xref: /linux/mm/page_io.c (revision 415f135ace7fd824cde083184a922e39156055b5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/mm/page_io.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *
7  *  Swap reorganised 29.12.95,
8  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9  *  Removed race in async swapping. 14.4.1996. Bruno Haible
10  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12  */
13 
14 #include <linux/mm.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/gfp.h>
17 #include <linux/pagemap.h>
18 #include <linux/swap.h>
19 #include <linux/bio.h>
20 #include <linux/swapops.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/psi.h>
24 #include <linux/uio.h>
25 #include <linux/sched/task.h>
26 #include <linux/delayacct.h>
27 #include <linux/zswap.h>
28 #include "swap.h"
29 
30 static void __end_swap_bio_write(struct bio *bio)
31 {
32 	struct folio *folio = bio_first_folio_all(bio);
33 
34 	if (bio->bi_status) {
35 		/*
36 		 * We failed to write the page out to swap-space.
37 		 * Re-dirty the page in order to avoid it being reclaimed.
38 		 * Also print a dire warning that things will go BAD (tm)
39 		 * very quickly.
40 		 *
41 		 * Also clear PG_reclaim to avoid folio_rotate_reclaimable()
42 		 */
43 		folio_mark_dirty(folio);
44 		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
45 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
46 				     (unsigned long long)bio->bi_iter.bi_sector);
47 		folio_clear_reclaim(folio);
48 	}
49 	folio_end_writeback(folio);
50 }
51 
52 static void end_swap_bio_write(struct bio *bio)
53 {
54 	__end_swap_bio_write(bio);
55 	bio_put(bio);
56 }
57 
58 static void __end_swap_bio_read(struct bio *bio)
59 {
60 	struct folio *folio = bio_first_folio_all(bio);
61 
62 	if (bio->bi_status) {
63 		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
64 				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
65 				     (unsigned long long)bio->bi_iter.bi_sector);
66 	} else {
67 		folio_mark_uptodate(folio);
68 	}
69 	folio_unlock(folio);
70 }
71 
72 static void end_swap_bio_read(struct bio *bio)
73 {
74 	__end_swap_bio_read(bio);
75 	bio_put(bio);
76 }
77 
78 int generic_swapfile_activate(struct swap_info_struct *sis,
79 				struct file *swap_file,
80 				sector_t *span)
81 {
82 	struct address_space *mapping = swap_file->f_mapping;
83 	struct inode *inode = mapping->host;
84 	unsigned blocks_per_page;
85 	unsigned long page_no;
86 	unsigned blkbits;
87 	sector_t probe_block;
88 	sector_t last_block;
89 	sector_t lowest_block = -1;
90 	sector_t highest_block = 0;
91 	int nr_extents = 0;
92 	int ret;
93 
94 	blkbits = inode->i_blkbits;
95 	blocks_per_page = PAGE_SIZE >> blkbits;
96 
97 	/*
98 	 * Map all the blocks into the extent tree.  This code doesn't try
99 	 * to be very smart.
