xref: /linux/mm/page_ext.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/mmzone.h>
4 #include <linux/memblock.h>
5 #include <linux/page_ext.h>
6 #include <linux/memory.h>
7 #include <linux/vmalloc.h>
8 #include <linux/kmemleak.h>
9 #include <linux/page_owner.h>
10 #include <linux/page_idle.h>
11 #include <linux/page_table_check.h>
12 #include <linux/rcupdate.h>
13 #include <linux/pgalloc_tag.h>
14 
15 /*
16  * struct page extension
17  *
18  * This is the feature to manage memory for extended data per page.
19  *
20  * Until now, we must modify struct page itself to store extra data per page.
21  * This requires rebuilding the kernel and it is really time consuming process.
22  * And, sometimes, rebuild is impossible due to third party module dependency.
23  * At last, enlarging struct page could cause un-wanted system behaviour change.
24  *
25  * This feature is intended to overcome above mentioned problems. This feature
26  * allocates memory for extended data per page in certain place rather than
27  * the struct page itself. This memory can be accessed by the accessor
28  * functions provided by this code. During the boot process, it checks whether
29  * allocation of huge chunk of memory is needed or not. If not, it avoids
30  * allocating memory at all. With this advantage, we can include this feature
31  * into the kernel in default and can avoid rebuild and solve related problems.
32  *
33  * To help these things to work well, there are two callbacks for clients. One
34  * is the need callback which is mandatory if user wants to avoid useless
35  * memory allocation at boot-time. The other is optional, init callback, which
36  * is used to do proper initialization after memory is allocated.
37  *
38  * The need callback is used to decide whether extended memory allocation is
39  * needed or not. Sometimes users want to deactivate some features in this
40  * boot and extra memory would be unnecessary. In this case, to avoid
41  * allocating huge chunk of memory, each clients represent their need of
42  * extra memory through the need callback. If one of the need callbacks
43  * returns true, it means that someone needs extra memory so that
44  * page extension core should allocates memory for page extension. If
45  * none of need callbacks return true, memory isn't needed at all in this boot
46  * and page extension core can skip to allocate memory. As result,
47  * none of memory is wasted.
48  *
49  * When need callback returns true, page_ext checks if there is a request for
50  * extra memory through size in struct page_ext_operations. If it is non-zero,
51  * extra space is allocated for each page_ext entry and offset is returned to
52  * user through offset in struct page_ext_operations.
53  *
54  * The init callback is used to do proper initialization after page extension
55  * is completely initialized. In sparse memory system, extra memory is
56  * allocated some time later than memmap is allocated. In other words, lifetime
57  * of memory for page extension isn't same with memmap for struct page.
58  * Therefore, clients can't store extra data until page extension is
59  * initialized, even if pages are allocated and used freely. This could
60  * cause inadequate state of extra data per page, so, to prevent it, client
61  * can utilize this callback to initialize the state of it correctly.
62  */
63 
64 #ifdef CONFIG_SPARSEMEM
65 #define PAGE_EXT_INVALID       (0x1)
66 #endif
67 
68 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
69 static bool need_page_idle(void)
70 {
71 	return true;
72 }
73 static struct page_ext_operations page_idle_ops __initdata = {
74 	.need = need_page_idle,
75 	.need_shared_flags = true,
76 };
77 #endif
78 
79 static struct page_ext_operations *page_ext_ops[] __initdata = {
80 #ifdef CONFIG_PAGE_OWNER
81 	&page_owner_ops,
82 #endif
83 #if defined(CONFIG_PAGE_IDLE_FLAG) && !defined(CONFIG_64BIT)
84 	&page_idle_ops,
85 #endif
86 #ifdef CONFIG_MEM_ALLOC_PROFILING
87 	&page_alloc_tagging_ops,
88 #endif
89 #ifdef CONFIG_PAGE_TABLE_CHECK
90 	&page_table_check_ops,
91 #endif
92 };
93 
94 unsigned long page_ext_size;
95 
96 static unsigned long total_usage;
97 
98 #ifdef CONFIG_MEM_ALLOC_PROFILING_DEBUG
99 /*
100  * To ensure correct allocation tagging for pages, page_ext should be available
101  * before the first page allocation. Otherwise early task stacks will be
102  * allocated before page_ext initialization and missing tags will be flagged.
