1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 92 static DEFINE_MUTEX(pcp_batch_high_lock); 93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 94 95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 96 /* 97 * On SMP, spin_trylock is sufficient protection. 98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 99 */ 100 #define pcp_trylock_prepare(flags) do { } while (0) 101 #define pcp_trylock_finish(flag) do { } while (0) 102 #else 103 104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 105 #define pcp_trylock_prepare(flags) local_irq_save(flags) 106 #define pcp_trylock_finish(flags) local_irq_restore(flags) 107 #endif 108 109 /* 110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 111 * a migration causing the wrong PCP to be locked and remote memory being 112 * potentially allocated, pin the task to the CPU for the lookup+lock. 113 * preempt_disable is used on !RT because it is faster than migrate_disable. 114 * migrate_disable is used on RT because otherwise RT spinlock usage is 115 * interfered with and a high priority task cannot preempt the allocator. 116 */ 117 #ifndef CONFIG_PREEMPT_RT 118 #define pcpu_task_pin() preempt_disable() 119 #define pcpu_task_unpin() preempt_enable() 120 #else 121 #define pcpu_task_pin() migrate_disable() 122 #define pcpu_task_unpin() migrate_enable() 123 #endif 124 125 /* 126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 127 * Return value should be used with equivalent unlock helper. 128 */ 129 #define pcpu_spin_lock(type, member, ptr) \ 130 ({ \ 131 type *_ret; \ 132 pcpu_task_pin(); \ 133 _ret = this_cpu_ptr(ptr); \ 134 spin_lock(&_ret->member); \ 135 _ret; \ 136 }) 137 138 #define pcpu_spin_trylock(type, member, ptr) \ 139 ({ \ 140 type *_ret; \ 141 pcpu_task_pin(); \ 142 _ret = this_cpu_ptr(ptr); \ 143 if (!spin_trylock(&_ret->member)) { \ 144 pcpu_task_unpin(); \ 145 _ret = NULL; \ 146 } \ 147 _ret; \ 148 }) 149 150 #define pcpu_spin_unlock(member, ptr) \ 151 ({ \ 152 spin_unlock(&ptr->member); \ 153 pcpu_task_unpin(); \ 154 }) 155 156 /* struct per_cpu_pages specific helpers. */ 157 #define pcp_spin_lock(ptr) \ 158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 159 160 #define pcp_spin_trylock(ptr) \ 161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_unlock(ptr) \ 164 pcpu_spin_unlock(lock, ptr) 165 166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 167 DEFINE_PER_CPU(int, numa_node); 168 EXPORT_PER_CPU_SYMBOL(numa_node); 169 #endif 170 171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 172 173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 174 /* 175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 178 * defined in <linux/topology.h>. 179 */ 180 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 181 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 182 #endif 183 184 static DEFINE_MUTEX(pcpu_drain_mutex); 185 186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 187 volatile unsigned long latent_entropy __latent_entropy; 188 EXPORT_SYMBOL(latent_entropy); 189 #endif 190 191 /* 192 * Array of node states. 193 */ 194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 195 [N_POSSIBLE] = NODE_MASK_ALL, 196 [N_ONLINE] = { { [0] = 1UL } }, 197 #ifndef CONFIG_NUMA 198 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 199 #ifdef CONFIG_HIGHMEM 200 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 201 #endif 202 [N_MEMORY] = { { [0] = 1UL } }, 203 [N_CPU] = { { [0] = 1UL } }, 204 #endif /* NUMA */ 205 }; 206 EXPORT_SYMBOL(node_states); 207 208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 209 210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 211 unsigned int pageblock_order __read_mostly; 212 #endif 213 214 static void __free_pages_ok(struct page *page, unsigned int order, 215 fpi_t fpi_flags); 216 217 /* 218 * results with 256, 32 in the lowmem_reserve sysctl: 219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 220 * 1G machine -> (16M dma, 784M normal, 224M high) 221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 224 * 225 * TBD: should special case ZONE_DMA32 machines here - in those we normally 226 * don't need any ZONE_NORMAL reservation 227 */ 228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 [ZONE_DMA] = 256, 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 [ZONE_DMA32] = 256, 234 #endif 235 [ZONE_NORMAL] = 32, 236 #ifdef CONFIG_HIGHMEM 237 [ZONE_HIGHMEM] = 0, 238 #endif 239 [ZONE_MOVABLE] = 0, 240 }; 241 242 char * const zone_names[MAX_NR_ZONES] = { 243 #ifdef CONFIG_ZONE_DMA 244 "DMA", 245 #endif 246 #ifdef CONFIG_ZONE_DMA32 247 "DMA32", 248 #endif 249 "Normal", 250 #ifdef CONFIG_HIGHMEM 251 "HighMem", 252 #endif 253 "Movable", 254 #ifdef CONFIG_ZONE_DEVICE 255 "Device", 256 #endif 257 }; 258 259 const char * const migratetype_names[MIGRATE_TYPES] = { 260 "Unmovable", 261 "Movable", 262 "Reclaimable", 263 "HighAtomic", 264 #ifdef CONFIG_CMA 265 "CMA", 266 #endif 267 #ifdef CONFIG_MEMORY_ISOLATION 268 "Isolate", 269 #endif 270 }; 271 272 int min_free_kbytes = 1024; 273 int user_min_free_kbytes = -1; 274 static int watermark_boost_factor __read_mostly = 15000; 275 static int watermark_scale_factor = 10; 276 277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 278 int movable_zone; 279 EXPORT_SYMBOL(movable_zone); 280 281 #if MAX_NUMNODES > 1 282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 283 unsigned int nr_online_nodes __read_mostly = 1; 284 EXPORT_SYMBOL(nr_node_ids); 285 EXPORT_SYMBOL(nr_online_nodes); 286 #endif 287 288 static bool page_contains_unaccepted(struct page *page, unsigned int order); 289 static void accept_page(struct page *page, unsigned int order); 290 static bool try_to_accept_memory(struct zone *zone, unsigned int order); 291 static inline bool has_unaccepted_memory(void); 292 static bool __free_unaccepted(struct page *page); 293 294 int page_group_by_mobility_disabled __read_mostly; 295 296 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 297 /* 298 * During boot we initialize deferred pages on-demand, as needed, but once 299 * page_alloc_init_late() has finished, the deferred pages are all initialized, 300 * and we can permanently disable that path. 301 */ 302 DEFINE_STATIC_KEY_TRUE(deferred_pages); 303 304 static inline bool deferred_pages_enabled(void) 305 { 306 return static_branch_unlikely(&deferred_pages); 307 } 308 309 /* 310 * deferred_grow_zone() is __init, but it is called from 311 * get_page_from_freelist() during early boot until deferred_pages permanently 312 * disables this call. This is why we have refdata wrapper to avoid warning, 313 * and to ensure that the function body gets unloaded. 314 */ 315 static bool __ref 316 _deferred_grow_zone(struct zone *zone, unsigned int order) 317 { 318 return deferred_grow_zone(zone, order); 319 } 320 #else 321 static inline bool deferred_pages_enabled(void) 322 { 323 return false; 324 } 325 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 326 327 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 328 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 329 unsigned long pfn) 330 { 331 #ifdef CONFIG_SPARSEMEM 332 return section_to_usemap(__pfn_to_section(pfn)); 333 #else 334 return page_zone(page)->pageblock_flags; 335 #endif /* CONFIG_SPARSEMEM */ 336 } 337 338 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 339 { 340 #ifdef CONFIG_SPARSEMEM 341 pfn &= (PAGES_PER_SECTION-1); 342 #else 343 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 344 #endif /* CONFIG_SPARSEMEM */ 345 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 346 } 347 348 /** 349 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 350 * @page: The page within the block of interest 351 * @pfn: The target page frame number 352 * @mask: mask of bits that the caller is interested in 353 * 354 * Return: pageblock_bits flags 355 */ 356 unsigned long get_pfnblock_flags_mask(const struct page *page, 357 unsigned long pfn, unsigned long mask) 358 { 359 unsigned long *bitmap; 360 unsigned long bitidx, word_bitidx; 361 unsigned long word; 362 363 bitmap = get_pageblock_bitmap(page, pfn); 364 bitidx = pfn_to_bitidx(page, pfn); 365 word_bitidx = bitidx / BITS_PER_LONG; 366 bitidx &= (BITS_PER_LONG-1); 367 /* 368 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 369 * a consistent read of the memory array, so that results, even though 370 * racy, are not corrupted. 371 */ 372 word = READ_ONCE(bitmap[word_bitidx]); 373 return (word >> bitidx) & mask; 374 } 375 376 static __always_inline int get_pfnblock_migratetype(const struct page *page, 377 unsigned long pfn) 378 { 379 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 380 } 381 382 /** 383 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 384 * @page: The page within the block of interest 385 * @flags: The flags to set 386 * @pfn: The target page frame number 387 * @mask: mask of bits that the caller is interested in 388 */ 389 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 390 unsigned long pfn, 391 unsigned long mask) 392 { 393 unsigned long *bitmap; 394 unsigned long bitidx, word_bitidx; 395 unsigned long word; 396 397 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 398 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 399 400 bitmap = get_pageblock_bitmap(page, pfn); 401 bitidx = pfn_to_bitidx(page, pfn); 402 word_bitidx = bitidx / BITS_PER_LONG; 403 bitidx &= (BITS_PER_LONG-1); 404 405 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 406 407 mask <<= bitidx; 408 flags <<= bitidx; 409 410 word = READ_ONCE(bitmap[word_bitidx]); 411 do { 412 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 413 } 414 415 void set_pageblock_migratetype(struct page *page, int migratetype) 416 { 417 if (unlikely(page_group_by_mobility_disabled && 418 migratetype < MIGRATE_PCPTYPES)) 419 migratetype = MIGRATE_UNMOVABLE; 420 421 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 422 page_to_pfn(page), MIGRATETYPE_MASK); 423 } 424 425 #ifdef CONFIG_DEBUG_VM 426 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 427 { 428 int ret; 429 unsigned seq; 430 unsigned long pfn = page_to_pfn(page); 431 unsigned long sp, start_pfn; 432 433 do { 434 seq = zone_span_seqbegin(zone); 435 start_pfn = zone->zone_start_pfn; 436 sp = zone->spanned_pages; 437 ret = !zone_spans_pfn(zone, pfn); 438 } while (zone_span_seqretry(zone, seq)); 439 440 if (ret) 441 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 442 pfn, zone_to_nid(zone), zone->name, 443 start_pfn, start_pfn + sp); 444 445 return ret; 446 } 447 448 /* 449 * Temporary debugging check for pages not lying within a given zone. 450 */ 451 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 452 { 453 if (page_outside_zone_boundaries(zone, page)) 454 return true; 455 if (zone != page_zone(page)) 456 return true; 457 458 return false; 459 } 460 #else 461 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 462 { 463 return false; 464 } 465 #endif 466 467 static void bad_page(struct page *page, const char *reason) 468 { 469 static unsigned long resume; 470 static unsigned long nr_shown; 471 static unsigned long nr_unshown; 472 473 /* 474 * Allow a burst of 60 reports, then keep quiet for that minute; 475 * or allow a steady drip of one report per second. 476 */ 477 if (nr_shown == 60) { 478 if (time_before(jiffies, resume)) { 479 nr_unshown++; 480 goto out; 481 } 482 if (nr_unshown) { 483 pr_alert( 484 "BUG: Bad page state: %lu messages suppressed\n", 485 nr_unshown); 486 nr_unshown = 0; 487 } 488 nr_shown = 0; 489 } 490 if (nr_shown++ == 0) 491 resume = jiffies + 60 * HZ; 492 493 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 494 current->comm, page_to_pfn(page)); 495 dump_page(page, reason); 496 497 print_modules(); 498 dump_stack(); 499 out: 500 /* Leave bad fields for debug, except PageBuddy could make trouble */ 501 page_mapcount_reset(page); /* remove PageBuddy */ 502 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 503 } 504 505 static inline unsigned int order_to_pindex(int migratetype, int order) 506 { 507 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 508 if (order > PAGE_ALLOC_COSTLY_ORDER) { 509 VM_BUG_ON(order != HPAGE_PMD_ORDER); 510 return NR_LOWORDER_PCP_LISTS; 511 } 512 #else 513 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 514 #endif 515 516 return (MIGRATE_PCPTYPES * order) + migratetype; 517 } 518 519 static inline int pindex_to_order(unsigned int pindex) 520 { 521 int order = pindex / MIGRATE_PCPTYPES; 522 523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 524 if (pindex == NR_LOWORDER_PCP_LISTS) 525 order = HPAGE_PMD_ORDER; 526 #else 527 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 528 #endif 529 530 return order; 531 } 532 533 static inline bool pcp_allowed_order(unsigned int order) 534 { 535 if (order <= PAGE_ALLOC_COSTLY_ORDER) 536 return true; 537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 538 if (order == HPAGE_PMD_ORDER) 539 return true; 540 #endif 541 return false; 542 } 543 544 /* 545 * Higher-order pages are called "compound pages". They are structured thusly: 546 * 547 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 548 * 549 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 550 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 551 * 552 * The first tail page's ->compound_order holds the order of allocation. 553 * This usage means that zero-order pages may not be compound. 554 */ 555 556 void prep_compound_page(struct page *page, unsigned int order) 557 { 558 int i; 559 int nr_pages = 1 << order; 560 561 __SetPageHead(page); 562 for (i = 1; i < nr_pages; i++) 563 prep_compound_tail(page, i); 564 565 prep_compound_head(page, order); 566 } 567 568 static inline void set_buddy_order(struct page *page, unsigned int order) 569 { 570 set_page_private(page, order); 571 __SetPageBuddy(page); 572 } 573 574 #ifdef CONFIG_COMPACTION 575 static inline struct capture_control *task_capc(struct zone *zone) 576 { 577 struct capture_control *capc = current->capture_control; 578 579 return unlikely(capc) && 580 !(current->flags & PF_KTHREAD) && 581 !capc->page && 582 capc->cc->zone == zone ? capc : NULL; 583 } 584 585 static inline bool 586 compaction_capture(struct capture_control *capc, struct page *page, 587 int order, int migratetype) 588 { 589 if (!capc || order != capc->cc->order) 590 return false; 591 592 /* Do not accidentally pollute CMA or isolated regions*/ 593 if (is_migrate_cma(migratetype) || 594 is_migrate_isolate(migratetype)) 595 return false; 596 597 /* 598 * Do not let lower order allocations pollute a movable pageblock 599 * unless compaction is also requesting movable pages. 600 * This might let an unmovable request use a reclaimable pageblock 601 * and vice-versa but no more than normal fallback logic which can 602 * have trouble finding a high-order free page. 603 */ 604 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 605 capc->cc->migratetype != MIGRATE_MOVABLE) 606 return false; 607 608 capc->page = page; 609 return true; 610 } 611 612 #else 613 static inline struct capture_control *task_capc(struct zone *zone) 614 { 615 return NULL; 616 } 617 618 static inline bool 619 compaction_capture(struct capture_control *capc, struct page *page, 620 int order, int migratetype) 621 { 622 return false; 623 } 624 #endif /* CONFIG_COMPACTION */ 625 626 static inline void account_freepages(struct zone *zone, int nr_pages, 627 int migratetype) 628 { 629 if (is_migrate_isolate(migratetype)) 630 return; 631 632 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 633 634 if (is_migrate_cma(migratetype)) 635 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 636 } 637 638 /* Used for pages not on another list */ 639 static inline void __add_to_free_list(struct page *page, struct zone *zone, 640 unsigned int order, int migratetype, 641 bool tail) 642 { 643 struct free_area *area = &zone->free_area[order]; 644 645 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 646 "page type is %lu, passed migratetype is %d (nr=%d)\n", 647 get_pageblock_migratetype(page), migratetype, 1 << order); 648 649 if (tail) 650 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 651 else 652 list_add(&page->buddy_list, &area->free_list[migratetype]); 653 area->nr_free++; 654 } 655 656 /* 657 * Used for pages which are on another list. Move the pages to the tail 658 * of the list - so the moved pages won't immediately be considered for 659 * allocation again (e.g., optimization for memory onlining). 660 */ 661 static inline void move_to_free_list(struct page *page, struct zone *zone, 662 unsigned int order, int old_mt, int new_mt) 663 { 664 struct free_area *area = &zone->free_area[order]; 665 666 /* Free page moving can fail, so it happens before the type update */ 667 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 668 "page type is %lu, passed migratetype is %d (nr=%d)\n", 669 get_pageblock_migratetype(page), old_mt, 1 << order); 670 671 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 672 673 account_freepages(zone, -(1 << order), old_mt); 674 account_freepages(zone, 1 << order, new_mt); 675 } 676 677 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 678 unsigned int order, int migratetype) 679 { 680 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 681 "page type is %lu, passed migratetype is %d (nr=%d)\n", 682 get_pageblock_migratetype(page), migratetype, 1 << order); 683 684 /* clear reported state and update reported page count */ 685 if (page_reported(page)) 686 __ClearPageReported(page); 687 688 list_del(&page->buddy_list); 689 __ClearPageBuddy(page); 690 set_page_private(page, 0); 691 zone->free_area[order].nr_free--; 692 } 693 694 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 695 unsigned int order, int migratetype) 696 { 697 __del_page_from_free_list(page, zone, order, migratetype); 698 account_freepages(zone, -(1 << order), migratetype); 699 } 700 701 static inline struct page *get_page_from_free_area(struct free_area *area, 702 int migratetype) 703 { 704 return list_first_entry_or_null(&area->free_list[migratetype], 705 struct page, buddy_list); 706 } 707 708 /* 709 * If this is not the largest possible page, check if the buddy 710 * of the next-highest order is free. If it is, it's possible 711 * that pages are being freed that will coalesce soon. In case, 712 * that is happening, add the free page to the tail of the list 713 * so it's less likely to be used soon and more likely to be merged 714 * as a higher order page 715 */ 716 static inline bool 717 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 718 struct page *page, unsigned int order) 719 { 720 unsigned long higher_page_pfn; 721 struct page *higher_page; 722 723 if (order >= MAX_PAGE_ORDER - 1) 724 return false; 725 726 higher_page_pfn = buddy_pfn & pfn; 727 higher_page = page + (higher_page_pfn - pfn); 728 729 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 730 NULL) != NULL; 731 } 732 733 /* 734 * Freeing function for a buddy system allocator. 735 * 736 * The concept of a buddy system is to maintain direct-mapped table 737 * (containing bit values) for memory blocks of various "orders". 738 * The bottom level table contains the map for the smallest allocatable 739 * units of memory (here, pages), and each level above it describes 740 * pairs of units from the levels below, hence, "buddies". 741 * At a high level, all that happens here is marking the table entry 742 * at the bottom level available, and propagating the changes upward 743 * as necessary, plus some accounting needed to play nicely with other 744 * parts of the VM system. 745 * At each level, we keep a list of pages, which are heads of continuous 746 * free pages of length of (1 << order) and marked with PageBuddy. 747 * Page's order is recorded in page_private(page) field. 748 * So when we are allocating or freeing one, we can derive the state of the 749 * other. That is, if we allocate a small block, and both were 750 * free, the remainder of the region must be split into blocks. 751 * If a block is freed, and its buddy is also free, then this 752 * triggers coalescing into a block of larger size. 753 * 754 * -- nyc 755 */ 756 757 static inline void __free_one_page(struct page *page, 758 unsigned long pfn, 759 struct zone *zone, unsigned int order, 760 int migratetype, fpi_t fpi_flags) 761 { 762 struct capture_control *capc = task_capc(zone); 763 unsigned long buddy_pfn = 0; 764 unsigned long combined_pfn; 765 struct page *buddy; 766 bool to_tail; 767 768 VM_BUG_ON(!zone_is_initialized(zone)); 769 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 770 771 VM_BUG_ON(migratetype == -1); 772 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 773 VM_BUG_ON_PAGE(bad_range(zone, page), page); 774 775 account_freepages(zone, 1 << order, migratetype); 776 777 while (order < MAX_PAGE_ORDER) { 778 int buddy_mt = migratetype; 779 780 if (compaction_capture(capc, page, order, migratetype)) { 781 account_freepages(zone, -(1 << order), migratetype); 782 return; 783 } 784 785 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 786 if (!buddy) 787 goto done_merging; 788 789 if (unlikely(order >= pageblock_order)) { 790 /* 791 * We want to prevent merge between freepages on pageblock 792 * without fallbacks and normal pageblock. Without this, 793 * pageblock isolation could cause incorrect freepage or CMA 794 * accounting or HIGHATOMIC accounting. 795 */ 796 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 797 798 if (migratetype != buddy_mt && 799 (!migratetype_is_mergeable(migratetype) || 800 !migratetype_is_mergeable(buddy_mt))) 801 goto done_merging; 802 } 803 804 /* 805 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 806 * merge with it and move up one order. 807 */ 808 if (page_is_guard(buddy)) 809 clear_page_guard(zone, buddy, order); 810 else 811 __del_page_from_free_list(buddy, zone, order, buddy_mt); 812 813 if (unlikely(buddy_mt != migratetype)) { 814 /* 815 * Match buddy type. This ensures that an 816 * expand() down the line puts the sub-blocks 817 * on the right freelists. 818 */ 819 set_pageblock_migratetype(buddy, migratetype); 820 } 821 822 combined_pfn = buddy_pfn & pfn; 823 page = page + (combined_pfn - pfn); 824 pfn = combined_pfn; 825 order++; 826 } 827 828 done_merging: 829 set_buddy_order(page, order); 830 831 if (fpi_flags & FPI_TO_TAIL) 832 to_tail = true; 833 else if (is_shuffle_order(order)) 834 to_tail = shuffle_pick_tail(); 835 else 836 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 837 838 __add_to_free_list(page, zone, order, migratetype, to_tail); 839 840 /* Notify page reporting subsystem of freed page */ 841 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 842 page_reporting_notify_free(order); 843 } 844 845 /* 846 * A bad page could be due to a number of fields. Instead of multiple branches, 847 * try and check multiple fields with one check. The caller must do a detailed 848 * check if necessary. 849 */ 850 static inline bool page_expected_state(struct page *page, 851 unsigned long check_flags) 852 { 853 if (unlikely(atomic_read(&page->_mapcount) != -1)) 854 return false; 855 856 if (unlikely((unsigned long)page->mapping | 857 page_ref_count(page) | 858 #ifdef CONFIG_MEMCG 859 page->memcg_data | 860 #endif 861 #ifdef CONFIG_PAGE_POOL 862 ((page->pp_magic & ~0x3UL) == PP_SIGNATURE) | 863 #endif 864 (page->flags & check_flags))) 865 return false; 866 867 return true; 868 } 869 870 static const char *page_bad_reason(struct page *page, unsigned long flags) 871 { 872 const char *bad_reason = NULL; 873 874 if (unlikely(atomic_read(&page->_mapcount) != -1)) 875 bad_reason = "nonzero mapcount"; 876 if (unlikely(page->mapping != NULL)) 877 bad_reason = "non-NULL mapping"; 878 if (unlikely(page_ref_count(page) != 0)) 879 bad_reason = "nonzero _refcount"; 880 if (unlikely(page->flags & flags)) { 881 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 882 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 883 else 884 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 885 } 886 #ifdef CONFIG_MEMCG 887 if (unlikely(page->memcg_data)) 888 bad_reason = "page still charged to cgroup"; 889 #endif 890 #ifdef CONFIG_PAGE_POOL 891 if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE)) 892 bad_reason = "page_pool leak"; 893 #endif 894 return bad_reason; 895 } 896 897 static void free_page_is_bad_report(struct page *page) 898 { 899 bad_page(page, 900 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 901 } 902 903 static inline bool free_page_is_bad(struct page *page) 904 { 905 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 906 return false; 907 908 /* Something has gone sideways, find it */ 909 free_page_is_bad_report(page); 910 return true; 911 } 912 913 static inline bool is_check_pages_enabled(void) 914 { 915 return static_branch_unlikely(&check_pages_enabled); 916 } 917 918 static int free_tail_page_prepare(struct page *head_page, struct page *page) 919 { 920 struct folio *folio = (struct folio *)head_page; 921 int ret = 1; 922 923 /* 924 * We rely page->lru.next never has bit 0 set, unless the page 925 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 926 */ 927 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 928 929 if (!is_check_pages_enabled()) { 930 ret = 0; 931 goto out; 932 } 933 switch (page - head_page) { 934 case 1: 935 /* the first tail page: these may be in place of ->mapping */ 936 if (unlikely(folio_entire_mapcount(folio))) { 937 bad_page(page, "nonzero entire_mapcount"); 938 goto out; 939 } 940 if (unlikely(folio_large_mapcount(folio))) { 941 bad_page(page, "nonzero large_mapcount"); 942 goto out; 943 } 944 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 945 bad_page(page, "nonzero nr_pages_mapped"); 946 goto out; 947 } 948 if (unlikely(atomic_read(&folio->_pincount))) { 949 bad_page(page, "nonzero pincount"); 950 goto out; 951 } 952 break; 953 case 2: 954 /* the second tail page: deferred_list overlaps ->mapping */ 955 if (unlikely(!list_empty(&folio->_deferred_list))) { 956 bad_page(page, "on deferred list"); 957 goto out; 958 } 959 break; 960 default: 961 if (page->mapping != TAIL_MAPPING) { 962 bad_page(page, "corrupted mapping in tail page"); 963 goto out; 964 } 965 break; 966 } 967 if (unlikely(!PageTail(page))) { 968 bad_page(page, "PageTail not set"); 969 goto out; 970 } 971 if (unlikely(compound_head(page) != head_page)) { 972 bad_page(page, "compound_head not consistent"); 973 goto out; 974 } 975 ret = 0; 976 out: 977 page->mapping = NULL; 978 clear_compound_head(page); 979 return ret; 980 } 981 982 /* 983 * Skip KASAN memory poisoning when either: 984 * 985 * 1. For generic KASAN: deferred memory initialization has not yet completed. 