100 	 */
101 	probe_block = 0;
102 	page_no = 0;
103 	last_block = i_size_read(inode) >> blkbits;
104 	while ((probe_block + blocks_per_page) <= last_block &&
105 			page_no < sis->max) {
106 		unsigned block_in_page;
107 		sector_t first_block;
108 
109 		cond_resched();
110 
111 		first_block = probe_block;
112 		ret = bmap(inode, &first_block);
113 		if (ret || !first_block)
114 			goto bad_bmap;
115 
116 		/*
117 		 * It must be PAGE_SIZE aligned on-disk
118 		 */
119 		if (first_block & (blocks_per_page - 1)) {
120 			probe_block++;
121 			goto reprobe;
122 		}
123 
124 		for (block_in_page = 1; block_in_page < blocks_per_page;
125 					block_in_page++) {
126 			sector_t block;
127 
128 			block = probe_block + block_in_page;
129 			ret = bmap(inode, &block);
130 			if (ret || !block)
131 				goto bad_bmap;
132 
133 			if (block != first_block + block_in_page) {
134 				/* Discontiguity */
135 				probe_block++;
136 				goto reprobe;
137 			}
138 		}
139 
140 		first_block >>= (PAGE_SHIFT - blkbits);
141 		if (page_no) {	/* exclude the header page */
142 			if (first_block < lowest_block)
143 				lowest_block = first_block;
144 			if (first_block > highest_block)
145 				highest_block = first_block;
146 		}
147 
148 		/*
149 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
150 		 */
151 		ret = add_swap_extent(sis, page_no, 1, first_block);
152 		if (ret < 0)
153 			goto out;
154 		nr_extents += ret;
155 		page_no++;
156 		probe_block += blocks_per_page;
157 reprobe:
158 		continue;
159 	}
160 	ret = nr_extents;
161 	*span = 1 + highest_block - lowest_block;
162 	if (page_no == 0)
163 		page_no = 1;	/* force Empty message */
164 	sis->max = page_no;
165 	sis->pages = page_no - 1;
166 out:
167 	return ret;
168 bad_bmap:
169 	pr_err("swapon: swapfile has holes\n");
170 	ret = -EINVAL;
171 	goto out;
172 }
173 
174 static bool is_folio_zero_filled(struct folio *folio)
175 {
176 	unsigned int pos, last_pos;
177 	unsigned long *data;
178 	unsigned int i;
179 
180 	last_pos = PAGE_SIZE / sizeof(*data) - 1;
181 	for (i = 0; i < folio_nr_pages(folio); i++) {
182 		data = kmap_local_folio(folio, i * PAGE_SIZE);
183 		/*
184 		 * Check last word first, incase the page is zero-filled at
185 		 * the start and has non-zero data at the end, which is common
186 		 * in real-world workloads.
187 		 */
188 		if (data[last_pos]) {
189 			kunmap_local(data);
190 			return false;
191 		}
192 		for (pos = 0; pos < last_pos; pos++) {
193 			if (data[pos]) {
194 				kunmap_local(data);
195 				return false;
196 			}
197 		}
198 		kunmap_local(data);
199 	}
200 
201 	return true;
202 }
203 
204 static void swap_zeromap_folio_set(struct folio *folio)
205 {
206 	struct obj_cgroup *objcg = get_obj_cgroup_from_folio(folio);
207 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
208 	int nr_pages = folio_nr_pages(folio);
209 	swp_entry_t entry;
210 	unsigned int i;
211 
212 	for (i = 0; i < folio_nr_pages(folio); i++) {
213 		entry = page_swap_entry(folio_page(folio, i));
214 		set_bit(swp_offset(entry), sis->zeromap);
215 	}
216 
217 	count_vm_events(SWPOUT_ZERO, nr_pages);
218 	if (objcg) {
219 		count_objcg_events(objcg, SWPOUT_ZERO, nr_pages);
220 		obj_cgroup_put(objcg);
221 	}
222 }
223 
224 static void swap_zeromap_folio_clear(struct folio *folio)
225 {
226 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
227 	swp_entry_t entry;
228 	unsigned int i;
229 
230 	for (i = 0; i < folio_nr_pages(folio); i++) {
231 		entry = page_swap_entry(folio_page(folio, i));
232 		clear_bit(swp_offset(entry), sis->zeromap);
233 	}
234 }
235 
236 /*
237  * We may have stale swap cache pages in memory: notice
238  * them here and get rid of the unnecessary final write.
239  */
240 int swap_writepage(struct page *page, struct writeback_control *wbc)
241 {
242 	struct folio *folio = page_folio(page);
243 	int ret;
244 
245 	if (folio_free_swap(folio)) {
246 		folio_unlock(folio);
247 		return 0;
248 	}
249 	/*
250 	 * Arch code may have to preserve more data than just the page
251 	 * contents, e.g. memory tags.
