xref: /linux/mm/page_alloc.c (revision fd639726bf15fca8ee1a00dce8e0096d0ad9bd18)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
74 #include "internal.h"
75 
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock);
78 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
79 
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node);
82 EXPORT_PER_CPU_SYMBOL(numa_node);
83 #endif
84 
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
86 
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
88 /*
89  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92  * defined in <linux/topology.h>.
93  */
94 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
96 int _node_numa_mem_[MAX_NUMNODES];
97 #endif
98 
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex);
101 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
102 
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy;
105 EXPORT_SYMBOL(latent_entropy);
106 #endif
107 
108 /*
109  * Array of node states.
110  */
111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
112 	[N_POSSIBLE] = NODE_MASK_ALL,
113 	[N_ONLINE] = { { [0] = 1UL } },
114 #ifndef CONFIG_NUMA
115 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_MEMORY] = { { [0] = 1UL } },
120 	[N_CPU] = { { [0] = 1UL } },
121 #endif	/* NUMA */
122 };
123 EXPORT_SYMBOL(node_states);
124 
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock);
127 
128 unsigned long totalram_pages __read_mostly;
129 unsigned long totalreserve_pages __read_mostly;
130 unsigned long totalcma_pages __read_mostly;
131 
132 int percpu_pagelist_fraction;
133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
134 
135 /*
136  * A cached value of the page's pageblock's migratetype, used when the page is
137  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139  * Also the migratetype set in the page does not necessarily match the pcplist
140  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141  * other index - this ensures that it will be put on the correct CMA freelist.
142  */
143 static inline int get_pcppage_migratetype(struct page *page)
144 {
145 	return page->index;
146 }
147 
148 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
149 {
150 	page->index = migratetype;
151 }
152 
153 #ifdef CONFIG_PM_SLEEP
154 /*
155  * The following functions are used by the suspend/hibernate code to temporarily
156  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157  * while devices are suspended.  To avoid races with the suspend/hibernate code,
158  * they should always be called with pm_mutex held (gfp_allowed_mask also should
159  * only be modified with pm_mutex held, unless the suspend/hibernate code is
160  * guaranteed not to run in parallel with that modification).
161  */
162 
163 static gfp_t saved_gfp_mask;
164 
165 void pm_restore_gfp_mask(void)
166 {
167 	WARN_ON(!mutex_is_locked(&pm_mutex));
168 	if (saved_gfp_mask) {
169 		gfp_allowed_mask = saved_gfp_mask;
170 		saved_gfp_mask = 0;
171 	}
172 }
173 
174 void pm_restrict_gfp_mask(void)
175 {
176 	WARN_ON(!mutex_is_locked(&pm_mutex));
177 	WARN_ON(saved_gfp_mask);
178 	saved_gfp_mask = gfp_allowed_mask;
179 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
180 }
181 
182 bool pm_suspended_storage(void)
183 {
184 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
185 		return false;
186 	return true;
187 }
188 #endif /* CONFIG_PM_SLEEP */
189 
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly;
192 #endif
193 
194 static void __free_pages_ok(struct page *page, unsigned int order);
195 
196 /*
197  * results with 256, 32 in the lowmem_reserve sysctl:
198  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199  *	1G machine -> (16M dma, 784M normal, 224M high)
200  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
203  *
204  * TBD: should special case ZONE_DMA32 machines here - in those we normally
205  * don't need any ZONE_NORMAL reservation
206  */
207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
208 #ifdef CONFIG_ZONE_DMA
209 	 256,
210 #endif
211 #ifdef CONFIG_ZONE_DMA32
212 	 256,
213 #endif
214 #ifdef CONFIG_HIGHMEM
215 	 32,
216 #endif
217 	 32,
218 };
219 
220 EXPORT_SYMBOL(totalram_pages);
221 
222 static char * const zone_names[MAX_NR_ZONES] = {
223 #ifdef CONFIG_ZONE_DMA
224 	 "DMA",
225 #endif
226 #ifdef CONFIG_ZONE_DMA32
227 	 "DMA32",
228 #endif
229 	 "Normal",
230 #ifdef CONFIG_HIGHMEM
231 	 "HighMem",
232 #endif
233 	 "Movable",
234 #ifdef CONFIG_ZONE_DEVICE
235 	 "Device",
236 #endif
237 };
238 
239 char * const migratetype_names[MIGRATE_TYPES] = {
240 	"Unmovable",
241 	"Movable",
242 	"Reclaimable",
243 	"HighAtomic",
244 #ifdef CONFIG_CMA
245 	"CMA",
246 #endif
247 #ifdef CONFIG_MEMORY_ISOLATION
248 	"Isolate",
249 #endif
250 };
251 
252 compound_page_dtor * const compound_page_dtors[] = {
253 	NULL,
254 	free_compound_page,
255 #ifdef CONFIG_HUGETLB_PAGE
256 	free_huge_page,
257 #endif
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
259 	free_transhuge_page,
260 #endif
261 };
262 
263 int min_free_kbytes = 1024;
264 int user_min_free_kbytes = -1;
265 int watermark_scale_factor = 10;
266 
267 static unsigned long __meminitdata nr_kernel_pages;
268 static unsigned long __meminitdata nr_all_pages;
269 static unsigned long __meminitdata dma_reserve;
270 
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
274 static unsigned long __initdata required_kernelcore;
275 static unsigned long __initdata required_movablecore;
276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
277 static bool mirrored_kernelcore;
278 
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
280 int movable_zone;
281 EXPORT_SYMBOL(movable_zone);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
283 
284 #if MAX_NUMNODES > 1
285 int nr_node_ids __read_mostly = MAX_NUMNODES;
286 int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
289 #endif
290 
291 int page_group_by_mobility_disabled __read_mostly;
292 
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
294 
295 /*
296  * Determine how many pages need to be initialized durig early boot
297  * (non-deferred initialization).
298  * The value of first_deferred_pfn will be set later, once non-deferred pages
299  * are initialized, but for now set it ULONG_MAX.
300  */
301 static inline void reset_deferred_meminit(pg_data_t *pgdat)
302 {
303 	phys_addr_t start_addr, end_addr;
304 	unsigned long max_pgcnt;
305 	unsigned long reserved;
306 
307 	/*
308 	 * Initialise at least 2G of a node but also take into account that
309 	 * two large system hashes that can take up 1GB for 0.25TB/node.
310 	 */
311 	max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
312 			(pgdat->node_spanned_pages >> 8));
313 
314 	/*
315 	 * Compensate the all the memblock reservations (e.g. crash kernel)
316 	 * from the initial estimation to make sure we will initialize enough
317 	 * memory to boot.
318 	 */
319 	start_addr = PFN_PHYS(pgdat->node_start_pfn);
320 	end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
321 	reserved = memblock_reserved_memory_within(start_addr, end_addr);
322 	max_pgcnt += PHYS_PFN(reserved);
323 
324 	pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
325 	pgdat->first_deferred_pfn = ULONG_MAX;
326 }
327 
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
330 {
331 	int nid = early_pfn_to_nid(pfn);
332 
333 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
334 		return true;
335 
336 	return false;
337 }
338 
339 /*
340  * Returns false when the remaining initialisation should be deferred until
341  * later in the boot cycle when it can be parallelised.
