1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/mm.h> 3 #include <linux/mmzone.h> 4 #include <linux/memblock.h> 5 #include <linux/page_ext.h> 6 #include <linux/memory.h> 7 #include <linux/vmalloc.h> 8 #include <linux/kmemleak.h> 9 #include <linux/page_owner.h> 10 #include <linux/page_idle.h> 11 12 /* 13 * struct page extension 14 * 15 * This is the feature to manage memory for extended data per page. 16 * 17 * Until now, we must modify struct page itself to store extra data per page. 18 * This requires rebuilding the kernel and it is really time consuming process. 19 * And, sometimes, rebuild is impossible due to third party module dependency. 20 * At last, enlarging struct page could cause un-wanted system behaviour change. 21 * 22 * This feature is intended to overcome above mentioned problems. This feature 23 * allocates memory for extended data per page in certain place rather than 24 * the struct page itself. This memory can be accessed by the accessor 25 * functions provided by this code. During the boot process, it checks whether 26 * allocation of huge chunk of memory is needed or not. If not, it avoids 27 * allocating memory at all. With this advantage, we can include this feature 28 * into the kernel in default and can avoid rebuild and solve related problems. 29 * 30 * To help these things to work well, there are two callbacks for clients. One 31 * is the need callback which is mandatory if user wants to avoid useless 32 * memory allocation at boot-time. The other is optional, init callback, which 33 * is used to do proper initialization after memory is allocated. 34 * 35 * The need callback is used to decide whether extended memory allocation is 36 * needed or not. Sometimes users want to deactivate some features in this 37 * boot and extra memory would be unnecessary. In this case, to avoid 38 * allocating huge chunk of memory, each clients represent their need of 39 * extra memory through the need callback. If one of the need callbacks 40 * returns true, it means that someone needs extra memory so that 41 * page extension core should allocates memory for page extension. If 42 * none of need callbacks return true, memory isn't needed at all in this boot 43 * and page extension core can skip to allocate memory. As result, 44 * none of memory is wasted. 45 * 46 * When need callback returns true, page_ext checks if there is a request for 47 * extra memory through size in struct page_ext_operations. If it is non-zero, 48 * extra space is allocated for each page_ext entry and offset is returned to 49 * user through offset in struct page_ext_operations. 50 * 51 * The init callback is used to do proper initialization after page extension 52 * is completely initialized. In sparse memory system, extra memory is 53 * allocated some time later than memmap is allocated. In other words, lifetime 54 * of memory for page extension isn't same with memmap for struct page. 55 * Therefore, clients can't store extra data until page extension is 56 * initialized, even if pages are allocated and used freely. This could 57 * cause inadequate state of extra data per page, so, to prevent it, client 58 * can utilize this callback to initialize the state of it correctly. 59 */ 60 61 static struct page_ext_operations *page_ext_ops[] = { 62 #ifdef CONFIG_PAGE_OWNER 63 &page_owner_ops, 64 #endif 65 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT) 66 &page_idle_ops, 67 #endif 68 }; 69 70 unsigned long page_ext_size = sizeof(struct page_ext); 71 72 static unsigned long total_usage; 73 74 static bool __init invoke_need_callbacks(void) 75 { 76 int i; 77 int entries = ARRAY_SIZE(page_ext_ops); 78 bool need = false; 79 80 for (i = 0; i < entries; i++) { 81 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) { 82 page_ext_ops[i]->offset = page_ext_size; 83 page_ext_size += page_ext_ops[i]->size; 84 need = true; 85 } 86 } 87 88 return need; 89 } 90 91 static void __init invoke_init_callbacks(void) 92 { 93 int i; 94 int entries = ARRAY_SIZE(page_ext_ops); 95 96 for (i = 0; i < entries; i++) { 97 