xref: /linux/mm/page_counter.c (revision da5b2ad1c2f18834cb1ce429e2e5a5cf5cbdf21b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Lockless hierarchical page accounting & limiting
4  *
5  * Copyright (C) 2014 Red Hat, Inc., Johannes Weiner
6  */
7 
8 #include <linux/page_counter.h>
9 #include <linux/atomic.h>
10 #include <linux/kernel.h>
11 #include <linux/string.h>
12 #include <linux/sched.h>
13 #include <linux/bug.h>
14 #include <asm/page.h>
15 
16 static void propagate_protected_usage(struct page_counter *c,
17 				      unsigned long usage)
18 {
19 	unsigned long protected, old_protected;
20 	long delta;
21 
22 	if (!c->parent)
23 		return;
24 
25 	protected = min(usage, READ_ONCE(c->min));
26 	old_protected = atomic_long_read(&c->min_usage);
27 	if (protected != old_protected) {
28 		old_protected = atomic_long_xchg(&c->min_usage, protected);
29 		delta = protected - old_protected;
30 		if (delta)
31 			atomic_long_add(delta, &c->parent->children_min_usage);
32 	}
33 
34 	protected = min(usage, READ_ONCE(c->low));
35 	old_protected = atomic_long_read(&c->low_usage);
36 	if (protected != old_protected) {
37 		old_protected = atomic_long_xchg(&c->low_usage, protected);
38 		delta = protected - old_protected;
39 		if (delta)
40 			atomic_long_add(delta, &c->parent->children_low_usage);
41 	}
42 }
43 
44 /**
45  * page_counter_cancel - take pages out of the local counter
46  * @counter: counter
47  * @nr_pages: number of pages to cancel
48  */
49 void page_counter_cancel(struct page_counter *counter, unsigned long nr_pages)
50 {
51 	long new;
52 
53 	new = atomic_long_sub_return(nr_pages, &counter->usage);
54 	/* More uncharges than charges? */
55 	if (WARN_ONCE(new < 0, "page_counter underflow: %ld nr_pages=%lu\n",
56 		      new, nr_pages)) {
57 		new = 0;
58 		atomic_long_set(&counter->usage, new);
59 	}
60 	propagate_protected_usage(counter, new);
61 }
62 
63 /**
64  * page_counter_charge - hierarchically charge pages
65  * @counter: counter
66  * @nr_pages: number of pages to charge
67  *
68  * NOTE: This does not consider any configured counter limits.
69  */
70 void page_counter_charge(struct page_counter *counter, unsigned long nr_pages)
71 {
72 	struct page_counter *c;
73 
74 	for (c = counter; c; c = c->parent) {
75 		long new;
76 
77 		new = atomic_long_add_return(nr_pages, &c->usage);
78 		propagate_protected_usage(c, new);
79 		/*
80 		 * This is indeed racy, but we can live with some
81 		 * inaccuracy in the watermark.
82 		 */
83 		if (new > READ_ONCE(c->watermark))
84 			WRITE_ONCE(c->watermark, new);
85 	}
86 }
87 
88 /**
89  * page_counter_try_charge - try to hierarchically charge pages
90  * @counter: counter
91  * @nr_pages: number of pages to charge
92  * @fail: points first counter to hit its limit, if any
93  *
94  * Returns %true on success, or %false and @fail if the counter or one
95  * of its ancestors has hit its configured limit.
96  */
97 bool page_counter_try_charge(struct page_counter *counter,
98 			     unsigned long nr_pages,
99 			     struct page_counter **fail)
100 {
101 	struct page_counter *c;
102 
103 	for (c = counter; c; c = c->parent) {
104 		long new;
105 		/*
106 		 * Charge speculatively to avoid an expensive CAS.  If
107 		 * a bigger charge fails, it might falsely lock out a
108 		 * racing smaller charge and send it into reclaim
109 		 * early, but the error is limited to the difference
110 		 * between the two sizes, which is less than 2M/4M in
111 		 * case of a THP locking out a regular page charge.