103  */
104 bool early_page_ext __meminitdata = true;
105 #else
106 bool early_page_ext __meminitdata;
107 #endif
108 static int __init setup_early_page_ext(char *str)
109 {
110 	early_page_ext = true;
111 	return 0;
112 }
113 early_param("early_page_ext", setup_early_page_ext);
114 
115 static bool __init invoke_need_callbacks(void)
116 {
117 	int i;
118 	int entries = ARRAY_SIZE(page_ext_ops);
119 	bool need = false;
120 
121 	for (i = 0; i < entries; i++) {
122 		if (page_ext_ops[i]->need()) {
123 			if (page_ext_ops[i]->need_shared_flags) {
124 				page_ext_size = sizeof(struct page_ext);
125 				break;
126 			}
127 		}
128 	}
129 
130 	for (i = 0; i < entries; i++) {
131 		if (page_ext_ops[i]->need()) {
132 			page_ext_ops[i]->offset = page_ext_size;
133 			page_ext_size += page_ext_ops[i]->size;
134 			need = true;
135 		}
136 	}
137 
138 	return need;
139 }
140 
141 static void __init invoke_init_callbacks(void)
142 {
143 	int i;
144 	int entries = ARRAY_SIZE(page_ext_ops);
145 
146 	for (i = 0; i < entries; i++) {
147 		if (page_ext_ops[i]->init)
148 			page_ext_ops[i]->init();
149 	}
150 }
151 
152 static inline struct page_ext *get_entry(void *base, unsigned long index)
153 {
154 	return base + page_ext_size * index;
155 }
156 
157 #ifndef CONFIG_SPARSEMEM
158 void __init page_ext_init_flatmem_late(void)
159 {
160 	invoke_init_callbacks();
161 }
162 
163 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
164 {
165 	pgdat->node_page_ext = NULL;
166 }
167 
168 static struct page_ext *lookup_page_ext(const struct page *page)
169 {
170 	unsigned long pfn = page_to_pfn(page);
171 	unsigned long index;
172 	struct page_ext *base;
173 
174 	WARN_ON_ONCE(!rcu_read_lock_held());
175 	base = NODE_DATA(page_to_nid(page))->node_page_ext;
176 	/*
177 	 * The sanity checks the page allocator does upon freeing a
178 	 * page can reach here before the page_ext arrays are
179 	 * allocated when feeding a range of pages to the allocator
180 	 * for the first time during bootup or memory hotplug.
181 	 */
182 	if (unlikely(!base))
183 		return NULL;
184 	index = pfn - round_down(node_start_pfn(page_to_nid(page)),
185 					MAX_ORDER_NR_PAGES);
186 	return get_entry(base, index);
187 }
188 
189 static int __init alloc_node_page_ext(int nid)
190 {
191 	struct page_ext *base;
192 	unsigned long table_size;
193 	unsigned long nr_pages;
194 
195 	nr_pages = NODE_DATA(nid)->node_spanned_pages;
196 	if (!nr_pages)
197 		return 0;
198 
199 	/*
200 	 * Need extra space if node range is not aligned with
201 	 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
202 	 * checks buddy's status, range could be out of exact node range.
203 	 */
204 	if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
205 		!IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
206 		nr_pages += MAX_ORDER_NR_PAGES;
207 
208 	table_size = page_ext_size * nr_pages;
209 
210 	base = memblock_alloc_try_nid(
211 			table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
212 			MEMBLOCK_ALLOC_ACCESSIBLE, nid);
213 	if (!base)
214 		return -ENOMEM;
215 	NODE_DATA(nid)->node_page_ext = base;
216 	total_usage += table_size;
217 	return 0;
218 }
219 
220 void __init page_ext_init_flatmem(void)
221 {
222 
223 	int nid, fail;
224 
225 	if (!invoke_need_callbacks())
226 		return;
227 
228 	for_each_online_node(nid)  {
229 		fail = alloc_node_page_ext(nid);
230 		if (fail)
231 			goto fail;
232 	}
233 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
234 	return;
235 
236 fail:
237 	pr_crit("allocation of page_ext failed.\n");
238 	panic("Out of memory");
239 }
240 
241 #else /* CONFIG_SPARSEMEM */
242 static bool page_ext_invalid(struct page_ext *page_ext)
243 {
244 	return !page_ext || (((unsigned long)page_ext & PAGE_EXT_INVALID) == PAGE_EXT_INVALID);
245 }
246 
247 static struct page_ext *lookup_page_ext(const struct page *page)
248 {
249 	unsigned long pfn = page_to_pfn(page);
250 	struct mem_section *section = __pfn_to_section(pfn);
251 	struct page_ext *page_ext = READ_ONCE(section->page_ext);
252 
253 	WARN_ON_ONCE(!rcu_read_lock_held());
254 	/*
255 	 * The sanity checks the page allocator does upon freeing a
256 	 * page can reach here before the page_ext arrays are
257 	 * allocated when feeding a range of pages to the allocator
258 	 * for the first time during bootup or memory hotplug.
