1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/mmzone.h> 4 #include <linux/memblock.h> 5 #include <linux/page_ext.h> 6 #include <linux/memory.h> 7 #include <linux/vmalloc.h> 8 #include <linux/kmemleak.h> 9 #include <linux/page_owner.h> 10 #include <linux/page_idle.h> 11 #include <linux/page_table_check.h> 12 #include <linux/rcupdate.h> 13 #include <linux/pgalloc_tag.h> 14 15 /* 16 * struct page extension 17 * 18 * This is the feature to manage memory for extended data per page. 19 * 20 * Until now, we must modify struct page itself to store extra data per page. 21 * This requires rebuilding the kernel and it is really time consuming process. 22 * And, sometimes, rebuild is impossible due to third party module dependency. 23 * At last, enlarging struct page could cause un-wanted system behaviour change. 24 * 25 * This feature is intended to overcome above mentioned problems. This feature 26 * allocates memory for extended data per page in certain place rather than 27 * the struct page itself. This memory can be accessed by the accessor 28 * functions provided by this code. During the boot process, it checks whether 29 * allocation of huge chunk of memory is needed or not. If not, it avoids 30 * allocating memory at all. With this advantage, we can include this feature 31 * into the kernel in default and can avoid rebuild and solve related problems. 32 * 33 * To help these things to work well, there are two callbacks for clients. One 34 * is the need callback which is mandatory if user wants to avoid useless 35 * memory allocation at boot-time. The other is optional, init callback, which 36 * is used to do proper initialization after memory is allocated. 37 * 38 * The need callback is used to decide whether extended memory allocation is 39 * needed or not. Sometimes users want to deactivate some features in this 40 * boot and extra memory would be unnecessary. In this case, to avoid 41 * allocating huge chunk of memory, each clients represent their need of 42 * extra memory through the need callback. If one of the need callbacks 43 * returns true, it means that someone needs extra memory so that 44 * page extension core should allocates memory for page extension. If 45 * none of need callbacks return true, memory isn't needed at all in this boot 46 * and page extension core can skip to allocate memory. As result, 47 * none of memory is wasted. 48 * 49 * When need callback returns true, page_ext checks if there is a request for 50 * extra memory through size in struct page_ext_operations. If it is non-zero, 51 * extra space is allocated for each page_ext entry and offset is returned to 52 * user through offset in struct page_ext_operations. 53 * 54 * The init callback is used to do proper initialization after page extension 55 * is completely initialized. In sparse memory system, extra memory is 56 * allocated some time later than memmap is allocated. In other words, lifetime 57 * of memory for page extension isn't same with memmap for struct page. 58 * Therefore, clients can't store extra data until page extension is 59 * initialized, even if pages are allocated and used freely. This could 60 * cause inadequate state of extra data per page, so, to prevent it, client 61 * can utilize this callback to initialize the state of it correctly. 62 */ 63 64 #ifdef CONFIG_SPARSEMEM 65 #define PAGE_EXT_INVALID (0x1) 66 #endif 67 68 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) 69 static bool need_page_idle(void) 70 { 71 return true; 72 } 73 static struct page_ext_operations page_idle_ops __initdata = { 74 .need = need_page_idle, 75 .need_shared_flags = true, 76 }; 77 #endif 78 79 static struct page_ext_operations *page_ext_ops[] __initdata = { 80 #ifdef CONFIG_PAGE_OWNER 81 &page_owner_ops, 82 #endif 83 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT) 84 &page_idle_ops, 85 #endif 86 #ifdef CONFIG_MEM_ALLOC_PROFILING 87 &page_alloc_tagging_ops, 88 #endif 89 #ifdef CONFIG_PAGE_TABLE_CHECK 90 &page_table_check_ops, 91 #endif 92 }; 93 94 unsigned long page_ext_size; 95 96 static unsigned long total_usage; 97 98 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG 99 /* 100 * To ensure correct allocation tagging for pages, page_ext should be available 101 * before the first page allocation. Otherwise early task stacks will be 102 * allocated before page_ext initialization and missing tags will be flagged. 