xref: /linux/mm/page_io.c (revision 3e075e842899779bd321520a3524a278442467d0)
1  // SPDX-License-Identifier: GPL-2.0
2  /*
3   *  linux/mm/page_io.c
4   *
5   *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6   *
7   *  Swap reorganised 29.12.95,
8   *  Asynchronous swapping added 30.12.95. Stephen Tweedie
9   *  Removed race in async swapping. 14.4.1996. Bruno Haible
10   *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
11   *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
12   */
13  
14  #include <linux/mm.h>
15  #include <linux/kernel_stat.h>
16  #include <linux/gfp.h>
17  #include <linux/pagemap.h>
18  #include <linux/swap.h>
19  #include <linux/bio.h>
20  #include <linux/swapops.h>
21  #include <linux/buffer_head.h>
22  #include <linux/writeback.h>
23  #include <linux/frontswap.h>
24  #include <linux/blkdev.h>
25  #include <linux/psi.h>
26  #include <linux/uio.h>
27  #include <linux/sched/task.h>
28  
29  void end_swap_bio_write(struct bio *bio)
30  {
31  	struct page *page = bio_first_page_all(bio);
32  
33  	if (bio->bi_status) {
34  		SetPageError(page);
35  		/*
36  		 * We failed to write the page out to swap-space.
37  		 * Re-dirty the page in order to avoid it being reclaimed.
38  		 * Also print a dire warning that things will go BAD (tm)
39  		 * very quickly.
40  		 *
41  		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
42  		 */
43  		set_page_dirty(page);
44  		pr_alert_ratelimited("Write-error on swap-device (%u:%u:%llu)\n",
45  				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
46  				     (unsigned long long)bio->bi_iter.bi_sector);
47  		ClearPageReclaim(page);
48  	}
49  	end_page_writeback(page);
50  	bio_put(bio);
51  }
52  
53  static void swap_slot_free_notify(struct page *page)
54  {
55  	struct swap_info_struct *sis;
56  	struct gendisk *disk;
57  	swp_entry_t entry;
58  
59  	/*
60  	 * There is no guarantee that the page is in swap cache - the software
61  	 * suspend code (at least) uses end_swap_bio_read() against a non-
62  	 * swapcache page.  So we must check PG_swapcache before proceeding with
63  	 * this optimization.
64  	 */
65  	if (unlikely(!PageSwapCache(page)))
66  		return;
67  
68  	sis = page_swap_info(page);
69  	if (data_race(!(sis->flags & SWP_BLKDEV)))
70  		return;
71  
72  	/*
73  	 * The swap subsystem performs lazy swap slot freeing,
74  	 * expecting that the page will be swapped out again.
75  	 * So we can avoid an unnecessary write if the page
76  	 * isn't redirtied.
77  	 * This is good for real swap storage because we can
78  	 * reduce unnecessary I/O and enhance wear-leveling
79  	 * if an SSD is used as the as swap device.
80  	 * But if in-memory swap device (eg zram) is used,
81  	 * this causes a duplicated copy between uncompressed
82  	 * data in VM-owned memory and compressed data in
83  	 * zram-owned memory.  So let's free zram-owned memory
84  	 * and make the VM-owned decompressed page *dirty*,
85  	 * so the page should be swapped out somewhere again if
86  	 * we again wish to reclaim it.
