1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/mmzone.h> 4 #include <linux/memblock.h> 5 #include <linux/page_ext.h> 6 #include <linux/memory.h> 7 #include <linux/vmalloc.h> 8 #include <linux/kmemleak.h> 9 #include <linux/page_owner.h> 10 #include <linux/page_idle.h> 11 #include <linux/page_table_check.h> 12 #include <linux/rcupdate.h> 13 14 /* 15 * struct page extension 16 * 17 * This is the feature to manage memory for extended data per page. 18 * 19 * Until now, we must modify struct page itself to store extra data per page. 20 * This requires rebuilding the kernel and it is really time consuming process. 21 * And, sometimes, rebuild is impossible due to third party module dependency. 22 * At last, enlarging struct page could cause un-wanted system behaviour change. 23 * 24 * This feature is intended to overcome above mentioned problems. This feature 25 * allocates memory for extended data per page in certain place rather than 26 * the struct page itself. This memory can be accessed by the accessor 27 * functions provided by this code. During the boot process, it checks whether 28 * allocation of huge chunk of memory is needed or not. If not, it avoids 29 * allocating memory at all. With this advantage, we can include this feature 30 * into the kernel in default and can avoid rebuild and solve related problems. 31 * 32 * To help these things to work well, there are two callbacks for clients. One 33 * is the need callback which is mandatory if user wants to avoid useless 34 * memory allocation at boot-time. The other is optional, init callback, which 35 * is used to do proper initialization after memory is allocated. 36 * 37 * The need callback is used to decide whether extended memory allocation is 38 * needed or not. Sometimes users want to deactivate some features in this 39 * boot and extra memory would be unnecessary. In this case, to avoid 40 * allocating huge chunk of memory, each clients represent their need of 41 * extra memory through the need callback. If one of the need callbacks 42 * returns true, it means that someone needs extra memory so that 43 * page extension core should allocates memory for page extension. If 44 * none of need callbacks return true, memory isn't needed at all in this boot 45 * and page extension core can skip to allocate memory. As result, 46 * none of memory is wasted. 47 * 48 * When need callback returns true, page_ext checks if there is a request for 49 * extra memory through size in struct page_ext_operations. If it is non-zero, 50 * extra space is allocated for each page_ext entry and offset is returned to 51 * user through offset in struct page_ext_operations. 52 * 53 * The init callback is used to do proper initialization after page extension 54 * is completely initialized. In sparse memory system, extra memory is 55 * allocated some time later than memmap is allocated. In other words, lifetime 56 * of memory for page extension isn't same with memmap for struct page. 57 * Therefore, clients can't store extra data until page extension is 58 * initialized, even if pages are allocated and used freely. This could 59 * cause inadequate state of extra data per page, so, to prevent it, client 60 * can utilize this callback to initialize the state of it correctly. 