xref: /linux/mm/page_alloc.c (revision ff1f855804cdbbb6db7b9b6df6cab783d1a40d66)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 #include <linux/khugepaged.h>
73 
74 #include <asm/sections.h>
75 #include <asm/tlbflush.h>
76 #include <asm/div64.h>
77 #include "internal.h"
78 #include "shuffle.h"
79 #include "page_reporting.h"
80 
81 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
82 static DEFINE_MUTEX(pcp_batch_high_lock);
83 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
84 
85 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
86 DEFINE_PER_CPU(int, numa_node);
87 EXPORT_PER_CPU_SYMBOL(numa_node);
88 #endif
89 
90 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
91 
92 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
93 /*
94  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
95  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
96  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
97  * defined in <linux/topology.h>.
98  */
99 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
100 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
101 #endif
102 
103 /* work_structs for global per-cpu drains */
104 struct pcpu_drain {
105 	struct zone *zone;
106 	struct work_struct work;
107 };
108 static DEFINE_MUTEX(pcpu_drain_mutex);
109 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
110 
111 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
112 volatile unsigned long latent_entropy __latent_entropy;
113 EXPORT_SYMBOL(latent_entropy);
114 #endif
115 
116 /*
117  * Array of node states.
118  */
119 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
120 	[N_POSSIBLE] = NODE_MASK_ALL,
121 	[N_ONLINE] = { { [0] = 1UL } },
122 #ifndef CONFIG_NUMA
123 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
124 #ifdef CONFIG_HIGHMEM
125 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
126 #endif
127 	[N_MEMORY] = { { [0] = 1UL } },
128 	[N_CPU] = { { [0] = 1UL } },
129 #endif	/* NUMA */
130 };
131 EXPORT_SYMBOL(node_states);
132 
133 atomic_long_t _totalram_pages __read_mostly;
134 EXPORT_SYMBOL(_totalram_pages);
135 unsigned long totalreserve_pages __read_mostly;
136 unsigned long totalcma_pages __read_mostly;
137 
138 int percpu_pagelist_fraction;
139 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
140 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
141 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
142 #else
143 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
144 #endif
145 EXPORT_SYMBOL(init_on_alloc);
146 
147 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
148 DEFINE_STATIC_KEY_TRUE(init_on_free);
149 #else
150 DEFINE_STATIC_KEY_FALSE(init_on_free);
151 #endif
152 EXPORT_SYMBOL(init_on_free);
153 
154 static int __init early_init_on_alloc(char *buf)
155 {
156 	int ret;
157 	bool bool_result;
158 
159 	if (!buf)
160 		return -EINVAL;
161 	ret = kstrtobool(buf, &bool_result);
162 	if (bool_result && page_poisoning_enabled())
163 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
164 	if (bool_result)
165 		static_branch_enable(&init_on_alloc);
166 	else
167 		static_branch_disable(&init_on_alloc);
168 	return ret;
169 }
170 early_param("init_on_alloc", early_init_on_alloc);
171 
172 static int __init early_init_on_free(char *buf)
173 {
174 	int ret;
175 	bool bool_result;
176 
177 	if (!buf)
178 		return -EINVAL;
179 	ret = kstrtobool(buf, &bool_result);
180 	if (bool_result && page_poisoning_enabled())
181 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
182 	if (bool_result)
183 		static_branch_enable(&init_on_free);
184 	else
185 		static_branch_disable(&init_on_free);
186 	return ret;
187 }
188 early_param("init_on_free", early_init_on_free);
189 
190 /*
191  * A cached value of the page's pageblock's migratetype, used when the page is
192  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
193  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
194  * Also the migratetype set in the page does not necessarily match the pcplist
195  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
196  * other index - this ensures that it will be put on the correct CMA freelist.
197  */
198 static inline int get_pcppage_migratetype(struct page *page)
199 {
200 	return page->index;
201 }
202 
203 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
204 {
205 	page->index = migratetype;
206 }
207 
208 #ifdef CONFIG_PM_SLEEP
209 /*
210  * The following functions are used by the suspend/hibernate code to temporarily
211  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
212  * while devices are suspended.  To avoid races with the suspend/hibernate code,
213  * they should always be called with system_transition_mutex held
214  * (gfp_allowed_mask also should only be modified with system_transition_mutex
215  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
216  * with that modification).
217  */
218 
219 static gfp_t saved_gfp_mask;
220 
221 void pm_restore_gfp_mask(void)
222 {
223 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
224 	if (saved_gfp_mask) {
225 		gfp_allowed_mask = saved_gfp_mask;
226 		saved_gfp_mask = 0;
227 	}
228 }
229 
230 void pm_restrict_gfp_mask(void)
231 {
232 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
233 	WARN_ON(saved_gfp_mask);
234 	saved_gfp_mask = gfp_allowed_mask;
235 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
236 }
237 
238 bool pm_suspended_storage(void)
239 {
240 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
241 		return false;
242 	return true;
243 }
244 #endif /* CONFIG_PM_SLEEP */
245 
246 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
247 unsigned int pageblock_order __read_mostly;
248 #endif
249 
250 static void __free_pages_ok(struct page *page, unsigned int order);
251 
252 /*
253  * results with 256, 32 in the lowmem_reserve sysctl:
254  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
255  *	1G machine -> (16M dma, 784M normal, 224M high)
256  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
257  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
258  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
259  *
260  * TBD: should special case ZONE_DMA32 machines here - in those we normally
261  * don't need any ZONE_NORMAL reservation
262  */
263 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
264 #ifdef CONFIG_ZONE_DMA
265 	[ZONE_DMA] = 256,
266 #endif
267 #ifdef CONFIG_ZONE_DMA32
268 	[ZONE_DMA32] = 256,
269 #endif
270 	[ZONE_NORMAL] = 32,
271 #ifdef CONFIG_HIGHMEM
272 	[ZONE_HIGHMEM] = 0,
273 #endif
274 	[ZONE_MOVABLE] = 0,
275 };
276 
277 static char * const zone_names[MAX_NR_ZONES] = {
278 #ifdef CONFIG_ZONE_DMA
279 	 "DMA",
280 #endif
281 #ifdef CONFIG_ZONE_DMA32
282 	 "DMA32",
283 #endif
284 	 "Normal",
285 #ifdef CONFIG_HIGHMEM
286 	 "HighMem",
287 #endif
288 	 "Movable",
289 #ifdef CONFIG_ZONE_DEVICE
290 	 "Device",
291 #endif
292 };
293 
294 const char * const migratetype_names[MIGRATE_TYPES] = {
295 	"Unmovable",
296 	"Movable",
297 	"Reclaimable",
298 	"HighAtomic",
299 #ifdef CONFIG_CMA
300 	"CMA",
301 #endif
302 #ifdef CONFIG_MEMORY_ISOLATION
303 	"Isolate",
304 #endif
305 };
306 
307 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
308 	[NULL_COMPOUND_DTOR] = NULL,
309 	[COMPOUND_PAGE_DTOR] = free_compound_page,
310 #ifdef CONFIG_HUGETLB_PAGE
311 	[HUGETLB_PAGE_DTOR] = free_huge_page,
312 #endif
313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
314 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
315 #endif
316 };
317 
318 int min_free_kbytes = 1024;
319 int user_min_free_kbytes = -1;
320 #ifdef CONFIG_DISCONTIGMEM
321 /*
322  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
323  * are not on separate NUMA nodes. Functionally this works but with
324  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
325  * quite small. By default, do not boost watermarks on discontigmem as in
326  * many cases very high-order allocations like THP are likely to be
327  * unsupported and the premature reclaim offsets the advantage of long-term
328  * fragmentation avoidance.
329  */
330 int watermark_boost_factor __read_mostly;
331 #else
332 int watermark_boost_factor __read_mostly = 15000;
333 #endif
334 int watermark_scale_factor = 10;
335 
336 static unsigned long nr_kernel_pages __initdata;
337 static unsigned long nr_all_pages __initdata;
338 static unsigned long dma_reserve __initdata;
339 
340 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
342 static unsigned long required_kernelcore __initdata;
343 static unsigned long required_kernelcore_percent __initdata;
344 static unsigned long required_movablecore __initdata;
345 static unsigned long required_movablecore_percent __initdata;
346 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
347 static bool mirrored_kernelcore __meminitdata;
348 
349 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
350 int movable_zone;
351 EXPORT_SYMBOL(movable_zone);
352 
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359 
360 int page_group_by_mobility_disabled __read_mostly;
361 
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364  * During boot we initialize deferred pages on-demand, as needed, but once
365  * page_alloc_init_late() has finished, the deferred pages are all initialized,
366  * and we can permanently disable that path.
367  */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369 
370 /*
371  * Calling kasan_free_pages() only after deferred memory initialization
372  * has completed. Poisoning pages during deferred memory init will greatly
373  * lengthen the process and cause problem in large memory systems as the
374  * deferred pages initialization is done with interrupt disabled.
375  *
376  * Assuming that there will be no reference to those newly initialized
377  * pages before they are ever allocated, this should have no effect on
378  * KASAN memory tracking as the poison will be properly inserted at page
379  * allocation time. The only corner case is when pages are allocated by
380  * on-demand allocation and then freed again before the deferred pages
381  * initialization is done, but this is not likely to happen.
382  */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 	if (!static_branch_unlikely(&deferred_pages))
386 		kasan_free_pages(page, order);
387 }
388 
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 	int nid = early_pfn_to_nid(pfn);
393 
394 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 		return true;
396 
397 	return false;
398 }
399 
400 /*
401  * Returns true when the remaining initialisation should be deferred until
402  * later in the boot cycle when it can be parallelised.
403  */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 	static unsigned long prev_end_pfn, nr_initialised;
408 
409 	/*
410 	 * prev_end_pfn static that contains the end of previous zone
411 	 * No need to protect because called very early in boot before smp_init.
412 	 */
413 	if (prev_end_pfn != end_pfn) {
414 		prev_end_pfn = end_pfn;
415 		nr_initialised = 0;
416 	}
417 
418 	/* Always populate low zones for address-constrained allocations */
419 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 		return false;
421 
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
436 
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 	return false;
440 }
441 
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 	return false;
445 }
446 #endif
447 
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 							unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 	return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 	return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458 
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 	pfn &= (PAGES_PER_SECTION-1);
463 #else
464 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
465 #endif /* CONFIG_SPARSEMEM */
466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 }
468 
469 /**
470  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
471  * @page: The page within the block of interest
472  * @pfn: The target page frame number
473  * @mask: mask of bits that the caller is interested in
474  *
475  * Return: pageblock_bits flags
476  */
477 static __always_inline
478 unsigned long __get_pfnblock_flags_mask(struct page *page,
479 					unsigned long pfn,
480 					unsigned long mask)
481 {
482 	unsigned long *bitmap;
483 	unsigned long bitidx, word_bitidx;
484 	unsigned long word;
485 
486 	bitmap = get_pageblock_bitmap(page, pfn);
487 	bitidx = pfn_to_bitidx(page, pfn);
488 	word_bitidx = bitidx / BITS_PER_LONG;
489 	bitidx &= (BITS_PER_LONG-1);
490 
491 	word = bitmap[word_bitidx];
492 	return (word >> bitidx) & mask;
493 }
494 
495 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
496 					unsigned long mask)
497 {
498 	return __get_pfnblock_flags_mask(page, pfn, mask);
499 }
500 
501 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
502 {
503 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
504 }
505 
506 /**
507  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
508  * @page: The page within the block of interest
509  * @flags: The flags to set
510  * @pfn: The target page frame number
511  * @mask: mask of bits that the caller is interested in
512  */
513 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
514 					unsigned long pfn,
515 					unsigned long mask)
516 {
517 	unsigned long *bitmap;
518 	unsigned long bitidx, word_bitidx;
519 	unsigned long old_word, word;
520 
521 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
522 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
523 
524 	bitmap = get_pageblock_bitmap(page, pfn);
525 	bitidx = pfn_to_bitidx(page, pfn);
526 	word_bitidx = bitidx / BITS_PER_LONG;
527 	bitidx &= (BITS_PER_LONG-1);
528 
529 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
530 
531 	mask <<= bitidx;
532 	flags <<= bitidx;
533 
534 	word = READ_ONCE(bitmap[word_bitidx]);
535 	for (;;) {
536 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
537 		if (word == old_word)
538 			break;
539 		word = old_word;
540 	}
541 }
542 
543 void set_pageblock_migratetype(struct page *page, int migratetype)
544 {
545 	if (unlikely(page_group_by_mobility_disabled &&
546 		     migratetype < MIGRATE_PCPTYPES))
547 		migratetype = MIGRATE_UNMOVABLE;
548 
549 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
550 				page_to_pfn(page), MIGRATETYPE_MASK);
551 }
552 
553 #ifdef CONFIG_DEBUG_VM
554 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
555 {
556 	int ret = 0;
557 	unsigned seq;
558 	unsigned long pfn = page_to_pfn(page);
559 	unsigned long sp, start_pfn;
560 
561 	do {
562 		seq = zone_span_seqbegin(zone);
563 		start_pfn = zone->zone_start_pfn;
564 		sp = zone->spanned_pages;
565 		if (!zone_spans_pfn(zone, pfn))
566 			ret = 1;
567 	} while (zone_span_seqretry(zone, seq));
568 
569 	if (ret)
570 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
571 			pfn, zone_to_nid(zone), zone->name,
572 			start_pfn, start_pfn + sp);
573 
574 	return ret;
575 }
576 
577 static int page_is_consistent(struct zone *zone, struct page *page)
578 {
579 	if (!pfn_valid_within(page_to_pfn(page)))
580 		return 0;
581 	if (zone != page_zone(page))
582 		return 0;
583 
584 	return 1;
585 }
586 /*
587  * Temporary debugging check for pages not lying within a given zone.
588  */
589 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
590 {
591 	if (page_outside_zone_boundaries(zone, page))
592 		return 1;
593 	if (!page_is_consistent(zone, page))
594 		return 1;
595 
596 	return 0;
597 }
598 #else
599 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
600 {
601 	return 0;
602 }
603 #endif
604 
605 static void bad_page(struct page *page, const char *reason)
606 {
607 	static unsigned long resume;
608 	static unsigned long nr_shown;
609 	static unsigned long nr_unshown;
610 
611 	/*
612 	 * Allow a burst of 60 reports, then keep quiet for that minute;
613 	 * or allow a steady drip of one report per second.
614 	 */
615 	if (nr_shown == 60) {
616 		if (time_before(jiffies, resume)) {
617 			nr_unshown++;
618 			goto out;
619 		}
620 		if (nr_unshown) {
621 			pr_alert(
622 			      "BUG: Bad page state: %lu messages suppressed\n",
623 				nr_unshown);
624 			nr_unshown = 0;
625 		}
626 		nr_shown = 0;
627 	}
628 	if (nr_shown++ == 0)
629 		resume = jiffies + 60 * HZ;
630 
631 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
632 		current->comm, page_to_pfn(page));
633 	__dump_page(page, reason);
634 	dump_page_owner(page);
635 
636 	print_modules();
637 	dump_stack();
638 out:
639 	/* Leave bad fields for debug, except PageBuddy could make trouble */
640 	page_mapcount_reset(page); /* remove PageBuddy */
641 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
642 }
643 
644 /*
645  * Higher-order pages are called "compound pages".  They are structured thusly:
646  *
647  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
648  *
649  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
650  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
651  *
652  * The first tail page's ->compound_dtor holds the offset in array of compound
653  * page destructors. See compound_page_dtors.
654  *
655  * The first tail page's ->compound_order holds the order of allocation.
656  * This usage means that zero-order pages may not be compound.
657  */
658 
659 void free_compound_page(struct page *page)
660 {
661 	mem_cgroup_uncharge(page);
662 	__free_pages_ok(page, compound_order(page));
663 }
664 
665 void prep_compound_page(struct page *page, unsigned int order)
666 {
667 	int i;
668 	int nr_pages = 1 << order;
669 
670 	__SetPageHead(page);
671 	for (i = 1; i < nr_pages; i++) {
672 		struct page *p = page + i;
673 		set_page_count(p, 0);
674 		p->mapping = TAIL_MAPPING;
675 		set_compound_head(p, page);
676 	}
677 
678 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
679 	set_compound_order(page, order);
680 	atomic_set(compound_mapcount_ptr(page), -1);
681 	if (hpage_pincount_available(page))
682 		atomic_set(compound_pincount_ptr(page), 0);
683 }
684 
685 #ifdef CONFIG_DEBUG_PAGEALLOC
686 unsigned int _debug_guardpage_minorder;
687 
688 bool _debug_pagealloc_enabled_early __read_mostly
689 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
690 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
691 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
692 EXPORT_SYMBOL(_debug_pagealloc_enabled);
693 
694 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
695 
696 static int __init early_debug_pagealloc(char *buf)
697 {
698 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
699 }
700 early_param("debug_pagealloc", early_debug_pagealloc);
701 
702 void init_debug_pagealloc(void)
703 {
704 	if (!debug_pagealloc_enabled())
705 		return;
706 
707 	static_branch_enable(&_debug_pagealloc_enabled);
708 
709 	if (!debug_guardpage_minorder())
710 		return;
711 
712 	static_branch_enable(&_debug_guardpage_enabled);
713 }
714 
715 static int __init debug_guardpage_minorder_setup(char *buf)
716 {
717 	unsigned long res;
718 
719 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
720 		pr_err("Bad debug_guardpage_minorder value\n");
721 		return 0;
722 	}
723 	_debug_guardpage_minorder = res;
724 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
725 	return 0;
726 }
727 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
728 
729 static inline bool set_page_guard(struct zone *zone, struct page *page,
730 				unsigned int order, int migratetype)
731 {
732 	if (!debug_guardpage_enabled())
733 		return false;
734 
735 	if (order >= debug_guardpage_minorder())
736 		return false;
737 
738 	__SetPageGuard(page);
739 	INIT_LIST_HEAD(&page->lru);
740 	set_page_private(page, order);
741 	/* Guard pages are not available for any usage */
742 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
743 
744 	return true;
745 }
746 
747 static inline void clear_page_guard(struct zone *zone, struct page *page,
748 				unsigned int order, int migratetype)
749 {
750 	if (!debug_guardpage_enabled())
751 		return;
752 
753 	__ClearPageGuard(page);
754 
755 	set_page_private(page, 0);
756 	if (!is_migrate_isolate(migratetype))
757 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
758 }
759 #else
760 static inline bool set_page_guard(struct zone *zone, struct page *page,
761 			unsigned int order, int migratetype) { return false; }
762 static inline void clear_page_guard(struct zone *zone, struct page *page,
763 				unsigned int order, int migratetype) {}
764 #endif
765 
766 static inline void set_page_order(struct page *page, unsigned int order)
767 {
768 	set_page_private(page, order);
769 	__SetPageBuddy(page);
770 }
771 
772 /*
773  * This function checks whether a page is free && is the buddy
774  * we can coalesce a page and its buddy if
775  * (a) the buddy is not in a hole (check before calling!) &&
776  * (b) the buddy is in the buddy system &&
777  * (c) a page and its buddy have the same order &&
778  * (d) a page and its buddy are in the same zone.
779  *
780  * For recording whether a page is in the buddy system, we set PageBuddy.
781  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
782  *
783  * For recording page's order, we use page_private(page).
784  */
785 static inline bool page_is_buddy(struct page *page, struct page *buddy,
786 							unsigned int order)
787 {
788 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
789 		return false;
790 
791 	if (page_order(buddy) != order)
792 		return false;
793 
794 	/*
795 	 * zone check is done late to avoid uselessly calculating
796 	 * zone/node ids for pages that could never merge.
797 	 */
798 	if (page_zone_id(page) != page_zone_id(buddy))
799 		return false;
800 
801 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
802 
803 	return true;
804 }
805 
806 #ifdef CONFIG_COMPACTION
807 static inline struct capture_control *task_capc(struct zone *zone)
808 {
809 	struct capture_control *capc = current->capture_control;
810 
811 	return unlikely(capc) &&
812 		!(current->flags & PF_KTHREAD) &&
813 		!capc->page &&
814 		capc->cc->zone == zone ? capc : NULL;
815 }
816 
817 static inline bool
818 compaction_capture(struct capture_control *capc, struct page *page,
819 		   int order, int migratetype)
820 {
821 	if (!capc || order != capc->cc->order)
822 		return false;
823 
824 	/* Do not accidentally pollute CMA or isolated regions*/
825 	if (is_migrate_cma(migratetype) ||
826 	    is_migrate_isolate(migratetype))
827 		return false;
828 
829 	/*
830 	 * Do not let lower order allocations polluate a movable pageblock.
831 	 * This might let an unmovable request use a reclaimable pageblock
832 	 * and vice-versa but no more than normal fallback logic which can
833 	 * have trouble finding a high-order free page.
834 	 */
835 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
836 		return false;
837 
838 	capc->page = page;
839 	return true;
840 }
841 
842 #else
843 static inline struct capture_control *task_capc(struct zone *zone)
844 {
845 	return NULL;
846 }
847 
848 static inline bool
849 compaction_capture(struct capture_control *capc, struct page *page,
850 		   int order, int migratetype)
851 {
852 	return false;
853 }
854 #endif /* CONFIG_COMPACTION */
855 
856 /* Used for pages not on another list */
857 static inline void add_to_free_list(struct page *page, struct zone *zone,
858 				    unsigned int order, int migratetype)
859 {
860 	struct free_area *area = &zone->free_area[order];
861 
862 	list_add(&page->lru, &area->free_list[migratetype]);
863 	area->nr_free++;
864 }
865 
866 /* Used for pages not on another list */
867 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
868 					 unsigned int order, int migratetype)
869 {
870 	struct free_area *area = &zone->free_area[order];
871 
872 	list_add_tail(&page->lru, &area->free_list[migratetype]);
873 	area->nr_free++;
874 }
875 
876 /* Used for pages which are on another list */
877 static inline void move_to_free_list(struct page *page, struct zone *zone,
878 				     unsigned int order, int migratetype)
879 {
880 	struct free_area *area = &zone->free_area[order];
881 
882 	list_move(&page->lru, &area->free_list[migratetype]);
883 }
884 
885 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
886 					   unsigned int order)
887 {
888 	/* clear reported state and update reported page count */
889 	if (page_reported(page))
890 		__ClearPageReported(page);
891 
892 	list_del(&page->lru);
893 	__ClearPageBuddy(page);
894 	set_page_private(page, 0);
895 	zone->free_area[order].nr_free--;
896 }
897 
898 /*
899  * If this is not the largest possible page, check if the buddy
900  * of the next-highest order is free. If it is, it's possible
901  * that pages are being freed that will coalesce soon. In case,
902  * that is happening, add the free page to the tail of the list
903  * so it's less likely to be used soon and more likely to be merged
904  * as a higher order page
905  */
906 static inline bool
907 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
908 		   struct page *page, unsigned int order)
909 {
910 	struct page *higher_page, *higher_buddy;
911 	unsigned long combined_pfn;
912 
913 	if (order >= MAX_ORDER - 2)
914 		return false;
915 
916 	if (!pfn_valid_within(buddy_pfn))
917 		return false;
918 
919 	combined_pfn = buddy_pfn & pfn;
920 	higher_page = page + (combined_pfn - pfn);
921 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
922 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
923 
924 	return pfn_valid_within(buddy_pfn) &&
925 	       page_is_buddy(higher_page, higher_buddy, order + 1);
926 }
927 
928 /*
929  * Freeing function for a buddy system allocator.
930  *
931  * The concept of a buddy system is to maintain direct-mapped table
932  * (containing bit values) for memory blocks of various "orders".
933  * The bottom level table contains the map for the smallest allocatable
934  * units of memory (here, pages), and each level above it describes
935  * pairs of units from the levels below, hence, "buddies".
936  * At a high level, all that happens here is marking the table entry
937  * at the bottom level available, and propagating the changes upward
938  * as necessary, plus some accounting needed to play nicely with other
939  * parts of the VM system.
940  * At each level, we keep a list of pages, which are heads of continuous
941  * free pages of length of (1 << order) and marked with PageBuddy.
942  * Page's order is recorded in page_private(page) field.
943  * So when we are allocating or freeing one, we can derive the state of the
944  * other.  That is, if we allocate a small block, and both were
945  * free, the remainder of the region must be split into blocks.
946  * If a block is freed, and its buddy is also free, then this
947  * triggers coalescing into a block of larger size.
948  *
949  * -- nyc
950  */
951 
952 static inline void __free_one_page(struct page *page,
953 		unsigned long pfn,
954 		struct zone *zone, unsigned int order,
955 		int migratetype, bool report)
956 {
957 	struct capture_control *capc = task_capc(zone);
958 	unsigned long buddy_pfn;
959 	unsigned long combined_pfn;
960 	unsigned int max_order;
961 	struct page *buddy;
962 	bool to_tail;
963 
964 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
965 
966 	VM_BUG_ON(!zone_is_initialized(zone));
967 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
968 
969 	VM_BUG_ON(migratetype == -1);
970 	if (likely(!is_migrate_isolate(migratetype)))
971 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
972 
973 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
974 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
975 
976 continue_merging:
977 	while (order < max_order - 1) {
978 		if (compaction_capture(capc, page, order, migratetype)) {
979 			__mod_zone_freepage_state(zone, -(1 << order),
980 								migratetype);
981 			return;
982 		}
983 		buddy_pfn = __find_buddy_pfn(pfn, order);
984 		buddy = page + (buddy_pfn - pfn);
985 
986 		if (!pfn_valid_within(buddy_pfn))
987 			goto done_merging;
988 		if (!page_is_buddy(page, buddy, order))
989 			goto done_merging;
990 		/*
991 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
992 		 * merge with it and move up one order.
993 		 */
994 		if (page_is_guard(buddy))
995 			clear_page_guard(zone, buddy, order, migratetype);
996 		else
997 			del_page_from_free_list(buddy, zone, order);
998 		combined_pfn = buddy_pfn & pfn;
999 		page = page + (combined_pfn - pfn);
1000 		pfn = combined_pfn;
1001 		order++;
1002 	}
1003 	if (max_order < MAX_ORDER) {
1004 		/* If we are here, it means order is >= pageblock_order.
1005 		 * We want to prevent merge between freepages on isolate
1006 		 * pageblock and normal pageblock. Without this, pageblock
1007 		 * isolation could cause incorrect freepage or CMA accounting.
1008 		 *
1009 		 * We don't want to hit this code for the more frequent
1010 		 * low-order merging.
1011 		 */
1012 		if (unlikely(has_isolate_pageblock(zone))) {
1013 			int buddy_mt;
1014 
1015 			buddy_pfn = __find_buddy_pfn(pfn, order);
1016 			buddy = page + (buddy_pfn - pfn);
1017 			buddy_mt = get_pageblock_migratetype(buddy);
1018 
1019 			if (migratetype != buddy_mt
1020 					&& (is_migrate_isolate(migratetype) ||
1021 						is_migrate_isolate(buddy_mt)))
1022 				goto done_merging;
1023 		}
1024 		max_order++;
1025 		goto continue_merging;
1026 	}
1027 
1028 done_merging:
1029 	set_page_order(page, order);
1030 
1031 	if (is_shuffle_order(order))
1032 		to_tail = shuffle_pick_tail();
1033 	else
1034 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1035 
1036 	if (to_tail)
1037 		add_to_free_list_tail(page, zone, order, migratetype);
1038 	else
1039 		add_to_free_list(page, zone, order, migratetype);
1040 
1041 	/* Notify page reporting subsystem of freed page */
1042 	if (report)
1043 		page_reporting_notify_free(order);
1044 }
1045 
1046 /*
1047  * A bad page could be due to a number of fields. Instead of multiple branches,
1048  * try and check multiple fields with one check. The caller must do a detailed
1049  * check if necessary.
1050  */
1051 static inline bool page_expected_state(struct page *page,
1052 					unsigned long check_flags)
1053 {
1054 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1055 		return false;
1056 
1057 	if (unlikely((unsigned long)page->mapping |
1058 			page_ref_count(page) |
1059 #ifdef CONFIG_MEMCG
1060 			(unsigned long)page->mem_cgroup |
1061 #endif
1062 			(page->flags & check_flags)))
1063 		return false;
1064 
1065 	return true;
1066 }
1067 
1068 static const char *page_bad_reason(struct page *page, unsigned long flags)
1069 {
1070 	const char *bad_reason = NULL;
1071 
1072 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1073 		bad_reason = "nonzero mapcount";
1074 	if (unlikely(page->mapping != NULL))
1075 		bad_reason = "non-NULL mapping";
1076 	if (unlikely(page_ref_count(page) != 0))
1077 		bad_reason = "nonzero _refcount";
1078 	if (unlikely(page->flags & flags)) {
1079 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1080 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1081 		else
1082 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1083 	}
1084 #ifdef CONFIG_MEMCG
1085 	if (unlikely(page->mem_cgroup))
1086 		bad_reason = "page still charged to cgroup";
1087 #endif
1088 	return bad_reason;
1089 }
1090 
1091 static void check_free_page_bad(struct page *page)
1092 {
1093 	bad_page(page,
1094 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1095 }
1096 
1097 static inline int check_free_page(struct page *page)
1098 {
1099 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1100 		return 0;
1101 
1102 	/* Something has gone sideways, find it */
1103 	check_free_page_bad(page);
1104 	return 1;
1105 }
1106 
1107 static int free_tail_pages_check(struct page *head_page, struct page *page)
1108 {
1109 	int ret = 1;
1110 
1111 	/*
1112 	 * We rely page->lru.next never has bit 0 set, unless the page
1113 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1114 	 */
1115 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1116 
1117 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1118 		ret = 0;
1119 		goto out;
1120 	}
1121 	switch (page - head_page) {
1122 	case 1:
1123 		/* the first tail page: ->mapping may be compound_mapcount() */
1124 		if (unlikely(compound_mapcount(page))) {
1125 			bad_page(page, "nonzero compound_mapcount");
1126 			goto out;
1127 		}
1128 		break;
1129 	case 2:
1130 		/*
1131 		 * the second tail page: ->mapping is
1132 		 * deferred_list.next -- ignore value.
1133 		 */
1134 		break;
1135 	default:
1136 		if (page->mapping != TAIL_MAPPING) {
1137 			bad_page(page, "corrupted mapping in tail page");
1138 			goto out;
1139 		}
1140 		break;
1141 	}
1142 	if (unlikely(!PageTail(page))) {
1143 		bad_page(page, "PageTail not set");
1144 		goto out;
1145 	}
1146 	if (unlikely(compound_head(page) != head_page)) {
1147 		bad_page(page, "compound_head not consistent");
1148 		goto out;
1149 	}
1150 	ret = 0;
1151 out:
1152 	page->mapping = NULL;
1153 	clear_compound_head(page);
1154 	return ret;
1155 }
1156 
1157 static void kernel_init_free_pages(struct page *page, int numpages)
1158 {
1159 	int i;
1160 
1161 	/* s390's use of memset() could override KASAN redzones. */
1162 	kasan_disable_current();
1163 	for (i = 0; i < numpages; i++)
1164 		clear_highpage(page + i);
1165 	kasan_enable_current();
1166 }
1167 
1168 static __always_inline bool free_pages_prepare(struct page *page,
1169 					unsigned int order, bool check_free)
1170 {
1171 	int bad = 0;
1172 
1173 	VM_BUG_ON_PAGE(PageTail(page), page);
1174 
1175 	trace_mm_page_free(page, order);
1176 
1177 	/*
1178 	 * Check tail pages before head page information is cleared to
1179 	 * avoid checking PageCompound for order-0 pages.
1180 	 */
1181 	if (unlikely(order)) {
1182 		bool compound = PageCompound(page);
1183 		int i;
1184 
1185 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1186 
1187 		if (compound)
1188 			ClearPageDoubleMap(page);
1189 		for (i = 1; i < (1 << order); i++) {
1190 			if (compound)
1191 				bad += free_tail_pages_check(page, page + i);
1192 			if (unlikely(check_free_page(page + i))) {
1193 				bad++;
1194 				continue;
1195 			}
1196 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1197 		}
1198 	}
1199 	if (PageMappingFlags(page))
1200 		page->mapping = NULL;
1201 	if (memcg_kmem_enabled() && PageKmemcg(page))
1202 		__memcg_kmem_uncharge_page(page, order);
1203 	if (check_free)
1204 		bad += check_free_page(page);
1205 	if (bad)
1206 		return false;
1207 
1208 	page_cpupid_reset_last(page);
1209 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1210 	reset_page_owner(page, order);
1211 
1212 	if (!PageHighMem(page)) {
1213 		debug_check_no_locks_freed(page_address(page),
1214 					   PAGE_SIZE << order);
1215 		debug_check_no_obj_freed(page_address(page),
1216 					   PAGE_SIZE << order);
1217 	}
1218 	if (want_init_on_free())
1219 		kernel_init_free_pages(page, 1 << order);
1220 
1221 	kernel_poison_pages(page, 1 << order, 0);
1222 	/*
1223 	 * arch_free_page() can make the page's contents inaccessible.  s390
1224 	 * does this.  So nothing which can access the page's contents should
1225 	 * happen after this.
1226 	 */
1227 	arch_free_page(page, order);
1228 
1229 	if (debug_pagealloc_enabled_static())
1230 		kernel_map_pages(page, 1 << order, 0);
1231 
1232 	kasan_free_nondeferred_pages(page, order);
1233 
1234 	return true;
1235 }
1236 
1237 #ifdef CONFIG_DEBUG_VM
1238 /*
1239  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1240  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1241  * moved from pcp lists to free lists.
1242  */
1243 static bool free_pcp_prepare(struct page *page)
1244 {
1245 	return free_pages_prepare(page, 0, true);
1246 }
1247 
1248 static bool bulkfree_pcp_prepare(struct page *page)
1249 {
1250 	if (debug_pagealloc_enabled_static())
1251 		return check_free_page(page);
1252 	else
1253 		return false;
1254 }
1255 #else
1256 /*
1257  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1258  * moving from pcp lists to free list in order to reduce overhead. With
1259  * debug_pagealloc enabled, they are checked also immediately when being freed
1260  * to the pcp lists.