252 	 */
253 	ret = arch_prepare_to_swap(folio);
254 	if (ret) {
255 		folio_mark_dirty(folio);
256 		folio_unlock(folio);
257 		return ret;
258 	}
259 
260 	/*
261 	 * Use a bitmap (zeromap) to avoid doing IO for zero-filled pages.
262 	 * The bits in zeromap are protected by the locked swapcache folio
263 	 * and atomic updates are used to protect against read-modify-write
264 	 * corruption due to other zero swap entries seeing concurrent updates.
265 	 */
266 	if (is_folio_zero_filled(folio)) {
267 		swap_zeromap_folio_set(folio);
268 		folio_unlock(folio);
269 		return 0;
270 	} else {
271 		/*
272 		 * Clear bits this folio occupies in the zeromap to prevent
273 		 * zero data being read in from any previous zero writes that
274 		 * occupied the same swap entries.
275 		 */
276 		swap_zeromap_folio_clear(folio);
277 	}
278 	if (zswap_store(folio)) {
279 		count_mthp_stat(folio_order(folio), MTHP_STAT_ZSWPOUT);
280 		folio_unlock(folio);
281 		return 0;
282 	}
283 	if (!mem_cgroup_zswap_writeback_enabled(folio_memcg(folio))) {
284 		folio_mark_dirty(folio);
285 		return AOP_WRITEPAGE_ACTIVATE;
286 	}
287 
288 	__swap_writepage(folio, wbc);
289 	return 0;
290 }
291 
292 static inline void count_swpout_vm_event(struct folio *folio)
293 {
294 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
295 	if (unlikely(folio_test_pmd_mappable(folio))) {
296 		count_memcg_folio_events(folio, THP_SWPOUT, 1);
297 		count_vm_event(THP_SWPOUT);
298 	}
299 #endif
300 	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPOUT);
301 	count_memcg_folio_events(folio, PSWPOUT, folio_nr_pages(folio));
302 	count_vm_events(PSWPOUT, folio_nr_pages(folio));
303 }
304 
305 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
306 static void bio_associate_blkg_from_page(struct bio *bio, struct folio *folio)
307 {
308 	struct cgroup_subsys_state *css;
309 	struct mem_cgroup *memcg;
310 
311 	memcg = folio_memcg(folio);
312 	if (!memcg)
313 		return;
314 
315 	rcu_read_lock();
316 	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
317 	bio_associate_blkg_from_css(bio, css);
318 	rcu_read_unlock();
319 }
320 #else
321 #define bio_associate_blkg_from_page(bio, folio)		do { } while (0)
322 #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
323 
324 struct swap_iocb {
325 	struct kiocb		iocb;
326 	struct bio_vec		bvec[SWAP_CLUSTER_MAX];
327 	int			pages;
328 	int			len;
329 };
330 static mempool_t *sio_pool;
331 
332 int sio_pool_init(void)
333 {
334 	if (!sio_pool) {
335 		mempool_t *pool = mempool_create_kmalloc_pool(
336 			SWAP_CLUSTER_MAX, sizeof(struct swap_iocb));
337 		if (cmpxchg(&sio_pool, NULL, pool))
338 			mempool_destroy(pool);
339 	}
340 	if (!sio_pool)
341 		return -ENOMEM;
342 	return 0;
343 }
344 
345 static void sio_write_complete(struct kiocb *iocb, long ret)
346 {
347 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
348 	struct page *page = sio->bvec[0].bv_page;
349 	int p;
350 
351 	if (ret != sio->len) {
352 		/*
353 		 * In the case of swap-over-nfs, this can be a
354 		 * temporary failure if the system has limited
355 		 * memory for allocating transmit buffers.
356 		 * Mark the page dirty and avoid
357 		 * folio_rotate_reclaimable but rate-limit the
358 		 * messages.