61 */ 62 63 #ifdef CONFIG_SPARSEMEM 64 #define PAGE_EXT_INVALID (0x1) 65 #endif 66 67 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) 68 static bool need_page_idle(void) 69 { 70 return true; 71 } 72 static struct page_ext_operations page_idle_ops __initdata = { 73 .need = need_page_idle, 74 .need_shared_flags = true, 75 }; 76 #endif 77 78 static struct page_ext_operations *page_ext_ops[] __initdata = { 79 #ifdef CONFIG_PAGE_OWNER 80 &page_owner_ops, 81 #endif 82 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) 83 &page_idle_ops, 84 #endif 85 #ifdef CONFIG_PAGE_TABLE_CHECK 86 &page_table_check_ops, 87 #endif 88 }; 89 90 unsigned long page_ext_size; 91 92 static unsigned long total_usage; 93 94 bool early_page_ext __meminitdata; 95 static int __init setup_early_page_ext(char *str) 96 { 97 early_page_ext = true; 98 return 0; 99 } 100 early_param("early_page_ext", setup_early_page_ext); 101 102 static bool __init invoke_need_callbacks(void) 103 { 104 int i; 105 int entries = ARRAY_SIZE(page_ext_ops); 106 bool need = false; 107 108 for (i = 0; i < entries; i++) { 109 if (page_ext_ops[i]->need()) { 110 if (page_ext_ops[i]->need_shared_flags) { 111 page_ext_size = sizeof(struct page_ext); 112 break; 113 } 114 } 115 } 116 117 for (i = 0; i < entries; i++) { 118 if (page_ext_ops[i]->need()) { 119 page_ext_ops[i]->offset = page_ext_size; 120 page_ext_size += page_ext_ops[i]->size; 121 need = true; 122 } 123 } 124 125 return need; 126 } 127 128 static void __init invoke_init_callbacks(void) 129 { 130 int i; 131 int entries = ARRAY_SIZE(page_ext_ops); 132 133 for (i = 0; i < entries; i++) { 134 if (page_ext_ops[i]->init) 135 page_ext_ops[i]->init(); 136 } 137 } 138 139 static inline struct page_ext *get_entry(void *base, unsigned long index) 140 { 141 return base + page_ext_size * index; 142 } 143 144 #ifndef CONFIG_SPARSEMEM 145 void __init page_ext_init_flatmem_late(void) 146 { 147 invoke_init_callbacks(); 148 } 149 150 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 151 { 152 pgdat->node_page_ext = NULL; 153 } 154 155 static struct page_ext *lookup_page_ext(const struct page *page) 156 { 157 unsigned long pfn = page_to_pfn(page); 158 unsigned long index; 159 struct page_ext *base; 160 161 WARN_ON_ONCE(!rcu_read_lock_held()); 162 base = NODE_DATA(page_to_nid(page))->node_page_ext; 163 /* 164 * The sanity checks the page allocator does upon freeing a 165 * page can reach here before the page_ext arrays are 166 * allocated when feeding a range of pages to the allocator 167 * for the first time during bootup or memory hotplug. 168 */ 169 if (unlikely(!base)) 170 return NULL; 171 index = pfn - round_down(node_start_pfn(page_to_nid(page)), 172 MAX_ORDER_NR_PAGES); 173 return get_entry(base, index); 174 } 175 176 static int __init alloc_node_page_ext(int nid) 177 { 178 struct page_ext *base; 179 unsigned long table_size; 180 unsigned long nr_pages; 181 182 nr_pages = NODE_DATA(nid)->node_spanned_pages; 183 if (!nr_pages) 184 return 0; 185 186 /* 187 * Need extra space if node range is not aligned with 188 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 189 * checks buddy's status, range could be out of exact node range. 190 */ 191 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 192 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 193 nr_pages += MAX_ORDER_NR_PAGES; 194 195 table_size = page_ext_size * nr_pages; 196 197 base = memblock_alloc_try_nid( 198 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 199 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 200 if (!base) 201 return -ENOMEM; 202 NODE_DATA(nid)->node_page_ext = base; 203 total_usage += table_size; 204 return 0; 205 } 206 207 void __init page_ext_init_flatmem(void) 208 { 209 210 int nid, fail; 211 212 if (!invoke_need_callbacks()) 213 return; 214 215 for_each_online_node(nid) { 216 fail = alloc_node_page_ext(nid); 217 if (fail) 218 goto fail; 219 } 220 pr_info("allocated %ld bytes of page_ext\n", total_usage); 221 return; 222 223 fail: 224 pr_crit("allocation of page_ext failed.