xref: /linux/mm/page_ext.c (revision 5bdd5fbb35ab0fe21bf2263106f51c5bee466a07)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/bootmem.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 
12 /*
13  * struct page extension
14  *
15  * This is the feature to manage memory for extended data per page.
16  *
17  * Until now, we must modify struct page itself to store extra data per page.
18  * This requires rebuilding the kernel and it is really time consuming process.
19  * And, sometimes, rebuild is impossible due to third party module dependency.
20  * At last, enlarging struct page could cause un-wanted system behaviour change.
21  *
22  * This feature is intended to overcome above mentioned problems. This feature
23  * allocates memory for extended data per page in certain place rather than
24  * the struct page itself. This memory can be accessed by the accessor
25  * functions provided by this code. During the boot process, it checks whether
26  * allocation of huge chunk of memory is needed or not. If not, it avoids
27  * allocating memory at all. With this advantage, we can include this feature
28  * into the kernel in default and can avoid rebuild and solve related problems.
29  *
30  * To help these things to work well, there are two callbacks for clients. One
31  * is the need callback which is mandatory if user wants to avoid useless
32  * memory allocation at boot-time. The other is optional, init callback, which
33  * is used to do proper initialization after memory is allocated.
34  *
35  * The need callback is used to decide whether extended memory allocation is
36  * needed or not. Sometimes users want to deactivate some features in this
37  * boot and extra memory would be unneccessary. In this case, to avoid
38  * allocating huge chunk of memory, each clients represent their need of
39  * extra memory through the need callback. If one of the need callbacks
40  * returns true, it means that someone needs extra memory so that
41  * page extension core should allocates memory for page extension. If
42  * none of need callbacks return true, memory isn't needed at all in this boot
43  * and page extension core can skip to allocate memory. As result,
44  * none of memory is wasted.
45  *
46  * When need callback returns true, page_ext checks if there is a request for
47  * extra memory through size in struct page_ext_operations. If it is non-zero,
48  * extra space is allocated for each page_ext entry and offset is returned to
49  * user through offset in struct page_ext_operations.
50  *
51  * The init callback is used to do proper initialization after page extension
52  * is completely initialized. In sparse memory system, extra memory is
53  * allocated some time later than memmap is allocated. In other words, lifetime
54  * of memory for page extension isn't same with memmap for struct page.
55  * Therefore, clients can't store extra data until page extension is
56  * initialized, even if pages are allocated and used freely. This could
57  * cause inadequate state of extra data per page, so, to prevent it, client
58  * can utilize this callback to initialize the state of it correctly.
59  */
60 
61 static struct page_ext_operations *page_ext_ops[] = {
62 #ifdef CONFIG_DEBUG_PAGEALLOC
63 	&debug_guardpage_ops,
64 #endif
65 #ifdef CONFIG_PAGE_OWNER
66 	&page_owner_ops,
67 #endif
68 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
69 	&page_idle_ops,
70 #endif
71 };
72 
73 static unsigned long total_usage;
74 static unsigned long extra_mem;
75 
76 static bool __init invoke_need_callbacks(void)
77 {
78 	int i;
79 	int entries = ARRAY_SIZE(page_ext_ops);
80 	bool need = false;
81 
82 	for (i = 0; i < entries; i++) {
83 		if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
84 			page_ext_ops[i]->offset = sizeof(struct page_ext) +
85 						extra_mem;
86 			extra_mem += page_ext_ops[i]->size;
87 			need = true;
88 		}
89 	}
90 
91 	return need;
92 }
93 
94 static void __init invoke_init_callbacks(void)
95 {
96 	int i;
97 	int entries = ARRAY_SIZE(page_ext_ops);
98 
99 	for (i = 0; i < entries; i++) {
100 		if (page_ext_ops[i]->init)
101 			page_ext_ops[i]->init();
102 	}
103 }
104 
105 static unsigned long get_entry_size(void)
106 {
107 	return sizeof(struct page_ext) + extra_mem;
108 }
109 
110 static inline struct page_ext *get_entry(void *base, unsigned long index)
111 {
112 	return base + get_entry_size() * index;
113 }
114 
115 #if !defined(CONFIG_SPARSEMEM)
116 
117 
118 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
119 {
120 	pgdat->node_page_ext = NULL;
121 }
122 
123 struct page_ext *lookup_page_ext(struct page *page)
124 {
125 	unsigned long pfn = page_to_pfn(page);
126 	unsigned long index;
127 	struct page_ext *base;
128 
129 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
130 	/*
131 	 * The sanity checks the page allocator does upon freeing a
132 	 * page can reach here before the page_ext arrays are
133 	 * allocated when feeding a range of pages to the allocator
134 	 * for the first time during bootup or memory hotplug.