342  */
343 static inline bool update_defer_init(pg_data_t *pgdat,
344 				unsigned long pfn, unsigned long zone_end,
345 				unsigned long *nr_initialised)
346 {
347 	/* Always populate low zones for address-contrained allocations */
348 	if (zone_end < pgdat_end_pfn(pgdat))
349 		return true;
350 	(*nr_initialised)++;
351 	if ((*nr_initialised > pgdat->static_init_pgcnt) &&
352 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
353 		pgdat->first_deferred_pfn = pfn;
354 		return false;
355 	}
356 
357 	return true;
358 }
359 #else
360 static inline void reset_deferred_meminit(pg_data_t *pgdat)
361 {
362 }
363 
364 static inline bool early_page_uninitialised(unsigned long pfn)
365 {
366 	return false;
367 }
368 
369 static inline bool update_defer_init(pg_data_t *pgdat,
370 				unsigned long pfn, unsigned long zone_end,
371 				unsigned long *nr_initialised)
372 {
373 	return true;
374 }
375 #endif
376 
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page *page,
379 							unsigned long pfn)
380 {
381 #ifdef CONFIG_SPARSEMEM
382 	return __pfn_to_section(pfn)->pageblock_flags;
383 #else
384 	return page_zone(page)->pageblock_flags;
385 #endif /* CONFIG_SPARSEMEM */
386 }
387 
388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
389 {
390 #ifdef CONFIG_SPARSEMEM
391 	pfn &= (PAGES_PER_SECTION-1);
392 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
393 #else
394 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
395 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
396 #endif /* CONFIG_SPARSEMEM */
397 }
398 
399 /**
400  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401  * @page: The page within the block of interest
402  * @pfn: The target page frame number
403  * @end_bitidx: The last bit of interest to retrieve
404  * @mask: mask of bits that the caller is interested in
405  *
406  * Return: pageblock_bits flags
407  */
408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
409 					unsigned long pfn,
410 					unsigned long end_bitidx,
411 					unsigned long mask)
412 {
413 	unsigned long *bitmap;
414 	unsigned long bitidx, word_bitidx;
415 	unsigned long word;
416 
417 	bitmap = get_pageblock_bitmap(page, pfn);
418 	bitidx = pfn_to_bitidx(page, pfn);
419 	word_bitidx = bitidx / BITS_PER_LONG;
420 	bitidx &= (BITS_PER_LONG-1);
421 
422 	word = bitmap[word_bitidx];
423 	bitidx += end_bitidx;
424 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
425 }
426 
427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
428 					unsigned long end_bitidx,
429 					unsigned long mask)
430 {
431 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
432 }
433 
434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
435 {
436 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
437 }
438 
439 /**
440  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441  * @page: The page within the block of interest
442  * @flags: The flags to set
443  * @pfn: The target page frame number
444  * @end_bitidx: The last bit of interest
445  * @mask: mask of bits that the caller is interested in
446  */
447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
448 					unsigned long pfn,
449 					unsigned long end_bitidx,
450 					unsigned long mask)
451 {
452 	unsigned long *bitmap;
453 	unsigned long bitidx, word_bitidx;
454 	unsigned long old_word, word;
455 
456 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
457 
458 	bitmap = get_pageblock_bitmap(page, pfn);
459 	bitidx = pfn_to_bitidx(page, pfn);
460 	word_bitidx = bitidx / BITS_PER_LONG;
461 	bitidx &= (BITS_PER_LONG-1);
462 
463 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
464 
465 	bitidx += end_bitidx;
466 	mask <<= (BITS_PER_LONG - bitidx - 1);
467 	flags <<= (BITS_PER_LONG - bitidx - 1);
468 
469 	word = READ_ONCE(bitmap[word_bitidx]);
470 	for (;;) {
471 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
472 		if (word == old_word)
473 			break;
474 		word = old_word;
475 	}
476 }
477 
478 void set_pageblock_migratetype(struct page *page, int migratetype)
479 {
480 	if (unlikely(page_group_by_mobility_disabled &&
481 		     migratetype < MIGRATE_PCPTYPES))
482 		migratetype = MIGRATE_UNMOVABLE;
483 
484 	set_pageblock_flags_group(page, (unsigned long)migratetype,
485 					PB_migrate, PB_migrate_end);
486 }
487 
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
490 {
491 	int ret = 0;
492 	unsigned seq;
493 	unsigned long pfn = page_to_pfn(page);
494 	unsigned long sp, start_pfn;
495 
496 	do {
497 		seq = zone_span_seqbegin(zone);
498 		start_pfn = zone->zone_start_pfn;
499 		sp = zone->spanned_pages;
500 		if (!zone_spans_pfn(zone, pfn))
501 			ret = 1;
502 	} while (zone_span_seqretry(zone, seq));
503 
504 	if (ret)
505 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 			pfn, zone_to_nid(zone), zone->name,
507 			start_pfn, start_pfn + sp);
508 
509 	return ret;
510 }
511 
512 static int page_is_consistent(struct zone *zone, struct page *page)
513 {
514 	if (!pfn_valid_within(page_to_pfn(page)))
515 		return 0;
516 	if (zone != page_zone(page))
517 		return 0;
518 
519 	return 1;
520 }
521 /*
522  * Temporary debugging check for pages not lying within a given zone.
523  */
524 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
525 {
526 	if (page_outside_zone_boundaries(zone, page))
527 		return 1;
528 	if (!page_is_consistent(zone, page))
529 		return 1;
530 
531 	return 0;
532 }
533 #else
534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
535 {
536 	return 0;
537 }
538 #endif
539 
540 static void bad_page(struct page *page, const char *reason,
541 		unsigned long bad_flags)
542 {
543 	static unsigned long resume;
544 	static unsigned long nr_shown;
545 	static unsigned long nr_unshown;
546 
547 	/*
548 	 * Allow a burst of 60 reports, then keep quiet for that minute;
549 	 * or allow a steady drip of one report per second.
550 	 */
551 	if (nr_shown == 60) {
552 		if (time_before(jiffies, resume)) {
553 			nr_unshown++;
554 			goto out;
555 		}
556 		if (nr_unshown) {
557 			pr_alert(
558 			      "BUG: Bad page state: %lu messages suppressed\n",
559 				nr_unshown);
560 			nr_unshown = 0;
561 		}
562 		nr_shown = 0;
563 	}
564 	if (nr_shown++ == 0)
565 		resume = jiffies + 60 * HZ;
566 
567 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
568 		current->comm, page_to_pfn(page));
569 	__dump_page(page, reason);
570 	bad_flags &= page->flags;
571 	if (bad_flags)
572 		pr_alert("bad because of flags: %#lx(%pGp)\n",
573 						bad_flags, &bad_flags);
574 	dump_page_owner(page);
575 
576 	print_modules();
577 	dump_stack();
578 out:
579 	/* Leave bad fields for debug, except PageBuddy could make trouble */
580 	page_mapcount_reset(page); /* remove PageBuddy */
581 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
582 }
583 
584 /*
585  * Higher-order pages are called "compound pages".  They are structured thusly:
586  *
587  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
588  *
589  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
591  *
592  * The first tail page's ->compound_dtor holds the offset in array of compound
593  * page destructors. See compound_page_dtors.
594  *
595  * The first tail page's ->compound_order holds the order of allocation.
596  * This usage means that zero-order pages may not be compound.