1261  */
1262 static bool free_pcp_prepare(struct page *page)
1263 {
1264 	if (debug_pagealloc_enabled_static())
1265 		return free_pages_prepare(page, 0, true);
1266 	else
1267 		return free_pages_prepare(page, 0, false);
1268 }
1269 
1270 static bool bulkfree_pcp_prepare(struct page *page)
1271 {
1272 	return check_free_page(page);
1273 }
1274 #endif /* CONFIG_DEBUG_VM */
1275 
1276 static inline void prefetch_buddy(struct page *page)
1277 {
1278 	unsigned long pfn = page_to_pfn(page);
1279 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1280 	struct page *buddy = page + (buddy_pfn - pfn);
1281 
1282 	prefetch(buddy);
1283 }
1284 
1285 /*
1286  * Frees a number of pages from the PCP lists
1287  * Assumes all pages on list are in same zone, and of same order.
1288  * count is the number of pages to free.
1289  *
1290  * If the zone was previously in an "all pages pinned" state then look to
1291  * see if this freeing clears that state.
1292  *
1293  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1294  * pinned" detection logic.
1295  */
1296 static void free_pcppages_bulk(struct zone *zone, int count,
1297 					struct per_cpu_pages *pcp)
1298 {
1299 	int migratetype = 0;
1300 	int batch_free = 0;
1301 	int prefetch_nr = 0;
1302 	bool isolated_pageblocks;
1303 	struct page *page, *tmp;
1304 	LIST_HEAD(head);
1305 
1306 	/*
1307 	 * Ensure proper count is passed which otherwise would stuck in the
1308 	 * below while (list_empty(list)) loop.
1309 	 */
1310 	count = min(pcp->count, count);
1311 	while (count) {
1312 		struct list_head *list;
1313 
1314 		/*
1315 		 * Remove pages from lists in a round-robin fashion. A
1316 		 * batch_free count is maintained that is incremented when an
1317 		 * empty list is encountered.  This is so more pages are freed
1318 		 * off fuller lists instead of spinning excessively around empty
1319 		 * lists
1320 		 */
1321 		do {
1322 			batch_free++;
1323 			if (++migratetype == MIGRATE_PCPTYPES)
1324 				migratetype = 0;
1325 			list = &pcp->lists[migratetype];
1326 		} while (list_empty(list));
1327 
1328 		/* This is the only non-empty list. Free them all. */
1329 		if (batch_free == MIGRATE_PCPTYPES)
1330 			batch_free = count;
1331 
1332 		do {
1333 			page = list_last_entry(list, struct page, lru);
1334 			/* must delete to avoid corrupting pcp list */
1335 			list_del(&page->lru);
1336 			pcp->count--;
1337 
1338 			if (bulkfree_pcp_prepare(page))
1339 				continue;
1340 
1341 			list_add_tail(&page->lru, &head);
1342 
1343 			/*
1344 			 * We are going to put the page back to the global
1345 			 * pool, prefetch its buddy to speed up later access
1346 			 * under zone->lock. It is believed the overhead of
1347 			 * an additional test and calculating buddy_pfn here
1348 			 * can be offset by reduced memory latency later. To
1349 			 * avoid excessive prefetching due to large count, only
1350 			 * prefetch buddy for the first pcp->batch nr of pages.
1351 			 */
1352 			if (prefetch_nr++ < pcp->batch)
1353 				prefetch_buddy(page);
1354 		} while (--count && --batch_free && !list_empty(list));
1355 	}
1356 
1357 	spin_lock(&zone->lock);
1358 	isolated_pageblocks = has_isolate_pageblock(zone);
1359 
1360 	/*
1361 	 * Use safe version since after __free_one_page(),
1362 	 * page->lru.next will not point to original list.
1363 	 */
1364 	list_for_each_entry_safe(page, tmp, &head, lru) {
1365 		int mt = get_pcppage_migratetype(page);
1366 		/* MIGRATE_ISOLATE page should not go to pcplists */
1367 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1368 		/* Pageblock could have been isolated meanwhile */
1369 		if (unlikely(isolated_pageblocks))
1370 			mt = get_pageblock_migratetype(page);
1371 
1372 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1373 		trace_mm_page_pcpu_drain(page, 0, mt);
1374 	}
1375 	spin_unlock(&zone->lock);
1376 }
1377 
1378 static void free_one_page(struct zone *zone,
1379 				struct page *page, unsigned long pfn,
1380 				unsigned int order,
1381 				int migratetype)
1382 {
1383 	spin_lock(&zone->lock);
1384 	if (unlikely(has_isolate_pageblock(zone) ||
1385 		is_migrate_isolate(migratetype))) {
1386 		migratetype = get_pfnblock_migratetype(page, pfn);
1387 	}
1388 	__free_one_page(page, pfn, zone, order, migratetype, true);
1389 	spin_unlock(&zone->lock);
1390 }
1391 
1392 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1393 				unsigned long zone, int nid)
1394 {
1395 	mm_zero_struct_page(page);
1396 	set_page_links(page, zone, nid, pfn);
1397 	init_page_count(page);
1398 	page_mapcount_reset(page);
1399 	page_cpupid_reset_last(page);
1400 	page_kasan_tag_reset(page);
1401 
1402 	INIT_LIST_HEAD(&page->lru);
1403 #ifdef WANT_PAGE_VIRTUAL
1404 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1405 	if (!is_highmem_idx(zone))
1406 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1407 #endif
1408 }
1409 
1410 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1411 static void __meminit init_reserved_page(unsigned long pfn)
1412 {
1413 	pg_data_t *pgdat;
1414 	int nid, zid;
1415 
1416 	if (!early_page_uninitialised(pfn))
1417 		return;
1418 
1419 	nid = early_pfn_to_nid(pfn);
1420 	pgdat = NODE_DATA(nid);
1421 
1422 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1423 		struct zone *zone = &pgdat->node_zones[zid];
1424 
1425 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1426 			break;
1427 	}
1428 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1429 }
1430 #else
1431 static inline void init_reserved_page(unsigned long pfn)
1432 {
1433 }
1434 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1435 
1436 /*
1437  * Initialised pages do not have PageReserved set. This function is
1438  * called for each range allocated by the bootmem allocator and
1439  * marks the pages PageReserved. The remaining valid pages are later
1440  * sent to the buddy page allocator.
1441  */
1442 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1443 {
1444 	unsigned long start_pfn = PFN_DOWN(start);
1445 	unsigned long end_pfn = PFN_UP(end);
1446 
1447 	for (; start_pfn < end_pfn; start_pfn++) {
1448 		if (pfn_valid(start_pfn)) {
1449 			struct page *page = pfn_to_page(start_pfn);
1450 
1451 			init_reserved_page(start_pfn);
1452 
1453 			/* Avoid false-positive PageTail() */
1454 			INIT_LIST_HEAD(&page->lru);
1455 
1456 			/*
1457 			 * no need for atomic set_bit because the struct
1458 			 * page is not visible yet so nobody should
1459 			 * access it yet.
1460 			 */
1461 			__SetPageReserved(page);
1462 		}
1463 	}
1464 }
1465 
1466 static void __free_pages_ok(struct page *page, unsigned int order)
1467 {
1468 	unsigned long flags;
1469 	int migratetype;
1470 	unsigned long pfn = page_to_pfn(page);
1471 
1472 	if (!free_pages_prepare(page, order, true))
1473 		return;
1474 
1475 	migratetype = get_pfnblock_migratetype(page, pfn);
1476 	local_irq_save(flags);
1477 	__count_vm_events(PGFREE, 1 << order);
1478 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1479 	local_irq_restore(flags);
1480 }
1481 
1482 void __free_pages_core(struct page *page, unsigned int order)
1483 {
1484 	unsigned int nr_pages = 1 << order;
1485 	struct page *p = page;
1486 	unsigned int loop;
1487 
1488 	prefetchw(p);
1489 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1490 		prefetchw(p + 1);
1491 		__ClearPageReserved(p);
1492 		set_page_count(p, 0);
1493 	}
1494 	__ClearPageReserved(p);
1495 	set_page_count(p, 0);
1496 
1497 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1498 	set_page_refcounted(page);
1499 	__free_pages(page, order);
1500 }
1501 
1502 #ifdef CONFIG_NEED_MULTIPLE_NODES
1503 
1504 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1505 
1506 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1507 
1508 /*
1509  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1510  */
1511 int __meminit __early_pfn_to_nid(unsigned long pfn,
1512 					struct mminit_pfnnid_cache *state)
1513 {
1514 	unsigned long start_pfn, end_pfn;
1515 	int nid;
1516 
1517 	if (state->last_start <= pfn && pfn < state->last_end)
1518 		return state->last_nid;
1519 
1520 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1521 	if (nid != NUMA_NO_NODE) {
1522 		state->last_start = start_pfn;
1523 		state->last_end = end_pfn;
1524 		state->last_nid = nid;
1525 	}
1526 
1527 	return nid;
1528 }
1529 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1530 
1531 int __meminit early_pfn_to_nid(unsigned long pfn)
1532 {
1533 	static DEFINE_SPINLOCK(early_pfn_lock);
1534 	int nid;
1535 
1536 	spin_lock(&early_pfn_lock);
1537 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1538 	if (nid < 0)
1539 		nid = first_online_node;
1540 	spin_unlock(&early_pfn_lock);
1541 
1542 	return nid;
1543 }
1544 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1545 
1546 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1547 							unsigned int order)
1548 {
1549 	if (early_page_uninitialised(pfn))
1550 		return;
1551 	__free_pages_core(page, order);
1552 }
1553 
1554 /*
1555  * Check that the whole (or subset of) a pageblock given by the interval of
1556  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1557  * with the migration of free compaction scanner. The scanners then need to
1558  * use only pfn_valid_within() check for arches that allow holes within
1559  * pageblocks.
1560  *
1561  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1562  *
1563  * It's possible on some configurations to have a setup like node0 node1 node0
1564  * i.e. it's possible that all pages within a zones range of pages do not
1565  * belong to a single zone. We assume that a border between node0 and node1
1566  * can occur within a single pageblock, but not a node0 node1 node0
1567  * interleaving within a single pageblock. It is therefore sufficient to check
1568  * the first and last page of a pageblock and avoid checking each individual
1569  * page in a pageblock.
1570  */
1571 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1572 				     unsigned long end_pfn, struct zone *zone)
1573 {
1574 	struct page *start_page;
1575 	struct page *end_page;
1576 
1577 	/* end_pfn is one past the range we are checking */
1578 	end_pfn--;
1579 
1580 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1581 		return NULL;
1582 
1583 	start_page = pfn_to_online_page(start_pfn);
1584 	if (!start_page)
1585 		return NULL;
1586 
1587 	if (page_zone(start_page) != zone)
1588 		return NULL;
1589 
1590 	end_page = pfn_to_page(end_pfn);
1591 
1592 	/* This gives a shorter code than deriving page_zone(end_page) */
1593 	if (page_zone_id(start_page) != page_zone_id(end_page))
1594 		return NULL;
1595 
1596 	return start_page;
1597 }
1598 
1599 void set_zone_contiguous(struct zone *zone)
1600 {
1601 	unsigned long block_start_pfn = zone->zone_start_pfn;
1602 	unsigned long block_end_pfn;
1603 
1604 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1605 	for (; block_start_pfn < zone_end_pfn(zone);
1606 			block_start_pfn = block_end_pfn,
1607 			 block_end_pfn += pageblock_nr_pages) {
1608 
1609 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1610 
1611 		if (!__pageblock_pfn_to_page(block_start_pfn,
1612 					     block_end_pfn, zone))
1613 			return;
1614 		cond_resched();
1615 	}
1616 
1617 	/* We confirm that there is no hole */
1618 	zone->contiguous = true;
1619 }
1620 
1621 void clear_zone_contiguous(struct zone *zone)
1622 {
1623 	zone->contiguous = false;
1624 }
1625 
1626 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1627 static void __init deferred_free_range(unsigned long pfn,
1628 				       unsigned long nr_pages)
1629 {
1630 	struct page *page;
1631 	unsigned long i;
1632 
1633 	if (!nr_pages)
1634 		return;
1635 
1636 	page = pfn_to_page(pfn);
1637 
1638 	/* Free a large naturally-aligned chunk if possible */
1639 	if (nr_pages == pageblock_nr_pages &&
1640 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1641 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1642 		__free_pages_core(page, pageblock_order);
1643 		return;
1644 	}
1645 
1646 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1647 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1648 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1649 		__free_pages_core(page, 0);
1650 	}
1651 }
1652 
1653 /* Completion tracking for deferred_init_memmap() threads */
1654 static atomic_t pgdat_init_n_undone __initdata;
1655 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1656 
1657 static inline void __init pgdat_init_report_one_done(void)
1658 {
1659 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1660 		complete(&pgdat_init_all_done_comp);
1661 }
1662 
1663 /*
1664  * Returns true if page needs to be initialized or freed to buddy allocator.
1665  *
1666  * First we check if pfn is valid on architectures where it is possible to have
1667  * holes within pageblock_nr_pages. On systems where it is not possible, this
1668  * function is optimized out.
1669  *
1670  * Then, we check if a current large page is valid by only checking the validity
1671  * of the head pfn.
1672  */
1673 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1674 {
1675 	if (!pfn_valid_within(pfn))
1676 		return false;
1677 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1678 		return false;
1679 	return true;
1680 }
1681 
1682 /*
1683  * Free pages to buddy allocator. Try to free aligned pages in
1684  * pageblock_nr_pages sizes.
1685  */
1686 static void __init deferred_free_pages(unsigned long pfn,
1687 				       unsigned long end_pfn)
1688 {
1689 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1690 	unsigned long nr_free = 0;
1691 
1692 	for (; pfn < end_pfn; pfn++) {
1693 		if (!deferred_pfn_valid(pfn)) {
1694 			deferred_free_range(pfn - nr_free, nr_free);
1695 			nr_free = 0;
1696 		} else if (!(pfn & nr_pgmask)) {
1697 			deferred_free_range(pfn - nr_free, nr_free);
1698 			nr_free = 1;
1699 		} else {
1700 			nr_free++;
1701 		}
1702 	}
1703 	/* Free the last block of pages to allocator */
1704 	deferred_free_range(pfn - nr_free, nr_free);
1705 }
1706 
1707 /*
1708  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1709  * by performing it only once every pageblock_nr_pages.
1710  * Return number of pages initialized.
1711  */
1712 static unsigned long  __init deferred_init_pages(struct zone *zone,
1713 						 unsigned long pfn,
1714 						 unsigned long end_pfn)
1715 {
1716 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1717 	int nid = zone_to_nid(zone);
1718 	unsigned long nr_pages = 0;
1719 	int zid = zone_idx(zone);
1720 	struct page *page = NULL;
1721 
1722 	for (; pfn < end_pfn; pfn++) {
1723 		if (!deferred_pfn_valid(pfn)) {
1724 			page = NULL;
1725 			continue;
1726 		} else if (!page || !(pfn & nr_pgmask)) {
1727 			page = pfn_to_page(pfn);
1728 		} else {
1729 			page++;
1730 		}
1731 		__init_single_page(page, pfn, zid, nid);
1732 		nr_pages++;
1733 	}
1734 	return (nr_pages);
1735 }
1736 
1737 /*
1738  * This function is meant to pre-load the iterator for the zone init.
1739  * Specifically it walks through the ranges until we are caught up to the
1740  * first_init_pfn value and exits there. If we never encounter the value we
1741  * return false indicating there are no valid ranges left.
1742  */
1743 static bool __init
1744 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1745 				    unsigned long *spfn, unsigned long *epfn,
1746 				    unsigned long first_init_pfn)
1747 {
1748 	u64 j;
1749 
1750 	/*
1751 	 * Start out by walking through the ranges in this zone that have
1752 	 * already been initialized. We don't need to do anything with them
1753 	 * so we just need to flush them out of the system.
1754 	 */
1755 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1756 		if (*epfn <= first_init_pfn)
1757 			continue;
1758 		if (*spfn < first_init_pfn)
1759 			*spfn = first_init_pfn;
1760 		*i = j;
1761 		return true;
1762 	}
1763 
1764 	return false;
1765 }
1766 
1767 /*
1768  * Initialize and free pages. We do it in two loops: first we initialize
1769  * struct page, then free to buddy allocator, because while we are
1770  * freeing pages we can access pages that are ahead (computing buddy
1771  * page in __free_one_page()).
1772  *
1773  * In order to try and keep some memory in the cache we have the loop
1774  * broken along max page order boundaries. This way we will not cause
1775  * any issues with the buddy page computation.
1776  */
1777 static unsigned long __init
1778 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1779 		       unsigned long *end_pfn)
1780 {
1781 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1782 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1783 	unsigned long nr_pages = 0;
1784 	u64 j = *i;
1785 
1786 	/* First we loop through and initialize the page values */
1787 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1788 		unsigned long t;
1789 
1790 		if (mo_pfn <= *start_pfn)
1791 			break;
1792 
1793 		t = min(mo_pfn, *end_pfn);
1794 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1795 
1796 		if (mo_pfn < *end_pfn) {
1797 			*start_pfn = mo_pfn;
1798 			break;
1799 		}
1800 	}
1801 
1802 	/* Reset values and now loop through freeing pages as needed */
1803 	swap(j, *i);
1804 
1805 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1806 		unsigned long t;
1807 
1808 		if (mo_pfn <= spfn)
1809 			break;
1810 
1811 		t = min(mo_pfn, epfn);
1812 		deferred_free_pages(spfn, t);
1813 
1814 		if (mo_pfn <= epfn)
1815 			break;
1816 	}
1817 
1818 	return nr_pages;
1819 }
1820 
1821 static void __init
1822 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1823 			   void *arg)
1824 {
1825 	unsigned long spfn, epfn;
1826 	struct zone *zone = arg;
1827 	u64 i;
1828 
1829 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1830 
1831 	/*
1832 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1833 	 * can avoid introducing any issues with the buddy allocator.
1834 	 */
1835 	while (spfn < end_pfn) {
1836 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1837 		cond_resched();
1838 	}
1839 }
1840 
1841 /* An arch may override for more concurrency. */
1842 __weak int __init
1843 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1844 {
1845 	return 1;
1846 }
1847 
1848 /* Initialise remaining memory on a node */
1849 static int __init deferred_init_memmap(void *data)
1850 {
1851 	pg_data_t *pgdat = data;
1852 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1853 	unsigned long spfn = 0, epfn = 0;
1854 	unsigned long first_init_pfn, flags;
1855 	unsigned long start = jiffies;
1856 	struct zone *zone;
1857 	int zid, max_threads;
1858 	u64 i;
1859 
1860 	/* Bind memory initialisation thread to a local node if possible */
1861 	if (!cpumask_empty(cpumask))
1862 		set_cpus_allowed_ptr(current, cpumask);
1863 
1864 	pgdat_resize_lock(pgdat, &flags);
1865 	first_init_pfn = pgdat->first_deferred_pfn;
1866 	if (first_init_pfn == ULONG_MAX) {
1867 		pgdat_resize_unlock(pgdat, &flags);
1868 		pgdat_init_report_one_done();
1869 		return 0;
1870 	}
1871 
1872 	/* Sanity check boundaries */
1873 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1874 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1875 	pgdat->first_deferred_pfn = ULONG_MAX;
1876 
1877 	/*
1878 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1879 	 * interrupt thread must allocate this early in boot, zone must be
1880 	 * pre-grown prior to start of deferred page initialization.
1881 	 */
1882 	pgdat_resize_unlock(pgdat, &flags);
1883 
1884 	/* Only the highest zone is deferred so find it */
1885 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1886 		zone = pgdat->node_zones + zid;
1887 		if (first_init_pfn < zone_end_pfn(zone))
1888 			break;
1889 	}
1890 
1891 	/* If the zone is empty somebody else may have cleared out the zone */
1892 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1893 						 first_init_pfn))
1894 		goto zone_empty;
1895 
1896 	max_threads = deferred_page_init_max_threads(cpumask);
1897 
1898 	while (spfn < epfn) {
1899 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1900 		struct padata_mt_job job = {
1901 			.thread_fn   = deferred_init_memmap_chunk,
1902 			.fn_arg      = zone,
1903 			.start       = spfn,
1904 			.size        = epfn_align - spfn,
1905 			.align       = PAGES_PER_SECTION,
1906 			.min_chunk   = PAGES_PER_SECTION,
1907 			.max_threads = max_threads,
1908 		};
1909 
1910 		padata_do_multithreaded(&job);
1911 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1912 						    epfn_align);
1913 	}
1914 zone_empty:
1915 	/* Sanity check that the next zone really is unpopulated */
1916 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1917 
1918 	pr_info("node %d deferred pages initialised in %ums\n",
1919 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1920 
1921 	pgdat_init_report_one_done();
1922 	return 0;
1923 }
1924 
1925 /*
1926  * If this zone has deferred pages, try to grow it by initializing enough
1927  * deferred pages to satisfy the allocation specified by order, rounded up to
1928  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1929  * of SECTION_SIZE bytes by initializing struct pages in increments of
1930  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1931  *
1932  * Return true when zone was grown, otherwise return false. We return true even
1933  * when we grow less than requested, to let the caller decide if there are
1934  * enough pages to satisfy the allocation.
1935  *
1936  * Note: We use noinline because this function is needed only during boot, and
1937  * it is called from a __ref function _deferred_grow_zone. This way we are
1938  * making sure that it is not inlined into permanent text section.
1939  */
1940 static noinline bool __init
1941 deferred_grow_zone(struct zone *zone, unsigned int order)
1942 {
1943 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1944 	pg_data_t *pgdat = zone->zone_pgdat;
1945 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1946 	unsigned long spfn, epfn, flags;
1947 	unsigned long nr_pages = 0;
1948 	u64 i;
1949 
1950 	/* Only the last zone may have deferred pages */
1951 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1952 		return false;
1953 
1954 	pgdat_resize_lock(pgdat, &flags);
1955 
1956 	/*
1957 	 * If someone grew this zone while we were waiting for spinlock, return
1958 	 * true, as there might be enough pages already.
1959 	 */
1960 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1961 		pgdat_resize_unlock(pgdat, &flags);
1962 		return true;
1963 	}
1964 
1965 	/* If the zone is empty somebody else may have cleared out the zone */
1966 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1967 						 first_deferred_pfn)) {
1968 		pgdat->first_deferred_pfn = ULONG_MAX;
1969 		pgdat_resize_unlock(pgdat, &flags);
1970 		/* Retry only once. */
1971 		return first_deferred_pfn != ULONG_MAX;
1972 	}
1973 
1974 	/*
1975 	 * Initialize and free pages in MAX_ORDER sized increments so
1976 	 * that we can avoid introducing any issues with the buddy
1977 	 * allocator.
1978 	 */
1979 	while (spfn < epfn) {
1980 		/* update our first deferred PFN for this section */
1981 		first_deferred_pfn = spfn;
1982 
1983 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1984 		touch_nmi_watchdog();
1985 
1986 		/* We should only stop along section boundaries */
1987 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1988 			continue;
1989 
1990 		/* If our quota has been met we can stop here */
1991 		if (nr_pages >= nr_pages_needed)
1992 			break;
1993 	}
1994 
1995 	pgdat->first_deferred_pfn = spfn;
1996 	pgdat_resize_unlock(pgdat, &flags);
1997 
1998 	return nr_pages > 0;
1999 }
2000 
2001 /*
2002  * deferred_grow_zone() is __init, but it is called from
2003  * get_page_from_freelist() during early boot until deferred_pages permanently
2004  * disables this call. This is why we have refdata wrapper to avoid warning,
2005  * and to ensure that the function body gets unloaded.
2006  */
2007 static bool __ref
2008 _deferred_grow_zone(struct zone *zone, unsigned int order)
2009 {
2010 	return deferred_grow_zone(zone, order);
2011 }
2012 
2013 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2014 
2015 void __init page_alloc_init_late(void)
2016 {
2017 	struct zone *zone;
2018 	int nid;
2019 
2020 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2021 
2022 	/* There will be num_node_state(N_MEMORY) threads */
2023 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2024 	for_each_node_state(nid, N_MEMORY) {
2025 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2026 	}
2027 
2028 	/* Block until all are initialised */
2029 	wait_for_completion(&pgdat_init_all_done_comp);
2030 
2031 	/*
2032 	 * The number of managed pages has changed due to the initialisation
2033 	 * so the pcpu batch and high limits needs to be updated or the limits
2034 	 * will be artificially small.
2035 	 */
2036 	for_each_populated_zone(zone)
2037 		zone_pcp_update(zone);
2038 
2039 	/*
2040 	 * We initialized the rest of the deferred pages.  Permanently disable
2041 	 * on-demand struct page initialization.
2042 	 */
2043 	static_branch_disable(&deferred_pages);
2044 
2045 	/* Reinit limits that are based on free pages after the kernel is up */
2046 	files_maxfiles_init();
2047 #endif
2048 
2049 	/* Discard memblock private memory */
2050 	memblock_discard();
2051 
2052 	for_each_node_state(nid, N_MEMORY)
2053 		shuffle_free_memory(NODE_DATA(nid));
2054 
2055 	for_each_populated_zone(zone)
2056 		set_zone_contiguous(zone);
2057 }
2058 
2059 #ifdef CONFIG_CMA
2060 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2061 void __init init_cma_reserved_pageblock(struct page *page)
2062 {
2063 	unsigned i = pageblock_nr_pages;
2064 	struct page *p = page;
2065 
2066 	do {
2067 		__ClearPageReserved(p);
2068 		set_page_count(p, 0);
2069 	} while (++p, --i);
2070 
2071 	set_pageblock_migratetype(page, MIGRATE_CMA);
2072 
2073 	if (pageblock_order >= MAX_ORDER) {
2074 		i = pageblock_nr_pages;
2075 		p = page;
2076 		do {
2077 			set_page_refcounted(p);
2078 			__free_pages(p, MAX_ORDER - 1);
2079 			p += MAX_ORDER_NR_PAGES;
2080 		} while (i -= MAX_ORDER_NR_PAGES);
2081 	} else {
2082 		set_page_refcounted(page);
2083 		__free_pages(page, pageblock_order);
2084 	}
2085 
2086 	adjust_managed_page_count(page, pageblock_nr_pages);
2087 }
2088 #endif
2089 
2090 /*
2091  * The order of subdivision here is critical for the IO subsystem.
2092  * Please do not alter this order without good reasons and regression
2093  * testing. Specifically, as large blocks of memory are subdivided,
2094  * the order in which smaller blocks are delivered depends on the order
2095  * they're subdivided in this function. This is the primary factor
2096  * influencing the order in which pages are delivered to the IO
2097  * subsystem according to empirical testing, and this is also justified
2098  * by considering the behavior of a buddy system containing a single
2099  * large block of memory acted on by a series of small allocations.
2100  * This behavior is a critical factor in sglist merging's success.
2101  *
2102  * -- nyc
2103  */
2104 static inline void expand(struct zone *zone, struct page *page,
2105 	int low, int high, int migratetype)
2106 {
2107 	unsigned long size = 1 << high;
2108 
2109 	while (high > low) {
2110 		high--;
2111 		size >>= 1;
2112 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2113 
2114 		/*
2115 		 * Mark as guard pages (or page), that will allow to
2116 		 * merge back to allocator when buddy will be freed.
2117 		 * Corresponding page table entries will not be touched,
2118 		 * pages will stay not present in virtual address space
2119 		 */
2120 		if (set_page_guard(zone, &page[size], high, migratetype))
2121 			continue;
2122 
2123 		add_to_free_list(&page[size], zone, high, migratetype);
2124 		set_page_order(&page[size], high);
2125 	}
2126 }
2127 
2128 static void check_new_page_bad(struct page *page)
2129 {
2130 	if (unlikely(page->flags & __PG_HWPOISON)) {
2131 		/* Don't complain about hwpoisoned pages */
2132 		page_mapcount_reset(page); /* remove PageBuddy */
2133 		return;
2134 	}
2135 
2136 	bad_page(page,
2137 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2138 }
2139 
2140 /*
2141  * This page is about to be returned from the page allocator
2142  */
2143 static inline int check_new_page(struct page *page)
2144 {
2145 	if (likely(page_expected_state(page,
2146 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2147 		return 0;
2148 
2149 	check_new_page_bad(page);
2150 	return 1;
2151 }
2152 
2153 static inline bool free_pages_prezeroed(void)
2154 {
2155 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2156 		page_poisoning_enabled()) || want_init_on_free();
2157 }
2158 
2159 #ifdef CONFIG_DEBUG_VM
2160 /*
2161  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2162  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2163  * also checked when pcp lists are refilled from the free lists.
2164  */
2165 static inline bool check_pcp_refill(struct page *page)
2166 {
2167 	if (debug_pagealloc_enabled_static())
2168 		return check_new_page(page);
2169 	else
2170 		return false;
2171 }
2172 
2173 static inline bool check_new_pcp(struct page *page)
2174 {
2175 	return check_new_page(page);
2176 }
2177 #else
2178 /*
2179  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2180  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2181  * enabled, they are also checked when being allocated from the pcp lists.
2182  */
2183 static inline bool check_pcp_refill(struct page *page)
2184 {
2185 	return check_new_page(page);
2186 }
2187 static inline bool check_new_pcp(struct page *page)
2188 {
2189 	if (debug_pagealloc_enabled_static())
2190 		return check_new_page(page);
2191 	else
2192 		return false;
2193 }
2194 #endif /* CONFIG_DEBUG_VM */
2195 
2196 static bool check_new_pages(struct page *page, unsigned int order)
2197 {
2198 	int i;
2199 	for (i = 0; i < (1 << order); i++) {
2200 		struct page *p = page + i;
2201 
2202 		if (unlikely(check_new_page(p)))
2203 			return true;
2204 	}
2205 
2206 	return false;
2207 }
2208 
2209 inline void post_alloc_hook(struct page *page, unsigned int order,
2210 				gfp_t gfp_flags)
2211 {
2212 	set_page_private(page, 0);
2213 	set_page_refcounted(page);
2214 
2215 	arch_alloc_page(page, order);
2216 	if (debug_pagealloc_enabled_static())
2217 		kernel_map_pages(page, 1 << order, 1);
2218 	kasan_alloc_pages(page, order);
2219 	kernel_poison_pages(page, 1 << order, 1);
2220 	set_page_owner(page, order, gfp_flags);
2221 }
2222 
2223 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2224 							unsigned int alloc_flags)
2225 {
2226 	post_alloc_hook(page, order, gfp_flags);
2227 
2228 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2229 		kernel_init_free_pages(page, 1 << order);
2230 
2231 	if (order && (gfp_flags & __GFP_COMP))
2232 		prep_compound_page(page, order);
2233 
2234 	/*
2235 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2236 	 * allocate the page. The expectation is that the caller is taking
2237 	 * steps that will free more memory. The caller should avoid the page
2238 	 * being used for !PFMEMALLOC purposes.
2239 	 */
2240 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2241 		set_page_pfmemalloc(page);
2242 	else
2243 		clear_page_pfmemalloc(page);
2244 }
2245 
2246 /*
2247  * Go through the free lists for the given migratetype and remove
2248  * the smallest available page from the freelists
2249  */
2250 static __always_inline
2251 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2252 						int migratetype)
2253 {
2254 	unsigned int current_order;
2255 	struct free_area *area;
2256 	struct page *page;
2257 
2258 	/* Find a page of the appropriate size in the preferred list */
2259 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2260 		area = &(zone->free_area[current_order]);
2261 		page = get_page_from_free_area(area, migratetype);
2262 		if (!page)
2263 			continue;
2264 		del_page_from_free_list(page, zone, current_order);
2265 		expand(zone, page, order, current_order, migratetype);
2266 		set_pcppage_migratetype(page, migratetype);
2267 		return page;
2268 	}
2269 
2270 	return NULL;
2271 }
2272 
2273 
2274 /*
2275  * This array describes the order lists are fallen back to when
2276  * the free lists for the desirable migrate type are depleted
2277  */
2278 static int fallbacks[MIGRATE_TYPES][3] = {
2279 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2280 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2281 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2282 #ifdef CONFIG_CMA
2283 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2284 #endif
2285 #ifdef CONFIG_MEMORY_ISOLATION
2286 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2287 #endif
2288 };
2289 
2290 #ifdef CONFIG_CMA
2291 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2292 					unsigned int order)
2293 {
2294 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2295 }
2296 #else
2297 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2298 					unsigned int order) { return NULL; }
2299 #endif
2300 
2301 /*
2302  * Move the free pages in a range to the free lists of the requested type.
2303  * Note that start_page and end_pages are not aligned on a pageblock
2304  * boundary. If alignment is required, use move_freepages_block()
2305  */
2306 static int move_freepages(struct zone *zone,
2307 			  struct page *start_page, struct page *end_page,
2308 			  int migratetype, int *num_movable)
2309 {
2310 	struct page *page;
2311 	unsigned int order;
2312 	int pages_moved = 0;
2313 
2314 	for (page = start_page; page <= end_page;) {
2315 		if (!pfn_valid_within(page_to_pfn(page))) {
2316 			page++;
2317 			continue;
2318 		}
2319 
2320 		if (!PageBuddy(page)) {
2321 			/*
2322 			 * We assume that pages that could be isolated for
2323 			 * migration are movable. But we don't actually try
2324 			 * isolating, as that would be expensive.