359 		 */
360 		pr_err_ratelimited("Write error %ld on dio swapfile (%llu)\n",
361 				   ret, swap_dev_pos(page_swap_entry(page)));
362 		for (p = 0; p < sio->pages; p++) {
363 			page = sio->bvec[p].bv_page;
364 			set_page_dirty(page);
365 			ClearPageReclaim(page);
366 		}
367 	}
368 
369 	for (p = 0; p < sio->pages; p++)
370 		end_page_writeback(sio->bvec[p].bv_page);
371 
372 	mempool_free(sio, sio_pool);
373 }
374 
375 static void swap_writepage_fs(struct folio *folio, struct writeback_control *wbc)
376 {
377 	struct swap_iocb *sio = NULL;
378 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
379 	struct file *swap_file = sis->swap_file;
380 	loff_t pos = swap_dev_pos(folio->swap);
381 
382 	count_swpout_vm_event(folio);
383 	folio_start_writeback(folio);
384 	folio_unlock(folio);
385 	if (wbc->swap_plug)
386 		sio = *wbc->swap_plug;
387 	if (sio) {
388 		if (sio->iocb.ki_filp != swap_file ||
389 		    sio->iocb.ki_pos + sio->len != pos) {
390 			swap_write_unplug(sio);
391 			sio = NULL;
392 		}
393 	}
394 	if (!sio) {
395 		sio = mempool_alloc(sio_pool, GFP_NOIO);
396 		init_sync_kiocb(&sio->iocb, swap_file);
397 		sio->iocb.ki_complete = sio_write_complete;
398 		sio->iocb.ki_pos = pos;
399 		sio->pages = 0;
400 		sio->len = 0;
401 	}
402 	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
403 	sio->len += folio_size(folio);
404 	sio->pages += 1;
405 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !wbc->swap_plug) {
406 		swap_write_unplug(sio);
407 		sio = NULL;
408 	}
409 	if (wbc->swap_plug)
410 		*wbc->swap_plug = sio;
411 }
412 
413 static void swap_writepage_bdev_sync(struct folio *folio,
414 		struct writeback_control *wbc, struct swap_info_struct *sis)
415 {
416 	struct bio_vec bv;
417 	struct bio bio;
418 
419 	bio_init(&bio, sis->bdev, &bv, 1,
420 		 REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc));
421 	bio.bi_iter.bi_sector = swap_folio_sector(folio);
422 	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
423 
424 	bio_associate_blkg_from_page(&bio, folio);
425 	count_swpout_vm_event(folio);
426 
427 	folio_start_writeback(folio);
428 	folio_unlock(folio);
429 
430 	submit_bio_wait(&bio);
431 	__end_swap_bio_write(&bio);
432 }
433 
434 static void swap_writepage_bdev_async(struct folio *folio,
435 		struct writeback_control *wbc, struct swap_info_struct *sis)
436 {
437 	struct bio *bio;
438 
439 	bio = bio_alloc(sis->bdev, 1,
440 			REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc),
441 			GFP_NOIO);
442 	bio->bi_iter.bi_sector = swap_folio_sector(folio);
443 	bio->bi_end_io = end_swap_bio_write;
444 	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
445 
446 	bio_associate_blkg_from_page(bio, folio);
447 	count_swpout_vm_event(folio);
448 	folio_start_writeback(folio);
449 	folio_unlock(folio);
450 	submit_bio(bio);
451 }
452 
453 void __swap_writepage(struct folio *folio, struct writeback_control *wbc)
454 {
455 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
456 
457 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio), folio);
458 	/*
459 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
460 	 * but that will never affect SWP_FS_OPS, so the data_race
461 	 * is safe.
462 	 */
463 	if (data_race(sis->flags & SWP_FS_OPS))
464 		swap_writepage_fs(folio, wbc);
465 	/*
466 	 * ->flags can be updated non-atomicially (scan_swap_map_slots),
467 	 * but that will never affect SWP_SYNCHRONOUS_IO, so the data_race
468 	 * is safe.