597  */
598 
599 void free_compound_page(struct page *page)
600 {
601 	__free_pages_ok(page, compound_order(page));
602 }
603 
604 void prep_compound_page(struct page *page, unsigned int order)
605 {
606 	int i;
607 	int nr_pages = 1 << order;
608 
609 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
610 	set_compound_order(page, order);
611 	__SetPageHead(page);
612 	for (i = 1; i < nr_pages; i++) {
613 		struct page *p = page + i;
614 		set_page_count(p, 0);
615 		p->mapping = TAIL_MAPPING;
616 		set_compound_head(p, page);
617 	}
618 	atomic_set(compound_mapcount_ptr(page), -1);
619 }
620 
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder;
623 bool _debug_pagealloc_enabled __read_mostly
624 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled);
626 bool _debug_guardpage_enabled __read_mostly;
627 
628 static int __init early_debug_pagealloc(char *buf)
629 {
630 	if (!buf)
631 		return -EINVAL;
632 	return kstrtobool(buf, &_debug_pagealloc_enabled);
633 }
634 early_param("debug_pagealloc", early_debug_pagealloc);
635 
636 static bool need_debug_guardpage(void)
637 {
638 	/* If we don't use debug_pagealloc, we don't need guard page */
639 	if (!debug_pagealloc_enabled())
640 		return false;
641 
642 	if (!debug_guardpage_minorder())
643 		return false;
644 
645 	return true;
646 }
647 
648 static void init_debug_guardpage(void)
649 {
650 	if (!debug_pagealloc_enabled())
651 		return;
652 
653 	if (!debug_guardpage_minorder())
654 		return;
655 
656 	_debug_guardpage_enabled = true;
657 }
658 
659 struct page_ext_operations debug_guardpage_ops = {
660 	.need = need_debug_guardpage,
661 	.init = init_debug_guardpage,
662 };
663 
664 static int __init debug_guardpage_minorder_setup(char *buf)
665 {
666 	unsigned long res;
667 
668 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
669 		pr_err("Bad debug_guardpage_minorder value\n");
670 		return 0;
671 	}
672 	_debug_guardpage_minorder = res;
673 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
674 	return 0;
675 }
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
677 
678 static inline bool set_page_guard(struct zone *zone, struct page *page,
679 				unsigned int order, int migratetype)
680 {
681 	struct page_ext *page_ext;
682 
683 	if (!debug_guardpage_enabled())
684 		return false;
685 
686 	if (order >= debug_guardpage_minorder())
687 		return false;
688 
689 	page_ext = lookup_page_ext(page);
690 	if (unlikely(!page_ext))
691 		return false;
692 
693 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694 
695 	INIT_LIST_HEAD(&page->lru);
696 	set_page_private(page, order);
697 	/* Guard pages are not available for any usage */
698 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
699 
700 	return true;
701 }
702 
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 				unsigned int order, int migratetype)
705 {
706 	struct page_ext *page_ext;
707 
708 	if (!debug_guardpage_enabled())
709 		return;
710 
711 	page_ext = lookup_page_ext(page);
712 	if (unlikely(!page_ext))
713 		return;
714 
715 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
716 
717 	set_page_private(page, 0);
718 	if (!is_migrate_isolate(migratetype))
719 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
720 }
721 #else
722 struct page_ext_operations debug_guardpage_ops;
723 static inline bool set_page_guard(struct zone *zone, struct page *page,
724 			unsigned int order, int migratetype) { return false; }
725 static inline void clear_page_guard(struct zone *zone, struct page *page,
726 				unsigned int order, int migratetype) {}
727 #endif
728 
729 static inline void set_page_order(struct page *page, unsigned int order)
730 {
731 	set_page_private(page, order);
732 	__SetPageBuddy(page);
733 }
734 
735 static inline void rmv_page_order(struct page *page)
736 {
737 	__ClearPageBuddy(page);
738 	set_page_private(page, 0);
739 }
740 
741 /*
742  * This function checks whether a page is free && is the buddy
743  * we can do coalesce a page and its buddy if
744  * (a) the buddy is not in a hole (check before calling!) &&
745  * (b) the buddy is in the buddy system &&
746  * (c) a page and its buddy have the same order &&
747  * (d) a page and its buddy are in the same zone.
748  *
749  * For recording whether a page is in the buddy system, we set ->_mapcount
750  * PAGE_BUDDY_MAPCOUNT_VALUE.
751  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752  * serialized by zone->lock.
753  *
754  * For recording page's order, we use page_private(page).
755  */
756 static inline int page_is_buddy(struct page *page, struct page *buddy,
757 							unsigned int order)
758 {
759 	if (page_is_guard(buddy) && page_order(buddy) == order) {
760 		if (page_zone_id(page) != page_zone_id(buddy))
761 			return 0;
762 
763 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
764 
765 		return 1;
766 	}
767 
768 	if (PageBuddy(buddy) && page_order(buddy) == order) {
769 		/*
770 		 * zone check is done late to avoid uselessly
771 		 * calculating zone/node ids for pages that could
772 		 * never merge.
773 		 */
774 		if (page_zone_id(page) != page_zone_id(buddy))
775 			return 0;
776 
777 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
778 
779 		return 1;
780 	}
781 	return 0;
782 }
783 
784 /*
785  * Freeing function for a buddy system allocator.
786  *
787  * The concept of a buddy system is to maintain direct-mapped table
788  * (containing bit values) for memory blocks of various "orders".
789  * The bottom level table contains the map for the smallest allocatable
790  * units of memory (here, pages), and each level above it describes
791  * pairs of units from the levels below, hence, "buddies".
792  * At a high level, all that happens here is marking the table entry
793  * at the bottom level available, and propagating the changes upward
794  * as necessary, plus some accounting needed to play nicely with other
795  * parts of the VM system.
796  * At each level, we keep a list of pages, which are heads of continuous
797  * free pages of length of (1 << order) and marked with _mapcount
798  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
799  * field.
800  * So when we are allocating or freeing one, we can derive the state of the
801  * other.  That is, if we allocate a small block, and both were
802  * free, the remainder of the region must be split into blocks.
803  * If a block is freed, and its buddy is also free, then this
804  * triggers coalescing into a block of larger size.
805  *
806  * -- nyc
807  */
808 
809 static inline void __free_one_page(struct page *page,
810 		unsigned long pfn,
811 		struct zone *zone, unsigned int order,
812 		int migratetype)
813 {
814 	unsigned long combined_pfn;
815 	unsigned long uninitialized_var(buddy_pfn);
816 	struct page *buddy;
817 	unsigned int max_order;
818 
819 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
820 
821 	VM_BUG_ON(!zone_is_initialized(zone));
822 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
823 
824 	VM_BUG_ON(migratetype == -1);
825 	if (likely(!is_migrate_isolate(migratetype)))
826 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
827 
828 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
829 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
830 
831 continue_merging:
832 	while (order < max_order - 1) {
833 		buddy_pfn = __find_buddy_pfn(pfn, order);
834 		buddy = page + (buddy_pfn - pfn);
835 
836 		if (!pfn_valid_within(buddy_pfn))
837 			goto done_merging;
838 		if (!page_is_buddy(page, buddy, order))
839 			goto done_merging;
840 		/*
841 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 		 * merge with it and move up one order.
843 		 */
844 		if (page_is_guard(buddy)) {
845 			clear_page_guard(zone, buddy, order, migratetype);
846 		} else {
847 			list_del(&buddy->lru);
848 			zone->free_area[order].nr_free--;
849 			rmv_page_order(buddy);
850 		}
851 		combined_pfn = buddy_pfn & pfn;
852 		page = page + (combined_pfn - pfn);
853 		pfn = combined_pfn;
854 		order++;
855 	}
856 	if (max_order < MAX_ORDER) {
857 		/* If we are here, it means order is >= pageblock_order.
858 		 * We want to prevent merge between freepages on isolate
859 		 * pageblock and normal pageblock. Without this, pageblock
860 		 * isolation could cause incorrect freepage or CMA accounting.
861 		 *
862 		 * We don't want to hit this code for the more frequent
863 		 * low-order merging.
864 		 */
865 		if (unlikely(has_isolate_pageblock(zone))) {
866 			int buddy_mt;
867 
868 			buddy_pfn = __find_buddy_pfn(pfn, order);
869 			buddy = page + (buddy_pfn - pfn);
870 			buddy_mt = get_pageblock_migratetype(buddy);
871 
872 			if (migratetype != buddy_mt
873 					&& (is_migrate_isolate(migratetype) ||
874 						is_migrate_isolate(buddy_mt)))
875 				goto done_merging;
876 		}
877 		max_order++;
878 		goto continue_merging;
879 	}
880 
881 done_merging:
882 	set_page_order(page, order);
883 
884 	/*
885 	 * If this is not the largest possible page, check if the buddy
886 	 * of the next-highest order is free. If it is, it's possible
887 	 * that pages are being freed that will coalesce soon. In case,
888 	 * that is happening, add the free page to the tail of the list
889 	 * so it's less likely to be used soon and more likely to be merged
890 	 * as a higher order page
891 	 */
892 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
893 		struct page *higher_page, *higher_buddy;
894 		combined_pfn = buddy_pfn & pfn;
895 		higher_page = page + (combined_pfn - pfn);
896 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
897 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
898 		if (pfn_valid_within(buddy_pfn) &&
899 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
900 			list_add_tail(&page->lru,
901 				&zone->free_area[order].free_list[migratetype]);
902 			goto out;
903 		}
904 	}
905 
906 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
907 out:
908 	zone->free_area[order].nr_free++;
909 }
910 
911 /*
912  * A bad page could be due to a number of fields. Instead of multiple branches,
913  * try and check multiple fields with one check. The caller must do a detailed
914  * check if necessary.
