1 #include <linux/mm.h> 2 #include <linux/mmzone.h> 3 #include <linux/bootmem.h> 4 #include <linux/page_ext.h> 5 #include <linux/memory.h> 6 #include <linux/vmalloc.h> 7 #include <linux/kmemleak.h> 8 #include <linux/page_owner.h> 9 #include <linux/page_idle.h> 10 11 /* 12 * struct page extension 13 * 14 * This is the feature to manage memory for extended data per page. 15 * 16 * Until now, we must modify struct page itself to store extra data per page. 17 * This requires rebuilding the kernel and it is really time consuming process. 18 * And, sometimes, rebuild is impossible due to third party module dependency. 19 * At last, enlarging struct page could cause un-wanted system behaviour change. 20 * 21 * This feature is intended to overcome above mentioned problems. This feature 22 * allocates memory for extended data per page in certain place rather than 23 * the struct page itself. This memory can be accessed by the accessor 24 * functions provided by this code. During the boot process, it checks whether 25 * allocation of huge chunk of memory is needed or not. If not, it avoids 26 * allocating memory at all. With this advantage, we can include this feature 27 * into the kernel in default and can avoid rebuild and solve related problems. 28 * 29 * To help these things to work well, there are two callbacks for clients. One 30 * is the need callback which is mandatory if user wants to avoid useless 31 * memory allocation at boot-time. The other is optional, init callback, which 32 * is used to do proper initialization after memory is allocated. 33 * 34 * The need callback is used to decide whether extended memory allocation is 35 * needed or not. Sometimes users want to deactivate some features in this 36 * boot and extra memory would be unneccessary. In this case, to avoid 37 * allocating huge chunk of memory, each clients represent their need of 38 * extra memory through the need callback. If one of the need callbacks 39 * returns true, it means that someone needs extra memory so that 40 * page extension core should allocates memory for page extension. If 41 * none of need callbacks return true, memory isn't needed at all in this boot 42 * and page extension core can skip to allocate memory. As result, 43 * none of memory is wasted. 44 * 45 * The init callback is used to do proper initialization after page extension 46 * is completely initialized. In sparse memory system, extra memory is 47 * allocated some time later than memmap is allocated. In other words, lifetime 48 * of memory for page extension isn't same with memmap for struct page. 49 * Therefore, clients can't store extra data until page extension is 50 * initialized, even if pages are allocated and used freely. This could 51 * cause inadequate state of extra data per page, so, to prevent it, client 52 * can utilize this callback to initialize the state of it correctly. 53 */ 54 55 static struct page_ext_operations *page_ext_ops[] = { 56 &debug_guardpage_ops, 57 #ifdef CONFIG_PAGE_POISONING 58 &page_poisoning_ops, 59 #endif 60 #ifdef CONFIG_PAGE_OWNER 61 &page_owner_ops, 62 #endif 63 #if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT) 64 &page_idle_ops, 65 #endif 66 }; 67 68 static unsigned long total_usage; 69 70 static bool __init invoke_need_callbacks(void) 71 { 72 int i; 73 int entries = ARRAY_SIZE(page_ext_ops); 74 75 for (i = 0; i < entries; i++) { 76 if (page_ext_ops[i]->need && page_ext_ops[i]->need()) 77 return true; 78 } 79 80 return false; 81 } 82 83 static void __init invoke_init_callbacks(void) 84 { 85 int i; 86 int entries = ARRAY_SIZE(page_ext_ops); 87 88 for (i = 0; i < entries; i++) { 89 if (page_ext_ops[i]->init) 90 page_ext_ops[i]->init(); 91 } 92 } 93 94 #if !defined(CONFIG_SPARSEMEM) 95 96 97 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 98 { 99 pgdat->node_page_ext = NULL; 100 } 101 102 struct page_ext *lookup_page_ext(struct page *page) 103 { 104 unsigned long pfn = page_to_pfn(page); 105 unsigned long offset; 106 struct page_ext *base; 107 108 base = NODE_DATA(page_to_nid(page))->node_page_ext; 109 #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING) 110 /* 111 * The sanity checks the page allocator does upon freeing a 112 * page can reach here before the page_ext arrays are 113 * allocated when feeding a range of pages to the allocator 114 * for the first time during bootup or memory hotplug. 