469 	 */
470 	else if (data_race(sis->flags & SWP_SYNCHRONOUS_IO))
471 		swap_writepage_bdev_sync(folio, wbc, sis);
472 	else
473 		swap_writepage_bdev_async(folio, wbc, sis);
474 }
475 
476 void swap_write_unplug(struct swap_iocb *sio)
477 {
478 	struct iov_iter from;
479 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
480 	int ret;
481 
482 	iov_iter_bvec(&from, ITER_SOURCE, sio->bvec, sio->pages, sio->len);
483 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
484 	if (ret != -EIOCBQUEUED)
485 		sio_write_complete(&sio->iocb, ret);
486 }
487 
488 static void sio_read_complete(struct kiocb *iocb, long ret)
489 {
490 	struct swap_iocb *sio = container_of(iocb, struct swap_iocb, iocb);
491 	int p;
492 
493 	if (ret == sio->len) {
494 		for (p = 0; p < sio->pages; p++) {
495 			struct folio *folio = page_folio(sio->bvec[p].bv_page);
496 
497 			count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
498 			count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
499 			folio_mark_uptodate(folio);
500 			folio_unlock(folio);
501 		}
502 		count_vm_events(PSWPIN, sio->pages);
503 	} else {
504 		for (p = 0; p < sio->pages; p++) {
505 			struct folio *folio = page_folio(sio->bvec[p].bv_page);
506 
507 			folio_unlock(folio);
508 		}
509 		pr_alert_ratelimited("Read-error on swap-device\n");
510 	}
511 	mempool_free(sio, sio_pool);
512 }
513 
514 static bool swap_read_folio_zeromap(struct folio *folio)
515 {
516 	int nr_pages = folio_nr_pages(folio);
517 	struct obj_cgroup *objcg;
518 	bool is_zeromap;
519 
520 	/*
521 	 * Swapping in a large folio that is partially in the zeromap is not
522 	 * currently handled. Return true without marking the folio uptodate so
523 	 * that an IO error is emitted (e.g. do_swap_page() will sigbus).
524 	 */
525 	if (WARN_ON_ONCE(swap_zeromap_batch(folio->swap, nr_pages,
526 			&is_zeromap) != nr_pages))
527 		return true;
528 
529 	if (!is_zeromap)
530 		return false;
531 
532 	objcg = get_obj_cgroup_from_folio(folio);
533 	count_vm_events(SWPIN_ZERO, nr_pages);
534 	if (objcg) {
535 		count_objcg_events(objcg, SWPIN_ZERO, nr_pages);
536 		obj_cgroup_put(objcg);
537 	}
538 
539 	folio_zero_range(folio, 0, folio_size(folio));
540 	folio_mark_uptodate(folio);
541 	return true;
542 }
543 
544 static void swap_read_folio_fs(struct folio *folio, struct swap_iocb **plug)
545 {
546 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
547 	struct swap_iocb *sio = NULL;
548 	loff_t pos = swap_dev_pos(folio->swap);
549 
550 	if (plug)
551 		sio = *plug;
552 	if (sio) {
553 		if (sio->iocb.ki_filp != sis->swap_file ||
554 		    sio->iocb.ki_pos + sio->len != pos) {
555 			swap_read_unplug(sio);
556 			sio = NULL;
557 		}
558 	}
559 	if (!sio) {
560 		sio = mempool_alloc(sio_pool, GFP_KERNEL);
561 		init_sync_kiocb(&sio->iocb, sis->swap_file);
562 		sio->iocb.ki_pos = pos;
563 		sio->iocb.ki_complete = sio_read_complete;
564 		sio->pages = 0;
565 		sio->len = 0;
566 	}
567 	bvec_set_folio(&sio->bvec[sio->pages], folio, folio_size(folio), 0);
568 	sio->len += folio_size(folio);
569 	sio->pages += 1;
570 	if (sio->pages == ARRAY_SIZE(sio->bvec) || !plug) {
571 		swap_read_unplug(sio);
572 		sio = NULL;
573 	}
574 	if (plug)
575 		*plug = sio;
576 }
577 
578 static void swap_read_folio_bdev_sync(struct folio *folio,
579 		struct swap_info_struct *sis)
580 {
581 	struct bio_vec bv;
582 	struct bio bio;
583 
584 	bio_init(&bio, sis->bdev, &bv, 1, REQ_OP_READ);
585 	bio.bi_iter.bi_sector = swap_folio_sector(folio);
586 	bio_add_folio_nofail(&bio, folio, folio_size(folio), 0);
587 	/*
588 	 * Keep this task valid during swap readpage because the oom killer may
589 	 * attempt to access it in the page fault retry time check.