986 * Tag-based KASAN modes skip pages freed via deferred memory initialization 987 * using page tags instead (see below). 988 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 989 * that error detection is disabled for accesses via the page address. 990 * 991 * Pages will have match-all tags in the following circumstances: 992 * 993 * 1. Pages are being initialized for the first time, including during deferred 994 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 995 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 996 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 997 * 3. The allocation was excluded from being checked due to sampling, 998 * see the call to kasan_unpoison_pages. 999 * 1000 * Poisoning pages during deferred memory init will greatly lengthen the 1001 * process and cause problem in large memory systems as the deferred pages 1002 * initialization is done with interrupt disabled. 1003 * 1004 * Assuming that there will be no reference to those newly initialized 1005 * pages before they are ever allocated, this should have no effect on 1006 * KASAN memory tracking as the poison will be properly inserted at page 1007 * allocation time. The only corner case is when pages are allocated by 1008 * on-demand allocation and then freed again before the deferred pages 1009 * initialization is done, but this is not likely to happen. 1010 */ 1011 static inline bool should_skip_kasan_poison(struct page *page) 1012 { 1013 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1014 return deferred_pages_enabled(); 1015 1016 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1017 } 1018 1019 void kernel_init_pages(struct page *page, int numpages) 1020 { 1021 int i; 1022 1023 /* s390's use of memset() could override KASAN redzones. */ 1024 kasan_disable_current(); 1025 for (i = 0; i < numpages; i++) 1026 clear_highpage_kasan_tagged(page + i); 1027 kasan_enable_current(); 1028 } 1029 1030 __always_inline bool free_pages_prepare(struct page *page, 1031 unsigned int order) 1032 { 1033 int bad = 0; 1034 bool skip_kasan_poison = should_skip_kasan_poison(page); 1035 bool init = want_init_on_free(); 1036 bool compound = PageCompound(page); 1037 1038 VM_BUG_ON_PAGE(PageTail(page), page); 1039 1040 trace_mm_page_free(page, order); 1041 kmsan_free_page(page, order); 1042 1043 if (memcg_kmem_online() && PageMemcgKmem(page)) 1044 __memcg_kmem_uncharge_page(page, order); 1045 1046 if (unlikely(PageHWPoison(page)) && !order) { 1047 /* Do not let hwpoison pages hit pcplists/buddy */ 1048 reset_page_owner(page, order); 1049 page_table_check_free(page, order); 1050 pgalloc_tag_sub(page, 1 << order); 1051 return false; 1052 } 1053 1054 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1055 1056 /* 1057 * Check tail pages before head page information is cleared to 1058 * avoid checking PageCompound for order-0 pages. 1059 */ 1060 if (unlikely(order)) { 1061 int i; 1062 1063 if (compound) 1064 page[1].flags &= ~PAGE_FLAGS_SECOND; 1065 for (i = 1; i < (1 << order); i++) { 1066 if (compound) 1067 bad += free_tail_page_prepare(page, page + i); 1068 if (is_check_pages_enabled()) { 1069 if (free_page_is_bad(page + i)) { 1070 bad++; 1071 continue; 1072 } 1073 } 1074 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1075 } 1076 } 1077 if (PageMappingFlags(page)) 1078 page->mapping = NULL; 1079 if (is_check_pages_enabled()) { 1080 if (free_page_is_bad(page)) 1081 bad++; 1082 if (bad) 1083 return false; 1084 } 1085 1086 page_cpupid_reset_last(page); 1087 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1088 reset_page_owner(page, order); 1089 page_table_check_free(page, order); 1090 pgalloc_tag_sub(page, 1 << order); 1091 1092 if (!PageHighMem(page)) { 1093 debug_check_no_locks_freed(page_address(page), 1094 PAGE_SIZE << order); 1095 debug_check_no_obj_freed(page_address(page), 1096 PAGE_SIZE << order); 1097 } 1098 1099 kernel_poison_pages(page, 1 << order); 1100 1101 /* 1102 * As memory initialization might be integrated into KASAN, 1103 * KASAN poisoning and memory initialization code must be 1104 * kept together to avoid discrepancies in behavior. 1105 * 1106 * With hardware tag-based KASAN, memory tags must be set before the 1107 * page becomes unavailable via debug_pagealloc or arch_free_page. 1108 */ 1109 if (!skip_kasan_poison) { 1110 kasan_poison_pages(page, order, init); 1111 1112 /* Memory is already initialized if KASAN did it internally. */ 1113 if (kasan_has_integrated_init()) 1114 init = false; 1115 } 1116 if (init) 1117 kernel_init_pages(page, 1 << order); 1118 1119 /* 1120 * arch_free_page() can make the page's contents inaccessible. s390 1121 * does this. So nothing which can access the page's contents should 1122 * happen after this. 1123 */ 1124 arch_free_page(page, order); 1125 1126 debug_pagealloc_unmap_pages(page, 1 << order); 1127 1128 return true; 1129 } 1130 1131 /* 1132 * Frees a number of pages from the PCP lists 1133 * Assumes all pages on list are in same zone. 1134 * count is the number of pages to free. 1135 */ 1136 static void free_pcppages_bulk(struct zone *zone, int count, 1137 struct per_cpu_pages *pcp, 1138 int pindex) 1139 { 1140 unsigned long flags; 1141 unsigned int order; 1142 struct page *page; 1143 1144 /* 1145 * Ensure proper count is passed which otherwise would stuck in the 1146 * below while (list_empty(list)) loop. 1147 */ 1148 count = min(pcp->count, count); 1149 1150 /* Ensure requested pindex is drained first. */ 1151 pindex = pindex - 1; 1152 1153 spin_lock_irqsave(&zone->lock, flags); 1154 1155 while (count > 0) { 1156 struct list_head *list; 1157 int nr_pages; 1158 1159 /* Remove pages from lists in a round-robin fashion. */ 1160 do { 1161 if (++pindex > NR_PCP_LISTS - 1) 1162 pindex = 0; 1163 list = &pcp->lists[pindex]; 1164 } while (list_empty(list)); 1165 1166 order = pindex_to_order(pindex); 1167 nr_pages = 1 << order; 1168 do { 1169 unsigned long pfn; 1170 int mt; 1171 1172 page = list_last_entry(list, struct page, pcp_list); 1173 pfn = page_to_pfn(page); 1174 mt = get_pfnblock_migratetype(page, pfn); 1175 1176 /* must delete to avoid corrupting pcp list */ 1177 list_del(&page->pcp_list); 1178 count -= nr_pages; 1179 pcp->count -= nr_pages; 1180 1181 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1182 trace_mm_page_pcpu_drain(page, order, mt); 1183 } while (count > 0 && !list_empty(list)); 1184 } 1185 1186 spin_unlock_irqrestore(&zone->lock, flags); 1187 } 1188 1189 static void free_one_page(struct zone *zone, struct page *page, 1190 unsigned long pfn, unsigned int order, 1191 fpi_t fpi_flags) 1192 { 1193 unsigned long flags; 1194 int migratetype; 1195 1196 spin_lock_irqsave(&zone->lock, flags); 1197 migratetype = get_pfnblock_migratetype(page, pfn); 1198 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1199 spin_unlock_irqrestore(&zone->lock, flags); 1200 } 1201 1202 static void __free_pages_ok(struct page *page, unsigned int order, 1203 fpi_t fpi_flags) 1204 { 1205 unsigned long pfn = page_to_pfn(page); 1206 struct zone *zone = page_zone(page); 1207 1208 if (!free_pages_prepare(page, order)) 1209 return; 1210 1211 free_one_page(zone, page, pfn, order, fpi_flags); 1212 1213 __count_vm_events(PGFREE, 1 << order); 1214 } 1215 1216 void __free_pages_core(struct page *page, unsigned int order) 1217 { 1218 unsigned int nr_pages = 1 << order; 1219 struct page *p = page; 1220 unsigned int loop; 1221 1222 /* 1223 * When initializing the memmap, __init_single_page() sets the refcount 1224 * of all pages to 1 ("allocated"/"not free"). We have to set the 1225 * refcount of all involved pages to 0. 1226 */ 1227 prefetchw(p); 1228 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1229 prefetchw(p + 1); 1230 __ClearPageReserved(p); 1231 set_page_count(p, 0); 1232 } 1233 __ClearPageReserved(p); 1234 set_page_count(p, 0); 1235 1236 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1237 1238 if (page_contains_unaccepted(page, order)) { 1239 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1240 return; 1241 1242 accept_page(page, order); 1243 } 1244 1245 /* 1246 * Bypass PCP and place fresh pages right to the tail, primarily 1247 * relevant for memory onlining. 1248 */ 1249 __free_pages_ok(page, order, FPI_TO_TAIL); 1250 } 1251 1252 /* 1253 * Check that the whole (or subset of) a pageblock given by the interval of 1254 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1255 * with the migration of free compaction scanner. 1256 * 1257 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1258 * 1259 * It's possible on some configurations to have a setup like node0 node1 node0 1260 * i.e. it's possible that all pages within a zones range of pages do not 1261 * belong to a single zone. We assume that a border between node0 and node1 1262 * can occur within a single pageblock, but not a node0 node1 node0 1263 * interleaving within a single pageblock. It is therefore sufficient to check 1264 * the first and last page of a pageblock and avoid checking each individual 1265 * page in a pageblock. 1266 * 1267 * Note: the function may return non-NULL struct page even for a page block 1268 * which contains a memory hole (i.e. there is no physical memory for a subset 1269 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1270 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1271 * even though the start pfn is online and valid. This should be safe most of 1272 * the time because struct pages are still initialized via init_unavailable_range() 1273 * and pfn walkers shouldn't touch any physical memory range for which they do 1274 * not recognize any specific metadata in struct pages. 1275 */ 1276 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1277 unsigned long end_pfn, struct zone *zone) 1278 { 1279 struct page *start_page; 1280 struct page *end_page; 1281 1282 /* end_pfn is one past the range we are checking */ 1283 end_pfn--; 1284 1285 if (!pfn_valid(end_pfn)) 1286 return NULL; 1287 1288 start_page = pfn_to_online_page(start_pfn); 1289 if (!start_page) 1290 return NULL; 1291 1292 if (page_zone(start_page) != zone) 1293 return NULL; 1294 1295 end_page = pfn_to_page(end_pfn); 1296 1297 /* This gives a shorter code than deriving page_zone(end_page) */ 1298 if (page_zone_id(start_page) != page_zone_id(end_page)) 1299 return NULL; 1300 1301 return start_page; 1302 } 1303 1304 /* 1305 * The order of subdivision here is critical for the IO subsystem. 1306 * Please do not alter this order without good reasons and regression 1307 * testing. Specifically, as large blocks of memory are subdivided, 1308 * the order in which smaller blocks are delivered depends on the order 1309 * they're subdivided in this function. This is the primary factor 1310 * influencing the order in which pages are delivered to the IO 1311 * subsystem according to empirical testing, and this is also justified 1312 * by considering the behavior of a buddy system containing a single 1313 * large block of memory acted on by a series of small allocations. 1314 * This behavior is a critical factor in sglist merging's success. 1315 * 1316 * -- nyc 1317 */ 1318 static inline void expand(struct zone *zone, struct page *page, 1319 int low, int high, int migratetype) 1320 { 1321 unsigned long size = 1 << high; 1322 unsigned long nr_added = 0; 1323 1324 while (high > low) { 1325 high--; 1326 size >>= 1; 1327 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1328 1329 /* 1330 * Mark as guard pages (or page), that will allow to 1331 * merge back to allocator when buddy will be freed. 1332 * Corresponding page table entries will not be touched, 1333 * pages will stay not present in virtual address space 1334 */ 1335 if (set_page_guard(zone, &page[size], high)) 1336 continue; 1337 1338 __add_to_free_list(&page[size], zone, high, migratetype, false); 1339 set_buddy_order(&page[size], high); 1340 nr_added += size; 1341 } 1342 account_freepages(zone, nr_added, migratetype); 1343 } 1344 1345 static void check_new_page_bad(struct page *page) 1346 { 1347 if (unlikely(page->flags & __PG_HWPOISON)) { 1348 /* Don't complain about hwpoisoned pages */ 1349 page_mapcount_reset(page); /* remove PageBuddy */ 1350 return; 1351 } 1352 1353 bad_page(page, 1354 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1355 } 1356 1357 /* 1358 * This page is about to be returned from the page allocator 1359 */ 1360 static bool check_new_page(struct page *page) 1361 { 1362 if (likely(page_expected_state(page, 1363 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1364 return false; 1365 1366 check_new_page_bad(page); 1367 return true; 1368 } 1369 1370 static inline bool check_new_pages(struct page *page, unsigned int order) 1371 { 1372 if (is_check_pages_enabled()) { 1373 for (int i = 0; i < (1 << order); i++) { 1374 struct page *p = page + i; 1375 1376 if (check_new_page(p)) 1377 return true; 1378 } 1379 } 1380 1381 return false; 1382 } 1383 1384 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1385 { 1386 /* Don't skip if a software KASAN mode is enabled. */ 1387 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1388 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1389 return false; 1390 1391 /* Skip, if hardware tag-based KASAN is not enabled. */ 1392 if (!kasan_hw_tags_enabled()) 1393 return true; 1394 1395 /* 1396 * With hardware tag-based KASAN enabled, skip if this has been 1397 * requested via __GFP_SKIP_KASAN. 1398 */ 1399 return flags & __GFP_SKIP_KASAN; 1400 } 1401 1402 static inline bool should_skip_init(gfp_t flags) 1403 { 1404 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1405 if (!kasan_hw_tags_enabled()) 1406 return false; 1407 1408 /* For hardware tag-based KASAN, skip if requested. */ 1409 return (flags & __GFP_SKIP_ZERO); 1410 } 1411 1412 inline void post_alloc_hook(struct page *page, unsigned int order, 1413 gfp_t gfp_flags) 1414 { 1415 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1416 !should_skip_init(gfp_flags); 1417 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1418 int i; 1419 1420 set_page_private(page, 0); 1421 set_page_refcounted(page); 1422 1423 arch_alloc_page(page, order); 1424 debug_pagealloc_map_pages(page, 1 << order); 1425 1426 /* 1427 * Page unpoisoning must happen before memory initialization. 1428 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1429 * allocations and the page unpoisoning code will complain. 1430 */ 1431 kernel_unpoison_pages(page, 1 << order); 1432 1433 /* 1434 * As memory initialization might be integrated into KASAN, 1435 * KASAN unpoisoning and memory initializion code must be 1436 * kept together to avoid discrepancies in behavior. 1437 */ 1438 1439 /* 1440 * If memory tags should be zeroed 1441 * (which happens only when memory should be initialized as well). 1442 */ 1443 if (zero_tags) { 1444 /* Initialize both memory and memory tags. */ 1445 for (i = 0; i != 1 << order; ++i) 1446 tag_clear_highpage(page + i); 1447 1448 /* Take note that memory was initialized by the loop above. */ 1449 init = false; 1450 } 1451 if (!should_skip_kasan_unpoison(gfp_flags) && 1452 kasan_unpoison_pages(page, order, init)) { 1453 /* Take note that memory was initialized by KASAN. */ 1454 if (kasan_has_integrated_init()) 1455 init = false; 1456 } else { 1457 /* 1458 * If memory tags have not been set by KASAN, reset the page 1459 * tags to ensure page_address() dereferencing does not fault. 1460 */ 1461 for (i = 0; i != 1 << order; ++i) 1462 page_kasan_tag_reset(page + i); 1463 } 1464 /* If memory is still not initialized, initialize it now. */ 1465 if (init) 1466 kernel_init_pages(page, 1 << order); 1467 1468 set_page_owner(page, order, gfp_flags); 1469 page_table_check_alloc(page, order); 1470 pgalloc_tag_add(page, current, 1 << order); 1471 } 1472 1473 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1474 unsigned int alloc_flags) 1475 { 1476 post_alloc_hook(page, order, gfp_flags); 1477 1478 if (order && (gfp_flags & __GFP_COMP)) 1479 prep_compound_page(page, order); 1480 1481 /* 1482 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1483 * allocate the page. The expectation is that the caller is taking 1484 * steps that will free more memory. The caller should avoid the page 1485 * being used for !PFMEMALLOC purposes. 1486 */ 1487 if (alloc_flags & ALLOC_NO_WATERMARKS) 1488 set_page_pfmemalloc(page); 1489 else 1490 clear_page_pfmemalloc(page); 1491 } 1492 1493 /* 1494 * Go through the free lists for the given migratetype and remove 1495 * the smallest available page from the freelists 1496 */ 1497 static __always_inline 1498 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1499 int migratetype) 1500 { 1501 unsigned int current_order; 1502 struct free_area *area; 1503 struct page *page; 1504 1505 /* Find a page of the appropriate size in the preferred list */ 1506 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1507 area = &(zone->free_area[current_order]); 1508 page = get_page_from_free_area(area, migratetype); 1509 if (!page) 1510 continue; 1511 del_page_from_free_list(page, zone, current_order, migratetype); 1512 expand(zone, page, order, current_order, migratetype); 1513 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1514 pcp_allowed_order(order) && 1515 migratetype < MIGRATE_PCPTYPES); 1516 return page; 1517 } 1518 1519 return NULL; 1520 } 1521 1522 1523 /* 1524 * This array describes the order lists are fallen back to when 1525 * the free lists for the desirable migrate type are depleted 1526 * 1527 * The other migratetypes do not have fallbacks. 1528 */ 1529 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1530 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1531 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1532 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1533 }; 1534 1535 #ifdef CONFIG_CMA 1536 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1537 unsigned int order) 1538 { 1539 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1540 } 1541 #else 1542 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1543 unsigned int order) { return NULL; } 1544 #endif 1545 1546 /* 1547 * Change the type of a block and move all its free pages to that 1548 * type's freelist. 1549 */ 1550 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1551 int old_mt, int new_mt) 1552 { 1553 struct page *page; 1554 unsigned long pfn, end_pfn; 1555 unsigned int order; 1556 int pages_moved = 0; 1557 1558 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1559 end_pfn = pageblock_end_pfn(start_pfn); 1560 1561 for (pfn = start_pfn; pfn < end_pfn;) { 1562 page = pfn_to_page(pfn); 1563 if (!PageBuddy(page)) { 1564 pfn++; 1565 continue; 1566 } 1567 1568 /* Make sure we are not inadvertently changing nodes */ 1569 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1570 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1571 1572 order = buddy_order(page); 1573 1574 move_to_free_list(page, zone, order, old_mt, new_mt); 1575 1576 pfn += 1 << order; 1577 pages_moved += 1 << order; 1578 } 1579 1580 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1581 1582 return pages_moved; 1583 } 1584 1585 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1586 unsigned long *start_pfn, 1587 int *num_free, int *num_movable) 1588 { 1589 unsigned long pfn, start, end; 1590 1591 pfn = page_to_pfn(page); 1592 start = pageblock_start_pfn(pfn); 1593 end = pageblock_end_pfn(pfn); 1594 1595 /* 1596 * The caller only has the lock for @zone, don't touch ranges 1597 * that straddle into other zones. While we could move part of 1598 * the range that's inside the zone, this call is usually 1599 * accompanied by other operations such as migratetype updates 1600 * which also should be locked. 1601 */ 1602 if (!zone_spans_pfn(zone, start)) 1603 return false; 1604 if (!zone_spans_pfn(zone, end - 1)) 1605 return false; 1606 1607 *start_pfn = start; 1608 1609 if (num_free) { 1610 *num_free = 0; 1611 *num_movable = 0; 1612 for (pfn = start; pfn < end;) { 1613 page = pfn_to_page(pfn); 1614 if (PageBuddy(page)) { 1615 int nr = 1 << buddy_order(page); 1616 1617 *num_free += nr; 1618 pfn += nr; 1619 continue; 1620 } 1621 /* 1622 * We assume that pages that could be isolated for 1623 * migration are movable. But we don't actually try 1624 * isolating, as that would be expensive. 1625 */ 1626 if (PageLRU(page) || __PageMovable(page)) 1627 (*num_movable)++; 1628 pfn++; 1629 } 1630 } 1631 1632 return true; 1633 } 1634 1635 static int move_freepages_block(struct zone *zone, struct page *page, 1636 int old_mt, int new_mt) 1637 { 1638 unsigned long start_pfn; 1639 1640 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1641 return -1; 1642 1643 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1644 } 1645 1646 #ifdef CONFIG_MEMORY_ISOLATION 1647 /* Look for a buddy that straddles start_pfn */ 1648 static unsigned long find_large_buddy(unsigned long start_pfn) 1649 { 1650 int order = 0; 1651 struct page *page; 1652 unsigned long pfn = start_pfn; 1653 1654 while (!PageBuddy(page = pfn_to_page(pfn))) { 1655 /* Nothing found */ 1656 if (++order > MAX_PAGE_ORDER) 1657 return start_pfn; 1658 pfn &= ~0UL << order; 1659 } 1660 1661 /* 1662 * Found a preceding buddy, but does it straddle? 1663 */ 1664 if (pfn + (1 << buddy_order(page)) > start_pfn) 1665 return pfn; 1666 1667 /* Nothing found */ 1668 return start_pfn; 1669 } 1670 1671 /* Split a multi-block free page into its individual pageblocks */ 1672 static void split_large_buddy(struct zone *zone, struct page *page, 1673 unsigned long pfn, int order) 1674 { 1675 unsigned long end_pfn = pfn + (1 << order); 1676 1677 VM_WARN_ON_ONCE(order <= pageblock_order); 1678 VM_WARN_ON_ONCE(pfn & (pageblock_nr_pages - 1)); 1679 1680 /* Caller removed page from freelist, buddy info cleared! */ 1681 VM_WARN_ON_ONCE(PageBuddy(page)); 1682 1683 while (pfn != end_pfn) { 1684 int mt = get_pfnblock_migratetype(page, pfn); 1685 1686 __free_one_page(page, pfn, zone, pageblock_order, mt, FPI_NONE); 1687 pfn += pageblock_nr_pages; 1688 page = pfn_to_page(pfn); 1689 } 1690 } 1691 1692 /** 1693 * move_freepages_block_isolate - move free pages in block for page isolation 1694 * @zone: the zone 1695 * @page: the pageblock page 1696 * @migratetype: migratetype to set on the pageblock 1697 * 1698 * This is similar to move_freepages_block(), but handles the special 1699 * case encountered in page isolation, where the block of interest 1700 * might be part of a larger buddy spanning multiple pageblocks. 1701 * 1702 * Unlike the regular page allocator path, which moves pages while 1703 * stealing buddies off the freelist, page isolation is interested in 1704 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1705 * 1706 * This function handles that. Straddling buddies are split into 1707 * individual pageblocks. Only the block of interest is moved. 1708 * 1709 * Returns %true if pages could be moved, %false otherwise. 1710 */ 1711 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1712 int migratetype) 1713 { 1714 unsigned long start_pfn, pfn; 1715 1716 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1717 return false; 1718 1719 /* No splits needed if buddies can't span multiple blocks */ 1720 if (pageblock_order == MAX_PAGE_ORDER) 1721 goto move; 1722 1723 /* We're a tail block in a larger buddy */ 1724 pfn = find_large_buddy(start_pfn); 1725 if (pfn != start_pfn) { 1726 struct page *buddy = pfn_to_page(pfn); 1727 int order = buddy_order(buddy); 1728 1729 del_page_from_free_list(buddy, zone, order, 1730 get_pfnblock_migratetype(buddy, pfn)); 1731 set_pageblock_migratetype(page, migratetype); 1732 split_large_buddy(zone, buddy, pfn, order); 1733 return true; 1734 } 1735 1736 /* We're the starting block of a larger buddy */ 1737 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1738 int order = buddy_order(page); 1739 1740 del_page_from_free_list(page, zone, order, 1741 get_pfnblock_migratetype(page, pfn)); 1742 set_pageblock_migratetype(page, migratetype); 1743 split_large_buddy(zone, page, pfn, order); 1744 return true; 1745 } 1746 move: 1747 __move_freepages_block(zone, start_pfn, 1748 get_pfnblock_migratetype(page, start_pfn), 1749 migratetype); 1750 return true; 1751 } 1752 #endif /* CONFIG_MEMORY_ISOLATION */ 1753 1754 static void change_pageblock_range(struct page *pageblock_page, 1755 int start_order, int migratetype) 1756 { 1757 int nr_pageblocks = 1 << (start_order - pageblock_order); 1758 1759 while (nr_pageblocks--) { 1760 set_pageblock_migratetype(pageblock_page, migratetype); 1761 pageblock_page += pageblock_nr_pages; 1762 } 1763 } 1764 1765 /* 1766 * When we are falling back to another migratetype during allocation, try to 1767 * steal extra free pages from the same pageblocks to satisfy further 1768 * allocations, instead of polluting multiple pageblocks. 1769 * 1770 * If we are stealing a relatively large buddy page, it is likely there will 1771 * be more free pages in the pageblock, so try to steal them all. For 1772 * reclaimable and unmovable allocations, we steal regardless of page size, 1773 * as fragmentation caused by those allocations polluting movable pageblocks 1774 * is worse than movable allocations stealing from unmovable and reclaimable 1775 * pageblocks. 1776 */ 1777 static bool can_steal_fallback(unsigned int order, int start_mt) 1778 { 1779 /* 1780 * Leaving this order check is intended, although there is 1781 * relaxed order check in next check. The reason is that 1782 * we can actually steal whole pageblock if this condition met, 1783 * but, below check doesn't guarantee it and that is just heuristic 1784 * so could be changed anytime. 1785 */ 1786 if (order >= pageblock_order) 1787 return true; 1788 1789 if (order >= pageblock_order / 2 || 1790 start_mt == MIGRATE_RECLAIMABLE || 1791 start_mt == MIGRATE_UNMOVABLE || 1792 page_group_by_mobility_disabled) 1793 return true; 1794 1795 return false; 1796 } 1797 1798 static inline bool boost_watermark(struct zone *zone) 1799 { 1800 unsigned long max_boost; 1801 1802 if (!watermark_boost_factor) 1803 return false; 1804 /* 1805 * Don't bother in zones that are unlikely to produce results. 1806 * On small machines, including kdump capture kernels running 1807 * in a small area, boosting the watermark can cause an out of 1808 * memory situation immediately. 