1 #include <linux/mm.h> 2 #include <linux/mmzone.h> 3 #include <linux/bootmem.h> 4 #include <linux/page_ext.h> 5 #include <linux/memory.h> 6 #include <linux/vmalloc.h> 7 #include <linux/kmemleak.h> 8 #include <linux/page_owner.h> 9 #include <linux/page_idle.h> 10 11 /* 12 * struct page extension 13 * 14 * This is the feature to manage memory for extended data per page. 15 * 16 * Until now, we must modify struct page itself to store extra data per page. 17 * This requires rebuilding the kernel and it is really time consuming process. 18 * And, sometimes, rebuild is impossible due to third party module dependency. 19 * At last, enlarging struct page could cause un-wanted system behaviour change. 20 * 21 * This feature is intended to overcome above mentioned problems. This feature 22 * allocates memory for extended data per page in certain place rather than 23 * the struct page itself. This memory can be accessed by the accessor 24 * functions provided by this code. During the boot process, it checks whether 25 * allocation of huge chunk of memory is needed or not. If not, it avoids 26 * allocating memory at all. With this advantage, we can include this feature 27 * into the kernel in default and can avoid rebuild and solve related problems. 28 * 29 * To help these things to work well, there are two callbacks for clients. One 30 * is the need callback which is mandatory if user wants to avoid useless 31 * memory allocation at boot-time. The other is optional, init callback, which 32 * is used to do proper initialization after memory is allocated. 33 * 34 * The need callback is used to decide whether extended memory allocation is 35 * needed or not. Sometimes users want to deactivate some features in this 36 * boot and extra memory would be unneccessary. In this case, to avoid 37 * allocating huge chunk of memory, each clients represent their need of 38 * extra memory through the need callback. If one of the need callbacks 39 * returns true, it means that someone needs extra memory so that 40 * page extension core should allocates memory for page extension. If 41 * none of need callbacks return true, memory isn't needed at all in this boot 42 * and page extension core can skip to allocate memory. As result, 43 * none of memory is wasted. 44 * 45 * When need callback returns true, page_ext checks if there is a request for 46 * extra memory through size in struct page_ext_operations. If it is non-zero, 47 * extra space is allocated for each page_ext entry and offset is returned to 48 * user through offset in struct page_ext_operations. 49 * 50 * The init callback is used to do proper initialization after page extension 51 * is completely initialized. In sparse memory system, extra memory is 52 * allocated some time later than memmap is allocated. In other words, lifetime 53 * of memory for page extension isn't same with memmap for struct page. 54 * Therefore, clients can't store extra data until page extension is 55 * initialized, even if pages are allocated and used freely. This could 56 * cause inadequate state of extra data per page, so, to prevent it, client 57 * can utilize this callback to initialize the state of it correctly. 58 */ 59 60 static struct page_ext_operations *page_ext_ops[] = { 61 &debug_guardpage_ops, 62 #ifdef CONFIG_PAGE_POISONING 63 &page_poisoning_ops, 64 #endif 65 #ifdef CONFIG_PAGE_OWNER 66 &page_owner_ops, 67 #endif 68 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT) 69 &page_idle_ops, 70 #endif 71 }; 72 73 static unsigned long total_usage; 74 static unsigned long extra_mem; 75 76 static bool __init invoke_need_callbacks(void) 77 { 78 int i; 79 int entries = ARRAY_SIZE(page_ext_ops); 80 bool need = false; 81 82 for (i = 0; i < entries; i++) { 83 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { 84 page_ext_ops[i]->offset = sizeof(struct page_ext) + 85 extra_mem; 86 extra_mem += page_ext_ops[i]->size; 87 need = true; 88 } 89 } 90 91 return need; 92 } 93 94 static void __init invoke_init_callbacks(void) 95 { 96 int i; 97 int entries = ARRAY_SIZE(page_ext_ops); 98 99 for (i = 0; i < entries; i++) { 100 if (page_ext_ops[i]->init) 101 page_ext_ops[i]->init(); 102 } 103 } 104 105 static unsigned long get_entry_size(void) 106 { 107 return sizeof(struct