if (page_ext_ops[i]->init) 98 page_ext_ops[i]->init(); 99 } 100 } 101 102 #ifndef CONFIG_SPARSEMEM 103 void __init page_ext_init_flatmem_late(void) 104 { 105 invoke_init_callbacks(); 106 } 107 #endif 108 109 static inline struct page_ext *get_entry(void *base, unsigned long index) 110 { 111 return base + page_ext_size * index; 112 } 113 114 #ifndef CONFIG_SPARSEMEM 115 116 117 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 118 { 119 pgdat->node_page_ext = NULL; 120 } 121 122 struct page_ext *lookup_page_ext(const struct page *page) 123 { 124 unsigned long pfn = page_to_pfn(page); 125 unsigned long index; 126 struct page_ext *base; 127 128 base = NODE_DATA(page_to_nid(page))->node_page_ext; 129 /* 130 * The sanity checks the page allocator does upon freeing a 131 * page can reach here before the page_ext arrays are 132 * allocated when feeding a range of pages to the allocator 133 * for the first time during bootup or memory hotplug. 134 */ 135 if (unlikely(!base)) 136 return NULL; 137 index = pfn - round_down(node_start_pfn(page_to_nid(page)), 138 MAX_ORDER_NR_PAGES); 139 return get_entry(base, index); 140 } 141 142 static int __init alloc_node_page_ext(int nid) 143 { 144 struct page_ext *base; 145 unsigned long table_size; 146 unsigned long nr_pages; 147 148 nr_pages = NODE_DATA(nid)->node_spanned_pages; 149 if (!nr_pages) 150 return 0; 151 152 /* 153 * Need extra space if node range is not aligned with 154 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 155 * checks buddy's status, range could be out of exact node range. 156 */ 157 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 158 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 159 nr_pages += MAX_ORDER_NR_PAGES; 160 161 table_size = page_ext_size * nr_pages; 162 163 base = memblock_alloc_try_nid( 164 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 165 MEMBLOCK_ALLOC_ACCESSIBLE, nid); 166 if (!base) 167 return -ENOMEM; 168 NODE_DATA(nid)->node_page_ext = base; 169 total_usage += table_size; 170 return 0; 171 } 172 173 void __init page_ext_init_flatmem(void) 174 { 175 176 int nid, fail; 177 178 if (!invoke_need_callbacks()) 179 return; 180 181 for_each_online_node(nid) { 182 fail = alloc_node_page_ext(nid); 183 if (fail) 184 goto fail; 185 } 186 pr_info("allocated %ld bytes of page_ext\n", total_usage); 187 return; 188 189 fail: 190 pr_crit("allocation of page_ext failed.\n"); 191 panic("Out of memory"); 192 } 193 194 #else /* CONFIG_FLATMEM */ 195 196 struct page_ext *lookup_page_ext(const struct page *page) 197 { 198 unsigned long pfn = page_to_pfn(page); 199 struct mem_section *section = __pfn_to_section(pfn); 200 /* 201 * The sanity checks the page allocator does upon freeing a 202 * page can reach here before the page_ext arrays are 203 * allocated when feeding a range of pages to the allocator 204 * for the first time during bootup or memory hotplug. 205 */ 206 if (!section->page_ext) 207 return NULL; 208 return get_entry(section->page_ext, pfn); 209 } 210 211 static void *__meminit alloc_page_ext(size_t size, int nid) 212 { 213 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 214 void *addr = NULL; 215 216 addr = alloc_pages_exact_nid(nid, size, flags); 217 if (addr) { 218 kmemleak_alloc(addr, size, 1, flags); 219 return addr; 220 } 221 222 addr = vzalloc_node(size, nid); 223 224 return addr; 225 } 226 227 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 228 { 229 struct mem_section *section; 230 struct page_ext *base; 231 unsigned long table_size; 232 233 section = __pfn_to_section(pfn); 234 235 if (section->page_ext) 236 return 0; 237 238 table_size = page_ext_size * PAGES_PER_SECTION; 239 base = alloc_page_ext(table_size, nid); 240 241 /* 242 * The value stored in section->page_ext is (base - pfn) 243 * and it does not point to the memory block allocated above, 244 * causing kmemleak false positives. 