115 * 116 * This check is also necessary for ensuring page poisoning 117 * works as expected when enabled 118 */ 119 if (unlikely(!base)) 120 return NULL; 121 #endif 122 offset = pfn - round_down(node_start_pfn(page_to_nid(page)), 123 MAX_ORDER_NR_PAGES); 124 return base + offset; 125 } 126 127 static int __init alloc_node_page_ext(int nid) 128 { 129 struct page_ext *base; 130 unsigned long table_size; 131 unsigned long nr_pages; 132 133 nr_pages = NODE_DATA(nid)->node_spanned_pages; 134 if (!nr_pages) 135 return 0; 136 137 /* 138 * Need extra space if node range is not aligned with 139 * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm 140 * checks buddy's status, range could be out of exact node range. 141 */ 142 if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) || 143 !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES)) 144 nr_pages += MAX_ORDER_NR_PAGES; 145 146 table_size = sizeof(struct page_ext) * nr_pages; 147 148 base = memblock_virt_alloc_try_nid_nopanic( 149 table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS), 150 BOOTMEM_ALLOC_ACCESSIBLE, nid); 151 if (!base) 152 return -ENOMEM; 153 NODE_DATA(nid)->node_page_ext = base; 154 total_usage += table_size; 155 return 0; 156 } 157 158 void __init page_ext_init_flatmem(void) 159 { 160 161 int nid, fail; 162 163 if (!invoke_need_callbacks()) 164 return; 165 166 for_each_online_node(nid) { 167 fail = alloc_node_page_ext(nid); 168 if (fail) 169 goto fail; 170 } 171 pr_info("allocated %ld bytes of page_ext\n", total_usage); 172 invoke_init_callbacks(); 173 return; 174 175 fail: 176 pr_crit("allocation of page_ext failed.\n"); 177 panic("Out of memory"); 178 } 179 180 #else /* CONFIG_FLAT_NODE_MEM_MAP */ 181 182 struct page_ext *lookup_page_ext(struct page *page) 183 { 184 unsigned long pfn = page_to_pfn(page); 185 struct mem_section *section = __pfn_to_section(pfn); 186 #if defined(CONFIG_DEBUG_VM) || defined(CONFIG_PAGE_POISONING) 187 /* 188 * The sanity checks the page allocator does upon freeing a 189 * page can reach here before the page_ext arrays are 190 * allocated when feeding a range of pages to the allocator 191 * for the first time during bootup or memory hotplug. 192 * 193 * This check is also necessary for ensuring page poisoning 194 * works as expected when enabled 195 */ 196 if (!section->page_ext) 197 return NULL; 198 #endif 199 return section->page_ext + pfn; 200 } 201 202 static void *__meminit alloc_page_ext(size_t size, int nid) 203 { 204 gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN; 205 void *addr = NULL; 206 207 addr = alloc_pages_exact_nid(nid, size, flags); 208 if (addr) { 209 kmemleak_alloc(addr, size, 1, flags); 210 return addr; 211 } 212 213 if (node_state(nid, N_HIGH_MEMORY)) 214 addr = vzalloc_node(size, nid); 215 else 216 addr = vzalloc(size); 217 218 return addr; 219 } 220 221 static int __meminit init_section_page_ext(unsigned long pfn, int nid) 222 { 223 struct mem_section *section; 224 struct page_ext *base; 225 unsigned long table_size; 226 227 section = __pfn_to_section(pfn); 228 229 if (section->page_ext) 230 return 0; 231 232 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION; 233 base = alloc_page_ext(table_size, nid); 234 235 /* 236 * The value stored in section->page_ext is (base - pfn) 237 * and it does not point to the memory block allocated above, 238 * causing kmemleak false positives. 