xref: /linux/mm/page_ext.c (revision 3ce095c16263630dde46d6051854073edaacf3d7)
1 #include <linux/mm.h>
2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/page_ext.h>
5 #include <linux/memory.h>
6 #include <linux/vmalloc.h>
7 #include <linux/kmemleak.h>
8 #include <linux/page_owner.h>
9 
10 /*
11  * struct page extension
12  *
13  * This is the feature to manage memory for extended data per page.
14  *
15  * Until now, we must modify struct page itself to store extra data per page.
16  * This requires rebuilding the kernel and it is really time consuming process.
17  * And, sometimes, rebuild is impossible due to third party module dependency.
18  * At last, enlarging struct page could cause un-wanted system behaviour change.
19  *
20  * This feature is intended to overcome above mentioned problems. This feature
21  * allocates memory for extended data per page in certain place rather than
22  * the struct page itself. This memory can be accessed by the accessor
23  * functions provided by this code. During the boot process, it checks whether
24  * allocation of huge chunk of memory is needed or not. If not, it avoids
25  * allocating memory at all. With this advantage, we can include this feature
26  * into the kernel in default and can avoid rebuild and solve related problems.
27  *
28  * To help these things to work well, there are two callbacks for clients. One
29  * is the need callback which is mandatory if user wants to avoid useless
30  * memory allocation at boot-time. The other is optional, init callback, which
31  * is used to do proper initialization after memory is allocated.
32  *
33  * The need callback is used to decide whether extended memory allocation is
34  * needed or not. Sometimes users want to deactivate some features in this
35  * boot and extra memory would be unneccessary. In this case, to avoid
36  * allocating huge chunk of memory, each clients represent their need of
37  * extra memory through the need callback. If one of the need callbacks
38  * returns true, it means that someone needs extra memory so that
39  * page extension core should allocates memory for page extension. If
40  * none of need callbacks return true, memory isn't needed at all in this boot
41  * and page extension core can skip to allocate memory. As result,
42  * none of memory is wasted.
43  *
44  * The init callback is used to do proper initialization after page extension
45  * is completely initialized. In sparse memory system, extra memory is
46  * allocated some time later than memmap is allocated. In other words, lifetime
47  * of memory for page extension isn't same with memmap for struct page.
48  * Therefore, clients can't store extra data until page extension is
49  * initialized, even if pages are allocated and used freely. This could
50  * cause inadequate state of extra data per page, so, to prevent it, client
51  * can utilize this callback to initialize the state of it correctly.
52  */
53 
54 static struct page_ext_operations *page_ext_ops[] = {
55 	&debug_guardpage_ops,
56 #ifdef CONFIG_PAGE_POISONING
57 	&page_poisoning_ops,
58 #endif
59 #ifdef CONFIG_PAGE_OWNER
60 	&page_owner_ops,
61 #endif
62 };
63 
64 static unsigned long total_usage;
65 
66 static bool __init invoke_need_callbacks(void)
67 {
68 	int i;
69 	int entries = ARRAY_SIZE(page_ext_ops);
70 
71 	for (i = 0; i < entries; i++) {
72 		if (page_ext_ops[i]->need && page_ext_ops[i]->need())
73 			return true;
74 	}
75 
76 	return false;
77 }
78 
79 static void __init invoke_init_callbacks(void)
80 {
81 	int i;
82 	int entries = ARRAY_SIZE(page_ext_ops);
83 
84 	for (i = 0; i < entries; i++) {
85 		if (page_ext_ops[i]->init)
86 			page_ext_ops[i]->init();
87 	}
88 }
89 
90 #if !defined(CONFIG_SPARSEMEM)
91 
92 
93 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
94 {
95 	pgdat->node_page_ext = NULL;
96 }
97 
98 struct page_ext *lookup_page_ext(struct page *page)
99 {
100 	unsigned long pfn = page_to_pfn(page);
101 	unsigned long offset;
102 	struct page_ext *base;
103 
104 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
105 #ifdef CONFIG_DEBUG_VM
106 	/*
107 	 * The sanity checks the page allocator does upon freeing a
108 	 * page can reach here before the page_ext arrays are
109 	 * allocated when feeding a range of pages to the allocator
110 	 * for the first time during bootup or memory hotplug.