1809 */ 1810 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1811 return false; 1812 1813 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1814 watermark_boost_factor, 10000); 1815 1816 /* 1817 * high watermark may be uninitialised if fragmentation occurs 1818 * very early in boot so do not boost. We do not fall 1819 * through and boost by pageblock_nr_pages as failing 1820 * allocations that early means that reclaim is not going 1821 * to help and it may even be impossible to reclaim the 1822 * boosted watermark resulting in a hang. 1823 */ 1824 if (!max_boost) 1825 return false; 1826 1827 max_boost = max(pageblock_nr_pages, max_boost); 1828 1829 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1830 max_boost); 1831 1832 return true; 1833 } 1834 1835 /* 1836 * This function implements actual steal behaviour. If order is large enough, we 1837 * can claim the whole pageblock for the requested migratetype. If not, we check 1838 * the pageblock for constituent pages; if at least half of the pages are free 1839 * or compatible, we can still claim the whole block, so pages freed in the 1840 * future will be put on the correct free list. Otherwise, we isolate exactly 1841 * the order we need from the fallback block and leave its migratetype alone. 1842 */ 1843 static struct page * 1844 steal_suitable_fallback(struct zone *zone, struct page *page, 1845 int current_order, int order, int start_type, 1846 unsigned int alloc_flags, bool whole_block) 1847 { 1848 int free_pages, movable_pages, alike_pages; 1849 unsigned long start_pfn; 1850 int block_type; 1851 1852 block_type = get_pageblock_migratetype(page); 1853 1854 /* 1855 * This can happen due to races and we want to prevent broken 1856 * highatomic accounting. 1857 */ 1858 if (is_migrate_highatomic(block_type)) 1859 goto single_page; 1860 1861 /* Take ownership for orders >= pageblock_order */ 1862 if (current_order >= pageblock_order) { 1863 del_page_from_free_list(page, zone, current_order, block_type); 1864 change_pageblock_range(page, current_order, start_type); 1865 expand(zone, page, order, current_order, start_type); 1866 return page; 1867 } 1868 1869 /* 1870 * Boost watermarks to increase reclaim pressure to reduce the 1871 * likelihood of future fallbacks. Wake kswapd now as the node 1872 * may be balanced overall and kswapd will not wake naturally. 1873 */ 1874 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1875 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1876 1877 /* We are not allowed to try stealing from the whole block */ 1878 if (!whole_block) 1879 goto single_page; 1880 1881 /* moving whole block can fail due to zone boundary conditions */ 1882 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 1883 &movable_pages)) 1884 goto single_page; 1885 1886 /* 1887 * Determine how many pages are compatible with our allocation. 1888 * For movable allocation, it's the number of movable pages which 1889 * we just obtained. For other types it's a bit more tricky. 1890 */ 1891 if (start_type == MIGRATE_MOVABLE) { 1892 alike_pages = movable_pages; 1893 } else { 1894 /* 1895 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 1896 * to MOVABLE pageblock, consider all non-movable pages as 1897 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 1898 * vice versa, be conservative since we can't distinguish the 1899 * exact migratetype of non-movable pages. 1900 */ 1901 if (block_type == MIGRATE_MOVABLE) 1902 alike_pages = pageblock_nr_pages 1903 - (free_pages + movable_pages); 1904 else 1905 alike_pages = 0; 1906 } 1907 /* 1908 * If a sufficient number of pages in the block are either free or of 1909 * compatible migratability as our allocation, claim the whole block. 1910 */ 1911 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 1912 page_group_by_mobility_disabled) { 1913 __move_freepages_block(zone, start_pfn, block_type, start_type); 1914 return __rmqueue_smallest(zone, order, start_type); 1915 } 1916 1917 single_page: 1918 del_page_from_free_list(page, zone, current_order, block_type); 1919 expand(zone, page, order, current_order, block_type); 1920 return page; 1921 } 1922 1923 /* 1924 * Check whether there is a suitable fallback freepage with requested order. 1925 * If only_stealable is true, this function returns fallback_mt only if 1926 * we can steal other freepages all together. This would help to reduce 1927 * fragmentation due to mixed migratetype pages in one pageblock. 1928 */ 1929 int find_suitable_fallback(struct free_area *area, unsigned int order, 1930 int migratetype, bool only_stealable, bool *can_steal) 1931 { 1932 int i; 1933 int fallback_mt; 1934 1935 if (area->nr_free == 0) 1936 return -1; 1937 1938 *can_steal = false; 1939 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 1940 fallback_mt = fallbacks[migratetype][i]; 1941 if (free_area_empty(area, fallback_mt)) 1942 continue; 1943 1944 if (can_steal_fallback(order, migratetype)) 1945 *can_steal = true; 1946 1947 if (!only_stealable) 1948 return fallback_mt; 1949 1950 if (*can_steal) 1951 return fallback_mt; 1952 } 1953 1954 return -1; 1955 } 1956 1957 /* 1958 * Reserve a pageblock for exclusive use of high-order atomic allocations if 1959 * there are no empty page blocks that contain a page with a suitable order 1960 */ 1961 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone) 1962 { 1963 int mt; 1964 unsigned long max_managed, flags; 1965 1966 /* 1967 * The number reserved as: minimum is 1 pageblock, maximum is 1968 * roughly 1% of a zone. But if 1% of a zone falls below a 1969 * pageblock size, then don't reserve any pageblocks. 1970 * Check is race-prone but harmless. 1971 */ 1972 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 1973 return; 1974 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 1975 if (zone->nr_reserved_highatomic >= max_managed) 1976 return; 1977 1978 spin_lock_irqsave(&zone->lock, flags); 1979 1980 /* Recheck the nr_reserved_highatomic limit under the lock */ 1981 if (zone->nr_reserved_highatomic >= max_managed) 1982 goto out_unlock; 1983 1984 /* Yoink! */ 1985 mt = get_pageblock_migratetype(page); 1986 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 1987 if (migratetype_is_mergeable(mt)) 1988 if (move_freepages_block(zone, page, mt, 1989 MIGRATE_HIGHATOMIC) != -1) 1990 zone->nr_reserved_highatomic += pageblock_nr_pages; 1991 1992 out_unlock: 1993 spin_unlock_irqrestore(&zone->lock, flags); 1994 } 1995 1996 /* 1997 * Used when an allocation is about to fail under memory pressure. This 1998 * potentially hurts the reliability of high-order allocations when under 1999 * intense memory pressure but failed atomic allocations should be easier 2000 * to recover from than an OOM. 2001 * 2002 * If @force is true, try to unreserve a pageblock even though highatomic 2003 * pageblock is exhausted. 2004 */ 2005 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2006 bool force) 2007 { 2008 struct zonelist *zonelist = ac->zonelist; 2009 unsigned long flags; 2010 struct zoneref *z; 2011 struct zone *zone; 2012 struct page *page; 2013 int order; 2014 int ret; 2015 2016 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2017 ac->nodemask) { 2018 /* 2019 * Preserve at least one pageblock unless memory pressure 2020 * is really high. 2021 */ 2022 if (!force && zone->nr_reserved_highatomic <= 2023 pageblock_nr_pages) 2024 continue; 2025 2026 spin_lock_irqsave(&zone->lock, flags); 2027 for (order = 0; order < NR_PAGE_ORDERS; order++) { 2028 struct free_area *area = &(zone->free_area[order]); 2029 int mt; 2030 2031 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2032 if (!page) 2033 continue; 2034 2035 mt = get_pageblock_migratetype(page); 2036 /* 2037 * In page freeing path, migratetype change is racy so 2038 * we can counter several free pages in a pageblock 2039 * in this loop although we changed the pageblock type 2040 * from highatomic to ac->migratetype. So we should 2041 * adjust the count once. 2042 */ 2043 if (is_migrate_highatomic(mt)) { 2044 /* 2045 * It should never happen but changes to 2046 * locking could inadvertently allow a per-cpu 2047 * drain to add pages to MIGRATE_HIGHATOMIC 2048 * while unreserving so be safe and watch for 2049 * underflows. 2050 */ 2051 zone->nr_reserved_highatomic -= min( 2052 pageblock_nr_pages, 2053 zone->nr_reserved_highatomic); 2054 } 2055 2056 /* 2057 * Convert to ac->migratetype and avoid the normal 2058 * pageblock stealing heuristics. Minimally, the caller 2059 * is doing the work and needs the pages. More 2060 * importantly, if the block was always converted to 2061 * MIGRATE_UNMOVABLE or another type then the number 2062 * of pageblocks that cannot be completely freed 2063 * may increase. 2064 */ 2065 ret = move_freepages_block(zone, page, mt, 2066 ac->migratetype); 2067 /* 2068 * Reserving this block already succeeded, so this should 2069 * not fail on zone boundaries. 2070 */ 2071 WARN_ON_ONCE(ret == -1); 2072 if (ret > 0) { 2073 spin_unlock_irqrestore(&zone->lock, flags); 2074 return ret; 2075 } 2076 } 2077 spin_unlock_irqrestore(&zone->lock, flags); 2078 } 2079 2080 return false; 2081 } 2082 2083 /* 2084 * Try finding a free buddy page on the fallback list and put it on the free 2085 * list of requested migratetype, possibly along with other pages from the same 2086 * block, depending on fragmentation avoidance heuristics. Returns true if 2087 * fallback was found so that __rmqueue_smallest() can grab it. 2088 * 2089 * The use of signed ints for order and current_order is a deliberate 2090 * deviation from the rest of this file, to make the for loop 2091 * condition simpler. 2092 */ 2093 static __always_inline struct page * 2094 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2095 unsigned int alloc_flags) 2096 { 2097 struct free_area *area; 2098 int current_order; 2099 int min_order = order; 2100 struct page *page; 2101 int fallback_mt; 2102 bool can_steal; 2103 2104 /* 2105 * Do not steal pages from freelists belonging to other pageblocks 2106 * i.e. orders < pageblock_order. If there are no local zones free, 2107 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2108 */ 2109 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2110 min_order = pageblock_order; 2111 2112 /* 2113 * Find the largest available free page in the other list. This roughly 2114 * approximates finding the pageblock with the most free pages, which 2115 * would be too costly to do exactly. 2116 */ 2117 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2118 --current_order) { 2119 area = &(zone->free_area[current_order]); 2120 fallback_mt = find_suitable_fallback(area, current_order, 2121 start_migratetype, false, &can_steal); 2122 if (fallback_mt == -1) 2123 continue; 2124 2125 /* 2126 * We cannot steal all free pages from the pageblock and the 2127 * requested migratetype is movable. In that case it's better to 2128 * steal and split the smallest available page instead of the 2129 * largest available page, because even if the next movable 2130 * allocation falls back into a different pageblock than this 2131 * one, it won't cause permanent fragmentation. 2132 */ 2133 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2134 && current_order > order) 2135 goto find_smallest; 2136 2137 goto do_steal; 2138 } 2139 2140 return NULL; 2141 2142 find_smallest: 2143 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2144 area = &(zone->free_area[current_order]); 2145 fallback_mt = find_suitable_fallback(area, current_order, 2146 start_migratetype, false, &can_steal); 2147 if (fallback_mt != -1) 2148 break; 2149 } 2150 2151 /* 2152 * This should not happen - we already found a suitable fallback 2153 * when looking for the largest page. 2154 */ 2155 VM_BUG_ON(current_order > MAX_PAGE_ORDER); 2156 2157 do_steal: 2158 page = get_page_from_free_area(area, fallback_mt); 2159 2160 /* take off list, maybe claim block, expand remainder */ 2161 page = steal_suitable_fallback(zone, page, current_order, order, 2162 start_migratetype, alloc_flags, can_steal); 2163 2164 trace_mm_page_alloc_extfrag(page, order, current_order, 2165 start_migratetype, fallback_mt); 2166 2167 return page; 2168 } 2169 2170 /* 2171 * Do the hard work of removing an element from the buddy allocator. 2172 * Call me with the zone->lock already held. 2173 */ 2174 static __always_inline struct page * 2175 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2176 unsigned int alloc_flags) 2177 { 2178 struct page *page; 2179 2180 if (IS_ENABLED(CONFIG_CMA)) { 2181 /* 2182 * Balance movable allocations between regular and CMA areas by 2183 * allocating from CMA when over half of the zone's free memory 2184 * is in the CMA area. 2185 */ 2186 if (alloc_flags & ALLOC_CMA && 2187 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2188 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2189 page = __rmqueue_cma_fallback(zone, order); 2190 if (page) 2191 return page; 2192 } 2193 } 2194 2195 page = __rmqueue_smallest(zone, order, migratetype); 2196 if (unlikely(!page)) { 2197 if (alloc_flags & ALLOC_CMA) 2198 page = __rmqueue_cma_fallback(zone, order); 2199 2200 if (!page) 2201 page = __rmqueue_fallback(zone, order, migratetype, 2202 alloc_flags); 2203 } 2204 return page; 2205 } 2206 2207 /* 2208 * Obtain a specified number of elements from the buddy allocator, all under 2209 * a single hold of the lock, for efficiency. Add them to the supplied list. 2210 * Returns the number of new pages which were placed at *list. 2211 */ 2212 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2213 unsigned long count, struct list_head *list, 2214 int migratetype, unsigned int alloc_flags) 2215 { 2216 unsigned long flags; 2217 int i; 2218 2219 spin_lock_irqsave(&zone->lock, flags); 2220 for (i = 0; i < count; ++i) { 2221 struct page *page = __rmqueue(zone, order, migratetype, 2222 alloc_flags); 2223 if (unlikely(page == NULL)) 2224 break; 2225 2226 /* 2227 * Split buddy pages returned by expand() are received here in 2228 * physical page order. The page is added to the tail of 2229 * caller's list. From the callers perspective, the linked list 2230 * is ordered by page number under some conditions. This is 2231 * useful for IO devices that can forward direction from the 2232 * head, thus also in the physical page order. This is useful 2233 * for IO devices that can merge IO requests if the physical 2234 * pages are ordered properly. 2235 */ 2236 list_add_tail(&page->pcp_list, list); 2237 } 2238 spin_unlock_irqrestore(&zone->lock, flags); 2239 2240 return i; 2241 } 2242 2243 /* 2244 * Called from the vmstat counter updater to decay the PCP high. 2245 * Return whether there are addition works to do. 2246 */ 2247 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2248 { 2249 int high_min, to_drain, batch; 2250 int todo = 0; 2251 2252 high_min = READ_ONCE(pcp->high_min); 2253 batch = READ_ONCE(pcp->batch); 2254 /* 2255 * Decrease pcp->high periodically to try to free possible 2256 * idle PCP pages. And, avoid to free too many pages to 2257 * control latency. This caps pcp->high decrement too. 2258 */ 2259 if (pcp->high > high_min) { 2260 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2261 pcp->high - (pcp->high >> 3), high_min); 2262 if (pcp->high > high_min) 2263 todo++; 2264 } 2265 2266 to_drain = pcp->count - pcp->high; 2267 if (to_drain > 0) { 2268 spin_lock(&pcp->lock); 2269 free_pcppages_bulk(zone, to_drain, pcp, 0); 2270 spin_unlock(&pcp->lock); 2271 todo++; 2272 } 2273 2274 return todo; 2275 } 2276 2277 #ifdef CONFIG_NUMA 2278 /* 2279 * Called from the vmstat counter updater to drain pagesets of this 2280 * currently executing processor on remote nodes after they have 2281 * expired. 2282 */ 2283 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2284 { 2285 int to_drain, batch; 2286 2287 batch = READ_ONCE(pcp->batch); 2288 to_drain = min(pcp->count, batch); 2289 if (to_drain > 0) { 2290 spin_lock(&pcp->lock); 2291 free_pcppages_bulk(zone, to_drain, pcp, 0); 2292 spin_unlock(&pcp->lock); 2293 } 2294 } 2295 #endif 2296 2297 /* 2298 * Drain pcplists of the indicated processor and zone. 2299 */ 2300 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2301 { 2302 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2303 int count = READ_ONCE(pcp->count); 2304 2305 while (count) { 2306 int to_drain = min(count, pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2307 count -= to_drain; 2308 2309 spin_lock(&pcp->lock); 2310 free_pcppages_bulk(zone, to_drain, pcp, 0); 2311 spin_unlock(&pcp->lock); 2312 } 2313 } 2314 2315 /* 2316 * Drain pcplists of all zones on the indicated processor. 2317 */ 2318 static void drain_pages(unsigned int cpu) 2319 { 2320 struct zone *zone; 2321 2322 for_each_populated_zone(zone) { 2323 drain_pages_zone(cpu, zone); 2324 } 2325 } 2326 2327 /* 2328 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2329 */ 2330 void drain_local_pages(struct zone *zone) 2331 { 2332 int cpu = smp_processor_id(); 2333 2334 if (zone) 2335 drain_pages_zone(cpu, zone); 2336 else 2337 drain_pages(cpu); 2338 } 2339 2340 /* 2341 * The implementation of drain_all_pages(), exposing an extra parameter to 2342 * drain on all cpus. 2343 * 2344 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2345 * not empty. The check for non-emptiness can however race with a free to 2346 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2347 * that need the guarantee that every CPU has drained can disable the 2348 * optimizing racy check. 2349 */ 2350 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2351 { 2352 int cpu; 2353 2354 /* 2355 * Allocate in the BSS so we won't require allocation in 2356 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2357 */ 2358 static cpumask_t cpus_with_pcps; 2359 2360 /* 2361 * Do not drain if one is already in progress unless it's specific to 2362 * a zone. Such callers are primarily CMA and memory hotplug and need 2363 * the drain to be complete when the call returns. 2364 */ 2365 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2366 if (!zone) 2367 return; 2368 mutex_lock(&pcpu_drain_mutex); 2369 } 2370 2371 /* 2372 * We don't care about racing with CPU hotplug event 2373 * as offline notification will cause the notified 2374 * cpu to drain that CPU pcps and on_each_cpu_mask 2375 * disables preemption as part of its processing 2376 */ 2377 for_each_online_cpu(cpu) { 2378 struct per_cpu_pages *pcp; 2379 struct zone *z; 2380 bool has_pcps = false; 2381 2382 if (force_all_cpus) { 2383 /* 2384 * The pcp.count check is racy, some callers need a 2385 * guarantee that no cpu is missed. 2386 */ 2387 has_pcps = true; 2388 } else if (zone) { 2389 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2390 if (pcp->count) 2391 has_pcps = true; 2392 } else { 2393 for_each_populated_zone(z) { 2394 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2395 if (pcp->count) { 2396 has_pcps = true; 2397 break; 2398 } 2399 } 2400 } 2401 2402 if (has_pcps) 2403 cpumask_set_cpu(cpu, &cpus_with_pcps); 2404 else 2405 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2406 } 2407 2408 for_each_cpu(cpu, &cpus_with_pcps) { 2409 if (zone) 2410 drain_pages_zone(cpu, zone); 2411 else 2412 drain_pages(cpu); 2413 } 2414 2415 mutex_unlock(&pcpu_drain_mutex); 2416 } 2417 2418 /* 2419 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2420 * 2421 * When zone parameter is non-NULL, spill just the single zone's pages. 2422 */ 2423 void drain_all_pages(struct zone *zone) 2424 { 2425 __drain_all_pages(zone, false); 2426 } 2427 2428 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2429 { 2430 int min_nr_free, max_nr_free; 2431 2432 /* Free as much as possible if batch freeing high-order pages. */ 2433 if (unlikely(free_high)) 2434 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2435 2436 /* Check for PCP disabled or boot pageset */ 2437 if (unlikely(high < batch)) 2438 return 1; 2439 2440 /* Leave at least pcp->batch pages on the list */ 2441 min_nr_free = batch; 2442 max_nr_free = high - batch; 2443 2444 /* 2445 * Increase the batch number to the number of the consecutive 2446 * freed pages to reduce zone lock contention. 2447 */ 2448 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2449 2450 return batch; 2451 } 2452 2453 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2454 int batch, bool free_high) 2455 { 2456 int high, high_min, high_max; 2457 2458 high_min = READ_ONCE(pcp->high_min); 2459 high_max = READ_ONCE(pcp->high_max); 2460 high = pcp->high = clamp(pcp->high, high_min, high_max); 2461 2462 if (unlikely(!high)) 2463 return 0; 2464 2465 if (unlikely(free_high)) { 2466 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2467 high_min); 2468 return 0; 2469 } 2470 2471 /* 2472 * If reclaim is active, limit the number of pages that can be 2473 * stored on pcp lists 2474 */ 2475 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2476 int free_count = max_t(int, pcp->free_count, batch); 2477 2478 pcp->high = max(high - free_count, high_min); 2479 return min(batch << 2, pcp->high); 2480 } 2481 2482 if (high_min == high_max) 2483 return high; 2484 2485 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2486 int free_count = max_t(int, pcp->free_count, batch); 2487 2488 pcp->high = max(high - free_count, high_min); 2489 high = max(pcp->count, high_min); 2490 } else if (pcp->count >= high) { 2491 int need_high = pcp->free_count + batch; 2492 2493 /* pcp->high should be large enough to hold batch freed pages */ 2494 if (pcp->high < need_high) 2495 pcp->high = clamp(need_high, high_min, high_max); 2496 } 2497 2498 return high; 2499 } 2500 2501 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2502 struct page *page, int migratetype, 2503 unsigned int order) 2504 { 2505 int high, batch; 2506 int pindex; 2507 bool free_high = false; 2508 2509 /* 2510 * On freeing, reduce the number of pages that are batch allocated. 2511 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2512 * allocations. 2513 */ 2514 pcp->alloc_factor >>= 1; 2515 __count_vm_events(PGFREE, 1 << order); 2516 pindex = order_to_pindex(migratetype, order); 2517 list_add(&page->pcp_list, &pcp->lists[pindex]); 2518 pcp->count += 1 << order; 2519 2520 batch = READ_ONCE(pcp->batch); 2521 /* 2522 * As high-order pages other than THP's stored on PCP can contribute 2523 * to fragmentation, limit the number stored when PCP is heavily 2524 * freeing without allocation. The remainder after bulk freeing 2525 * stops will be drained from vmstat refresh context. 2526 */ 2527 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2528 free_high = (pcp->free_count >= batch && 2529 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2530 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2531 pcp->count >= READ_ONCE(batch))); 2532 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2533 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2534 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2535 } 2536 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2537 pcp->free_count += (1 << order); 2538 high = nr_pcp_high(pcp, zone, batch, free_high); 2539 if (pcp->count >= high) { 2540 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2541 pcp, pindex); 2542 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2543 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2544 ZONE_MOVABLE, 0)) 2545 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2546 } 2547 } 2548 2549 /* 2550 * Free a pcp page 2551 */ 2552 void free_unref_page(struct page *page, unsigned int order) 2553 { 2554 unsigned long __maybe_unused UP_flags; 2555 struct per_cpu_pages *pcp; 2556 struct zone *zone; 2557 unsigned long pfn = page_to_pfn(page); 2558 int migratetype; 2559 2560 if (!pcp_allowed_order(order)) { 2561 __free_pages_ok(page, order, FPI_NONE); 2562 return; 2563 } 2564 2565 if (!free_pages_prepare(page, order)) 2566 return; 2567 2568 /* 2569 * We only track unmovable, reclaimable and movable on pcp lists. 2570 * Place ISOLATE pages on the isolated list because they are being 2571 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2572 * get those areas back if necessary. Otherwise, we may have to free 2573 * excessively into the page allocator 2574 */ 2575 migratetype = get_pfnblock_migratetype(page, pfn); 2576 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2577 if (unlikely(is_migrate_isolate(migratetype))) { 2578 free_one_page(page_zone(page), page, pfn, order, FPI_NONE); 2579 return; 2580 } 2581 migratetype = MIGRATE_MOVABLE; 2582 } 2583 2584 zone = page_zone(page); 2585 pcp_trylock_prepare(UP_flags); 2586 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2587 if (pcp) { 2588 free_unref_page_commit(zone, pcp, page, migratetype, order); 2589 pcp_spin_unlock(pcp); 2590 } else { 2591 free_one_page(zone, page, pfn, order, FPI_NONE); 2592 } 2593 pcp_trylock_finish(UP_flags); 2594 } 2595 2596 /* 2597 * Free a batch of folios 2598 */ 2599 void free_unref_folios(struct folio_batch *folios) 2600 { 2601 unsigned long __maybe_unused UP_flags; 2602 struct per_cpu_pages *pcp = NULL; 2603 struct zone *locked_zone = NULL; 2604 int i, j; 2605 2606 /* Prepare folios for freeing */ 2607 for (i = 0, j = 0; i < folios->nr; i++) { 2608 struct folio *folio = folios->folios[i]; 2609 unsigned long pfn = folio_pfn(folio); 2610 unsigned int order = folio_order(folio); 2611 2612 if (order > 0 && folio_test_large_rmappable(folio)) 2613 folio_undo_large_rmappable(folio); 2614 if (!free_pages_prepare(&folio->page, order)) 2615 continue; 2616 /* 2617 * Free orders not handled on the PCP directly to the 2618 * allocator. 2619 */ 2620 if (!pcp_allowed_order(order)) { 2621 free_one_page(folio_zone(folio), &folio->page, 2622 pfn, order, FPI_NONE); 2623 continue; 2624 } 2625 folio->private = (void *)(unsigned long)order; 2626 if (j != i) 2627 folios->folios[j] = folio; 2628 j++; 2629 } 2630 folios->nr = j; 2631 2632 for (i = 0; i < folios->nr; i++) { 2633 struct folio *folio = folios->folios[i]; 2634 struct zone *zone = folio_zone(folio); 2635 unsigned long pfn = folio_pfn(folio); 2636 unsigned int order = (unsigned long)folio->private; 2637 int migratetype; 2638 2639 folio->private = NULL; 2640 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2641 2642 /* Different zone requires a different pcp lock */ 2643 if (zone != locked_zone || 2644 is_migrate_isolate(migratetype)) { 2645 if (pcp) { 2646 pcp_spin_unlock(pcp); 2647 pcp_trylock_finish(UP_flags); 2648 locked_zone = NULL; 2649 pcp = NULL; 2650 } 2651 2652 /* 2653 * Free isolated pages directly to the 2654 * allocator, see comment in free_unref_page. 2655 */ 2656 if (is_migrate_isolate(migratetype)) { 2657 free_one_page(zone, &folio->page, pfn, 2658 order, FPI_NONE); 2659 continue; 2660 } 2661 2662 /* 2663 * trylock is necessary as folios may be getting freed 2664 * from IRQ or SoftIRQ context after an IO completion. 