103 */ 104 bool early_page_ext __meminitdata = true; 105 #else 106 bool early_page_ext __meminitdata; 107 #endif 108 static int __init setup_early_page_ext(char *str) 109 { 110 early_page_ext = true; 111 return 0; 112 } 113 early_param("early_page_ext", setup_early_page_ext); 114 115 static bool __init invoke_need_callbacks(void) 116 { 117 int i; 118 int entries = ARRAY_SIZE(page_ext_ops); 119 bool need = false; 120 121 for (i = 0; i < entries; i++) { 122 if (page_ext_ops[i]->need()) { 123 if (page_ext_ops[i]->need_shared_flags) { 124 page_ext_size = sizeof(struct page_ext); 125 break; 126 } 127 } 128 } 129 130 for (i = 0; i < entries; i++) { 131 if (page_ext_ops[i]->need()) { 132 page_ext_ops[i]->offset = page_ext_size; 133 page_ext_size += page_ext_ops[i]->size; 134 need = true; 135 } 136 } 137 138 return need; 139 } 140 141 static void __init invoke_init_callbacks(void) 142 { 143 int i; 144 int entries = ARRAY_SIZE(page_ext_ops); 145 146 for (i = 0; i < entries; i++) { 147 if (page_ext_ops[i]->init) 148 page_ext_ops[i]->init(); 149 } 150 } 151 152 static inline struct page_ext *get_entry(void *base, unsigned long index) 153 { 154 return base + page_ext_size * index; 155 } 156 157 #ifndef CONFIG_SPARSEMEM 158 void __init page_ext_init_flatmem_late(void) 159 { 160 invoke_init_callbacks(); 161 } 162 163 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 164 { 165 pgdat->node_page_ext = NULL; 166 } 167 168 static struct page_ext *lookup_page_ext(const struct page *page) 169 { 170 unsigned long pfn = page_to_pfn(page); 171 unsigned long index; 172 struct page_ext *base; 173 174 WARN_ON_ONCE(!rcu_read_lock_held()); 175 base = NODE_DATA(page_to_nid(page))->node_page_ext; 176 /* 177 * The sanity checks the page allocator does upon freeing a 178 * page can reach here before the page_ext arrays are 179 * allocated when feeding a range of pages to the allocator 180 * for the first time during bootup or memory hotplug. 181 */ 182 if (unlikely(!base)) 183 return NULL; 184 index = pfn - round_down(node_start_pfn(page_to_nid(page)), 185 MAX_ORDER_NR_PAGES); 186 return get_entry(base, index); 187 } 188 189 static int __init alloc_node_page_ext(int nid) 190 { 191 struct page_ext *base; 192 unsigned long table_size; 193 unsigned long nr_pages; 194 195 nr_pages = NODE_DATA(nid)->node_spanned_pages; 196 if (!nr_pages) 197 return 0; 198 199 /* 200 * Need extra space if node range is not aligned with 201 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 202 * checks buddy's status, range could be out of exact node range. 203 */ 204 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 205 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 206 nr_pages += MAX_ORDER_NR_PAGES; 207 208 table_size = page_ext_size * nr_pages; 209 210 base = memblock_alloc_try_nid( 211 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 212 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 213 if (!base) 214 return -ENOMEM; 215 NODE_DATA(nid)->node_page_ext = base; 216 total_usage += table_size; 217 mod_node_page_state(NODE_DATA(nid), NR_MEMMAP_BOOT, 218 DIV_ROUND_UP(table_size, PAGE_SIZE)); 219 return 0; 220 } 221 222 void __init page_ext_init_flatmem(void) 223 { 224 225 int nid, fail; 226 227 if (!invoke_need_callbacks()) 228 return; 229 230 for_each_online_node(nid) { 231 fail = alloc_node_page_ext(nid); 232 if (fail) 233 goto fail; 234 } 235 pr_info("allocated %ld bytes of page_ext\n", total_usage); 236 return; 237 238 fail: 239 pr_crit("allocation of page_ext failed.