111 	 */
112 	if (unlikely(!base))
113 		return NULL;
114 #endif
115 	offset = pfn - round_down(node_start_pfn(page_to_nid(page)),
116 					MAX_ORDER_NR_PAGES);
117 	return base + offset;
118 }
119 
120 static int __init alloc_node_page_ext(int nid)
121 {
122 	struct page_ext *base;
123 	unsigned long table_size;
124 	unsigned long nr_pages;
125 
126 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
127 	if (!nr_pages)
128 		return 0;
129 
130 	/*
131 	 * Need extra space if node range is not aligned with
132 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
133 	 * checks buddy's status, range could be out of exact node range.
134 	 */
135 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
136 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
137 		nr_pages += MAX_ORDER_NR_PAGES;
138 
139 	table_size = sizeof(struct page_ext) * nr_pages;
140 
141 	base = memblock_virt_alloc_try_nid_nopanic(
142 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
143 			BOOTMEM_ALLOC_ACCESSIBLE, nid);
144 	if (!base)
145 		return -ENOMEM;
146 	NODE_DATA(nid)->node_page_ext = base;
147 	total_usage += table_size;
148 	return 0;
149 }
150 
151 void __init page_ext_init_flatmem(void)
152 {
153 
154 	int nid, fail;
155 
156 	if (!invoke_need_callbacks())
157 		return;
158 
159 	for_each_online_node(nid)  {
160 		fail = alloc_node_page_ext(nid);
161 		if (fail)
162 			goto fail;
163 	}
164 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
165 	invoke_init_callbacks();
166 	return;
167 
168 fail:
169 	pr_crit("allocation of page_ext failed.\n");
170 	panic("Out of memory");
171 }
172 
173 #else /* CONFIG_FLAT_NODE_MEM_MAP */
174 
175 struct page_ext *lookup_page_ext(struct page *page)
176 {
177 	unsigned long pfn = page_to_pfn(page);
178 	struct mem_section *section = __pfn_to_section(pfn);
179 #ifdef CONFIG_DEBUG_VM
180 	/*
181 	 * The sanity checks the page allocator does upon freeing a
182 	 * page can reach here before the page_ext arrays are
183 	 * allocated when feeding a range of pages to the allocator
184 	 * for the first time during bootup or memory hotplug.
185 	 */
186 	if (!section->page_ext)
187 		return NULL;
188 #endif
189 	return section->page_ext + pfn;
190 }
191 
192 static void *__meminit alloc_page_ext(size_t size, int nid)
193 {
194 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
195 	void *addr = NULL;
196 
197 	addr = alloc_pages_exact_nid(nid, size, flags);
198 	if (addr) {
199 		kmemleak_alloc(addr, size, 1, flags);
200 		return addr;
201 	}
202 
203 	if (node_state(nid, N_HIGH_MEMORY))
204 		addr = vzalloc_node(size, nid);
205 	else
206 		addr = vzalloc(size);
207 
208 	return addr;
209 }
210 
211 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
212 {
213 	struct mem_section *section;
214 	struct page_ext *base;
215 	unsigned long table_size;
216 
217 	section = __pfn_to_section(pfn);
218 
219 	if (section->page_ext)
220 		return 0;
221 
222 	table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
223 	base = alloc_page_ext(table_size, nid);
224 
225 	/*
226 	 * The value stored in section->page_ext is (base - pfn)
227 	 * and it does not point to the memory block allocated above,
228 	 * causing kmemleak false positives.
229 	 */
230 	kmemleak_not_leak(base);
231 
232 	if (!base) {
233 		pr_err("page ext allocation failure\n");
234 		return -ENOMEM;
235 	}
236 
237 	/*
238 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
239 	 * we need to apply a mask.