915  */
916 static inline bool page_expected_state(struct page *page,
917 					unsigned long check_flags)
918 {
919 	if (unlikely(atomic_read(&page->_mapcount) != -1))
920 		return false;
921 
922 	if (unlikely((unsigned long)page->mapping |
923 			page_ref_count(page) |
924 #ifdef CONFIG_MEMCG
925 			(unsigned long)page->mem_cgroup |
926 #endif
927 			(page->flags & check_flags)))
928 		return false;
929 
930 	return true;
931 }
932 
933 static void free_pages_check_bad(struct page *page)
934 {
935 	const char *bad_reason;
936 	unsigned long bad_flags;
937 
938 	bad_reason = NULL;
939 	bad_flags = 0;
940 
941 	if (unlikely(atomic_read(&page->_mapcount) != -1))
942 		bad_reason = "nonzero mapcount";
943 	if (unlikely(page->mapping != NULL))
944 		bad_reason = "non-NULL mapping";
945 	if (unlikely(page_ref_count(page) != 0))
946 		bad_reason = "nonzero _refcount";
947 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
948 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
950 	}
951 #ifdef CONFIG_MEMCG
952 	if (unlikely(page->mem_cgroup))
953 		bad_reason = "page still charged to cgroup";
954 #endif
955 	bad_page(page, bad_reason, bad_flags);
956 }
957 
958 static inline int free_pages_check(struct page *page)
959 {
960 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
961 		return 0;
962 
963 	/* Something has gone sideways, find it */
964 	free_pages_check_bad(page);
965 	return 1;
966 }
967 
968 static int free_tail_pages_check(struct page *head_page, struct page *page)
969 {
970 	int ret = 1;
971 
972 	/*
973 	 * We rely page->lru.next never has bit 0 set, unless the page
974 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
975 	 */
976 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
977 
978 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
979 		ret = 0;
980 		goto out;
981 	}
982 	switch (page - head_page) {
983 	case 1:
984 		/* the first tail page: ->mapping is compound_mapcount() */
985 		if (unlikely(compound_mapcount(page))) {
986 			bad_page(page, "nonzero compound_mapcount", 0);
987 			goto out;
988 		}
989 		break;
990 	case 2:
991 		/*
992 		 * the second tail page: ->mapping is
993 		 * page_deferred_list().next -- ignore value.
994 		 */
995 		break;
996 	default:
997 		if (page->mapping != TAIL_MAPPING) {
998 			bad_page(page, "corrupted mapping in tail page", 0);
999 			goto out;
1000 		}
1001 		break;
1002 	}
1003 	if (unlikely(!PageTail(page))) {
1004 		bad_page(page, "PageTail not set", 0);
1005 		goto out;
1006 	}
1007 	if (unlikely(compound_head(page) != head_page)) {
1008 		bad_page(page, "compound_head not consistent", 0);
1009 		goto out;
1010 	}
1011 	ret = 0;
1012 out:
1013 	page->mapping = NULL;
1014 	clear_compound_head(page);
1015 	return ret;
1016 }
1017 
1018 static __always_inline bool free_pages_prepare(struct page *page,
1019 					unsigned int order, bool check_free)
1020 {
1021 	int bad = 0;
1022 
1023 	VM_BUG_ON_PAGE(PageTail(page), page);
1024 
1025 	trace_mm_page_free(page, order);
1026 
1027 	/*
1028 	 * Check tail pages before head page information is cleared to
1029 	 * avoid checking PageCompound for order-0 pages.
1030 	 */
1031 	if (unlikely(order)) {
1032 		bool compound = PageCompound(page);
1033 		int i;
1034 
1035 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1036 
1037 		if (compound)
1038 			ClearPageDoubleMap(page);
1039 		for (i = 1; i < (1 << order); i++) {
1040 			if (compound)
1041 				bad += free_tail_pages_check(page, page + i);
1042 			if (unlikely(free_pages_check(page + i))) {
1043 				bad++;
1044 				continue;
1045 			}
1046 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1047 		}
1048 	}
1049 	if (PageMappingFlags(page))
1050 		page->mapping = NULL;
1051 	if (memcg_kmem_enabled() && PageKmemcg(page))
1052 		memcg_kmem_uncharge(page, order);
1053 	if (check_free)
1054 		bad += free_pages_check(page);
1055 	if (bad)
1056 		return false;
1057 
1058 	page_cpupid_reset_last(page);
1059 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1060 	reset_page_owner(page, order);
1061 
1062 	if (!PageHighMem(page)) {
1063 		debug_check_no_locks_freed(page_address(page),
1064 					   PAGE_SIZE << order);
1065 		debug_check_no_obj_freed(page_address(page),
1066 					   PAGE_SIZE << order);
1067 	}
1068 	arch_free_page(page, order);
1069 	kernel_poison_pages(page, 1 << order, 0);
1070 	kernel_map_pages(page, 1 << order, 0);
1071 	kasan_free_pages(page, order);
1072 
1073 	return true;
1074 }
1075 
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page *page)
1078 {
1079 	return free_pages_prepare(page, 0, true);
1080 }
1081 
1082 static inline bool bulkfree_pcp_prepare(struct page *page)
1083 {
1084 	return false;
1085 }
1086 #else
1087 static bool free_pcp_prepare(struct page *page)
1088 {
1089 	return free_pages_prepare(page, 0, false);
1090 }
1091 
1092 static bool bulkfree_pcp_prepare(struct page *page)
1093 {
1094 	return free_pages_check(page);
1095 }
1096 #endif /* CONFIG_DEBUG_VM */
1097 
1098 /*
1099  * Frees a number of pages from the PCP lists
1100  * Assumes all pages on list are in same zone, and of same order.
1101  * count is the number of pages to free.
1102  *
1103  * If the zone was previously in an "all pages pinned" state then look to
1104  * see if this freeing clears that state.
1105  *
1106  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107  * pinned" detection logic.
