xref: /linux/mm/page_ext.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/bootmem.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 
12 /*
13  * struct page extension
14  *
15  * This is the feature to manage memory for extended data per page.
16  *
17  * Until now, we must modify struct page itself to store extra data per page.
18  * This requires rebuilding the kernel and it is really time consuming process.
19  * And, sometimes, rebuild is impossible due to third party module dependency.
20  * At last, enlarging struct page could cause un-wanted system behaviour change.
21  *
22  * This feature is intended to overcome above mentioned problems. This feature
23  * allocates memory for extended data per page in certain place rather than
24  * the struct page itself. This memory can be accessed by the accessor
25  * functions provided by this code. During the boot process, it checks whether
26  * allocation of huge chunk of memory is needed or not. If not, it avoids
27  * allocating memory at all. With this advantage, we can include this feature
28  * into the kernel in default and can avoid rebuild and solve related problems.
29  *
30  * To help these things to work well, there are two callbacks for clients. One
31  * is the need callback which is mandatory if user wants to avoid useless
32  * memory allocation at boot-time. The other is optional, init callback, which
33  * is used to do proper initialization after memory is allocated.
34  *
35  * The need callback is used to decide whether extended memory allocation is
36  * needed or not. Sometimes users want to deactivate some features in this
37  * boot and extra memory would be unneccessary. In this case, to avoid
38  * allocating huge chunk of memory, each clients represent their need of
39  * extra memory through the need callback. If one of the need callbacks
40  * returns true, it means that someone needs extra memory so that
41  * page extension core should allocates memory for page extension. If
42  * none of need callbacks return true, memory isn't needed at all in this boot
43  * and page extension core can skip to allocate memory. As result,
44  * none of memory is wasted.
45  *
46  * When need callback returns true, page_ext checks if there is a request for
47  * extra memory through size in struct page_ext_operations. If it is non-zero,
48  * extra space is allocated for each page_ext entry and offset is returned to
49  * user through offset in struct page_ext_operations.
50  *
51  * The init callback is used to do proper initialization after page extension
52  * is completely initialized. In sparse memory system, extra memory is
53  * allocated some time later than memmap is allocated. In other words, lifetime
54  * of memory for page extension isn't same with memmap for struct page.
55  * Therefore, clients can't store extra data until page extension is
56  * initialized, even if pages are allocated and used freely. This could
57  * cause inadequate state of extra data per page, so, to prevent it, client
58  * can utilize this callback to initialize the state of it correctly.
59  */
60 
61 static struct page_ext_operations *page_ext_ops[] = {
62 	&debug_guardpage_ops,
63 #ifdef CONFIG_PAGE_OWNER
64 	&page_owner_ops,
65 #endif
66 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
67 	&page_idle_ops,
68 #endif
69 };
70 
71 static unsigned long total_usage;
72 static unsigned long extra_mem;
73 
74 static bool __init invoke_need_callbacks(void)
75 {
76 	int i;
77 	int entries = ARRAY_SIZE(page_ext_ops);
78 	bool need = false;
79 
80 	for (i = 0; i < entries; i++) {
81 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
82 			page_ext_ops[i]->offset = sizeof(struct page_ext) +
83 						extra_mem;
84 			extra_mem += page_ext_ops[i]->size;
85 			need = true;
86 		}
87 	}
88 
89 	return need;
90 }
91 
92 static void __init invoke_init_callbacks(void)
93 {
94 	int i;
95 	int entries = ARRAY_SIZE(page_ext_ops);
96 
97 	for (i = 0; i < entries; i++) {
98 		if (page_ext_ops[i]->init)
99 			page_ext_ops[i]->init();
100 	}
101 }
102 
103 static unsigned long get_entry_size(void)
104 {
105 	return sizeof(struct page_ext) + extra_mem;
106 }
107 
108 static inline struct page_ext *get_entry(void *base, unsigned long index)
109 {
110 	return base + get_entry_size() * index;
111 }
112 
113 #if !defined(CONFIG_SPARSEMEM)
114 
115 
116 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
117 {
118 	pgdat->node_page_ext = NULL;
119 }
120 
121 struct page_ext *lookup_page_ext(struct page *page)
122 {
123 	unsigned long pfn = page_to_pfn(page);
124 	unsigned long index;
125 	struct page_ext *base;
126 
127 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
128 	/*
129 	 * The sanity checks the page allocator does upon freeing a
130 	 * page can reach here before the page_ext arrays are
131 	 * allocated when feeding a range of pages to the allocator
132 	 * for the first time during bootup or memory hotplug.