2325 			 */
2326 			if (num_movable &&
2327 					(PageLRU(page) || __PageMovable(page)))
2328 				(*num_movable)++;
2329 
2330 			page++;
2331 			continue;
2332 		}
2333 
2334 		/* Make sure we are not inadvertently changing nodes */
2335 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2336 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2337 
2338 		order = page_order(page);
2339 		move_to_free_list(page, zone, order, migratetype);
2340 		page += 1 << order;
2341 		pages_moved += 1 << order;
2342 	}
2343 
2344 	return pages_moved;
2345 }
2346 
2347 int move_freepages_block(struct zone *zone, struct page *page,
2348 				int migratetype, int *num_movable)
2349 {
2350 	unsigned long start_pfn, end_pfn;
2351 	struct page *start_page, *end_page;
2352 
2353 	if (num_movable)
2354 		*num_movable = 0;
2355 
2356 	start_pfn = page_to_pfn(page);
2357 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2358 	start_page = pfn_to_page(start_pfn);
2359 	end_page = start_page + pageblock_nr_pages - 1;
2360 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2361 
2362 	/* Do not cross zone boundaries */
2363 	if (!zone_spans_pfn(zone, start_pfn))
2364 		start_page = page;
2365 	if (!zone_spans_pfn(zone, end_pfn))
2366 		return 0;
2367 
2368 	return move_freepages(zone, start_page, end_page, migratetype,
2369 								num_movable);
2370 }
2371 
2372 static void change_pageblock_range(struct page *pageblock_page,
2373 					int start_order, int migratetype)
2374 {
2375 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2376 
2377 	while (nr_pageblocks--) {
2378 		set_pageblock_migratetype(pageblock_page, migratetype);
2379 		pageblock_page += pageblock_nr_pages;
2380 	}
2381 }
2382 
2383 /*
2384  * When we are falling back to another migratetype during allocation, try to
2385  * steal extra free pages from the same pageblocks to satisfy further
2386  * allocations, instead of polluting multiple pageblocks.
2387  *
2388  * If we are stealing a relatively large buddy page, it is likely there will
2389  * be more free pages in the pageblock, so try to steal them all. For
2390  * reclaimable and unmovable allocations, we steal regardless of page size,
2391  * as fragmentation caused by those allocations polluting movable pageblocks
2392  * is worse than movable allocations stealing from unmovable and reclaimable
2393  * pageblocks.
2394  */
2395 static bool can_steal_fallback(unsigned int order, int start_mt)
2396 {
2397 	/*
2398 	 * Leaving this order check is intended, although there is
2399 	 * relaxed order check in next check. The reason is that
2400 	 * we can actually steal whole pageblock if this condition met,
2401 	 * but, below check doesn't guarantee it and that is just heuristic
2402 	 * so could be changed anytime.
2403 	 */
2404 	if (order >= pageblock_order)
2405 		return true;
2406 
2407 	if (order >= pageblock_order / 2 ||
2408 		start_mt == MIGRATE_RECLAIMABLE ||
2409 		start_mt == MIGRATE_UNMOVABLE ||
2410 		page_group_by_mobility_disabled)
2411 		return true;
2412 
2413 	return false;
2414 }
2415 
2416 static inline void boost_watermark(struct zone *zone)
2417 {
2418 	unsigned long max_boost;
2419 
2420 	if (!watermark_boost_factor)
2421 		return;
2422 	/*
2423 	 * Don't bother in zones that are unlikely to produce results.
2424 	 * On small machines, including kdump capture kernels running
2425 	 * in a small area, boosting the watermark can cause an out of
2426 	 * memory situation immediately.
2427 	 */
2428 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2429 		return;
2430 
2431 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2432 			watermark_boost_factor, 10000);
2433 
2434 	/*
2435 	 * high watermark may be uninitialised if fragmentation occurs
2436 	 * very early in boot so do not boost. We do not fall
2437 	 * through and boost by pageblock_nr_pages as failing
2438 	 * allocations that early means that reclaim is not going
2439 	 * to help and it may even be impossible to reclaim the
2440 	 * boosted watermark resulting in a hang.
2441 	 */
2442 	if (!max_boost)
2443 		return;
2444 
2445 	max_boost = max(pageblock_nr_pages, max_boost);
2446 
2447 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2448 		max_boost);
2449 }
2450 
2451 /*
2452  * This function implements actual steal behaviour. If order is large enough,
2453  * we can steal whole pageblock. If not, we first move freepages in this
2454  * pageblock to our migratetype and determine how many already-allocated pages
2455  * are there in the pageblock with a compatible migratetype. If at least half
2456  * of pages are free or compatible, we can change migratetype of the pageblock
2457  * itself, so pages freed in the future will be put on the correct free list.
2458  */
2459 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2460 		unsigned int alloc_flags, int start_type, bool whole_block)
2461 {
2462 	unsigned int current_order = page_order(page);
2463 	int free_pages, movable_pages, alike_pages;
2464 	int old_block_type;
2465 
2466 	old_block_type = get_pageblock_migratetype(page);
2467 
2468 	/*
2469 	 * This can happen due to races and we want to prevent broken
2470 	 * highatomic accounting.
2471 	 */
2472 	if (is_migrate_highatomic(old_block_type))
2473 		goto single_page;
2474 
2475 	/* Take ownership for orders >= pageblock_order */
2476 	if (current_order >= pageblock_order) {
2477 		change_pageblock_range(page, current_order, start_type);
2478 		goto single_page;
2479 	}
2480 
2481 	/*
2482 	 * Boost watermarks to increase reclaim pressure to reduce the
2483 	 * likelihood of future fallbacks. Wake kswapd now as the node
2484 	 * may be balanced overall and kswapd will not wake naturally.
2485 	 */
2486 	boost_watermark(zone);
2487 	if (alloc_flags & ALLOC_KSWAPD)
2488 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2489 
2490 	/* We are not allowed to try stealing from the whole block */
2491 	if (!whole_block)
2492 		goto single_page;
2493 
2494 	free_pages = move_freepages_block(zone, page, start_type,
2495 						&movable_pages);
2496 	/*
2497 	 * Determine how many pages are compatible with our allocation.
2498 	 * For movable allocation, it's the number of movable pages which
2499 	 * we just obtained. For other types it's a bit more tricky.
2500 	 */
2501 	if (start_type == MIGRATE_MOVABLE) {
2502 		alike_pages = movable_pages;
2503 	} else {
2504 		/*
2505 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2506 		 * to MOVABLE pageblock, consider all non-movable pages as
2507 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2508 		 * vice versa, be conservative since we can't distinguish the
2509 		 * exact migratetype of non-movable pages.
2510 		 */
2511 		if (old_block_type == MIGRATE_MOVABLE)
2512 			alike_pages = pageblock_nr_pages
2513 						- (free_pages + movable_pages);
2514 		else
2515 			alike_pages = 0;
2516 	}
2517 
2518 	/* moving whole block can fail due to zone boundary conditions */
2519 	if (!free_pages)
2520 		goto single_page;
2521 
2522 	/*
2523 	 * If a sufficient number of pages in the block are either free or of
2524 	 * comparable migratability as our allocation, claim the whole block.
2525 	 */
2526 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2527 			page_group_by_mobility_disabled)
2528 		set_pageblock_migratetype(page, start_type);
2529 
2530 	return;
2531 
2532 single_page:
2533 	move_to_free_list(page, zone, current_order, start_type);
2534 }
2535 
2536 /*
2537  * Check whether there is a suitable fallback freepage with requested order.
2538  * If only_stealable is true, this function returns fallback_mt only if
2539  * we can steal other freepages all together. This would help to reduce
2540  * fragmentation due to mixed migratetype pages in one pageblock.
2541  */
2542 int find_suitable_fallback(struct free_area *area, unsigned int order,
2543 			int migratetype, bool only_stealable, bool *can_steal)
2544 {
2545 	int i;
2546 	int fallback_mt;
2547 
2548 	if (area->nr_free == 0)
2549 		return -1;
2550 
2551 	*can_steal = false;
2552 	for (i = 0;; i++) {
2553 		fallback_mt = fallbacks[migratetype][i];
2554 		if (fallback_mt == MIGRATE_TYPES)
2555 			break;
2556 
2557 		if (free_area_empty(area, fallback_mt))
2558 			continue;
2559 
2560 		if (can_steal_fallback(order, migratetype))
2561 			*can_steal = true;
2562 
2563 		if (!only_stealable)
2564 			return fallback_mt;
2565 
2566 		if (*can_steal)
2567 			return fallback_mt;
2568 	}
2569 
2570 	return -1;
2571 }
2572 
2573 /*
2574  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2575  * there are no empty page blocks that contain a page with a suitable order
2576  */
2577 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2578 				unsigned int alloc_order)
2579 {
2580 	int mt;
2581 	unsigned long max_managed, flags;
2582 
2583 	/*
2584 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2585 	 * Check is race-prone but harmless.
2586 	 */
2587 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2588 	if (zone->nr_reserved_highatomic >= max_managed)
2589 		return;
2590 
2591 	spin_lock_irqsave(&zone->lock, flags);
2592 
2593 	/* Recheck the nr_reserved_highatomic limit under the lock */
2594 	if (zone->nr_reserved_highatomic >= max_managed)
2595 		goto out_unlock;
2596 
2597 	/* Yoink! */
2598 	mt = get_pageblock_migratetype(page);
2599 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2600 	    && !is_migrate_cma(mt)) {
2601 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2602 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2603 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2604 	}
2605 
2606 out_unlock:
2607 	spin_unlock_irqrestore(&zone->lock, flags);
2608 }
2609 
2610 /*
2611  * Used when an allocation is about to fail under memory pressure. This
2612  * potentially hurts the reliability of high-order allocations when under
2613  * intense memory pressure but failed atomic allocations should be easier
2614  * to recover from than an OOM.
2615  *
2616  * If @force is true, try to unreserve a pageblock even though highatomic
2617  * pageblock is exhausted.
2618  */
2619 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2620 						bool force)
2621 {
2622 	struct zonelist *zonelist = ac->zonelist;
2623 	unsigned long flags;
2624 	struct zoneref *z;
2625 	struct zone *zone;
2626 	struct page *page;
2627 	int order;
2628 	bool ret;
2629 
2630 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2631 								ac->nodemask) {
2632 		/*
2633 		 * Preserve at least one pageblock unless memory pressure
2634 		 * is really high.
2635 		 */
2636 		if (!force && zone->nr_reserved_highatomic <=
2637 					pageblock_nr_pages)
2638 			continue;
2639 
2640 		spin_lock_irqsave(&zone->lock, flags);
2641 		for (order = 0; order < MAX_ORDER; order++) {
2642 			struct free_area *area = &(zone->free_area[order]);
2643 
2644 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2645 			if (!page)
2646 				continue;
2647 
2648 			/*
2649 			 * In page freeing path, migratetype change is racy so
2650 			 * we can counter several free pages in a pageblock
2651 			 * in this loop althoug we changed the pageblock type
2652 			 * from highatomic to ac->migratetype. So we should
2653 			 * adjust the count once.
2654 			 */
2655 			if (is_migrate_highatomic_page(page)) {
2656 				/*
2657 				 * It should never happen but changes to
2658 				 * locking could inadvertently allow a per-cpu
2659 				 * drain to add pages to MIGRATE_HIGHATOMIC
2660 				 * while unreserving so be safe and watch for
2661 				 * underflows.
2662 				 */
2663 				zone->nr_reserved_highatomic -= min(
2664 						pageblock_nr_pages,
2665 						zone->nr_reserved_highatomic);
2666 			}
2667 
2668 			/*
2669 			 * Convert to ac->migratetype and avoid the normal
2670 			 * pageblock stealing heuristics. Minimally, the caller
2671 			 * is doing the work and needs the pages. More
2672 			 * importantly, if the block was always converted to
2673 			 * MIGRATE_UNMOVABLE or another type then the number
2674 			 * of pageblocks that cannot be completely freed
2675 			 * may increase.
2676 			 */
2677 			set_pageblock_migratetype(page, ac->migratetype);
2678 			ret = move_freepages_block(zone, page, ac->migratetype,
2679 									NULL);
2680 			if (ret) {
2681 				spin_unlock_irqrestore(&zone->lock, flags);
2682 				return ret;
2683 			}
2684 		}
2685 		spin_unlock_irqrestore(&zone->lock, flags);
2686 	}
2687 
2688 	return false;
2689 }
2690 
2691 /*
2692  * Try finding a free buddy page on the fallback list and put it on the free
2693  * list of requested migratetype, possibly along with other pages from the same
2694  * block, depending on fragmentation avoidance heuristics. Returns true if
2695  * fallback was found so that __rmqueue_smallest() can grab it.
2696  *
2697  * The use of signed ints for order and current_order is a deliberate
2698  * deviation from the rest of this file, to make the for loop
2699  * condition simpler.
2700  */
2701 static __always_inline bool
2702 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2703 						unsigned int alloc_flags)
2704 {
2705 	struct free_area *area;
2706 	int current_order;
2707 	int min_order = order;
2708 	struct page *page;
2709 	int fallback_mt;
2710 	bool can_steal;
2711 
2712 	/*
2713 	 * Do not steal pages from freelists belonging to other pageblocks
2714 	 * i.e. orders < pageblock_order. If there are no local zones free,
2715 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2716 	 */
2717 	if (alloc_flags & ALLOC_NOFRAGMENT)
2718 		min_order = pageblock_order;
2719 
2720 	/*
2721 	 * Find the largest available free page in the other list. This roughly
2722 	 * approximates finding the pageblock with the most free pages, which
2723 	 * would be too costly to do exactly.
2724 	 */
2725 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2726 				--current_order) {
2727 		area = &(zone->free_area[current_order]);
2728 		fallback_mt = find_suitable_fallback(area, current_order,
2729 				start_migratetype, false, &can_steal);
2730 		if (fallback_mt == -1)
2731 			continue;
2732 
2733 		/*
2734 		 * We cannot steal all free pages from the pageblock and the
2735 		 * requested migratetype is movable. In that case it's better to
2736 		 * steal and split the smallest available page instead of the
2737 		 * largest available page, because even if the next movable
2738 		 * allocation falls back into a different pageblock than this
2739 		 * one, it won't cause permanent fragmentation.
2740 		 */
2741 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2742 					&& current_order > order)
2743 			goto find_smallest;
2744 
2745 		goto do_steal;
2746 	}
2747 
2748 	return false;
2749 
2750 find_smallest:
2751 	for (current_order = order; current_order < MAX_ORDER;
2752 							current_order++) {
2753 		area = &(zone->free_area[current_order]);
2754 		fallback_mt = find_suitable_fallback(area, current_order,
2755 				start_migratetype, false, &can_steal);
2756 		if (fallback_mt != -1)
2757 			break;
2758 	}
2759 
2760 	/*
2761 	 * This should not happen - we already found a suitable fallback
2762 	 * when looking for the largest page.
2763 	 */
2764 	VM_BUG_ON(current_order == MAX_ORDER);
2765 
2766 do_steal:
2767 	page = get_page_from_free_area(area, fallback_mt);
2768 
2769 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2770 								can_steal);
2771 
2772 	trace_mm_page_alloc_extfrag(page, order, current_order,
2773 		start_migratetype, fallback_mt);
2774 
2775 	return true;
2776 
2777 }
2778 
2779 /*
2780  * Do the hard work of removing an element from the buddy allocator.
2781  * Call me with the zone->lock already held.
2782  */
2783 static __always_inline struct page *
2784 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2785 						unsigned int alloc_flags)
2786 {
2787 	struct page *page;
2788 
2789 #ifdef CONFIG_CMA
2790 	/*
2791 	 * Balance movable allocations between regular and CMA areas by
2792 	 * allocating from CMA when over half of the zone's free memory
2793 	 * is in the CMA area.
2794 	 */
2795 	if (alloc_flags & ALLOC_CMA &&
2796 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2797 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2798 		page = __rmqueue_cma_fallback(zone, order);
2799 		if (page)
2800 			return page;
2801 	}
2802 #endif
2803 retry:
2804 	page = __rmqueue_smallest(zone, order, migratetype);
2805 	if (unlikely(!page)) {
2806 		if (alloc_flags & ALLOC_CMA)
2807 			page = __rmqueue_cma_fallback(zone, order);
2808 
2809 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2810 								alloc_flags))
2811 			goto retry;
2812 	}
2813 
2814 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2815 	return page;
2816 }
2817 
2818 /*
2819  * Obtain a specified number of elements from the buddy allocator, all under
2820  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2821  * Returns the number of new pages which were placed at *list.
2822  */
2823 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2824 			unsigned long count, struct list_head *list,
2825 			int migratetype, unsigned int alloc_flags)
2826 {
2827 	int i, alloced = 0;
2828 
2829 	spin_lock(&zone->lock);
2830 	for (i = 0; i < count; ++i) {
2831 		struct page *page = __rmqueue(zone, order, migratetype,
2832 								alloc_flags);
2833 		if (unlikely(page == NULL))
2834 			break;
2835 
2836 		if (unlikely(check_pcp_refill(page)))
2837 			continue;
2838 
2839 		/*
2840 		 * Split buddy pages returned by expand() are received here in
2841 		 * physical page order. The page is added to the tail of
2842 		 * caller's list. From the callers perspective, the linked list
2843 		 * is ordered by page number under some conditions. This is
2844 		 * useful for IO devices that can forward direction from the
2845 		 * head, thus also in the physical page order. This is useful
2846 		 * for IO devices that can merge IO requests if the physical
2847 		 * pages are ordered properly.
2848 		 */
2849 		list_add_tail(&page->lru, list);
2850 		alloced++;
2851 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2852 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2853 					      -(1 << order));
2854 	}
2855 
2856 	/*
2857 	 * i pages were removed from the buddy list even if some leak due
2858 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2859 	 * on i. Do not confuse with 'alloced' which is the number of
2860 	 * pages added to the pcp list.
2861 	 */
2862 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2863 	spin_unlock(&zone->lock);
2864 	return alloced;
2865 }
2866 
2867 #ifdef CONFIG_NUMA
2868 /*
2869  * Called from the vmstat counter updater to drain pagesets of this
2870  * currently executing processor on remote nodes after they have
2871  * expired.
2872  *
2873  * Note that this function must be called with the thread pinned to
2874  * a single processor.
2875  */
2876 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2877 {
2878 	unsigned long flags;
2879 	int to_drain, batch;
2880 
2881 	local_irq_save(flags);
2882 	batch = READ_ONCE(pcp->batch);
2883 	to_drain = min(pcp->count, batch);
2884 	if (to_drain > 0)
2885 		free_pcppages_bulk(zone, to_drain, pcp);
2886 	local_irq_restore(flags);
2887 }
2888 #endif
2889 
2890 /*
2891  * Drain pcplists of the indicated processor and zone.
2892  *
2893  * The processor must either be the current processor and the
2894  * thread pinned to the current processor or a processor that
2895  * is not online.
2896  */
2897 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2898 {
2899 	unsigned long flags;
2900 	struct per_cpu_pageset *pset;
2901 	struct per_cpu_pages *pcp;
2902 
2903 	local_irq_save(flags);
2904 	pset = per_cpu_ptr(zone->pageset, cpu);
2905 
2906 	pcp = &pset->pcp;
2907 	if (pcp->count)
2908 		free_pcppages_bulk(zone, pcp->count, pcp);
2909 	local_irq_restore(flags);
2910 }
2911 
2912 /*
2913  * Drain pcplists of all zones on the indicated processor.
2914  *
2915  * The processor must either be the current processor and the
2916  * thread pinned to the current processor or a processor that
2917  * is not online.
2918  */
2919 static void drain_pages(unsigned int cpu)
2920 {
2921 	struct zone *zone;
2922 
2923 	for_each_populated_zone(zone) {
2924 		drain_pages_zone(cpu, zone);
2925 	}
2926 }
2927 
2928 /*
2929  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2930  *
2931  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2932  * the single zone's pages.
2933  */
2934 void drain_local_pages(struct zone *zone)
2935 {
2936 	int cpu = smp_processor_id();
2937 
2938 	if (zone)
2939 		drain_pages_zone(cpu, zone);
2940 	else
2941 		drain_pages(cpu);
2942 }
2943 
2944 static void drain_local_pages_wq(struct work_struct *work)
2945 {
2946 	struct pcpu_drain *drain;
2947 
2948 	drain = container_of(work, struct pcpu_drain, work);
2949 
2950 	/*
2951 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2952 	 * we can race with cpu offline when the WQ can move this from
2953 	 * a cpu pinned worker to an unbound one. We can operate on a different
2954 	 * cpu which is allright but we also have to make sure to not move to
2955 	 * a different one.
2956 	 */
2957 	preempt_disable();
2958 	drain_local_pages(drain->zone);
2959 	preempt_enable();
2960 }
2961 
2962 /*
2963  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2964  *
2965  * When zone parameter is non-NULL, spill just the single zone's pages.
2966  *
2967  * Note that this can be extremely slow as the draining happens in a workqueue.
2968  */
2969 void drain_all_pages(struct zone *zone)
2970 {
2971 	int cpu;
2972 
2973 	/*
2974 	 * Allocate in the BSS so we wont require allocation in
2975 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2976 	 */
2977 	static cpumask_t cpus_with_pcps;
2978 
2979 	/*
2980 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2981 	 * initialized.
2982 	 */
2983 	if (WARN_ON_ONCE(!mm_percpu_wq))
2984 		return;
2985 
2986 	/*
2987 	 * Do not drain if one is already in progress unless it's specific to
2988 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2989 	 * the drain to be complete when the call returns.
2990 	 */
2991 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2992 		if (!zone)
2993 			return;
2994 		mutex_lock(&pcpu_drain_mutex);
2995 	}
2996 
2997 	/*
2998 	 * We don't care about racing with CPU hotplug event
2999 	 * as offline notification will cause the notified
3000 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3001 	 * disables preemption as part of its processing
3002 	 */
3003 	for_each_online_cpu(cpu) {
3004 		struct per_cpu_pageset *pcp;
3005 		struct zone *z;
3006 		bool has_pcps = false;
3007 
3008 		if (zone) {
3009 			pcp = per_cpu_ptr(zone->pageset, cpu);
3010 			if (pcp->pcp.count)
3011 				has_pcps = true;
3012 		} else {
3013 			for_each_populated_zone(z) {
3014 				pcp = per_cpu_ptr(z->pageset, cpu);
3015 				if (pcp->pcp.count) {
3016 					has_pcps = true;
3017 					break;
3018 				}
3019 			}
3020 		}
3021 
3022 		if (has_pcps)
3023 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3024 		else
3025 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3026 	}
3027 
3028 	for_each_cpu(cpu, &cpus_with_pcps) {
3029 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3030 
3031 		drain->zone = zone;
3032 		INIT_WORK(&drain->work, drain_local_pages_wq);
3033 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3034 	}
3035 	for_each_cpu(cpu, &cpus_with_pcps)
3036 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3037 
3038 	mutex_unlock(&pcpu_drain_mutex);
3039 }
3040 
3041 #ifdef CONFIG_HIBERNATION
3042 
3043 /*
3044  * Touch the watchdog for every WD_PAGE_COUNT pages.
3045  */
3046 #define WD_PAGE_COUNT	(128*1024)
3047 
3048 void mark_free_pages(struct zone *zone)
3049 {
3050 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3051 	unsigned long flags;
3052 	unsigned int order, t;
3053 	struct page *page;
3054 
3055 	if (zone_is_empty(zone))
3056 		return;
3057 
3058 	spin_lock_irqsave(&zone->lock, flags);
3059 
3060 	max_zone_pfn = zone_end_pfn(zone);
3061 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3062 		if (pfn_valid(pfn)) {
3063 			page = pfn_to_page(pfn);
3064 
3065 			if (!--page_count) {
3066 				touch_nmi_watchdog();
3067 				page_count = WD_PAGE_COUNT;
3068 			}
3069 
3070 			if (page_zone(page) != zone)
3071 				continue;
3072 
3073 			if (!swsusp_page_is_forbidden(page))
3074 				swsusp_unset_page_free(page);
3075 		}
3076 
3077 	for_each_migratetype_order(order, t) {
3078 		list_for_each_entry(page,
3079 				&zone->free_area[order].free_list[t], lru) {
3080 			unsigned long i;
3081 
3082 			pfn = page_to_pfn(page);
3083 			for (i = 0; i < (1UL << order); i++) {
3084 				if (!--page_count) {
3085 					touch_nmi_watchdog();
3086 					page_count = WD_PAGE_COUNT;
3087 				}
3088 				swsusp_set_page_free(pfn_to_page(pfn + i));
3089 			}
3090 		}
3091 	}
3092 	spin_unlock_irqrestore(&zone->lock, flags);
3093 }
3094 #endif /* CONFIG_PM */
3095 
3096 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3097 {
3098 	int migratetype;
3099 
3100 	if (!free_pcp_prepare(page))
3101 		return false;
3102 
3103 	migratetype = get_pfnblock_migratetype(page, pfn);
3104 	set_pcppage_migratetype(page, migratetype);
3105 	return true;
3106 }
3107 
3108 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3109 {
3110 	struct zone *zone = page_zone(page);
3111 	struct per_cpu_pages *pcp;
3112 	int migratetype;
3113 
3114 	migratetype = get_pcppage_migratetype(page);
3115 	__count_vm_event(PGFREE);
3116 
3117 	/*
3118 	 * We only track unmovable, reclaimable and movable on pcp lists.
3119 	 * Free ISOLATE pages back to the allocator because they are being
3120 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3121 	 * areas back if necessary. Otherwise, we may have to free
3122 	 * excessively into the page allocator
3123 	 */
3124 	if (migratetype >= MIGRATE_PCPTYPES) {
3125 		if (unlikely(is_migrate_isolate(migratetype))) {
3126 			free_one_page(zone, page, pfn, 0, migratetype);
3127 			return;
3128 		}
3129 		migratetype = MIGRATE_MOVABLE;
3130 	}
3131 
3132 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3133 	list_add(&page->lru, &pcp->lists[migratetype]);
3134 	pcp->count++;
3135 	if (pcp->count >= pcp->high) {
3136 		unsigned long batch = READ_ONCE(pcp->batch);
3137 		free_pcppages_bulk(zone, batch, pcp);
3138 	}
3139 }
3140 
3141 /*
3142  * Free a 0-order page
3143  */
3144 void free_unref_page(struct page *page)
3145 {
3146 	unsigned long flags;
3147 	unsigned long pfn = page_to_pfn(page);
3148 
3149 	if (!free_unref_page_prepare(page, pfn))
3150 		return;
3151 
3152 	local_irq_save(flags);
3153 	free_unref_page_commit(page, pfn);
3154 	local_irq_restore(flags);
3155 }
3156 
3157 /*
3158  * Free a list of 0-order pages
3159  */
3160 void free_unref_page_list(struct list_head *list)
3161 {
3162 	struct page *page, *next;
3163 	unsigned long flags, pfn;
3164 	int batch_count = 0;
3165 
3166 	/* Prepare pages for freeing */
3167 	list_for_each_entry_safe(page, next, list, lru) {
3168 		pfn = page_to_pfn(page);
3169 		if (!free_unref_page_prepare(page, pfn))
3170 			list_del(&page->lru);
3171 		set_page_private(page, pfn);
3172 	}
3173 
3174 	local_irq_save(flags);
3175 	list_for_each_entry_safe(page, next, list, lru) {
3176 		unsigned long pfn = page_private(page);
3177 
3178 		set_page_private(page, 0);
3179 		trace_mm_page_free_batched(page);
3180 		free_unref_page_commit(page, pfn);
3181 
3182 		/*
3183 		 * Guard against excessive IRQ disabled times when we get
3184 		 * a large list of pages to free.
3185 		 */
3186 		if (++batch_count == SWAP_CLUSTER_MAX) {
3187 			local_irq_restore(flags);
3188 			batch_count = 0;
3189 			local_irq_save(flags);
3190 		}
3191 	}
3192 	local_irq_restore(flags);
3193 }
3194 
3195 /*
3196  * split_page takes a non-compound higher-order page, and splits it into
3197  * n (1<<order) sub-pages: page[0..n]
3198  * Each sub-page must be freed individually.
3199  *
3200  * Note: this is probably too low level an operation for use in drivers.
3201  * Please consult with lkml before using this in your driver.
3202  */
3203 void split_page(struct page *page, unsigned int order)
3204 {
3205 	int i;
3206 
3207 	VM_BUG_ON_PAGE(PageCompound(page), page);
3208 	VM_BUG_ON_PAGE(!page_count(page), page);
3209 
3210 	for (i = 1; i < (1 << order); i++)
3211 		set_page_refcounted(page + i);
3212 	split_page_owner(page, order);
3213 }
3214 EXPORT_SYMBOL_GPL(split_page);
3215 
3216 int __isolate_free_page(struct page *page, unsigned int order)
3217 {
3218 	unsigned long watermark;
3219 	struct zone *zone;
3220 	int mt;
3221 
3222 	BUG_ON(!PageBuddy(page));
3223 
3224 	zone = page_zone(page);
3225 	mt = get_pageblock_migratetype(page);
3226 
3227 	if (!is_migrate_isolate(mt)) {
3228 		/*
3229 		 * Obey watermarks as if the page was being allocated. We can
3230 		 * emulate a high-order watermark check with a raised order-0
3231 		 * watermark, because we already know our high-order page
3232 		 * exists.
3233 		 */
3234 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3235 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3236 			return 0;
3237 
3238 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3239 	}
3240 
3241 	/* Remove page from free list */
3242 
3243 	del_page_from_free_list(page, zone, order);
3244 
3245 	/*
3246 	 * Set the pageblock if the isolated page is at least half of a
3247 	 * pageblock
3248 	 */
3249 	if (order >= pageblock_order - 1) {
3250 		struct page *endpage = page + (1 << order) - 1;
3251 		for (; page < endpage; page += pageblock_nr_pages) {
3252 			int mt = get_pageblock_migratetype(page);
3253 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3254 			    && !is_migrate_highatomic(mt))
3255 				set_pageblock_migratetype(page,
3256 							  MIGRATE_MOVABLE);
3257 		}
3258 	}
3259 
3260 
3261 	return 1UL << order;
3262 }
3263 
3264 /**
3265  * __putback_isolated_page - Return a now-isolated page back where we got it
3266  * @page: Page that was isolated
3267  * @order: Order of the isolated page
3268  * @mt: The page's pageblock's migratetype
3269  *
3270  * This function is meant to return a page pulled from the free lists via
3271  * __isolate_free_page back to the free lists they were pulled from.
3272  */
3273 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3274 {
3275 	struct zone *zone = page_zone(page);
3276 
3277 	/* zone lock should be held when this function is called */
3278 	lockdep_assert_held(&zone->lock);
3279 
3280 	/* Return isolated page to tail of freelist. */
3281 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3282 }
3283 
3284 /*
3285  * Update NUMA hit/miss statistics
3286  *
3287  * Must be called with interrupts disabled.
3288  */
3289 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3290 {
3291 #ifdef CONFIG_NUMA
3292 	enum numa_stat_item local_stat = NUMA_LOCAL;
3293 
3294 	/* skip numa counters update if numa stats is disabled */
3295 	if (!static_branch_likely(&vm_numa_stat_key))
3296 		return;
3297 
3298 	if (zone_to_nid(z) != numa_node_id())
3299 		local_stat = NUMA_OTHER;
3300 
3301 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3302 		__inc_numa_state(z, NUMA_HIT);
3303 	else {
3304 		__inc_numa_state(z, NUMA_MISS);
3305 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3306 	}
3307 	__inc_numa_state(z, local_stat);
3308 #endif
3309 }
3310 
3311 /* Remove page from the per-cpu list, caller must protect the list */
3312 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3313 			unsigned int alloc_flags,
3314 			struct per_cpu_pages *pcp,
3315 			struct list_head *list)
3316 {
3317 	struct page *page;
3318 
3319 	do {
3320 		if (list_empty(list)) {
3321 			pcp->count += rmqueue_bulk(zone, 0,
3322 					pcp->batch, list,
3323 					migratetype, alloc_flags);
3324 			if (unlikely(list_empty(list)))
3325 				return NULL;
3326 		}
3327 
3328 		page = list_first_entry(list, struct page, lru);
3329 		list_del(&page->lru);
3330 		pcp->count--;
3331 	} while (check_new_pcp(page));
3332 
3333 	return page;
3334 }
3335 
3336 /* Lock and remove page from the per-cpu list */
3337 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3338 			struct zone *zone, gfp_t gfp_flags,
3339 			int migratetype, unsigned int alloc_flags)
3340 {
3341 	struct per_cpu_pages *pcp;
3342 	struct list_head *list;
3343 	struct page *page;
3344 	unsigned long flags;
3345 
3346 	local_irq_save(flags);
3347 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3348 	list = &pcp->lists[migratetype];
3349 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3350 	if (page) {
3351 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3352 		zone_statistics(preferred_zone, zone);
3353 	}
3354 	local_irq_restore(flags);
3355 	return page;
3356 }
3357 
3358 /*
3359  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3360  */
3361 static inline
3362 struct page *rmqueue(struct zone *preferred_zone,
3363 			struct zone *zone, unsigned int order,
3364 			gfp_t gfp_flags, unsigned int alloc_flags,
3365 			int migratetype)
3366 {
3367 	unsigned long flags;
3368 	struct page *page;
3369 
3370 	if (likely(order == 0)) {
3371 		/*
3372 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3373 		 * we need to skip it when CMA area isn't allowed.
3374 		 */
3375 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3376 				migratetype != MIGRATE_MOVABLE) {
3377 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3378 					migratetype, alloc_flags);
3379 			goto out;
3380 		}
3381 	}
3382 
3383 	/*
3384 	 * We most definitely don't want callers attempting to
3385 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3386 	 */
3387 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3388 	spin_lock_irqsave(&zone->lock, flags);
3389 
3390 	do {
3391 		page = NULL;
3392 		/*
3393 		 * order-0 request can reach here when the pcplist is skipped
3394 		 * due to non-CMA allocation context. HIGHATOMIC area is
3395 		 * reserved for high-order atomic allocation, so order-0
3396 		 * request should skip it.