135 	 */
136 	if (unlikely(!base))
137 		return NULL;
138 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
139 					MAX_ORDER_NR_PAGES);
140 	return get_entry(base, index);
141 }
142 
143 static int __init alloc_node_page_ext(int nid)
144 {
145 	struct page_ext *base;
146 	unsigned long table_size;
147 	unsigned long nr_pages;
148 
149 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
150 	if (!nr_pages)
151 		return 0;
152 
153 	/*
154 	 * Need extra space if node range is not aligned with
155 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
156 	 * checks buddy's status, range could be out of exact node range.
157 	 */
158 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
159 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
160 		nr_pages += MAX_ORDER_NR_PAGES;
161 
162 	table_size = get_entry_size() * nr_pages;
163 
164 	base = memblock_virt_alloc_try_nid_nopanic(
165 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
166 			BOOTMEM_ALLOC_ACCESSIBLE, nid);
167 	if (!base)
168 		return -ENOMEM;
169 	NODE_DATA(nid)->node_page_ext = base;
170 	total_usage += table_size;
171 	return 0;
172 }
173 
174 void __init page_ext_init_flatmem(void)
175 {
176 
177 	int nid, fail;
178 
179 	if (!invoke_need_callbacks())
180 		return;
181 
182 	for_each_online_node(nid)  {
183 		fail = alloc_node_page_ext(nid);
184 		if (fail)
185 			goto fail;
186 	}
187 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
188 	invoke_init_callbacks();
189 	return;
190 
191 fail:
192 	pr_crit("allocation of page_ext failed.\n");
193 	panic("Out of memory");
194 }
195 
196 #else /* CONFIG_FLAT_NODE_MEM_MAP */
197 
198 struct page_ext *lookup_page_ext(struct page *page)
199 {
200 	unsigned long pfn = page_to_pfn(page);
201 	struct mem_section *section = __pfn_to_section(pfn);
202 	/*
203 	 * The sanity checks the page allocator does upon freeing a
204 	 * page can reach here before the page_ext arrays are
205 	 * allocated when feeding a range of pages to the allocator
206 	 * for the first time during bootup or memory hotplug.
207 	 */
208 	if (!section->page_ext)
209 		return NULL;
210 	return get_entry(section->page_ext, pfn);
211 }
212 
213 static void *__meminit alloc_page_ext(size_t size, int nid)
214 {
215 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
216 	void *addr = NULL;
217 
218 	addr = alloc_pages_exact_nid(nid, size, flags);
219 	if (addr) {
220 		kmemleak_alloc(addr, size, 1, flags);
221 		return addr;
222 	}
223 
224 	addr = vzalloc_node(size, nid);
225 
226 	return addr;
227 }
228 
229 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
230 {
231 	struct mem_section *section;
232 	struct page_ext *base;
233 	unsigned long table_size;
234 
235 	section = __pfn_to_section(pfn);
236 
237 	if (section->page_ext)
238 		return 0;
239 
240 	table_size = get_entry_size() * PAGES_PER_SECTION;
241 	base = alloc_page_ext(table_size, nid);
242 
243 	/*
244 	 * The value stored in section->page_ext is (base - pfn)
245 	 * and it does not point to the memory block allocated above,
246 	 * causing kmemleak false positives.
247 	 */
248 	kmemleak_not_leak(base);
249 
250 	if (!base) {
251 		pr_err("page ext allocation failure\n");
252 		return -ENOMEM;
253 	}
254 
255 	/*
256 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
257 	 * we need to apply a mask.