112 		 *
113 		 * The atomic_long_add_return() implies a full memory
114 		 * barrier between incrementing the count and reading
115 		 * the limit.  When racing with page_counter_set_max(),
116 		 * we either see the new limit or the setter sees the
117 		 * counter has changed and retries.
118 		 */
119 		new = atomic_long_add_return(nr_pages, &c->usage);
120 		if (new > c->max) {
121 			atomic_long_sub(nr_pages, &c->usage);
122 			/*
123 			 * This is racy, but we can live with some
124 			 * inaccuracy in the failcnt which is only used
125 			 * to report stats.
126 			 */
127 			data_race(c->failcnt++);
128 			*fail = c;
129 			goto failed;
130 		}
131 		propagate_protected_usage(c, new);
132 		/*
133 		 * Just like with failcnt, we can live with some
134 		 * inaccuracy in the watermark.
135 		 */
136 		if (new > READ_ONCE(c->watermark))
137 			WRITE_ONCE(c->watermark, new);
138 	}
139 	return true;
140 
141 failed:
142 	for (c = counter; c != *fail; c = c->parent)
143 		page_counter_cancel(c, nr_pages);
144 
145 	return false;
146 }
147 
148 /**
149  * page_counter_uncharge - hierarchically uncharge pages
150  * @counter: counter
151  * @nr_pages: number of pages to uncharge
152  */
153 void page_counter_uncharge(struct page_counter *counter, unsigned long nr_pages)
154 {
155 	struct page_counter *c;
156 
157 	for (c = counter; c; c = c->parent)
158 		page_counter_cancel(c, nr_pages);
159 }
160 
161 /**
162  * page_counter_set_max - set the maximum number of pages allowed
163  * @counter: counter
164  * @nr_pages: limit to set
165  *
166  * Returns 0 on success, -EBUSY if the current number of pages on the
167  * counter already exceeds the specified limit.
168  *
169  * The caller must serialize invocations on the same counter.
170  */
171 int page_counter_set_max(struct page_counter *counter, unsigned long nr_pages)
172 {
173 	for (;;) {
174 		unsigned long old;
175 		long usage;
176 
177 		/*
178 		 * Update the limit while making sure that it's not
179 		 * below the concurrently-changing counter value.
180 		 *
181 		 * The xchg implies two full memory barriers before
182 		 * and after, so the read-swap-read is ordered and
183 		 * ensures coherency with page_counter_try_charge():
184 		 * that function modifies the count before checking
185 		 * the limit, so if it sees the old limit, we see the
186 		 * modified counter and retry.
187 		 */
188 		usage = page_counter_read(counter);
189 
190 		if (usage > nr_pages)
191 			return -EBUSY;
192 
193 		old = xchg(&counter->max, nr_pages);
194 
195 		if (page_counter_read(counter) <= usage || nr_pages >= old)
196 			return 0;
197 
198 		counter->max = old;
199 		cond_resched();
200 	}
201 }
202 
203 /**
204  * page_counter_set_min - set the amount of protected memory
205  * @counter: counter
206  * @nr_pages: value to set
207  *
208  * The caller must serialize invocations on the same counter.
209  */
210 void page_counter_set_min(struct page_counter *counter, unsigned long nr_pages)
211 {
212 	struct page_counter *c;
213 
214 	WRITE_ONCE(counter->min, nr_pages);
215 
216 	for (c = counter; c; c = c->parent)
217 		propagate_protected_usage(c, atomic_long_read(&c->usage));
218 }
219 
220 /**
221  * page_counter_set_low - set the amount of protected memory
222  * @counter: counter
223  * @nr_pages: value to set
224  *
225  * The caller must serialize invocations on the same counter.