240 	 */
241 	pfn &= PAGE_SECTION_MASK;
242 	section->page_ext = base - pfn;
243 	total_usage += table_size;
244 	return 0;
245 }
246 #ifdef CONFIG_MEMORY_HOTPLUG
247 static void free_page_ext(void *addr)
248 {
249 	if (is_vmalloc_addr(addr)) {
250 		vfree(addr);
251 	} else {
252 		struct page *page = virt_to_page(addr);
253 		size_t table_size;
254 
255 		table_size = sizeof(struct page_ext) * PAGES_PER_SECTION;
256 
257 		BUG_ON(PageReserved(page));
258 		free_pages_exact(addr, table_size);
259 	}
260 }
261 
262 static void __free_page_ext(unsigned long pfn)
263 {
264 	struct mem_section *ms;
265 	struct page_ext *base;
266 
267 	ms = __pfn_to_section(pfn);
268 	if (!ms || !ms->page_ext)
269 		return;
270 	base = ms->page_ext + pfn;
271 	free_page_ext(base);
272 	ms->page_ext = NULL;
273 }
274 
275 static int __meminit online_page_ext(unsigned long start_pfn,
276 				unsigned long nr_pages,
277 				int nid)
278 {
279 	unsigned long start, end, pfn;
280 	int fail = 0;
281 
282 	start = SECTION_ALIGN_DOWN(start_pfn);
283 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
284 
285 	if (nid == -1) {
286 		/*
287 		 * In this case, "nid" already exists and contains valid memory.
288 		 * "start_pfn" passed to us is a pfn which is an arg for
289 		 * online__pages(), and start_pfn should exist.
290 		 */
291 		nid = pfn_to_nid(start_pfn);
292 		VM_BUG_ON(!node_state(nid, N_ONLINE));
293 	}
294 
295 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
296 		if (!pfn_present(pfn))
297 			continue;
298 		fail = init_section_page_ext(pfn, nid);
299 	}
300 	if (!fail)
301 		return 0;
302 
303 	/* rollback */
304 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
305 		__free_page_ext(pfn);
306 
307 	return -ENOMEM;
308 }
309 
310 static int __meminit offline_page_ext(unsigned long start_pfn,
311 				unsigned long nr_pages, int nid)
312 {
313 	unsigned long start, end, pfn;
314 
315 	start = SECTION_ALIGN_DOWN(start_pfn);
316 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
317 
318 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
319 		__free_page_ext(pfn);
320 	return 0;
321 
322 }
323 
324 static int __meminit page_ext_callback(struct notifier_block *self,
325 			       unsigned long action, void *arg)
326 {
327 	struct memory_notify *mn = arg;
328 	int ret = 0;
329 
330 	switch (action) {
331 	case MEM_GOING_ONLINE:
332 		ret = online_page_ext(mn->start_pfn,
333 				   mn->nr_pages, mn->status_change_nid);
334 		break;
335 	case MEM_OFFLINE:
336 		offline_page_ext(mn->start_pfn,
337 				mn->nr_pages, mn->status_change_nid);
338 		break;
339 	case MEM_CANCEL_ONLINE:
340 		offline_page_ext(mn->start_pfn,
341 				mn->nr_pages, mn->status_change_nid);
342 		break;
343 	case MEM_GOING_OFFLINE:
344 		break;
345 	case MEM_ONLINE:
346 	case MEM_CANCEL_OFFLINE:
347 		break;
348 	}
349 
350 	return notifier_from_errno(ret);
351 }
352 
353 #endif
354 
355 void __init page_ext_init(void)
356 {
357 	unsigned long pfn;
358 	int nid;
359 
360 	if (!invoke_need_callbacks())
361 		return;
362 
363 	for_each_node_state(nid, N_MEMORY) {
364 		unsigned long start_pfn, end_pfn;
365 
366 		start_pfn = node_start_pfn(nid);
367 		end_pfn = node_end_pfn(nid);
368 		/*
369 		 * start_pfn and end_pfn may not be aligned to SECTION and the
370 		 * page->flags of out of node pages are not initialized.  So we
371 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
372 		 */
373 		for (pfn = start_pfn; pfn < end_pfn;
374 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
375 
376 			if (!pfn_valid(pfn))
377 				continue;
378 			/*
379 			 * Nodes's pfns can be overlapping.
380 			 * We know some arch can have a nodes layout such as
381 			 * -------------pfn-------------->
382 			 * N0 | N1 | N2 | N0 | N1 | N2|....
383 			 */
384 			if (pfn_to_nid(pfn) != nid)
385 				continue;
386 			if (init_section_page_ext(pfn, nid))
387 				goto oom;
388 		}
389 	}
390 	hotplug_memory_notifier(page_ext_callback, 0);
391 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
392 	invoke_init_callbacks();
393 	return;
394 
395 oom:
396 	panic("Out of memory");
397 }
398 
399 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
400 {
401 }
402 
403 #endif
404