\n"); 240 panic("Out of memory"); 241 } 242 243 #else /* CONFIG_SPARSEMEM */ 244 static bool page_ext_invalid(struct page_ext *page_ext) 245 { 246 return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID); 247 } 248 249 static struct page_ext *lookup_page_ext(const struct page *page) 250 { 251 unsigned long pfn = page_to_pfn(page); 252 struct mem_section *section = __pfn_to_section(pfn); 253 struct page_ext *page_ext = READ_ONCE(section->page_ext); 254 255 WARN_ON_ONCE(!rcu_read_lock_held()); 256 /* 257 * The sanity checks the page allocator does upon freeing a 258 * page can reach here before the page_ext arrays are 259 * allocated when feeding a range of pages to the allocator 260 * for the first time during bootup or memory hotplug. 261 */ 262 if (page_ext_invalid(page_ext)) 263 return NULL; 264 return get_entry(page_ext, pfn); 265 } 266 267 static void *__meminit alloc_page_ext(size_t size, int nid) 268 { 269 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 270 void *addr = NULL; 271 272 addr = alloc_pages_exact_nid(nid, size, flags); 273 if (addr) 274 kmemleak_alloc(addr, size, 1, flags); 275 else 276 addr = vzalloc_node(size, nid); 277 278 if (addr) { 279 mod_node_page_state(NODE_DATA(nid), NR_MEMMAP, 280 DIV_ROUND_UP(size, PAGE_SIZE)); 281 } 282 283 return addr; 284 } 285 286 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 287 { 288 struct mem_section *section; 289 struct page_ext *base; 290 unsigned long table_size; 291 292 section = __pfn_to_section(pfn); 293 294 if (section->page_ext) 295 return 0; 296 297 table_size = page_ext_size * PAGES_PER_SECTION; 298 base = alloc_page_ext(table_size, nid); 299 300 /* 301 * The value stored in section->page_ext is (base - pfn) 302 * and it does not point to the memory block allocated above, 303 * causing kmemleak false positives. 304 */ 305 kmemleak_not_leak(base); 306 307 if (!base) { 308 pr_err("page ext allocation failure\n"); 309 return -ENOMEM; 310 } 311 312 /* 313 * The passed "pfn" may not be aligned to SECTION. For the calculation 314 * we need to apply a mask. 315 */ 316 pfn &= PAGE_SECTION_MASK; 317 section->page_ext = (void *)base - page_ext_size * pfn; 318 total_usage += table_size; 319 return 0; 320 } 321 322 static void free_page_ext(void *addr) 323 { 324 size_t table_size; 325 struct page *page; 326 struct pglist_data *pgdat; 327 328 table_size = page_ext_size * PAGES_PER_SECTION; 329 330 if (is_vmalloc_addr(addr)) { 331 page = vmalloc_to_page(addr); 332 pgdat = page_pgdat(page); 333 vfree(addr); 334 } else { 335 page = virt_to_page(addr); 336 pgdat = page_pgdat(page); 337 BUG_ON(PageReserved(page)); 338 kmemleak_free(addr); 339 free_pages_exact(addr, table_size); 340 } 341 342 mod_node_page_state(pgdat, NR_MEMMAP, 343 -1L * (DIV_ROUND_UP(table_size, PAGE_SIZE))); 344 345 } 346 347 static void __free_page_ext(unsigned long pfn) 348 { 349 struct mem_section *ms; 350 struct page_ext *base; 351 352 ms = __pfn_to_section(pfn); 353 if (!ms || !ms->page_ext) 354 return; 355 356 base = READ_ONCE(ms->page_ext); 357 /* 358 * page_ext here can be valid while doing the roll back 359 * operation in online_page_ext(). 360 */ 361 if (page_ext_invalid(base)) 362 base = (void *)base - PAGE_EXT_INVALID; 363 WRITE_ONCE(ms->page_ext, NULL); 364 365 base = get_entry(base, pfn); 366 free_page_ext(base); 367 } 368 369 static void __invalidate_page_ext(unsigned long pfn) 370 { 371 struct mem_section *ms; 372 void *val; 373 374 ms = __pfn_to_section(pfn); 375 if (!ms || !ms->page_ext) 376 return; 377 val = (void *)ms->page_ext + PAGE_EXT_INVALID; 378 WRITE_ONCE(ms->page_ext, val); 379 } 380 381 static int __meminit online_page_ext(unsigned long start_pfn, 382 unsigned long nr_pages, 383 int nid) 384 { 385 unsigned long start, end, pfn; 386 int fail = 0; 387 388 start = SECTION_ALIGN_DOWN(start_pfn); 389 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 390 391 if (nid == NUMA_NO_NODE) { 392 /* 393 * In this case, "nid" already exists and contains valid memory. 394 * "start_pfn" passed to us is a pfn which is an arg for 395 * online__pages(), and start_pfn should exist. 