2665 */ 2666 pcp_trylock_prepare(UP_flags); 2667 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2668 if (unlikely(!pcp)) { 2669 pcp_trylock_finish(UP_flags); 2670 free_one_page(zone, &folio->page, pfn, 2671 order, FPI_NONE); 2672 continue; 2673 } 2674 locked_zone = zone; 2675 } 2676 2677 /* 2678 * Non-isolated types over MIGRATE_PCPTYPES get added 2679 * to the MIGRATE_MOVABLE pcp list. 2680 */ 2681 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2682 migratetype = MIGRATE_MOVABLE; 2683 2684 trace_mm_page_free_batched(&folio->page); 2685 free_unref_page_commit(zone, pcp, &folio->page, migratetype, 2686 order); 2687 } 2688 2689 if (pcp) { 2690 pcp_spin_unlock(pcp); 2691 pcp_trylock_finish(UP_flags); 2692 } 2693 folio_batch_reinit(folios); 2694 } 2695 2696 /* 2697 * split_page takes a non-compound higher-order page, and splits it into 2698 * n (1<<order) sub-pages: page[0..n] 2699 * Each sub-page must be freed individually. 2700 * 2701 * Note: this is probably too low level an operation for use in drivers. 2702 * Please consult with lkml before using this in your driver. 2703 */ 2704 void split_page(struct page *page, unsigned int order) 2705 { 2706 int i; 2707 2708 VM_BUG_ON_PAGE(PageCompound(page), page); 2709 VM_BUG_ON_PAGE(!page_count(page), page); 2710 2711 for (i = 1; i < (1 << order); i++) 2712 set_page_refcounted(page + i); 2713 split_page_owner(page, order, 0); 2714 pgalloc_tag_split(page, 1 << order); 2715 split_page_memcg(page, order, 0); 2716 } 2717 EXPORT_SYMBOL_GPL(split_page); 2718 2719 int __isolate_free_page(struct page *page, unsigned int order) 2720 { 2721 struct zone *zone = page_zone(page); 2722 int mt = get_pageblock_migratetype(page); 2723 2724 if (!is_migrate_isolate(mt)) { 2725 unsigned long watermark; 2726 /* 2727 * Obey watermarks as if the page was being allocated. We can 2728 * emulate a high-order watermark check with a raised order-0 2729 * watermark, because we already know our high-order page 2730 * exists. 2731 */ 2732 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2733 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2734 return 0; 2735 } 2736 2737 del_page_from_free_list(page, zone, order, mt); 2738 2739 /* 2740 * Set the pageblock if the isolated page is at least half of a 2741 * pageblock 2742 */ 2743 if (order >= pageblock_order - 1) { 2744 struct page *endpage = page + (1 << order) - 1; 2745 for (; page < endpage; page += pageblock_nr_pages) { 2746 int mt = get_pageblock_migratetype(page); 2747 /* 2748 * Only change normal pageblocks (i.e., they can merge 2749 * with others) 2750 */ 2751 if (migratetype_is_mergeable(mt)) 2752 move_freepages_block(zone, page, mt, 2753 MIGRATE_MOVABLE); 2754 } 2755 } 2756 2757 return 1UL << order; 2758 } 2759 2760 /** 2761 * __putback_isolated_page - Return a now-isolated page back where we got it 2762 * @page: Page that was isolated 2763 * @order: Order of the isolated page 2764 * @mt: The page's pageblock's migratetype 2765 * 2766 * This function is meant to return a page pulled from the free lists via 2767 * __isolate_free_page back to the free lists they were pulled from. 2768 */ 2769 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2770 { 2771 struct zone *zone = page_zone(page); 2772 2773 /* zone lock should be held when this function is called */ 2774 lockdep_assert_held(&zone->lock); 2775 2776 /* Return isolated page to tail of freelist. */ 2777 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2778 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2779 } 2780 2781 /* 2782 * Update NUMA hit/miss statistics 2783 */ 2784 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2785 long nr_account) 2786 { 2787 #ifdef CONFIG_NUMA 2788 enum numa_stat_item local_stat = NUMA_LOCAL; 2789 2790 /* skip numa counters update if numa stats is disabled */ 2791 if (!static_branch_likely(&vm_numa_stat_key)) 2792 return; 2793 2794 if (zone_to_nid(z) != numa_node_id()) 2795 local_stat = NUMA_OTHER; 2796 2797 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2798 __count_numa_events(z, NUMA_HIT, nr_account); 2799 else { 2800 __count_numa_events(z, NUMA_MISS, nr_account); 2801 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2802 } 2803 __count_numa_events(z, local_stat, nr_account); 2804 #endif 2805 } 2806 2807 static __always_inline 2808 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2809 unsigned int order, unsigned int alloc_flags, 2810 int migratetype) 2811 { 2812 struct page *page; 2813 unsigned long flags; 2814 2815 do { 2816 page = NULL; 2817 spin_lock_irqsave(&zone->lock, flags); 2818 if (alloc_flags & ALLOC_HIGHATOMIC) 2819 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2820 if (!page) { 2821 page = __rmqueue(zone, order, migratetype, alloc_flags); 2822 2823 /* 2824 * If the allocation fails, allow OOM handling access 2825 * to HIGHATOMIC reserves as failing now is worse than 2826 * failing a high-order atomic allocation in the 2827 * future. 2828 */ 2829 if (!page && (alloc_flags & ALLOC_OOM)) 2830 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2831 2832 if (!page) { 2833 spin_unlock_irqrestore(&zone->lock, flags); 2834 return NULL; 2835 } 2836 } 2837 spin_unlock_irqrestore(&zone->lock, flags); 2838 } while (check_new_pages(page, order)); 2839 2840 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2841 zone_statistics(preferred_zone, zone, 1); 2842 2843 return page; 2844 } 2845 2846 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 2847 { 2848 int high, base_batch, batch, max_nr_alloc; 2849 int high_max, high_min; 2850 2851 base_batch = READ_ONCE(pcp->batch); 2852 high_min = READ_ONCE(pcp->high_min); 2853 high_max = READ_ONCE(pcp->high_max); 2854 high = pcp->high = clamp(pcp->high, high_min, high_max); 2855 2856 /* Check for PCP disabled or boot pageset */ 2857 if (unlikely(high < base_batch)) 2858 return 1; 2859 2860 if (order) 2861 batch = base_batch; 2862 else 2863 batch = (base_batch << pcp->alloc_factor); 2864 2865 /* 2866 * If we had larger pcp->high, we could avoid to allocate from 2867 * zone. 2868 */ 2869 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 2870 high = pcp->high = min(high + batch, high_max); 2871 2872 if (!order) { 2873 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 2874 /* 2875 * Double the number of pages allocated each time there is 2876 * subsequent allocation of order-0 pages without any freeing. 2877 */ 2878 if (batch <= max_nr_alloc && 2879 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 2880 pcp->alloc_factor++; 2881 batch = min(batch, max_nr_alloc); 2882 } 2883 2884 /* 2885 * Scale batch relative to order if batch implies free pages 2886 * can be stored on the PCP. Batch can be 1 for small zones or 2887 * for boot pagesets which should never store free pages as 2888 * the pages may belong to arbitrary zones. 2889 */ 2890 if (batch > 1) 2891 batch = max(batch >> order, 2); 2892 2893 return batch; 2894 } 2895 2896 /* Remove page from the per-cpu list, caller must protect the list */ 2897 static inline 2898 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2899 int migratetype, 2900 unsigned int alloc_flags, 2901 struct per_cpu_pages *pcp, 2902 struct list_head *list) 2903 { 2904 struct page *page; 2905 2906 do { 2907 if (list_empty(list)) { 2908 int batch = nr_pcp_alloc(pcp, zone, order); 2909 int alloced; 2910 2911 alloced = rmqueue_bulk(zone, order, 2912 batch, list, 2913 migratetype, alloc_flags); 2914 2915 pcp->count += alloced << order; 2916 if (unlikely(list_empty(list))) 2917 return NULL; 2918 } 2919 2920 page = list_first_entry(list, struct page, pcp_list); 2921 list_del(&page->pcp_list); 2922 pcp->count -= 1 << order; 2923 } while (check_new_pages(page, order)); 2924 2925 return page; 2926 } 2927 2928 /* Lock and remove page from the per-cpu list */ 2929 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2930 struct zone *zone, unsigned int order, 2931 int migratetype, unsigned int alloc_flags) 2932 { 2933 struct per_cpu_pages *pcp; 2934 struct list_head *list; 2935 struct page *page; 2936 unsigned long __maybe_unused UP_flags; 2937 2938 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2939 pcp_trylock_prepare(UP_flags); 2940 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2941 if (!pcp) { 2942 pcp_trylock_finish(UP_flags); 2943 return NULL; 2944 } 2945 2946 /* 2947 * On allocation, reduce the number of pages that are batch freed. 2948 * See nr_pcp_free() where free_factor is increased for subsequent 2949 * frees. 2950 */ 2951 pcp->free_count >>= 1; 2952 list = &pcp->lists[order_to_pindex(migratetype, order)]; 2953 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 2954 pcp_spin_unlock(pcp); 2955 pcp_trylock_finish(UP_flags); 2956 if (page) { 2957 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2958 zone_statistics(preferred_zone, zone, 1); 2959 } 2960 return page; 2961 } 2962 2963 /* 2964 * Allocate a page from the given zone. 2965 * Use pcplists for THP or "cheap" high-order allocations. 2966 */ 2967 2968 /* 2969 * Do not instrument rmqueue() with KMSAN. This function may call 2970 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 2971 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 2972 * may call rmqueue() again, which will result in a deadlock. 2973 */ 2974 __no_sanitize_memory 2975 static inline 2976 struct page *rmqueue(struct zone *preferred_zone, 2977 struct zone *zone, unsigned int order, 2978 gfp_t gfp_flags, unsigned int alloc_flags, 2979 int migratetype) 2980 { 2981 struct page *page; 2982 2983 /* 2984 * We most definitely don't want callers attempting to 2985 * allocate greater than order-1 page units with __GFP_NOFAIL. 2986 */ 2987 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2988 2989 if (likely(pcp_allowed_order(order))) { 2990 page = rmqueue_pcplist(preferred_zone, zone, order, 2991 migratetype, alloc_flags); 2992 if (likely(page)) 2993 goto out; 2994 } 2995 2996 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 2997 migratetype); 2998 2999 out: 3000 /* Separate test+clear to avoid unnecessary atomics */ 3001 if ((alloc_flags & ALLOC_KSWAPD) && 3002 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3003 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3004 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3005 } 3006 3007 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3008 return page; 3009 } 3010 3011 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3012 { 3013 return __should_fail_alloc_page(gfp_mask, order); 3014 } 3015 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3016 3017 static inline long __zone_watermark_unusable_free(struct zone *z, 3018 unsigned int order, unsigned int alloc_flags) 3019 { 3020 long unusable_free = (1 << order) - 1; 3021 3022 /* 3023 * If the caller does not have rights to reserves below the min 3024 * watermark then subtract the high-atomic reserves. This will 3025 * over-estimate the size of the atomic reserve but it avoids a search. 3026 */ 3027 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3028 unusable_free += z->nr_reserved_highatomic; 3029 3030 #ifdef CONFIG_CMA 3031 /* If allocation can't use CMA areas don't use free CMA pages */ 3032 if (!(alloc_flags & ALLOC_CMA)) 3033 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3034 #endif 3035 #ifdef CONFIG_UNACCEPTED_MEMORY 3036 unusable_free += zone_page_state(z, NR_UNACCEPTED); 3037 #endif 3038 3039 return unusable_free; 3040 } 3041 3042 /* 3043 * Return true if free base pages are above 'mark'. For high-order checks it 3044 * will return true of the order-0 watermark is reached and there is at least 3045 * one free page of a suitable size. Checking now avoids taking the zone lock 3046 * to check in the allocation paths if no pages are free. 3047 */ 3048 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3049 int highest_zoneidx, unsigned int alloc_flags, 3050 long free_pages) 3051 { 3052 long min = mark; 3053 int o; 3054 3055 /* free_pages may go negative - that's OK */ 3056 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3057 3058 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3059 /* 3060 * __GFP_HIGH allows access to 50% of the min reserve as well 3061 * as OOM. 3062 */ 3063 if (alloc_flags & ALLOC_MIN_RESERVE) { 3064 min -= min / 2; 3065 3066 /* 3067 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3068 * access more reserves than just __GFP_HIGH. Other 3069 * non-blocking allocations requests such as GFP_NOWAIT 3070 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3071 * access to the min reserve. 3072 */ 3073 if (alloc_flags & ALLOC_NON_BLOCK) 3074 min -= min / 4; 3075 } 3076 3077 /* 3078 * OOM victims can try even harder than the normal reserve 3079 * users on the grounds that it's definitely going to be in 3080 * the exit path shortly and free memory. Any allocation it 3081 * makes during the free path will be small and short-lived. 3082 */ 3083 if (alloc_flags & ALLOC_OOM) 3084 min -= min / 2; 3085 } 3086 3087 /* 3088 * Check watermarks for an order-0 allocation request. If these 3089 * are not met, then a high-order request also cannot go ahead 3090 * even if a suitable page happened to be free. 3091 */ 3092 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3093 return false; 3094 3095 /* If this is an order-0 request then the watermark is fine */ 3096 if (!order) 3097 return true; 3098 3099 /* For a high-order request, check at least one suitable page is free */ 3100 for (o = order; o < NR_PAGE_ORDERS; o++) { 3101 struct free_area *area = &z->free_area[o]; 3102 int mt; 3103 3104 if (!area->nr_free) 3105 continue; 3106 3107 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3108 if (!free_area_empty(area, mt)) 3109 return true; 3110 } 3111 3112 #ifdef CONFIG_CMA 3113 if ((alloc_flags & ALLOC_CMA) && 3114 !free_area_empty(area, MIGRATE_CMA)) { 3115 return true; 3116 } 3117 #endif 3118 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3119 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3120 return true; 3121 } 3122 } 3123 return false; 3124 } 3125 3126 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3127 int highest_zoneidx, unsigned int alloc_flags) 3128 { 3129 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3130 zone_page_state(z, NR_FREE_PAGES)); 3131 } 3132 3133 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3134 unsigned long mark, int highest_zoneidx, 3135 unsigned int alloc_flags, gfp_t gfp_mask) 3136 { 3137 long free_pages; 3138 3139 free_pages = zone_page_state(z, NR_FREE_PAGES); 3140 3141 /* 3142 * Fast check for order-0 only. If this fails then the reserves 3143 * need to be calculated. 3144 */ 3145 if (!order) { 3146 long usable_free; 3147 long reserved; 3148 3149 usable_free = free_pages; 3150 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3151 3152 /* reserved may over estimate high-atomic reserves. */ 3153 usable_free -= min(usable_free, reserved); 3154 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3155 return true; 3156 } 3157 3158 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3159 free_pages)) 3160 return true; 3161 3162 /* 3163 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3164 * when checking the min watermark. The min watermark is the 3165 * point where boosting is ignored so that kswapd is woken up 3166 * when below the low watermark. 3167 */ 3168 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3169 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3170 mark = z->_watermark[WMARK_MIN]; 3171 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3172 alloc_flags, free_pages); 3173 } 3174 3175 return false; 3176 } 3177 3178 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3179 unsigned long mark, int highest_zoneidx) 3180 { 3181 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3182 3183 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3184 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3185 3186 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3187 free_pages); 3188 } 3189 3190 #ifdef CONFIG_NUMA 3191 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3192 3193 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3194 { 3195 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3196 node_reclaim_distance; 3197 } 3198 #else /* CONFIG_NUMA */ 3199 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3200 { 3201 return true; 3202 } 3203 #endif /* CONFIG_NUMA */ 3204 3205 /* 3206 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3207 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3208 * premature use of a lower zone may cause lowmem pressure problems that 3209 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3210 * probably too small. It only makes sense to spread allocations to avoid 3211 * fragmentation between the Normal and DMA32 zones. 3212 */ 3213 static inline unsigned int 3214 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3215 { 3216 unsigned int alloc_flags; 3217 3218 /* 3219 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3220 * to save a branch. 3221 */ 3222 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3223 3224 #ifdef CONFIG_ZONE_DMA32 3225 if (!zone) 3226 return alloc_flags; 3227 3228 if (zone_idx(zone) != ZONE_NORMAL) 3229 return alloc_flags; 3230 3231 /* 3232 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3233 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3234 * on UMA that if Normal is populated then so is DMA32. 3235 */ 3236 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3237 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3238 return alloc_flags; 3239 3240 alloc_flags |= ALLOC_NOFRAGMENT; 3241 #endif /* CONFIG_ZONE_DMA32 */ 3242 return alloc_flags; 3243 } 3244 3245 /* Must be called after current_gfp_context() which can change gfp_mask */ 3246 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3247 unsigned int alloc_flags) 3248 { 3249 #ifdef CONFIG_CMA 3250 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3251 alloc_flags |= ALLOC_CMA; 3252 #endif 3253 return alloc_flags; 3254 } 3255 3256 /* 3257 * get_page_from_freelist goes through the zonelist trying to allocate 3258 * a page. 3259 */ 3260 static struct page * 3261 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3262 const struct alloc_context *ac) 3263 { 3264 struct zoneref *z; 3265 struct zone *zone; 3266 struct pglist_data *last_pgdat = NULL; 3267 bool last_pgdat_dirty_ok = false; 3268 bool no_fallback; 3269 3270 retry: 3271 /* 3272 * Scan zonelist, looking for a zone with enough free. 3273 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3274 */ 3275 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3276 z = ac->preferred_zoneref; 3277 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3278 ac->nodemask) { 3279 struct page *page; 3280 unsigned long mark; 3281 3282 if (cpusets_enabled() && 3283 (alloc_flags & ALLOC_CPUSET) && 3284 !__cpuset_zone_allowed(zone, gfp_mask)) 3285 continue; 3286 /* 3287 * When allocating a page cache page for writing, we 3288 * want to get it from a node that is within its dirty 3289 * limit, such that no single node holds more than its 3290 * proportional share of globally allowed dirty pages. 3291 * The dirty limits take into account the node's 3292 * lowmem reserves and high watermark so that kswapd 3293 * should be able to balance it without having to 3294 * write pages from its LRU list. 3295 * 3296 * XXX: For now, allow allocations to potentially 3297 * exceed the per-node dirty limit in the slowpath 3298 * (spread_dirty_pages unset) before going into reclaim, 3299 * which is important when on a NUMA setup the allowed 3300 * nodes are together not big enough to reach the 3301 * global limit. The proper fix for these situations 3302 * will require awareness of nodes in the 3303 * dirty-throttling and the flusher threads. 3304 */ 3305 if (ac->spread_dirty_pages) { 3306 if (last_pgdat != zone->zone_pgdat) { 3307 last_pgdat = zone->zone_pgdat; 3308 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3309 } 3310 3311 if (!last_pgdat_dirty_ok) 3312 continue; 3313 } 3314 3315 if (no_fallback && nr_online_nodes > 1 && 3316 zone != ac->preferred_zoneref->zone) { 3317 int local_nid; 3318 3319 /* 3320 * If moving to a remote node, retry but allow 3321 * fragmenting fallbacks. Locality is more important 3322 * than fragmentation avoidance. 3323 */ 3324 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3325 if (zone_to_nid(zone) != local_nid) { 3326 alloc_flags &= ~ALLOC_NOFRAGMENT; 3327 goto retry; 3328 } 3329 } 3330 3331 /* 3332 * Detect whether the number of free pages is below high 3333 * watermark. If so, we will decrease pcp->high and free 3334 * PCP pages in free path to reduce the possibility of 3335 * premature page reclaiming. Detection is done here to 3336 * avoid to do that in hotter free path. 3337 */ 3338 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3339 goto check_alloc_wmark; 3340 3341 mark = high_wmark_pages(zone); 3342 if (zone_watermark_fast(zone, order, mark, 3343 ac->highest_zoneidx, alloc_flags, 3344 gfp_mask)) 3345 goto try_this_zone; 3346 else 3347 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3348 3349 check_alloc_wmark: 3350 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3351 if (!zone_watermark_fast(zone, order, mark, 3352 ac->highest_zoneidx, alloc_flags, 3353 gfp_mask)) { 3354 int ret; 3355 3356 if (has_unaccepted_memory()) { 3357 if (try_to_accept_memory(zone, order)) 3358 goto try_this_zone; 3359 } 3360 3361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3362 /* 3363 * Watermark failed for this zone, but see if we can 3364 * grow this zone if it contains deferred pages. 3365 */ 3366 if (deferred_pages_enabled()) { 3367 if (_deferred_grow_zone(zone, order)) 3368 goto try_this_zone; 3369 } 3370 #endif 3371 /* Checked here to keep the fast path fast */ 3372 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3373 if (alloc_flags & ALLOC_NO_WATERMARKS) 3374 goto try_this_zone; 3375 3376 if (!node_reclaim_enabled() || 3377 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3378 continue; 3379 3380 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3381 switch (ret) { 3382 case NODE_RECLAIM_NOSCAN: 3383 /* did not scan */ 3384 continue; 3385 case NODE_RECLAIM_FULL: 3386 /* scanned but unreclaimable */ 3387 continue; 3388 default: 3389 /* did we reclaim enough */ 3390 if (zone_watermark_ok(zone, order, mark, 3391 ac->highest_zoneidx, alloc_flags)) 3392 goto try_this_zone; 3393 3394 continue; 3395 } 3396 } 3397 3398 try_this_zone: 3399 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3400 gfp_mask, alloc_flags, ac->migratetype); 3401 if (page) { 3402 prep_new_page(page, order, gfp_mask, alloc_flags); 3403 3404 /* 3405 * If this is a high-order atomic allocation then check 3406 * if the pageblock should be reserved for the future 3407 */ 3408 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3409 reserve_highatomic_pageblock(page, zone); 3410 3411 return page; 3412 } else { 3413 if (has_unaccepted_memory()) { 3414 if (try_to_accept_memory(zone, order)) 3415 goto try_this_zone; 3416 } 3417 3418 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3419 /* Try again if zone has deferred pages */ 3420 if (deferred_pages_enabled()) { 3421 if (_deferred_grow_zone(zone, order)) 3422 goto try_this_zone; 3423 } 3424 #endif 3425 } 3426 } 3427 3428 /* 3429 * It's possible on a UMA machine to get through all zones that are 3430 * fragmented. If avoiding fragmentation, reset and try again. 3431 */ 3432 if (no_fallback) { 3433 alloc_flags &= ~ALLOC_NOFRAGMENT; 3434 goto retry; 3435 } 3436 3437 return NULL; 3438 } 3439 3440 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3441 { 3442 unsigned int filter = SHOW_MEM_FILTER_NODES; 3443 3444 /* 3445 * This documents exceptions given to allocations in certain 3446 * contexts that are allowed to allocate outside current's set 3447 * of allowed nodes. 3448 */ 3449 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3450 if (tsk_is_oom_victim(current) || 3451 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3452 filter &= ~SHOW_MEM_FILTER_NODES; 3453 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3454 filter &= ~SHOW_MEM_FILTER_NODES; 3455 3456 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3457 } 3458 3459 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3460 { 3461 struct va_format vaf; 3462 va_list args; 3463 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3464 3465 if ((gfp_mask & __GFP_NOWARN) || 3466 !__ratelimit(&nopage_rs) || 3467 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3468 return; 3469 3470 va_start(args, fmt); 3471 vaf.fmt = fmt; 3472 vaf.va = &args; 3473 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3474 current->comm, &vaf, gfp_mask, &gfp_mask, 3475 nodemask_pr_args(nodemask)); 3476 va_end(args); 3477 3478 cpuset_print_current_mems_allowed(); 3479 pr_cont("\n"); 3480 dump_stack(); 3481 warn_alloc_show_mem(gfp_mask, nodemask); 3482 } 3483 3484 static inline struct page * 3485 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3486 unsigned int alloc_flags, 3487 const struct alloc_context *ac) 3488 { 3489 struct page *page; 3490 3491 page = get_page_from_freelist(gfp_mask, order, 3492 alloc_flags|ALLOC_CPUSET, ac); 3493 /* 3494 * fallback to ignore cpuset restriction if our nodes 3495 * are depleted 3496 */ 3497 if (!page) 3498 page = get_page_from_freelist(gfp_mask, order, 3499 alloc_flags, ac); 3500 3501 return page; 3502 } 3503 3504 static inline struct page * 3505 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3506 const struct alloc_context *ac, unsigned long *did_some_progress) 3507 { 3508 struct oom_control oc = { 3509 .zonelist = ac->zonelist, 3510 .nodemask = ac->nodemask, 3511 .memcg = NULL, 3512 .gfp_mask = gfp_mask, 3513 .order = order, 3514 }; 3515 struct page *page; 3516 3517 *did_some_progress = 0; 3518 3519 /* 3520 * Acquire the oom lock. If that fails, somebody else is 3521 * making progress for us. 3522 */ 3523 if (!mutex_trylock(&oom_lock)) { 3524 *did_some_progress = 1; 3525 schedule_timeout_uninterruptible(1); 3526 return NULL; 3527 } 3528 3529 /* 3530 * Go through the zonelist yet one more time, keep very high watermark 3531 * here, this is only to catch a parallel oom killing, we must fail if 3532 * we're still under heavy pressure. But make sure that this reclaim 3533 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3534 * allocation which will never fail due to oom_lock already held. 3535 */ 3536 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3537 ~__GFP_DIRECT_RECLAIM, order, 3538 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3539 if (page) 3540 goto out; 3541 3542 /* Coredumps can quickly deplete all memory reserves */ 3543 if (current->flags & PF_DUMPCORE) 3544 goto out; 3545 /* The OOM killer will not help higher order allocs */ 3546 if (order > PAGE_ALLOC_COSTLY_ORDER) 3547 goto out; 3548 /* 3549 * We have already exhausted all our reclaim opportunities without any 3550 * success so it is time to admit defeat. We will skip the OOM killer 3551 * because it is very likely that the caller has a more reasonable 3552 * fallback than shooting a random task. 3553 * 3554 * The OOM killer may not free memory on a specific node. 3555 */ 3556 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3557 goto out; 3558 /* The OOM killer does not needlessly kill tasks for lowmem */ 3559 if (ac->highest_zoneidx < ZONE_NORMAL) 3560 goto out; 3561 if (pm_suspended_storage()) 3562 goto out; 3563 /* 3564 * XXX: GFP_NOFS allocations should rather fail than rely on 3565 * other request to make a forward progress. 