3397 		 */
3398 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3399 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3400 			if (page)
3401 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3402 		}
3403 		if (!page)
3404 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3405 	} while (page && check_new_pages(page, order));
3406 	spin_unlock(&zone->lock);
3407 	if (!page)
3408 		goto failed;
3409 	__mod_zone_freepage_state(zone, -(1 << order),
3410 				  get_pcppage_migratetype(page));
3411 
3412 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3413 	zone_statistics(preferred_zone, zone);
3414 	local_irq_restore(flags);
3415 
3416 out:
3417 	/* Separate test+clear to avoid unnecessary atomics */
3418 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3419 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3420 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3421 	}
3422 
3423 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3424 	return page;
3425 
3426 failed:
3427 	local_irq_restore(flags);
3428 	return NULL;
3429 }
3430 
3431 #ifdef CONFIG_FAIL_PAGE_ALLOC
3432 
3433 static struct {
3434 	struct fault_attr attr;
3435 
3436 	bool ignore_gfp_highmem;
3437 	bool ignore_gfp_reclaim;
3438 	u32 min_order;
3439 } fail_page_alloc = {
3440 	.attr = FAULT_ATTR_INITIALIZER,
3441 	.ignore_gfp_reclaim = true,
3442 	.ignore_gfp_highmem = true,
3443 	.min_order = 1,
3444 };
3445 
3446 static int __init setup_fail_page_alloc(char *str)
3447 {
3448 	return setup_fault_attr(&fail_page_alloc.attr, str);
3449 }
3450 __setup("fail_page_alloc=", setup_fail_page_alloc);
3451 
3452 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3453 {
3454 	if (order < fail_page_alloc.min_order)
3455 		return false;
3456 	if (gfp_mask & __GFP_NOFAIL)
3457 		return false;
3458 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3459 		return false;
3460 	if (fail_page_alloc.ignore_gfp_reclaim &&
3461 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3462 		return false;
3463 
3464 	return should_fail(&fail_page_alloc.attr, 1 << order);
3465 }
3466 
3467 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3468 
3469 static int __init fail_page_alloc_debugfs(void)
3470 {
3471 	umode_t mode = S_IFREG | 0600;
3472 	struct dentry *dir;
3473 
3474 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3475 					&fail_page_alloc.attr);
3476 
3477 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3478 			    &fail_page_alloc.ignore_gfp_reclaim);
3479 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3480 			    &fail_page_alloc.ignore_gfp_highmem);
3481 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3482 
3483 	return 0;
3484 }
3485 
3486 late_initcall(fail_page_alloc_debugfs);
3487 
3488 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3489 
3490 #else /* CONFIG_FAIL_PAGE_ALLOC */
3491 
3492 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3493 {
3494 	return false;
3495 }
3496 
3497 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3498 
3499 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3500 {
3501 	return __should_fail_alloc_page(gfp_mask, order);
3502 }
3503 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3504 
3505 static inline long __zone_watermark_unusable_free(struct zone *z,
3506 				unsigned int order, unsigned int alloc_flags)
3507 {
3508 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3509 	long unusable_free = (1 << order) - 1;
3510 
3511 	/*
3512 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3513 	 * the high-atomic reserves. This will over-estimate the size of the
3514 	 * atomic reserve but it avoids a search.
3515 	 */
3516 	if (likely(!alloc_harder))
3517 		unusable_free += z->nr_reserved_highatomic;
3518 
3519 #ifdef CONFIG_CMA
3520 	/* If allocation can't use CMA areas don't use free CMA pages */
3521 	if (!(alloc_flags & ALLOC_CMA))
3522 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3523 #endif
3524 
3525 	return unusable_free;
3526 }
3527 
3528 /*
3529  * Return true if free base pages are above 'mark'. For high-order checks it
3530  * will return true of the order-0 watermark is reached and there is at least
3531  * one free page of a suitable size. Checking now avoids taking the zone lock
3532  * to check in the allocation paths if no pages are free.
3533  */
3534 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3535 			 int highest_zoneidx, unsigned int alloc_flags,
3536 			 long free_pages)
3537 {
3538 	long min = mark;
3539 	int o;
3540 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3541 
3542 	/* free_pages may go negative - that's OK */
3543 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3544 
3545 	if (alloc_flags & ALLOC_HIGH)
3546 		min -= min / 2;
3547 
3548 	if (unlikely(alloc_harder)) {
3549 		/*
3550 		 * OOM victims can try even harder than normal ALLOC_HARDER
3551 		 * users on the grounds that it's definitely going to be in
3552 		 * the exit path shortly and free memory. Any allocation it
3553 		 * makes during the free path will be small and short-lived.
3554 		 */
3555 		if (alloc_flags & ALLOC_OOM)
3556 			min -= min / 2;
3557 		else
3558 			min -= min / 4;
3559 	}
3560 
3561 	/*
3562 	 * Check watermarks for an order-0 allocation request. If these
3563 	 * are not met, then a high-order request also cannot go ahead
3564 	 * even if a suitable page happened to be free.
3565 	 */
3566 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3567 		return false;
3568 
3569 	/* If this is an order-0 request then the watermark is fine */
3570 	if (!order)
3571 		return true;
3572 
3573 	/* For a high-order request, check at least one suitable page is free */
3574 	for (o = order; o < MAX_ORDER; o++) {
3575 		struct free_area *area = &z->free_area[o];
3576 		int mt;
3577 
3578 		if (!area->nr_free)
3579 			continue;
3580 
3581 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3582 			if (!free_area_empty(area, mt))
3583 				return true;
3584 		}
3585 
3586 #ifdef CONFIG_CMA
3587 		if ((alloc_flags & ALLOC_CMA) &&
3588 		    !free_area_empty(area, MIGRATE_CMA)) {
3589 			return true;
3590 		}
3591 #endif
3592 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3593 			return true;
3594 	}
3595 	return false;
3596 }
3597 
3598 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3599 		      int highest_zoneidx, unsigned int alloc_flags)
3600 {
3601 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3602 					zone_page_state(z, NR_FREE_PAGES));
3603 }
3604 
3605 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3606 				unsigned long mark, int highest_zoneidx,
3607 				unsigned int alloc_flags, gfp_t gfp_mask)
3608 {
3609 	long free_pages;
3610 
3611 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3612 
3613 	/*
3614 	 * Fast check for order-0 only. If this fails then the reserves
3615 	 * need to be calculated.
3616 	 */
3617 	if (!order) {
3618 		long fast_free;
3619 
3620 		fast_free = free_pages;
3621 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3622 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3623 			return true;
3624 	}
3625 
3626 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3627 					free_pages))
3628 		return true;
3629 	/*
3630 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3631 	 * when checking the min watermark. The min watermark is the
3632 	 * point where boosting is ignored so that kswapd is woken up
3633 	 * when below the low watermark.
3634 	 */
3635 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3636 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3637 		mark = z->_watermark[WMARK_MIN];
3638 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3639 					alloc_flags, free_pages);
3640 	}
3641 
3642 	return false;
3643 }
3644 
3645 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3646 			unsigned long mark, int highest_zoneidx)
3647 {
3648 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3649 
3650 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3651 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3652 
3653 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3654 								free_pages);
3655 }
3656 
3657 #ifdef CONFIG_NUMA
3658 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3659 {
3660 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3661 				node_reclaim_distance;
3662 }
3663 #else	/* CONFIG_NUMA */
3664 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3665 {
3666 	return true;
3667 }
3668 #endif	/* CONFIG_NUMA */
3669 
3670 /*
3671  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3672  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3673  * premature use of a lower zone may cause lowmem pressure problems that
3674  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3675  * probably too small. It only makes sense to spread allocations to avoid
3676  * fragmentation between the Normal and DMA32 zones.
3677  */
3678 static inline unsigned int
3679 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3680 {
3681 	unsigned int alloc_flags;
3682 
3683 	/*
3684 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3685 	 * to save a branch.
3686 	 */
3687 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3688 
3689 #ifdef CONFIG_ZONE_DMA32
3690 	if (!zone)
3691 		return alloc_flags;
3692 
3693 	if (zone_idx(zone) != ZONE_NORMAL)
3694 		return alloc_flags;
3695 
3696 	/*
3697 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3698 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3699 	 * on UMA that if Normal is populated then so is DMA32.
3700 	 */
3701 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3702 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3703 		return alloc_flags;
3704 
3705 	alloc_flags |= ALLOC_NOFRAGMENT;
3706 #endif /* CONFIG_ZONE_DMA32 */
3707 	return alloc_flags;
3708 }
3709 
3710 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3711 					unsigned int alloc_flags)
3712 {
3713 #ifdef CONFIG_CMA
3714 	unsigned int pflags = current->flags;
3715 
3716 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3717 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3718 		alloc_flags |= ALLOC_CMA;
3719 
3720 #endif
3721 	return alloc_flags;
3722 }
3723 
3724 /*
3725  * get_page_from_freelist goes through the zonelist trying to allocate
3726  * a page.
3727  */
3728 static struct page *
3729 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3730 						const struct alloc_context *ac)
3731 {
3732 	struct zoneref *z;
3733 	struct zone *zone;
3734 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3735 	bool no_fallback;
3736 
3737 retry:
3738 	/*
3739 	 * Scan zonelist, looking for a zone with enough free.
3740 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3741 	 */
3742 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3743 	z = ac->preferred_zoneref;
3744 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3745 					ac->highest_zoneidx, ac->nodemask) {
3746 		struct page *page;
3747 		unsigned long mark;
3748 
3749 		if (cpusets_enabled() &&
3750 			(alloc_flags & ALLOC_CPUSET) &&
3751 			!__cpuset_zone_allowed(zone, gfp_mask))
3752 				continue;
3753 		/*
3754 		 * When allocating a page cache page for writing, we
3755 		 * want to get it from a node that is within its dirty
3756 		 * limit, such that no single node holds more than its
3757 		 * proportional share of globally allowed dirty pages.
3758 		 * The dirty limits take into account the node's
3759 		 * lowmem reserves and high watermark so that kswapd
3760 		 * should be able to balance it without having to
3761 		 * write pages from its LRU list.
3762 		 *
3763 		 * XXX: For now, allow allocations to potentially
3764 		 * exceed the per-node dirty limit in the slowpath
3765 		 * (spread_dirty_pages unset) before going into reclaim,
3766 		 * which is important when on a NUMA setup the allowed
3767 		 * nodes are together not big enough to reach the
3768 		 * global limit.  The proper fix for these situations
3769 		 * will require awareness of nodes in the
3770 		 * dirty-throttling and the flusher threads.
3771 		 */
3772 		if (ac->spread_dirty_pages) {
3773 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3774 				continue;
3775 
3776 			if (!node_dirty_ok(zone->zone_pgdat)) {
3777 				last_pgdat_dirty_limit = zone->zone_pgdat;
3778 				continue;
3779 			}
3780 		}
3781 
3782 		if (no_fallback && nr_online_nodes > 1 &&
3783 		    zone != ac->preferred_zoneref->zone) {
3784 			int local_nid;
3785 
3786 			/*
3787 			 * If moving to a remote node, retry but allow
3788 			 * fragmenting fallbacks. Locality is more important
3789 			 * than fragmentation avoidance.
3790 			 */
3791 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3792 			if (zone_to_nid(zone) != local_nid) {
3793 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3794 				goto retry;
3795 			}
3796 		}
3797 
3798 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3799 		if (!zone_watermark_fast(zone, order, mark,
3800 				       ac->highest_zoneidx, alloc_flags,
3801 				       gfp_mask)) {
3802 			int ret;
3803 
3804 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3805 			/*
3806 			 * Watermark failed for this zone, but see if we can
3807 			 * grow this zone if it contains deferred pages.
3808 			 */
3809 			if (static_branch_unlikely(&deferred_pages)) {
3810 				if (_deferred_grow_zone(zone, order))
3811 					goto try_this_zone;
3812 			}
3813 #endif
3814 			/* Checked here to keep the fast path fast */
3815 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3816 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3817 				goto try_this_zone;
3818 
3819 			if (node_reclaim_mode == 0 ||
3820 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3821 				continue;
3822 
3823 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3824 			switch (ret) {
3825 			case NODE_RECLAIM_NOSCAN:
3826 				/* did not scan */
3827 				continue;
3828 			case NODE_RECLAIM_FULL:
3829 				/* scanned but unreclaimable */
3830 				continue;
3831 			default:
3832 				/* did we reclaim enough */
3833 				if (zone_watermark_ok(zone, order, mark,
3834 					ac->highest_zoneidx, alloc_flags))
3835 					goto try_this_zone;
3836 
3837 				continue;
3838 			}
3839 		}
3840 
3841 try_this_zone:
3842 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3843 				gfp_mask, alloc_flags, ac->migratetype);
3844 		if (page) {
3845 			prep_new_page(page, order, gfp_mask, alloc_flags);
3846 
3847 			/*
3848 			 * If this is a high-order atomic allocation then check
3849 			 * if the pageblock should be reserved for the future
3850 			 */
3851 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3852 				reserve_highatomic_pageblock(page, zone, order);
3853 
3854 			return page;
3855 		} else {
3856 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3857 			/* Try again if zone has deferred pages */
3858 			if (static_branch_unlikely(&deferred_pages)) {
3859 				if (_deferred_grow_zone(zone, order))
3860 					goto try_this_zone;
3861 			}
3862 #endif
3863 		}
3864 	}
3865 
3866 	/*
3867 	 * It's possible on a UMA machine to get through all zones that are
3868 	 * fragmented. If avoiding fragmentation, reset and try again.
3869 	 */
3870 	if (no_fallback) {
3871 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3872 		goto retry;
3873 	}
3874 
3875 	return NULL;
3876 }
3877 
3878 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3879 {
3880 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3881 
3882 	/*
3883 	 * This documents exceptions given to allocations in certain
3884 	 * contexts that are allowed to allocate outside current's set
3885 	 * of allowed nodes.
3886 	 */
3887 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3888 		if (tsk_is_oom_victim(current) ||
3889 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3890 			filter &= ~SHOW_MEM_FILTER_NODES;
3891 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3892 		filter &= ~SHOW_MEM_FILTER_NODES;
3893 
3894 	show_mem(filter, nodemask);
3895 }
3896 
3897 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3898 {
3899 	struct va_format vaf;
3900 	va_list args;
3901 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3902 
3903 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3904 		return;
3905 
3906 	va_start(args, fmt);
3907 	vaf.fmt = fmt;
3908 	vaf.va = &args;
3909 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3910 			current->comm, &vaf, gfp_mask, &gfp_mask,
3911 			nodemask_pr_args(nodemask));
3912 	va_end(args);
3913 
3914 	cpuset_print_current_mems_allowed();
3915 	pr_cont("\n");
3916 	dump_stack();
3917 	warn_alloc_show_mem(gfp_mask, nodemask);
3918 }
3919 
3920 static inline struct page *
3921 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3922 			      unsigned int alloc_flags,
3923 			      const struct alloc_context *ac)
3924 {
3925 	struct page *page;
3926 
3927 	page = get_page_from_freelist(gfp_mask, order,
3928 			alloc_flags|ALLOC_CPUSET, ac);
3929 	/*
3930 	 * fallback to ignore cpuset restriction if our nodes
3931 	 * are depleted
3932 	 */
3933 	if (!page)
3934 		page = get_page_from_freelist(gfp_mask, order,
3935 				alloc_flags, ac);
3936 
3937 	return page;
3938 }
3939 
3940 static inline struct page *
3941 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3942 	const struct alloc_context *ac, unsigned long *did_some_progress)
3943 {
3944 	struct oom_control oc = {
3945 		.zonelist = ac->zonelist,
3946 		.nodemask = ac->nodemask,
3947 		.memcg = NULL,
3948 		.gfp_mask = gfp_mask,
3949 		.order = order,
3950 	};
3951 	struct page *page;
3952 
3953 	*did_some_progress = 0;
3954 
3955 	/*
3956 	 * Acquire the oom lock.  If that fails, somebody else is
3957 	 * making progress for us.
3958 	 */
3959 	if (!mutex_trylock(&oom_lock)) {
3960 		*did_some_progress = 1;
3961 		schedule_timeout_uninterruptible(1);
3962 		return NULL;
3963 	}
3964 
3965 	/*
3966 	 * Go through the zonelist yet one more time, keep very high watermark
3967 	 * here, this is only to catch a parallel oom killing, we must fail if
3968 	 * we're still under heavy pressure. But make sure that this reclaim
3969 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3970 	 * allocation which will never fail due to oom_lock already held.
3971 	 */
3972 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3973 				      ~__GFP_DIRECT_RECLAIM, order,
3974 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3975 	if (page)
3976 		goto out;
3977 
3978 	/* Coredumps can quickly deplete all memory reserves */
3979 	if (current->flags & PF_DUMPCORE)
3980 		goto out;
3981 	/* The OOM killer will not help higher order allocs */
3982 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3983 		goto out;
3984 	/*
3985 	 * We have already exhausted all our reclaim opportunities without any
3986 	 * success so it is time to admit defeat. We will skip the OOM killer
3987 	 * because it is very likely that the caller has a more reasonable
3988 	 * fallback than shooting a random task.
3989 	 */
3990 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3991 		goto out;
3992 	/* The OOM killer does not needlessly kill tasks for lowmem */
3993 	if (ac->highest_zoneidx < ZONE_NORMAL)
3994 		goto out;
3995 	if (pm_suspended_storage())
3996 		goto out;
3997 	/*
3998 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3999 	 * other request to make a forward progress.
4000 	 * We are in an unfortunate situation where out_of_memory cannot
4001 	 * do much for this context but let's try it to at least get
4002 	 * access to memory reserved if the current task is killed (see
4003 	 * out_of_memory). Once filesystems are ready to handle allocation
4004 	 * failures more gracefully we should just bail out here.
4005 	 */
4006 
4007 	/* The OOM killer may not free memory on a specific node */
4008 	if (gfp_mask & __GFP_THISNODE)
4009 		goto out;
4010 
4011 	/* Exhausted what can be done so it's blame time */
4012 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4013 		*did_some_progress = 1;
4014 
4015 		/*
4016 		 * Help non-failing allocations by giving them access to memory
4017 		 * reserves
4018 		 */
4019 		if (gfp_mask & __GFP_NOFAIL)
4020 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4021 					ALLOC_NO_WATERMARKS, ac);
4022 	}
4023 out:
4024 	mutex_unlock(&oom_lock);
4025 	return page;
4026 }
4027 
4028 /*
4029  * Maximum number of compaction retries wit a progress before OOM
4030  * killer is consider as the only way to move forward.
4031  */
4032 #define MAX_COMPACT_RETRIES 16
4033 
4034 #ifdef CONFIG_COMPACTION
4035 /* Try memory compaction for high-order allocations before reclaim */
4036 static struct page *
4037 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4038 		unsigned int alloc_flags, const struct alloc_context *ac,
4039 		enum compact_priority prio, enum compact_result *compact_result)
4040 {
4041 	struct page *page = NULL;
4042 	unsigned long pflags;
4043 	unsigned int noreclaim_flag;
4044 
4045 	if (!order)
4046 		return NULL;
4047 
4048 	psi_memstall_enter(&pflags);
4049 	noreclaim_flag = memalloc_noreclaim_save();
4050 
4051 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4052 								prio, &page);
4053 
4054 	memalloc_noreclaim_restore(noreclaim_flag);
4055 	psi_memstall_leave(&pflags);
4056 
4057 	/*
4058 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4059 	 * count a compaction stall
4060 	 */
4061 	count_vm_event(COMPACTSTALL);
4062 
4063 	/* Prep a captured page if available */
4064 	if (page)
4065 		prep_new_page(page, order, gfp_mask, alloc_flags);
4066 
4067 	/* Try get a page from the freelist if available */
4068 	if (!page)
4069 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4070 
4071 	if (page) {
4072 		struct zone *zone = page_zone(page);
4073 
4074 		zone->compact_blockskip_flush = false;
4075 		compaction_defer_reset(zone, order, true);
4076 		count_vm_event(COMPACTSUCCESS);
4077 		return page;
4078 	}
4079 
4080 	/*
4081 	 * It's bad if compaction run occurs and fails. The most likely reason
4082 	 * is that pages exist, but not enough to satisfy watermarks.
4083 	 */
4084 	count_vm_event(COMPACTFAIL);
4085 
4086 	cond_resched();
4087 
4088 	return NULL;
4089 }
4090 
4091 static inline bool
4092 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4093 		     enum compact_result compact_result,
4094 		     enum compact_priority *compact_priority,
4095 		     int *compaction_retries)
4096 {
4097 	int max_retries = MAX_COMPACT_RETRIES;
4098 	int min_priority;
4099 	bool ret = false;
4100 	int retries = *compaction_retries;
4101 	enum compact_priority priority = *compact_priority;
4102 
4103 	if (!order)
4104 		return false;
4105 
4106 	if (compaction_made_progress(compact_result))
4107 		(*compaction_retries)++;
4108 
4109 	/*
4110 	 * compaction considers all the zone as desperately out of memory
4111 	 * so it doesn't really make much sense to retry except when the
4112 	 * failure could be caused by insufficient priority
4113 	 */
4114 	if (compaction_failed(compact_result))
4115 		goto check_priority;
4116 
4117 	/*
4118 	 * compaction was skipped because there are not enough order-0 pages
4119 	 * to work with, so we retry only if it looks like reclaim can help.
4120 	 */
4121 	if (compaction_needs_reclaim(compact_result)) {
4122 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4123 		goto out;
4124 	}
4125 
4126 	/*
4127 	 * make sure the compaction wasn't deferred or didn't bail out early
4128 	 * due to locks contention before we declare that we should give up.
4129 	 * But the next retry should use a higher priority if allowed, so
4130 	 * we don't just keep bailing out endlessly.
4131 	 */
4132 	if (compaction_withdrawn(compact_result)) {
4133 		goto check_priority;
4134 	}
4135 
4136 	/*
4137 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4138 	 * costly ones because they are de facto nofail and invoke OOM
4139 	 * killer to move on while costly can fail and users are ready
4140 	 * to cope with that. 1/4 retries is rather arbitrary but we
4141 	 * would need much more detailed feedback from compaction to
4142 	 * make a better decision.
4143 	 */
4144 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4145 		max_retries /= 4;
4146 	if (*compaction_retries <= max_retries) {
4147 		ret = true;
4148 		goto out;
4149 	}
4150 
4151 	/*
4152 	 * Make sure there are attempts at the highest priority if we exhausted
4153 	 * all retries or failed at the lower priorities.
4154 	 */
4155 check_priority:
4156 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4157 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4158 
4159 	if (*compact_priority > min_priority) {
4160 		(*compact_priority)--;
4161 		*compaction_retries = 0;
4162 		ret = true;
4163 	}
4164 out:
4165 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4166 	return ret;
4167 }
4168 #else
4169 static inline struct page *
4170 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4171 		unsigned int alloc_flags, const struct alloc_context *ac,
4172 		enum compact_priority prio, enum compact_result *compact_result)
4173 {
4174 	*compact_result = COMPACT_SKIPPED;
4175 	return NULL;
4176 }
4177 
4178 static inline bool
4179 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4180 		     enum compact_result compact_result,
4181 		     enum compact_priority *compact_priority,
4182 		     int *compaction_retries)
4183 {
4184 	struct zone *zone;
4185 	struct zoneref *z;
4186 
4187 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4188 		return false;
4189 
4190 	/*
4191 	 * There are setups with compaction disabled which would prefer to loop
4192 	 * inside the allocator rather than hit the oom killer prematurely.
4193 	 * Let's give them a good hope and keep retrying while the order-0
4194 	 * watermarks are OK.
4195 	 */
4196 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4197 				ac->highest_zoneidx, ac->nodemask) {
4198 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4199 					ac->highest_zoneidx, alloc_flags))
4200 			return true;
4201 	}
4202 	return false;
4203 }
4204 #endif /* CONFIG_COMPACTION */
4205 
4206 #ifdef CONFIG_LOCKDEP
4207 static struct lockdep_map __fs_reclaim_map =
4208 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4209 
4210 static bool __need_fs_reclaim(gfp_t gfp_mask)
4211 {
4212 	gfp_mask = current_gfp_context(gfp_mask);
4213 
4214 	/* no reclaim without waiting on it */
4215 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4216 		return false;
4217 
4218 	/* this guy won't enter reclaim */
4219 	if (current->flags & PF_MEMALLOC)
4220 		return false;
4221 
4222 	/* We're only interested __GFP_FS allocations for now */
4223 	if (!(gfp_mask & __GFP_FS))
4224 		return false;
4225 
4226 	if (gfp_mask & __GFP_NOLOCKDEP)
4227 		return false;
4228 
4229 	return true;
4230 }
4231 
4232 void __fs_reclaim_acquire(void)
4233 {
4234 	lock_map_acquire(&__fs_reclaim_map);
4235 }
4236 
4237 void __fs_reclaim_release(void)
4238 {
4239 	lock_map_release(&__fs_reclaim_map);
4240 }
4241 
4242 void fs_reclaim_acquire(gfp_t gfp_mask)
4243 {
4244 	if (__need_fs_reclaim(gfp_mask))
4245 		__fs_reclaim_acquire();
4246 }
4247 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4248 
4249 void fs_reclaim_release(gfp_t gfp_mask)
4250 {
4251 	if (__need_fs_reclaim(gfp_mask))
4252 		__fs_reclaim_release();
4253 }
4254 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4255 #endif
4256 
4257 /* Perform direct synchronous page reclaim */
4258 static int
4259 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4260 					const struct alloc_context *ac)
4261 {
4262 	int progress;
4263 	unsigned int noreclaim_flag;
4264 	unsigned long pflags;
4265 
4266 	cond_resched();
4267 
4268 	/* We now go into synchronous reclaim */
4269 	cpuset_memory_pressure_bump();
4270 	psi_memstall_enter(&pflags);
4271 	fs_reclaim_acquire(gfp_mask);
4272 	noreclaim_flag = memalloc_noreclaim_save();
4273 
4274 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4275 								ac->nodemask);
4276 
4277 	memalloc_noreclaim_restore(noreclaim_flag);
4278 	fs_reclaim_release(gfp_mask);
4279 	psi_memstall_leave(&pflags);
4280 
4281 	cond_resched();
4282 
4283 	return progress;
4284 }
4285 
4286 /* The really slow allocator path where we enter direct reclaim */
4287 static inline struct page *
4288 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4289 		unsigned int alloc_flags, const struct alloc_context *ac,
4290 		unsigned long *did_some_progress)
4291 {
4292 	struct page *page = NULL;
4293 	bool drained = false;
4294 
4295 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4296 	if (unlikely(!(*did_some_progress)))
4297 		return NULL;
4298 
4299 retry:
4300 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4301 
4302 	/*
4303 	 * If an allocation failed after direct reclaim, it could be because
4304 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4305 	 * Shrink them and try again
4306 	 */
4307 	if (!page && !drained) {
4308 		unreserve_highatomic_pageblock(ac, false);
4309 		drain_all_pages(NULL);
4310 		drained = true;
4311 		goto retry;
4312 	}
4313 
4314 	return page;
4315 }
4316 
4317 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4318 			     const struct alloc_context *ac)
4319 {
4320 	struct zoneref *z;
4321 	struct zone *zone;
4322 	pg_data_t *last_pgdat = NULL;
4323 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4324 
4325 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4326 					ac->nodemask) {
4327 		if (last_pgdat != zone->zone_pgdat)
4328 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4329 		last_pgdat = zone->zone_pgdat;
4330 	}
4331 }
4332 
4333 static inline unsigned int
4334 gfp_to_alloc_flags(gfp_t gfp_mask)
4335 {
4336 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4337 
4338 	/*
4339 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4340 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4341 	 * to save two branches.
4342 	 */
4343 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4344 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4345 
4346 	/*
4347 	 * The caller may dip into page reserves a bit more if the caller
4348 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4349 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4350 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4351 	 */
4352 	alloc_flags |= (__force int)
4353 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4354 
4355 	if (gfp_mask & __GFP_ATOMIC) {
4356 		/*
4357 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4358 		 * if it can't schedule.
4359 		 */
4360 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4361 			alloc_flags |= ALLOC_HARDER;
4362 		/*
4363 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4364 		 * comment for __cpuset_node_allowed().
4365 		 */
4366 		alloc_flags &= ~ALLOC_CPUSET;
4367 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4368 		alloc_flags |= ALLOC_HARDER;
4369 
4370 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4371 
4372 	return alloc_flags;
4373 }
4374 
4375 static bool oom_reserves_allowed(struct task_struct *tsk)
4376 {
4377 	if (!tsk_is_oom_victim(tsk))
4378 		return false;
4379 
4380 	/*
4381 	 * !MMU doesn't have oom reaper so give access to memory reserves
4382 	 * only to the thread with TIF_MEMDIE set
4383 	 */
4384 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4385 		return false;
4386 
4387 	return true;
4388 }
4389 
4390 /*
4391  * Distinguish requests which really need access to full memory
4392  * reserves from oom victims which can live with a portion of it
4393  */
4394 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4395 {
4396 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4397 		return 0;
4398 	if (gfp_mask & __GFP_MEMALLOC)
4399 		return ALLOC_NO_WATERMARKS;
4400 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4401 		return ALLOC_NO_WATERMARKS;
4402 	if (!in_interrupt()) {
4403 		if (current->flags & PF_MEMALLOC)
4404 			return ALLOC_NO_WATERMARKS;
4405 		else if (oom_reserves_allowed(current))
4406 			return ALLOC_OOM;
4407 	}
4408 
4409 	return 0;
4410 }
4411 
4412 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4413 {
4414 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4415 }
4416 
4417 /*
4418  * Checks whether it makes sense to retry the reclaim to make a forward progress
4419  * for the given allocation request.
4420  *
4421  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4422  * without success, or when we couldn't even meet the watermark if we
4423  * reclaimed all remaining pages on the LRU lists.
4424  *
4425  * Returns true if a retry is viable or false to enter the oom path.
4426  */
4427 static inline bool
4428 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4429 		     struct alloc_context *ac, int alloc_flags,
4430 		     bool did_some_progress, int *no_progress_loops)
4431 {
4432 	struct zone *zone;
4433 	struct zoneref *z;
4434 	bool ret = false;
4435 
4436 	/*
4437 	 * Costly allocations might have made a progress but this doesn't mean
4438 	 * their order will become available due to high fragmentation so
4439 	 * always increment the no progress counter for them
4440 	 */
4441 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4442 		*no_progress_loops = 0;
4443 	else
4444 		(*no_progress_loops)++;
4445 
4446 	/*
4447 	 * Make sure we converge to OOM if we cannot make any progress
4448 	 * several times in the row.
4449 	 */
4450 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4451 		/* Before OOM, exhaust highatomic_reserve */
4452 		return unreserve_highatomic_pageblock(ac, true);
4453 	}
4454 
4455 	/*
4456 	 * Keep reclaiming pages while there is a chance this will lead
4457 	 * somewhere.  If none of the target zones can satisfy our allocation
4458 	 * request even if all reclaimable pages are considered then we are
4459 	 * screwed and have to go OOM.
4460 	 */
4461 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4462 				ac->highest_zoneidx, ac->nodemask) {
4463 		unsigned long available;
4464 		unsigned long reclaimable;
4465 		unsigned long min_wmark = min_wmark_pages(zone);
4466 		bool wmark;
4467 
4468 		available = reclaimable = zone_reclaimable_pages(zone);
4469 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4470 
4471 		/*
4472 		 * Would the allocation succeed if we reclaimed all
4473 		 * reclaimable pages?
4474 		 */
4475 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4476 				ac->highest_zoneidx, alloc_flags, available);
4477 		trace_reclaim_retry_zone(z, order, reclaimable,
4478 				available, min_wmark, *no_progress_loops, wmark);
4479 		if (wmark) {
4480 			/*
4481 			 * If we didn't make any progress and have a lot of
4482 			 * dirty + writeback pages then we should wait for
4483 			 * an IO to complete to slow down the reclaim and
4484 			 * prevent from pre mature OOM
4485 			 */
4486 			if (!did_some_progress) {
4487 				unsigned long write_pending;
4488 
4489 				write_pending = zone_page_state_snapshot(zone,
4490 							NR_ZONE_WRITE_PENDING);
4491 
4492 				if (2 * write_pending > reclaimable) {
4493 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4494 					return true;
4495 				}
4496 			}
4497 
4498 			ret = true;
4499 			goto out;
4500 		}
4501 	}
4502 
4503 out:
4504 	/*
4505 	 * Memory allocation/reclaim might be called from a WQ context and the
4506 	 * current implementation of the WQ concurrency control doesn't
4507 	 * recognize that a particular WQ is congested if the worker thread is
4508 	 * looping without ever sleeping. Therefore we have to do a short sleep
4509 	 * here rather than calling cond_resched().
4510 	 */
4511 	if (current->flags & PF_WQ_WORKER)
4512 		schedule_timeout_uninterruptible(1);
4513 	else
4514 		cond_resched();
4515 	return ret;
4516 }
4517 
4518 static inline bool
4519 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4520 {
4521 	/*
4522 	 * It's possible that cpuset's mems_allowed and the nodemask from
4523 	 * mempolicy don't intersect. This should be normally dealt with by
4524 	 * policy_nodemask(), but it's possible to race with cpuset update in
4525 	 * such a way the check therein was true, and then it became false
4526 	 * before we got our cpuset_mems_cookie here.
4527 	 * This assumes that for all allocations, ac->nodemask can come only
4528 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4529 	 * when it does not intersect with the cpuset restrictions) or the
4530 	 * caller can deal with a violated nodemask.
4531 	 */
4532 	if (cpusets_enabled() && ac->nodemask &&
4533 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4534 		ac->nodemask = NULL;
4535 		return true;
4536 	}
4537 
4538 	/*
4539 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4540 	 * possible to race with parallel threads in such a way that our
4541 	 * allocation can fail while the mask is being updated. If we are about
4542 	 * to fail, check if the cpuset changed during allocation and if so,
4543 	 * retry.
4544 	 */
4545 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4546 		return true;
4547 
4548 	return false;
4549 }
4550 
4551 static inline struct page *
4552 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4553 						struct alloc_context *ac)
4554 {
4555 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4556 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4557 	struct page *page = NULL;
4558 	unsigned int alloc_flags;
4559 	unsigned long did_some_progress;
4560 	enum compact_priority compact_priority;
4561 	enum compact_result compact_result;
4562 	int compaction_retries;
4563 	int no_progress_loops;
4564 	unsigned int cpuset_mems_cookie;
4565 	int reserve_flags;
4566 
4567 	/*
4568 	 * We also sanity check to catch abuse of atomic reserves being used by
4569 	 * callers that are not in atomic context.
4570 	 */
4571 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4572 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4573 		gfp_mask &= ~__GFP_ATOMIC;
4574 
4575 retry_cpuset:
4576 	compaction_retries = 0;
4577 	no_progress_loops = 0;
4578 	compact_priority = DEF_COMPACT_PRIORITY;
4579 	cpuset_mems_cookie = read_mems_allowed_begin();
4580 
4581 	/*
4582 	 * The fast path uses conservative alloc_flags to succeed only until
4583 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4584 	 * alloc_flags precisely. So we do that now.