258 	 */
259 	pfn &= PAGE_SECTION_MASK;
260 	section->page_ext = (void *)base - get_entry_size() * pfn;
261 	total_usage += table_size;
262 	return 0;
263 }
264 #ifdef CONFIG_MEMORY_HOTPLUG
265 static void free_page_ext(void *addr)
266 {
267 	if (is_vmalloc_addr(addr)) {
268 		vfree(addr);
269 	} else {
270 		struct page *page = virt_to_page(addr);
271 		size_t table_size;
272 
273 		table_size = get_entry_size() * PAGES_PER_SECTION;
274 
275 		BUG_ON(PageReserved(page));
276 		free_pages_exact(addr, table_size);
277 	}
278 }
279 
280 static void __free_page_ext(unsigned long pfn)
281 {
282 	struct mem_section *ms;
283 	struct page_ext *base;
284 
285 	ms = __pfn_to_section(pfn);
286 	if (!ms || !ms->page_ext)
287 		return;
288 	base = get_entry(ms->page_ext, pfn);
289 	free_page_ext(base);
290 	ms->page_ext = NULL;
291 }
292 
293 static int __meminit online_page_ext(unsigned long start_pfn,
294 				unsigned long nr_pages,
295 				int nid)
296 {
297 	unsigned long start, end, pfn;
298 	int fail = 0;
299 
300 	start = SECTION_ALIGN_DOWN(start_pfn);
301 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
302 
303 	if (nid == -1) {
304 		/*
305 		 * In this case, "nid" already exists and contains valid memory.
306 		 * "start_pfn" passed to us is a pfn which is an arg for
307 		 * online__pages(), and start_pfn should exist.
308 		 */
309 		nid = pfn_to_nid(start_pfn);
310 		VM_BUG_ON(!node_state(nid, N_ONLINE));
311 	}
312 
313 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
314 		if (!pfn_present(pfn))
315 			continue;
316 		fail = init_section_page_ext(pfn, nid);
317 	}
318 	if (!fail)
319 		return 0;
320 
321 	/* rollback */
322 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
323 		__free_page_ext(pfn);
324 
325 	return -ENOMEM;
326 }
327 
328 static int __meminit offline_page_ext(unsigned long start_pfn,
329 				unsigned long nr_pages, int nid)
330 {
331 	unsigned long start, end, pfn;
332 
333 	start = SECTION_ALIGN_DOWN(start_pfn);
334 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
335 
336 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
337 		__free_page_ext(pfn);
338 	return 0;
339 
340 }
341 
342 static int __meminit page_ext_callback(struct notifier_block *self,
343 			       unsigned long action, void *arg)
344 {
345 	struct memory_notify *mn = arg;
346 	int ret = 0;
347 
348 	switch (action) {
349 	case MEM_GOING_ONLINE:
350 		ret = online_page_ext(mn->start_pfn,
351 				   mn->nr_pages, mn->status_change_nid);
352 		break;
353 	case MEM_OFFLINE:
354 		offline_page_ext(mn->start_pfn,
355 				mn->nr_pages, mn->status_change_nid);
356 		break;
357 	case MEM_CANCEL_ONLINE:
358 		offline_page_ext(mn->start_pfn,
359 				mn->nr_pages, mn->status_change_nid);
360 		break;
361 	case MEM_GOING_OFFLINE:
362 		break;
363 	case MEM_ONLINE:
364 	case MEM_CANCEL_OFFLINE:
365 		break;
366 	}
367 
368 	return notifier_from_errno(ret);
369 }
370 
371 #endif
372 
373 void __init page_ext_init(void)
374 {
375 	unsigned long pfn;
376 	int nid;
377 
378 	if (!invoke_need_callbacks())
379 		return;
380 
381 	for_each_node_state(nid, N_MEMORY) {
382 		unsigned long start_pfn, end_pfn;
383 
384 		start_pfn = node_start_pfn(nid);
385 		end_pfn = node_end_pfn(nid);
386 		/*
387 		 * start_pfn and end_pfn may not be aligned to SECTION and the
388 		 * page->flags of out of node pages are not initialized.  So we
389 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
390 		 */
391 		for (pfn = start_pfn; pfn < end_pfn;
392 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
393 
394 			if (!pfn_valid(pfn))
395 				continue;
396 			/*
397 			 * Nodes's pfns can be overlapping.
398 			 * We know some arch can have a nodes layout such as
399 			 * -------------pfn-------------->
400 			 * N0 | N1 | N2 | N0 | N1 | N2|....
401 			 *
402 			 * Take into account DEFERRED_STRUCT_PAGE_INIT.
403 			 */
404 			if (early_pfn_to_nid(pfn) != nid)
405 				continue;
406 			if (init_section_page_ext(pfn, nid))
407 				goto oom;
408 			cond_resched();
409 		}
410 	}
411 	hotplug_memory_notifier(page_ext_callback, 0);
412 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
413 	invoke_init_callbacks();
414 	return;
415 
416 oom:
417 	panic("Out of memory");
418 }
419 
420 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
421 {
422 }
423 
424 #endif
425