226  */
227 void page_counter_set_low(struct page_counter *counter, unsigned long nr_pages)
228 {
229 	struct page_counter *c;
230 
231 	WRITE_ONCE(counter->low, nr_pages);
232 
233 	for (c = counter; c; c = c->parent)
234 		propagate_protected_usage(c, atomic_long_read(&c->usage));
235 }
236 
237 /**
238  * page_counter_memparse - memparse() for page counter limits
239  * @buf: string to parse
240  * @max: string meaning maximum possible value
241  * @nr_pages: returns the result in number of pages
242  *
243  * Returns -EINVAL, or 0 and @nr_pages on success.  @nr_pages will be
244  * limited to %PAGE_COUNTER_MAX.
245  */
246 int page_counter_memparse(const char *buf, const char *max,
247 			  unsigned long *nr_pages)
248 {
249 	char *end;
250 	u64 bytes;
251 
252 	if (!strcmp(buf, max)) {
253 		*nr_pages = PAGE_COUNTER_MAX;
254 		return 0;
255 	}
256 
257 	bytes = memparse(buf, &end);
258 	if (*end != '\0')
259 		return -EINVAL;
260 
261 	*nr_pages = min(bytes / PAGE_SIZE, (u64)PAGE_COUNTER_MAX);
262 
263 	return 0;
264 }
265 
266 
267 /*
268  * This function calculates an individual page counter's effective
269  * protection which is derived from its own memory.min/low, its
270  * parent's and siblings' settings, as well as the actual memory
271  * distribution in the tree.
272  *
273  * The following rules apply to the effective protection values:
274  *
275  * 1. At the first level of reclaim, effective protection is equal to
276  *    the declared protection in memory.min and memory.low.
277  *
278  * 2. To enable safe delegation of the protection configuration, at
279  *    subsequent levels the effective protection is capped to the
280  *    parent's effective protection.
281  *
282  * 3. To make complex and dynamic subtrees easier to configure, the
283  *    user is allowed to overcommit the declared protection at a given
284  *    level. If that is the case, the parent's effective protection is
285  *    distributed to the children in proportion to how much protection
286  *    they have declared and how much of it they are utilizing.
287  *
288  *    This makes distribution proportional, but also work-conserving:
289  *    if one counter claims much more protection than it uses memory,
290  *    the unused remainder is available to its siblings.
291  *
292  * 4. Conversely, when the declared protection is undercommitted at a
293  *    given level, the distribution of the larger parental protection
294  *    budget is NOT proportional. A counter's protection from a sibling
295  *    is capped to its own memory.min/low setting.
296  *
297  * 5. However, to allow protecting recursive subtrees from each other
298  *    without having to declare each individual counter's fixed share
299  *    of the ancestor's claim to protection, any unutilized -
300  *    "floating" - protection from up the tree is distributed in
301  *    proportion to each counter's *usage*. This makes the protection
302  *    neutral wrt sibling cgroups and lets them compete freely over
303  *    the shared parental protection budget, but it protects the
304  *    subtree as a whole from neighboring subtrees.
305  *
306  * Note that 4. and 5. are not in conflict: 4. is about protecting
307  * against immediate siblings whereas 5. is about protecting against
308  * neighboring subtrees.
309  */
310 static unsigned long effective_protection(unsigned long usage,
311 					  unsigned long parent_usage,
312 					  unsigned long setting,
313 					  unsigned long parent_effective,
314 					  unsigned long siblings_protected,
315 					  bool recursive_protection)
316 {
317 	unsigned long protected;
318 	unsigned long ep;
319 
320 	protected = min(usage, setting);
321 	/*
322 	 * If all cgroups at this level combined claim and use more
323 	 * protection than what the parent affords them, distribute
324 	 * shares in proportion to utilization.
325 	 *
326 	 * We are using actual utilization rather than the statically
327 	 * claimed protection in order to be work-conserving: claimed
328 	 * but unused protection is available to siblings that would
329 	 * otherwise get a smaller chunk than what they claimed.
