1 #include <linux/mm.h> 2 #include <linux/mmzone.h> 3 #include <linux/bootmem.h> 4 #include <linux/page_ext.h> 5 #include <linux/memory.h> 6 #include <linux/vmalloc.h> 7 #include <linux/kmemleak.h> 8 #include <linux/page_owner.h> 9 10 /* 11 * struct page extension 12 * 13 * This is the feature to manage memory for extended data per page. 14 * 15 * Until now, we must modify struct page itself to store extra data per page. 16 * This requires rebuilding the kernel and it is really time consuming process. 17 * And, sometimes, rebuild is impossible due to third party module dependency. 18 * At last, enlarging struct page could cause un-wanted system behaviour change. 19 * 20 * This feature is intended to overcome above mentioned problems. This feature 21 * allocates memory for extended data per page in certain place rather than 22 * the struct page itself. This memory can be accessed by the accessor 23 * functions provided by this code. During the boot process, it checks whether 24 * allocation of huge chunk of memory is needed or not. If not, it avoids 25 * allocating memory at all. With this advantage, we can include this feature 26 * into the kernel in default and can avoid rebuild and solve related problems. 27 * 28 * To help these things to work well, there are two callbacks for clients. One 29 * is the need callback which is mandatory if user wants to avoid useless 30 * memory allocation at boot-time. The other is optional, init callback, which 31 * is used to do proper initialization after memory is allocated. 32 * 33 * The need callback is used to decide whether extended memory allocation is 34 * needed or not. Sometimes users want to deactivate some features in this 35 * boot and extra memory would be unneccessary. In this case, to avoid 36 * allocating huge chunk of memory, each clients represent their need of 37 * extra memory through the need callback. If one of the need callbacks 38 * returns true, it means that someone needs extra memory so that 39 * page extension core should allocates memory for page extension. If 40 * none of need callbacks return true, memory isn't needed at all in this boot 41 * and page extension core can skip to allocate memory. As result, 42 * none of memory is wasted. 43 * 44 * The init callback is used to do proper initialization after page extension 45 * is completely initialized. In sparse memory system, extra memory is 46 * allocated some time later than memmap is allocated. In other words, lifetime 47 * of memory for page extension isn't same with memmap for struct page. 48 * Therefore, clients can't store extra data until page extension is 49 * initialized, even if pages are allocated and used freely. This could 50 * cause inadequate state of extra data per page, so, to prevent it, client 51 * can utilize this callback to initialize the state of it correctly. 52 */ 53 54 static struct page_ext_operations *page_ext_ops[] = { 55 &debug_guardpage_ops, 56 #ifdef CONFIG_PAGE_POISONING 57 &page_poisoning_ops, 58 #endif 59 #ifdef CONFIG_PAGE_OWNER 60 &page_owner_ops, 61 #endif 62 }; 63 64 static unsigned long total_usage; 65 66 static bool __init invoke_need_callbacks(void) 67 { 68 int i; 69 int entries = ARRAY_SIZE(page_ext_ops); 70 71 for (i = 0; i < entries; i++) { 72 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) 73 return true; 74 } 75 76 return false; 77 } 78 79 static void __init invoke_init_callbacks(void) 80 { 81 int i; 82 int entries = ARRAY_SIZE(page_ext_ops); 83 84 for (i = 0; i < entries; i++) { 85 if (page_ext_ops[i]->init) 86 page_ext_ops[i]->init(); 87 } 88 } 89 90 #if !defined(CONFIG_SPARSEMEM) 91 92 93 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 94 { 95 pgdat->node_page_ext = NULL; 96 } 97 98 struct page_ext *lookup_page_ext(struct page *page) 99 { 100 unsigned long pfn = page_to_pfn(page); 101 unsigned long offset; 102 struct page_ext *base; 103 104 base = NODE_DATA(page_to_nid(page))->node_page_ext; 105 #ifdef CONFIG_DEBUG_VM 106 /* 107 * The sanity checks the page allocator does upon freeing a 108 * page can reach here before the page_ext arrays are 109 * allocated when feeding a range of pages to the allocator 110 * for the first time during bootup or memory hotplug. 