87  	 */
88  	disk = sis->bdev->bd_disk;
89  	entry.val = page_private(page);
90  	if (disk->fops->swap_slot_free_notify && __swap_count(entry) == 1) {
91  		unsigned long offset;
92  
93  		offset = swp_offset(entry);
94  
95  		SetPageDirty(page);
96  		disk->fops->swap_slot_free_notify(sis->bdev,
97  				offset);
98  	}
99  }
100  
101  static void end_swap_bio_read(struct bio *bio)
102  {
103  	struct page *page = bio_first_page_all(bio);
104  	struct task_struct *waiter = bio->bi_private;
105  
106  	if (bio->bi_status) {
107  		SetPageError(page);
108  		ClearPageUptodate(page);
109  		pr_alert_ratelimited("Read-error on swap-device (%u:%u:%llu)\n",
110  				     MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
111  				     (unsigned long long)bio->bi_iter.bi_sector);
112  		goto out;
113  	}
114  
115  	SetPageUptodate(page);
116  	swap_slot_free_notify(page);
117  out:
118  	unlock_page(page);
119  	WRITE_ONCE(bio->bi_private, NULL);
120  	bio_put(bio);
121  	if (waiter) {
122  		blk_wake_io_task(waiter);
123  		put_task_struct(waiter);
124  	}
125  }
126  
127  int generic_swapfile_activate(struct swap_info_struct *sis,
128  				struct file *swap_file,
129  				sector_t *span)
130  {
131  	struct address_space *mapping = swap_file->f_mapping;
132  	struct inode *inode = mapping->host;
133  	unsigned blocks_per_page;
134  	unsigned long page_no;
135  	unsigned blkbits;
136  	sector_t probe_block;
137  	sector_t last_block;
138  	sector_t lowest_block = -1;
139  	sector_t highest_block = 0;
140  	int nr_extents = 0;
141  	int ret;
142  
143  	blkbits = inode->i_blkbits;
144  	blocks_per_page = PAGE_SIZE >> blkbits;
145  
146  	/*
147  	 * Map all the blocks into the extent tree.  This code doesn't try
148  	 * to be very smart.
149  	 */
150  	probe_block = 0;
151  	page_no = 0;
152  	last_block = i_size_read(inode) >> blkbits;
153  	while ((probe_block + blocks_per_page) <= last_block &&
154  			page_no < sis->max) {
155  		unsigned block_in_page;
156  		sector_t first_block;
157  
158  		cond_resched();
159  
160  		first_block = probe_block;
161  		ret = bmap(inode, &first_block);
162  		if (ret || !first_block)
163  			goto bad_bmap;
164  
165  		/*
166  		 * It must be PAGE_SIZE aligned on-disk
167  		 */
168  		if (first_block & (blocks_per_page - 1)) {
169  			probe_block++;
170  			goto reprobe;
171  		}
172  
173  		for (block_in_page = 1; block_in_page < blocks_per_page;
174  					block_in_page++) {
175  			sector_t block;
176  
177  			block = probe_block + block_in_page;
178  			ret = bmap(inode, &block);
179  			if (ret || !block)
180  				goto bad_bmap;
181  
182  			if (block != first_block + block_in_page) {
183  				/* Discontiguity */
184  				probe_block++;
185  				goto reprobe;
186  			}
187  		}
188  
189  		first_block >>= (PAGE_SHIFT - blkbits);
190  		if (page_no) {	/* exclude the header page */
191  			if (first_block < lowest_block)
192  				lowest_block = first_block;
193  			if (first_block > highest_block)
194  				highest_block = first_block;
195  		}
196  
197  		/*
198  		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
199  		 */
200  		ret = add_swap_extent(sis, page_no, 1, first_block);
201  		if (ret < 0)
202  			goto out;
203  		nr_extents += ret;
204  		page_no++;
205  		probe_block += blocks_per_page;
206  reprobe:
207  		continue;
208  	}
209  	ret = nr_extents;
210  	*span = 1 + highest_block - lowest_block;
211  	if (page_no == 0)
212  		page_no = 1;	/* force Empty message */
213  	sis->max = page_no;
214  	sis->pages = page_no - 1;
215  	sis->highest_bit = page_no - 1;
216  out:
217  	return ret;
218  bad_bmap:
219  	pr_err("swapon: swapfile has holes\n");
220  	ret = -EINVAL;
221  	goto out;
222  }
223  
224  /*
225   * We may have stale swap cache pages in memory: notice
226   * them here and get rid of the unnecessary final write.
227   */
228  int swap_writepage(struct page *page, struct writeback_control *wbc)
229  {
230  	int ret = 0;
231  
232  	if (try_to_free_swap(page)) {
233  		unlock_page(page);
234  		goto out;
235  	}
236  	/*
237  	 * Arch code may have to preserve more data than just the page
238  	 * contents, e.g. memory tags.