396 */ 397 nid = pfn_to_nid(start_pfn); 398 VM_BUG_ON(!node_online(nid)); 399 } 400 401 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) 402 fail = init_section_page_ext(pfn, nid); 403 if (!fail) 404 return 0; 405 406 /* rollback */ 407 end = pfn - PAGES_PER_SECTION; 408 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 409 __free_page_ext(pfn); 410 411 return -ENOMEM; 412 } 413 414 static void __meminit offline_page_ext(unsigned long start_pfn, 415 unsigned long nr_pages) 416 { 417 unsigned long start, end, pfn; 418 419 start = SECTION_ALIGN_DOWN(start_pfn); 420 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 421 422 /* 423 * Freeing of page_ext is done in 3 steps to avoid 424 * use-after-free of it: 425 * 1) Traverse all the sections and mark their page_ext 426 * as invalid. 427 * 2) Wait for all the existing users of page_ext who 428 * started before invalidation to finish. 429 * 3) Free the page_ext. 430 */ 431 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 432 __invalidate_page_ext(pfn); 433 434 synchronize_rcu(); 435 436 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 437 __free_page_ext(pfn); 438 } 439 440 static int __meminit page_ext_callback(struct notifier_block *self, 441 unsigned long action, void *arg) 442 { 443 struct memory_notify *mn = arg; 444 int ret = 0; 445 446 switch (action) { 447 case MEM_GOING_ONLINE: 448 ret = online_page_ext(mn->start_pfn, 449 mn->nr_pages, mn->status_change_nid); 450 break; 451 case MEM_OFFLINE: 452 offline_page_ext(mn->start_pfn, 453 mn->nr_pages); 454 break; 455 case MEM_CANCEL_ONLINE: 456 offline_page_ext(mn->start_pfn, 457 mn->nr_pages); 458 break; 459 case MEM_GOING_OFFLINE: 460 break; 461 case MEM_ONLINE: 462 case MEM_CANCEL_OFFLINE: 463 break; 464 } 465 466 return notifier_from_errno(ret); 467 } 468 469 void __init page_ext_init(void) 470 { 471 unsigned long pfn; 472 int nid; 473 474 if (!invoke_need_callbacks()) 475 return; 476 477 for_each_node_state(nid, N_MEMORY) { 478 unsigned long start_pfn, end_pfn; 479 480 start_pfn = node_start_pfn(nid); 481 end_pfn = node_end_pfn(nid); 482 /* 483 * start_pfn and end_pfn may not be aligned to SECTION and the 484 * page->flags of out of node pages are not initialized. So we 485 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 486 */ 487 for (pfn = start_pfn; pfn < end_pfn; 488 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 489 490 if (!pfn_valid(pfn)) 491 continue; 492 /* 493 * Nodes's pfns can be overlapping. 494 * We know some arch can have a nodes layout such as 495 * -------------pfn--------------> 496 * N0 | N1 | N2 | N0 | N1 | N2|.... 497 */ 498 if (pfn_to_nid(pfn) != nid) 499 continue; 500 if (init_section_page_ext(pfn, nid)) 501 goto oom; 502 cond_resched(); 503 } 504 } 505 hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI); 506 pr_info("allocated %ld bytes of page_ext\n", total_usage); 507 invoke_init_callbacks(); 508 return; 509 510 oom: 511 panic("Out of memory"); 512 } 513 514 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 515 { 516 } 517 518 #endif 519 520 /** 521 * page_ext_get() - Get the extended information for a page. 522 * @page: The page we're interested in. 523 * 524 * Ensures that the page_ext will remain valid until page_ext_put() 525 * is called. 526 * 527 * Return: NULL if no page_ext exists for this page. 528 * Context: Any context. Caller may not sleep until they have called 529 * page_ext_put(). 530 */ 531 struct page_ext *page_ext_get(const struct page *page) 532 { 533 struct page_ext *page_ext; 534 535 rcu_read_lock(); 536 page_ext = lookup_page_ext(page); 537 if (!page_ext) { 538 rcu_read_unlock(); 539 return NULL; 540 } 541 542 return page_ext; 543 } 544 545 /** 546 * page_ext_put() - Working with page extended information is done. 547 * @page_ext: Page extended information received from page_ext_get(). 548 * 549 * The page extended information of the page may not be valid after this 550 * function is called. 551 * 552 * Return: None. 553 * Context: Any context with corresponding page_ext_get() is called. 554 */ 555 void page_ext_put(struct page_ext *page_ext) 556 { 557 if (unlikely(!page_ext)) 558 return; 559 560 rcu_read_unlock(); 561 } 562