590 	 */
591 	get_task_struct(current);
592 	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
593 	count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
594 	count_vm_events(PSWPIN, folio_nr_pages(folio));
595 	submit_bio_wait(&bio);
596 	__end_swap_bio_read(&bio);
597 	put_task_struct(current);
598 }
599 
600 static void swap_read_folio_bdev_async(struct folio *folio,
601 		struct swap_info_struct *sis)
602 {
603 	struct bio *bio;
604 
605 	bio = bio_alloc(sis->bdev, 1, REQ_OP_READ, GFP_KERNEL);
606 	bio->bi_iter.bi_sector = swap_folio_sector(folio);
607 	bio->bi_end_io = end_swap_bio_read;
608 	bio_add_folio_nofail(bio, folio, folio_size(folio), 0);
609 	count_mthp_stat(folio_order(folio), MTHP_STAT_SWPIN);
610 	count_memcg_folio_events(folio, PSWPIN, folio_nr_pages(folio));
611 	count_vm_events(PSWPIN, folio_nr_pages(folio));
612 	submit_bio(bio);
613 }
614 
615 void swap_read_folio(struct folio *folio, struct swap_iocb **plug)
616 {
617 	struct swap_info_struct *sis = swp_swap_info(folio->swap);
618 	bool synchronous = sis->flags & SWP_SYNCHRONOUS_IO;
619 	bool workingset = folio_test_workingset(folio);
620 	unsigned long pflags;
621 	bool in_thrashing;
622 
623 	VM_BUG_ON_FOLIO(!folio_test_swapcache(folio) && !synchronous, folio);
624 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
625 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
626 
627 	/*
628 	 * Count submission time as memory stall and delay. When the device
629 	 * is congested, or the submitting cgroup IO-throttled, submission
630 	 * can be a significant part of overall IO time.
631 	 */
632 	if (workingset) {
633 		delayacct_thrashing_start(&in_thrashing);
634 		psi_memstall_enter(&pflags);
635 	}
636 	delayacct_swapin_start();
637 
638 	if (swap_read_folio_zeromap(folio)) {
639 		folio_unlock(folio);
640 		goto finish;
641 	} else if (zswap_load(folio)) {
642 		folio_unlock(folio);
643 		goto finish;
644 	}
645 
646 	/* We have to read from slower devices. Increase zswap protection. */
647 	zswap_folio_swapin(folio);
648 
649 	if (data_race(sis->flags & SWP_FS_OPS)) {
650 		swap_read_folio_fs(folio, plug);
651 	} else if (synchronous) {
652 		swap_read_folio_bdev_sync(folio, sis);
653 	} else {
654 		swap_read_folio_bdev_async(folio, sis);
655 	}
656 
657 finish:
658 	if (workingset) {
659 		delayacct_thrashing_end(&in_thrashing);
660 		psi_memstall_leave(&pflags);
661 	}
662 	delayacct_swapin_end();
663 }
664 
665 void __swap_read_unplug(struct swap_iocb *sio)
666 {
667 	struct iov_iter from;
668 	struct address_space *mapping = sio->iocb.ki_filp->f_mapping;
669 	int ret;
670 
671 	iov_iter_bvec(&from, ITER_DEST, sio->bvec, sio->pages, sio->len);
672 	ret = mapping->a_ops->swap_rw(&sio->iocb, &from);
673 	if (ret != -EIOCBQUEUED)
674 		sio_read_complete(&sio->iocb, ret);
675 }
676