page_ext) + extra_mem; 108 } 109 110 static inline struct page_ext *get_entry(void *base, unsigned long index) 111 { 112 return base + get_entry_size() * index; 113 } 114 115 #if !defined(CONFIG_SPARSEMEM) 116 117 118 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 119 { 120 pgdat->node_page_ext = NULL; 121 } 122 123 struct page_ext *lookup_page_ext(struct page *page) 124 { 125 unsigned long pfn = page_to_pfn(page); 126 unsigned long index; 127 struct page_ext *base; 128 129 base = NODE_DATA(page_to_nid(page))->node_page_ext; 130 #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING) 131 /* 132 * The sanity checks the page allocator does upon freeing a 133 * page can reach here before the page_ext arrays are 134 * allocated when feeding a range of pages to the allocator 135 * for the first time during bootup or memory hotplug. 136 * 137 * This check is also necessary for ensuring page poisoning 138 * works as expected when enabled 139 */ 140 if (unlikely(!base)) 141 return NULL; 142 #endif 143 index = pfn - round_down(node_start_pfn(page_to_nid(page)), 144 MAX_ORDER_NR_PAGES); 145 return get_entry(base, index); 146 } 147 148 static int __init alloc_node_page_ext(int nid) 149 { 150 struct page_ext *base; 151 unsigned long table_size; 152 unsigned long nr_pages; 153 154 nr_pages = NODE_DATA(nid)->node_spanned_pages; 155 if (!nr_pages) 156 return 0; 157 158 /* 159 * Need extra space if node range is not aligned with 160 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 161 * checks buddy's status, range could be out of exact node range. 162 */ 163 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 164 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 165 nr_pages += MAX_ORDER_NR_PAGES; 166 167 table_size = get_entry_size() * nr_pages; 168 169 base = memblock_virt_alloc_try_nid_nopanic( 170 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 171 BOOTMEM_ALLOC_ACCESSIBLE, nid); 172 if (!base) 173 return -ENOMEM; 174 NODE_DATA(nid)->node_page_ext = base; 175 total_usage += table_size; 176 return 0; 177 } 178 179 void __init page_ext_init_flatmem(void) 180 { 181 182 int nid, fail; 183 184 if (!invoke_need_callbacks()) 185 return; 186 187 for_each_online_node(nid) { 188 fail = alloc_node_page_ext(nid); 189 if (fail) 190 goto fail; 191 } 192 pr_info("allocated %ld bytes of page_ext\n", total_usage); 193 invoke_init_callbacks(); 194 return; 195 196 fail: 197 pr_crit("allocation of page_ext failed.\n"); 198 panic("Out of memory"); 199 } 200 201 #else /* CONFIG_FLAT_NODE_MEM_MAP */ 202 203 struct page_ext *lookup_page_ext(struct page *page) 204 { 205 unsigned long pfn = page_to_pfn(page); 206 struct mem_section *section = __pfn_to_section(pfn); 207 #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING) 208 /* 209 * The sanity checks the page allocator does upon freeing a 210 * page can reach here before the page_ext arrays are 211 * allocated when feeding a range of pages to the allocator 212 * for the first time during bootup or memory hotplug. 213 * 214 * This check is also necessary for ensuring page poisoning 215 * works as expected when enabled 216 */ 217 if (!section->page_ext) 218 return NULL; 219 #endif 220 return get_entry(section->page_ext, pfn); 221 } 222 223 static void *__meminit alloc_page_ext(size_t size, int nid) 224 { 225 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 226 void *addr = NULL; 227 228 addr = alloc_pages_exact_nid(nid, size, flags); 229 if (addr) { 230 kmemleak_alloc(addr, size, 1, flags); 231 return addr; 232 } 233 234 if (node_state(nid, N_HIGH_MEMORY)) 235 addr = vzalloc_node(size, nid); 236 else 237 addr = vzalloc(size); 238 239 return addr; 240 } 241 242 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 243 { 244 struct mem_section *section; 245 struct page_ext *base; 246 unsigned long table_size; 247 248 section = __pfn_to_section(pfn); 249 250 if (section->page_ext) 251 return 0; 252 253 table_size = get_entry_size() * PAGES_PER_SECTION; 254 base = alloc_page_ext(table_size, nid); 255 256 /* 257 * The value stored in section->page_ext is (base - pfn) 258 * and it does not point to the memory block allocated above, 259 * causing kmemleak false positives. 