3566 * We are in an unfortunate situation where out_of_memory cannot 3567 * do much for this context but let's try it to at least get 3568 * access to memory reserved if the current task is killed (see 3569 * out_of_memory). Once filesystems are ready to handle allocation 3570 * failures more gracefully we should just bail out here. 3571 */ 3572 3573 /* Exhausted what can be done so it's blame time */ 3574 if (out_of_memory(&oc) || 3575 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3576 *did_some_progress = 1; 3577 3578 /* 3579 * Help non-failing allocations by giving them access to memory 3580 * reserves 3581 */ 3582 if (gfp_mask & __GFP_NOFAIL) 3583 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3584 ALLOC_NO_WATERMARKS, ac); 3585 } 3586 out: 3587 mutex_unlock(&oom_lock); 3588 return page; 3589 } 3590 3591 /* 3592 * Maximum number of compaction retries with a progress before OOM 3593 * killer is consider as the only way to move forward. 3594 */ 3595 #define MAX_COMPACT_RETRIES 16 3596 3597 #ifdef CONFIG_COMPACTION 3598 /* Try memory compaction for high-order allocations before reclaim */ 3599 static struct page * 3600 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3601 unsigned int alloc_flags, const struct alloc_context *ac, 3602 enum compact_priority prio, enum compact_result *compact_result) 3603 { 3604 struct page *page = NULL; 3605 unsigned long pflags; 3606 unsigned int noreclaim_flag; 3607 3608 if (!order) 3609 return NULL; 3610 3611 psi_memstall_enter(&pflags); 3612 delayacct_compact_start(); 3613 noreclaim_flag = memalloc_noreclaim_save(); 3614 3615 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3616 prio, &page); 3617 3618 memalloc_noreclaim_restore(noreclaim_flag); 3619 psi_memstall_leave(&pflags); 3620 delayacct_compact_end(); 3621 3622 if (*compact_result == COMPACT_SKIPPED) 3623 return NULL; 3624 /* 3625 * At least in one zone compaction wasn't deferred or skipped, so let's 3626 * count a compaction stall 3627 */ 3628 count_vm_event(COMPACTSTALL); 3629 3630 /* Prep a captured page if available */ 3631 if (page) 3632 prep_new_page(page, order, gfp_mask, alloc_flags); 3633 3634 /* Try get a page from the freelist if available */ 3635 if (!page) 3636 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3637 3638 if (page) { 3639 struct zone *zone = page_zone(page); 3640 3641 zone->compact_blockskip_flush = false; 3642 compaction_defer_reset(zone, order, true); 3643 count_vm_event(COMPACTSUCCESS); 3644 return page; 3645 } 3646 3647 /* 3648 * It's bad if compaction run occurs and fails. The most likely reason 3649 * is that pages exist, but not enough to satisfy watermarks. 3650 */ 3651 count_vm_event(COMPACTFAIL); 3652 3653 cond_resched(); 3654 3655 return NULL; 3656 } 3657 3658 static inline bool 3659 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3660 enum compact_result compact_result, 3661 enum compact_priority *compact_priority, 3662 int *compaction_retries) 3663 { 3664 int max_retries = MAX_COMPACT_RETRIES; 3665 int min_priority; 3666 bool ret = false; 3667 int retries = *compaction_retries; 3668 enum compact_priority priority = *compact_priority; 3669 3670 if (!order) 3671 return false; 3672 3673 if (fatal_signal_pending(current)) 3674 return false; 3675 3676 /* 3677 * Compaction was skipped due to a lack of free order-0 3678 * migration targets. Continue if reclaim can help. 3679 */ 3680 if (compact_result == COMPACT_SKIPPED) { 3681 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3682 goto out; 3683 } 3684 3685 /* 3686 * Compaction managed to coalesce some page blocks, but the 3687 * allocation failed presumably due to a race. Retry some. 3688 */ 3689 if (compact_result == COMPACT_SUCCESS) { 3690 /* 3691 * !costly requests are much more important than 3692 * __GFP_RETRY_MAYFAIL costly ones because they are de 3693 * facto nofail and invoke OOM killer to move on while 3694 * costly can fail and users are ready to cope with 3695 * that. 1/4 retries is rather arbitrary but we would 3696 * need much more detailed feedback from compaction to 3697 * make a better decision. 3698 */ 3699 if (order > PAGE_ALLOC_COSTLY_ORDER) 3700 max_retries /= 4; 3701 3702 if (++(*compaction_retries) <= max_retries) { 3703 ret = true; 3704 goto out; 3705 } 3706 } 3707 3708 /* 3709 * Compaction failed. Retry with increasing priority. 3710 */ 3711 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3712 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3713 3714 if (*compact_priority > min_priority) { 3715 (*compact_priority)--; 3716 *compaction_retries = 0; 3717 ret = true; 3718 } 3719 out: 3720 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3721 return ret; 3722 } 3723 #else 3724 static inline struct page * 3725 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3726 unsigned int alloc_flags, const struct alloc_context *ac, 3727 enum compact_priority prio, enum compact_result *compact_result) 3728 { 3729 *compact_result = COMPACT_SKIPPED; 3730 return NULL; 3731 } 3732 3733 static inline bool 3734 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3735 enum compact_result compact_result, 3736 enum compact_priority *compact_priority, 3737 int *compaction_retries) 3738 { 3739 struct zone *zone; 3740 struct zoneref *z; 3741 3742 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3743 return false; 3744 3745 /* 3746 * There are setups with compaction disabled which would prefer to loop 3747 * inside the allocator rather than hit the oom killer prematurely. 3748 * Let's give them a good hope and keep retrying while the order-0 3749 * watermarks are OK. 3750 */ 3751 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3752 ac->highest_zoneidx, ac->nodemask) { 3753 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3754 ac->highest_zoneidx, alloc_flags)) 3755 return true; 3756 } 3757 return false; 3758 } 3759 #endif /* CONFIG_COMPACTION */ 3760 3761 #ifdef CONFIG_LOCKDEP 3762 static struct lockdep_map __fs_reclaim_map = 3763 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3764 3765 static bool __need_reclaim(gfp_t gfp_mask) 3766 { 3767 /* no reclaim without waiting on it */ 3768 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3769 return false; 3770 3771 /* this guy won't enter reclaim */ 3772 if (current->flags & PF_MEMALLOC) 3773 return false; 3774 3775 if (gfp_mask & __GFP_NOLOCKDEP) 3776 return false; 3777 3778 return true; 3779 } 3780 3781 void __fs_reclaim_acquire(unsigned long ip) 3782 { 3783 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3784 } 3785 3786 void __fs_reclaim_release(unsigned long ip) 3787 { 3788 lock_release(&__fs_reclaim_map, ip); 3789 } 3790 3791 void fs_reclaim_acquire(gfp_t gfp_mask) 3792 { 3793 gfp_mask = current_gfp_context(gfp_mask); 3794 3795 if (__need_reclaim(gfp_mask)) { 3796 if (gfp_mask & __GFP_FS) 3797 __fs_reclaim_acquire(_RET_IP_); 3798 3799 #ifdef CONFIG_MMU_NOTIFIER 3800 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3801 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3802 #endif 3803 3804 } 3805 } 3806 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3807 3808 void fs_reclaim_release(gfp_t gfp_mask) 3809 { 3810 gfp_mask = current_gfp_context(gfp_mask); 3811 3812 if (__need_reclaim(gfp_mask)) { 3813 if (gfp_mask & __GFP_FS) 3814 __fs_reclaim_release(_RET_IP_); 3815 } 3816 } 3817 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3818 #endif 3819 3820 /* 3821 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3822 * have been rebuilt so allocation retries. Reader side does not lock and 3823 * retries the allocation if zonelist changes. Writer side is protected by the 3824 * embedded spin_lock. 3825 */ 3826 static DEFINE_SEQLOCK(zonelist_update_seq); 3827 3828 static unsigned int zonelist_iter_begin(void) 3829 { 3830 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3831 return read_seqbegin(&zonelist_update_seq); 3832 3833 return 0; 3834 } 3835 3836 static unsigned int check_retry_zonelist(unsigned int seq) 3837 { 3838 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3839 return read_seqretry(&zonelist_update_seq, seq); 3840 3841 return seq; 3842 } 3843 3844 /* Perform direct synchronous page reclaim */ 3845 static unsigned long 3846 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3847 const struct alloc_context *ac) 3848 { 3849 unsigned int noreclaim_flag; 3850 unsigned long progress; 3851 3852 cond_resched(); 3853 3854 /* We now go into synchronous reclaim */ 3855 cpuset_memory_pressure_bump(); 3856 fs_reclaim_acquire(gfp_mask); 3857 noreclaim_flag = memalloc_noreclaim_save(); 3858 3859 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3860 ac->nodemask); 3861 3862 memalloc_noreclaim_restore(noreclaim_flag); 3863 fs_reclaim_release(gfp_mask); 3864 3865 cond_resched(); 3866 3867 return progress; 3868 } 3869 3870 /* The really slow allocator path where we enter direct reclaim */ 3871 static inline struct page * 3872 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3873 unsigned int alloc_flags, const struct alloc_context *ac, 3874 unsigned long *did_some_progress) 3875 { 3876 struct page *page = NULL; 3877 unsigned long pflags; 3878 bool drained = false; 3879 3880 psi_memstall_enter(&pflags); 3881 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3882 if (unlikely(!(*did_some_progress))) 3883 goto out; 3884 3885 retry: 3886 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3887 3888 /* 3889 * If an allocation failed after direct reclaim, it could be because 3890 * pages are pinned on the per-cpu lists or in high alloc reserves. 3891 * Shrink them and try again 3892 */ 3893 if (!page && !drained) { 3894 unreserve_highatomic_pageblock(ac, false); 3895 drain_all_pages(NULL); 3896 drained = true; 3897 goto retry; 3898 } 3899 out: 3900 psi_memstall_leave(&pflags); 3901 3902 return page; 3903 } 3904 3905 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 3906 const struct alloc_context *ac) 3907 { 3908 struct zoneref *z; 3909 struct zone *zone; 3910 pg_data_t *last_pgdat = NULL; 3911 enum zone_type highest_zoneidx = ac->highest_zoneidx; 3912 3913 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 3914 ac->nodemask) { 3915 if (!managed_zone(zone)) 3916 continue; 3917 if (last_pgdat != zone->zone_pgdat) { 3918 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 3919 last_pgdat = zone->zone_pgdat; 3920 } 3921 } 3922 } 3923 3924 static inline unsigned int 3925 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 3926 { 3927 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3928 3929 /* 3930 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 3931 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3932 * to save two branches. 3933 */ 3934 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 3935 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 3936 3937 /* 3938 * The caller may dip into page reserves a bit more if the caller 3939 * cannot run direct reclaim, or if the caller has realtime scheduling 3940 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3941 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 3942 */ 3943 alloc_flags |= (__force int) 3944 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 3945 3946 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 3947 /* 3948 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3949 * if it can't schedule. 3950 */ 3951 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 3952 alloc_flags |= ALLOC_NON_BLOCK; 3953 3954 if (order > 0) 3955 alloc_flags |= ALLOC_HIGHATOMIC; 3956 } 3957 3958 /* 3959 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 3960 * GFP_ATOMIC) rather than fail, see the comment for 3961 * cpuset_node_allowed(). 3962 */ 3963 if (alloc_flags & ALLOC_MIN_RESERVE) 3964 alloc_flags &= ~ALLOC_CPUSET; 3965 } else if (unlikely(rt_task(current)) && in_task()) 3966 alloc_flags |= ALLOC_MIN_RESERVE; 3967 3968 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 3969 3970 return alloc_flags; 3971 } 3972 3973 static bool oom_reserves_allowed(struct task_struct *tsk) 3974 { 3975 if (!tsk_is_oom_victim(tsk)) 3976 return false; 3977 3978 /* 3979 * !MMU doesn't have oom reaper so give access to memory reserves 3980 * only to the thread with TIF_MEMDIE set 3981 */ 3982 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3983 return false; 3984 3985 return true; 3986 } 3987 3988 /* 3989 * Distinguish requests which really need access to full memory 3990 * reserves from oom victims which can live with a portion of it 3991 */ 3992 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3993 { 3994 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3995 return 0; 3996 if (gfp_mask & __GFP_MEMALLOC) 3997 return ALLOC_NO_WATERMARKS; 3998 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3999 return ALLOC_NO_WATERMARKS; 4000 if (!in_interrupt()) { 4001 if (current->flags & PF_MEMALLOC) 4002 return ALLOC_NO_WATERMARKS; 4003 else if (oom_reserves_allowed(current)) 4004 return ALLOC_OOM; 4005 } 4006 4007 return 0; 4008 } 4009 4010 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4011 { 4012 return !!__gfp_pfmemalloc_flags(gfp_mask); 4013 } 4014 4015 /* 4016 * Checks whether it makes sense to retry the reclaim to make a forward progress 4017 * for the given allocation request. 4018 * 4019 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4020 * without success, or when we couldn't even meet the watermark if we 4021 * reclaimed all remaining pages on the LRU lists. 4022 * 4023 * Returns true if a retry is viable or false to enter the oom path. 4024 */ 4025 static inline bool 4026 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4027 struct alloc_context *ac, int alloc_flags, 4028 bool did_some_progress, int *no_progress_loops) 4029 { 4030 struct zone *zone; 4031 struct zoneref *z; 4032 bool ret = false; 4033 4034 /* 4035 * Costly allocations might have made a progress but this doesn't mean 4036 * their order will become available due to high fragmentation so 4037 * always increment the no progress counter for them 4038 */ 4039 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4040 *no_progress_loops = 0; 4041 else 4042 (*no_progress_loops)++; 4043 4044 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4045 goto out; 4046 4047 4048 /* 4049 * Keep reclaiming pages while there is a chance this will lead 4050 * somewhere. If none of the target zones can satisfy our allocation 4051 * request even if all reclaimable pages are considered then we are 4052 * screwed and have to go OOM. 4053 */ 4054 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4055 ac->highest_zoneidx, ac->nodemask) { 4056 unsigned long available; 4057 unsigned long reclaimable; 4058 unsigned long min_wmark = min_wmark_pages(zone); 4059 bool wmark; 4060 4061 available = reclaimable = zone_reclaimable_pages(zone); 4062 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4063 4064 /* 4065 * Would the allocation succeed if we reclaimed all 4066 * reclaimable pages? 4067 */ 4068 wmark = __zone_watermark_ok(zone, order, min_wmark, 4069 ac->highest_zoneidx, alloc_flags, available); 4070 trace_reclaim_retry_zone(z, order, reclaimable, 4071 available, min_wmark, *no_progress_loops, wmark); 4072 if (wmark) { 4073 ret = true; 4074 break; 4075 } 4076 } 4077 4078 /* 4079 * Memory allocation/reclaim might be called from a WQ context and the 4080 * current implementation of the WQ concurrency control doesn't 4081 * recognize that a particular WQ is congested if the worker thread is 4082 * looping without ever sleeping. Therefore we have to do a short sleep 4083 * here rather than calling cond_resched(). 4084 */ 4085 if (current->flags & PF_WQ_WORKER) 4086 schedule_timeout_uninterruptible(1); 4087 else 4088 cond_resched(); 4089 out: 4090 /* Before OOM, exhaust highatomic_reserve */ 4091 if (!ret) 4092 return unreserve_highatomic_pageblock(ac, true); 4093 4094 return ret; 4095 } 4096 4097 static inline bool 4098 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4099 { 4100 /* 4101 * It's possible that cpuset's mems_allowed and the nodemask from 4102 * mempolicy don't intersect. This should be normally dealt with by 4103 * policy_nodemask(), but it's possible to race with cpuset update in 4104 * such a way the check therein was true, and then it became false 4105 * before we got our cpuset_mems_cookie here. 4106 * This assumes that for all allocations, ac->nodemask can come only 4107 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4108 * when it does not intersect with the cpuset restrictions) or the 4109 * caller can deal with a violated nodemask. 4110 */ 4111 if (cpusets_enabled() && ac->nodemask && 4112 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4113 ac->nodemask = NULL; 4114 return true; 4115 } 4116 4117 /* 4118 * When updating a task's mems_allowed or mempolicy nodemask, it is 4119 * possible to race with parallel threads in such a way that our 4120 * allocation can fail while the mask is being updated. If we are about 4121 * to fail, check if the cpuset changed during allocation and if so, 4122 * retry. 4123 */ 4124 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4125 return true; 4126 4127 return false; 4128 } 4129 4130 static inline struct page * 4131 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4132 struct alloc_context *ac) 4133 { 4134 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4135 bool can_compact = gfp_compaction_allowed(gfp_mask); 4136 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4137 struct page *page = NULL; 4138 unsigned int alloc_flags; 4139 unsigned long did_some_progress; 4140 enum compact_priority compact_priority; 4141 enum compact_result compact_result; 4142 int compaction_retries; 4143 int no_progress_loops; 4144 unsigned int cpuset_mems_cookie; 4145 unsigned int zonelist_iter_cookie; 4146 int reserve_flags; 4147 4148 restart: 4149 compaction_retries = 0; 4150 no_progress_loops = 0; 4151 compact_priority = DEF_COMPACT_PRIORITY; 4152 cpuset_mems_cookie = read_mems_allowed_begin(); 4153 zonelist_iter_cookie = zonelist_iter_begin(); 4154 4155 /* 4156 * The fast path uses conservative alloc_flags to succeed only until 4157 * kswapd needs to be woken up, and to avoid the cost of setting up 4158 * alloc_flags precisely. So we do that now. 4159 */ 4160 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4161 4162 /* 4163 * We need to recalculate the starting point for the zonelist iterator 4164 * because we might have used different nodemask in the fast path, or 4165 * there was a cpuset modification and we are retrying - otherwise we 4166 * could end up iterating over non-eligible zones endlessly. 4167 */ 4168 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4169 ac->highest_zoneidx, ac->nodemask); 4170 if (!ac->preferred_zoneref->zone) 4171 goto nopage; 4172 4173 /* 4174 * Check for insane configurations where the cpuset doesn't contain 4175 * any suitable zone to satisfy the request - e.g. non-movable 4176 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4177 */ 4178 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4179 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4180 ac->highest_zoneidx, 4181 &cpuset_current_mems_allowed); 4182 if (!z->zone) 4183 goto nopage; 4184 } 4185 4186 if (alloc_flags & ALLOC_KSWAPD) 4187 wake_all_kswapds(order, gfp_mask, ac); 4188 4189 /* 4190 * The adjusted alloc_flags might result in immediate success, so try 4191 * that first 4192 */ 4193 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4194 if (page) 4195 goto got_pg; 4196 4197 /* 4198 * For costly allocations, try direct compaction first, as it's likely 4199 * that we have enough base pages and don't need to reclaim. For non- 4200 * movable high-order allocations, do that as well, as compaction will 4201 * try prevent permanent fragmentation by migrating from blocks of the 4202 * same migratetype. 4203 * Don't try this for allocations that are allowed to ignore 4204 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4205 */ 4206 if (can_direct_reclaim && can_compact && 4207 (costly_order || 4208 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4209 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4210 page = __alloc_pages_direct_compact(gfp_mask, order, 4211 alloc_flags, ac, 4212 INIT_COMPACT_PRIORITY, 4213 &compact_result); 4214 if (page) 4215 goto got_pg; 4216 4217 /* 4218 * Checks for costly allocations with __GFP_NORETRY, which 4219 * includes some THP page fault allocations 4220 */ 4221 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4222 /* 4223 * If allocating entire pageblock(s) and compaction 4224 * failed because all zones are below low watermarks 4225 * or is prohibited because it recently failed at this 4226 * order, fail immediately unless the allocator has 4227 * requested compaction and reclaim retry. 4228 * 4229 * Reclaim is 4230 * - potentially very expensive because zones are far 4231 * below their low watermarks or this is part of very 4232 * bursty high order allocations, 4233 * - not guaranteed to help because isolate_freepages() 4234 * may not iterate over freed pages as part of its 4235 * linear scan, and 4236 * - unlikely to make entire pageblocks free on its 4237 * own. 4238 */ 4239 if (compact_result == COMPACT_SKIPPED || 4240 compact_result == COMPACT_DEFERRED) 4241 goto nopage; 4242 4243 /* 4244 * Looks like reclaim/compaction is worth trying, but 4245 * sync compaction could be very expensive, so keep 4246 * using async compaction. 4247 */ 4248 compact_priority = INIT_COMPACT_PRIORITY; 4249 } 4250 } 4251 4252 retry: 4253 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4254 if (alloc_flags & ALLOC_KSWAPD) 4255 wake_all_kswapds(order, gfp_mask, ac); 4256 4257 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4258 if (reserve_flags) 4259 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4260 (alloc_flags & ALLOC_KSWAPD); 4261 4262 /* 4263 * Reset the nodemask and zonelist iterators if memory policies can be 4264 * ignored. These allocations are high priority and system rather than 4265 * user oriented. 4266 */ 4267 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4268 ac->nodemask = NULL; 4269 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4270 ac->highest_zoneidx, ac->nodemask); 4271 } 4272 4273 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4274 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4275 if (page) 4276 goto got_pg; 4277 4278 /* Caller is not willing to reclaim, we can't balance anything */ 4279 if (!can_direct_reclaim) 4280 goto nopage; 4281 4282 /* Avoid recursion of direct reclaim */ 4283 if (current->flags & PF_MEMALLOC) 4284 goto nopage; 4285 4286 /* Try direct reclaim and then allocating */ 4287 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4288 &did_some_progress); 4289 if (page) 4290 goto got_pg; 4291 4292 /* Try direct compaction and then allocating */ 4293 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4294 compact_priority, &compact_result); 4295 if (page) 4296 goto got_pg; 4297 4298 /* Do not loop if specifically requested */ 4299 if (gfp_mask & __GFP_NORETRY) 4300 goto nopage; 4301 4302 /* 4303 * Do not retry costly high order allocations unless they are 4304 * __GFP_RETRY_MAYFAIL and we can compact 4305 */ 4306 if (costly_order && (!can_compact || 4307 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4308 goto nopage; 4309 4310 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4311 did_some_progress > 0, &no_progress_loops)) 4312 goto retry; 4313 4314 /* 4315 * It doesn't make any sense to retry for the compaction if the order-0 4316 * reclaim is not able to make any progress because the current 4317 * implementation of the compaction depends on the sufficient amount 4318 * of free memory (see __compaction_suitable) 4319 */ 4320 if (did_some_progress > 0 && can_compact && 4321 should_compact_retry(ac, order, alloc_flags, 4322 compact_result, &compact_priority, 4323 &compaction_retries)) 4324 goto retry; 4325 4326 4327 /* 4328 * Deal with possible cpuset update races or zonelist updates to avoid 4329 * a unnecessary OOM kill. 4330 */ 4331 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4332 check_retry_zonelist(zonelist_iter_cookie)) 4333 goto restart; 4334 4335 /* Reclaim has failed us, start killing things */ 4336 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4337 if (page) 4338 goto got_pg; 4339 4340 /* Avoid allocations with no watermarks from looping endlessly */ 4341 if (tsk_is_oom_victim(current) && 4342 (alloc_flags & ALLOC_OOM || 4343 (gfp_mask & __GFP_NOMEMALLOC))) 4344 goto nopage; 4345 4346 /* Retry as long as the OOM killer is making progress */ 4347 if (did_some_progress) { 4348 no_progress_loops = 0; 4349 goto retry; 4350 } 4351 4352 nopage: 4353 /* 4354 * Deal with possible cpuset update races or zonelist updates to avoid 4355 * a unnecessary OOM kill. 4356 */ 4357 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4358 check_retry_zonelist(zonelist_iter_cookie)) 4359 goto restart; 4360 4361 /* 4362 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4363 * we always retry 4364 */ 4365 if (gfp_mask & __GFP_NOFAIL) { 4366 /* 4367 * All existing users of the __GFP_NOFAIL are blockable, so warn 4368 * of any new users that actually require GFP_NOWAIT 4369 */ 4370 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4371 goto fail; 4372 4373 /* 4374 * PF_MEMALLOC request from this context is rather bizarre 4375 * because we cannot reclaim anything and only can loop waiting 4376 * for somebody to do a work for us 4377 */ 4378 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4379 4380 /* 4381 * non failing costly orders are a hard requirement which we 4382 * are not prepared for much so let's warn about these users 4383 * so that we can identify them and convert them to something 4384 * else. 4385 */ 4386 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4387 4388 /* 4389 * Help non-failing allocations by giving some access to memory 4390 * reserves normally used for high priority non-blocking 4391 * allocations but do not use ALLOC_NO_WATERMARKS because this 4392 * could deplete whole memory reserves which would just make 4393 * the situation worse. 