1108  */
1109 static void free_pcppages_bulk(struct zone *zone, int count,
1110 					struct per_cpu_pages *pcp)
1111 {
1112 	int migratetype = 0;
1113 	int batch_free = 0;
1114 	bool isolated_pageblocks;
1115 
1116 	spin_lock(&zone->lock);
1117 	isolated_pageblocks = has_isolate_pageblock(zone);
1118 
1119 	while (count) {
1120 		struct page *page;
1121 		struct list_head *list;
1122 
1123 		/*
1124 		 * Remove pages from lists in a round-robin fashion. A
1125 		 * batch_free count is maintained that is incremented when an
1126 		 * empty list is encountered.  This is so more pages are freed
1127 		 * off fuller lists instead of spinning excessively around empty
1128 		 * lists
1129 		 */
1130 		do {
1131 			batch_free++;
1132 			if (++migratetype == MIGRATE_PCPTYPES)
1133 				migratetype = 0;
1134 			list = &pcp->lists[migratetype];
1135 		} while (list_empty(list));
1136 
1137 		/* This is the only non-empty list. Free them all. */
1138 		if (batch_free == MIGRATE_PCPTYPES)
1139 			batch_free = count;
1140 
1141 		do {
1142 			int mt;	/* migratetype of the to-be-freed page */
1143 
1144 			page = list_last_entry(list, struct page, lru);
1145 			/* must delete as __free_one_page list manipulates */
1146 			list_del(&page->lru);
1147 
1148 			mt = get_pcppage_migratetype(page);
1149 			/* MIGRATE_ISOLATE page should not go to pcplists */
1150 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1151 			/* Pageblock could have been isolated meanwhile */
1152 			if (unlikely(isolated_pageblocks))
1153 				mt = get_pageblock_migratetype(page);
1154 
1155 			if (bulkfree_pcp_prepare(page))
1156 				continue;
1157 
1158 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1159 			trace_mm_page_pcpu_drain(page, 0, mt);
1160 		} while (--count && --batch_free && !list_empty(list));
1161 	}
1162 	spin_unlock(&zone->lock);
1163 }
1164 
1165 static void free_one_page(struct zone *zone,
1166 				struct page *page, unsigned long pfn,
1167 				unsigned int order,
1168 				int migratetype)
1169 {
1170 	spin_lock(&zone->lock);
1171 	if (unlikely(has_isolate_pageblock(zone) ||
1172 		is_migrate_isolate(migratetype))) {
1173 		migratetype = get_pfnblock_migratetype(page, pfn);
1174 	}
1175 	__free_one_page(page, pfn, zone, order, migratetype);
1176 	spin_unlock(&zone->lock);
1177 }
1178 
1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1180 				unsigned long zone, int nid)
1181 {
1182 	mm_zero_struct_page(page);
1183 	set_page_links(page, zone, nid, pfn);
1184 	init_page_count(page);
1185 	page_mapcount_reset(page);
1186 	page_cpupid_reset_last(page);
1187 
1188 	INIT_LIST_HEAD(&page->lru);
1189 #ifdef WANT_PAGE_VIRTUAL
1190 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1191 	if (!is_highmem_idx(zone))
1192 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1193 #endif
1194 }
1195 
1196 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1197 					int nid)
1198 {
1199 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1200 }
1201 
1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1203 static void __meminit init_reserved_page(unsigned long pfn)
1204 {
1205 	pg_data_t *pgdat;
1206 	int nid, zid;
1207 
1208 	if (!early_page_uninitialised(pfn))
1209 		return;
1210 
1211 	nid = early_pfn_to_nid(pfn);
1212 	pgdat = NODE_DATA(nid);
1213 
1214 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1215 		struct zone *zone = &pgdat->node_zones[zid];
1216 
1217 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1218 			break;
1219 	}
1220 	__init_single_pfn(pfn, zid, nid);
1221 }
1222 #else
1223 static inline void init_reserved_page(unsigned long pfn)
1224 {
1225 }
1226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1227 
1228 /*
1229  * Initialised pages do not have PageReserved set. This function is
1230  * called for each range allocated by the bootmem allocator and
1231  * marks the pages PageReserved. The remaining valid pages are later
1232  * sent to the buddy page allocator.
1233  */
1234 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1235 {
1236 	unsigned long start_pfn = PFN_DOWN(start);
1237 	unsigned long end_pfn = PFN_UP(end);
1238 
1239 	for (; start_pfn < end_pfn; start_pfn++) {
1240 		if (pfn_valid(start_pfn)) {
1241 			struct page *page = pfn_to_page(start_pfn);
1242 
1243 			init_reserved_page(start_pfn);
1244 
1245 			/* Avoid false-positive PageTail() */
1246 			INIT_LIST_HEAD(&page->lru);
1247 
1248 			SetPageReserved(page);
1249 		}
1250 	}
1251 }
1252 
1253 static void __free_pages_ok(struct page *page, unsigned int order)
1254 {
1255 	unsigned long flags;
1256 	int migratetype;
1257 	unsigned long pfn = page_to_pfn(page);
1258 
1259 	if (!free_pages_prepare(page, order, true))
1260 		return;
1261 
1262 	migratetype = get_pfnblock_migratetype(page, pfn);
1263 	local_irq_save(flags);
1264 	__count_vm_events(PGFREE, 1 << order);
1265 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1266 	local_irq_restore(flags);
1267 }
1268 
1269 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1270 {
1271 	unsigned int nr_pages = 1 << order;
1272 	struct page *p = page;
1273 	unsigned int loop;
1274 
1275 	prefetchw(p);
1276 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1277 		prefetchw(p + 1);
1278 		__ClearPageReserved(p);
1279 		set_page_count(p, 0);
1280 	}
1281 	__ClearPageReserved(p);
1282 	set_page_count(p, 0);
1283 
1284 	page_zone(page)->managed_pages += nr_pages;
1285 	set_page_refcounted(page);
1286 	__free_pages(page, order);
1287 }
1288 
1289 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1290 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1291 
1292 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1293 
1294 int __meminit early_pfn_to_nid(unsigned long pfn)
1295 {
1296 	static DEFINE_SPINLOCK(early_pfn_lock);
1297 	int nid;
1298 
1299 	spin_lock(&early_pfn_lock);
1300 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1301 	if (nid < 0)
1302 		nid = first_online_node;
1303 	spin_unlock(&early_pfn_lock);
1304 
1305 	return nid;
1306 }
1307 #endif
1308 
1309 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1310 static inline bool __meminit __maybe_unused
1311 meminit_pfn_in_nid(unsigned long pfn, int node,
1312 		   struct mminit_pfnnid_cache *state)
1313 {
1314 	int nid;
1315 
1316 	nid = __early_pfn_to_nid(pfn, state);
1317 	if (nid >= 0 && nid != node)
1318 		return false;
1319 	return true;
1320 }
1321 
1322 /* Only safe to use early in boot when initialisation is single-threaded */
1323 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1324 {
1325 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1326 }
1327 
1328 #else
1329 
1330 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1331 {
1332 	return true;
1333 }
1334 static inline bool __meminit  __maybe_unused
1335 meminit_pfn_in_nid(unsigned long pfn, int node,
1336 		   struct mminit_pfnnid_cache *state)
1337 {
1338 	return true;
1339 }
1340 #endif
1341 
1342 
1343 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1344 							unsigned int order)
1345 {
1346 	if (early_page_uninitialised(pfn))
1347 		return;
1348 	return __free_pages_boot_core(page, order);
1349 }
1350 
1351 /*
1352  * Check that the whole (or subset of) a pageblock given by the interval of
1353  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1354  * with the migration of free compaction scanner. The scanners then need to
1355  * use only pfn_valid_within() check for arches that allow holes within
1356  * pageblocks.
1357  *
1358  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1359  *
1360  * It's possible on some configurations to have a setup like node0 node1 node0
1361  * i.e. it's possible that all pages within a zones range of pages do not
1362  * belong to a single zone. We assume that a border between node0 and node1
1363  * can occur within a single pageblock, but not a node0 node1 node0
1364  * interleaving within a single pageblock. It is therefore sufficient to check
1365  * the first and last page of a pageblock and avoid checking each individual
1366  * page in a pageblock.
1367  */
1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1369 				     unsigned long end_pfn, struct zone *zone)
1370 {
1371 	struct page *start_page;
1372 	struct page *end_page;
1373 
1374 	/* end_pfn is one past the range we are checking */
1375 	end_pfn--;
1376 
1377 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1378 		return NULL;
1379 
1380 	start_page = pfn_to_online_page(start_pfn);
1381 	if (!start_page)
1382 		return NULL;
1383 
1384 	if (page_zone(start_page) != zone)
1385 		return NULL;
1386 
1387 	end_page = pfn_to_page(end_pfn);
1388 
1389 	/* This gives a shorter code than deriving page_zone(end_page) */
1390 	if (page_zone_id(start_page) != page_zone_id(end_page))
1391 		return NULL;
1392 
1393 	return start_page;
1394 }
1395 
1396 void set_zone_contiguous(struct zone *zone)
1397 {
1398 	unsigned long block_start_pfn = zone->zone_start_pfn;
1399 	unsigned long block_end_pfn;
1400 
1401 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1402 	for (; block_start_pfn < zone_end_pfn(zone);
1403 			block_start_pfn = block_end_pfn,
1404 			 block_end_pfn += pageblock_nr_pages) {
1405 
1406 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1407 
1408 		if (!__pageblock_pfn_to_page(block_start_pfn,
1409 					     block_end_pfn, zone))
1410 			return;
1411 	}
1412 
1413 	/* We confirm that there is no hole */
1414 	zone->contiguous = true;
1415 }
1416 
1417 void clear_zone_contiguous(struct zone *zone)
1418 {
1419 	zone->contiguous = false;
1420 }
1421 
1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1423 static void __init deferred_free_range(unsigned long pfn,
1424 				       unsigned long nr_pages)
1425 {
1426 	struct page *page;
1427 	unsigned long i;
1428 
1429 	if (!nr_pages)
1430 		return;
1431 
1432 	page = pfn_to_page(pfn);
1433 
1434 	/* Free a large naturally-aligned chunk if possible */
1435 	if (nr_pages == pageblock_nr_pages &&
1436 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1437 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1438 		__free_pages_boot_core(page, pageblock_order);
1439 		return;
1440 	}
1441 
1442 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1443 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1444 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1445 		__free_pages_boot_core(page, 0);
1446 	}
1447 }
1448 
1449 /* Completion tracking for deferred_init_memmap() threads */
1450 static atomic_t pgdat_init_n_undone __initdata;
1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1452 
1453 static inline void __init pgdat_init_report_one_done(void)
1454 {
1455 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1456 		complete(&pgdat_init_all_done_comp);
1457 }
1458 
1459 /*
1460  * Helper for deferred_init_range, free the given range, reset the counters, and
1461  * return number of pages freed.