245 */ 246 kmemleak_not_leak(base); 247 248 if (!base) { 249 pr_err("page ext allocation failure\n"); 250 return -ENOMEM; 251 } 252 253 /* 254 * The passed "pfn" may not be aligned to SECTION. For the calculation 255 * we need to apply a mask. 256 */ 257 pfn &= PAGE_SECTION_MASK; 258 section->page_ext = (void *)base - page_ext_size * pfn; 259 total_usage += table_size; 260 return 0; 261 } 262 #ifdef CONFIG_MEMORY_HOTPLUG 263 static void free_page_ext(void *addr) 264 { 265 if (is_vmalloc_addr(addr)) { 266 vfree(addr); 267 } else { 268 struct page *page = virt_to_page(addr); 269 size_t table_size; 270 271 table_size = page_ext_size * PAGES_PER_SECTION; 272 273 BUG_ON(PageReserved(page)); 274 kmemleak_free(addr); 275 free_pages_exact(addr, table_size); 276 } 277 } 278 279 static void __free_page_ext(unsigned long pfn) 280 { 281 struct mem_section *ms; 282 struct page_ext *base; 283 284 ms = __pfn_to_section(pfn); 285 if (!ms || !ms->page_ext) 286 return; 287 base = get_entry(ms->page_ext, pfn); 288 free_page_ext(base); 289 ms->page_ext = NULL; 290 } 291 292 static int __meminit online_page_ext(unsigned long start_pfn, 293 unsigned long nr_pages, 294 int nid) 295 { 296 unsigned long start, end, pfn; 297 int fail = 0; 298 299 start = SECTION_ALIGN_DOWN(start_pfn); 300 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 301 302 if (nid == NUMA_NO_NODE) { 303 /* 304 * In this case, "nid" already exists and contains valid memory. 305 * "start_pfn" passed to us is a pfn which is an arg for 306 * online__pages(), and start_pfn should exist. 307 */ 308 nid = pfn_to_nid(start_pfn); 309 VM_BUG_ON(!node_state(nid, N_ONLINE)); 310 } 311 312 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) 313 fail = init_section_page_ext(pfn, nid); 314 if (!fail) 315 return 0; 316 317 /* rollback */ 318 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 319 __free_page_ext(pfn); 320 321 return -ENOMEM; 322 } 323 324 static int __meminit offline_page_ext(unsigned long start_pfn, 325 unsigned long nr_pages, int nid) 326 { 327 unsigned long start, end, pfn; 328 329 start = SECTION_ALIGN_DOWN(start_pfn); 330 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 331 332 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 333 __free_page_ext(pfn); 334 return 0; 335 336 } 337 338 static int __meminit page_ext_callback(struct notifier_block *self, 339 unsigned long action, void *arg) 340 { 341 struct memory_notify *mn = arg; 342 int ret = 0; 343 344 switch (action) { 345 case MEM_GOING_ONLINE: 346 ret = online_page_ext(mn->start_pfn, 347 mn->nr_pages, mn->status_change_nid); 348 break; 349 case MEM_OFFLINE: 350 offline_page_ext(mn->start_pfn, 351 mn->nr_pages, mn->status_change_nid); 352 break; 353 case MEM_CANCEL_ONLINE: 354 offline_page_ext(mn->start_pfn, 355 mn->nr_pages, mn->status_change_nid); 356 break; 357 case MEM_GOING_OFFLINE: 358 break; 359 case MEM_ONLINE: 360 case MEM_CANCEL_OFFLINE: 361 break; 362 } 363 364 return notifier_from_errno(ret); 365 } 366 367 #endif 368 369 void __init page_ext_init(void) 370 { 371 unsigned long pfn; 372 int nid; 373 374 if (!invoke_need_callbacks()) 375 return; 376 377 for_each_node_state(nid, N_MEMORY) { 378 unsigned long start_pfn, end_pfn; 379 380 start_pfn = node_start_pfn(nid); 381 end_pfn = node_end_pfn(nid); 382 /* 383 * start_pfn and end_pfn may not be aligned to SECTION and the 384 * page->flags of out of node pages are not initialized. So we 385 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 386 */ 387 for (pfn = start_pfn; pfn < end_pfn; 388 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 389 390 if (!pfn_valid(pfn)) 391 continue; 392 /* 393 * Nodes's pfns can be overlapping. 394 * We know some arch can have a nodes layout such as 395 * -------------pfn--------------> 396 * N0 | N1 | N2 | N0 | N1 | N2|.... 397 */ 398 if (pfn_to_nid(pfn) != nid) 399 continue; 400 if (init_section_page_ext(pfn, nid)) 401 goto oom; 402 cond_resched(); 403 } 404 } 405 hotplug_memory_notifier(page_ext_callback, 0); 406 pr_info("allocated %ld bytes of page_ext\n", total_usage); 407 invoke_init_callbacks(); 408 return; 409 410 oom: 411 panic("Out of memory"); 412 } 413 414 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 415 { 416 } 417 418 #endif 419