4585 	 */
4586 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4587 
4588 	/*
4589 	 * We need to recalculate the starting point for the zonelist iterator
4590 	 * because we might have used different nodemask in the fast path, or
4591 	 * there was a cpuset modification and we are retrying - otherwise we
4592 	 * could end up iterating over non-eligible zones endlessly.
4593 	 */
4594 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4595 					ac->highest_zoneidx, ac->nodemask);
4596 	if (!ac->preferred_zoneref->zone)
4597 		goto nopage;
4598 
4599 	if (alloc_flags & ALLOC_KSWAPD)
4600 		wake_all_kswapds(order, gfp_mask, ac);
4601 
4602 	/*
4603 	 * The adjusted alloc_flags might result in immediate success, so try
4604 	 * that first
4605 	 */
4606 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4607 	if (page)
4608 		goto got_pg;
4609 
4610 	/*
4611 	 * For costly allocations, try direct compaction first, as it's likely
4612 	 * that we have enough base pages and don't need to reclaim. For non-
4613 	 * movable high-order allocations, do that as well, as compaction will
4614 	 * try prevent permanent fragmentation by migrating from blocks of the
4615 	 * same migratetype.
4616 	 * Don't try this for allocations that are allowed to ignore
4617 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4618 	 */
4619 	if (can_direct_reclaim &&
4620 			(costly_order ||
4621 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4622 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4623 		page = __alloc_pages_direct_compact(gfp_mask, order,
4624 						alloc_flags, ac,
4625 						INIT_COMPACT_PRIORITY,
4626 						&compact_result);
4627 		if (page)
4628 			goto got_pg;
4629 
4630 		/*
4631 		 * Checks for costly allocations with __GFP_NORETRY, which
4632 		 * includes some THP page fault allocations
4633 		 */
4634 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4635 			/*
4636 			 * If allocating entire pageblock(s) and compaction
4637 			 * failed because all zones are below low watermarks
4638 			 * or is prohibited because it recently failed at this
4639 			 * order, fail immediately unless the allocator has
4640 			 * requested compaction and reclaim retry.
4641 			 *
4642 			 * Reclaim is
4643 			 *  - potentially very expensive because zones are far
4644 			 *    below their low watermarks or this is part of very
4645 			 *    bursty high order allocations,
4646 			 *  - not guaranteed to help because isolate_freepages()
4647 			 *    may not iterate over freed pages as part of its
4648 			 *    linear scan, and
4649 			 *  - unlikely to make entire pageblocks free on its
4650 			 *    own.
4651 			 */
4652 			if (compact_result == COMPACT_SKIPPED ||
4653 			    compact_result == COMPACT_DEFERRED)
4654 				goto nopage;
4655 
4656 			/*
4657 			 * Looks like reclaim/compaction is worth trying, but
4658 			 * sync compaction could be very expensive, so keep
4659 			 * using async compaction.
4660 			 */
4661 			compact_priority = INIT_COMPACT_PRIORITY;
4662 		}
4663 	}
4664 
4665 retry:
4666 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4667 	if (alloc_flags & ALLOC_KSWAPD)
4668 		wake_all_kswapds(order, gfp_mask, ac);
4669 
4670 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4671 	if (reserve_flags)
4672 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4673 
4674 	/*
4675 	 * Reset the nodemask and zonelist iterators if memory policies can be
4676 	 * ignored. These allocations are high priority and system rather than
4677 	 * user oriented.
4678 	 */
4679 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4680 		ac->nodemask = NULL;
4681 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4682 					ac->highest_zoneidx, ac->nodemask);
4683 	}
4684 
4685 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4686 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4687 	if (page)
4688 		goto got_pg;
4689 
4690 	/* Caller is not willing to reclaim, we can't balance anything */
4691 	if (!can_direct_reclaim)
4692 		goto nopage;
4693 
4694 	/* Avoid recursion of direct reclaim */
4695 	if (current->flags & PF_MEMALLOC)
4696 		goto nopage;
4697 
4698 	/* Try direct reclaim and then allocating */
4699 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4700 							&did_some_progress);
4701 	if (page)
4702 		goto got_pg;
4703 
4704 	/* Try direct compaction and then allocating */
4705 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4706 					compact_priority, &compact_result);
4707 	if (page)
4708 		goto got_pg;
4709 
4710 	/* Do not loop if specifically requested */
4711 	if (gfp_mask & __GFP_NORETRY)
4712 		goto nopage;
4713 
4714 	/*
4715 	 * Do not retry costly high order allocations unless they are
4716 	 * __GFP_RETRY_MAYFAIL
4717 	 */
4718 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4719 		goto nopage;
4720 
4721 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4722 				 did_some_progress > 0, &no_progress_loops))
4723 		goto retry;
4724 
4725 	/*
4726 	 * It doesn't make any sense to retry for the compaction if the order-0
4727 	 * reclaim is not able to make any progress because the current
4728 	 * implementation of the compaction depends on the sufficient amount
4729 	 * of free memory (see __compaction_suitable)
4730 	 */
4731 	if (did_some_progress > 0 &&
4732 			should_compact_retry(ac, order, alloc_flags,
4733 				compact_result, &compact_priority,
4734 				&compaction_retries))
4735 		goto retry;
4736 
4737 
4738 	/* Deal with possible cpuset update races before we start OOM killing */
4739 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4740 		goto retry_cpuset;
4741 
4742 	/* Reclaim has failed us, start killing things */
4743 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4744 	if (page)
4745 		goto got_pg;
4746 
4747 	/* Avoid allocations with no watermarks from looping endlessly */
4748 	if (tsk_is_oom_victim(current) &&
4749 	    (alloc_flags & ALLOC_OOM ||
4750 	     (gfp_mask & __GFP_NOMEMALLOC)))
4751 		goto nopage;
4752 
4753 	/* Retry as long as the OOM killer is making progress */
4754 	if (did_some_progress) {
4755 		no_progress_loops = 0;
4756 		goto retry;
4757 	}
4758 
4759 nopage:
4760 	/* Deal with possible cpuset update races before we fail */
4761 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4762 		goto retry_cpuset;
4763 
4764 	/*
4765 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4766 	 * we always retry
4767 	 */
4768 	if (gfp_mask & __GFP_NOFAIL) {
4769 		/*
4770 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4771 		 * of any new users that actually require GFP_NOWAIT
4772 		 */
4773 		if (WARN_ON_ONCE(!can_direct_reclaim))
4774 			goto fail;
4775 
4776 		/*
4777 		 * PF_MEMALLOC request from this context is rather bizarre
4778 		 * because we cannot reclaim anything and only can loop waiting
4779 		 * for somebody to do a work for us
4780 		 */
4781 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4782 
4783 		/*
4784 		 * non failing costly orders are a hard requirement which we
4785 		 * are not prepared for much so let's warn about these users
4786 		 * so that we can identify them and convert them to something
4787 		 * else.
4788 		 */
4789 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4790 
4791 		/*
4792 		 * Help non-failing allocations by giving them access to memory
4793 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4794 		 * could deplete whole memory reserves which would just make
4795 		 * the situation worse
4796 		 */
4797 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4798 		if (page)
4799 			goto got_pg;
4800 
4801 		cond_resched();
4802 		goto retry;
4803 	}
4804 fail:
4805 	warn_alloc(gfp_mask, ac->nodemask,
4806 			"page allocation failure: order:%u", order);
4807 got_pg:
4808 	return page;
4809 }
4810 
4811 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4812 		int preferred_nid, nodemask_t *nodemask,
4813 		struct alloc_context *ac, gfp_t *alloc_mask,
4814 		unsigned int *alloc_flags)
4815 {
4816 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4817 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4818 	ac->nodemask = nodemask;
4819 	ac->migratetype = gfp_migratetype(gfp_mask);
4820 
4821 	if (cpusets_enabled()) {
4822 		*alloc_mask |= __GFP_HARDWALL;
4823 		/*
4824 		 * When we are in the interrupt context, it is irrelevant
4825 		 * to the current task context. It means that any node ok.
4826 		 */
4827 		if (!in_interrupt() && !ac->nodemask)
4828 			ac->nodemask = &cpuset_current_mems_allowed;
4829 		else
4830 			*alloc_flags |= ALLOC_CPUSET;
4831 	}
4832 
4833 	fs_reclaim_acquire(gfp_mask);
4834 	fs_reclaim_release(gfp_mask);
4835 
4836 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4837 
4838 	if (should_fail_alloc_page(gfp_mask, order))
4839 		return false;
4840 
4841 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4842 
4843 	return true;
4844 }
4845 
4846 /* Determine whether to spread dirty pages and what the first usable zone */
4847 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4848 {
4849 	/* Dirty zone balancing only done in the fast path */
4850 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4851 
4852 	/*
4853 	 * The preferred zone is used for statistics but crucially it is
4854 	 * also used as the starting point for the zonelist iterator. It
4855 	 * may get reset for allocations that ignore memory policies.
4856 	 */
4857 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4858 					ac->highest_zoneidx, ac->nodemask);
4859 }
4860 
4861 /*
4862  * This is the 'heart' of the zoned buddy allocator.
4863  */
4864 struct page *
4865 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4866 							nodemask_t *nodemask)
4867 {
4868 	struct page *page;
4869 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4870 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4871 	struct alloc_context ac = { };
4872 
4873 	/*
4874 	 * There are several places where we assume that the order value is sane
4875 	 * so bail out early if the request is out of bound.
4876 	 */
4877 	if (unlikely(order >= MAX_ORDER)) {
4878 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4879 		return NULL;
4880 	}
4881 
4882 	gfp_mask &= gfp_allowed_mask;
4883 	alloc_mask = gfp_mask;
4884 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4885 		return NULL;
4886 
4887 	finalise_ac(gfp_mask, &ac);
4888 
4889 	/*
4890 	 * Forbid the first pass from falling back to types that fragment
4891 	 * memory until all local zones are considered.
4892 	 */
4893 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4894 
4895 	/* First allocation attempt */
4896 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4897 	if (likely(page))
4898 		goto out;
4899 
4900 	/*
4901 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4902 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4903 	 * from a particular context which has been marked by
4904 	 * memalloc_no{fs,io}_{save,restore}.
4905 	 */
4906 	alloc_mask = current_gfp_context(gfp_mask);
4907 	ac.spread_dirty_pages = false;
4908 
4909 	/*
4910 	 * Restore the original nodemask if it was potentially replaced with
4911 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4912 	 */
4913 	ac.nodemask = nodemask;
4914 
4915 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4916 
4917 out:
4918 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4919 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4920 		__free_pages(page, order);
4921 		page = NULL;
4922 	}
4923 
4924 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4925 
4926 	return page;
4927 }
4928 EXPORT_SYMBOL(__alloc_pages_nodemask);
4929 
4930 /*
4931  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4932  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4933  * you need to access high mem.
4934  */
4935 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4936 {
4937 	struct page *page;
4938 
4939 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4940 	if (!page)
4941 		return 0;
4942 	return (unsigned long) page_address(page);
4943 }
4944 EXPORT_SYMBOL(__get_free_pages);
4945 
4946 unsigned long get_zeroed_page(gfp_t gfp_mask)
4947 {
4948 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4949 }
4950 EXPORT_SYMBOL(get_zeroed_page);
4951 
4952 static inline void free_the_page(struct page *page, unsigned int order)
4953 {
4954 	if (order == 0)		/* Via pcp? */
4955 		free_unref_page(page);
4956 	else
4957 		__free_pages_ok(page, order);
4958 }
4959 
4960 void __free_pages(struct page *page, unsigned int order)
4961 {
4962 	if (put_page_testzero(page))
4963 		free_the_page(page, order);
4964 }
4965 EXPORT_SYMBOL(__free_pages);
4966 
4967 void free_pages(unsigned long addr, unsigned int order)
4968 {
4969 	if (addr != 0) {
4970 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4971 		__free_pages(virt_to_page((void *)addr), order);
4972 	}
4973 }
4974 
4975 EXPORT_SYMBOL(free_pages);
4976 
4977 /*
4978  * Page Fragment:
4979  *  An arbitrary-length arbitrary-offset area of memory which resides
4980  *  within a 0 or higher order page.  Multiple fragments within that page
4981  *  are individually refcounted, in the page's reference counter.
4982  *
4983  * The page_frag functions below provide a simple allocation framework for
4984  * page fragments.  This is used by the network stack and network device
4985  * drivers to provide a backing region of memory for use as either an
4986  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4987  */
4988 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4989 					     gfp_t gfp_mask)
4990 {
4991 	struct page *page = NULL;
4992 	gfp_t gfp = gfp_mask;
4993 
4994 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4995 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4996 		    __GFP_NOMEMALLOC;
4997 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4998 				PAGE_FRAG_CACHE_MAX_ORDER);
4999 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5000 #endif
5001 	if (unlikely(!page))
5002 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5003 
5004 	nc->va = page ? page_address(page) : NULL;
5005 
5006 	return page;
5007 }
5008 
5009 void __page_frag_cache_drain(struct page *page, unsigned int count)
5010 {
5011 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5012 
5013 	if (page_ref_sub_and_test(page, count))
5014 		free_the_page(page, compound_order(page));
5015 }
5016 EXPORT_SYMBOL(__page_frag_cache_drain);
5017 
5018 void *page_frag_alloc(struct page_frag_cache *nc,
5019 		      unsigned int fragsz, gfp_t gfp_mask)
5020 {
5021 	unsigned int size = PAGE_SIZE;
5022 	struct page *page;
5023 	int offset;
5024 
5025 	if (unlikely(!nc->va)) {
5026 refill:
5027 		page = __page_frag_cache_refill(nc, gfp_mask);
5028 		if (!page)
5029 			return NULL;
5030 
5031 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5032 		/* if size can vary use size else just use PAGE_SIZE */
5033 		size = nc->size;
5034 #endif
5035 		/* Even if we own the page, we do not use atomic_set().
5036 		 * This would break get_page_unless_zero() users.
5037 		 */
5038 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5039 
5040 		/* reset page count bias and offset to start of new frag */
5041 		nc->pfmemalloc = page_is_pfmemalloc(page);
5042 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5043 		nc->offset = size;
5044 	}
5045 
5046 	offset = nc->offset - fragsz;
5047 	if (unlikely(offset < 0)) {
5048 		page = virt_to_page(nc->va);
5049 
5050 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5051 			goto refill;
5052 
5053 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5054 		/* if size can vary use size else just use PAGE_SIZE */
5055 		size = nc->size;
5056 #endif
5057 		/* OK, page count is 0, we can safely set it */
5058 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5059 
5060 		/* reset page count bias and offset to start of new frag */
5061 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5062 		offset = size - fragsz;
5063 	}
5064 
5065 	nc->pagecnt_bias--;
5066 	nc->offset = offset;
5067 
5068 	return nc->va + offset;
5069 }
5070 EXPORT_SYMBOL(page_frag_alloc);
5071 
5072 /*
5073  * Frees a page fragment allocated out of either a compound or order 0 page.
5074  */
5075 void page_frag_free(void *addr)
5076 {
5077 	struct page *page = virt_to_head_page(addr);
5078 
5079 	if (unlikely(put_page_testzero(page)))
5080 		free_the_page(page, compound_order(page));
5081 }
5082 EXPORT_SYMBOL(page_frag_free);
5083 
5084 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5085 		size_t size)
5086 {
5087 	if (addr) {
5088 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5089 		unsigned long used = addr + PAGE_ALIGN(size);
5090 
5091 		split_page(virt_to_page((void *)addr), order);
5092 		while (used < alloc_end) {
5093 			free_page(used);
5094 			used += PAGE_SIZE;
5095 		}
5096 	}
5097 	return (void *)addr;
5098 }
5099 
5100 /**
5101  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5102  * @size: the number of bytes to allocate
5103  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5104  *
5105  * This function is similar to alloc_pages(), except that it allocates the
5106  * minimum number of pages to satisfy the request.  alloc_pages() can only
5107  * allocate memory in power-of-two pages.
5108  *
5109  * This function is also limited by MAX_ORDER.
5110  *
5111  * Memory allocated by this function must be released by free_pages_exact().
5112  *
5113  * Return: pointer to the allocated area or %NULL in case of error.
5114  */
5115 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5116 {
5117 	unsigned int order = get_order(size);
5118 	unsigned long addr;
5119 
5120 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5121 		gfp_mask &= ~__GFP_COMP;
5122 
5123 	addr = __get_free_pages(gfp_mask, order);
5124 	return make_alloc_exact(addr, order, size);
5125 }
5126 EXPORT_SYMBOL(alloc_pages_exact);
5127 
5128 /**
5129  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5130  *			   pages on a node.
5131  * @nid: the preferred node ID where memory should be allocated
5132  * @size: the number of bytes to allocate
5133  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5134  *
5135  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5136  * back.
5137  *
5138  * Return: pointer to the allocated area or %NULL in case of error.
5139  */
5140 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5141 {
5142 	unsigned int order = get_order(size);
5143 	struct page *p;
5144 
5145 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5146 		gfp_mask &= ~__GFP_COMP;
5147 
5148 	p = alloc_pages_node(nid, gfp_mask, order);
5149 	if (!p)
5150 		return NULL;
5151 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5152 }
5153 
5154 /**
5155  * free_pages_exact - release memory allocated via alloc_pages_exact()
5156  * @virt: the value returned by alloc_pages_exact.
5157  * @size: size of allocation, same value as passed to alloc_pages_exact().
5158  *
5159  * Release the memory allocated by a previous call to alloc_pages_exact.
5160  */
5161 void free_pages_exact(void *virt, size_t size)
5162 {
5163 	unsigned long addr = (unsigned long)virt;
5164 	unsigned long end = addr + PAGE_ALIGN(size);
5165 
5166 	while (addr < end) {
5167 		free_page(addr);
5168 		addr += PAGE_SIZE;
5169 	}
5170 }
5171 EXPORT_SYMBOL(free_pages_exact);
5172 
5173 /**
5174  * nr_free_zone_pages - count number of pages beyond high watermark
5175  * @offset: The zone index of the highest zone
5176  *
5177  * nr_free_zone_pages() counts the number of pages which are beyond the
5178  * high watermark within all zones at or below a given zone index.  For each
5179  * zone, the number of pages is calculated as:
5180  *
5181  *     nr_free_zone_pages = managed_pages - high_pages
5182  *
5183  * Return: number of pages beyond high watermark.
5184  */
5185 static unsigned long nr_free_zone_pages(int offset)
5186 {
5187 	struct zoneref *z;
5188 	struct zone *zone;
5189 
5190 	/* Just pick one node, since fallback list is circular */
5191 	unsigned long sum = 0;
5192 
5193 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5194 
5195 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5196 		unsigned long size = zone_managed_pages(zone);
5197 		unsigned long high = high_wmark_pages(zone);
5198 		if (size > high)
5199 			sum += size - high;
5200 	}
5201 
5202 	return sum;
5203 }
5204 
5205 /**
5206  * nr_free_buffer_pages - count number of pages beyond high watermark
5207  *
5208  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5209  * watermark within ZONE_DMA and ZONE_NORMAL.
5210  *
5211  * Return: number of pages beyond high watermark within ZONE_DMA and
5212  * ZONE_NORMAL.
5213  */
5214 unsigned long nr_free_buffer_pages(void)
5215 {
5216 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5217 }
5218 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5219 
5220 static inline void show_node(struct zone *zone)
5221 {
5222 	if (IS_ENABLED(CONFIG_NUMA))
5223 		printk("Node %d ", zone_to_nid(zone));
5224 }
5225 
5226 long si_mem_available(void)
5227 {
5228 	long available;
5229 	unsigned long pagecache;
5230 	unsigned long wmark_low = 0;
5231 	unsigned long pages[NR_LRU_LISTS];
5232 	unsigned long reclaimable;
5233 	struct zone *zone;
5234 	int lru;
5235 
5236 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5237 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5238 
5239 	for_each_zone(zone)
5240 		wmark_low += low_wmark_pages(zone);
5241 
5242 	/*
5243 	 * Estimate the amount of memory available for userspace allocations,
5244 	 * without causing swapping.
5245 	 */
5246 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5247 
5248 	/*
5249 	 * Not all the page cache can be freed, otherwise the system will
5250 	 * start swapping. Assume at least half of the page cache, or the
5251 	 * low watermark worth of cache, needs to stay.
5252 	 */
5253 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5254 	pagecache -= min(pagecache / 2, wmark_low);
5255 	available += pagecache;
5256 
5257 	/*
5258 	 * Part of the reclaimable slab and other kernel memory consists of
5259 	 * items that are in use, and cannot be freed. Cap this estimate at the
5260 	 * low watermark.
5261 	 */
5262 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5263 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5264 	available += reclaimable - min(reclaimable / 2, wmark_low);
5265 
5266 	if (available < 0)
5267 		available = 0;
5268 	return available;
5269 }
5270 EXPORT_SYMBOL_GPL(si_mem_available);
5271 
5272 void si_meminfo(struct sysinfo *val)
5273 {
5274 	val->totalram = totalram_pages();
5275 	val->sharedram = global_node_page_state(NR_SHMEM);
5276 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5277 	val->bufferram = nr_blockdev_pages();
5278 	val->totalhigh = totalhigh_pages();
5279 	val->freehigh = nr_free_highpages();
5280 	val->mem_unit = PAGE_SIZE;
5281 }
5282 
5283 EXPORT_SYMBOL(si_meminfo);
5284 
5285 #ifdef CONFIG_NUMA
5286 void si_meminfo_node(struct sysinfo *val, int nid)
5287 {
5288 	int zone_type;		/* needs to be signed */
5289 	unsigned long managed_pages = 0;
5290 	unsigned long managed_highpages = 0;
5291 	unsigned long free_highpages = 0;
5292 	pg_data_t *pgdat = NODE_DATA(nid);
5293 
5294 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5295 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5296 	val->totalram = managed_pages;
5297 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5298 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5299 #ifdef CONFIG_HIGHMEM
5300 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5301 		struct zone *zone = &pgdat->node_zones[zone_type];
5302 
5303 		if (is_highmem(zone)) {
5304 			managed_highpages += zone_managed_pages(zone);
5305 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5306 		}
5307 	}
5308 	val->totalhigh = managed_highpages;
5309 	val->freehigh = free_highpages;
5310 #else
5311 	val->totalhigh = managed_highpages;
5312 	val->freehigh = free_highpages;
5313 #endif
5314 	val->mem_unit = PAGE_SIZE;
5315 }
5316 #endif
5317 
5318 /*
5319  * Determine whether the node should be displayed or not, depending on whether
5320  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5321  */
5322 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5323 {
5324 	if (!(flags & SHOW_MEM_FILTER_NODES))
5325 		return false;
5326 
5327 	/*
5328 	 * no node mask - aka implicit memory numa policy. Do not bother with
5329 	 * the synchronization - read_mems_allowed_begin - because we do not
5330 	 * have to be precise here.
5331 	 */
5332 	if (!nodemask)
5333 		nodemask = &cpuset_current_mems_allowed;
5334 
5335 	return !node_isset(nid, *nodemask);
5336 }
5337 
5338 #define K(x) ((x) << (PAGE_SHIFT-10))
5339 
5340 static void show_migration_types(unsigned char type)
5341 {
5342 	static const char types[MIGRATE_TYPES] = {
5343 		[MIGRATE_UNMOVABLE]	= 'U',
5344 		[MIGRATE_MOVABLE]	= 'M',
5345 		[MIGRATE_RECLAIMABLE]	= 'E',
5346 		[MIGRATE_HIGHATOMIC]	= 'H',
5347 #ifdef CONFIG_CMA
5348 		[MIGRATE_CMA]		= 'C',
5349 #endif
5350 #ifdef CONFIG_MEMORY_ISOLATION
5351 		[MIGRATE_ISOLATE]	= 'I',
5352 #endif
5353 	};
5354 	char tmp[MIGRATE_TYPES + 1];
5355 	char *p = tmp;
5356 	int i;
5357 
5358 	for (i = 0; i < MIGRATE_TYPES; i++) {
5359 		if (type & (1 << i))
5360 			*p++ = types[i];
5361 	}
5362 
5363 	*p = '\0';
5364 	printk(KERN_CONT "(%s) ", tmp);
5365 }
5366 
5367 /*
5368  * Show free area list (used inside shift_scroll-lock stuff)
5369  * We also calculate the percentage fragmentation. We do this by counting the
5370  * memory on each free list with the exception of the first item on the list.
5371  *
5372  * Bits in @filter:
5373  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5374  *   cpuset.
5375  */
5376 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5377 {
5378 	unsigned long free_pcp = 0;
5379 	int cpu;
5380 	struct zone *zone;
5381 	pg_data_t *pgdat;
5382 
5383 	for_each_populated_zone(zone) {
5384 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5385 			continue;
5386 
5387 		for_each_online_cpu(cpu)
5388 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5389 	}
5390 
5391 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5392 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5393 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5394 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5395 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5396 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5397 		global_node_page_state(NR_ACTIVE_ANON),
5398 		global_node_page_state(NR_INACTIVE_ANON),
5399 		global_node_page_state(NR_ISOLATED_ANON),
5400 		global_node_page_state(NR_ACTIVE_FILE),
5401 		global_node_page_state(NR_INACTIVE_FILE),
5402 		global_node_page_state(NR_ISOLATED_FILE),
5403 		global_node_page_state(NR_UNEVICTABLE),
5404 		global_node_page_state(NR_FILE_DIRTY),
5405 		global_node_page_state(NR_WRITEBACK),
5406 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5407 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5408 		global_node_page_state(NR_FILE_MAPPED),
5409 		global_node_page_state(NR_SHMEM),
5410 		global_zone_page_state(NR_PAGETABLE),
5411 		global_zone_page_state(NR_BOUNCE),
5412 		global_zone_page_state(NR_FREE_PAGES),
5413 		free_pcp,
5414 		global_zone_page_state(NR_FREE_CMA_PAGES));
5415 
5416 	for_each_online_pgdat(pgdat) {
5417 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5418 			continue;
5419 
5420 		printk("Node %d"
5421 			" active_anon:%lukB"
5422 			" inactive_anon:%lukB"
5423 			" active_file:%lukB"
5424 			" inactive_file:%lukB"
5425 			" unevictable:%lukB"
5426 			" isolated(anon):%lukB"
5427 			" isolated(file):%lukB"
5428 			" mapped:%lukB"
5429 			" dirty:%lukB"
5430 			" writeback:%lukB"
5431 			" shmem:%lukB"
5432 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5433 			" shmem_thp: %lukB"
5434 			" shmem_pmdmapped: %lukB"
5435 			" anon_thp: %lukB"
5436 #endif
5437 			" writeback_tmp:%lukB"
5438 			" kernel_stack:%lukB"
5439 #ifdef CONFIG_SHADOW_CALL_STACK
5440 			" shadow_call_stack:%lukB"
5441 #endif
5442 			" all_unreclaimable? %s"
5443 			"\n",
5444 			pgdat->node_id,
5445 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5446 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5447 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5448 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5449 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5450 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5451 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5452 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5453 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5454 			K(node_page_state(pgdat, NR_WRITEBACK)),
5455 			K(node_page_state(pgdat, NR_SHMEM)),
5456 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5457 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5458 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5459 					* HPAGE_PMD_NR),
5460 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5461 #endif
5462 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5463 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5464 #ifdef CONFIG_SHADOW_CALL_STACK
5465 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5466 #endif
5467 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5468 				"yes" : "no");
5469 	}
5470 
5471 	for_each_populated_zone(zone) {
5472 		int i;
5473 
5474 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5475 			continue;
5476 
5477 		free_pcp = 0;
5478 		for_each_online_cpu(cpu)
5479 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5480 
5481 		show_node(zone);
5482 		printk(KERN_CONT
5483 			"%s"
5484 			" free:%lukB"
5485 			" min:%lukB"
5486 			" low:%lukB"
5487 			" high:%lukB"
5488 			" reserved_highatomic:%luKB"
5489 			" active_anon:%lukB"
5490 			" inactive_anon:%lukB"
5491 			" active_file:%lukB"
5492 			" inactive_file:%lukB"
5493 			" unevictable:%lukB"
5494 			" writepending:%lukB"
5495 			" present:%lukB"
5496 			" managed:%lukB"
5497 			" mlocked:%lukB"
5498 			" pagetables:%lukB"
5499 			" bounce:%lukB"
5500 			" free_pcp:%lukB"
5501 			" local_pcp:%ukB"
5502 			" free_cma:%lukB"
5503 			"\n",
5504 			zone->name,
5505 			K(zone_page_state(zone, NR_FREE_PAGES)),
5506 			K(min_wmark_pages(zone)),
5507 			K(low_wmark_pages(zone)),
5508 			K(high_wmark_pages(zone)),
5509 			K(zone->nr_reserved_highatomic),
5510 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5511 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5512 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5513 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5514 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5515 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5516 			K(zone->present_pages),
5517 			K(zone_managed_pages(zone)),
5518 			K(zone_page_state(zone, NR_MLOCK)),
5519 			K(zone_page_state(zone, NR_PAGETABLE)),
5520 			K(zone_page_state(zone, NR_BOUNCE)),
5521 			K(free_pcp),
5522 			K(this_cpu_read(zone->pageset->pcp.count)),
5523 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5524 		printk("lowmem_reserve[]:");
5525 		for (i = 0; i < MAX_NR_ZONES; i++)
5526 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5527 		printk(KERN_CONT "\n");
5528 	}
5529 
5530 	for_each_populated_zone(zone) {
5531 		unsigned int order;
5532 		unsigned long nr[MAX_ORDER], flags, total = 0;
5533 		unsigned char types[MAX_ORDER];
5534 
5535 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5536 			continue;
5537 		show_node(zone);
5538 		printk(KERN_CONT "%s: ", zone->name);
5539 
5540 		spin_lock_irqsave(&zone->lock, flags);
5541 		for (order = 0; order < MAX_ORDER; order++) {
5542 			struct free_area *area = &zone->free_area[order];
5543 			int type;
5544 
5545 			nr[order] = area->nr_free;
5546 			total += nr[order] << order;
5547 
5548 			types[order] = 0;
5549 			for (type = 0; type < MIGRATE_TYPES; type++) {
5550 				if (!free_area_empty(area, type))
5551 					types[order] |= 1 << type;
5552 			}
5553 		}
5554 		spin_unlock_irqrestore(&zone->lock, flags);
5555 		for (order = 0; order < MAX_ORDER; order++) {
5556 			printk(KERN_CONT "%lu*%lukB ",
5557 			       nr[order], K(1UL) << order);
5558 			if (nr[order])
5559 				show_migration_types(types[order]);
5560 		}
5561 		printk(KERN_CONT "= %lukB\n", K(total));
5562 	}
5563 
5564 	hugetlb_show_meminfo();
5565 
5566 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5567 
5568 	show_swap_cache_info();
5569 }
5570 
5571 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5572 {
5573 	zoneref->zone = zone;
5574 	zoneref->zone_idx = zone_idx(zone);
5575 }
5576 
5577 /*
5578  * Builds allocation fallback zone lists.
5579  *
5580  * Add all populated zones of a node to the zonelist.
5581  */
5582 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5583 {
5584 	struct zone *zone;
5585 	enum zone_type zone_type = MAX_NR_ZONES;
5586 	int nr_zones = 0;
5587 
5588 	do {
5589 		zone_type--;
5590 		zone = pgdat->node_zones + zone_type;
5591 		if (managed_zone(zone)) {
5592 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5593 			check_highest_zone(zone_type);
5594 		}
5595 	} while (zone_type);
5596 
5597 	return nr_zones;
5598 }
5599 
5600 #ifdef CONFIG_NUMA
5601 
5602 static int __parse_numa_zonelist_order(char *s)
5603 {
5604 	/*
5605 	 * We used to support different zonlists modes but they turned
5606 	 * out to be just not useful. Let's keep the warning in place
5607 	 * if somebody still use the cmd line parameter so that we do
5608 	 * not fail it silently
5609 	 */
5610 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5611 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5612 		return -EINVAL;
5613 	}
5614 	return 0;
5615 }
5616 
5617 char numa_zonelist_order[] = "Node";
5618 
5619 /*
5620  * sysctl handler for numa_zonelist_order
5621  */
5622 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5623 		void *buffer, size_t *length, loff_t *ppos)
5624 {
5625 	if (write)
5626 		return __parse_numa_zonelist_order(buffer);
5627 	return proc_dostring(table, write, buffer, length, ppos);
5628 }
5629 
5630 
5631 #define MAX_NODE_LOAD (nr_online_nodes)
5632 static int node_load[MAX_NUMNODES];
5633 
5634 /**
5635  * find_next_best_node - find the next node that should appear in a given node's fallback list
5636  * @node: node whose fallback list we're appending
5637  * @used_node_mask: nodemask_t of already used nodes
5638  *
5639  * We use a number of factors to determine which is the next node that should
5640  * appear on a given node's fallback list.  The node should not have appeared
5641  * already in @node's fallback list, and it should be the next closest node
5642  * according to the distance array (which contains arbitrary distance values
5643  * from each node to each node in the system), and should also prefer nodes
5644  * with no CPUs, since presumably they'll have very little allocation pressure
5645  * on them otherwise.