1462  */
1463 static inline unsigned long __init __def_free(unsigned long *nr_free,
1464 					      unsigned long *free_base_pfn,
1465 					      struct page **page)
1466 {
1467 	unsigned long nr = *nr_free;
1468 
1469 	deferred_free_range(*free_base_pfn, nr);
1470 	*free_base_pfn = 0;
1471 	*nr_free = 0;
1472 	*page = NULL;
1473 
1474 	return nr;
1475 }
1476 
1477 static unsigned long __init deferred_init_range(int nid, int zid,
1478 						unsigned long start_pfn,
1479 						unsigned long end_pfn)
1480 {
1481 	struct mminit_pfnnid_cache nid_init_state = { };
1482 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1483 	unsigned long free_base_pfn = 0;
1484 	unsigned long nr_pages = 0;
1485 	unsigned long nr_free = 0;
1486 	struct page *page = NULL;
1487 	unsigned long pfn;
1488 
1489 	/*
1490 	 * First we check if pfn is valid on architectures where it is possible
1491 	 * to have holes within pageblock_nr_pages. On systems where it is not
1492 	 * possible, this function is optimized out.
1493 	 *
1494 	 * Then, we check if a current large page is valid by only checking the
1495 	 * validity of the head pfn.
1496 	 *
1497 	 * meminit_pfn_in_nid is checked on systems where pfns can interleave
1498 	 * within a node: a pfn is between start and end of a node, but does not
1499 	 * belong to this memory node.
1500 	 *
1501 	 * Finally, we minimize pfn page lookups and scheduler checks by
1502 	 * performing it only once every pageblock_nr_pages.
1503 	 *
1504 	 * We do it in two loops: first we initialize struct page, than free to
1505 	 * buddy allocator, becuse while we are freeing pages we can access
1506 	 * pages that are ahead (computing buddy page in __free_one_page()).
1507 	 */
1508 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1509 		if (!pfn_valid_within(pfn))
1510 			continue;
1511 		if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
1512 			if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 				if (page && (pfn & nr_pgmask))
1514 					page++;
1515 				else
1516 					page = pfn_to_page(pfn);
1517 				__init_single_page(page, pfn, zid, nid);
1518 				cond_resched();
1519 			}
1520 		}
1521 	}
1522 
1523 	page = NULL;
1524 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1525 		if (!pfn_valid_within(pfn)) {
1526 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1527 		} else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
1528 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1529 		} else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1530 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1531 		} else if (page && (pfn & nr_pgmask)) {
1532 			page++;
1533 			nr_free++;
1534 		} else {
1535 			nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1536 			page = pfn_to_page(pfn);
1537 			free_base_pfn = pfn;
1538 			nr_free = 1;
1539 			cond_resched();
1540 		}
1541 	}
1542 	/* Free the last block of pages to allocator */
1543 	nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
1544 
1545 	return nr_pages;
1546 }
1547 
1548 /* Initialise remaining memory on a node */
1549 static int __init deferred_init_memmap(void *data)
1550 {
1551 	pg_data_t *pgdat = data;
1552 	int nid = pgdat->node_id;
1553 	unsigned long start = jiffies;
1554 	unsigned long nr_pages = 0;
1555 	unsigned long spfn, epfn;
1556 	phys_addr_t spa, epa;
1557 	int zid;
1558 	struct zone *zone;
1559 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1560 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1561 	u64 i;
1562 
1563 	if (first_init_pfn == ULONG_MAX) {
1564 		pgdat_init_report_one_done();
1565 		return 0;
1566 	}
1567 
1568 	/* Bind memory initialisation thread to a local node if possible */
1569 	if (!cpumask_empty(cpumask))
1570 		set_cpus_allowed_ptr(current, cpumask);
1571 
1572 	/* Sanity check boundaries */
1573 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1574 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1575 	pgdat->first_deferred_pfn = ULONG_MAX;
1576 
1577 	/* Only the highest zone is deferred so find it */
1578 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1579 		zone = pgdat->node_zones + zid;
1580 		if (first_init_pfn < zone_end_pfn(zone))
1581 			break;
1582 	}
1583 	first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1584 
1585 	for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1586 		spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1587 		epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1588 		nr_pages += deferred_init_range(nid, zid, spfn, epfn);
1589 	}
1590 
1591 	/* Sanity check that the next zone really is unpopulated */
1592 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1593 
1594 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1595 					jiffies_to_msecs(jiffies - start));
1596 
1597 	pgdat_init_report_one_done();
1598 	return 0;
1599 }
1600 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1601 
1602 void __init page_alloc_init_late(void)
1603 {
1604 	struct zone *zone;
1605 
1606 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1607 	int nid;
1608 
1609 	/* There will be num_node_state(N_MEMORY) threads */
1610 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1611 	for_each_node_state(nid, N_MEMORY) {
1612 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1613 	}
1614 
1615 	/* Block until all are initialised */
1616 	wait_for_completion(&pgdat_init_all_done_comp);
1617 
1618 	/* Reinit limits that are based on free pages after the kernel is up */
1619 	files_maxfiles_init();
1620 #endif
1621 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1622 	/* Discard memblock private memory */
1623 	memblock_discard();
1624 #endif
1625 
1626 	for_each_populated_zone(zone)
1627 		set_zone_contiguous(zone);
1628 }
1629 
1630 #ifdef CONFIG_CMA
1631 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1632 void __init init_cma_reserved_pageblock(struct page *page)
1633 {
1634 	unsigned i = pageblock_nr_pages;
1635 	struct page *p = page;
1636 
1637 	do {
1638 		__ClearPageReserved(p);
1639 		set_page_count(p, 0);
1640 	} while (++p, --i);
1641 
1642 	set_pageblock_migratetype(page, MIGRATE_CMA);
1643 
1644 	if (pageblock_order >= MAX_ORDER) {
1645 		i = pageblock_nr_pages;
1646 		p = page;
1647 		do {
1648 			set_page_refcounted(p);
1649 			__free_pages(p, MAX_ORDER - 1);
1650 			p += MAX_ORDER_NR_PAGES;
1651 		} while (i -= MAX_ORDER_NR_PAGES);
1652 	} else {
1653 		set_page_refcounted(page);
1654 		__free_pages(page, pageblock_order);
1655 	}
1656 
1657 	adjust_managed_page_count(page, pageblock_nr_pages);
1658 }
1659 #endif
1660 
1661 /*
1662  * The order of subdivision here is critical for the IO subsystem.
1663  * Please do not alter this order without good reasons and regression
1664  * testing. Specifically, as large blocks of memory are subdivided,
1665  * the order in which smaller blocks are delivered depends on the order
1666  * they're subdivided in this function. This is the primary factor
1667  * influencing the order in which pages are delivered to the IO
1668  * subsystem according to empirical testing, and this is also justified
1669  * by considering the behavior of a buddy system containing a single
1670  * large block of memory acted on by a series of small allocations.