\n"); 225 panic("Out of memory"); 226 } 227 228 #else /* CONFIG_SPARSEMEM */ 229 static bool page_ext_invalid(struct page_ext *page_ext) 230 { 231 return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID); 232 } 233 234 static struct page_ext *lookup_page_ext(const struct page *page) 235 { 236 unsigned long pfn = page_to_pfn(page); 237 struct mem_section *section = __pfn_to_section(pfn); 238 struct page_ext *page_ext = READ_ONCE(section->page_ext); 239 240 WARN_ON_ONCE(!rcu_read_lock_held()); 241 /* 242 * The sanity checks the page allocator does upon freeing a 243 * page can reach here before the page_ext arrays are 244 * allocated when feeding a range of pages to the allocator 245 * for the first time during bootup or memory hotplug. 246 */ 247 if (page_ext_invalid(page_ext)) 248 return NULL; 249 return get_entry(page_ext, pfn); 250 } 251 252 static void *__meminit alloc_page_ext(size_t size, int nid) 253 { 254 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 255 void *addr = NULL; 256 257 addr = alloc_pages_exact_nid(nid, size, flags); 258 if (addr) { 259 kmemleak_alloc(addr, size, 1, flags); 260 return addr; 261 } 262 263 addr = vzalloc_node(size, nid); 264 265 return addr; 266 } 267 268 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 269 { 270 struct mem_section *section; 271 struct page_ext *base; 272 unsigned long table_size; 273 274 section = __pfn_to_section(pfn); 275 276 if (section->page_ext) 277 return 0; 278 279 table_size = page_ext_size * PAGES_PER_SECTION; 280 base = alloc_page_ext(table_size, nid); 281 282 /* 283 * The value stored in section->page_ext is (base - pfn) 284 * and it does not point to the memory block allocated above, 285 * causing kmemleak false positives. 286 */ 287 kmemleak_not_leak(base); 288 289 if (!base) { 290 pr_err("page ext allocation failure\n"); 291 return -ENOMEM; 292 } 293 294 /* 295 * The passed "pfn" may not be aligned to SECTION. For the calculation 296 * we need to apply a mask. 297 */ 298 pfn &= PAGE_SECTION_MASK; 299 section->page_ext = (void *)base - page_ext_size * pfn; 300 total_usage += table_size; 301 return 0; 302 } 303 304 static void free_page_ext(void *addr) 305 { 306 if (is_vmalloc_addr(addr)) { 307 vfree(addr); 308 } else { 309 struct page *page = virt_to_page(addr); 310 size_t table_size; 311 312 table_size = page_ext_size * PAGES_PER_SECTION; 313 314 BUG_ON(PageReserved(page)); 315 kmemleak_free(addr); 316 free_pages_exact(addr, table_size); 317 } 318 } 319 320 static void __free_page_ext(unsigned long pfn) 321 { 322 struct mem_section *ms; 323 struct page_ext *base; 324 325 ms = __pfn_to_section(pfn); 326 if (!ms || !ms->page_ext) 327 return; 328 329 base = READ_ONCE(ms->page_ext); 330 /* 331 * page_ext here can be valid while doing the roll back 332 * operation in online_page_ext(). 333 */ 334 if (page_ext_invalid(base)) 335 base = (void *)base - PAGE_EXT_INVALID; 336 WRITE_ONCE(ms->page_ext, NULL); 337 338 base = get_entry(base, pfn); 339 free_page_ext(base); 340 } 341 342 static void __invalidate_page_ext(unsigned long pfn) 343 { 344 struct mem_section *ms; 345 void *val; 346 347 ms = __pfn_to_section(pfn); 348 if (!ms || !ms->page_ext) 349 return; 350 val = (void *)ms->page_ext + PAGE_EXT_INVALID; 351 WRITE_ONCE(ms->page_ext, val); 352 } 353 354 static int __meminit online_page_ext(unsigned long start_pfn, 355 unsigned long nr_pages, 356 int nid) 357 { 358 unsigned long start, end, pfn; 359 int fail = 0; 360 361 start = SECTION_ALIGN_DOWN(start_pfn); 362 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 363 364 if (nid == NUMA_NO_NODE) { 365 /* 366 * In this case, "nid" already exists and contains valid memory. 367 * "start_pfn" passed to us is a pfn which is an arg for 368 * online__pages(), and start_pfn should exist. 