4394 */ 4395 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4396 if (page) 4397 goto got_pg; 4398 4399 cond_resched(); 4400 goto retry; 4401 } 4402 fail: 4403 warn_alloc(gfp_mask, ac->nodemask, 4404 "page allocation failure: order:%u", order); 4405 got_pg: 4406 return page; 4407 } 4408 4409 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4410 int preferred_nid, nodemask_t *nodemask, 4411 struct alloc_context *ac, gfp_t *alloc_gfp, 4412 unsigned int *alloc_flags) 4413 { 4414 ac->highest_zoneidx = gfp_zone(gfp_mask); 4415 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4416 ac->nodemask = nodemask; 4417 ac->migratetype = gfp_migratetype(gfp_mask); 4418 4419 if (cpusets_enabled()) { 4420 *alloc_gfp |= __GFP_HARDWALL; 4421 /* 4422 * When we are in the interrupt context, it is irrelevant 4423 * to the current task context. It means that any node ok. 4424 */ 4425 if (in_task() && !ac->nodemask) 4426 ac->nodemask = &cpuset_current_mems_allowed; 4427 else 4428 *alloc_flags |= ALLOC_CPUSET; 4429 } 4430 4431 might_alloc(gfp_mask); 4432 4433 if (should_fail_alloc_page(gfp_mask, order)) 4434 return false; 4435 4436 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4437 4438 /* Dirty zone balancing only done in the fast path */ 4439 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4440 4441 /* 4442 * The preferred zone is used for statistics but crucially it is 4443 * also used as the starting point for the zonelist iterator. It 4444 * may get reset for allocations that ignore memory policies. 4445 */ 4446 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4447 ac->highest_zoneidx, ac->nodemask); 4448 4449 return true; 4450 } 4451 4452 /* 4453 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4454 * @gfp: GFP flags for the allocation 4455 * @preferred_nid: The preferred NUMA node ID to allocate from 4456 * @nodemask: Set of nodes to allocate from, may be NULL 4457 * @nr_pages: The number of pages desired on the list or array 4458 * @page_list: Optional list to store the allocated pages 4459 * @page_array: Optional array to store the pages 4460 * 4461 * This is a batched version of the page allocator that attempts to 4462 * allocate nr_pages quickly. Pages are added to page_list if page_list 4463 * is not NULL, otherwise it is assumed that the page_array is valid. 4464 * 4465 * For lists, nr_pages is the number of pages that should be allocated. 4466 * 4467 * For arrays, only NULL elements are populated with pages and nr_pages 4468 * is the maximum number of pages that will be stored in the array. 4469 * 4470 * Returns the number of pages on the list or array. 4471 */ 4472 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4473 nodemask_t *nodemask, int nr_pages, 4474 struct list_head *page_list, 4475 struct page **page_array) 4476 { 4477 struct page *page; 4478 unsigned long __maybe_unused UP_flags; 4479 struct zone *zone; 4480 struct zoneref *z; 4481 struct per_cpu_pages *pcp; 4482 struct list_head *pcp_list; 4483 struct alloc_context ac; 4484 gfp_t alloc_gfp; 4485 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4486 int nr_populated = 0, nr_account = 0; 4487 4488 /* 4489 * Skip populated array elements to determine if any pages need 4490 * to be allocated before disabling IRQs. 4491 */ 4492 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4493 nr_populated++; 4494 4495 /* No pages requested? */ 4496 if (unlikely(nr_pages <= 0)) 4497 goto out; 4498 4499 /* Already populated array? */ 4500 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4501 goto out; 4502 4503 /* Bulk allocator does not support memcg accounting. */ 4504 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4505 goto failed; 4506 4507 /* Use the single page allocator for one page. */ 4508 if (nr_pages - nr_populated == 1) 4509 goto failed; 4510 4511 #ifdef CONFIG_PAGE_OWNER 4512 /* 4513 * PAGE_OWNER may recurse into the allocator to allocate space to 4514 * save the stack with pagesets.lock held. Releasing/reacquiring 4515 * removes much of the performance benefit of bulk allocation so 4516 * force the caller to allocate one page at a time as it'll have 4517 * similar performance to added complexity to the bulk allocator. 4518 */ 4519 if (static_branch_unlikely(&page_owner_inited)) 4520 goto failed; 4521 #endif 4522 4523 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4524 gfp &= gfp_allowed_mask; 4525 alloc_gfp = gfp; 4526 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4527 goto out; 4528 gfp = alloc_gfp; 4529 4530 /* Find an allowed local zone that meets the low watermark. */ 4531 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4532 unsigned long mark; 4533 4534 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4535 !__cpuset_zone_allowed(zone, gfp)) { 4536 continue; 4537 } 4538 4539 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4540 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4541 goto failed; 4542 } 4543 4544 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4545 if (zone_watermark_fast(zone, 0, mark, 4546 zonelist_zone_idx(ac.preferred_zoneref), 4547 alloc_flags, gfp)) { 4548 break; 4549 } 4550 } 4551 4552 /* 4553 * If there are no allowed local zones that meets the watermarks then 4554 * try to allocate a single page and reclaim if necessary. 4555 */ 4556 if (unlikely(!zone)) 4557 goto failed; 4558 4559 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4560 pcp_trylock_prepare(UP_flags); 4561 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4562 if (!pcp) 4563 goto failed_irq; 4564 4565 /* Attempt the batch allocation */ 4566 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4567 while (nr_populated < nr_pages) { 4568 4569 /* Skip existing pages */ 4570 if (page_array && page_array[nr_populated]) { 4571 nr_populated++; 4572 continue; 4573 } 4574 4575 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4576 pcp, pcp_list); 4577 if (unlikely(!page)) { 4578 /* Try and allocate at least one page */ 4579 if (!nr_account) { 4580 pcp_spin_unlock(pcp); 4581 goto failed_irq; 4582 } 4583 break; 4584 } 4585 nr_account++; 4586 4587 prep_new_page(page, 0, gfp, 0); 4588 if (page_list) 4589 list_add(&page->lru, page_list); 4590 else 4591 page_array[nr_populated] = page; 4592 nr_populated++; 4593 } 4594 4595 pcp_spin_unlock(pcp); 4596 pcp_trylock_finish(UP_flags); 4597 4598 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4599 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4600 4601 out: 4602 return nr_populated; 4603 4604 failed_irq: 4605 pcp_trylock_finish(UP_flags); 4606 4607 failed: 4608 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4609 if (page) { 4610 if (page_list) 4611 list_add(&page->lru, page_list); 4612 else 4613 page_array[nr_populated] = page; 4614 nr_populated++; 4615 } 4616 4617 goto out; 4618 } 4619 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4620 4621 /* 4622 * This is the 'heart' of the zoned buddy allocator. 4623 */ 4624 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4625 int preferred_nid, nodemask_t *nodemask) 4626 { 4627 struct page *page; 4628 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4629 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4630 struct alloc_context ac = { }; 4631 4632 /* 4633 * There are several places where we assume that the order value is sane 4634 * so bail out early if the request is out of bound. 4635 */ 4636 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4637 return NULL; 4638 4639 gfp &= gfp_allowed_mask; 4640 /* 4641 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4642 * resp. GFP_NOIO which has to be inherited for all allocation requests 4643 * from a particular context which has been marked by 4644 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4645 * movable zones are not used during allocation. 4646 */ 4647 gfp = current_gfp_context(gfp); 4648 alloc_gfp = gfp; 4649 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4650 &alloc_gfp, &alloc_flags)) 4651 return NULL; 4652 4653 /* 4654 * Forbid the first pass from falling back to types that fragment 4655 * memory until all local zones are considered. 4656 */ 4657 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4658 4659 /* First allocation attempt */ 4660 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4661 if (likely(page)) 4662 goto out; 4663 4664 alloc_gfp = gfp; 4665 ac.spread_dirty_pages = false; 4666 4667 /* 4668 * Restore the original nodemask if it was potentially replaced with 4669 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4670 */ 4671 ac.nodemask = nodemask; 4672 4673 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4674 4675 out: 4676 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4677 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4678 __free_pages(page, order); 4679 page = NULL; 4680 } 4681 4682 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4683 kmsan_alloc_page(page, order, alloc_gfp); 4684 4685 return page; 4686 } 4687 EXPORT_SYMBOL(__alloc_pages_noprof); 4688 4689 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 4690 nodemask_t *nodemask) 4691 { 4692 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 4693 preferred_nid, nodemask); 4694 return page_rmappable_folio(page); 4695 } 4696 EXPORT_SYMBOL(__folio_alloc_noprof); 4697 4698 /* 4699 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4700 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4701 * you need to access high mem. 4702 */ 4703 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 4704 { 4705 struct page *page; 4706 4707 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 4708 if (!page) 4709 return 0; 4710 return (unsigned long) page_address(page); 4711 } 4712 EXPORT_SYMBOL(get_free_pages_noprof); 4713 4714 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 4715 { 4716 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 4717 } 4718 EXPORT_SYMBOL(get_zeroed_page_noprof); 4719 4720 /** 4721 * __free_pages - Free pages allocated with alloc_pages(). 4722 * @page: The page pointer returned from alloc_pages(). 4723 * @order: The order of the allocation. 4724 * 4725 * This function can free multi-page allocations that are not compound 4726 * pages. It does not check that the @order passed in matches that of 4727 * the allocation, so it is easy to leak memory. Freeing more memory 4728 * than was allocated will probably emit a warning. 4729 * 4730 * If the last reference to this page is speculative, it will be released 4731 * by put_page() which only frees the first page of a non-compound 4732 * allocation. To prevent the remaining pages from being leaked, we free 4733 * the subsequent pages here. If you want to use the page's reference 4734 * count to decide when to free the allocation, you should allocate a 4735 * compound page, and use put_page() instead of __free_pages(). 4736 * 4737 * Context: May be called in interrupt context or while holding a normal 4738 * spinlock, but not in NMI context or while holding a raw spinlock. 4739 */ 4740 void __free_pages(struct page *page, unsigned int order) 4741 { 4742 /* get PageHead before we drop reference */ 4743 int head = PageHead(page); 4744 struct alloc_tag *tag = pgalloc_tag_get(page); 4745 4746 if (put_page_testzero(page)) 4747 free_unref_page(page, order); 4748 else if (!head) { 4749 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 4750 while (order-- > 0) 4751 free_unref_page(page + (1 << order), order); 4752 } 4753 } 4754 EXPORT_SYMBOL(__free_pages); 4755 4756 void free_pages(unsigned long addr, unsigned int order) 4757 { 4758 if (addr != 0) { 4759 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4760 __free_pages(virt_to_page((void *)addr), order); 4761 } 4762 } 4763 4764 EXPORT_SYMBOL(free_pages); 4765 4766 /* 4767 * Page Fragment: 4768 * An arbitrary-length arbitrary-offset area of memory which resides 4769 * within a 0 or higher order page. Multiple fragments within that page 4770 * are individually refcounted, in the page's reference counter. 4771 * 4772 * The page_frag functions below provide a simple allocation framework for 4773 * page fragments. This is used by the network stack and network device 4774 * drivers to provide a backing region of memory for use as either an 4775 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4776 */ 4777 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4778 gfp_t gfp_mask) 4779 { 4780 struct page *page = NULL; 4781 gfp_t gfp = gfp_mask; 4782 4783 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4784 gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) | __GFP_COMP | 4785 __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC; 4786 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4787 PAGE_FRAG_CACHE_MAX_ORDER); 4788 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4789 #endif 4790 if (unlikely(!page)) 4791 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4792 4793 nc->va = page ? page_address(page) : NULL; 4794 4795 return page; 4796 } 4797 4798 void page_frag_cache_drain(struct page_frag_cache *nc) 4799 { 4800 if (!nc->va) 4801 return; 4802 4803 __page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias); 4804 nc->va = NULL; 4805 } 4806 EXPORT_SYMBOL(page_frag_cache_drain); 4807 4808 void __page_frag_cache_drain(struct page *page, unsigned int count) 4809 { 4810 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4811 4812 if (page_ref_sub_and_test(page, count)) 4813 free_unref_page(page, compound_order(page)); 4814 } 4815 EXPORT_SYMBOL(__page_frag_cache_drain); 4816 4817 void *__page_frag_alloc_align(struct page_frag_cache *nc, 4818 unsigned int fragsz, gfp_t gfp_mask, 4819 unsigned int align_mask) 4820 { 4821 unsigned int size = PAGE_SIZE; 4822 struct page *page; 4823 int offset; 4824 4825 if (unlikely(!nc->va)) { 4826 refill: 4827 page = __page_frag_cache_refill(nc, gfp_mask); 4828 if (!page) 4829 return NULL; 4830 4831 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4832 /* if size can vary use size else just use PAGE_SIZE */ 4833 size = nc->size; 4834 #endif 4835 /* Even if we own the page, we do not use atomic_set(). 4836 * This would break get_page_unless_zero() users. 4837 */ 4838 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4839 4840 /* reset page count bias and offset to start of new frag */ 4841 nc->pfmemalloc = page_is_pfmemalloc(page); 4842 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4843 nc->offset = size; 4844 } 4845 4846 offset = nc->offset - fragsz; 4847 if (unlikely(offset < 0)) { 4848 page = virt_to_page(nc->va); 4849 4850 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4851 goto refill; 4852 4853 if (unlikely(nc->pfmemalloc)) { 4854 free_unref_page(page, compound_order(page)); 4855 goto refill; 4856 } 4857 4858 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4859 /* if size can vary use size else just use PAGE_SIZE */ 4860 size = nc->size; 4861 #endif 4862 /* OK, page count is 0, we can safely set it */ 4863 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4864 4865 /* reset page count bias and offset to start of new frag */ 4866 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4867 offset = size - fragsz; 4868 if (unlikely(offset < 0)) { 4869 /* 4870 * The caller is trying to allocate a fragment 4871 * with fragsz > PAGE_SIZE but the cache isn't big 4872 * enough to satisfy the request, this may 4873 * happen in low memory conditions. 4874 * We don't release the cache page because 4875 * it could make memory pressure worse 4876 * so we simply return NULL here. 4877 */ 4878 return NULL; 4879 } 4880 } 4881 4882 nc->pagecnt_bias--; 4883 offset &= align_mask; 4884 nc->offset = offset; 4885 4886 return nc->va + offset; 4887 } 4888 EXPORT_SYMBOL(__page_frag_alloc_align); 4889 4890 /* 4891 * Frees a page fragment allocated out of either a compound or order 0 page. 4892 */ 4893 void page_frag_free(void *addr) 4894 { 4895 struct page *page = virt_to_head_page(addr); 4896 4897 if (unlikely(put_page_testzero(page))) 4898 free_unref_page(page, compound_order(page)); 4899 } 4900 EXPORT_SYMBOL(page_frag_free); 4901 4902 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4903 size_t size) 4904 { 4905 if (addr) { 4906 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 4907 struct page *page = virt_to_page((void *)addr); 4908 struct page *last = page + nr; 4909 4910 split_page_owner(page, order, 0); 4911 pgalloc_tag_split(page, 1 << order); 4912 split_page_memcg(page, order, 0); 4913 while (page < --last) 4914 set_page_refcounted(last); 4915 4916 last = page + (1UL << order); 4917 for (page += nr; page < last; page++) 4918 __free_pages_ok(page, 0, FPI_TO_TAIL); 4919 } 4920 return (void *)addr; 4921 } 4922 4923 /** 4924 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4925 * @size: the number of bytes to allocate 4926 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4927 * 4928 * This function is similar to alloc_pages(), except that it allocates the 4929 * minimum number of pages to satisfy the request. alloc_pages() can only 4930 * allocate memory in power-of-two pages. 4931 * 4932 * This function is also limited by MAX_PAGE_ORDER. 4933 * 4934 * Memory allocated by this function must be released by free_pages_exact(). 4935 * 4936 * Return: pointer to the allocated area or %NULL in case of error. 4937 */ 4938 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 4939 { 4940 unsigned int order = get_order(size); 4941 unsigned long addr; 4942 4943 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4944 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4945 4946 addr = get_free_pages_noprof(gfp_mask, order); 4947 return make_alloc_exact(addr, order, size); 4948 } 4949 EXPORT_SYMBOL(alloc_pages_exact_noprof); 4950 4951 /** 4952 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4953 * pages on a node. 4954 * @nid: the preferred node ID where memory should be allocated 4955 * @size: the number of bytes to allocate 4956 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4957 * 4958 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4959 * back. 4960 * 4961 * Return: pointer to the allocated area or %NULL in case of error. 4962 */ 4963 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 4964 { 4965 unsigned int order = get_order(size); 4966 struct page *p; 4967 4968 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 4969 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 4970 4971 p = alloc_pages_node_noprof(nid, gfp_mask, order); 4972 if (!p) 4973 return NULL; 4974 return make_alloc_exact((unsigned long)page_address(p), order, size); 4975 } 4976 4977 /** 4978 * free_pages_exact - release memory allocated via alloc_pages_exact() 4979 * @virt: the value returned by alloc_pages_exact. 4980 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4981 * 4982 * Release the memory allocated by a previous call to alloc_pages_exact. 4983 */ 4984 void free_pages_exact(void *virt, size_t size) 4985 { 4986 unsigned long addr = (unsigned long)virt; 4987 unsigned long end = addr + PAGE_ALIGN(size); 4988 4989 while (addr < end) { 4990 free_page(addr); 4991 addr += PAGE_SIZE; 4992 } 4993 } 4994 EXPORT_SYMBOL(free_pages_exact); 4995 4996 /** 4997 * nr_free_zone_pages - count number of pages beyond high watermark 4998 * @offset: The zone index of the highest zone 4999 * 5000 * nr_free_zone_pages() counts the number of pages which are beyond the 5001 * high watermark within all zones at or below a given zone index. For each 5002 * zone, the number of pages is calculated as: 5003 * 5004 * nr_free_zone_pages = managed_pages - high_pages 5005 * 5006 * Return: number of pages beyond high watermark. 5007 */ 5008 static unsigned long nr_free_zone_pages(int offset) 5009 { 5010 struct zoneref *z; 5011 struct zone *zone; 5012 5013 /* Just pick one node, since fallback list is circular */ 5014 unsigned long sum = 0; 5015 5016 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5017 5018 for_each_zone_zonelist(zone, z, zonelist, offset) { 5019 unsigned long size = zone_managed_pages(zone); 5020 unsigned long high = high_wmark_pages(zone); 5021 if (size > high) 5022 sum += size - high; 5023 } 5024 5025 return sum; 5026 } 5027 5028 /** 5029 * nr_free_buffer_pages - count number of pages beyond high watermark 5030 * 5031 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5032 * watermark within ZONE_DMA and ZONE_NORMAL. 5033 * 5034 * Return: number of pages beyond high watermark within ZONE_DMA and 5035 * ZONE_NORMAL. 5036 */ 5037 unsigned long nr_free_buffer_pages(void) 5038 { 5039 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5040 } 5041 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5042 5043 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5044 { 5045 zoneref->zone = zone; 5046 zoneref->zone_idx = zone_idx(zone); 5047 } 5048 5049 /* 5050 * Builds allocation fallback zone lists. 5051 * 5052 * Add all populated zones of a node to the zonelist. 5053 */ 5054 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5055 { 5056 struct zone *zone; 5057 enum zone_type zone_type = MAX_NR_ZONES; 5058 int nr_zones = 0; 5059 5060 do { 5061 zone_type--; 5062 zone = pgdat->node_zones + zone_type; 5063 if (populated_zone(zone)) { 5064 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5065 check_highest_zone(zone_type); 5066 } 5067 } while (zone_type); 5068 5069 return nr_zones; 5070 } 5071 5072 #ifdef CONFIG_NUMA 5073 5074 static int __parse_numa_zonelist_order(char *s) 5075 { 5076 /* 5077 * We used to support different zonelists modes but they turned 5078 * out to be just not useful. Let's keep the warning in place 5079 * if somebody still use the cmd line parameter so that we do 5080 * not fail it silently 5081 */ 5082 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5083 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5084 return -EINVAL; 5085 } 5086 return 0; 5087 } 5088 5089 static char numa_zonelist_order[] = "Node"; 5090 #define NUMA_ZONELIST_ORDER_LEN 16 5091 /* 5092 * sysctl handler for numa_zonelist_order 5093 */ 5094 static int numa_zonelist_order_handler(struct ctl_table *table, int write, 5095 void *buffer, size_t *length, loff_t *ppos) 5096 { 5097 if (write) 5098 return __parse_numa_zonelist_order(buffer); 5099 return proc_dostring(table, write, buffer, length, ppos); 5100 } 5101 5102 static int node_load[MAX_NUMNODES]; 5103 5104 /** 5105 * find_next_best_node - find the next node that should appear in a given node's fallback list 5106 * @node: node whose fallback list we're appending 5107 * @used_node_mask: nodemask_t of already used nodes 5108 * 5109 * We use a number of factors to determine which is the next node that should 5110 * appear on a given node's fallback list. The node should not have appeared 5111 * already in @node's fallback list, and it should be the next closest node 5112 * according to the distance array (which contains arbitrary distance values 5113 * from each node to each node in the system), and should also prefer nodes 5114 * with no CPUs, since presumably they'll have very little allocation pressure 5115 * on them otherwise. 5116 * 5117 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5118 */ 5119 int find_next_best_node(int node, nodemask_t *used_node_mask) 5120 { 5121 int n, val; 5122 int min_val = INT_MAX; 5123 int best_node = NUMA_NO_NODE; 5124 5125 /* 5126 * Use the local node if we haven't already, but for memoryless local 5127 * node, we should skip it and fall back to other nodes. 5128 */ 5129 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5130 node_set(node, *used_node_mask); 5131 return node; 5132 } 5133 5134 for_each_node_state(n, N_MEMORY) { 5135 5136 /* Don't want a node to appear more than once */ 5137 if (node_isset(n, *used_node_mask)) 5138 continue; 5139 5140 /* Use the distance array to find the distance */ 5141 val = node_distance(node, n); 5142 5143 /* Penalize nodes under us ("prefer the next node") */ 5144 val += (n < node); 5145 5146 /* Give preference to headless and unused nodes */ 5147 if (!cpumask_empty(cpumask_of_node(n))) 5148 val += PENALTY_FOR_NODE_WITH_CPUS; 5149 5150 /* Slight preference for less loaded node */ 5151 val *= MAX_NUMNODES; 5152 val += node_load[n]; 5153 5154 if (val < min_val) { 5155 min_val = val; 5156 best_node = n; 5157 } 5158 } 5159 5160 if (best_node >= 0) 5161 node_set(best_node, *used_node_mask); 5162 5163 return best_node; 5164 } 5165 5166 5167 /* 5168 * Build zonelists ordered by node and zones within node. 5169 * This results in maximum locality--normal zone overflows into local 5170 * DMA zone, if any--but risks exhausting DMA zone. 5171 */ 5172 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5173 unsigned nr_nodes) 5174 { 5175 struct zoneref *zonerefs; 5176 int i; 5177 5178 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5179 5180 for (i = 0; i < nr_nodes; i++) { 5181 int nr_zones; 5182 5183 pg_data_t *node = NODE_DATA(node_order[i]); 5184 5185 nr_zones = build_zonerefs_node(node, zonerefs); 5186 zonerefs += nr_zones; 5187 } 5188 zonerefs->zone = NULL; 5189 zonerefs->zone_idx = 0; 5190 } 5191 5192 /* 5193 * Build gfp_thisnode zonelists 5194 */ 5195 static void build_thisnode_zonelists(pg_data_t *pgdat) 5196 { 5197 struct zoneref *zonerefs; 5198 int nr_zones; 5199 5200 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5201 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5202 zonerefs += nr_zones; 5203 zonerefs->zone = NULL; 5204 zonerefs->zone_idx = 0; 5205 } 5206 5207 /* 5208 * Build zonelists ordered by zone and nodes within zones. 5209 * This results in conserving DMA zone[s] until all Normal memory is 5210 * exhausted, but results in overflowing to remote node while memory 5211 * may still exist in local DMA zone. 5212 */ 5213 5214 static void build_zonelists(pg_data_t *pgdat) 5215 { 5216 static int node_order[MAX_NUMNODES]; 5217 int node, nr_nodes = 0; 5218 nodemask_t used_mask = NODE_MASK_NONE; 5219 int local_node, prev_node; 5220 5221 /* NUMA-aware ordering of nodes */ 5222 local_node = pgdat->node_id; 5223 prev_node = local_node; 5224 5225 memset(node_order, 0, sizeof(node_order)); 5226 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5227 /* 5228 * We don't want to pressure a particular node. 5229 * So adding penalty to the first node in same 5230 * distance group to make it round-robin. 