133 	 */
134 	if (unlikely(!base))
135 		return NULL;
136 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
137 					MAX_ORDER_NR_PAGES);
138 	return get_entry(base, index);
139 }
140 
141 static int __init alloc_node_page_ext(int nid)
142 {
143 	struct page_ext *base;
144 	unsigned long table_size;
145 	unsigned long nr_pages;
146 
147 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
148 	if (!nr_pages)
149 		return 0;
150 
151 	/*
152 	 * Need extra space if node range is not aligned with
153 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
154 	 * checks buddy's status, range could be out of exact node range.
155 	 */
156 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
157 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
158 		nr_pages += MAX_ORDER_NR_PAGES;
159 
160 	table_size = get_entry_size() * nr_pages;
161 
162 	base = memblock_virt_alloc_try_nid_nopanic(
163 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
164 			BOOTMEM_ALLOC_ACCESSIBLE, nid);
165 	if (!base)
166 		return -ENOMEM;
167 	NODE_DATA(nid)->node_page_ext = base;
168 	total_usage += table_size;
169 	return 0;
170 }
171 
172 void __init page_ext_init_flatmem(void)
173 {
174 
175 	int nid, fail;
176 
177 	if (!invoke_need_callbacks())
178 		return;
179 
180 	for_each_online_node(nid)  {
181 		fail = alloc_node_page_ext(nid);
182 		if (fail)
183 			goto fail;
184 	}
185 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
186 	invoke_init_callbacks();
187 	return;
188 
189 fail:
190 	pr_crit("allocation of page_ext failed.\n");
191 	panic("Out of memory");
192 }
193 
194 #else /* CONFIG_FLAT_NODE_MEM_MAP */
195 
196 struct page_ext *lookup_page_ext(struct page *page)
197 {
198 	unsigned long pfn = page_to_pfn(page);
199 	struct mem_section *section = __pfn_to_section(pfn);
200 	/*
201 	 * The sanity checks the page allocator does upon freeing a
202 	 * page can reach here before the page_ext arrays are
203 	 * allocated when feeding a range of pages to the allocator
204 	 * for the first time during bootup or memory hotplug.
205 	 */
206 	if (!section->page_ext)
207 		return NULL;
208 	return get_entry(section->page_ext, pfn);
209 }
210 
211 static void *__meminit alloc_page_ext(size_t size, int nid)
212 {
213 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
214 	void *addr = NULL;
215 
216 	addr = alloc_pages_exact_nid(nid, size, flags);
217 	if (addr) {
218 		kmemleak_alloc(addr, size, 1, flags);
219 		return addr;
220 	}
221 
222 	addr = vzalloc_node(size, nid);
223 
224 	return addr;
225 }
226 
227 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
228 {
229 	struct mem_section *section;
230 	struct page_ext *base;
231 	unsigned long table_size;
232 
233 	section = __pfn_to_section(pfn);
234 
235 	if (section->page_ext)
236 		return 0;
237 
238 	table_size = get_entry_size() * PAGES_PER_SECTION;
239 	base = alloc_page_ext(table_size, nid);
240 
241 	/*
242 	 * The value stored in section->page_ext is (base - pfn)
243 	 * and it does not point to the memory block allocated above,
244 	 * causing kmemleak false positives.
245 	 */
246 	kmemleak_not_leak(base);
247 
248 	if (!base) {
249 		pr_err("page ext allocation failure\n");
250 		return -ENOMEM;
251 	}
252 
253 	/*
254 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
255 	 * we need to apply a mask.