260 */ 261 kmemleak_not_leak(base); 262 263 if (!base) { 264 pr_err("page ext allocation failure\n"); 265 return -ENOMEM; 266 } 267 268 /* 269 * The passed "pfn" may not be aligned to SECTION. For the calculation 270 * we need to apply a mask. 271 */ 272 pfn &= PAGE_SECTION_MASK; 273 section->page_ext = (void *)base - get_entry_size() * pfn; 274 total_usage += table_size; 275 return 0; 276 } 277 #ifdef CONFIG_MEMORY_HOTPLUG 278 static void free_page_ext(void *addr) 279 { 280 if (is_vmalloc_addr(addr)) { 281 vfree(addr); 282 } else { 283 struct page *page = virt_to_page(addr); 284 size_t table_size; 285 286 table_size = get_entry_size() * PAGES_PER_SECTION; 287 288 BUG_ON(PageReserved(page)); 289 free_pages_exact(addr, table_size); 290 } 291 } 292 293 static void __free_page_ext(unsigned long pfn) 294 { 295 struct mem_section *ms; 296 struct page_ext *base; 297 298 ms = __pfn_to_section(pfn); 299 if (!ms || !ms->page_ext) 300 return; 301 base = get_entry(ms->page_ext, pfn); 302 free_page_ext(base); 303 ms->page_ext = NULL; 304 } 305 306 static int __meminit online_page_ext(unsigned long start_pfn, 307 unsigned long nr_pages, 308 int nid) 309 { 310 unsigned long start, end, pfn; 311 int fail = 0; 312 313 start = SECTION_ALIGN_DOWN(start_pfn); 314 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 315 316 if (nid == -1) { 317 /* 318 * In this case, "nid" already exists and contains valid memory. 319 * "start_pfn" passed to us is a pfn which is an arg for 320 * online__pages(), and start_pfn should exist. 321 */ 322 nid = pfn_to_nid(start_pfn); 323 VM_BUG_ON(!node_state(nid, N_ONLINE)); 324 } 325 326 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { 327 if (!pfn_present(pfn)) 328 continue; 329 fail = init_section_page_ext(pfn, nid); 330 } 331 if (!fail) 332 return 0; 333 334 /* rollback */ 335 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 336 __free_page_ext(pfn); 337 338 return -ENOMEM; 339 } 340 341 static int __meminit offline_page_ext(unsigned long start_pfn, 342 unsigned long nr_pages, int nid) 343 { 344 unsigned long start, end, pfn; 345 346 start = SECTION_ALIGN_DOWN(start_pfn); 347 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 348 349 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 350 __free_page_ext(pfn); 351 return 0; 352 353 } 354 355 static int __meminit page_ext_callback(struct notifier_block *self, 356 unsigned long action, void *arg) 357 { 358 struct memory_notify *mn = arg; 359 int ret = 0; 360 361 switch (action) { 362 case MEM_GOING_ONLINE: 363 ret = online_page_ext(mn->start_pfn, 364 mn->nr_pages, mn->status_change_nid); 365 break; 366 case MEM_OFFLINE: 367 offline_page_ext(mn->start_pfn, 368 mn->nr_pages, mn->status_change_nid); 369 break; 370 case MEM_CANCEL_ONLINE: 371 offline_page_ext(mn->start_pfn, 372 mn->nr_pages, mn->status_change_nid); 373 break; 374 case MEM_GOING_OFFLINE: 375 break; 376 case MEM_ONLINE: 377 case MEM_CANCEL_OFFLINE: 378 break; 379 } 380 381 return notifier_from_errno(ret); 382 } 383 384 #endif 385 386 void __init page_ext_init(void) 387 { 388 unsigned long pfn; 389 int nid; 390 391 if (!invoke_need_callbacks()) 392 return; 393 394 for_each_node_state(nid, N_MEMORY) { 395 unsigned long start_pfn, end_pfn; 396 397 start_pfn = node_start_pfn(nid); 398 end_pfn = node_end_pfn(nid); 399 /* 400 * start_pfn and end_pfn may not be aligned to SECTION and the 401 * page->flags of out of node pages are not initialized. So we 402 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 403 */ 404 for (pfn = start_pfn; pfn < end_pfn; 405 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 406 407 if (!pfn_valid(pfn)) 408 continue; 409 /* 410 * Nodes's pfns can be overlapping. 411 * We know some arch can have a nodes layout such as 412 * -------------pfn--------------> 413 * N0 | N1 | N2 | N0 | N1 | N2|.... 414 * 415 * Take into account DEFERRED_STRUCT_PAGE_INIT. 416 */ 417 if (early_pfn_to_nid(pfn) != nid) 418 continue; 419 if (init_section_page_ext(pfn, nid)) 420 goto oom; 421 } 422 } 423 hotplug_memory_notifier(page_ext_callback, 0); 424 pr_info("allocated %ld bytes of page_ext\n", total_usage); 425 invoke_init_callbacks(); 426 return; 427 428 oom: 429 panic("Out of memory"); 430 } 431 432 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 433 { 434 } 435 436 #endif 437