1671  * This behavior is a critical factor in sglist merging's success.
1672  *
1673  * -- nyc
1674  */
1675 static inline void expand(struct zone *zone, struct page *page,
1676 	int low, int high, struct free_area *area,
1677 	int migratetype)
1678 {
1679 	unsigned long size = 1 << high;
1680 
1681 	while (high > low) {
1682 		area--;
1683 		high--;
1684 		size >>= 1;
1685 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1686 
1687 		/*
1688 		 * Mark as guard pages (or page), that will allow to
1689 		 * merge back to allocator when buddy will be freed.
1690 		 * Corresponding page table entries will not be touched,
1691 		 * pages will stay not present in virtual address space
1692 		 */
1693 		if (set_page_guard(zone, &page[size], high, migratetype))
1694 			continue;
1695 
1696 		list_add(&page[size].lru, &area->free_list[migratetype]);
1697 		area->nr_free++;
1698 		set_page_order(&page[size], high);
1699 	}
1700 }
1701 
1702 static void check_new_page_bad(struct page *page)
1703 {
1704 	const char *bad_reason = NULL;
1705 	unsigned long bad_flags = 0;
1706 
1707 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1708 		bad_reason = "nonzero mapcount";
1709 	if (unlikely(page->mapping != NULL))
1710 		bad_reason = "non-NULL mapping";
1711 	if (unlikely(page_ref_count(page) != 0))
1712 		bad_reason = "nonzero _count";
1713 	if (unlikely(page->flags & __PG_HWPOISON)) {
1714 		bad_reason = "HWPoisoned (hardware-corrupted)";
1715 		bad_flags = __PG_HWPOISON;
1716 		/* Don't complain about hwpoisoned pages */
1717 		page_mapcount_reset(page); /* remove PageBuddy */
1718 		return;
1719 	}
1720 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1721 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1722 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1723 	}
1724 #ifdef CONFIG_MEMCG
1725 	if (unlikely(page->mem_cgroup))
1726 		bad_reason = "page still charged to cgroup";
1727 #endif
1728 	bad_page(page, bad_reason, bad_flags);
1729 }
1730 
1731 /*
1732  * This page is about to be returned from the page allocator
1733  */
1734 static inline int check_new_page(struct page *page)
1735 {
1736 	if (likely(page_expected_state(page,
1737 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1738 		return 0;
1739 
1740 	check_new_page_bad(page);
1741 	return 1;
1742 }
1743 
1744 static inline bool free_pages_prezeroed(void)
1745 {
1746 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1747 		page_poisoning_enabled();
1748 }
1749 
1750 #ifdef CONFIG_DEBUG_VM
1751 static bool check_pcp_refill(struct page *page)
1752 {
1753 	return false;
1754 }
1755 
1756 static bool check_new_pcp(struct page *page)
1757 {
1758 	return check_new_page(page);
1759 }
1760 #else
1761 static bool check_pcp_refill(struct page *page)
1762 {
1763 	return check_new_page(page);
1764 }
1765 static bool check_new_pcp(struct page *page)
1766 {
1767 	return false;
1768 }
1769 #endif /* CONFIG_DEBUG_VM */
1770 
1771 static bool check_new_pages(struct page *page, unsigned int order)
1772 {
1773 	int i;
1774 	for (i = 0; i < (1 << order); i++) {
1775 		struct page *p = page + i;
1776 
1777 		if (unlikely(check_new_page(p)))
1778 			return true;
1779 	}
1780 
1781 	return false;
1782 }
1783 
1784 inline void post_alloc_hook(struct page *page, unsigned int order,
1785 				gfp_t gfp_flags)
1786 {
1787 	set_page_private(page, 0);
1788 	set_page_refcounted(page);
1789 
1790 	arch_alloc_page(page, order);
1791 	kernel_map_pages(page, 1 << order, 1);
1792 	kernel_poison_pages(page, 1 << order, 1);
1793 	kasan_alloc_pages(page, order);
1794 	set_page_owner(page, order, gfp_flags);
1795 }
1796 
1797 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1798 							unsigned int alloc_flags)
1799 {
1800 	int i;
1801 
1802 	post_alloc_hook(page, order, gfp_flags);
1803 
1804 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1805 		for (i = 0; i < (1 << order); i++)
1806 			clear_highpage(page + i);
1807 
1808 	if (order && (gfp_flags & __GFP_COMP))
1809 		prep_compound_page(page, order);
1810 
1811 	/*
1812 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1813 	 * allocate the page. The expectation is that the caller is taking
1814 	 * steps that will free more memory. The caller should avoid the page
1815 	 * being used for !PFMEMALLOC purposes.
1816 	 */
1817 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1818 		set_page_pfmemalloc(page);
1819 	else
1820 		clear_page_pfmemalloc(page);
1821 }
1822 
1823 /*
1824  * Go through the free lists for the given migratetype and remove
1825  * the smallest available page from the freelists
1826  */
1827 static __always_inline
1828 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1829 						int migratetype)
1830 {
1831 	unsigned int current_order;
1832 	struct free_area *area;
1833 	struct page *page;
1834 
1835 	/* Find a page of the appropriate size in the preferred list */
1836 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1837 		area = &(zone->free_area[current_order]);
1838 		page = list_first_entry_or_null(&area->free_list[migratetype],
1839 							struct page, lru);
1840 		if (!page)
1841 			continue;
1842 		list_del(&page->lru);
1843 		rmv_page_order(page);
1844 		area->nr_free--;
1845 		expand(zone, page, order, current_order, area, migratetype);
1846 		set_pcppage_migratetype(page, migratetype);
1847 		return page;
1848 	}
1849 
1850 	return NULL;
1851 }
1852 
1853 
1854 /*
1855  * This array describes the order lists are fallen back to when
1856  * the free lists for the desirable migrate type are depleted
1857  */
1858 static int fallbacks[MIGRATE_TYPES][4] = {
1859 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1860 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1861 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1862 #ifdef CONFIG_CMA
1863 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1864 #endif
1865 #ifdef CONFIG_MEMORY_ISOLATION
1866 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1867 #endif
1868 };
1869 
1870 #ifdef CONFIG_CMA
1871 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1872 					unsigned int order)
1873 {
1874 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1875 }
1876 #else
1877 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1878 					unsigned int order) { return NULL; }
1879 #endif
1880 
1881 /*
1882  * Move the free pages in a range to the free lists of the requested type.
1883  * Note that start_page and end_pages are not aligned on a pageblock
1884  * boundary. If alignment is required, use move_freepages_block()
1885  */
1886 static int move_freepages(struct zone *zone,
1887 			  struct page *start_page, struct page *end_page,
1888 			  int migratetype, int *num_movable)
1889 {
1890 	struct page *page;
1891 	unsigned int order;
1892 	int pages_moved = 0;
1893 
1894 #ifndef CONFIG_HOLES_IN_ZONE
1895 	/*
1896 	 * page_zone is not safe to call in this context when
1897 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1898 	 * anyway as we check zone boundaries in move_freepages_block().
1899 	 * Remove at a later date when no bug reports exist related to
1900 	 * grouping pages by mobility
1901 	 */
1902 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1903 #endif
1904 
1905 	if (num_movable)
1906 		*num_movable = 0;
1907 
1908 	for (page = start_page; page <= end_page;) {
1909 		if (!pfn_valid_within(page_to_pfn(page))) {
1910 			page++;
1911 			continue;
1912 		}
1913 
1914 		/* Make sure we are not inadvertently changing nodes */
1915 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1916 
1917 		if (!PageBuddy(page)) {
1918 			/*
1919 			 * We assume that pages that could be isolated for
1920 			 * migration are movable. But we don't actually try
1921 			 * isolating, as that would be expensive.
