xref: /linux/mm/page_io.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  *  linux/mm/page_io.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  *
6  *  Swap reorganised 29.12.95,
7  *  Asynchronous swapping added 30.12.95. Stephen Tweedie
8  *  Removed race in async swapping. 14.4.1996. Bruno Haible
9  *  Add swap of shared pages through the page cache. 20.2.1998. Stephen Tweedie
10  *  Always use brw_page, life becomes simpler. 12 May 1998 Eric Biederman
11  */
12 
13 #include <linux/mm.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/gfp.h>
16 #include <linux/pagemap.h>
17 #include <linux/swap.h>
18 #include <linux/bio.h>
19 #include <linux/swapops.h>
20 #include <linux/buffer_head.h>
21 #include <linux/writeback.h>
22 #include <linux/frontswap.h>
23 #include <linux/blkdev.h>
24 #include <linux/uio.h>
25 #include <asm/pgtable.h>
26 
27 static struct bio *get_swap_bio(gfp_t gfp_flags,
28 				struct page *page, bio_end_io_t end_io)
29 {
30 	struct bio *bio;
31 
32 	bio = bio_alloc(gfp_flags, 1);
33 	if (bio) {
34 		bio->bi_iter.bi_sector = map_swap_page(page, &bio->bi_bdev);
35 		bio->bi_iter.bi_sector <<= PAGE_SHIFT - 9;
36 		bio->bi_end_io = end_io;
37 
38 		bio_add_page(bio, page, PAGE_SIZE, 0);
39 		BUG_ON(bio->bi_iter.bi_size != PAGE_SIZE);
40 	}
41 	return bio;
42 }
43 
44 void end_swap_bio_write(struct bio *bio)
45 {
46 	struct page *page = bio->bi_io_vec[0].bv_page;
47 
48 	if (bio->bi_error) {
49 		SetPageError(page);
50 		/*
51 		 * We failed to write the page out to swap-space.
52 		 * Re-dirty the page in order to avoid it being reclaimed.
53 		 * Also print a dire warning that things will go BAD (tm)
54 		 * very quickly.
55 		 *
56 		 * Also clear PG_reclaim to avoid rotate_reclaimable_page()
57 		 */
58 		set_page_dirty(page);
59 		pr_alert("Write-error on swap-device (%u:%u:%llu)\n",
60 			 imajor(bio->bi_bdev->bd_inode),
61 			 iminor(bio->bi_bdev->bd_inode),
62 			 (unsigned long long)bio->bi_iter.bi_sector);
63 		ClearPageReclaim(page);
64 	}
65 	end_page_writeback(page);
66 	bio_put(bio);
67 }
68 
69 static void swap_slot_free_notify(struct page *page)
70 {
71 	struct swap_info_struct *sis;
72 	struct gendisk *disk;
73 
74 	/*
75 	 * There is no guarantee that the page is in swap cache - the software
76 	 * suspend code (at least) uses end_swap_bio_read() against a non-
77 	 * swapcache page.  So we must check PG_swapcache before proceeding with
78 	 * this optimization.
79 	 */
80 	if (unlikely(!PageSwapCache(page)))
81 		return;
82 
83 	sis = page_swap_info(page);
84 	if (!(sis->flags & SWP_BLKDEV))
85 		return;
86 
87 	/*
88 	 * The swap subsystem performs lazy swap slot freeing,
89 	 * expecting that the page will be swapped out again.
90 	 * So we can avoid an unnecessary write if the page
91 	 * isn't redirtied.
92 	 * This is good for real swap storage because we can
93 	 * reduce unnecessary I/O and enhance wear-leveling
94 	 * if an SSD is used as the as swap device.
95 	 * But if in-memory swap device (eg zram) is used,
96 	 * this causes a duplicated copy between uncompressed
97 	 * data in VM-owned memory and compressed data in
98 	 * zram-owned memory.  So let's free zram-owned memory
99 	 * and make the VM-owned decompressed page *dirty*,
100 	 * so the page should be swapped out somewhere again if
101 	 * we again wish to reclaim it.