5646  *
5647  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5648  */
5649 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5650 {
5651 	int n, val;
5652 	int min_val = INT_MAX;
5653 	int best_node = NUMA_NO_NODE;
5654 	const struct cpumask *tmp = cpumask_of_node(0);
5655 
5656 	/* Use the local node if we haven't already */
5657 	if (!node_isset(node, *used_node_mask)) {
5658 		node_set(node, *used_node_mask);
5659 		return node;
5660 	}
5661 
5662 	for_each_node_state(n, N_MEMORY) {
5663 
5664 		/* Don't want a node to appear more than once */
5665 		if (node_isset(n, *used_node_mask))
5666 			continue;
5667 
5668 		/* Use the distance array to find the distance */
5669 		val = node_distance(node, n);
5670 
5671 		/* Penalize nodes under us ("prefer the next node") */
5672 		val += (n < node);
5673 
5674 		/* Give preference to headless and unused nodes */
5675 		tmp = cpumask_of_node(n);
5676 		if (!cpumask_empty(tmp))
5677 			val += PENALTY_FOR_NODE_WITH_CPUS;
5678 
5679 		/* Slight preference for less loaded node */
5680 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5681 		val += node_load[n];
5682 
5683 		if (val < min_val) {
5684 			min_val = val;
5685 			best_node = n;
5686 		}
5687 	}
5688 
5689 	if (best_node >= 0)
5690 		node_set(best_node, *used_node_mask);
5691 
5692 	return best_node;
5693 }
5694 
5695 
5696 /*
5697  * Build zonelists ordered by node and zones within node.
5698  * This results in maximum locality--normal zone overflows into local
5699  * DMA zone, if any--but risks exhausting DMA zone.
5700  */
5701 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5702 		unsigned nr_nodes)
5703 {
5704 	struct zoneref *zonerefs;
5705 	int i;
5706 
5707 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5708 
5709 	for (i = 0; i < nr_nodes; i++) {
5710 		int nr_zones;
5711 
5712 		pg_data_t *node = NODE_DATA(node_order[i]);
5713 
5714 		nr_zones = build_zonerefs_node(node, zonerefs);
5715 		zonerefs += nr_zones;
5716 	}
5717 	zonerefs->zone = NULL;
5718 	zonerefs->zone_idx = 0;
5719 }
5720 
5721 /*
5722  * Build gfp_thisnode zonelists
5723  */
5724 static void build_thisnode_zonelists(pg_data_t *pgdat)
5725 {
5726 	struct zoneref *zonerefs;
5727 	int nr_zones;
5728 
5729 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5730 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5731 	zonerefs += nr_zones;
5732 	zonerefs->zone = NULL;
5733 	zonerefs->zone_idx = 0;
5734 }
5735 
5736 /*
5737  * Build zonelists ordered by zone and nodes within zones.
5738  * This results in conserving DMA zone[s] until all Normal memory is
5739  * exhausted, but results in overflowing to remote node while memory
5740  * may still exist in local DMA zone.
5741  */
5742 
5743 static void build_zonelists(pg_data_t *pgdat)
5744 {
5745 	static int node_order[MAX_NUMNODES];
5746 	int node, load, nr_nodes = 0;
5747 	nodemask_t used_mask = NODE_MASK_NONE;
5748 	int local_node, prev_node;
5749 
5750 	/* NUMA-aware ordering of nodes */
5751 	local_node = pgdat->node_id;
5752 	load = nr_online_nodes;
5753 	prev_node = local_node;
5754 
5755 	memset(node_order, 0, sizeof(node_order));
5756 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5757 		/*
5758 		 * We don't want to pressure a particular node.
5759 		 * So adding penalty to the first node in same
5760 		 * distance group to make it round-robin.
5761 		 */
5762 		if (node_distance(local_node, node) !=
5763 		    node_distance(local_node, prev_node))
5764 			node_load[node] = load;
5765 
5766 		node_order[nr_nodes++] = node;
5767 		prev_node = node;
5768 		load--;
5769 	}
5770 
5771 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5772 	build_thisnode_zonelists(pgdat);
5773 }
5774 
5775 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5776 /*
5777  * Return node id of node used for "local" allocations.
5778  * I.e., first node id of first zone in arg node's generic zonelist.
5779  * Used for initializing percpu 'numa_mem', which is used primarily
5780  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5781  */
5782 int local_memory_node(int node)
5783 {
5784 	struct zoneref *z;
5785 
5786 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5787 				   gfp_zone(GFP_KERNEL),
5788 				   NULL);
5789 	return zone_to_nid(z->zone);
5790 }
5791 #endif
5792 
5793 static void setup_min_unmapped_ratio(void);
5794 static void setup_min_slab_ratio(void);
5795 #else	/* CONFIG_NUMA */
5796 
5797 static void build_zonelists(pg_data_t *pgdat)
5798 {
5799 	int node, local_node;
5800 	struct zoneref *zonerefs;
5801 	int nr_zones;
5802 
5803 	local_node = pgdat->node_id;
5804 
5805 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5806 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5807 	zonerefs += nr_zones;
5808 
5809 	/*
5810 	 * Now we build the zonelist so that it contains the zones
5811 	 * of all the other nodes.
5812 	 * We don't want to pressure a particular node, so when
5813 	 * building the zones for node N, we make sure that the
5814 	 * zones coming right after the local ones are those from
5815 	 * node N+1 (modulo N)
5816 	 */
5817 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5818 		if (!node_online(node))
5819 			continue;
5820 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5821 		zonerefs += nr_zones;
5822 	}
5823 	for (node = 0; node < local_node; node++) {
5824 		if (!node_online(node))
5825 			continue;
5826 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5827 		zonerefs += nr_zones;
5828 	}
5829 
5830 	zonerefs->zone = NULL;
5831 	zonerefs->zone_idx = 0;
5832 }
5833 
5834 #endif	/* CONFIG_NUMA */
5835 
5836 /*
5837  * Boot pageset table. One per cpu which is going to be used for all
5838  * zones and all nodes. The parameters will be set in such a way
5839  * that an item put on a list will immediately be handed over to
5840  * the buddy list. This is safe since pageset manipulation is done
5841  * with interrupts disabled.
5842  *
5843  * The boot_pagesets must be kept even after bootup is complete for
5844  * unused processors and/or zones. They do play a role for bootstrapping
5845  * hotplugged processors.
5846  *
5847  * zoneinfo_show() and maybe other functions do
5848  * not check if the processor is online before following the pageset pointer.
5849  * Other parts of the kernel may not check if the zone is available.
5850  */
5851 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5852 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5853 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5854 
5855 static void __build_all_zonelists(void *data)
5856 {
5857 	int nid;
5858 	int __maybe_unused cpu;
5859 	pg_data_t *self = data;
5860 	static DEFINE_SPINLOCK(lock);
5861 
5862 	spin_lock(&lock);
5863 
5864 #ifdef CONFIG_NUMA
5865 	memset(node_load, 0, sizeof(node_load));
5866 #endif
5867 
5868 	/*
5869 	 * This node is hotadded and no memory is yet present.   So just
5870 	 * building zonelists is fine - no need to touch other nodes.
5871 	 */
5872 	if (self && !node_online(self->node_id)) {
5873 		build_zonelists(self);
5874 	} else {
5875 		for_each_online_node(nid) {
5876 			pg_data_t *pgdat = NODE_DATA(nid);
5877 
5878 			build_zonelists(pgdat);
5879 		}
5880 
5881 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5882 		/*
5883 		 * We now know the "local memory node" for each node--
5884 		 * i.e., the node of the first zone in the generic zonelist.
5885 		 * Set up numa_mem percpu variable for on-line cpus.  During
5886 		 * boot, only the boot cpu should be on-line;  we'll init the
5887 		 * secondary cpus' numa_mem as they come on-line.  During
5888 		 * node/memory hotplug, we'll fixup all on-line cpus.
5889 		 */
5890 		for_each_online_cpu(cpu)
5891 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5892 #endif
5893 	}
5894 
5895 	spin_unlock(&lock);
5896 }
5897 
5898 static noinline void __init
5899 build_all_zonelists_init(void)
5900 {
5901 	int cpu;
5902 
5903 	__build_all_zonelists(NULL);
5904 
5905 	/*
5906 	 * Initialize the boot_pagesets that are going to be used
5907 	 * for bootstrapping processors. The real pagesets for
5908 	 * each zone will be allocated later when the per cpu
5909 	 * allocator is available.
5910 	 *
5911 	 * boot_pagesets are used also for bootstrapping offline
5912 	 * cpus if the system is already booted because the pagesets
5913 	 * are needed to initialize allocators on a specific cpu too.
5914 	 * F.e. the percpu allocator needs the page allocator which
5915 	 * needs the percpu allocator in order to allocate its pagesets
5916 	 * (a chicken-egg dilemma).
5917 	 */
5918 	for_each_possible_cpu(cpu)
5919 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5920 
5921 	mminit_verify_zonelist();
5922 	cpuset_init_current_mems_allowed();
5923 }
5924 
5925 /*
5926  * unless system_state == SYSTEM_BOOTING.
5927  *
5928  * __ref due to call of __init annotated helper build_all_zonelists_init
5929  * [protected by SYSTEM_BOOTING].
5930  */
5931 void __ref build_all_zonelists(pg_data_t *pgdat)
5932 {
5933 	unsigned long vm_total_pages;
5934 
5935 	if (system_state == SYSTEM_BOOTING) {
5936 		build_all_zonelists_init();
5937 	} else {
5938 		__build_all_zonelists(pgdat);
5939 		/* cpuset refresh routine should be here */
5940 	}
5941 	/* Get the number of free pages beyond high watermark in all zones. */
5942 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5943 	/*
5944 	 * Disable grouping by mobility if the number of pages in the
5945 	 * system is too low to allow the mechanism to work. It would be
5946 	 * more accurate, but expensive to check per-zone. This check is
5947 	 * made on memory-hotadd so a system can start with mobility
5948 	 * disabled and enable it later
5949 	 */
5950 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5951 		page_group_by_mobility_disabled = 1;
5952 	else
5953 		page_group_by_mobility_disabled = 0;
5954 
5955 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5956 		nr_online_nodes,
5957 		page_group_by_mobility_disabled ? "off" : "on",
5958 		vm_total_pages);
5959 #ifdef CONFIG_NUMA
5960 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5961 #endif
5962 }
5963 
5964 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5965 static bool __meminit
5966 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5967 {
5968 	static struct memblock_region *r;
5969 
5970 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5971 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5972 			for_each_memblock(memory, r) {
5973 				if (*pfn < memblock_region_memory_end_pfn(r))
5974 					break;
5975 			}
5976 		}
5977 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5978 		    memblock_is_mirror(r)) {
5979 			*pfn = memblock_region_memory_end_pfn(r);
5980 			return true;
5981 		}
5982 	}
5983 	return false;
5984 }
5985 
5986 /*
5987  * Initially all pages are reserved - free ones are freed
5988  * up by memblock_free_all() once the early boot process is
5989  * done. Non-atomic initialization, single-pass.
5990  */
5991 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5992 		unsigned long start_pfn, enum meminit_context context,
5993 		struct vmem_altmap *altmap)
5994 {
5995 	unsigned long pfn, end_pfn = start_pfn + size;
5996 	struct page *page;
5997 
5998 	if (highest_memmap_pfn < end_pfn - 1)
5999 		highest_memmap_pfn = end_pfn - 1;
6000 
6001 #ifdef CONFIG_ZONE_DEVICE
6002 	/*
6003 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6004 	 * memory. We limit the total number of pages to initialize to just
6005 	 * those that might contain the memory mapping. We will defer the
6006 	 * ZONE_DEVICE page initialization until after we have released
6007 	 * the hotplug lock.
6008 	 */
6009 	if (zone == ZONE_DEVICE) {
6010 		if (!altmap)
6011 			return;
6012 
6013 		if (start_pfn == altmap->base_pfn)
6014 			start_pfn += altmap->reserve;
6015 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6016 	}
6017 #endif
6018 
6019 	for (pfn = start_pfn; pfn < end_pfn; ) {
6020 		/*
6021 		 * There can be holes in boot-time mem_map[]s handed to this
6022 		 * function.  They do not exist on hotplugged memory.
6023 		 */
6024 		if (context == MEMINIT_EARLY) {
6025 			if (overlap_memmap_init(zone, &pfn))
6026 				continue;
6027 			if (defer_init(nid, pfn, end_pfn))
6028 				break;
6029 		}
6030 
6031 		page = pfn_to_page(pfn);
6032 		__init_single_page(page, pfn, zone, nid);
6033 		if (context == MEMINIT_HOTPLUG)
6034 			__SetPageReserved(page);
6035 
6036 		/*
6037 		 * Mark the block movable so that blocks are reserved for
6038 		 * movable at startup. This will force kernel allocations
6039 		 * to reserve their blocks rather than leaking throughout
6040 		 * the address space during boot when many long-lived
6041 		 * kernel allocations are made.
6042 		 *
6043 		 * bitmap is created for zone's valid pfn range. but memmap
6044 		 * can be created for invalid pages (for alignment)
6045 		 * check here not to call set_pageblock_migratetype() against
6046 		 * pfn out of zone.
6047 		 */
6048 		if (!(pfn & (pageblock_nr_pages - 1))) {
6049 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6050 			cond_resched();
6051 		}
6052 		pfn++;
6053 	}
6054 }
6055 
6056 #ifdef CONFIG_ZONE_DEVICE
6057 void __ref memmap_init_zone_device(struct zone *zone,
6058 				   unsigned long start_pfn,
6059 				   unsigned long nr_pages,
6060 				   struct dev_pagemap *pgmap)
6061 {
6062 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6063 	struct pglist_data *pgdat = zone->zone_pgdat;
6064 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6065 	unsigned long zone_idx = zone_idx(zone);
6066 	unsigned long start = jiffies;
6067 	int nid = pgdat->node_id;
6068 
6069 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6070 		return;
6071 
6072 	/*
6073 	 * The call to memmap_init_zone should have already taken care
6074 	 * of the pages reserved for the memmap, so we can just jump to
6075 	 * the end of that region and start processing the device pages.
6076 	 */
6077 	if (altmap) {
6078 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6079 		nr_pages = end_pfn - start_pfn;
6080 	}
6081 
6082 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6083 		struct page *page = pfn_to_page(pfn);
6084 
6085 		__init_single_page(page, pfn, zone_idx, nid);
6086 
6087 		/*
6088 		 * Mark page reserved as it will need to wait for onlining
6089 		 * phase for it to be fully associated with a zone.
6090 		 *
6091 		 * We can use the non-atomic __set_bit operation for setting
6092 		 * the flag as we are still initializing the pages.
6093 		 */
6094 		__SetPageReserved(page);
6095 
6096 		/*
6097 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6098 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6099 		 * ever freed or placed on a driver-private list.
6100 		 */
6101 		page->pgmap = pgmap;
6102 		page->zone_device_data = NULL;
6103 
6104 		/*
6105 		 * Mark the block movable so that blocks are reserved for
6106 		 * movable at startup. This will force kernel allocations
6107 		 * to reserve their blocks rather than leaking throughout
6108 		 * the address space during boot when many long-lived
6109 		 * kernel allocations are made.
6110 		 *
6111 		 * bitmap is created for zone's valid pfn range. but memmap
6112 		 * can be created for invalid pages (for alignment)
6113 		 * check here not to call set_pageblock_migratetype() against
6114 		 * pfn out of zone.
6115 		 *
6116 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6117 		 * because this is done early in section_activate()
6118 		 */
6119 		if (!(pfn & (pageblock_nr_pages - 1))) {
6120 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6121 			cond_resched();
6122 		}
6123 	}
6124 
6125 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6126 		nr_pages, jiffies_to_msecs(jiffies - start));
6127 }
6128 
6129 #endif
6130 static void __meminit zone_init_free_lists(struct zone *zone)
6131 {
6132 	unsigned int order, t;
6133 	for_each_migratetype_order(order, t) {
6134 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6135 		zone->free_area[order].nr_free = 0;
6136 	}
6137 }
6138 
6139 void __meminit __weak memmap_init(unsigned long size, int nid,
6140 				  unsigned long zone,
6141 				  unsigned long range_start_pfn)
6142 {
6143 	unsigned long start_pfn, end_pfn;
6144 	unsigned long range_end_pfn = range_start_pfn + size;
6145 	int i;
6146 
6147 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6148 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6149 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6150 
6151 		if (end_pfn > start_pfn) {
6152 			size = end_pfn - start_pfn;
6153 			memmap_init_zone(size, nid, zone, start_pfn,
6154 					 MEMINIT_EARLY, NULL);
6155 		}
6156 	}
6157 }
6158 
6159 static int zone_batchsize(struct zone *zone)
6160 {
6161 #ifdef CONFIG_MMU
6162 	int batch;
6163 
6164 	/*
6165 	 * The per-cpu-pages pools are set to around 1000th of the
6166 	 * size of the zone.
6167 	 */
6168 	batch = zone_managed_pages(zone) / 1024;
6169 	/* But no more than a meg. */
6170 	if (batch * PAGE_SIZE > 1024 * 1024)
6171 		batch = (1024 * 1024) / PAGE_SIZE;
6172 	batch /= 4;		/* We effectively *= 4 below */
6173 	if (batch < 1)
6174 		batch = 1;
6175 
6176 	/*
6177 	 * Clamp the batch to a 2^n - 1 value. Having a power
6178 	 * of 2 value was found to be more likely to have
6179 	 * suboptimal cache aliasing properties in some cases.
6180 	 *
6181 	 * For example if 2 tasks are alternately allocating
6182 	 * batches of pages, one task can end up with a lot
6183 	 * of pages of one half of the possible page colors
6184 	 * and the other with pages of the other colors.
6185 	 */
6186 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6187 
6188 	return batch;
6189 
6190 #else
6191 	/* The deferral and batching of frees should be suppressed under NOMMU
6192 	 * conditions.
6193 	 *
6194 	 * The problem is that NOMMU needs to be able to allocate large chunks
6195 	 * of contiguous memory as there's no hardware page translation to
6196 	 * assemble apparent contiguous memory from discontiguous pages.
6197 	 *
6198 	 * Queueing large contiguous runs of pages for batching, however,
6199 	 * causes the pages to actually be freed in smaller chunks.  As there
6200 	 * can be a significant delay between the individual batches being
6201 	 * recycled, this leads to the once large chunks of space being
6202 	 * fragmented and becoming unavailable for high-order allocations.
6203 	 */
6204 	return 0;
6205 #endif
6206 }
6207 
6208 /*
6209  * pcp->high and pcp->batch values are related and dependent on one another:
6210  * ->batch must never be higher then ->high.
6211  * The following function updates them in a safe manner without read side
6212  * locking.
6213  *
6214  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6215  * those fields changing asynchronously (acording to the above rule).
6216  *
6217  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6218  * outside of boot time (or some other assurance that no concurrent updaters
6219  * exist).
6220  */
6221 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6222 		unsigned long batch)
6223 {
6224        /* start with a fail safe value for batch */
6225 	pcp->batch = 1;
6226 	smp_wmb();
6227 
6228        /* Update high, then batch, in order */
6229 	pcp->high = high;
6230 	smp_wmb();
6231 
6232 	pcp->batch = batch;
6233 }
6234 
6235 /* a companion to pageset_set_high() */
6236 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6237 {
6238 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6239 }
6240 
6241 static void pageset_init(struct per_cpu_pageset *p)
6242 {
6243 	struct per_cpu_pages *pcp;
6244 	int migratetype;
6245 
6246 	memset(p, 0, sizeof(*p));
6247 
6248 	pcp = &p->pcp;
6249 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6250 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6251 }
6252 
6253 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6254 {
6255 	pageset_init(p);
6256 	pageset_set_batch(p, batch);
6257 }
6258 
6259 /*
6260  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6261  * to the value high for the pageset p.
6262  */
6263 static void pageset_set_high(struct per_cpu_pageset *p,
6264 				unsigned long high)
6265 {
6266 	unsigned long batch = max(1UL, high / 4);
6267 	if ((high / 4) > (PAGE_SHIFT * 8))
6268 		batch = PAGE_SHIFT * 8;
6269 
6270 	pageset_update(&p->pcp, high, batch);
6271 }
6272 
6273 static void pageset_set_high_and_batch(struct zone *zone,
6274 				       struct per_cpu_pageset *pcp)
6275 {
6276 	if (percpu_pagelist_fraction)
6277 		pageset_set_high(pcp,
6278 			(zone_managed_pages(zone) /
6279 				percpu_pagelist_fraction));
6280 	else
6281 		pageset_set_batch(pcp, zone_batchsize(zone));
6282 }
6283 
6284 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6285 {
6286 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6287 
6288 	pageset_init(pcp);
6289 	pageset_set_high_and_batch(zone, pcp);
6290 }
6291 
6292 void __meminit setup_zone_pageset(struct zone *zone)
6293 {
6294 	int cpu;
6295 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6296 	for_each_possible_cpu(cpu)
6297 		zone_pageset_init(zone, cpu);
6298 }
6299 
6300 /*
6301  * Allocate per cpu pagesets and initialize them.
6302  * Before this call only boot pagesets were available.
6303  */
6304 void __init setup_per_cpu_pageset(void)
6305 {
6306 	struct pglist_data *pgdat;
6307 	struct zone *zone;
6308 	int __maybe_unused cpu;
6309 
6310 	for_each_populated_zone(zone)
6311 		setup_zone_pageset(zone);
6312 
6313 #ifdef CONFIG_NUMA
6314 	/*
6315 	 * Unpopulated zones continue using the boot pagesets.
6316 	 * The numa stats for these pagesets need to be reset.
6317 	 * Otherwise, they will end up skewing the stats of
6318 	 * the nodes these zones are associated with.
6319 	 */
6320 	for_each_possible_cpu(cpu) {
6321 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6322 		memset(pcp->vm_numa_stat_diff, 0,
6323 		       sizeof(pcp->vm_numa_stat_diff));
6324 	}
6325 #endif
6326 
6327 	for_each_online_pgdat(pgdat)
6328 		pgdat->per_cpu_nodestats =
6329 			alloc_percpu(struct per_cpu_nodestat);
6330 }
6331 
6332 static __meminit void zone_pcp_init(struct zone *zone)
6333 {
6334 	/*
6335 	 * per cpu subsystem is not up at this point. The following code
6336 	 * relies on the ability of the linker to provide the
6337 	 * offset of a (static) per cpu variable into the per cpu area.
6338 	 */
6339 	zone->pageset = &boot_pageset;
6340 
6341 	if (populated_zone(zone))
6342 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6343 			zone->name, zone->present_pages,
6344 					 zone_batchsize(zone));
6345 }
6346 
6347 void __meminit init_currently_empty_zone(struct zone *zone,
6348 					unsigned long zone_start_pfn,
6349 					unsigned long size)
6350 {
6351 	struct pglist_data *pgdat = zone->zone_pgdat;
6352 	int zone_idx = zone_idx(zone) + 1;
6353 
6354 	if (zone_idx > pgdat->nr_zones)
6355 		pgdat->nr_zones = zone_idx;
6356 
6357 	zone->zone_start_pfn = zone_start_pfn;
6358 
6359 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6360 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6361 			pgdat->node_id,
6362 			(unsigned long)zone_idx(zone),
6363 			zone_start_pfn, (zone_start_pfn + size));
6364 
6365 	zone_init_free_lists(zone);
6366 	zone->initialized = 1;
6367 }
6368 
6369 /**
6370  * get_pfn_range_for_nid - Return the start and end page frames for a node
6371  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6372  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6373  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6374  *
6375  * It returns the start and end page frame of a node based on information
6376  * provided by memblock_set_node(). If called for a node
6377  * with no available memory, a warning is printed and the start and end
6378  * PFNs will be 0.
6379  */
6380 void __init get_pfn_range_for_nid(unsigned int nid,
6381 			unsigned long *start_pfn, unsigned long *end_pfn)
6382 {
6383 	unsigned long this_start_pfn, this_end_pfn;
6384 	int i;
6385 
6386 	*start_pfn = -1UL;
6387 	*end_pfn = 0;
6388 
6389 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6390 		*start_pfn = min(*start_pfn, this_start_pfn);
6391 		*end_pfn = max(*end_pfn, this_end_pfn);
6392 	}
6393 
6394 	if (*start_pfn == -1UL)
6395 		*start_pfn = 0;
6396 }
6397 
6398 /*
6399  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6400  * assumption is made that zones within a node are ordered in monotonic
6401  * increasing memory addresses so that the "highest" populated zone is used
6402  */
6403 static void __init find_usable_zone_for_movable(void)
6404 {
6405 	int zone_index;
6406 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6407 		if (zone_index == ZONE_MOVABLE)
6408 			continue;
6409 
6410 		if (arch_zone_highest_possible_pfn[zone_index] >
6411 				arch_zone_lowest_possible_pfn[zone_index])
6412 			break;
6413 	}
6414 
6415 	VM_BUG_ON(zone_index == -1);
6416 	movable_zone = zone_index;
6417 }
6418 
6419 /*
6420  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6421  * because it is sized independent of architecture. Unlike the other zones,
6422  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6423  * in each node depending on the size of each node and how evenly kernelcore
6424  * is distributed. This helper function adjusts the zone ranges
6425  * provided by the architecture for a given node by using the end of the
6426  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6427  * zones within a node are in order of monotonic increases memory addresses
6428  */
6429 static void __init adjust_zone_range_for_zone_movable(int nid,
6430 					unsigned long zone_type,
6431 					unsigned long node_start_pfn,
6432 					unsigned long node_end_pfn,
6433 					unsigned long *zone_start_pfn,
6434 					unsigned long *zone_end_pfn)
6435 {
6436 	/* Only adjust if ZONE_MOVABLE is on this node */
6437 	if (zone_movable_pfn[nid]) {
6438 		/* Size ZONE_MOVABLE */
6439 		if (zone_type == ZONE_MOVABLE) {
6440 			*zone_start_pfn = zone_movable_pfn[nid];
6441 			*zone_end_pfn = min(node_end_pfn,
6442 				arch_zone_highest_possible_pfn[movable_zone]);
6443 
6444 		/* Adjust for ZONE_MOVABLE starting within this range */
6445 		} else if (!mirrored_kernelcore &&
6446 			*zone_start_pfn < zone_movable_pfn[nid] &&
6447 			*zone_end_pfn > zone_movable_pfn[nid]) {
6448 			*zone_end_pfn = zone_movable_pfn[nid];
6449 
6450 		/* Check if this whole range is within ZONE_MOVABLE */
6451 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6452 			*zone_start_pfn = *zone_end_pfn;
6453 	}
6454 }
6455 
6456 /*
6457  * Return the number of pages a zone spans in a node, including holes
6458  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6459  */
6460 static unsigned long __init zone_spanned_pages_in_node(int nid,
6461 					unsigned long zone_type,
6462 					unsigned long node_start_pfn,
6463 					unsigned long node_end_pfn,
6464 					unsigned long *zone_start_pfn,
6465 					unsigned long *zone_end_pfn)
6466 {
6467 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6468 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6469 	/* When hotadd a new node from cpu_up(), the node should be empty */
6470 	if (!node_start_pfn && !node_end_pfn)
6471 		return 0;
6472 
6473 	/* Get the start and end of the zone */
6474 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6475 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6476 	adjust_zone_range_for_zone_movable(nid, zone_type,
6477 				node_start_pfn, node_end_pfn,
6478 				zone_start_pfn, zone_end_pfn);
6479 
6480 	/* Check that this node has pages within the zone's required range */
6481 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6482 		return 0;
6483 
6484 	/* Move the zone boundaries inside the node if necessary */
6485 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6486 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6487 
6488 	/* Return the spanned pages */
6489 	return *zone_end_pfn - *zone_start_pfn;
6490 }
6491 
6492 /*
6493  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6494  * then all holes in the requested range will be accounted for.
6495  */
6496 unsigned long __init __absent_pages_in_range(int nid,
6497 				unsigned long range_start_pfn,
6498 				unsigned long range_end_pfn)
6499 {
6500 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6501 	unsigned long start_pfn, end_pfn;
6502 	int i;
6503 
6504 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6505 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6506 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6507 		nr_absent -= end_pfn - start_pfn;
6508 	}
6509 	return nr_absent;
6510 }
6511 
6512 /**
6513  * absent_pages_in_range - Return number of page frames in holes within a range
6514  * @start_pfn: The start PFN to start searching for holes
6515  * @end_pfn: The end PFN to stop searching for holes
6516  *
6517  * Return: the number of pages frames in memory holes within a range.
6518  */
6519 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6520 							unsigned long end_pfn)
6521 {
6522 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6523 }
6524 
6525 /* Return the number of page frames in holes in a zone on a node */
6526 static unsigned long __init zone_absent_pages_in_node(int nid,
6527 					unsigned long zone_type,
6528 					unsigned long node_start_pfn,
6529 					unsigned long node_end_pfn)
6530 {
6531 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6532 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6533 	unsigned long zone_start_pfn, zone_end_pfn;
6534 	unsigned long nr_absent;
6535 
6536 	/* When hotadd a new node from cpu_up(), the node should be empty */
6537 	if (!node_start_pfn && !node_end_pfn)
6538 		return 0;
6539 
6540 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6541 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6542 
6543 	adjust_zone_range_for_zone_movable(nid, zone_type,
6544 			node_start_pfn, node_end_pfn,
6545 			&zone_start_pfn, &zone_end_pfn);
6546 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6547 
6548 	/*
6549 	 * ZONE_MOVABLE handling.
6550 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6551 	 * and vice versa.
6552 	 */
6553 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6554 		unsigned long start_pfn, end_pfn;
6555 		struct memblock_region *r;
6556 
6557 		for_each_memblock(memory, r) {
6558 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6559 					  zone_start_pfn, zone_end_pfn);
6560 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6561 					zone_start_pfn, zone_end_pfn);
6562 
6563 			if (zone_type == ZONE_MOVABLE &&
6564 			    memblock_is_mirror(r))
6565 				nr_absent += end_pfn - start_pfn;
6566 
6567 			if (zone_type == ZONE_NORMAL &&
6568 			    !memblock_is_mirror(r))
6569 				nr_absent += end_pfn - start_pfn;
6570 		}
6571 	}
6572 
6573 	return nr_absent;
6574 }
6575 
6576 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6577 						unsigned long node_start_pfn,
6578 						unsigned long node_end_pfn)
6579 {
6580 	unsigned long realtotalpages = 0, totalpages = 0;
6581 	enum zone_type i;
6582 
6583 	for (i = 0; i < MAX_NR_ZONES; i++) {
6584 		struct zone *zone = pgdat->node_zones + i;
6585 		unsigned long zone_start_pfn, zone_end_pfn;
6586 		unsigned long spanned, absent;
6587 		unsigned long size, real_size;
6588 
6589 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6590 						     node_start_pfn,
6591 						     node_end_pfn,
6592 						     &zone_start_pfn,
6593 						     &zone_end_pfn);
6594 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6595 						   node_start_pfn,
6596 						   node_end_pfn);
6597 
6598 		size = spanned;
6599 		real_size = size - absent;
6600 
6601 		if (size)
6602 			zone->zone_start_pfn = zone_start_pfn;
6603 		else
6604 			zone->zone_start_pfn = 0;
6605 		zone->spanned_pages = size;
6606 		zone->present_pages = real_size;
6607 
6608 		totalpages += size;
6609 		realtotalpages += real_size;
6610 	}
6611 
6612 	pgdat->node_spanned_pages = totalpages;
6613 	pgdat->node_present_pages = realtotalpages;
6614 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6615 							realtotalpages);
6616 }
6617 
6618 #ifndef CONFIG_SPARSEMEM
6619 /*
6620  * Calculate the size of the zone->blockflags rounded to an unsigned long
6621  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6622  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6623  * round what is now in bits to nearest long in bits, then return it in
6624  * bytes.
6625  */
6626 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6627 {
6628 	unsigned long usemapsize;
6629 
6630 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6631 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6632 	usemapsize = usemapsize >> pageblock_order;
6633 	usemapsize *= NR_PAGEBLOCK_BITS;
6634 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6635 
6636 	return usemapsize / 8;
6637 }
6638 
6639 static void __ref setup_usemap(struct pglist_data *pgdat,
6640 				struct zone *zone,
6641 				unsigned long zone_start_pfn,
6642 				unsigned long zonesize)
6643 {
6644 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6645 	zone->pageblock_flags = NULL;
6646 	if (usemapsize) {
6647 		zone->pageblock_flags =
6648 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6649 					    pgdat->node_id);
6650 		if (!zone->pageblock_flags)
6651 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6652 			      usemapsize, zone->name, pgdat->node_id);
6653 	}
6654 }
6655 #else
6656 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6657 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6658 #endif /* CONFIG_SPARSEMEM */
6659 
6660 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6661 
6662 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6663 void __init set_pageblock_order(void)
6664 {
6665 	unsigned int order;
6666 
6667 	/* Check that pageblock_nr_pages has not already been setup */
6668 	if (pageblock_order)
6669 		return;
6670 
6671 	if (HPAGE_SHIFT > PAGE_SHIFT)
6672 		order = HUGETLB_PAGE_ORDER;
6673 	else
6674 		order = MAX_ORDER - 1;
6675 
6676 	/*
6677 	 * Assume the largest contiguous order of interest is a huge page.
6678 	 * This value may be variable depending on boot parameters on IA64 and
6679 	 * powerpc.
6680 	 */
6681 	pageblock_order = order;
6682 }
6683 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6684 
6685 /*
6686  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6687  * is unused as pageblock_order is set at compile-time. See
6688  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6689  * the kernel config
6690  */
6691 void __init set_pageblock_order(void)
6692 {
6693 }
6694 
6695 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6696 
6697 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6698 						unsigned long present_pages)
6699 {
6700 	unsigned long pages = spanned_pages;
6701 
6702 	/*
6703 	 * Provide a more accurate estimation if there are holes within
6704 	 * the zone and SPARSEMEM is in use. If there are holes within the
6705 	 * zone, each populated memory region may cost us one or two extra
6706 	 * memmap pages due to alignment because memmap pages for each
6707 	 * populated regions may not be naturally aligned on page boundary.