330 	 */
331 	if (siblings_protected > parent_effective)
332 		return protected * parent_effective / siblings_protected;
333 
334 	/*
335 	 * Ok, utilized protection of all children is within what the
336 	 * parent affords them, so we know whatever this child claims
337 	 * and utilizes is effectively protected.
338 	 *
339 	 * If there is unprotected usage beyond this value, reclaim
340 	 * will apply pressure in proportion to that amount.
341 	 *
342 	 * If there is unutilized protection, the cgroup will be fully
343 	 * shielded from reclaim, but we do return a smaller value for
344 	 * protection than what the group could enjoy in theory. This
345 	 * is okay. With the overcommit distribution above, effective
346 	 * protection is always dependent on how memory is actually
347 	 * consumed among the siblings anyway.
348 	 */
349 	ep = protected;
350 
351 	/*
352 	 * If the children aren't claiming (all of) the protection
353 	 * afforded to them by the parent, distribute the remainder in
354 	 * proportion to the (unprotected) memory of each cgroup. That
355 	 * way, cgroups that aren't explicitly prioritized wrt each
356 	 * other compete freely over the allowance, but they are
357 	 * collectively protected from neighboring trees.
358 	 *
359 	 * We're using unprotected memory for the weight so that if
360 	 * some cgroups DO claim explicit protection, we don't protect
361 	 * the same bytes twice.
362 	 *
363 	 * Check both usage and parent_usage against the respective
364 	 * protected values. One should imply the other, but they
365 	 * aren't read atomically - make sure the division is sane.
366 	 */
367 	if (!recursive_protection)
368 		return ep;
369 
370 	if (parent_effective > siblings_protected &&
371 	    parent_usage > siblings_protected &&
372 	    usage > protected) {
373 		unsigned long unclaimed;
374 
375 		unclaimed = parent_effective - siblings_protected;
376 		unclaimed *= usage - protected;
377 		unclaimed /= parent_usage - siblings_protected;
378 
379 		ep += unclaimed;
380 	}
381 
382 	return ep;
383 }
384 
385 
386 /**
387  * page_counter_calculate_protection - check if memory consumption is in the normal range
388  * @root: the top ancestor of the sub-tree being checked
389  * @counter: the page_counter the counter to update
390  * @recursive_protection: Whether to use memory_recursiveprot behavior.
391  *
392  * Calculates elow/emin thresholds for given page_counter.
393  *
394  * WARNING: This function is not stateless! It can only be used as part
395  *          of a top-down tree iteration, not for isolated queries.
396  */
397 void page_counter_calculate_protection(struct page_counter *root,
398 				       struct page_counter *counter,
399 				       bool recursive_protection)
400 {
401 	unsigned long usage, parent_usage;
402 	struct page_counter *parent = counter->parent;
403 
404 	/*
405 	 * Effective values of the reclaim targets are ignored so they
406 	 * can be stale. Have a look at mem_cgroup_protection for more
407 	 * details.
408 	 * TODO: calculation should be more robust so that we do not need
409 	 * that special casing.
410 	 */
411 	if (root == counter)
412 		return;
413 
414 	usage = page_counter_read(counter);
415 	if (!usage)
416 		return;
417 
418 	if (parent == root) {
419 		counter->emin = READ_ONCE(counter->min);
420 		counter->elow = READ_ONCE(counter->low);
421 		return;
422 	}
423 
424 	parent_usage = page_counter_read(parent);
425 
426 	WRITE_ONCE(counter->emin, effective_protection(usage, parent_usage,
427 			READ_ONCE(counter->min),
428 			READ_ONCE(parent->emin),
429 			atomic_long_read(&parent->children_min_usage),
430 			recursive_protection));
431 
432 	WRITE_ONCE(counter->elow, effective_protection(usage, parent_usage,
433 			READ_ONCE(counter->low),
434 			READ_ONCE(parent->elow),
435 			atomic_long_read(&parent->children_low_usage),
436 			recursive_protection));
437 }
438