102 	 */
103 	disk = sis->bdev->bd_disk;
104 	if (disk->fops->swap_slot_free_notify) {
105 		swp_entry_t entry;
106 		unsigned long offset;
107 
108 		entry.val = page_private(page);
109 		offset = swp_offset(entry);
110 
111 		SetPageDirty(page);
112 		disk->fops->swap_slot_free_notify(sis->bdev,
113 				offset);
114 	}
115 }
116 
117 static void end_swap_bio_read(struct bio *bio)
118 {
119 	struct page *page = bio->bi_io_vec[0].bv_page;
120 
121 	if (bio->bi_error) {
122 		SetPageError(page);
123 		ClearPageUptodate(page);
124 		pr_alert("Read-error on swap-device (%u:%u:%llu)\n",
125 			 imajor(bio->bi_bdev->bd_inode),
126 			 iminor(bio->bi_bdev->bd_inode),
127 			 (unsigned long long)bio->bi_iter.bi_sector);
128 		goto out;
129 	}
130 
131 	SetPageUptodate(page);
132 	swap_slot_free_notify(page);
133 out:
134 	unlock_page(page);
135 	bio_put(bio);
136 }
137 
138 int generic_swapfile_activate(struct swap_info_struct *sis,
139 				struct file *swap_file,
140 				sector_t *span)
141 {
142 	struct address_space *mapping = swap_file->f_mapping;
143 	struct inode *inode = mapping->host;
144 	unsigned blocks_per_page;
145 	unsigned long page_no;
146 	unsigned blkbits;
147 	sector_t probe_block;
148 	sector_t last_block;
149 	sector_t lowest_block = -1;
150 	sector_t highest_block = 0;
151 	int nr_extents = 0;
152 	int ret;
153 
154 	blkbits = inode->i_blkbits;
155 	blocks_per_page = PAGE_SIZE >> blkbits;
156 
157 	/*
158 	 * Map all the blocks into the extent list.  This code doesn't try
159 	 * to be very smart.
160 	 */
161 	probe_block = 0;
162 	page_no = 0;
163 	last_block = i_size_read(inode) >> blkbits;
164 	while ((probe_block + blocks_per_page) <= last_block &&
165 			page_no < sis->max) {
166 		unsigned block_in_page;
167 		sector_t first_block;
168 
169 		first_block = bmap(inode, probe_block);
170 		if (first_block == 0)
171 			goto bad_bmap;
172 
173 		/*
174 		 * It must be PAGE_SIZE aligned on-disk
175 		 */
176 		if (first_block & (blocks_per_page - 1)) {
177 			probe_block++;
178 			goto reprobe;
179 		}
180 
181 		for (block_in_page = 1; block_in_page < blocks_per_page;
182 					block_in_page++) {
183 			sector_t block;
184 
185 			block = bmap(inode, probe_block + block_in_page);
186 			if (block == 0)
187 				goto bad_bmap;
188 			if (block != first_block + block_in_page) {
189 				/* Discontiguity */
190 				probe_block++;
191 				goto reprobe;
192 			}
193 		}
194 
195 		first_block >>= (PAGE_SHIFT - blkbits);
196 		if (page_no) {	/* exclude the header page */
197 			if (first_block < lowest_block)
198 				lowest_block = first_block;
199 			if (first_block > highest_block)
200 				highest_block = first_block;
201 		}
202 
203 		/*
204 		 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
205 		 */
206 		ret = add_swap_extent(sis, page_no, 1, first_block);
207 		if (ret < 0)
208 			goto out;
209 		nr_extents += ret;
210 		page_no++;
211 		probe_block += blocks_per_page;
212 reprobe:
213 		continue;
214 	}
215 	ret = nr_extents;
216 	*span = 1 + highest_block - lowest_block;
217 	if (page_no == 0)
218 		page_no = 1;	/* force Empty message */
219 	sis->max = page_no;
220 	sis->pages = page_no - 1;
221 	sis->highest_bit = page_no - 1;
222 out:
223 	return ret;
224 bad_bmap:
225 	pr_err("swapon: swapfile has holes\n");
226 	ret = -EINVAL;
227 	goto out;
228 }
229 
230 /*
231  * We may have stale swap cache pages in memory: notice
232  * them here and get rid of the unnecessary final write.