111 */ 112 if (unlikely(!base)) 113 return NULL; 114 #endif 115 offset = pfn - round_down(node_start_pfn(page_to_nid(page)), 116 MAX_ORDER_NR_PAGES); 117 return base + offset; 118 } 119 120 static int __init alloc_node_page_ext(int nid) 121 { 122 struct page_ext *base; 123 unsigned long table_size; 124 unsigned long nr_pages; 125 126 nr_pages = NODE_DATA(nid)->node_spanned_pages; 127 if (!nr_pages) 128 return 0; 129 130 /* 131 * Need extra space if node range is not aligned with 132 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 133 * checks buddy's status, range could be out of exact node range. 134 */ 135 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 136 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 137 nr_pages += MAX_ORDER_NR_PAGES; 138 139 table_size = sizeof(struct page_ext) * nr_pages; 140 141 base = memblock_virt_alloc_try_nid_nopanic( 142 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 143 BOOTMEM_ALLOC_ACCESSIBLE, nid); 144 if (!base) 145 return -ENOMEM; 146 NODE_DATA(nid)->node_page_ext = base; 147 total_usage += table_size; 148 return 0; 149 } 150 151 void __init page_ext_init_flatmem(void) 152 { 153 154 int nid, fail; 155 156 if (!invoke_need_callbacks()) 157 return; 158 159 for_each_online_node(nid) { 160 fail = alloc_node_page_ext(nid); 161 if (fail) 162 goto fail; 163 } 164 pr_info("allocated %ld bytes of page_ext\n", total_usage); 165 invoke_init_callbacks(); 166 return; 167 168 fail: 169 pr_crit("allocation of page_ext failed.\n"); 170 panic("Out of memory"); 171 } 172 173 #else /* CONFIG_FLAT_NODE_MEM_MAP */ 174 175 struct page_ext *lookup_page_ext(struct page *page) 176 { 177 unsigned long pfn = page_to_pfn(page); 178 struct mem_section *section = __pfn_to_section(pfn); 179 #ifdef CONFIG_DEBUG_VM 180 /* 181 * The sanity checks the page allocator does upon freeing a 182 * page can reach here before the page_ext arrays are 183 * allocated when feeding a range of pages to the allocator 184 * for the first time during bootup or memory hotplug. 185 */ 186 if (!section->page_ext) 187 return NULL; 188 #endif 189 return section->page_ext + pfn; 190 } 191 192 static void *__meminit alloc_page_ext(size_t size, int nid) 193 { 194 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 195 void *addr = NULL; 196 197 addr = alloc_pages_exact_nid(nid, size, flags); 198 if (addr) { 199 kmemleak_alloc(addr, size, 1, flags); 200 return addr; 201 } 202 203 if (node_state(nid, N_HIGH_MEMORY)) 204 addr = vzalloc_node(size, nid); 205 else 206 addr = vzalloc(size); 207 208 return addr; 209 } 210 211 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 212 { 213 struct mem_section *section; 214 struct page_ext *base; 215 unsigned long table_size; 216 217 section = __pfn_to_section(pfn); 218 219 if (section->page_ext) 220 return 0; 221 222 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION; 223 base = alloc_page_ext(table_size, nid); 224 225 /* 226 * The value stored in section->page_ext is (base - pfn) 227 * and it does not point to the memory block allocated above, 228 * causing kmemleak false positives. 