6708 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6709 	 */
6710 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6711 	    IS_ENABLED(CONFIG_SPARSEMEM))
6712 		pages = present_pages;
6713 
6714 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6715 }
6716 
6717 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6718 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6719 {
6720 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6721 
6722 	spin_lock_init(&ds_queue->split_queue_lock);
6723 	INIT_LIST_HEAD(&ds_queue->split_queue);
6724 	ds_queue->split_queue_len = 0;
6725 }
6726 #else
6727 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6728 #endif
6729 
6730 #ifdef CONFIG_COMPACTION
6731 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6732 {
6733 	init_waitqueue_head(&pgdat->kcompactd_wait);
6734 }
6735 #else
6736 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6737 #endif
6738 
6739 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6740 {
6741 	pgdat_resize_init(pgdat);
6742 
6743 	pgdat_init_split_queue(pgdat);
6744 	pgdat_init_kcompactd(pgdat);
6745 
6746 	init_waitqueue_head(&pgdat->kswapd_wait);
6747 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6748 
6749 	pgdat_page_ext_init(pgdat);
6750 	spin_lock_init(&pgdat->lru_lock);
6751 	lruvec_init(&pgdat->__lruvec);
6752 }
6753 
6754 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6755 							unsigned long remaining_pages)
6756 {
6757 	atomic_long_set(&zone->managed_pages, remaining_pages);
6758 	zone_set_nid(zone, nid);
6759 	zone->name = zone_names[idx];
6760 	zone->zone_pgdat = NODE_DATA(nid);
6761 	spin_lock_init(&zone->lock);
6762 	zone_seqlock_init(zone);
6763 	zone_pcp_init(zone);
6764 }
6765 
6766 /*
6767  * Set up the zone data structures
6768  * - init pgdat internals
6769  * - init all zones belonging to this node
6770  *
6771  * NOTE: this function is only called during memory hotplug
6772  */
6773 #ifdef CONFIG_MEMORY_HOTPLUG
6774 void __ref free_area_init_core_hotplug(int nid)
6775 {
6776 	enum zone_type z;
6777 	pg_data_t *pgdat = NODE_DATA(nid);
6778 
6779 	pgdat_init_internals(pgdat);
6780 	for (z = 0; z < MAX_NR_ZONES; z++)
6781 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6782 }
6783 #endif
6784 
6785 /*
6786  * Set up the zone data structures:
6787  *   - mark all pages reserved
6788  *   - mark all memory queues empty
6789  *   - clear the memory bitmaps
6790  *
6791  * NOTE: pgdat should get zeroed by caller.
6792  * NOTE: this function is only called during early init.
6793  */
6794 static void __init free_area_init_core(struct pglist_data *pgdat)
6795 {
6796 	enum zone_type j;
6797 	int nid = pgdat->node_id;
6798 
6799 	pgdat_init_internals(pgdat);
6800 	pgdat->per_cpu_nodestats = &boot_nodestats;
6801 
6802 	for (j = 0; j < MAX_NR_ZONES; j++) {
6803 		struct zone *zone = pgdat->node_zones + j;
6804 		unsigned long size, freesize, memmap_pages;
6805 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6806 
6807 		size = zone->spanned_pages;
6808 		freesize = zone->present_pages;
6809 
6810 		/*
6811 		 * Adjust freesize so that it accounts for how much memory
6812 		 * is used by this zone for memmap. This affects the watermark
6813 		 * and per-cpu initialisations
6814 		 */
6815 		memmap_pages = calc_memmap_size(size, freesize);
6816 		if (!is_highmem_idx(j)) {
6817 			if (freesize >= memmap_pages) {
6818 				freesize -= memmap_pages;
6819 				if (memmap_pages)
6820 					printk(KERN_DEBUG
6821 					       "  %s zone: %lu pages used for memmap\n",
6822 					       zone_names[j], memmap_pages);
6823 			} else
6824 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6825 					zone_names[j], memmap_pages, freesize);
6826 		}
6827 
6828 		/* Account for reserved pages */
6829 		if (j == 0 && freesize > dma_reserve) {
6830 			freesize -= dma_reserve;
6831 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6832 					zone_names[0], dma_reserve);
6833 		}
6834 
6835 		if (!is_highmem_idx(j))
6836 			nr_kernel_pages += freesize;
6837 		/* Charge for highmem memmap if there are enough kernel pages */
6838 		else if (nr_kernel_pages > memmap_pages * 2)
6839 			nr_kernel_pages -= memmap_pages;
6840 		nr_all_pages += freesize;
6841 
6842 		/*
6843 		 * Set an approximate value for lowmem here, it will be adjusted
6844 		 * when the bootmem allocator frees pages into the buddy system.
6845 		 * And all highmem pages will be managed by the buddy system.
6846 		 */
6847 		zone_init_internals(zone, j, nid, freesize);
6848 
6849 		if (!size)
6850 			continue;
6851 
6852 		set_pageblock_order();
6853 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6854 		init_currently_empty_zone(zone, zone_start_pfn, size);
6855 		memmap_init(size, nid, j, zone_start_pfn);
6856 	}
6857 }
6858 
6859 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6860 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6861 {
6862 	unsigned long __maybe_unused start = 0;
6863 	unsigned long __maybe_unused offset = 0;
6864 
6865 	/* Skip empty nodes */
6866 	if (!pgdat->node_spanned_pages)
6867 		return;
6868 
6869 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6870 	offset = pgdat->node_start_pfn - start;
6871 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6872 	if (!pgdat->node_mem_map) {
6873 		unsigned long size, end;
6874 		struct page *map;
6875 
6876 		/*
6877 		 * The zone's endpoints aren't required to be MAX_ORDER
6878 		 * aligned but the node_mem_map endpoints must be in order
6879 		 * for the buddy allocator to function correctly.
6880 		 */
6881 		end = pgdat_end_pfn(pgdat);
6882 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6883 		size =  (end - start) * sizeof(struct page);
6884 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6885 					  pgdat->node_id);
6886 		if (!map)
6887 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6888 			      size, pgdat->node_id);
6889 		pgdat->node_mem_map = map + offset;
6890 	}
6891 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6892 				__func__, pgdat->node_id, (unsigned long)pgdat,
6893 				(unsigned long)pgdat->node_mem_map);
6894 #ifndef CONFIG_NEED_MULTIPLE_NODES
6895 	/*
6896 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6897 	 */
6898 	if (pgdat == NODE_DATA(0)) {
6899 		mem_map = NODE_DATA(0)->node_mem_map;
6900 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6901 			mem_map -= offset;
6902 	}
6903 #endif
6904 }
6905 #else
6906 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6907 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6908 
6909 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6910 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6911 {
6912 	pgdat->first_deferred_pfn = ULONG_MAX;
6913 }
6914 #else
6915 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6916 #endif
6917 
6918 static void __init free_area_init_node(int nid)
6919 {
6920 	pg_data_t *pgdat = NODE_DATA(nid);
6921 	unsigned long start_pfn = 0;
6922 	unsigned long end_pfn = 0;
6923 
6924 	/* pg_data_t should be reset to zero when it's allocated */
6925 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6926 
6927 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6928 
6929 	pgdat->node_id = nid;
6930 	pgdat->node_start_pfn = start_pfn;
6931 	pgdat->per_cpu_nodestats = NULL;
6932 
6933 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6934 		(u64)start_pfn << PAGE_SHIFT,
6935 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6936 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6937 
6938 	alloc_node_mem_map(pgdat);
6939 	pgdat_set_deferred_range(pgdat);
6940 
6941 	free_area_init_core(pgdat);
6942 }
6943 
6944 void __init free_area_init_memoryless_node(int nid)
6945 {
6946 	free_area_init_node(nid);
6947 }
6948 
6949 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6950 /*
6951  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6952  * PageReserved(). Return the number of struct pages that were initialized.
6953  */
6954 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6955 {
6956 	unsigned long pfn;
6957 	u64 pgcnt = 0;
6958 
6959 	for (pfn = spfn; pfn < epfn; pfn++) {
6960 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6961 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6962 				+ pageblock_nr_pages - 1;
6963 			continue;
6964 		}
6965 		/*
6966 		 * Use a fake node/zone (0) for now. Some of these pages
6967 		 * (in memblock.reserved but not in memblock.memory) will
6968 		 * get re-initialized via reserve_bootmem_region() later.
6969 		 */
6970 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6971 		__SetPageReserved(pfn_to_page(pfn));
6972 		pgcnt++;
6973 	}
6974 
6975 	return pgcnt;
6976 }
6977 
6978 /*
6979  * Only struct pages that are backed by physical memory are zeroed and
6980  * initialized by going through __init_single_page(). But, there are some
6981  * struct pages which are reserved in memblock allocator and their fields
6982  * may be accessed (for example page_to_pfn() on some configuration accesses
6983  * flags). We must explicitly initialize those struct pages.
6984  *
6985  * This function also addresses a similar issue where struct pages are left
6986  * uninitialized because the physical address range is not covered by
6987  * memblock.memory or memblock.reserved. That could happen when memblock
6988  * layout is manually configured via memmap=, or when the highest physical
6989  * address (max_pfn) does not end on a section boundary.
6990  */
6991 static void __init init_unavailable_mem(void)
6992 {
6993 	phys_addr_t start, end;
6994 	u64 i, pgcnt;
6995 	phys_addr_t next = 0;
6996 
6997 	/*
6998 	 * Loop through unavailable ranges not covered by memblock.memory.
6999 	 */
7000 	pgcnt = 0;
7001 	for_each_mem_range(i, &memblock.memory, NULL,
7002 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
7003 		if (next < start)
7004 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7005 							PFN_UP(start));
7006 		next = end;
7007 	}
7008 
7009 	/*
7010 	 * Early sections always have a fully populated memmap for the whole
7011 	 * section - see pfn_valid(). If the last section has holes at the
7012 	 * end and that section is marked "online", the memmap will be
7013 	 * considered initialized. Make sure that memmap has a well defined
7014 	 * state.
7015 	 */
7016 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7017 					round_up(max_pfn, PAGES_PER_SECTION));
7018 
7019 	/*
7020 	 * Struct pages that do not have backing memory. This could be because
7021 	 * firmware is using some of this memory, or for some other reasons.
7022 	 */
7023 	if (pgcnt)
7024 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7025 }
7026 #else
7027 static inline void __init init_unavailable_mem(void)
7028 {
7029 }
7030 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7031 
7032 #if MAX_NUMNODES > 1
7033 /*
7034  * Figure out the number of possible node ids.
7035  */
7036 void __init setup_nr_node_ids(void)
7037 {
7038 	unsigned int highest;
7039 
7040 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7041 	nr_node_ids = highest + 1;
7042 }
7043 #endif
7044 
7045 /**
7046  * node_map_pfn_alignment - determine the maximum internode alignment
7047  *
7048  * This function should be called after node map is populated and sorted.
7049  * It calculates the maximum power of two alignment which can distinguish
7050  * all the nodes.
7051  *
7052  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7053  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7054  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7055  * shifted, 1GiB is enough and this function will indicate so.
7056  *
7057  * This is used to test whether pfn -> nid mapping of the chosen memory
7058  * model has fine enough granularity to avoid incorrect mapping for the
7059  * populated node map.
7060  *
7061  * Return: the determined alignment in pfn's.  0 if there is no alignment
7062  * requirement (single node).
7063  */
7064 unsigned long __init node_map_pfn_alignment(void)
7065 {
7066 	unsigned long accl_mask = 0, last_end = 0;
7067 	unsigned long start, end, mask;
7068 	int last_nid = NUMA_NO_NODE;
7069 	int i, nid;
7070 
7071 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7072 		if (!start || last_nid < 0 || last_nid == nid) {
7073 			last_nid = nid;
7074 			last_end = end;
7075 			continue;
7076 		}
7077 
7078 		/*
7079 		 * Start with a mask granular enough to pin-point to the
7080 		 * start pfn and tick off bits one-by-one until it becomes
7081 		 * too coarse to separate the current node from the last.
7082 		 */
7083 		mask = ~((1 << __ffs(start)) - 1);
7084 		while (mask && last_end <= (start & (mask << 1)))
7085 			mask <<= 1;
7086 
7087 		/* accumulate all internode masks */
7088 		accl_mask |= mask;
7089 	}
7090 
7091 	/* convert mask to number of pages */
7092 	return ~accl_mask + 1;
7093 }
7094 
7095 /**
7096  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7097  *
7098  * Return: the minimum PFN based on information provided via
7099  * memblock_set_node().
7100  */
7101 unsigned long __init find_min_pfn_with_active_regions(void)
7102 {
7103 	return PHYS_PFN(memblock_start_of_DRAM());
7104 }
7105 
7106 /*
7107  * early_calculate_totalpages()
7108  * Sum pages in active regions for movable zone.
7109  * Populate N_MEMORY for calculating usable_nodes.
7110  */
7111 static unsigned long __init early_calculate_totalpages(void)
7112 {
7113 	unsigned long totalpages = 0;
7114 	unsigned long start_pfn, end_pfn;
7115 	int i, nid;
7116 
7117 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7118 		unsigned long pages = end_pfn - start_pfn;
7119 
7120 		totalpages += pages;
7121 		if (pages)
7122 			node_set_state(nid, N_MEMORY);
7123 	}
7124 	return totalpages;
7125 }
7126 
7127 /*
7128  * Find the PFN the Movable zone begins in each node. Kernel memory
7129  * is spread evenly between nodes as long as the nodes have enough
7130  * memory. When they don't, some nodes will have more kernelcore than
7131  * others
7132  */
7133 static void __init find_zone_movable_pfns_for_nodes(void)
7134 {
7135 	int i, nid;
7136 	unsigned long usable_startpfn;
7137 	unsigned long kernelcore_node, kernelcore_remaining;
7138 	/* save the state before borrow the nodemask */
7139 	nodemask_t saved_node_state = node_states[N_MEMORY];
7140 	unsigned long totalpages = early_calculate_totalpages();
7141 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7142 	struct memblock_region *r;
7143 
7144 	/* Need to find movable_zone earlier when movable_node is specified. */
7145 	find_usable_zone_for_movable();
7146 
7147 	/*
7148 	 * If movable_node is specified, ignore kernelcore and movablecore
7149 	 * options.
7150 	 */
7151 	if (movable_node_is_enabled()) {
7152 		for_each_memblock(memory, r) {
7153 			if (!memblock_is_hotpluggable(r))
7154 				continue;
7155 
7156 			nid = memblock_get_region_node(r);
7157 
7158 			usable_startpfn = PFN_DOWN(r->base);
7159 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7160 				min(usable_startpfn, zone_movable_pfn[nid]) :
7161 				usable_startpfn;
7162 		}
7163 
7164 		goto out2;
7165 	}
7166 
7167 	/*
7168 	 * If kernelcore=mirror is specified, ignore movablecore option
7169 	 */
7170 	if (mirrored_kernelcore) {
7171 		bool mem_below_4gb_not_mirrored = false;
7172 
7173 		for_each_memblock(memory, r) {
7174 			if (memblock_is_mirror(r))
7175 				continue;
7176 
7177 			nid = memblock_get_region_node(r);
7178 
7179 			usable_startpfn = memblock_region_memory_base_pfn(r);
7180 
7181 			if (usable_startpfn < 0x100000) {
7182 				mem_below_4gb_not_mirrored = true;
7183 				continue;
7184 			}
7185 
7186 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7187 				min(usable_startpfn, zone_movable_pfn[nid]) :
7188 				usable_startpfn;
7189 		}
7190 
7191 		if (mem_below_4gb_not_mirrored)
7192 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7193 
7194 		goto out2;
7195 	}
7196 
7197 	/*
7198 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7199 	 * amount of necessary memory.
7200 	 */
7201 	if (required_kernelcore_percent)
7202 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7203 				       10000UL;
7204 	if (required_movablecore_percent)
7205 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7206 					10000UL;
7207 
7208 	/*
7209 	 * If movablecore= was specified, calculate what size of
7210 	 * kernelcore that corresponds so that memory usable for
7211 	 * any allocation type is evenly spread. If both kernelcore
7212 	 * and movablecore are specified, then the value of kernelcore
7213 	 * will be used for required_kernelcore if it's greater than
7214 	 * what movablecore would have allowed.
7215 	 */
7216 	if (required_movablecore) {
7217 		unsigned long corepages;
7218 
7219 		/*
7220 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7221 		 * was requested by the user
7222 		 */
7223 		required_movablecore =
7224 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7225 		required_movablecore = min(totalpages, required_movablecore);
7226 		corepages = totalpages - required_movablecore;
7227 
7228 		required_kernelcore = max(required_kernelcore, corepages);
7229 	}
7230 
7231 	/*
7232 	 * If kernelcore was not specified or kernelcore size is larger
7233 	 * than totalpages, there is no ZONE_MOVABLE.
7234 	 */
7235 	if (!required_kernelcore || required_kernelcore >= totalpages)
7236 		goto out;
7237 
7238 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7239 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7240 
7241 restart:
7242 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7243 	kernelcore_node = required_kernelcore / usable_nodes;
7244 	for_each_node_state(nid, N_MEMORY) {
7245 		unsigned long start_pfn, end_pfn;
7246 
7247 		/*
7248 		 * Recalculate kernelcore_node if the division per node
7249 		 * now exceeds what is necessary to satisfy the requested
7250 		 * amount of memory for the kernel
7251 		 */
7252 		if (required_kernelcore < kernelcore_node)
7253 			kernelcore_node = required_kernelcore / usable_nodes;
7254 
7255 		/*
7256 		 * As the map is walked, we track how much memory is usable
7257 		 * by the kernel using kernelcore_remaining. When it is
7258 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7259 		 */
7260 		kernelcore_remaining = kernelcore_node;
7261 
7262 		/* Go through each range of PFNs within this node */
7263 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7264 			unsigned long size_pages;
7265 
7266 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7267 			if (start_pfn >= end_pfn)
7268 				continue;
7269 
7270 			/* Account for what is only usable for kernelcore */
7271 			if (start_pfn < usable_startpfn) {
7272 				unsigned long kernel_pages;
7273 				kernel_pages = min(end_pfn, usable_startpfn)
7274 								- start_pfn;
7275 
7276 				kernelcore_remaining -= min(kernel_pages,
7277 							kernelcore_remaining);
7278 				required_kernelcore -= min(kernel_pages,
7279 							required_kernelcore);
7280 
7281 				/* Continue if range is now fully accounted */
7282 				if (end_pfn <= usable_startpfn) {
7283 
7284 					/*
7285 					 * Push zone_movable_pfn to the end so
7286 					 * that if we have to rebalance
7287 					 * kernelcore across nodes, we will
7288 					 * not double account here
7289 					 */
7290 					zone_movable_pfn[nid] = end_pfn;
7291 					continue;
7292 				}
7293 				start_pfn = usable_startpfn;
7294 			}
7295 
7296 			/*
7297 			 * The usable PFN range for ZONE_MOVABLE is from
7298 			 * start_pfn->end_pfn. Calculate size_pages as the
7299 			 * number of pages used as kernelcore
7300 			 */
7301 			size_pages = end_pfn - start_pfn;
7302 			if (size_pages > kernelcore_remaining)
7303 				size_pages = kernelcore_remaining;
7304 			zone_movable_pfn[nid] = start_pfn + size_pages;
7305 
7306 			/*
7307 			 * Some kernelcore has been met, update counts and
7308 			 * break if the kernelcore for this node has been
7309 			 * satisfied
7310 			 */
7311 			required_kernelcore -= min(required_kernelcore,
7312 								size_pages);
7313 			kernelcore_remaining -= size_pages;
7314 			if (!kernelcore_remaining)
7315 				break;
7316 		}
7317 	}
7318 
7319 	/*
7320 	 * If there is still required_kernelcore, we do another pass with one
7321 	 * less node in the count. This will push zone_movable_pfn[nid] further
7322 	 * along on the nodes that still have memory until kernelcore is
7323 	 * satisfied
7324 	 */
7325 	usable_nodes--;
7326 	if (usable_nodes && required_kernelcore > usable_nodes)
7327 		goto restart;
7328 
7329 out2:
7330 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7331 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7332 		zone_movable_pfn[nid] =
7333 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7334 
7335 out:
7336 	/* restore the node_state */
7337 	node_states[N_MEMORY] = saved_node_state;
7338 }
7339 
7340 /* Any regular or high memory on that node ? */
7341 static void check_for_memory(pg_data_t *pgdat, int nid)
7342 {
7343 	enum zone_type zone_type;
7344 
7345 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7346 		struct zone *zone = &pgdat->node_zones[zone_type];
7347 		if (populated_zone(zone)) {
7348 			if (IS_ENABLED(CONFIG_HIGHMEM))
7349 				node_set_state(nid, N_HIGH_MEMORY);
7350 			if (zone_type <= ZONE_NORMAL)
7351 				node_set_state(nid, N_NORMAL_MEMORY);
7352 			break;
7353 		}
7354 	}
7355 }
7356 
7357 /*
7358  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7359  * such cases we allow max_zone_pfn sorted in the descending order
7360  */
7361 bool __weak arch_has_descending_max_zone_pfns(void)
7362 {
7363 	return false;
7364 }
7365 
7366 /**
7367  * free_area_init - Initialise all pg_data_t and zone data
7368  * @max_zone_pfn: an array of max PFNs for each zone
7369  *
7370  * This will call free_area_init_node() for each active node in the system.
7371  * Using the page ranges provided by memblock_set_node(), the size of each
7372  * zone in each node and their holes is calculated. If the maximum PFN
7373  * between two adjacent zones match, it is assumed that the zone is empty.
7374  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7375  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7376  * starts where the previous one ended. For example, ZONE_DMA32 starts
7377  * at arch_max_dma_pfn.
7378  */
7379 void __init free_area_init(unsigned long *max_zone_pfn)
7380 {
7381 	unsigned long start_pfn, end_pfn;
7382 	int i, nid, zone;
7383 	bool descending;
7384 
7385 	/* Record where the zone boundaries are */
7386 	memset(arch_zone_lowest_possible_pfn, 0,
7387 				sizeof(arch_zone_lowest_possible_pfn));
7388 	memset(arch_zone_highest_possible_pfn, 0,
7389 				sizeof(arch_zone_highest_possible_pfn));
7390 
7391 	start_pfn = find_min_pfn_with_active_regions();
7392 	descending = arch_has_descending_max_zone_pfns();
7393 
7394 	for (i = 0; i < MAX_NR_ZONES; i++) {
7395 		if (descending)
7396 			zone = MAX_NR_ZONES - i - 1;
7397 		else
7398 			zone = i;
7399 
7400 		if (zone == ZONE_MOVABLE)
7401 			continue;
7402 
7403 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7404 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7405 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7406 
7407 		start_pfn = end_pfn;
7408 	}
7409 
7410 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7411 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7412 	find_zone_movable_pfns_for_nodes();
7413 
7414 	/* Print out the zone ranges */
7415 	pr_info("Zone ranges:\n");
7416 	for (i = 0; i < MAX_NR_ZONES; i++) {
7417 		if (i == ZONE_MOVABLE)
7418 			continue;
7419 		pr_info("  %-8s ", zone_names[i]);
7420 		if (arch_zone_lowest_possible_pfn[i] ==
7421 				arch_zone_highest_possible_pfn[i])
7422 			pr_cont("empty\n");
7423 		else
7424 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7425 				(u64)arch_zone_lowest_possible_pfn[i]
7426 					<< PAGE_SHIFT,
7427 				((u64)arch_zone_highest_possible_pfn[i]
7428 					<< PAGE_SHIFT) - 1);
7429 	}
7430 
7431 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7432 	pr_info("Movable zone start for each node\n");
7433 	for (i = 0; i < MAX_NUMNODES; i++) {
7434 		if (zone_movable_pfn[i])
7435 			pr_info("  Node %d: %#018Lx\n", i,
7436 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7437 	}
7438 
7439 	/*
7440 	 * Print out the early node map, and initialize the
7441 	 * subsection-map relative to active online memory ranges to
7442 	 * enable future "sub-section" extensions of the memory map.
7443 	 */
7444 	pr_info("Early memory node ranges\n");
7445 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7446 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7447 			(u64)start_pfn << PAGE_SHIFT,
7448 			((u64)end_pfn << PAGE_SHIFT) - 1);
7449 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7450 	}
7451 
7452 	/* Initialise every node */
7453 	mminit_verify_pageflags_layout();
7454 	setup_nr_node_ids();
7455 	init_unavailable_mem();
7456 	for_each_online_node(nid) {
7457 		pg_data_t *pgdat = NODE_DATA(nid);
7458 		free_area_init_node(nid);
7459 
7460 		/* Any memory on that node */
7461 		if (pgdat->node_present_pages)
7462 			node_set_state(nid, N_MEMORY);
7463 		check_for_memory(pgdat, nid);
7464 	}
7465 }
7466 
7467 static int __init cmdline_parse_core(char *p, unsigned long *core,
7468 				     unsigned long *percent)
7469 {
7470 	unsigned long long coremem;
7471 	char *endptr;
7472 
7473 	if (!p)
7474 		return -EINVAL;
7475 
7476 	/* Value may be a percentage of total memory, otherwise bytes */
7477 	coremem = simple_strtoull(p, &endptr, 0);
7478 	if (*endptr == '%') {
7479 		/* Paranoid check for percent values greater than 100 */
7480 		WARN_ON(coremem > 100);
7481 
7482 		*percent = coremem;
7483 	} else {
7484 		coremem = memparse(p, &p);
7485 		/* Paranoid check that UL is enough for the coremem value */
7486 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7487 
7488 		*core = coremem >> PAGE_SHIFT;
7489 		*percent = 0UL;
7490 	}
7491 	return 0;
7492 }
7493 
7494 /*
7495  * kernelcore=size sets the amount of memory for use for allocations that
7496  * cannot be reclaimed or migrated.
7497  */
7498 static int __init cmdline_parse_kernelcore(char *p)
7499 {
7500 	/* parse kernelcore=mirror */
7501 	if (parse_option_str(p, "mirror")) {
7502 		mirrored_kernelcore = true;
7503 		return 0;
7504 	}
7505 
7506 	return cmdline_parse_core(p, &required_kernelcore,
7507 				  &required_kernelcore_percent);
7508 }
7509 
7510 /*
7511  * movablecore=size sets the amount of memory for use for allocations that
7512  * can be reclaimed or migrated.
7513  */
7514 static int __init cmdline_parse_movablecore(char *p)
7515 {
7516 	return cmdline_parse_core(p, &required_movablecore,
7517 				  &required_movablecore_percent);
7518 }
7519 
7520 early_param("kernelcore", cmdline_parse_kernelcore);
7521 early_param("movablecore", cmdline_parse_movablecore);
7522 
7523 void adjust_managed_page_count(struct page *page, long count)
7524 {
7525 	atomic_long_add(count, &page_zone(page)->managed_pages);
7526 	totalram_pages_add(count);
7527 #ifdef CONFIG_HIGHMEM
7528 	if (PageHighMem(page))
7529 		totalhigh_pages_add(count);
7530 #endif
7531 }
7532 EXPORT_SYMBOL(adjust_managed_page_count);
7533 
7534 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7535 {
7536 	void *pos;
7537 	unsigned long pages = 0;
7538 
7539 	start = (void *)PAGE_ALIGN((unsigned long)start);
7540 	end = (void *)((unsigned long)end & PAGE_MASK);
7541 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7542 		struct page *page = virt_to_page(pos);
7543 		void *direct_map_addr;
7544 
7545 		/*
7546 		 * 'direct_map_addr' might be different from 'pos'
7547 		 * because some architectures' virt_to_page()
7548 		 * work with aliases.  Getting the direct map
7549 		 * address ensures that we get a _writeable_
7550 		 * alias for the memset().
7551 		 */
7552 		direct_map_addr = page_address(page);
7553 		if ((unsigned int)poison <= 0xFF)
7554 			memset(direct_map_addr, poison, PAGE_SIZE);
7555 
7556 		free_reserved_page(page);
7557 	}
7558 
7559 	if (pages && s)
7560 		pr_info("Freeing %s memory: %ldK\n",
7561 			s, pages << (PAGE_SHIFT - 10));
7562 
7563 	return pages;
7564 }
7565 
7566 #ifdef	CONFIG_HIGHMEM
7567 void free_highmem_page(struct page *page)
7568 {
7569 	__free_reserved_page(page);
7570 	totalram_pages_inc();
7571 	atomic_long_inc(&page_zone(page)->managed_pages);
7572 	totalhigh_pages_inc();
7573 }
7574 #endif
7575 
7576 
7577 void __init mem_init_print_info(const char *str)
7578 {
7579 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7580 	unsigned long init_code_size, init_data_size;
7581 
7582 	physpages = get_num_physpages();
7583 	codesize = _etext - _stext;
7584 	datasize = _edata - _sdata;
7585 	rosize = __end_rodata - __start_rodata;
7586 	bss_size = __bss_stop - __bss_start;
7587 	init_data_size = __init_end - __init_begin;
7588 	init_code_size = _einittext - _sinittext;
7589 
7590 	/*
7591 	 * Detect special cases and adjust section sizes accordingly:
7592 	 * 1) .init.* may be embedded into .data sections
7593 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7594 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7595 	 * 3) .rodata.* may be embedded into .text or .data sections.
7596 	 */
7597 #define adj_init_size(start, end, size, pos, adj) \
7598 	do { \
7599 		if (start <= pos && pos < end && size > adj) \
7600 			size -= adj; \
7601 	} while (0)
7602 
7603 	adj_init_size(__init_begin, __init_end, init_data_size,
7604 		     _sinittext, init_code_size);
7605 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7606 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7607 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7608 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7609 
7610 #undef	adj_init_size
7611 
7612 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7613 #ifdef	CONFIG_HIGHMEM
7614 		", %luK highmem"
7615 #endif
7616 		"%s%s)\n",
7617 		nr_free_pages() << (PAGE_SHIFT - 10),
7618 		physpages << (PAGE_SHIFT - 10),
7619 		codesize >> 10, datasize >> 10, rosize >> 10,
7620 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7621 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7622 		totalcma_pages << (PAGE_SHIFT - 10),
7623 #ifdef	CONFIG_HIGHMEM
7624 		totalhigh_pages() << (PAGE_SHIFT - 10),
7625 #endif
7626 		str ? ", " : "", str ? str : "");
7627 }
7628 
7629 /**
7630  * set_dma_reserve - set the specified number of pages reserved in the first zone
7631  * @new_dma_reserve: The number of pages to mark reserved
7632  *
7633  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7634  * In the DMA zone, a significant percentage may be consumed by kernel image
7635  * and other unfreeable allocations which can skew the watermarks badly. This
7636  * function may optionally be used to account for unfreeable pages in the
7637  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7638  * smaller per-cpu batchsize.
7639  */
7640 void __init set_dma_reserve(unsigned long new_dma_reserve)
7641 {
7642 	dma_reserve = new_dma_reserve;
7643 }
7644 
7645 static int page_alloc_cpu_dead(unsigned int cpu)
7646 {
7647 
7648 	lru_add_drain_cpu(cpu);
7649 	drain_pages(cpu);
7650 
7651 	/*
7652 	 * Spill the event counters of the dead processor
7653 	 * into the current processors event counters.
7654 	 * This artificially elevates the count of the current
7655 	 * processor.
7656 	 */
7657 	vm_events_fold_cpu(cpu);
7658 
7659 	/*
7660 	 * Zero the differential counters of the dead processor
7661 	 * so that the vm statistics are consistent.
7662 	 *
7663 	 * This is only okay since the processor is dead and cannot
7664 	 * race with what we are doing.
7665 	 */
7666 	cpu_vm_stats_fold(cpu);
7667 	return 0;
7668 }
7669 
7670 #ifdef CONFIG_NUMA
7671 int hashdist = HASHDIST_DEFAULT;
7672 
7673 static int __init set_hashdist(char *str)
7674 {
7675 	if (!str)
7676 		return 0;
7677 	hashdist = simple_strtoul(str, &str, 0);
7678 	return 1;
7679 }
7680 __setup("hashdist=", set_hashdist);
7681 #endif
7682 
7683 void __init page_alloc_init(void)
7684 {
7685 	int ret;
7686 
7687 #ifdef CONFIG_NUMA
7688 	if (num_node_state(N_MEMORY) == 1)
7689 		hashdist = 0;
7690 #endif
7691 
7692 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7693 					"mm/page_alloc:dead", NULL,
7694 					page_alloc_cpu_dead);
7695 	WARN_ON(ret < 0);
7696 }
7697 
7698 /*
7699  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7700  *	or min_free_kbytes changes.
7701  */
7702 static void calculate_totalreserve_pages(void)
7703 {
7704 	struct pglist_data *pgdat;
7705 	unsigned long reserve_pages = 0;
7706 	enum zone_type i, j;
7707 
7708 	for_each_online_pgdat(pgdat) {
7709 
7710 		pgdat->totalreserve_pages = 0;
7711 
7712 		for (i = 0; i < MAX_NR_ZONES; i++) {
7713 			struct zone *zone = pgdat->node_zones + i;
7714 			long max = 0;
7715 			unsigned long managed_pages = zone_managed_pages(zone);
7716 
7717 			/* Find valid and maximum lowmem_reserve in the zone */
7718 			for (j = i; j < MAX_NR_ZONES; j++) {
7719 				if (zone->lowmem_reserve[j] > max)
7720 					max = zone->lowmem_reserve[j];
7721 			}
7722 
7723 			/* we treat the high watermark as reserved pages. */
7724 			max += high_wmark_pages(zone);
7725 
7726 			if (max > managed_pages)
7727 				max = managed_pages;
7728 
7729 			pgdat->totalreserve_pages += max;
7730 
7731 			reserve_pages += max;
7732 		}
7733 	}
7734 	totalreserve_pages = reserve_pages;
7735 }
7736 
7737 /*
7738  * setup_per_zone_lowmem_reserve - called whenever
7739  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7740  *	has a correct pages reserved value, so an adequate number of
7741  *	pages are left in the zone after a successful __alloc_pages().