233  */
234 int swap_writepage(struct page *page, struct writeback_control *wbc)
235 {
236 	int ret = 0;
237 
238 	if (try_to_free_swap(page)) {
239 		unlock_page(page);
240 		goto out;
241 	}
242 	if (frontswap_store(page) == 0) {
243 		set_page_writeback(page);
244 		unlock_page(page);
245 		end_page_writeback(page);
246 		goto out;
247 	}
248 	ret = __swap_writepage(page, wbc, end_swap_bio_write);
249 out:
250 	return ret;
251 }
252 
253 static sector_t swap_page_sector(struct page *page)
254 {
255 	return (sector_t)__page_file_index(page) << (PAGE_SHIFT - 9);
256 }
257 
258 int __swap_writepage(struct page *page, struct writeback_control *wbc,
259 		bio_end_io_t end_write_func)
260 {
261 	struct bio *bio;
262 	int ret, rw = WRITE;
263 	struct swap_info_struct *sis = page_swap_info(page);
264 
265 	if (sis->flags & SWP_FILE) {
266 		struct kiocb kiocb;
267 		struct file *swap_file = sis->swap_file;
268 		struct address_space *mapping = swap_file->f_mapping;
269 		struct bio_vec bv = {
270 			.bv_page = page,
271 			.bv_len  = PAGE_SIZE,
272 			.bv_offset = 0
273 		};
274 		struct iov_iter from;
275 
276 		iov_iter_bvec(&from, ITER_BVEC | WRITE, &bv, 1, PAGE_SIZE);
277 		init_sync_kiocb(&kiocb, swap_file);
278 		kiocb.ki_pos = page_file_offset(page);
279 
280 		set_page_writeback(page);
281 		unlock_page(page);
282 		ret = mapping->a_ops->direct_IO(&kiocb, &from);
283 		if (ret == PAGE_SIZE) {
284 			count_vm_event(PSWPOUT);
285 			ret = 0;
286 		} else {
287 			/*
288 			 * In the case of swap-over-nfs, this can be a
289 			 * temporary failure if the system has limited
290 			 * memory for allocating transmit buffers.
291 			 * Mark the page dirty and avoid
292 			 * rotate_reclaimable_page but rate-limit the
293 			 * messages but do not flag PageError like
294 			 * the normal direct-to-bio case as it could
295 			 * be temporary.
296 			 */
297 			set_page_dirty(page);
298 			ClearPageReclaim(page);
299 			pr_err_ratelimited("Write error on dio swapfile (%llu)\n",
300 					   page_file_offset(page));
301 		}
302 		end_page_writeback(page);
303 		return ret;
304 	}
305 
306 	ret = bdev_write_page(sis->bdev, swap_page_sector(page), page, wbc);
307 	if (!ret) {
308 		count_vm_event(PSWPOUT);
309 		return 0;
310 	}
311 
312 	ret = 0;
313 	bio = get_swap_bio(GFP_NOIO, page, end_write_func);
314 	if (bio == NULL) {
315 		set_page_dirty(page);
316 		unlock_page(page);
317 		ret = -ENOMEM;
318 		goto out;
319 	}
320 	if (wbc->sync_mode == WB_SYNC_ALL)
321 		rw |= REQ_SYNC;
322 	count_vm_event(PSWPOUT);
323 	set_page_writeback(page);
324 	unlock_page(page);
325 	submit_bio(rw, bio);
326 out:
327 	return ret;
328 }
329 
330 int swap_readpage(struct page *page)
331 {
332 	struct bio *bio;
333 	int ret = 0;
334 	struct swap_info_struct *sis = page_swap_info(page);
335 
336 	VM_BUG_ON_PAGE(!PageLocked(page), page);
337 	VM_BUG_ON_PAGE(PageUptodate(page), page);
338 	if (frontswap_load(page) == 0) {
339 		SetPageUptodate(page);
340 		unlock_page(page);
341 		goto out;
342 	}
343 
344 	if (sis->flags & SWP_FILE) {
345 		struct file *swap_file = sis->swap_file;
346 		struct address_space *mapping = swap_file->f_mapping;
347 
348 		ret = mapping->a_ops->readpage(swap_file, page);
349 		if (!ret)
350 			count_vm_event(PSWPIN);
351 		return ret;
352 	}
353 
354 	ret = bdev_read_page(sis->bdev, swap_page_sector(page), page);
355 	if (!ret) {
356 		if (trylock_page(page)) {
357 			swap_slot_free_notify(page);
358 			unlock_page(page);
359 		}
360 
361 		count_vm_event(PSWPIN);
362 		return 0;
363 	}
364 
365 	ret = 0;
366 	bio = get_swap_bio(GFP_KERNEL, page, end_swap_bio_read);
367 	if (bio == NULL) {
368 		unlock_page(page);
369 		ret = -ENOMEM;
370 		goto out;
371 	}
372 	count_vm_event(PSWPIN);
373 	submit_bio(READ, bio);
374 out:
375 	return ret;
376 }
377 
378 int swap_set_page_dirty(struct page *page)
379 {
380 	struct swap_info_struct *sis = page_swap_info(page);
381 
382 	if (sis->flags & SWP_FILE) {
383 		struct address_space *mapping = sis->swap_file->f_mapping;
384 		return mapping->a_ops->set_page_dirty(page);
385 	} else {
386 		return __set_page_dirty_no_writeback(page);
387 	}
388 }
389