369 */ 370 nid = pfn_to_nid(start_pfn); 371 VM_BUG_ON(!node_online(nid)); 372 } 373 374 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) 375 fail = init_section_page_ext(pfn, nid); 376 if (!fail) 377 return 0; 378 379 /* rollback */ 380 end = pfn - PAGES_PER_SECTION; 381 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 382 __free_page_ext(pfn); 383 384 return -ENOMEM; 385 } 386 387 static void __meminit offline_page_ext(unsigned long start_pfn, 388 unsigned long nr_pages) 389 { 390 unsigned long start, end, pfn; 391 392 start = SECTION_ALIGN_DOWN(start_pfn); 393 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 394 395 /* 396 * Freeing of page_ext is done in 3 steps to avoid 397 * use-after-free of it: 398 * 1) Traverse all the sections and mark their page_ext 399 * as invalid. 400 * 2) Wait for all the existing users of page_ext who 401 * started before invalidation to finish. 402 * 3) Free the page_ext. 403 */ 404 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 405 __invalidate_page_ext(pfn); 406 407 synchronize_rcu(); 408 409 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 410 __free_page_ext(pfn); 411 } 412 413 static int __meminit page_ext_callback(struct notifier_block *self, 414 unsigned long action, void *arg) 415 { 416 struct memory_notify *mn = arg; 417 int ret = 0; 418 419 switch (action) { 420 case MEM_GOING_ONLINE: 421 ret = online_page_ext(mn->start_pfn, 422 mn->nr_pages, mn->status_change_nid); 423 break; 424 case MEM_OFFLINE: 425 offline_page_ext(mn->start_pfn, 426 mn->nr_pages); 427 break; 428 case MEM_CANCEL_ONLINE: 429 offline_page_ext(mn->start_pfn, 430 mn->nr_pages); 431 break; 432 case MEM_GOING_OFFLINE: 433 break; 434 case MEM_ONLINE: 435 case MEM_CANCEL_OFFLINE: 436 break; 437 } 438 439 return notifier_from_errno(ret); 440 } 441 442 void __init page_ext_init(void) 443 { 444 unsigned long pfn; 445 int nid; 446 447 if (!invoke_need_callbacks()) 448 return; 449 450 for_each_node_state(nid, N_MEMORY) { 451 unsigned long start_pfn, end_pfn; 452 453 start_pfn = node_start_pfn(nid); 454 end_pfn = node_end_pfn(nid); 455 /* 456 * start_pfn and end_pfn may not be aligned to SECTION and the 457 * page->flags of out of node pages are not initialized. So we 458 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 459 */ 460 for (pfn = start_pfn; pfn < end_pfn; 461 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 462 463 if (!pfn_valid(pfn)) 464 continue; 465 /* 466 * Nodes's pfns can be overlapping. 467 * We know some arch can have a nodes layout such as 468 * -------------pfn--------------> 469 * N0 | N1 | N2 | N0 | N1 | N2|.... 470 */ 471 if (pfn_to_nid(pfn) != nid) 472 continue; 473 if (init_section_page_ext(pfn, nid)) 474 goto oom; 475 cond_resched(); 476 } 477 } 478 hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI); 479 pr_info("allocated %ld bytes of page_ext\n", total_usage); 480 invoke_init_callbacks(); 481 return; 482 483 oom: 484 panic("Out of memory"); 485 } 486 487 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 488 { 489 } 490 491 #endif 492 493 /** 494 * page_ext_get() - Get the extended information for a page. 495 * @page: The page we're interested in. 496 * 497 * Ensures that the page_ext will remain valid until page_ext_put() 498 * is called. 499 * 500 * Return: NULL if no page_ext exists for this page. 501 * Context: Any context. Caller may not sleep until they have called 502 * page_ext_put(). 503 */ 504 struct page_ext *page_ext_get(struct page *page) 505 { 506 struct page_ext *page_ext; 507 508 rcu_read_lock(); 509 page_ext = lookup_page_ext(page); 510 if (!page_ext) { 511 rcu_read_unlock(); 512 return NULL; 513 } 514 515 return page_ext; 516 } 517 518 /** 519 * page_ext_put() - Working with page extended information is done. 520 * @page_ext: Page extended information received from page_ext_get(). 521 * 522 * The page extended information of the page may not be valid after this 523 * function is called. 524 * 525 * Return: None. 526 * Context: Any context with corresponding page_ext_get() is called. 527 */ 528 void page_ext_put(struct page_ext *page_ext) 529 { 530 if (unlikely(!page_ext)) 531 return; 532 533 rcu_read_unlock(); 534 } 535