259 	 */
260 	if (page_ext_invalid(page_ext))
261 		return NULL;
262 	return get_entry(page_ext, pfn);
263 }
264 
265 static void *__meminit alloc_page_ext(size_t size, int nid)
266 {
267 	gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
268 	void *addr = NULL;
269 
270 	addr = alloc_pages_exact_nid(nid, size, flags);
271 	if (addr) {
272 		kmemleak_alloc(addr, size, 1, flags);
273 		return addr;
274 	}
275 
276 	addr = vzalloc_node(size, nid);
277 
278 	return addr;
279 }
280 
281 static int __meminit init_section_page_ext(unsigned long pfn, int nid)
282 {
283 	struct mem_section *section;
284 	struct page_ext *base;
285 	unsigned long table_size;
286 
287 	section = __pfn_to_section(pfn);
288 
289 	if (section->page_ext)
290 		return 0;
291 
292 	table_size = page_ext_size * PAGES_PER_SECTION;
293 	base = alloc_page_ext(table_size, nid);
294 
295 	/*
296 	 * The value stored in section->page_ext is (base - pfn)
297 	 * and it does not point to the memory block allocated above,
298 	 * causing kmemleak false positives.
299 	 */
300 	kmemleak_not_leak(base);
301 
302 	if (!base) {
303 		pr_err("page ext allocation failure\n");
304 		return -ENOMEM;
305 	}
306 
307 	/*
308 	 * The passed "pfn" may not be aligned to SECTION.  For the calculation
309 	 * we need to apply a mask.
310 	 */
311 	pfn &= PAGE_SECTION_MASK;
312 	section->page_ext = (void *)base - page_ext_size * pfn;
313 	total_usage += table_size;
314 	return 0;
315 }
316 
317 static void free_page_ext(void *addr)
318 {
319 	if (is_vmalloc_addr(addr)) {
320 		vfree(addr);
321 	} else {
322 		struct page *page = virt_to_page(addr);
323 		size_t table_size;
324 
325 		table_size = page_ext_size * PAGES_PER_SECTION;
326 
327 		BUG_ON(PageReserved(page));
328 		kmemleak_free(addr);
329 		free_pages_exact(addr, table_size);
330 	}
331 }
332 
333 static void __free_page_ext(unsigned long pfn)
334 {
335 	struct mem_section *ms;
336 	struct page_ext *base;
337 
338 	ms = __pfn_to_section(pfn);
339 	if (!ms || !ms->page_ext)
340 		return;
341 
342 	base = READ_ONCE(ms->page_ext);
343 	/*
344 	 * page_ext here can be valid while doing the roll back
345 	 * operation in online_page_ext().
346 	 */
347 	if (page_ext_invalid(base))
348 		base = (void *)base - PAGE_EXT_INVALID;
349 	WRITE_ONCE(ms->page_ext, NULL);
350 
351 	base = get_entry(base, pfn);
352 	free_page_ext(base);
353 }
354 
355 static void __invalidate_page_ext(unsigned long pfn)
356 {
357 	struct mem_section *ms;
358 	void *val;
359 
360 	ms = __pfn_to_section(pfn);
361 	if (!ms || !ms->page_ext)
362 		return;
363 	val = (void *)ms->page_ext + PAGE_EXT_INVALID;
364 	WRITE_ONCE(ms->page_ext, val);
365 }
366 
367 static int __meminit online_page_ext(unsigned long start_pfn,
368 				unsigned long nr_pages,
369 				int nid)
370 {
371 	unsigned long start, end, pfn;
372 	int fail = 0;
373 
374 	start = SECTION_ALIGN_DOWN(start_pfn);
375 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
376 
377 	if (nid == NUMA_NO_NODE) {
378 		/*
379 		 * In this case, "nid" already exists and contains valid memory.
380 		 * "start_pfn" passed to us is a pfn which is an arg for
381 		 * online__pages(), and start_pfn should exist.