256 	 */
257 	pfn &= PAGE_SECTION_MASK;
258 	section->page_ext = (void *)base - get_entry_size() * pfn;
259 	total_usage += table_size;
260 	return 0;
261 }
262 #ifdef CONFIG_MEMORY_HOTPLUG
263 static void free_page_ext(void *addr)
264 {
265 	if (is_vmalloc_addr(addr)) {
266 		vfree(addr);
267 	} else {
268 		struct page *page = virt_to_page(addr);
269 		size_t table_size;
270 
271 		table_size = get_entry_size() * PAGES_PER_SECTION;
272 
273 		BUG_ON(PageReserved(page));
274 		free_pages_exact(addr, table_size);
275 	}
276 }
277 
278 static void __free_page_ext(unsigned long pfn)
279 {
280 	struct mem_section *ms;
281 	struct page_ext *base;
282 
283 	ms = __pfn_to_section(pfn);
284 	if (!ms || !ms->page_ext)
285 		return;
286 	base = get_entry(ms->page_ext, pfn);
287 	free_page_ext(base);
288 	ms->page_ext = NULL;
289 }
290 
291 static int __meminit online_page_ext(unsigned long start_pfn,
292 				unsigned long nr_pages,
293 				int nid)
294 {
295 	unsigned long start, end, pfn;
296 	int fail = 0;
297 
298 	start = SECTION_ALIGN_DOWN(start_pfn);
299 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
300 
301 	if (nid == -1) {
302 		/*
303 		 * In this case, "nid" already exists and contains valid memory.
304 		 * "start_pfn" passed to us is a pfn which is an arg for
305 		 * online__pages(), and start_pfn should exist.
306 		 */
307 		nid = pfn_to_nid(start_pfn);
308 		VM_BUG_ON(!node_state(nid, N_ONLINE));
309 	}
310 
311 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
312 		if (!pfn_present(pfn))
313 			continue;
314 		fail = init_section_page_ext(pfn, nid);
315 	}
316 	if (!fail)
317 		return 0;
318 
319 	/* rollback */
320 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
321 		__free_page_ext(pfn);
322 
323 	return -ENOMEM;
324 }
325 
326 static int __meminit offline_page_ext(unsigned long start_pfn,
327 				unsigned long nr_pages, int nid)
328 {
329 	unsigned long start, end, pfn;
330 
331 	start = SECTION_ALIGN_DOWN(start_pfn);
332 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
333 
334 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
335 		__free_page_ext(pfn);
336 	return 0;
337 
338 }
339 
340 static int __meminit page_ext_callback(struct notifier_block *self,
341 			       unsigned long action, void *arg)
342 {
343 	struct memory_notify *mn = arg;
344 	int ret = 0;
345 
346 	switch (action) {
347 	case MEM_GOING_ONLINE:
348 		ret = online_page_ext(mn->start_pfn,
349 				   mn->nr_pages, mn->status_change_nid);
350 		break;
351 	case MEM_OFFLINE:
352 		offline_page_ext(mn->start_pfn,
353 				mn->nr_pages, mn->status_change_nid);
354 		break;
355 	case MEM_CANCEL_ONLINE:
356 		offline_page_ext(mn->start_pfn,
357 				mn->nr_pages, mn->status_change_nid);
358 		break;
359 	case MEM_GOING_OFFLINE:
360 		break;
361 	case MEM_ONLINE:
362 	case MEM_CANCEL_OFFLINE:
363 		break;
364 	}
365 
366 	return notifier_from_errno(ret);
367 }
368 
369 #endif
370 
371 void __init page_ext_init(void)
372 {
373 	unsigned long pfn;
374 	int nid;
375 
376 	if (!invoke_need_callbacks())
377 		return;
378 
379 	for_each_node_state(nid, N_MEMORY) {
380 		unsigned long start_pfn, end_pfn;
381 
382 		start_pfn = node_start_pfn(nid);
383 		end_pfn = node_end_pfn(nid);
384 		/*
385 		 * start_pfn and end_pfn may not be aligned to SECTION and the
386 		 * page->flags of out of node pages are not initialized.  So we
387 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
388 		 */
389 		for (pfn = start_pfn; pfn < end_pfn;
390 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
391 
392 			if (!pfn_valid(pfn))
393 				continue;
394 			/*
395 			 * Nodes's pfns can be overlapping.
396 			 * We know some arch can have a nodes layout such as
397 			 * -------------pfn-------------->
398 			 * N0 | N1 | N2 | N0 | N1 | N2|....
399 			 *
400 			 * Take into account DEFERRED_STRUCT_PAGE_INIT.
401 			 */
402 			if (early_pfn_to_nid(pfn) != nid)
403 				continue;
404 			if (init_section_page_ext(pfn, nid))
405 				goto oom;
406 			cond_resched();
407 		}
408 	}
409 	hotplug_memory_notifier(page_ext_callback, 0);
410 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
411 	invoke_init_callbacks();
412 	return;
413 
414 oom:
415 	panic("Out of memory");
416 }
417 
418 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
419 {
420 }
421 
422 #endif
423