5231 */ 5232 if (node_distance(local_node, node) != 5233 node_distance(local_node, prev_node)) 5234 node_load[node] += 1; 5235 5236 node_order[nr_nodes++] = node; 5237 prev_node = node; 5238 } 5239 5240 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5241 build_thisnode_zonelists(pgdat); 5242 pr_info("Fallback order for Node %d: ", local_node); 5243 for (node = 0; node < nr_nodes; node++) 5244 pr_cont("%d ", node_order[node]); 5245 pr_cont("\n"); 5246 } 5247 5248 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5249 /* 5250 * Return node id of node used for "local" allocations. 5251 * I.e., first node id of first zone in arg node's generic zonelist. 5252 * Used for initializing percpu 'numa_mem', which is used primarily 5253 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5254 */ 5255 int local_memory_node(int node) 5256 { 5257 struct zoneref *z; 5258 5259 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5260 gfp_zone(GFP_KERNEL), 5261 NULL); 5262 return zone_to_nid(z->zone); 5263 } 5264 #endif 5265 5266 static void setup_min_unmapped_ratio(void); 5267 static void setup_min_slab_ratio(void); 5268 #else /* CONFIG_NUMA */ 5269 5270 static void build_zonelists(pg_data_t *pgdat) 5271 { 5272 struct zoneref *zonerefs; 5273 int nr_zones; 5274 5275 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5276 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5277 zonerefs += nr_zones; 5278 5279 zonerefs->zone = NULL; 5280 zonerefs->zone_idx = 0; 5281 } 5282 5283 #endif /* CONFIG_NUMA */ 5284 5285 /* 5286 * Boot pageset table. One per cpu which is going to be used for all 5287 * zones and all nodes. The parameters will be set in such a way 5288 * that an item put on a list will immediately be handed over to 5289 * the buddy list. This is safe since pageset manipulation is done 5290 * with interrupts disabled. 5291 * 5292 * The boot_pagesets must be kept even after bootup is complete for 5293 * unused processors and/or zones. They do play a role for bootstrapping 5294 * hotplugged processors. 5295 * 5296 * zoneinfo_show() and maybe other functions do 5297 * not check if the processor is online before following the pageset pointer. 5298 * Other parts of the kernel may not check if the zone is available. 5299 */ 5300 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5301 /* These effectively disable the pcplists in the boot pageset completely */ 5302 #define BOOT_PAGESET_HIGH 0 5303 #define BOOT_PAGESET_BATCH 1 5304 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5305 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5306 5307 static void __build_all_zonelists(void *data) 5308 { 5309 int nid; 5310 int __maybe_unused cpu; 5311 pg_data_t *self = data; 5312 unsigned long flags; 5313 5314 /* 5315 * The zonelist_update_seq must be acquired with irqsave because the 5316 * reader can be invoked from IRQ with GFP_ATOMIC. 5317 */ 5318 write_seqlock_irqsave(&zonelist_update_seq, flags); 5319 /* 5320 * Also disable synchronous printk() to prevent any printk() from 5321 * trying to hold port->lock, for 5322 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5323 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5324 */ 5325 printk_deferred_enter(); 5326 5327 #ifdef CONFIG_NUMA 5328 memset(node_load, 0, sizeof(node_load)); 5329 #endif 5330 5331 /* 5332 * This node is hotadded and no memory is yet present. So just 5333 * building zonelists is fine - no need to touch other nodes. 5334 */ 5335 if (self && !node_online(self->node_id)) { 5336 build_zonelists(self); 5337 } else { 5338 /* 5339 * All possible nodes have pgdat preallocated 5340 * in free_area_init 5341 */ 5342 for_each_node(nid) { 5343 pg_data_t *pgdat = NODE_DATA(nid); 5344 5345 build_zonelists(pgdat); 5346 } 5347 5348 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5349 /* 5350 * We now know the "local memory node" for each node-- 5351 * i.e., the node of the first zone in the generic zonelist. 5352 * Set up numa_mem percpu variable for on-line cpus. During 5353 * boot, only the boot cpu should be on-line; we'll init the 5354 * secondary cpus' numa_mem as they come on-line. During 5355 * node/memory hotplug, we'll fixup all on-line cpus. 5356 */ 5357 for_each_online_cpu(cpu) 5358 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5359 #endif 5360 } 5361 5362 printk_deferred_exit(); 5363 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5364 } 5365 5366 static noinline void __init 5367 build_all_zonelists_init(void) 5368 { 5369 int cpu; 5370 5371 __build_all_zonelists(NULL); 5372 5373 /* 5374 * Initialize the boot_pagesets that are going to be used 5375 * for bootstrapping processors. The real pagesets for 5376 * each zone will be allocated later when the per cpu 5377 * allocator is available. 5378 * 5379 * boot_pagesets are used also for bootstrapping offline 5380 * cpus if the system is already booted because the pagesets 5381 * are needed to initialize allocators on a specific cpu too. 5382 * F.e. the percpu allocator needs the page allocator which 5383 * needs the percpu allocator in order to allocate its pagesets 5384 * (a chicken-egg dilemma). 5385 */ 5386 for_each_possible_cpu(cpu) 5387 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5388 5389 mminit_verify_zonelist(); 5390 cpuset_init_current_mems_allowed(); 5391 } 5392 5393 /* 5394 * unless system_state == SYSTEM_BOOTING. 5395 * 5396 * __ref due to call of __init annotated helper build_all_zonelists_init 5397 * [protected by SYSTEM_BOOTING]. 5398 */ 5399 void __ref build_all_zonelists(pg_data_t *pgdat) 5400 { 5401 unsigned long vm_total_pages; 5402 5403 if (system_state == SYSTEM_BOOTING) { 5404 build_all_zonelists_init(); 5405 } else { 5406 __build_all_zonelists(pgdat); 5407 /* cpuset refresh routine should be here */ 5408 } 5409 /* Get the number of free pages beyond high watermark in all zones. */ 5410 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5411 /* 5412 * Disable grouping by mobility if the number of pages in the 5413 * system is too low to allow the mechanism to work. It would be 5414 * more accurate, but expensive to check per-zone. This check is 5415 * made on memory-hotadd so a system can start with mobility 5416 * disabled and enable it later 5417 */ 5418 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5419 page_group_by_mobility_disabled = 1; 5420 else 5421 page_group_by_mobility_disabled = 0; 5422 5423 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5424 nr_online_nodes, 5425 page_group_by_mobility_disabled ? "off" : "on", 5426 vm_total_pages); 5427 #ifdef CONFIG_NUMA 5428 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5429 #endif 5430 } 5431 5432 static int zone_batchsize(struct zone *zone) 5433 { 5434 #ifdef CONFIG_MMU 5435 int batch; 5436 5437 /* 5438 * The number of pages to batch allocate is either ~0.1% 5439 * of the zone or 1MB, whichever is smaller. The batch 5440 * size is striking a balance between allocation latency 5441 * and zone lock contention. 5442 */ 5443 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5444 batch /= 4; /* We effectively *= 4 below */ 5445 if (batch < 1) 5446 batch = 1; 5447 5448 /* 5449 * Clamp the batch to a 2^n - 1 value. Having a power 5450 * of 2 value was found to be more likely to have 5451 * suboptimal cache aliasing properties in some cases. 5452 * 5453 * For example if 2 tasks are alternately allocating 5454 * batches of pages, one task can end up with a lot 5455 * of pages of one half of the possible page colors 5456 * and the other with pages of the other colors. 5457 */ 5458 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5459 5460 return batch; 5461 5462 #else 5463 /* The deferral and batching of frees should be suppressed under NOMMU 5464 * conditions. 5465 * 5466 * The problem is that NOMMU needs to be able to allocate large chunks 5467 * of contiguous memory as there's no hardware page translation to 5468 * assemble apparent contiguous memory from discontiguous pages. 5469 * 5470 * Queueing large contiguous runs of pages for batching, however, 5471 * causes the pages to actually be freed in smaller chunks. As there 5472 * can be a significant delay between the individual batches being 5473 * recycled, this leads to the once large chunks of space being 5474 * fragmented and becoming unavailable for high-order allocations. 5475 */ 5476 return 0; 5477 #endif 5478 } 5479 5480 static int percpu_pagelist_high_fraction; 5481 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5482 int high_fraction) 5483 { 5484 #ifdef CONFIG_MMU 5485 int high; 5486 int nr_split_cpus; 5487 unsigned long total_pages; 5488 5489 if (!high_fraction) { 5490 /* 5491 * By default, the high value of the pcp is based on the zone 5492 * low watermark so that if they are full then background 5493 * reclaim will not be started prematurely. 5494 */ 5495 total_pages = low_wmark_pages(zone); 5496 } else { 5497 /* 5498 * If percpu_pagelist_high_fraction is configured, the high 5499 * value is based on a fraction of the managed pages in the 5500 * zone. 5501 */ 5502 total_pages = zone_managed_pages(zone) / high_fraction; 5503 } 5504 5505 /* 5506 * Split the high value across all online CPUs local to the zone. Note 5507 * that early in boot that CPUs may not be online yet and that during 5508 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5509 * onlined. For memory nodes that have no CPUs, split the high value 5510 * across all online CPUs to mitigate the risk that reclaim is triggered 5511 * prematurely due to pages stored on pcp lists. 5512 */ 5513 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5514 if (!nr_split_cpus) 5515 nr_split_cpus = num_online_cpus(); 5516 high = total_pages / nr_split_cpus; 5517 5518 /* 5519 * Ensure high is at least batch*4. The multiple is based on the 5520 * historical relationship between high and batch. 5521 */ 5522 high = max(high, batch << 2); 5523 5524 return high; 5525 #else 5526 return 0; 5527 #endif 5528 } 5529 5530 /* 5531 * pcp->high and pcp->batch values are related and generally batch is lower 5532 * than high. They are also related to pcp->count such that count is lower 5533 * than high, and as soon as it reaches high, the pcplist is flushed. 5534 * 5535 * However, guaranteeing these relations at all times would require e.g. write 5536 * barriers here but also careful usage of read barriers at the read side, and 5537 * thus be prone to error and bad for performance. Thus the update only prevents 5538 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5539 * should ensure they can cope with those fields changing asynchronously, and 5540 * fully trust only the pcp->count field on the local CPU with interrupts 5541 * disabled. 5542 * 5543 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5544 * outside of boot time (or some other assurance that no concurrent updaters 5545 * exist). 5546 */ 5547 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5548 unsigned long high_max, unsigned long batch) 5549 { 5550 WRITE_ONCE(pcp->batch, batch); 5551 WRITE_ONCE(pcp->high_min, high_min); 5552 WRITE_ONCE(pcp->high_max, high_max); 5553 } 5554 5555 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5556 { 5557 int pindex; 5558 5559 memset(pcp, 0, sizeof(*pcp)); 5560 memset(pzstats, 0, sizeof(*pzstats)); 5561 5562 spin_lock_init(&pcp->lock); 5563 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5564 INIT_LIST_HEAD(&pcp->lists[pindex]); 5565 5566 /* 5567 * Set batch and high values safe for a boot pageset. A true percpu 5568 * pageset's initialization will update them subsequently. Here we don't 5569 * need to be as careful as pageset_update() as nobody can access the 5570 * pageset yet. 5571 */ 5572 pcp->high_min = BOOT_PAGESET_HIGH; 5573 pcp->high_max = BOOT_PAGESET_HIGH; 5574 pcp->batch = BOOT_PAGESET_BATCH; 5575 pcp->free_count = 0; 5576 } 5577 5578 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5579 unsigned long high_max, unsigned long batch) 5580 { 5581 struct per_cpu_pages *pcp; 5582 int cpu; 5583 5584 for_each_possible_cpu(cpu) { 5585 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5586 pageset_update(pcp, high_min, high_max, batch); 5587 } 5588 } 5589 5590 /* 5591 * Calculate and set new high and batch values for all per-cpu pagesets of a 5592 * zone based on the zone's size. 5593 */ 5594 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5595 { 5596 int new_high_min, new_high_max, new_batch; 5597 5598 new_batch = max(1, zone_batchsize(zone)); 5599 if (percpu_pagelist_high_fraction) { 5600 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5601 percpu_pagelist_high_fraction); 5602 /* 5603 * PCP high is tuned manually, disable auto-tuning via 5604 * setting high_min and high_max to the manual value. 5605 */ 5606 new_high_max = new_high_min; 5607 } else { 5608 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5609 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5610 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5611 } 5612 5613 if (zone->pageset_high_min == new_high_min && 5614 zone->pageset_high_max == new_high_max && 5615 zone->pageset_batch == new_batch) 5616 return; 5617 5618 zone->pageset_high_min = new_high_min; 5619 zone->pageset_high_max = new_high_max; 5620 zone->pageset_batch = new_batch; 5621 5622 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5623 new_batch); 5624 } 5625 5626 void __meminit setup_zone_pageset(struct zone *zone) 5627 { 5628 int cpu; 5629 5630 /* Size may be 0 on !SMP && !NUMA */ 5631 if (sizeof(struct per_cpu_zonestat) > 0) 5632 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5633 5634 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5635 for_each_possible_cpu(cpu) { 5636 struct per_cpu_pages *pcp; 5637 struct per_cpu_zonestat *pzstats; 5638 5639 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5640 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5641 per_cpu_pages_init(pcp, pzstats); 5642 } 5643 5644 zone_set_pageset_high_and_batch(zone, 0); 5645 } 5646 5647 /* 5648 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5649 * page high values need to be recalculated. 5650 */ 5651 static void zone_pcp_update(struct zone *zone, int cpu_online) 5652 { 5653 mutex_lock(&pcp_batch_high_lock); 5654 zone_set_pageset_high_and_batch(zone, cpu_online); 5655 mutex_unlock(&pcp_batch_high_lock); 5656 } 5657 5658 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5659 { 5660 struct per_cpu_pages *pcp; 5661 struct cpu_cacheinfo *cci; 5662 5663 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5664 cci = get_cpu_cacheinfo(cpu); 5665 /* 5666 * If data cache slice of CPU is large enough, "pcp->batch" 5667 * pages can be preserved in PCP before draining PCP for 5668 * consecutive high-order pages freeing without allocation. 5669 * This can reduce zone lock contention without hurting 5670 * cache-hot pages sharing. 5671 */ 5672 spin_lock(&pcp->lock); 5673 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5674 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5675 else 5676 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5677 spin_unlock(&pcp->lock); 5678 } 5679 5680 void setup_pcp_cacheinfo(unsigned int cpu) 5681 { 5682 struct zone *zone; 5683 5684 for_each_populated_zone(zone) 5685 zone_pcp_update_cacheinfo(zone, cpu); 5686 } 5687 5688 /* 5689 * Allocate per cpu pagesets and initialize them. 5690 * Before this call only boot pagesets were available. 5691 */ 5692 void __init setup_per_cpu_pageset(void) 5693 { 5694 struct pglist_data *pgdat; 5695 struct zone *zone; 5696 int __maybe_unused cpu; 5697 5698 for_each_populated_zone(zone) 5699 setup_zone_pageset(zone); 5700 5701 #ifdef CONFIG_NUMA 5702 /* 5703 * Unpopulated zones continue using the boot pagesets. 5704 * The numa stats for these pagesets need to be reset. 5705 * Otherwise, they will end up skewing the stats of 5706 * the nodes these zones are associated with. 5707 */ 5708 for_each_possible_cpu(cpu) { 5709 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5710 memset(pzstats->vm_numa_event, 0, 5711 sizeof(pzstats->vm_numa_event)); 5712 } 5713 #endif 5714 5715 for_each_online_pgdat(pgdat) 5716 pgdat->per_cpu_nodestats = 5717 alloc_percpu(struct per_cpu_nodestat); 5718 } 5719 5720 __meminit void zone_pcp_init(struct zone *zone) 5721 { 5722 /* 5723 * per cpu subsystem is not up at this point. The following code 5724 * relies on the ability of the linker to provide the 5725 * offset of a (static) per cpu variable into the per cpu area. 5726 */ 5727 zone->per_cpu_pageset = &boot_pageset; 5728 zone->per_cpu_zonestats = &boot_zonestats; 5729 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5730 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5731 zone->pageset_batch = BOOT_PAGESET_BATCH; 5732 5733 if (populated_zone(zone)) 5734 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5735 zone->present_pages, zone_batchsize(zone)); 5736 } 5737 5738 void adjust_managed_page_count(struct page *page, long count) 5739 { 5740 atomic_long_add(count, &page_zone(page)->managed_pages); 5741 totalram_pages_add(count); 5742 #ifdef CONFIG_HIGHMEM 5743 if (PageHighMem(page)) 5744 totalhigh_pages_add(count); 5745 #endif 5746 } 5747 EXPORT_SYMBOL(adjust_managed_page_count); 5748 5749 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5750 { 5751 void *pos; 5752 unsigned long pages = 0; 5753 5754 start = (void *)PAGE_ALIGN((unsigned long)start); 5755 end = (void *)((unsigned long)end & PAGE_MASK); 5756 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5757 struct page *page = virt_to_page(pos); 5758 void *direct_map_addr; 5759 5760 /* 5761 * 'direct_map_addr' might be different from 'pos' 5762 * because some architectures' virt_to_page() 5763 * work with aliases. Getting the direct map 5764 * address ensures that we get a _writeable_ 5765 * alias for the memset(). 5766 */ 5767 direct_map_addr = page_address(page); 5768 /* 5769 * Perform a kasan-unchecked memset() since this memory 5770 * has not been initialized. 5771 */ 5772 direct_map_addr = kasan_reset_tag(direct_map_addr); 5773 if ((unsigned int)poison <= 0xFF) 5774 memset(direct_map_addr, poison, PAGE_SIZE); 5775 5776 free_reserved_page(page); 5777 } 5778 5779 if (pages && s) 5780 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5781 5782 return pages; 5783 } 5784 5785 static int page_alloc_cpu_dead(unsigned int cpu) 5786 { 5787 struct zone *zone; 5788 5789 lru_add_drain_cpu(cpu); 5790 mlock_drain_remote(cpu); 5791 drain_pages(cpu); 5792 5793 /* 5794 * Spill the event counters of the dead processor 5795 * into the current processors event counters. 5796 * This artificially elevates the count of the current 5797 * processor. 5798 */ 5799 vm_events_fold_cpu(cpu); 5800 5801 /* 5802 * Zero the differential counters of the dead processor 5803 * so that the vm statistics are consistent. 5804 * 5805 * This is only okay since the processor is dead and cannot 5806 * race with what we are doing. 5807 */ 5808 cpu_vm_stats_fold(cpu); 5809 5810 for_each_populated_zone(zone) 5811 zone_pcp_update(zone, 0); 5812 5813 return 0; 5814 } 5815 5816 static int page_alloc_cpu_online(unsigned int cpu) 5817 { 5818 struct zone *zone; 5819 5820 for_each_populated_zone(zone) 5821 zone_pcp_update(zone, 1); 5822 return 0; 5823 } 5824 5825 void __init page_alloc_init_cpuhp(void) 5826 { 5827 int ret; 5828 5829 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 5830 "mm/page_alloc:pcp", 5831 page_alloc_cpu_online, 5832 page_alloc_cpu_dead); 5833 WARN_ON(ret < 0); 5834 } 5835 5836 /* 5837 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 5838 * or min_free_kbytes changes. 5839 */ 5840 static void calculate_totalreserve_pages(void) 5841 { 5842 struct pglist_data *pgdat; 5843 unsigned long reserve_pages = 0; 5844 enum zone_type i, j; 5845 5846 for_each_online_pgdat(pgdat) { 5847 5848 pgdat->totalreserve_pages = 0; 5849 5850 for (i = 0; i < MAX_NR_ZONES; i++) { 5851 struct zone *zone = pgdat->node_zones + i; 5852 long max = 0; 5853 unsigned long managed_pages = zone_managed_pages(zone); 5854 5855 /* Find valid and maximum lowmem_reserve in the zone */ 5856 for (j = i; j < MAX_NR_ZONES; j++) { 5857 if (zone->lowmem_reserve[j] > max) 5858 max = zone->lowmem_reserve[j]; 5859 } 5860 5861 /* we treat the high watermark as reserved pages. */ 5862 max += high_wmark_pages(zone); 5863 5864 if (max > managed_pages) 5865 max = managed_pages; 5866 5867 pgdat->totalreserve_pages += max; 5868 5869 reserve_pages += max; 5870 } 5871 } 5872 totalreserve_pages = reserve_pages; 5873 } 5874 5875 /* 5876 * setup_per_zone_lowmem_reserve - called whenever 5877 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 5878 * has a correct pages reserved value, so an adequate number of 5879 * pages are left in the zone after a successful __alloc_pages(). 5880 */ 5881 static void setup_per_zone_lowmem_reserve(void) 5882 { 5883 struct pglist_data *pgdat; 5884 enum zone_type i, j; 5885 5886 for_each_online_pgdat(pgdat) { 5887 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 5888 struct zone *zone = &pgdat->node_zones[i]; 5889 int ratio = sysctl_lowmem_reserve_ratio[i]; 5890 bool clear = !ratio || !zone_managed_pages(zone); 5891 unsigned long managed_pages = 0; 5892 5893 for (j = i + 1; j < MAX_NR_ZONES; j++) { 5894 struct zone *upper_zone = &pgdat->node_zones[j]; 5895 bool empty = !zone_managed_pages(upper_zone); 5896 5897 managed_pages += zone_managed_pages(upper_zone); 5898 5899 if (clear || empty) 5900 zone->lowmem_reserve[j] = 0; 5901 else 5902 zone->lowmem_reserve[j] = managed_pages / ratio; 5903 } 5904 } 5905 } 5906 5907 /* update totalreserve_pages */ 5908 calculate_totalreserve_pages(); 5909 } 5910 5911 static void __setup_per_zone_wmarks(void) 5912 { 5913 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5914 unsigned long lowmem_pages = 0; 5915 struct zone *zone; 5916 unsigned long flags; 5917 5918 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 5919 for_each_zone(zone) { 5920 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 5921 lowmem_pages += zone_managed_pages(zone); 5922 } 5923 5924 for_each_zone(zone) { 5925 u64 tmp; 5926 5927 spin_lock_irqsave(&zone->lock, flags); 5928 tmp = (u64)pages_min * zone_managed_pages(zone); 5929 tmp = div64_ul(tmp, lowmem_pages); 5930 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 5931 /* 5932 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5933 * need highmem and movable zones pages, so cap pages_min 5934 * to a small value here. 5935 * 5936 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5937 * deltas control async page reclaim, and so should 5938 * not be capped for highmem and movable zones. 5939 */ 5940 unsigned long min_pages; 5941 5942 min_pages = zone_managed_pages(zone) / 1024; 5943 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 5944 zone->_watermark[WMARK_MIN] = min_pages; 5945 } else { 5946 /* 5947 * If it's a lowmem zone, reserve a number of pages 5948 * proportionate to the zone's size. 5949 */ 5950 zone->_watermark[WMARK_MIN] = tmp; 5951 } 5952 5953 /* 5954 * Set the kswapd watermarks distance according to the 5955 * scale factor in proportion to available memory, but 5956 * ensure a minimum size on small systems. 5957 */ 5958 tmp = max_t(u64, tmp >> 2, 5959 mult_frac(zone_managed_pages(zone), 5960 watermark_scale_factor, 10000)); 5961 5962 zone->watermark_boost = 0; 5963 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 5964 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 5965 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 5966 5967 spin_unlock_irqrestore(&zone->lock, flags); 5968 } 5969 5970 /* update totalreserve_pages */ 5971 calculate_totalreserve_pages(); 5972 } 5973 5974 /** 5975 * setup_per_zone_wmarks - called when min_free_kbytes changes 5976 * or when memory is hot-{added|removed} 5977 * 5978 * Ensures that the watermark[min,low,high] values for each zone are set 5979 * correctly with respect to min_free_kbytes. 5980 */ 5981 void setup_per_zone_wmarks(void) 5982 { 5983 struct zone *zone; 5984 static DEFINE_SPINLOCK(lock); 5985 5986 spin_lock(&lock); 5987 __setup_per_zone_wmarks(); 5988 spin_unlock(&lock); 5989 5990 /* 5991 * The watermark size have changed so update the pcpu batch 5992 * and high limits or the limits may be inappropriate. 5993 */ 5994 for_each_zone(zone) 5995 zone_pcp_update(zone, 0); 5996 } 5997 5998 /* 5999 * Initialise min_free_kbytes. 6000 * 6001 * For small machines we want it small (128k min). For large machines 6002 * we want it large (256MB max). But it is not linear, because network 6003 * bandwidth does not increase linearly with machine size. We use 6004 * 6005 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6006 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6007 * 6008 * which yields 6009 * 6010 * 16MB: 512k 6011 * 32MB: 724k 6012 * 64MB: 1024k 6013 * 128MB: 1448k 6014 * 256MB: 2048k 6015 * 512MB: 2896k 6016 * 1024MB: 4096k 6017 * 2048MB: 5792k 6018 * 4096MB: 8192k 6019 * 8192MB: 11584k 6020 * 16384MB: 16384k 6021 */ 6022 void calculate_min_free_kbytes(void) 6023 { 6024 unsigned long lowmem_kbytes; 6025 int new_min_free_kbytes; 6026 6027 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6028 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6029 6030 if (new_min_free_kbytes > user_min_free_kbytes) 6031 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6032 else 6033 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6034 new_min_free_kbytes, user_min_free_kbytes); 6035 6036 } 6037 6038 int __meminit init_per_zone_wmark_min(void) 6039 { 6040 calculate_min_free_kbytes(); 6041 setup_per_zone_wmarks(); 6042 refresh_zone_stat_thresholds(); 6043 setup_per_zone_lowmem_reserve(); 6044 6045 #ifdef CONFIG_NUMA 6046 setup_min_unmapped_ratio(); 6047 setup_min_slab_ratio(); 6048 #endif 6049 6050 khugepaged_min_free_kbytes_update(); 6051 6052 return 0; 6053 } 6054 postcore_initcall(init_per_zone_wmark_min) 6055 6056 /* 6057 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6058 * that we can call two helper functions whenever min_free_kbytes 6059 * changes. 