7742  */
7743 static void setup_per_zone_lowmem_reserve(void)
7744 {
7745 	struct pglist_data *pgdat;
7746 	enum zone_type j, idx;
7747 
7748 	for_each_online_pgdat(pgdat) {
7749 		for (j = 0; j < MAX_NR_ZONES; j++) {
7750 			struct zone *zone = pgdat->node_zones + j;
7751 			unsigned long managed_pages = zone_managed_pages(zone);
7752 
7753 			zone->lowmem_reserve[j] = 0;
7754 
7755 			idx = j;
7756 			while (idx) {
7757 				struct zone *lower_zone;
7758 
7759 				idx--;
7760 				lower_zone = pgdat->node_zones + idx;
7761 
7762 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7763 				    !zone_managed_pages(lower_zone)) {
7764 					lower_zone->lowmem_reserve[j] = 0;
7765 					continue;
7766 				} else {
7767 					lower_zone->lowmem_reserve[j] =
7768 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7769 				}
7770 				managed_pages += zone_managed_pages(lower_zone);
7771 			}
7772 		}
7773 	}
7774 
7775 	/* update totalreserve_pages */
7776 	calculate_totalreserve_pages();
7777 }
7778 
7779 static void __setup_per_zone_wmarks(void)
7780 {
7781 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7782 	unsigned long lowmem_pages = 0;
7783 	struct zone *zone;
7784 	unsigned long flags;
7785 
7786 	/* Calculate total number of !ZONE_HIGHMEM pages */
7787 	for_each_zone(zone) {
7788 		if (!is_highmem(zone))
7789 			lowmem_pages += zone_managed_pages(zone);
7790 	}
7791 
7792 	for_each_zone(zone) {
7793 		u64 tmp;
7794 
7795 		spin_lock_irqsave(&zone->lock, flags);
7796 		tmp = (u64)pages_min * zone_managed_pages(zone);
7797 		do_div(tmp, lowmem_pages);
7798 		if (is_highmem(zone)) {
7799 			/*
7800 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7801 			 * need highmem pages, so cap pages_min to a small
7802 			 * value here.
7803 			 *
7804 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7805 			 * deltas control async page reclaim, and so should
7806 			 * not be capped for highmem.
7807 			 */
7808 			unsigned long min_pages;
7809 
7810 			min_pages = zone_managed_pages(zone) / 1024;
7811 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7812 			zone->_watermark[WMARK_MIN] = min_pages;
7813 		} else {
7814 			/*
7815 			 * If it's a lowmem zone, reserve a number of pages
7816 			 * proportionate to the zone's size.
7817 			 */
7818 			zone->_watermark[WMARK_MIN] = tmp;
7819 		}
7820 
7821 		/*
7822 		 * Set the kswapd watermarks distance according to the
7823 		 * scale factor in proportion to available memory, but
7824 		 * ensure a minimum size on small systems.
7825 		 */
7826 		tmp = max_t(u64, tmp >> 2,
7827 			    mult_frac(zone_managed_pages(zone),
7828 				      watermark_scale_factor, 10000));
7829 
7830 		zone->watermark_boost = 0;
7831 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7832 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7833 
7834 		spin_unlock_irqrestore(&zone->lock, flags);
7835 	}
7836 
7837 	/* update totalreserve_pages */
7838 	calculate_totalreserve_pages();
7839 }
7840 
7841 /**
7842  * setup_per_zone_wmarks - called when min_free_kbytes changes
7843  * or when memory is hot-{added|removed}
7844  *
7845  * Ensures that the watermark[min,low,high] values for each zone are set
7846  * correctly with respect to min_free_kbytes.
7847  */
7848 void setup_per_zone_wmarks(void)
7849 {
7850 	static DEFINE_SPINLOCK(lock);
7851 
7852 	spin_lock(&lock);
7853 	__setup_per_zone_wmarks();
7854 	spin_unlock(&lock);
7855 }
7856 
7857 /*
7858  * Initialise min_free_kbytes.
7859  *
7860  * For small machines we want it small (128k min).  For large machines
7861  * we want it large (256MB max).  But it is not linear, because network
7862  * bandwidth does not increase linearly with machine size.  We use
7863  *
7864  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7865  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7866  *
7867  * which yields
7868  *
7869  * 16MB:	512k
7870  * 32MB:	724k
7871  * 64MB:	1024k
7872  * 128MB:	1448k
7873  * 256MB:	2048k
7874  * 512MB:	2896k
7875  * 1024MB:	4096k
7876  * 2048MB:	5792k
7877  * 4096MB:	8192k
7878  * 8192MB:	11584k
7879  * 16384MB:	16384k
7880  */
7881 int __meminit init_per_zone_wmark_min(void)
7882 {
7883 	unsigned long lowmem_kbytes;
7884 	int new_min_free_kbytes;
7885 
7886 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7887 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7888 
7889 	if (new_min_free_kbytes > user_min_free_kbytes) {
7890 		min_free_kbytes = new_min_free_kbytes;
7891 		if (min_free_kbytes < 128)
7892 			min_free_kbytes = 128;
7893 		if (min_free_kbytes > 262144)
7894 			min_free_kbytes = 262144;
7895 	} else {
7896 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7897 				new_min_free_kbytes, user_min_free_kbytes);
7898 	}
7899 	setup_per_zone_wmarks();
7900 	refresh_zone_stat_thresholds();
7901 	setup_per_zone_lowmem_reserve();
7902 
7903 #ifdef CONFIG_NUMA
7904 	setup_min_unmapped_ratio();
7905 	setup_min_slab_ratio();
7906 #endif
7907 
7908 	khugepaged_min_free_kbytes_update();
7909 
7910 	return 0;
7911 }
7912 postcore_initcall(init_per_zone_wmark_min)
7913 
7914 /*
7915  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7916  *	that we can call two helper functions whenever min_free_kbytes
7917  *	changes.
7918  */
7919 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7920 		void *buffer, size_t *length, loff_t *ppos)
7921 {
7922 	int rc;
7923 
7924 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7925 	if (rc)
7926 		return rc;
7927 
7928 	if (write) {
7929 		user_min_free_kbytes = min_free_kbytes;
7930 		setup_per_zone_wmarks();
7931 	}
7932 	return 0;
7933 }
7934 
7935 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7936 		void *buffer, size_t *length, loff_t *ppos)
7937 {
7938 	int rc;
7939 
7940 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7941 	if (rc)
7942 		return rc;
7943 
7944 	if (write)
7945 		setup_per_zone_wmarks();
7946 
7947 	return 0;
7948 }
7949 
7950 #ifdef CONFIG_NUMA
7951 static void setup_min_unmapped_ratio(void)
7952 {
7953 	pg_data_t *pgdat;
7954 	struct zone *zone;
7955 
7956 	for_each_online_pgdat(pgdat)
7957 		pgdat->min_unmapped_pages = 0;
7958 
7959 	for_each_zone(zone)
7960 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7961 						         sysctl_min_unmapped_ratio) / 100;
7962 }
7963 
7964 
7965 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7966 		void *buffer, size_t *length, loff_t *ppos)
7967 {
7968 	int rc;
7969 
7970 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7971 	if (rc)
7972 		return rc;
7973 
7974 	setup_min_unmapped_ratio();
7975 
7976 	return 0;
7977 }
7978 
7979 static void setup_min_slab_ratio(void)
7980 {
7981 	pg_data_t *pgdat;
7982 	struct zone *zone;
7983 
7984 	for_each_online_pgdat(pgdat)
7985 		pgdat->min_slab_pages = 0;
7986 
7987 	for_each_zone(zone)
7988 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7989 						     sysctl_min_slab_ratio) / 100;
7990 }
7991 
7992 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7993 		void *buffer, size_t *length, loff_t *ppos)
7994 {
7995 	int rc;
7996 
7997 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7998 	if (rc)
7999 		return rc;
8000 
8001 	setup_min_slab_ratio();
8002 
8003 	return 0;
8004 }
8005 #endif
8006 
8007 /*
8008  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8009  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8010  *	whenever sysctl_lowmem_reserve_ratio changes.
8011  *
8012  * The reserve ratio obviously has absolutely no relation with the
8013  * minimum watermarks. The lowmem reserve ratio can only make sense
8014  * if in function of the boot time zone sizes.
8015  */
8016 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8017 		void *buffer, size_t *length, loff_t *ppos)
8018 {
8019 	int i;
8020 
8021 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8022 
8023 	for (i = 0; i < MAX_NR_ZONES; i++) {
8024 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8025 			sysctl_lowmem_reserve_ratio[i] = 0;
8026 	}
8027 
8028 	setup_per_zone_lowmem_reserve();
8029 	return 0;
8030 }
8031 
8032 static void __zone_pcp_update(struct zone *zone)
8033 {
8034 	unsigned int cpu;
8035 
8036 	for_each_possible_cpu(cpu)
8037 		pageset_set_high_and_batch(zone,
8038 				per_cpu_ptr(zone->pageset, cpu));
8039 }
8040 
8041 /*
8042  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8043  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8044  * pagelist can have before it gets flushed back to buddy allocator.
8045  */
8046 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8047 		void *buffer, size_t *length, loff_t *ppos)
8048 {
8049 	struct zone *zone;
8050 	int old_percpu_pagelist_fraction;
8051 	int ret;
8052 
8053 	mutex_lock(&pcp_batch_high_lock);
8054 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8055 
8056 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8057 	if (!write || ret < 0)
8058 		goto out;
8059 
8060 	/* Sanity checking to avoid pcp imbalance */
8061 	if (percpu_pagelist_fraction &&
8062 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8063 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8064 		ret = -EINVAL;
8065 		goto out;
8066 	}
8067 
8068 	/* No change? */
8069 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8070 		goto out;
8071 
8072 	for_each_populated_zone(zone)
8073 		__zone_pcp_update(zone);
8074 out:
8075 	mutex_unlock(&pcp_batch_high_lock);
8076 	return ret;
8077 }
8078 
8079 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8080 /*
8081  * Returns the number of pages that arch has reserved but
8082  * is not known to alloc_large_system_hash().
8083  */
8084 static unsigned long __init arch_reserved_kernel_pages(void)
8085 {
8086 	return 0;
8087 }
8088 #endif
8089 
8090 /*
8091  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8092  * machines. As memory size is increased the scale is also increased but at
8093  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8094  * quadruples the scale is increased by one, which means the size of hash table
8095  * only doubles, instead of quadrupling as well.
8096  * Because 32-bit systems cannot have large physical memory, where this scaling
8097  * makes sense, it is disabled on such platforms.
8098  */
8099 #if __BITS_PER_LONG > 32
8100 #define ADAPT_SCALE_BASE	(64ul << 30)
8101 #define ADAPT_SCALE_SHIFT	2
8102 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8103 #endif
8104 
8105 /*
8106  * allocate a large system hash table from bootmem
8107  * - it is assumed that the hash table must contain an exact power-of-2
8108  *   quantity of entries
8109  * - limit is the number of hash buckets, not the total allocation size
8110  */
8111 void *__init alloc_large_system_hash(const char *tablename,
8112 				     unsigned long bucketsize,
8113 				     unsigned long numentries,
8114 				     int scale,
8115 				     int flags,
8116 				     unsigned int *_hash_shift,
8117 				     unsigned int *_hash_mask,
8118 				     unsigned long low_limit,
8119 				     unsigned long high_limit)
8120 {
8121 	unsigned long long max = high_limit;
8122 	unsigned long log2qty, size;
8123 	void *table = NULL;
8124 	gfp_t gfp_flags;
8125 	bool virt;
8126 
8127 	/* allow the kernel cmdline to have a say */
8128 	if (!numentries) {
8129 		/* round applicable memory size up to nearest megabyte */
8130 		numentries = nr_kernel_pages;
8131 		numentries -= arch_reserved_kernel_pages();
8132 
8133 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8134 		if (PAGE_SHIFT < 20)
8135 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8136 
8137 #if __BITS_PER_LONG > 32
8138 		if (!high_limit) {
8139 			unsigned long adapt;
8140 
8141 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8142 			     adapt <<= ADAPT_SCALE_SHIFT)
8143 				scale++;
8144 		}
8145 #endif
8146 
8147 		/* limit to 1 bucket per 2^scale bytes of low memory */
8148 		if (scale > PAGE_SHIFT)
8149 			numentries >>= (scale - PAGE_SHIFT);
8150 		else
8151 			numentries <<= (PAGE_SHIFT - scale);
8152 
8153 		/* Make sure we've got at least a 0-order allocation.. */
8154 		if (unlikely(flags & HASH_SMALL)) {
8155 			/* Makes no sense without HASH_EARLY */
8156 			WARN_ON(!(flags & HASH_EARLY));
8157 			if (!(numentries >> *_hash_shift)) {
8158 				numentries = 1UL << *_hash_shift;
8159 				BUG_ON(!numentries);
8160 			}
8161 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8162 			numentries = PAGE_SIZE / bucketsize;
8163 	}
8164 	numentries = roundup_pow_of_two(numentries);
8165 
8166 	/* limit allocation size to 1/16 total memory by default */
8167 	if (max == 0) {
8168 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8169 		do_div(max, bucketsize);
8170 	}
8171 	max = min(max, 0x80000000ULL);
8172 
8173 	if (numentries < low_limit)
8174 		numentries = low_limit;
8175 	if (numentries > max)
8176 		numentries = max;
8177 
8178 	log2qty = ilog2(numentries);
8179 
8180 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8181 	do {
8182 		virt = false;
8183 		size = bucketsize << log2qty;
8184 		if (flags & HASH_EARLY) {
8185 			if (flags & HASH_ZERO)
8186 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8187 			else
8188 				table = memblock_alloc_raw(size,
8189 							   SMP_CACHE_BYTES);
8190 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8191 			table = __vmalloc(size, gfp_flags);
8192 			virt = true;
8193 		} else {
8194 			/*
8195 			 * If bucketsize is not a power-of-two, we may free
8196 			 * some pages at the end of hash table which
8197 			 * alloc_pages_exact() automatically does
8198 			 */
8199 			table = alloc_pages_exact(size, gfp_flags);
8200 			kmemleak_alloc(table, size, 1, gfp_flags);
8201 		}
8202 	} while (!table && size > PAGE_SIZE && --log2qty);
8203 
8204 	if (!table)
8205 		panic("Failed to allocate %s hash table\n", tablename);
8206 
8207 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8208 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8209 		virt ? "vmalloc" : "linear");
8210 
8211 	if (_hash_shift)
8212 		*_hash_shift = log2qty;
8213 	if (_hash_mask)
8214 		*_hash_mask = (1 << log2qty) - 1;
8215 
8216 	return table;
8217 }
8218 
8219 /*
8220  * This function checks whether pageblock includes unmovable pages or not.
8221  *
8222  * PageLRU check without isolation or lru_lock could race so that
8223  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8224  * check without lock_page also may miss some movable non-lru pages at
8225  * race condition. So you can't expect this function should be exact.
8226  *
8227  * Returns a page without holding a reference. If the caller wants to
8228  * dereference that page (e.g., dumping), it has to make sure that it
8229  * cannot get removed (e.g., via memory unplug) concurrently.
8230  *
8231  */
8232 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8233 				 int migratetype, int flags)
8234 {
8235 	unsigned long iter = 0;
8236 	unsigned long pfn = page_to_pfn(page);
8237 
8238 	/*
8239 	 * TODO we could make this much more efficient by not checking every
8240 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8241 	 * that the movable zone guarantees that pages are migratable but
8242 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8243 	 * can still lead to having bootmem allocations in zone_movable.
8244 	 */
8245 
8246 	if (is_migrate_cma_page(page)) {
8247 		/*
8248 		 * CMA allocations (alloc_contig_range) really need to mark
8249 		 * isolate CMA pageblocks even when they are not movable in fact
8250 		 * so consider them movable here.
8251 		 */
8252 		if (is_migrate_cma(migratetype))
8253 			return NULL;
8254 
8255 		return page;
8256 	}
8257 
8258 	for (; iter < pageblock_nr_pages; iter++) {
8259 		if (!pfn_valid_within(pfn + iter))
8260 			continue;
8261 
8262 		page = pfn_to_page(pfn + iter);
8263 
8264 		if (PageReserved(page))
8265 			return page;
8266 
8267 		/*
8268 		 * If the zone is movable and we have ruled out all reserved
8269 		 * pages then it should be reasonably safe to assume the rest
8270 		 * is movable.
8271 		 */
8272 		if (zone_idx(zone) == ZONE_MOVABLE)
8273 			continue;
8274 
8275 		/*
8276 		 * Hugepages are not in LRU lists, but they're movable.
8277 		 * THPs are on the LRU, but need to be counted as #small pages.
8278 		 * We need not scan over tail pages because we don't
8279 		 * handle each tail page individually in migration.
8280 		 */
8281 		if (PageHuge(page) || PageTransCompound(page)) {
8282 			struct page *head = compound_head(page);
8283 			unsigned int skip_pages;
8284 
8285 			if (PageHuge(page)) {
8286 				if (!hugepage_migration_supported(page_hstate(head)))
8287 					return page;
8288 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8289 				return page;
8290 			}
8291 
8292 			skip_pages = compound_nr(head) - (page - head);
8293 			iter += skip_pages - 1;
8294 			continue;
8295 		}
8296 
8297 		/*
8298 		 * We can't use page_count without pin a page
8299 		 * because another CPU can free compound page.
8300 		 * This check already skips compound tails of THP
8301 		 * because their page->_refcount is zero at all time.
8302 		 */
8303 		if (!page_ref_count(page)) {
8304 			if (PageBuddy(page))
8305 				iter += (1 << page_order(page)) - 1;
8306 			continue;
8307 		}
8308 
8309 		/*
8310 		 * The HWPoisoned page may be not in buddy system, and
8311 		 * page_count() is not 0.
8312 		 */
8313 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8314 			continue;
8315 
8316 		/*
8317 		 * We treat all PageOffline() pages as movable when offlining
8318 		 * to give drivers a chance to decrement their reference count
8319 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8320 		 * can be offlined as there are no direct references anymore.
8321 		 * For actually unmovable PageOffline() where the driver does
8322 		 * not support this, we will fail later when trying to actually
8323 		 * move these pages that still have a reference count > 0.
8324 		 * (false negatives in this function only)
8325 		 */
8326 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8327 			continue;
8328 
8329 		if (__PageMovable(page) || PageLRU(page))
8330 			continue;
8331 
8332 		/*
8333 		 * If there are RECLAIMABLE pages, we need to check
8334 		 * it.  But now, memory offline itself doesn't call
8335 		 * shrink_node_slabs() and it still to be fixed.
8336 		 */
8337 		/*
8338 		 * If the page is not RAM, page_count()should be 0.
8339 		 * we don't need more check. This is an _used_ not-movable page.
8340 		 *
8341 		 * The problematic thing here is PG_reserved pages. PG_reserved
8342 		 * is set to both of a memory hole page and a _used_ kernel
8343 		 * page at boot.
8344 		 */
8345 		return page;
8346 	}
8347 	return NULL;
8348 }
8349 
8350 #ifdef CONFIG_CONTIG_ALLOC
8351 static unsigned long pfn_max_align_down(unsigned long pfn)
8352 {
8353 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8354 			     pageblock_nr_pages) - 1);
8355 }
8356 
8357 static unsigned long pfn_max_align_up(unsigned long pfn)
8358 {
8359 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8360 				pageblock_nr_pages));
8361 }
8362 
8363 /* [start, end) must belong to a single zone. */
8364 static int __alloc_contig_migrate_range(struct compact_control *cc,
8365 					unsigned long start, unsigned long end)
8366 {
8367 	/* This function is based on compact_zone() from compaction.c. */
8368 	unsigned int nr_reclaimed;
8369 	unsigned long pfn = start;
8370 	unsigned int tries = 0;
8371 	int ret = 0;
8372 	struct migration_target_control mtc = {
8373 		.nid = zone_to_nid(cc->zone),
8374 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8375 	};
8376 
8377 	migrate_prep();
8378 
8379 	while (pfn < end || !list_empty(&cc->migratepages)) {
8380 		if (fatal_signal_pending(current)) {
8381 			ret = -EINTR;
8382 			break;
8383 		}
8384 
8385 		if (list_empty(&cc->migratepages)) {
8386 			cc->nr_migratepages = 0;
8387 			pfn = isolate_migratepages_range(cc, pfn, end);
8388 			if (!pfn) {
8389 				ret = -EINTR;
8390 				break;
8391 			}
8392 			tries = 0;
8393 		} else if (++tries == 5) {
8394 			ret = ret < 0 ? ret : -EBUSY;
8395 			break;
8396 		}
8397 
8398 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8399 							&cc->migratepages);
8400 		cc->nr_migratepages -= nr_reclaimed;
8401 
8402 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8403 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8404 	}
8405 	if (ret < 0) {
8406 		putback_movable_pages(&cc->migratepages);
8407 		return ret;
8408 	}
8409 	return 0;
8410 }
8411 
8412 /**
8413  * alloc_contig_range() -- tries to allocate given range of pages
8414  * @start:	start PFN to allocate
8415  * @end:	one-past-the-last PFN to allocate
8416  * @migratetype:	migratetype of the underlaying pageblocks (either
8417  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8418  *			in range must have the same migratetype and it must
8419  *			be either of the two.
8420  * @gfp_mask:	GFP mask to use during compaction
8421  *
8422  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8423  * aligned.  The PFN range must belong to a single zone.
8424  *
8425  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8426  * pageblocks in the range.  Once isolated, the pageblocks should not
8427  * be modified by others.
8428  *
8429  * Return: zero on success or negative error code.  On success all
8430  * pages which PFN is in [start, end) are allocated for the caller and
8431  * need to be freed with free_contig_range().
8432  */
8433 int alloc_contig_range(unsigned long start, unsigned long end,
8434 		       unsigned migratetype, gfp_t gfp_mask)
8435 {
8436 	unsigned long outer_start, outer_end;
8437 	unsigned int order;
8438 	int ret = 0;
8439 
8440 	struct compact_control cc = {
8441 		.nr_migratepages = 0,
8442 		.order = -1,
8443 		.zone = page_zone(pfn_to_page(start)),
8444 		.mode = MIGRATE_SYNC,
8445 		.ignore_skip_hint = true,
8446 		.no_set_skip_hint = true,
8447 		.gfp_mask = current_gfp_context(gfp_mask),
8448 		.alloc_contig = true,
8449 	};
8450 	INIT_LIST_HEAD(&cc.migratepages);
8451 
8452 	/*
8453 	 * What we do here is we mark all pageblocks in range as
8454 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8455 	 * have different sizes, and due to the way page allocator
8456 	 * work, we align the range to biggest of the two pages so
8457 	 * that page allocator won't try to merge buddies from
8458 	 * different pageblocks and change MIGRATE_ISOLATE to some
8459 	 * other migration type.
8460 	 *
8461 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8462 	 * migrate the pages from an unaligned range (ie. pages that
8463 	 * we are interested in).  This will put all the pages in
8464 	 * range back to page allocator as MIGRATE_ISOLATE.
8465 	 *
8466 	 * When this is done, we take the pages in range from page
8467 	 * allocator removing them from the buddy system.  This way
8468 	 * page allocator will never consider using them.
8469 	 *
8470 	 * This lets us mark the pageblocks back as
8471 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8472 	 * aligned range but not in the unaligned, original range are
8473 	 * put back to page allocator so that buddy can use them.
8474 	 */
8475 
8476 	ret = start_isolate_page_range(pfn_max_align_down(start),
8477 				       pfn_max_align_up(end), migratetype, 0);
8478 	if (ret < 0)
8479 		return ret;
8480 
8481 	/*
8482 	 * In case of -EBUSY, we'd like to know which page causes problem.
8483 	 * So, just fall through. test_pages_isolated() has a tracepoint
8484 	 * which will report the busy page.
8485 	 *
8486 	 * It is possible that busy pages could become available before
8487 	 * the call to test_pages_isolated, and the range will actually be
8488 	 * allocated.  So, if we fall through be sure to clear ret so that
8489 	 * -EBUSY is not accidentally used or returned to caller.
8490 	 */
8491 	ret = __alloc_contig_migrate_range(&cc, start, end);
8492 	if (ret && ret != -EBUSY)
8493 		goto done;
8494 	ret =0;
8495 
8496 	/*
8497 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8498 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8499 	 * more, all pages in [start, end) are free in page allocator.
8500 	 * What we are going to do is to allocate all pages from
8501 	 * [start, end) (that is remove them from page allocator).
8502 	 *
8503 	 * The only problem is that pages at the beginning and at the
8504 	 * end of interesting range may be not aligned with pages that
8505 	 * page allocator holds, ie. they can be part of higher order
8506 	 * pages.  Because of this, we reserve the bigger range and
8507 	 * once this is done free the pages we are not interested in.
8508 	 *
8509 	 * We don't have to hold zone->lock here because the pages are
8510 	 * isolated thus they won't get removed from buddy.
8511 	 */
8512 
8513 	lru_add_drain_all();
8514 
8515 	order = 0;
8516 	outer_start = start;
8517 	while (!PageBuddy(pfn_to_page(outer_start))) {
8518 		if (++order >= MAX_ORDER) {
8519 			outer_start = start;
8520 			break;
8521 		}
8522 		outer_start &= ~0UL << order;
8523 	}
8524 
8525 	if (outer_start != start) {
8526 		order = page_order(pfn_to_page(outer_start));
8527 
8528 		/*
8529 		 * outer_start page could be small order buddy page and
8530 		 * it doesn't include start page. Adjust outer_start
8531 		 * in this case to report failed page properly
8532 		 * on tracepoint in test_pages_isolated()
8533 		 */
8534 		if (outer_start + (1UL << order) <= start)
8535 			outer_start = start;
8536 	}
8537 
8538 	/* Make sure the range is really isolated. */
8539 	if (test_pages_isolated(outer_start, end, 0)) {
8540 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8541 			__func__, outer_start, end);
8542 		ret = -EBUSY;
8543 		goto done;
8544 	}
8545 
8546 	/* Grab isolated pages from freelists. */
8547 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8548 	if (!outer_end) {
8549 		ret = -EBUSY;
8550 		goto done;
8551 	}
8552 
8553 	/* Free head and tail (if any) */
8554 	if (start != outer_start)
8555 		free_contig_range(outer_start, start - outer_start);
8556 	if (end != outer_end)
8557 		free_contig_range(end, outer_end - end);
8558 
8559 done:
8560 	undo_isolate_page_range(pfn_max_align_down(start),
8561 				pfn_max_align_up(end), migratetype);
8562 	return ret;
8563 }
8564 EXPORT_SYMBOL(alloc_contig_range);
8565 
8566 static int __alloc_contig_pages(unsigned long start_pfn,
8567 				unsigned long nr_pages, gfp_t gfp_mask)
8568 {
8569 	unsigned long end_pfn = start_pfn + nr_pages;
8570 
8571 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8572 				  gfp_mask);
8573 }
8574 
8575 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8576 				   unsigned long nr_pages)
8577 {
8578 	unsigned long i, end_pfn = start_pfn + nr_pages;
8579 	struct page *page;
8580 
8581 	for (i = start_pfn; i < end_pfn; i++) {
8582 		page = pfn_to_online_page(i);
8583 		if (!page)
8584 			return false;
8585 
8586 		if (page_zone(page) != z)
8587 			return false;
8588 
8589 		if (PageReserved(page))
8590 			return false;
8591 
8592 		if (page_count(page) > 0)
8593 			return false;
8594 
8595 		if (PageHuge(page))
8596 			return false;
8597 	}
8598 	return true;
8599 }
8600 
8601 static bool zone_spans_last_pfn(const struct zone *zone,
8602 				unsigned long start_pfn, unsigned long nr_pages)
8603 {
8604 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8605 
8606 	return zone_spans_pfn(zone, last_pfn);
8607 }
8608 
8609 /**
8610  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8611  * @nr_pages:	Number of contiguous pages to allocate
8612  * @gfp_mask:	GFP mask to limit search and used during compaction
8613  * @nid:	Target node
8614  * @nodemask:	Mask for other possible nodes
8615  *
8616  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8617  * on an applicable zonelist to find a contiguous pfn range which can then be
8618  * tried for allocation with alloc_contig_range(). This routine is intended
8619  * for allocation requests which can not be fulfilled with the buddy allocator.
8620  *
8621  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8622  * power of two then the alignment is guaranteed to be to the given nr_pages
8623  * (e.g. 1GB request would be aligned to 1GB).
8624  *
8625  * Allocated pages can be freed with free_contig_range() or by manually calling
8626  * __free_page() on each allocated page.
8627  *
8628  * Return: pointer to contiguous pages on success, or NULL if not successful.
8629  */
8630 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8631 				int nid, nodemask_t *nodemask)
8632 {
8633 	unsigned long ret, pfn, flags;
8634 	struct zonelist *zonelist;
8635 	struct zone *zone;
8636 	struct zoneref *z;
8637 
8638 	zonelist = node_zonelist(nid, gfp_mask);
8639 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8640 					gfp_zone(gfp_mask), nodemask) {
8641 		spin_lock_irqsave(&zone->lock, flags);
8642 
8643 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8644 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8645 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8646 				/*
8647 				 * We release the zone lock here because
8648 				 * alloc_contig_range() will also lock the zone
8649 				 * at some point. If there's an allocation
8650 				 * spinning on this lock, it may win the race
8651 				 * and cause alloc_contig_range() to fail...
8652 				 */
8653 				spin_unlock_irqrestore(&zone->lock, flags);
8654 				ret = __alloc_contig_pages(pfn, nr_pages,
8655 							gfp_mask);
8656 				if (!ret)
8657 					return pfn_to_page(pfn);
8658 				spin_lock_irqsave(&zone->lock, flags);
8659 			}
8660 			pfn += nr_pages;
8661 		}
8662 		spin_unlock_irqrestore(&zone->lock, flags);
8663 	}
8664 	return NULL;
8665 }
8666 #endif /* CONFIG_CONTIG_ALLOC */
8667 
8668 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8669 {
8670 	unsigned int count = 0;
8671 
8672 	for (; nr_pages--; pfn++) {
8673 		struct page *page = pfn_to_page(pfn);
8674 
8675 		count += page_count(page) != 1;
8676 		__free_page(page);
8677 	}
8678 	WARN(count != 0, "%d pages are still in use!\n", count);
8679 }
8680 EXPORT_SYMBOL(free_contig_range);
8681 
8682 /*
8683  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8684  * page high values need to be recalulated.
8685  */
8686 void __meminit zone_pcp_update(struct zone *zone)
8687 {
8688 	mutex_lock(&pcp_batch_high_lock);
8689 	__zone_pcp_update(zone);
8690 	mutex_unlock(&pcp_batch_high_lock);
8691 }
8692 
8693 void zone_pcp_reset(struct zone *zone)
8694 {
8695 	unsigned long flags;
8696 	int cpu;
8697 	struct per_cpu_pageset *pset;
8698 
8699 	/* avoid races with drain_pages()  */
8700 	local_irq_save(flags);
8701 	if (zone->pageset != &boot_pageset) {
8702 		for_each_online_cpu(cpu) {
8703 			pset = per_cpu_ptr(zone->pageset, cpu);
8704 			drain_zonestat(zone, pset);
8705 		}
8706 		free_percpu(zone->pageset);
8707 		zone->pageset = &boot_pageset;
8708 	}
8709 	local_irq_restore(flags);
8710 }
8711 
8712 #ifdef CONFIG_MEMORY_HOTREMOVE
8713 /*
8714  * All pages in the range must be in a single zone and isolated
8715  * before calling this.
8716  */
8717 unsigned long
8718 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8719 {
8720 	struct page *page;
8721 	struct zone *zone;
8722 	unsigned int order;
8723 	unsigned long pfn;
8724 	unsigned long flags;
8725 	unsigned long offlined_pages = 0;
8726 
8727 	/* find the first valid pfn */
8728 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8729 		if (pfn_valid(pfn))
8730 			break;
8731 	if (pfn == end_pfn)
8732 		return offlined_pages;
8733 
8734 	offline_mem_sections(pfn, end_pfn);
8735 	zone = page_zone(pfn_to_page(pfn));
8736 	spin_lock_irqsave(&zone->lock, flags);
8737 	pfn = start_pfn;
8738 	while (pfn < end_pfn) {
8739 		if (!pfn_valid(pfn)) {
8740 			pfn++;
8741 			continue;
8742 		}
8743 		page = pfn_to_page(pfn);
8744 		/*
8745 		 * The HWPoisoned page may be not in buddy system, and
8746 		 * page_count() is not 0.
8747 		 */
8748 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8749 			pfn++;
8750 			offlined_pages++;
8751 			continue;
8752 		}
8753 		/*
8754 		 * At this point all remaining PageOffline() pages have a
8755 		 * reference count of 0 and can simply be skipped.
8756 		 */
8757 		if (PageOffline(page)) {
8758 			BUG_ON(page_count(page));
8759 			BUG_ON(PageBuddy(page));
8760 			pfn++;
8761 			offlined_pages++;
8762 			continue;
8763 		}
8764 
8765 		BUG_ON(page_count(page));
8766 		BUG_ON(!PageBuddy(page));
8767 		order = page_order(page);
8768 		offlined_pages += 1 << order;
8769 		del_page_from_free_list(page, zone, order);
8770 		pfn += (1 << order);
8771 	}
8772 	spin_unlock_irqrestore(&zone->lock, flags);
8773 
8774 	return offlined_pages;
8775 }
8776 #endif
8777 
8778 bool is_free_buddy_page(struct page *page)
8779 {
8780 	struct zone *zone = page_zone(page);
8781 	unsigned long pfn = page_to_pfn(page);
8782 	unsigned long flags;
8783 	unsigned int order;
8784 
8785 	spin_lock_irqsave(&zone->lock, flags);
8786 	for (order = 0; order < MAX_ORDER; order++) {
8787 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8788 
8789 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8790 			break;
8791 	}
8792 	spin_unlock_irqrestore(&zone->lock, flags);
8793 
8794 	return order < MAX_ORDER;
8795 }
8796 
8797 #ifdef CONFIG_MEMORY_FAILURE
8798 /*
8799  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8800  * test is performed under the zone lock to prevent a race against page
8801  * allocation.
8802  */
8803 bool set_hwpoison_free_buddy_page(struct page *page)
8804 {
8805 	struct zone *zone = page_zone(page);
8806 	unsigned long pfn = page_to_pfn(page);
8807 	unsigned long flags;
8808 	unsigned int order;
8809 	bool hwpoisoned = false;
8810 
8811 	spin_lock_irqsave(&zone->lock, flags);
8812 	for (order = 0; order < MAX_ORDER; order++) {
8813 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8814 
8815 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8816 			if (!TestSetPageHWPoison(page))
8817 				hwpoisoned = true;
8818 			break;
8819 		}
8820 	}
8821 	spin_unlock_irqrestore(&zone->lock, flags);
8822 
8823 	return hwpoisoned;
8824 }
8825 #endif
8826