239  	 */
240  	ret = arch_prepare_to_swap(page);
241  	if (ret) {
242  		set_page_dirty(page);
243  		unlock_page(page);
244  		goto out;
245  	}
246  	if (frontswap_store(page) == 0) {
247  		set_page_writeback(page);
248  		unlock_page(page);
249  		end_page_writeback(page);
250  		goto out;
251  	}
252  	ret = __swap_writepage(page, wbc, end_swap_bio_write);
253  out:
254  	return ret;
255  }
256  
257  static inline void count_swpout_vm_event(struct page *page)
258  {
259  #ifdef CONFIG_TRANSPARENT_HUGEPAGE
260  	if (unlikely(PageTransHuge(page)))
261  		count_vm_event(THP_SWPOUT);
262  #endif
263  	count_vm_events(PSWPOUT, thp_nr_pages(page));
264  }
265  
266  #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
267  static void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
268  {
269  	struct cgroup_subsys_state *css;
270  	struct mem_cgroup *memcg;
271  
272  	memcg = page_memcg(page);
273  	if (!memcg)
274  		return;
275  
276  	rcu_read_lock();
277  	css = cgroup_e_css(memcg->css.cgroup, &io_cgrp_subsys);
278  	bio_associate_blkg_from_css(bio, css);
279  	rcu_read_unlock();
280  }
281  #else
282  #define bio_associate_blkg_from_page(bio, page)		do { } while (0)
283  #endif /* CONFIG_MEMCG && CONFIG_BLK_CGROUP */
284  
285  int __swap_writepage(struct page *page, struct writeback_control *wbc,
286  		bio_end_io_t end_write_func)
287  {
288  	struct bio *bio;
289  	int ret;
290  	struct swap_info_struct *sis = page_swap_info(page);
291  
292  	VM_BUG_ON_PAGE(!PageSwapCache(page), page);
293  	if (data_race(sis->flags & SWP_FS_OPS)) {
294  		struct kiocb kiocb;
295  		struct file *swap_file = sis->swap_file;
296  		struct address_space *mapping = swap_file->f_mapping;
297  		struct bio_vec bv = {
298  			.bv_page = page,
299  			.bv_len  = PAGE_SIZE,
300  			.bv_offset = 0
301  		};
302  		struct iov_iter from;
303  
304  		iov_iter_bvec(&from, WRITE, &bv, 1, PAGE_SIZE);
305  		init_sync_kiocb(&kiocb, swap_file);
306  		kiocb.ki_pos = page_file_offset(page);
307  
308  		set_page_writeback(page);
309  		unlock_page(page);
310  		ret = mapping->a_ops->direct_IO(&kiocb, &from);
311  		if (ret == PAGE_SIZE) {
312  			count_vm_event(PSWPOUT);
313  			ret = 0;
314  		} else {
315  			/*
316  			 * In the case of swap-over-nfs, this can be a
317  			 * temporary failure if the system has limited
318  			 * memory for allocating transmit buffers.
319  			 * Mark the page dirty and avoid
320  			 * rotate_reclaimable_page but rate-limit the
321  			 * messages but do not flag PageError like
322  			 * the normal direct-to-bio case as it could
323  			 * be temporary.