239 */ 240 kmemleak_not_leak(base); 241 242 if (!base) { 243 pr_err("page ext allocation failure\n"); 244 return -ENOMEM; 245 } 246 247 /* 248 * The passed "pfn" may not be aligned to SECTION. For the calculation 249 * we need to apply a mask. 250 */ 251 pfn &= PAGE_SECTION_MASK; 252 section->page_ext = base - pfn; 253 total_usage += table_size; 254 return 0; 255 } 256 #ifdef CONFIG_MEMORY_HOTPLUG 257 static void free_page_ext(void *addr) 258 { 259 if (is_vmalloc_addr(addr)) { 260 vfree(addr); 261 } else { 262 struct page *page = virt_to_page(addr); 263 size_t table_size; 264 265 table_size = sizeof(struct page_ext) * PAGES_PER_SECTION; 266 267 BUG_ON(PageReserved(page)); 268 free_pages_exact(addr, table_size); 269 } 270 } 271 272 static void __free_page_ext(unsigned long pfn) 273 { 274 struct mem_section *ms; 275 struct page_ext *base; 276 277 ms = __pfn_to_section(pfn); 278 if (!ms || !ms->page_ext) 279 return; 280 base = ms->page_ext + pfn; 281 free_page_ext(base); 282 ms->page_ext = NULL; 283 } 284 285 static int __meminit online_page_ext(unsigned long start_pfn, 286 unsigned long nr_pages, 287 int nid) 288 { 289 unsigned long start, end, pfn; 290 int fail = 0; 291 292 start = SECTION_ALIGN_DOWN(start_pfn); 293 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 294 295 if (nid == -1) { 296 /* 297 * In this case, "nid" already exists and contains valid memory. 298 * "start_pfn" passed to us is a pfn which is an arg for 299 * online__pages(), and start_pfn should exist. 300 */ 301 nid = pfn_to_nid(start_pfn); 302 VM_BUG_ON(!node_state(nid, N_ONLINE)); 303 } 304 305 for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) { 306 if (!pfn_present(pfn)) 307 continue; 308 fail = init_section_page_ext(pfn, nid); 309 } 310 if (!fail) 311 return 0; 312 313 /* rollback */ 314 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 315 __free_page_ext(pfn); 316 317 return -ENOMEM; 318 } 319 320 static int __meminit offline_page_ext(unsigned long start_pfn, 321 unsigned long nr_pages, int nid) 322 { 323 unsigned long start, end, pfn; 324 325 start = SECTION_ALIGN_DOWN(start_pfn); 326 end = SECTION_ALIGN_UP(start_pfn + nr_pages); 327 328 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) 329 __free_page_ext(pfn); 330 return 0; 331 332 } 333 334 static int __meminit page_ext_callback(struct notifier_block *self, 335 unsigned long action, void *arg) 336 { 337 struct memory_notify *mn = arg; 338 int ret = 0; 339 340 switch (action) { 341 case MEM_GOING_ONLINE: 342 ret = online_page_ext(mn->start_pfn, 343 mn->nr_pages, mn->status_change_nid); 344 break; 345 case MEM_OFFLINE: 346 offline_page_ext(mn->start_pfn, 347 mn->nr_pages, mn->status_change_nid); 348 break; 349 case MEM_CANCEL_ONLINE: 350 offline_page_ext(mn->start_pfn, 351 mn->nr_pages, mn->status_change_nid); 352 break; 353 case MEM_GOING_OFFLINE: 354 break; 355 case MEM_ONLINE: 356 case MEM_CANCEL_OFFLINE: 357 break; 358 } 359 360 return notifier_from_errno(ret); 361 } 362 363 #endif 364 365 void __init page_ext_init(void) 366 { 367 unsigned long pfn; 368 int nid; 369 370 if (!invoke_need_callbacks()) 371 return; 372 373 for_each_node_state(nid, N_MEMORY) { 374 unsigned long start_pfn, end_pfn; 375 376 start_pfn = node_start_pfn(nid); 377 end_pfn = node_end_pfn(nid); 378 /* 379 * start_pfn and end_pfn may not be aligned to SECTION and the 380 * page->flags of out of node pages are not initialized. So we 381 * scan [start_pfn, the biggest section's pfn < end_pfn) here. 382 */ 383 for (pfn = start_pfn; pfn < end_pfn; 384 pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) { 385 386 if (!pfn_valid(pfn)) 387 continue; 388 /* 389 * Nodes's pfns can be overlapping. 390 * We know some arch can have a nodes layout such as 391 * -------------pfn--------------> 392 * N0 | N1 | N2 | N0 | N1 | N2|.... 393 * 394 * Take into account DEFERRED_STRUCT_PAGE_INIT. 395 */ 396 if (early_pfn_to_nid(pfn) != nid) 397 continue; 398 if (init_section_page_ext(pfn, nid)) 399 goto oom; 400 } 401 } 402 hotplug_memory_notifier(page_ext_callback, 0); 403 pr_info("allocated %ld bytes of page_ext\n", total_usage); 404 invoke_init_callbacks(); 405 return; 406 407 oom: 408 panic("Out of memory"); 409 } 410 411 void __meminit pgdat_page_ext_init(struct pglist_data *pgdat) 412 { 413 } 414 415 #endif 416