229 */ 230 kmemleak_not_leak(base); 231 232 if (!base) { 233 pr_err("page ext allocation failure\n"); 234 return -ENOMEM; 235 } 236 237 /* 238 * The passed "pfn" may not be aligned to SECTION. For the calculation 239 * we need to apply a mask. 240 */ 241 pfn &= PAGE_SECTION_MASK; 242 section->page_ext = base - pfn; 243 total_usage += table_size; 244 return 0; 245 } 246 #ifdef CONFIG_MEMORY_HOTPLUG 247 static void free_page_ext(void *addr) 248 { 249 if (is_vmalloc_addr(addr)) { 250 vfree(addr); 251 } else { 252 struct page *page = virt_to_page(addr); 253 size_t table_size; 254 255 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION; 256 257 BUG_ON(PageReserved(page)); 258 free_pages_exact(addr, table_size); 259 } 260 } 261 262 static void __free_page_ext(unsigned long pfn) 263 { 264 struct mem_section *ms; 265 struct page_ext *base; 266 267 ms = __pfn_to_section(pfn); 268 if (!ms || !ms->page_ext) 269 return; 270 base = ms->page_ext + pfn; 271 free_page_ext(base); 272 ms->page_ext = NULL; 273 } 274 275 static int __meminit online_page_ext(unsigned long start_pfn, 276 unsigned long nr_pages, 277 int nid) 278 { 279 unsigned long start, end, pfn; 280 int fail = 0; 281 282 start = SECTION_ALIGN_DOWN(start_pfn); 283 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 284 285 if (nid == -1) { 286 /* 287 * In this case, "nid" already exists and contains valid memory. 288 * "start_pfn" passed to us is a pfn which is an arg for 289 * online__pages(), and start_pfn should exist. 290 */ 291 nid = pfn_to_nid(start_pfn); 292 VM_BUG_ON(!node_state(nid, N_ONLINE)); 293 } 294 295 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { 296 if (!pfn_present(pfn)) 297 continue; 298 fail = init_section_page_ext(pfn, nid); 299 } 300 if (!fail) 301 return 0; 302 303 /* rollback */ 304 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 305 __free_page_ext(pfn); 306 307 return -ENOMEM; 308 } 309 310 static int __meminit offline_page_ext(unsigned long start_pfn, 311 unsigned long nr_pages, int nid) 312 { 313 unsigned long start, end, pfn; 314 315 start = SECTION_ALIGN_DOWN(start_pfn); 316 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 317 318 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 319 __free_page_ext(pfn); 320 return 0; 321 322 } 323 324 static int __meminit page_ext_callback(struct notifier_block *self, 325 unsigned long action, void *arg) 326 { 327 struct memory_notify *mn = arg; 328 int ret = 0; 329 330 switch (action) { 331 case MEM_GOING_ONLINE: 332 ret = online_page_ext(mn->start_pfn, 333 mn->nr_pages, mn->status_change_nid); 334 break; 335 case MEM_OFFLINE: 336 offline_page_ext(mn->start_pfn, 337 mn->nr_pages, mn->status_change_nid); 338 break; 339 case MEM_CANCEL_ONLINE: 340 offline_page_ext(mn->start_pfn, 341 mn->nr_pages, mn->status_change_nid); 342 break; 343 case MEM_GOING_OFFLINE: 344 break; 345 case MEM_ONLINE: 346 case MEM_CANCEL_OFFLINE: 347 break; 348 } 349 350 return notifier_from_errno(ret); 351 } 352 353 #endif 354 355 void __init page_ext_init(void) 356 { 357 unsigned long pfn; 358 int nid; 359 360 if (!invoke_need_callbacks()) 361 return; 362 363 for_each_node_state(nid, N_MEMORY) { 364 unsigned long start_pfn, end_pfn; 365 366 start_pfn = node_start_pfn(nid); 367 end_pfn = node_end_pfn(nid); 368 /* 369 * start_pfn and end_pfn may not be aligned to SECTION and the 370 * page->flags of out of node pages are not initialized. So we 371 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 372 */ 373 for (pfn = start_pfn; pfn < end_pfn; 374 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 375 376 if (!pfn_valid(pfn)) 377 continue; 378 /* 379 * Nodes's pfns can be overlapping. 380 * We know some arch can have a nodes layout such as 381 * -------------pfn--------------> 382 * N0 | N1 | N2 | N0 | N1 | N2|.... 383 */ 384 if (pfn_to_nid(pfn) != nid) 385 continue; 386 if (init_section_page_ext(pfn, nid)) 387 goto oom; 388 } 389 } 390 hotplug_memory_notifier(page_ext_callback, 0); 391 pr_info("allocated %ld bytes of page_ext\n", total_usage); 392 invoke_init_callbacks(); 393 return; 394 395 oom: 396 panic("Out of memory"); 397 } 398 399 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 400 { 401 } 402 403 #endif 404