6060 */ 6061 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6062 void *buffer, size_t *length, loff_t *ppos) 6063 { 6064 int rc; 6065 6066 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6067 if (rc) 6068 return rc; 6069 6070 if (write) { 6071 user_min_free_kbytes = min_free_kbytes; 6072 setup_per_zone_wmarks(); 6073 } 6074 return 0; 6075 } 6076 6077 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6078 void *buffer, size_t *length, loff_t *ppos) 6079 { 6080 int rc; 6081 6082 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6083 if (rc) 6084 return rc; 6085 6086 if (write) 6087 setup_per_zone_wmarks(); 6088 6089 return 0; 6090 } 6091 6092 #ifdef CONFIG_NUMA 6093 static void setup_min_unmapped_ratio(void) 6094 { 6095 pg_data_t *pgdat; 6096 struct zone *zone; 6097 6098 for_each_online_pgdat(pgdat) 6099 pgdat->min_unmapped_pages = 0; 6100 6101 for_each_zone(zone) 6102 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6103 sysctl_min_unmapped_ratio) / 100; 6104 } 6105 6106 6107 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6108 void *buffer, size_t *length, loff_t *ppos) 6109 { 6110 int rc; 6111 6112 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6113 if (rc) 6114 return rc; 6115 6116 setup_min_unmapped_ratio(); 6117 6118 return 0; 6119 } 6120 6121 static void setup_min_slab_ratio(void) 6122 { 6123 pg_data_t *pgdat; 6124 struct zone *zone; 6125 6126 for_each_online_pgdat(pgdat) 6127 pgdat->min_slab_pages = 0; 6128 6129 for_each_zone(zone) 6130 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6131 sysctl_min_slab_ratio) / 100; 6132 } 6133 6134 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6135 void *buffer, size_t *length, loff_t *ppos) 6136 { 6137 int rc; 6138 6139 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6140 if (rc) 6141 return rc; 6142 6143 setup_min_slab_ratio(); 6144 6145 return 0; 6146 } 6147 #endif 6148 6149 /* 6150 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6151 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6152 * whenever sysctl_lowmem_reserve_ratio changes. 6153 * 6154 * The reserve ratio obviously has absolutely no relation with the 6155 * minimum watermarks. The lowmem reserve ratio can only make sense 6156 * if in function of the boot time zone sizes. 6157 */ 6158 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, 6159 int write, void *buffer, size_t *length, loff_t *ppos) 6160 { 6161 int i; 6162 6163 proc_dointvec_minmax(table, write, buffer, length, ppos); 6164 6165 for (i = 0; i < MAX_NR_ZONES; i++) { 6166 if (sysctl_lowmem_reserve_ratio[i] < 1) 6167 sysctl_lowmem_reserve_ratio[i] = 0; 6168 } 6169 6170 setup_per_zone_lowmem_reserve(); 6171 return 0; 6172 } 6173 6174 /* 6175 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6176 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6177 * pagelist can have before it gets flushed back to buddy allocator. 6178 */ 6179 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6180 int write, void *buffer, size_t *length, loff_t *ppos) 6181 { 6182 struct zone *zone; 6183 int old_percpu_pagelist_high_fraction; 6184 int ret; 6185 6186 mutex_lock(&pcp_batch_high_lock); 6187 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6188 6189 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6190 if (!write || ret < 0) 6191 goto out; 6192 6193 /* Sanity checking to avoid pcp imbalance */ 6194 if (percpu_pagelist_high_fraction && 6195 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6196 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6197 ret = -EINVAL; 6198 goto out; 6199 } 6200 6201 /* No change? */ 6202 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6203 goto out; 6204 6205 for_each_populated_zone(zone) 6206 zone_set_pageset_high_and_batch(zone, 0); 6207 out: 6208 mutex_unlock(&pcp_batch_high_lock); 6209 return ret; 6210 } 6211 6212 static struct ctl_table page_alloc_sysctl_table[] = { 6213 { 6214 .procname = "min_free_kbytes", 6215 .data = &min_free_kbytes, 6216 .maxlen = sizeof(min_free_kbytes), 6217 .mode = 0644, 6218 .proc_handler = min_free_kbytes_sysctl_handler, 6219 .extra1 = SYSCTL_ZERO, 6220 }, 6221 { 6222 .procname = "watermark_boost_factor", 6223 .data = &watermark_boost_factor, 6224 .maxlen = sizeof(watermark_boost_factor), 6225 .mode = 0644, 6226 .proc_handler = proc_dointvec_minmax, 6227 .extra1 = SYSCTL_ZERO, 6228 }, 6229 { 6230 .procname = "watermark_scale_factor", 6231 .data = &watermark_scale_factor, 6232 .maxlen = sizeof(watermark_scale_factor), 6233 .mode = 0644, 6234 .proc_handler = watermark_scale_factor_sysctl_handler, 6235 .extra1 = SYSCTL_ONE, 6236 .extra2 = SYSCTL_THREE_THOUSAND, 6237 }, 6238 { 6239 .procname = "percpu_pagelist_high_fraction", 6240 .data = &percpu_pagelist_high_fraction, 6241 .maxlen = sizeof(percpu_pagelist_high_fraction), 6242 .mode = 0644, 6243 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6244 .extra1 = SYSCTL_ZERO, 6245 }, 6246 { 6247 .procname = "lowmem_reserve_ratio", 6248 .data = &sysctl_lowmem_reserve_ratio, 6249 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6250 .mode = 0644, 6251 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6252 }, 6253 #ifdef CONFIG_NUMA 6254 { 6255 .procname = "numa_zonelist_order", 6256 .data = &numa_zonelist_order, 6257 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6258 .mode = 0644, 6259 .proc_handler = numa_zonelist_order_handler, 6260 }, 6261 { 6262 .procname = "min_unmapped_ratio", 6263 .data = &sysctl_min_unmapped_ratio, 6264 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6265 .mode = 0644, 6266 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6267 .extra1 = SYSCTL_ZERO, 6268 .extra2 = SYSCTL_ONE_HUNDRED, 6269 }, 6270 { 6271 .procname = "min_slab_ratio", 6272 .data = &sysctl_min_slab_ratio, 6273 .maxlen = sizeof(sysctl_min_slab_ratio), 6274 .mode = 0644, 6275 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6276 .extra1 = SYSCTL_ZERO, 6277 .extra2 = SYSCTL_ONE_HUNDRED, 6278 }, 6279 #endif 6280 }; 6281 6282 void __init page_alloc_sysctl_init(void) 6283 { 6284 register_sysctl_init("vm", page_alloc_sysctl_table); 6285 } 6286 6287 #ifdef CONFIG_CONTIG_ALLOC 6288 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6289 static void alloc_contig_dump_pages(struct list_head *page_list) 6290 { 6291 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6292 6293 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6294 struct page *page; 6295 6296 dump_stack(); 6297 list_for_each_entry(page, page_list, lru) 6298 dump_page(page, "migration failure"); 6299 } 6300 } 6301 6302 /* 6303 * [start, end) must belong to a single zone. 6304 * @migratetype: using migratetype to filter the type of migration in 6305 * trace_mm_alloc_contig_migrate_range_info. 6306 */ 6307 int __alloc_contig_migrate_range(struct compact_control *cc, 6308 unsigned long start, unsigned long end, 6309 int migratetype) 6310 { 6311 /* This function is based on compact_zone() from compaction.c. */ 6312 unsigned int nr_reclaimed; 6313 unsigned long pfn = start; 6314 unsigned int tries = 0; 6315 int ret = 0; 6316 struct migration_target_control mtc = { 6317 .nid = zone_to_nid(cc->zone), 6318 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6319 .reason = MR_CONTIG_RANGE, 6320 }; 6321 struct page *page; 6322 unsigned long total_mapped = 0; 6323 unsigned long total_migrated = 0; 6324 unsigned long total_reclaimed = 0; 6325 6326 lru_cache_disable(); 6327 6328 while (pfn < end || !list_empty(&cc->migratepages)) { 6329 if (fatal_signal_pending(current)) { 6330 ret = -EINTR; 6331 break; 6332 } 6333 6334 if (list_empty(&cc->migratepages)) { 6335 cc->nr_migratepages = 0; 6336 ret = isolate_migratepages_range(cc, pfn, end); 6337 if (ret && ret != -EAGAIN) 6338 break; 6339 pfn = cc->migrate_pfn; 6340 tries = 0; 6341 } else if (++tries == 5) { 6342 ret = -EBUSY; 6343 break; 6344 } 6345 6346 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6347 &cc->migratepages); 6348 cc->nr_migratepages -= nr_reclaimed; 6349 6350 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6351 total_reclaimed += nr_reclaimed; 6352 list_for_each_entry(page, &cc->migratepages, lru) { 6353 struct folio *folio = page_folio(page); 6354 6355 total_mapped += folio_mapped(folio) * 6356 folio_nr_pages(folio); 6357 } 6358 } 6359 6360 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6361 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6362 6363 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6364 total_migrated += cc->nr_migratepages; 6365 6366 /* 6367 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6368 * to retry again over this error, so do the same here. 6369 */ 6370 if (ret == -ENOMEM) 6371 break; 6372 } 6373 6374 lru_cache_enable(); 6375 if (ret < 0) { 6376 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6377 alloc_contig_dump_pages(&cc->migratepages); 6378 putback_movable_pages(&cc->migratepages); 6379 } 6380 6381 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6382 total_migrated, 6383 total_reclaimed, 6384 total_mapped); 6385 return (ret < 0) ? ret : 0; 6386 } 6387 6388 /** 6389 * alloc_contig_range() -- tries to allocate given range of pages 6390 * @start: start PFN to allocate 6391 * @end: one-past-the-last PFN to allocate 6392 * @migratetype: migratetype of the underlying pageblocks (either 6393 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6394 * in range must have the same migratetype and it must 6395 * be either of the two. 6396 * @gfp_mask: GFP mask to use during compaction 6397 * 6398 * The PFN range does not have to be pageblock aligned. The PFN range must 6399 * belong to a single zone. 6400 * 6401 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6402 * pageblocks in the range. Once isolated, the pageblocks should not 6403 * be modified by others. 6404 * 6405 * Return: zero on success or negative error code. On success all 6406 * pages which PFN is in [start, end) are allocated for the caller and 6407 * need to be freed with free_contig_range(). 6408 */ 6409 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6410 unsigned migratetype, gfp_t gfp_mask) 6411 { 6412 unsigned long outer_start, outer_end; 6413 int ret = 0; 6414 6415 struct compact_control cc = { 6416 .nr_migratepages = 0, 6417 .order = -1, 6418 .zone = page_zone(pfn_to_page(start)), 6419 .mode = MIGRATE_SYNC, 6420 .ignore_skip_hint = true, 6421 .no_set_skip_hint = true, 6422 .gfp_mask = current_gfp_context(gfp_mask), 6423 .alloc_contig = true, 6424 }; 6425 INIT_LIST_HEAD(&cc.migratepages); 6426 6427 /* 6428 * What we do here is we mark all pageblocks in range as 6429 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6430 * have different sizes, and due to the way page allocator 6431 * work, start_isolate_page_range() has special handlings for this. 6432 * 6433 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6434 * migrate the pages from an unaligned range (ie. pages that 6435 * we are interested in). This will put all the pages in 6436 * range back to page allocator as MIGRATE_ISOLATE. 6437 * 6438 * When this is done, we take the pages in range from page 6439 * allocator removing them from the buddy system. This way 6440 * page allocator will never consider using them. 6441 * 6442 * This lets us mark the pageblocks back as 6443 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6444 * aligned range but not in the unaligned, original range are 6445 * put back to page allocator so that buddy can use them. 6446 */ 6447 6448 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6449 if (ret) 6450 goto done; 6451 6452 drain_all_pages(cc.zone); 6453 6454 /* 6455 * In case of -EBUSY, we'd like to know which page causes problem. 6456 * So, just fall through. test_pages_isolated() has a tracepoint 6457 * which will report the busy page. 6458 * 6459 * It is possible that busy pages could become available before 6460 * the call to test_pages_isolated, and the range will actually be 6461 * allocated. So, if we fall through be sure to clear ret so that 6462 * -EBUSY is not accidentally used or returned to caller. 6463 */ 6464 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6465 if (ret && ret != -EBUSY) 6466 goto done; 6467 ret = 0; 6468 6469 /* 6470 * Pages from [start, end) are within a pageblock_nr_pages 6471 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6472 * more, all pages in [start, end) are free in page allocator. 6473 * What we are going to do is to allocate all pages from 6474 * [start, end) (that is remove them from page allocator). 6475 * 6476 * The only problem is that pages at the beginning and at the 6477 * end of interesting range may be not aligned with pages that 6478 * page allocator holds, ie. they can be part of higher order 6479 * pages. Because of this, we reserve the bigger range and 6480 * once this is done free the pages we are not interested in. 6481 * 6482 * We don't have to hold zone->lock here because the pages are 6483 * isolated thus they won't get removed from buddy. 6484 */ 6485 outer_start = find_large_buddy(start); 6486 6487 /* Make sure the range is really isolated. */ 6488 if (test_pages_isolated(outer_start, end, 0)) { 6489 ret = -EBUSY; 6490 goto done; 6491 } 6492 6493 /* Grab isolated pages from freelists. */ 6494 outer_end = isolate_freepages_range(&cc, outer_start, end); 6495 if (!outer_end) { 6496 ret = -EBUSY; 6497 goto done; 6498 } 6499 6500 /* Free head and tail (if any) */ 6501 if (start != outer_start) 6502 free_contig_range(outer_start, start - outer_start); 6503 if (end != outer_end) 6504 free_contig_range(end, outer_end - end); 6505 6506 done: 6507 undo_isolate_page_range(start, end, migratetype); 6508 return ret; 6509 } 6510 EXPORT_SYMBOL(alloc_contig_range_noprof); 6511 6512 static int __alloc_contig_pages(unsigned long start_pfn, 6513 unsigned long nr_pages, gfp_t gfp_mask) 6514 { 6515 unsigned long end_pfn = start_pfn + nr_pages; 6516 6517 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6518 gfp_mask); 6519 } 6520 6521 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6522 unsigned long nr_pages) 6523 { 6524 unsigned long i, end_pfn = start_pfn + nr_pages; 6525 struct page *page; 6526 6527 for (i = start_pfn; i < end_pfn; i++) { 6528 page = pfn_to_online_page(i); 6529 if (!page) 6530 return false; 6531 6532 if (page_zone(page) != z) 6533 return false; 6534 6535 if (PageReserved(page)) 6536 return false; 6537 6538 if (PageHuge(page)) 6539 return false; 6540 } 6541 return true; 6542 } 6543 6544 static bool zone_spans_last_pfn(const struct zone *zone, 6545 unsigned long start_pfn, unsigned long nr_pages) 6546 { 6547 unsigned long last_pfn = start_pfn + nr_pages - 1; 6548 6549 return zone_spans_pfn(zone, last_pfn); 6550 } 6551 6552 /** 6553 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6554 * @nr_pages: Number of contiguous pages to allocate 6555 * @gfp_mask: GFP mask to limit search and used during compaction 6556 * @nid: Target node 6557 * @nodemask: Mask for other possible nodes 6558 * 6559 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6560 * on an applicable zonelist to find a contiguous pfn range which can then be 6561 * tried for allocation with alloc_contig_range(). This routine is intended 6562 * for allocation requests which can not be fulfilled with the buddy allocator. 6563 * 6564 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6565 * power of two, then allocated range is also guaranteed to be aligned to same 6566 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6567 * 6568 * Allocated pages can be freed with free_contig_range() or by manually calling 6569 * __free_page() on each allocated page. 6570 * 6571 * Return: pointer to contiguous pages on success, or NULL if not successful. 6572 */ 6573 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6574 int nid, nodemask_t *nodemask) 6575 { 6576 unsigned long ret, pfn, flags; 6577 struct zonelist *zonelist; 6578 struct zone *zone; 6579 struct zoneref *z; 6580 6581 zonelist = node_zonelist(nid, gfp_mask); 6582 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6583 gfp_zone(gfp_mask), nodemask) { 6584 spin_lock_irqsave(&zone->lock, flags); 6585 6586 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6587 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6588 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6589 /* 6590 * We release the zone lock here because 6591 * alloc_contig_range() will also lock the zone 6592 * at some point. If there's an allocation 6593 * spinning on this lock, it may win the race 6594 * and cause alloc_contig_range() to fail... 6595 */ 6596 spin_unlock_irqrestore(&zone->lock, flags); 6597 ret = __alloc_contig_pages(pfn, nr_pages, 6598 gfp_mask); 6599 if (!ret) 6600 return pfn_to_page(pfn); 6601 spin_lock_irqsave(&zone->lock, flags); 6602 } 6603 pfn += nr_pages; 6604 } 6605 spin_unlock_irqrestore(&zone->lock, flags); 6606 } 6607 return NULL; 6608 } 6609 #endif /* CONFIG_CONTIG_ALLOC */ 6610 6611 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6612 { 6613 unsigned long count = 0; 6614 6615 for (; nr_pages--; pfn++) { 6616 struct page *page = pfn_to_page(pfn); 6617 6618 count += page_count(page) != 1; 6619 __free_page(page); 6620 } 6621 WARN(count != 0, "%lu pages are still in use!\n", count); 6622 } 6623 EXPORT_SYMBOL(free_contig_range); 6624 6625 /* 6626 * Effectively disable pcplists for the zone by setting the high limit to 0 6627 * and draining all cpus. A concurrent page freeing on another CPU that's about 6628 * to put the page on pcplist will either finish before the drain and the page 6629 * will be drained, or observe the new high limit and skip the pcplist. 6630 * 6631 * Must be paired with a call to zone_pcp_enable(). 6632 */ 6633 void zone_pcp_disable(struct zone *zone) 6634 { 6635 mutex_lock(&pcp_batch_high_lock); 6636 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6637 __drain_all_pages(zone, true); 6638 } 6639 6640 void zone_pcp_enable(struct zone *zone) 6641 { 6642 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6643 zone->pageset_high_max, zone->pageset_batch); 6644 mutex_unlock(&pcp_batch_high_lock); 6645 } 6646 6647 void zone_pcp_reset(struct zone *zone) 6648 { 6649 int cpu; 6650 struct per_cpu_zonestat *pzstats; 6651 6652 if (zone->per_cpu_pageset != &boot_pageset) { 6653 for_each_online_cpu(cpu) { 6654 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6655 drain_zonestat(zone, pzstats); 6656 } 6657 free_percpu(zone->per_cpu_pageset); 6658 zone->per_cpu_pageset = &boot_pageset; 6659 if (zone->per_cpu_zonestats != &boot_zonestats) { 6660 free_percpu(zone->per_cpu_zonestats); 6661 zone->per_cpu_zonestats = &boot_zonestats; 6662 } 6663 } 6664 } 6665 6666 #ifdef CONFIG_MEMORY_HOTREMOVE 6667 /* 6668 * All pages in the range must be in a single zone, must not contain holes, 6669 * must span full sections, and must be isolated before calling this function. 6670 */ 6671 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6672 { 6673 unsigned long pfn = start_pfn; 6674 struct page *page; 6675 struct zone *zone; 6676 unsigned int order; 6677 unsigned long flags; 6678 6679 offline_mem_sections(pfn, end_pfn); 6680 zone = page_zone(pfn_to_page(pfn)); 6681 spin_lock_irqsave(&zone->lock, flags); 6682 while (pfn < end_pfn) { 6683 page = pfn_to_page(pfn); 6684 /* 6685 * The HWPoisoned page may be not in buddy system, and 6686 * page_count() is not 0. 6687 */ 6688 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6689 pfn++; 6690 continue; 6691 } 6692 /* 6693 * At this point all remaining PageOffline() pages have a 6694 * reference count of 0 and can simply be skipped. 6695 */ 6696 if (PageOffline(page)) { 6697 BUG_ON(page_count(page)); 6698 BUG_ON(PageBuddy(page)); 6699 pfn++; 6700 continue; 6701 } 6702 6703 BUG_ON(page_count(page)); 6704 BUG_ON(!PageBuddy(page)); 6705 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 6706 order = buddy_order(page); 6707 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 6708 pfn += (1 << order); 6709 } 6710 spin_unlock_irqrestore(&zone->lock, flags); 6711 } 6712 #endif 6713 6714 /* 6715 * This function returns a stable result only if called under zone lock. 6716 */ 6717 bool is_free_buddy_page(const struct page *page) 6718 { 6719 unsigned long pfn = page_to_pfn(page); 6720 unsigned int order; 6721 6722 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6723 const struct page *head = page - (pfn & ((1 << order) - 1)); 6724 6725 if (PageBuddy(head) && 6726 buddy_order_unsafe(head) >= order) 6727 break; 6728 } 6729 6730 return order <= MAX_PAGE_ORDER; 6731 } 6732 EXPORT_SYMBOL(is_free_buddy_page); 6733 6734 #ifdef CONFIG_MEMORY_FAILURE 6735 static inline void add_to_free_list(struct page *page, struct zone *zone, 6736 unsigned int order, int migratetype, 6737 bool tail) 6738 { 6739 __add_to_free_list(page, zone, order, migratetype, tail); 6740 account_freepages(zone, 1 << order, migratetype); 6741 } 6742 6743 /* 6744 * Break down a higher-order page in sub-pages, and keep our target out of 6745 * buddy allocator. 6746 */ 6747 static void break_down_buddy_pages(struct zone *zone, struct page *page, 6748 struct page *target, int low, int high, 6749 int migratetype) 6750 { 6751 unsigned long size = 1 << high; 6752 struct page *current_buddy; 6753 6754 while (high > low) { 6755 high--; 6756 size >>= 1; 6757 6758 if (target >= &page[size]) { 6759 current_buddy = page; 6760 page = page + size; 6761 } else { 6762 current_buddy = page + size; 6763 } 6764 6765 if (set_page_guard(zone, current_buddy, high)) 6766 continue; 6767 6768 add_to_free_list(current_buddy, zone, high, migratetype, false); 6769 set_buddy_order(current_buddy, high); 6770 } 6771 } 6772 6773 /* 6774 * Take a page that will be marked as poisoned off the buddy allocator. 6775 */ 6776 bool take_page_off_buddy(struct page *page) 6777 { 6778 struct zone *zone = page_zone(page); 6779 unsigned long pfn = page_to_pfn(page); 6780 unsigned long flags; 6781 unsigned int order; 6782 bool ret = false; 6783 6784 spin_lock_irqsave(&zone->lock, flags); 6785 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6786 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6787 int page_order = buddy_order(page_head); 6788 6789 if (PageBuddy(page_head) && page_order >= order) { 6790 unsigned long pfn_head = page_to_pfn(page_head); 6791 int migratetype = get_pfnblock_migratetype(page_head, 6792 pfn_head); 6793 6794 del_page_from_free_list(page_head, zone, page_order, 6795 migratetype); 6796 break_down_buddy_pages(zone, page_head, page, 0, 6797 page_order, migratetype); 6798 SetPageHWPoisonTakenOff(page); 6799 ret = true; 6800 break; 6801 } 6802 if (page_count(page_head) > 0) 6803 break; 6804 } 6805 spin_unlock_irqrestore(&zone->lock, flags); 6806 return ret; 6807 } 6808 6809 /* 6810 * Cancel takeoff done by take_page_off_buddy(). 6811 */ 6812 bool put_page_back_buddy(struct page *page) 6813 { 6814 struct zone *zone = page_zone(page); 6815 unsigned long flags; 6816 bool ret = false; 6817 6818 spin_lock_irqsave(&zone->lock, flags); 6819 if (put_page_testzero(page)) { 6820 unsigned long pfn = page_to_pfn(page); 6821 int migratetype = get_pfnblock_migratetype(page, pfn); 6822 6823 ClearPageHWPoisonTakenOff(page); 6824 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 6825 if (TestClearPageHWPoison(page)) { 6826 ret = true; 6827 } 6828 } 6829 spin_unlock_irqrestore(&zone->lock, flags); 6830 6831 return ret; 6832 } 6833 #endif 6834 6835 #ifdef CONFIG_ZONE_DMA 6836 bool has_managed_dma(void) 6837 { 6838 struct pglist_data *pgdat; 6839 6840 for_each_online_pgdat(pgdat) { 6841 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 6842 6843 if (managed_zone(zone)) 6844 return true; 6845 } 6846 return false; 6847 } 6848 #endif /* CONFIG_ZONE_DMA */ 6849 6850 #ifdef CONFIG_UNACCEPTED_MEMORY 6851 6852 /* Counts number of zones with unaccepted pages. */ 6853 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages); 6854 6855 static bool lazy_accept = true; 6856 6857 static int __init accept_memory_parse(char *p) 6858 { 6859 if (!strcmp(p, "lazy")) { 6860 lazy_accept = true; 6861 return 0; 6862 } else if (!strcmp(p, "eager")) { 6863 lazy_accept = false; 6864 return 0; 6865 } else { 6866 return -EINVAL; 6867 } 6868 } 6869 early_param("accept_memory", accept_memory_parse); 6870 6871 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6872 { 6873 phys_addr_t start = page_to_phys(page); 6874 phys_addr_t end = start + (PAGE_SIZE << order); 6875 6876 return range_contains_unaccepted_memory(start, end); 6877 } 6878 6879 static void accept_page(struct page *page, unsigned int order) 6880 { 6881 phys_addr_t start = page_to_phys(page); 6882 6883 accept_memory(start, start + (PAGE_SIZE << order)); 6884 } 6885 6886 static bool try_to_accept_memory_one(struct zone *zone) 6887 { 6888 unsigned long flags; 6889 struct page *page; 6890 bool last; 6891 6892 if (list_empty(&zone->unaccepted_pages)) 6893 return false; 6894 6895 spin_lock_irqsave(&zone->lock, flags); 6896 page = list_first_entry_or_null(&zone->unaccepted_pages, 6897 struct page, lru); 6898 if (!page) { 6899 spin_unlock_irqrestore(&zone->lock, flags); 6900 return false; 6901 } 6902 6903 list_del(&page->lru); 6904 last = list_empty(&zone->unaccepted_pages); 6905 6906 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6907 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 6908 spin_unlock_irqrestore(&zone->lock, flags); 6909 6910 accept_page(page, MAX_PAGE_ORDER); 6911 6912 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 6913 6914 if (last) 6915 static_branch_dec(&zones_with_unaccepted_pages); 6916 6917 return true; 6918 } 6919 6920 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6921 { 6922 long to_accept; 6923 int ret = false; 6924 6925 /* How much to accept to get to high watermark? */ 6926 to_accept = high_wmark_pages(zone) - 6927 (zone_page_state(zone, NR_FREE_PAGES) - 6928 __zone_watermark_unusable_free(zone, order, 0)); 6929 6930 /* Accept at least one page */ 6931 do { 6932 if (!try_to_accept_memory_one(zone)) 6933 break; 6934 ret = true; 6935 to_accept -= MAX_ORDER_NR_PAGES; 6936 } while (to_accept > 0); 6937 6938 return ret; 6939 } 6940 6941 static inline bool has_unaccepted_memory(void) 6942 { 6943 return static_branch_unlikely(&zones_with_unaccepted_pages); 6944 } 6945 6946 static bool __free_unaccepted(struct page *page) 6947 { 6948 struct zone *zone = page_zone(page); 6949 unsigned long flags; 6950 bool first = false; 6951 6952 if (!lazy_accept) 6953 return false; 6954 6955 spin_lock_irqsave(&zone->lock, flags); 6956 first = list_empty(&zone->unaccepted_pages); 6957 list_add_tail(&page->lru, &zone->unaccepted_pages); 6958 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 6959 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 6960 spin_unlock_irqrestore(&zone->lock, flags); 6961 6962 if (first) 6963 static_branch_inc(&zones_with_unaccepted_pages); 6964 6965 return true; 6966 } 6967 6968 #else 6969 6970 static bool page_contains_unaccepted(struct page *page, unsigned int order) 6971 { 6972 return false; 6973 } 6974 6975 static void accept_page(struct page *page, unsigned int order) 6976 { 6977 } 6978 6979 static bool try_to_accept_memory(struct zone *zone, unsigned int order) 6980 { 6981 return false; 6982 } 6983 6984 static inline bool has_unaccepted_memory(void) 6985 { 6986 return false; 6987 } 6988 6989 static bool __free_unaccepted(struct page *page) 6990 { 6991 BUILD_BUG(); 6992 return false; 6993 } 6994 6995 #endif /* CONFIG_UNACCEPTED_MEMORY */ 6996