324  			 */
325  			set_page_dirty(page);
326  			ClearPageReclaim(page);
327  			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
328  					   page_file_offset(page));
329  		}
330  		end_page_writeback(page);
331  		return ret;
332  	}
333  
334  	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
335  	if (!ret) {
336  		count_swpout_vm_event(page);
337  		return 0;
338  	}
339  
340  	bio = bio_alloc(GFP_NOIO, 1);
341  	bio_set_dev(bio, sis->bdev);
342  	bio->bi_iter.bi_sector = swap_page_sector(page);
343  	bio->bi_opf = REQ_OP_WRITE | REQ_SWAP | wbc_to_write_flags(wbc);
344  	bio->bi_end_io = end_write_func;
345  	bio_add_page(bio, page, thp_size(page), 0);
346  
347  	bio_associate_blkg_from_page(bio, page);
348  	count_swpout_vm_event(page);
349  	set_page_writeback(page);
350  	unlock_page(page);
351  	submit_bio(bio);
352  
353  	return 0;
354  }
355  
356  int swap_readpage(struct page *page, bool synchronous)
357  {
358  	struct bio *bio;
359  	int ret = 0;
360  	struct swap_info_struct *sis = page_swap_info(page);
361  	blk_qc_t qc;
362  	struct gendisk *disk;
363  	unsigned long pflags;
364  
365  	VM_BUG_ON_PAGE(!PageSwapCache(page) && !synchronous, page);
366  	VM_BUG_ON_PAGE(!PageLocked(page), page);
367  	VM_BUG_ON_PAGE(PageUptodate(page), page);
368  
369  	/*
370  	 * Count submission time as memory stall. When the device is congested,
371  	 * or the submitting cgroup IO-throttled, submission can be a
372  	 * significant part of overall IO time.
373  	 */
374  	psi_memstall_enter(&pflags);
375  
376  	if (frontswap_load(page) == 0) {
377  		SetPageUptodate(page);
378  		unlock_page(page);
379  		goto out;
380  	}
381  
382  	if (data_race(sis->flags & SWP_FS_OPS)) {
383  		struct file *swap_file = sis->swap_file;
384  		struct address_space *mapping = swap_file->f_mapping;
385  
386  		ret = mapping->a_ops->readpage(swap_file, page);
387  		if (!ret)
388  			count_vm_event(PSWPIN);
389  		goto out;
390  	}
391  
392  	if (sis->flags & SWP_SYNCHRONOUS_IO) {
393  		ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
394  		if (!ret) {
395  			if (trylock_page(page)) {
396  				swap_slot_free_notify(page);
397  				unlock_page(page);
398  			}
399  
400  			count_vm_event(PSWPIN);
401  			goto out;
402  		}
403  	}
404  
405  	ret = 0;
406  	bio = bio_alloc(GFP_KERNEL, 1);
407  	bio_set_dev(bio, sis->bdev);
408  	bio->bi_opf = REQ_OP_READ;
409  	bio->bi_iter.bi_sector = swap_page_sector(page);
410  	bio->bi_end_io = end_swap_bio_read;
411  	bio_add_page(bio, page, thp_size(page), 0);
412  
413  	disk = bio->bi_bdev->bd_disk;
414  	/*
415  	 * Keep this task valid during swap readpage because the oom killer may
416  	 * attempt to access it in the page fault retry time check.
417  	 */
418  	if (synchronous) {
419  		bio->bi_opf |= REQ_HIPRI;
420  		get_task_struct(current);
421  		bio->bi_private = current;
422  	}
423  	count_vm_event(PSWPIN);
424  	bio_get(bio);
425  	qc = submit_bio(bio);
426  	while (synchronous) {
427  		set_current_state(TASK_UNINTERRUPTIBLE);
428  		if (!READ_ONCE(bio->bi_private))
429  			break;
430  
431  		if (!blk_poll(disk->queue, qc, true))
432  			blk_io_schedule();
433  	}
434  	__set_current_state(TASK_RUNNING);
435  	bio_put(bio);
436  
437  out:
438  	psi_memstall_leave(&pflags);
439  	return ret;
440  }
441  
442  int swap_set_page_dirty(struct page *page)
443  {
444  	struct swap_info_struct *sis = page_swap_info(page);
445  
446  	if (data_race(sis->flags & SWP_FS_OPS)) {
447  		struct address_space *mapping = sis->swap_file->f_mapping;
448  
449  		VM_BUG_ON_PAGE(!PageSwapCache(page), page);
450  		return mapping->a_ops->set_page_dirty(page);
451  	} else {
452  		return __set_page_dirty_no_writeback(page);
453  	}
454  }
455