382 		 */
383 		nid = pfn_to_nid(start_pfn);
384 		VM_BUG_ON(!node_online(nid));
385 	}
386 
387 	for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION)
388 		fail = init_section_page_ext(pfn, nid);
389 	if (!fail)
390 		return 0;
391 
392 	/* rollback */
393 	end = pfn - PAGES_PER_SECTION;
394 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
395 		__free_page_ext(pfn);
396 
397 	return -ENOMEM;
398 }
399 
400 static void __meminit offline_page_ext(unsigned long start_pfn,
401 				unsigned long nr_pages)
402 {
403 	unsigned long start, end, pfn;
404 
405 	start = SECTION_ALIGN_DOWN(start_pfn);
406 	end = SECTION_ALIGN_UP(start_pfn + nr_pages);
407 
408 	/*
409 	 * Freeing of page_ext is done in 3 steps to avoid
410 	 * use-after-free of it:
411 	 * 1) Traverse all the sections and mark their page_ext
412 	 *    as invalid.
413 	 * 2) Wait for all the existing users of page_ext who
414 	 *    started before invalidation to finish.
415 	 * 3) Free the page_ext.
416 	 */
417 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
418 		__invalidate_page_ext(pfn);
419 
420 	synchronize_rcu();
421 
422 	for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
423 		__free_page_ext(pfn);
424 }
425 
426 static int __meminit page_ext_callback(struct notifier_block *self,
427 			       unsigned long action, void *arg)
428 {
429 	struct memory_notify *mn = arg;
430 	int ret = 0;
431 
432 	switch (action) {
433 	case MEM_GOING_ONLINE:
434 		ret = online_page_ext(mn->start_pfn,
435 				   mn->nr_pages, mn->status_change_nid);
436 		break;
437 	case MEM_OFFLINE:
438 		offline_page_ext(mn->start_pfn,
439 				mn->nr_pages);
440 		break;
441 	case MEM_CANCEL_ONLINE:
442 		offline_page_ext(mn->start_pfn,
443 				mn->nr_pages);
444 		break;
445 	case MEM_GOING_OFFLINE:
446 		break;
447 	case MEM_ONLINE:
448 	case MEM_CANCEL_OFFLINE:
449 		break;
450 	}
451 
452 	return notifier_from_errno(ret);
453 }
454 
455 void __init page_ext_init(void)
456 {
457 	unsigned long pfn;
458 	int nid;
459 
460 	if (!invoke_need_callbacks())
461 		return;
462 
463 	for_each_node_state(nid, N_MEMORY) {
464 		unsigned long start_pfn, end_pfn;
465 
466 		start_pfn = node_start_pfn(nid);
467 		end_pfn = node_end_pfn(nid);
468 		/*
469 		 * start_pfn and end_pfn may not be aligned to SECTION and the
470 		 * page->flags of out of node pages are not initialized.  So we
471 		 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
472 		 */
473 		for (pfn = start_pfn; pfn < end_pfn;
474 			pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
475 
476 			if (!pfn_valid(pfn))
477 				continue;
478 			/*
479 			 * Nodes's pfns can be overlapping.
480 			 * We know some arch can have a nodes layout such as
481 			 * -------------pfn-------------->
482 			 * N0 | N1 | N2 | N0 | N1 | N2|....
483 			 */
484 			if (pfn_to_nid(pfn) != nid)
485 				continue;
486 			if (init_section_page_ext(pfn, nid))
487 				goto oom;
488 			cond_resched();
489 		}
490 	}
491 	hotplug_memory_notifier(page_ext_callback, DEFAULT_CALLBACK_PRI);
492 	pr_info("allocated %ld bytes of page_ext\n", total_usage);
493 	invoke_init_callbacks();
494 	return;
495 
496 oom:
497 	panic("Out of memory");
498 }
499 
500 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
501 {
502 }
503 
504 #endif
505 
506 /**
507  * page_ext_get() - Get the extended information for a page.
508  * @page: The page we're interested in.
509  *
510  * Ensures that the page_ext will remain valid until page_ext_put()
511  * is called.
512  *
513  * Return: NULL if no page_ext exists for this page.
514  * Context: Any context.  Caller may not sleep until they have called
515  * page_ext_put().
516  */
517 struct page_ext *page_ext_get(const struct page *page)
518 {
519 	struct page_ext *page_ext;
520 
521 	rcu_read_lock();
522 	page_ext = lookup_page_ext(page);
523 	if (!page_ext) {
524 		rcu_read_unlock();
525 		return NULL;
526 	}
527 
528 	return page_ext;
529 }
530 
531 /**
532  * page_ext_put() - Working with page extended information is done.
533  * @page_ext: Page extended information received from page_ext_get().
534  *
535  * The page extended information of the page may not be valid after this
536  * function is called.
537  *
538  * Return: None.
539  * Context: Any context with corresponding page_ext_get() is called.
540  */
541 void page_ext_put(struct page_ext *page_ext)
542 {
543 	if (unlikely(!page_ext))
544 		return;
545 
546 	rcu_read_unlock();
547 }
548