_page);
196 			if (block == 0)
197 				goto bad_bmap;
198 			if (block != first_block + block_in_page) {
199 				/* Discontiguity */
200 				probe_block++;
201 				goto reprobe;
202 			}
203 		}
204 
205 		first_block >>= (PAGE_SHIFT - blkbits);
206 		if (page_no) {	/* exclude the header page */
207 			if (first_block < lowest_block)
208 				lowest_block = first_block;
209 			if (first_block > highest_block)
210 				highest_block = first_block;
211 		}
212 
213 		/*
214 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
215 		 */
216 		ret = add_swap_extent(sis, page_no, 1, first_block);
217 		if (ret < 0)
218 			goto out;
219 		nr_extents += ret;
220 		page_no++;
221 		probe_block += blocks_per_page;
222 reprobe:
223 		continue;
224 	}
225 	ret = nr_extents;
226 	*span = 1 + highest_block - lowest_block;
227 	if (page_no == 0)
228 		page_no = 1;	/* force Empty message */
229 	sis->max = page_no;
230 	sis->pages = page_no - 1;
231 	sis->highest_bit = page_no - 1;
232 out:
233 	return ret;
234 bad_bmap:
235 	pr_err("swapon: swapfile has holes\n");
236 	ret = -EINVAL;
237 	goto out;
238 }
239 
240 /*
241  * We may have stale swap cache pages in memory: notice
242  * them here and get rid of the unnecessary final write.
243  */
244 int swap_writepage(struct page *page, struct writeback_control *wbc)
245 {
246 	int ret = 0;
247 
248 	if (try_to_free_swap(page)) {
249 		unlock_page(page);
250 		goto out;
251 	}
252 	if (frontswap_store(page) == 0) {
253 		set_page_writeback(page);
254 		unlock_page(page);
255 		end_page_writeback(page);
256 		goto out;
257 	}
258 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
259 out:
260 	return ret;
261 }
262 
263 static sector_t swap_page_sector(struct page *page)
264 {
265 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
266 }
267 
268 static inline void count_swpout_vm_event(struct page *page)
269 {
270 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
271 	if (unlikely(PageTransHuge(page)))
272 		count_vm_event(THP_SWPOUT);
273 #endif
274 	count_vm_events(PSWPOUT, hpage_nr_pages(page));
275 }
276 
277 int __swap_writepage(struct page *page, struct writeback_control *wbc,
278 		bio_end_io_t end_write_func)
279 {
280 	struct bio *bio;
281 	int ret;
282 	struct swap_info_struct *sis = page_swap_info(page);
283 
284 	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
285 	if (sis->flags & SWP_FS) {
286 		struct kiocb kiocb;
287 		struct file *swap_file = sis->swap_file;
288 		struct address_space *mapping = swap_file->f_mapping;
289 		struct bio_vec bv = {
290 			.bv_page = page,
291 			.bv_len  = PAGE_SIZE,
292 			.bv_offset = 0
293 		};
294 		struct iov_iter from;
295 
296 		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
297 		init_sync_kiocb(&kiocb, swap_file);
298 		kiocb.ki_pos = page_file_offset(page);
299 
300 		set_page_writeback(page);
301 		unlock_page(page);
302 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
303 		if (ret == PAGE_SIZE) {
304 			count_vm_event(PSWPOUT);
305 			ret = 0;
306 		} else {
307 			/*
308 			 * In the case of swap-over-nfs, this can be a
309 			 * temporary failure if the system has limited
310 			 * memory for allocating transmit buffers.
311 			 * Mark the page dirty and avoid
312 			 * rotate_reclaimable_page but rate-limit the
313 			 * messages but do not flag PageError like
314 			 * the normal direct-to-bio case as it could
315 			 * be temporary.
316 			 */
317 			set_page_dirty(page);
318 			ClearPageReclaim(page);
319 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
320 					   page_file_offset(page));
321 		}
322 		end_page_writeback(page);
323 		return ret;
324 	}
325 
326 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
327 	if (!ret) {
328 		count_swpout_vm_event(page);
329 		return 0;
330 	}
331 
332 	ret = 0;
333 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
334 	if (bio == NULL) {
335 		set_page_dirty(page);
336 		unlock_page(page);
337 		ret = -ENOMEM;
338 		goto out;
339 	}
340 	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
341 	bio_associate_blkg_from_page(bio, page);
342 	count_swpout_vm_event(page);
343 	set_page_writeback(page);
344 	unlock_page(page);
345 	submit_bio(bio);
346 out:
347 	return ret;
348 }
349 
350 int swap_readpage(struct page *page, bool synchronous)
351 {
352 	struct bio *bio;
353 	int ret = 0;
354 	struct swap_info_struct *sis = page_swap_info(page);
355 	blk_qc_t qc;
356 	struct gendisk *disk;
357 
358 	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
359 	VM_BUG_ON_PAGE(!PageLocked(page), page);
360 	VM_BUG_ON_PAGE(PageUptodate(page), page);
361 	if (frontswap_load(page) == 0) {
362 		SetPageUptodate(page);
363 		unlock_page(page);
364 		goto out;
365 	}
366 
367 	if (sis->flags & SWP_FS) {
368 		struct file *swap_file = sis->swap_file;
369 		struct address_space *mapping = swap_file->f_mapping;
370 
371 		ret = mapping->a_ops->readpage(swap_file, page);
372 		if (!ret)
373 			count_vm_event(PSWPIN);
374 		return ret;
375 	}
376 
377 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
378 	if (!ret) {
379 		if (trylock_page(page)) {
380 			swap_slot_free_notify(page);
381 			unlock_page(page);
382 		}
383 
384 		count_vm_event(PSWPIN);
385 		return 0;
386 	}
387 
388 	ret = 0;
389 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
390 	if (bio == NULL) {
391 		unlock_page(page);
392 		ret = -ENOMEM;
393 		goto out;
394 	}
395 	disk = bio->bi_disk;
396 	/*
397 	 * Keep this task valid during swap readpage because the oom killer may
398 	 * attempt to access it in the page fault retry time check.
399 	 */
400 	bio_set_op_attrs(bio, REQ_OP_READ, 0);
401 	if (synchronous) {
402 		bio->bi_opf |= REQ_HIPRI;
403 		get_task_struct(current);
404 		bio->bi_private = current;
405 	}
406 	count_vm_event(PSWPIN);
407 	bio_get(bio);
408 	qc = submit_bio(bio);
409 	while (synchronous) {
410 		set_current_state(TASK_UNINTERRUPTIBLE);
411 		if (!READ_ONCE(bio->bi_private))
412 			break;
413 
414 		if (!blk_poll(disk->queue, qc, true))
415 			io_schedule();
416 	}
417 	__set_current_state(TASK_RUNNING);
418 	bio_put(bio);
419 
420 out:
421 	return ret;
422 }
423 
424 int swap_set_page_dirty(struct page *page)
425 {
426 	struct swap_info_struct *sis = page_swap_info(page);
427 
428 	if (sis->flags & SWP_FS) {
429 		struct address_space *mapping = sis->swap_file->f_mapping;
430 
431 		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
432 		return mapping->a_ops->set_page_dirty(page);
433 	} else {
434 		return __set_page_dirty_no_writeback(page);
435 	}
436 }
437