1922 			 */
1923 			if (num_movable &&
1924 					(PageLRU(page) || __PageMovable(page)))
1925 				(*num_movable)++;
1926 
1927 			page++;
1928 			continue;
1929 		}
1930 
1931 		order = page_order(page);
1932 		list_move(&page->lru,
1933 			  &zone->free_area[order].free_list[migratetype]);
1934 		page += 1 << order;
1935 		pages_moved += 1 << order;
1936 	}
1937 
1938 	return pages_moved;
1939 }
1940 
1941 int move_freepages_block(struct zone *zone, struct page *page,
1942 				int migratetype, int *num_movable)
1943 {
1944 	unsigned long start_pfn, end_pfn;
1945 	struct page *start_page, *end_page;
1946 
1947 	start_pfn = page_to_pfn(page);
1948 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1949 	start_page = pfn_to_page(start_pfn);
1950 	end_page = start_page + pageblock_nr_pages - 1;
1951 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1952 
1953 	/* Do not cross zone boundaries */
1954 	if (!zone_spans_pfn(zone, start_pfn))
1955 		start_page = page;
1956 	if (!zone_spans_pfn(zone, end_pfn))
1957 		return 0;
1958 
1959 	return move_freepages(zone, start_page, end_page, migratetype,
1960 								num_movable);
1961 }
1962 
1963 static void change_pageblock_range(struct page *pageblock_page,
1964 					int start_order, int migratetype)
1965 {
1966 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1967 
1968 	while (nr_pageblocks--) {
1969 		set_pageblock_migratetype(pageblock_page, migratetype);
1970 		pageblock_page += pageblock_nr_pages;
1971 	}
1972 }
1973 
1974 /*
1975  * When we are falling back to another migratetype during allocation, try to
1976  * steal extra free pages from the same pageblocks to satisfy further
1977  * allocations, instead of polluting multiple pageblocks.
1978  *
1979  * If we are stealing a relatively large buddy page, it is likely there will
1980  * be more free pages in the pageblock, so try to steal them all. For
1981  * reclaimable and unmovable allocations, we steal regardless of page size,
1982  * as fragmentation caused by those allocations polluting movable pageblocks
1983  * is worse than movable allocations stealing from unmovable and reclaimable
1984  * pageblocks.
1985  */
1986 static bool can_steal_fallback(unsigned int order, int start_mt)
1987 {
1988 	/*
1989 	 * Leaving this order check is intended, although there is
1990 	 * relaxed order check in next check. The reason is that
1991 	 * we can actually steal whole pageblock if this condition met,
1992 	 * but, below check doesn't guarantee it and that is just heuristic
1993 	 * so could be changed anytime.
1994 	 */
1995 	if (order >= pageblock_order)
1996 		return true;
1997 
1998 	if (order >= pageblock_order / 2 ||
1999 		start_mt == MIGRATE_RECLAIMABLE ||
2000 		start_mt == MIGRATE_UNMOVABLE ||
2001 		page_group_by_mobility_disabled)
2002 		return true;
2003 
2004 	return false;
2005 }
2006 
2007 /*
2008  * This function implements actual steal behaviour. If order is large enough,
2009  * we can steal whole pageblock. If not, we first move freepages in this
2010  * pageblock to our migratetype and determine how many already-allocated pages
2011  * are there in the pageblock with a compatible migratetype. If at least half
2012  * of pages are free or compatible, we can change migratetype of the pageblock
2013  * itself, so pages freed in the future will be put on the correct free list.
2014  */
2015 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2016 					int start_type, bool whole_block)
2017 {
2018 	unsigned int current_order = page_order(page);
2019 	struct free_area *area;
2020 	int free_pages, movable_pages, alike_pages;
2021 	int old_block_type;
2022 
2023 	old_block_type = get_pageblock_migratetype(page);
2024 
2025 	/*
2026 	 * This can happen due to races and we want to prevent broken
2027 	 * highatomic accounting.
2028 	 */
2029 	if (is_migrate_highatomic(old_block_type))
2030 		goto single_page;
2031 
2032 	/* Take ownership for orders >= pageblock_order */
2033 	if (current_order >= pageblock_order) {
2034 		change_pageblock_range(page, current_order, start_type);
2035 		goto single_page;
2036 	}
2037 
2038 	/* We are not allowed to try stealing from the whole block */
2039 	if (!whole_block)
2040 		goto single_page;
2041 
2042 	free_pages = move_freepages_block(zone, page, start_type,
2043 						&movable_pages);
2044 	/*
2045 	 * Determine how many pages are compatible with our allocation.
2046 	 * For movable allocation, it's the number of movable pages which
2047 	 * we just obtained. For other types it's a bit more tricky.
2048 	 */
2049 	if (start_type == MIGRATE_MOVABLE) {
2050 		alike_pages = movable_pages;
2051 	} else {
2052 		/*
2053 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2054 		 * to MOVABLE pageblock, consider all non-movable pages as
2055 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2056 		 * vice versa, be conservative since we can't distinguish the
2057 		 * exact migratetype of non-movable pages.
2058 		 */
2059 		if (old_block_type == MIGRATE_MOVABLE)
2060 			alike_pages = pageblock_nr_pages
2061 						- (free_pages + movable_pages);
2062 		else
2063 			alike_pages = 0;
2064 	}
2065 
2066 	/* moving whole block can fail due to zone boundary conditions */
2067 	if (!free_pages)
2068 		goto single_page;
2069 
2070 	/*
2071 	 * If a sufficient number of pages in the block are either free or of
2072 	 * comparable migratability as our allocation, claim the whole block.
2073 	 */
2074 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2075 			page_group_by_mobility_disabled)
2076 		set_pageblock_migratetype(page, start_type);
2077 
2078 	return;
2079 
2080 single_page:
2081 	area = &zone->free_area[current_order];
2082 	list_move(&page->lru, &area->free_list[start_type]);
2083 }
2084 
2085 /*
2086  * Check whether there is a suitable fallback freepage with requested order.
2087  * If only_stealable is true, this function returns fallback_mt only if
2088  * we can steal other freepages all together. This would help to reduce
2089  * fragmentation due to mixed migratetype pages in one pageblock.
2090  */
2091 int find_suitable_fallback(struct free_area *area, unsigned int order,
2092 			int migratetype, bool only_stealable, bool *can_steal)
2093 {
2094 	int i;
2095 	int fallback_mt;
2096 
2097 	if (area->nr_free == 0)
2098 		return -1;
2099 
2100 	*can_steal = false;
2101 	for (i = 0;; i++) {
2102 		fallback_mt = fallbacks[migratetype][i];
2103 		if (fallback_mt == MIGRATE_TYPES)
2104 			break;
2105 
2106 		if (list_empty(&area->free_list[fallback_mt]))
2107 			continue;
2108 
2109 		if (can_steal_fallback(order, migratetype))
2110 			*can_steal = true;
2111 
2112 		if (!only_stealable)
2113 			return fallback_mt;
2114 
2115 		if (*can_steal)
2116 			return fallback_mt;
2117 	}
2118 
2119 	return -1;
2120 }
2121 
2122 /*
2123  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2124  * there are no empty page blocks that contain a page with a suitable order
2125  */
2126 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2127 				unsigned int alloc_order)
2128 {
2129 	int mt;
2130 	unsigned long max_managed, flags;
2131 
2132 	/*
2133 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2134 	 * Check is race-prone but harmless.
2135 	 */
2136 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2137 	if (zone->nr_reserved_highatomic >= max_managed)
2138 		return;
2139 
2140 	spin_lock_irqsave(&zone->lock, flags);
2141 
2142 	/* Recheck the nr_reserved_highatomic limit under the lock */
2143 	if (zone->nr_reserved_highatomic >= max_managed)
2144 		goto out_unlock;
2145 
2146 	/* Yoink! */
2147 	mt = get_pageblock_migratetype(page);
2148 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2149 	    && !is_migrate_cma(mt)) {
2150 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2151 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2152 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2153 	}
2154 
2155 out_unlock:
2156 	spin_unlock_irqrestore(&zone->lock, flags);
2157 }
2158 
2159 /*
2160  * Used when an allocation is about to fail under memory pressure. This
2161  * potentially hurts the reliability of high-order allocations when under
2162  * intense memory pressure but failed atomic allocations should be easier
2163  * to recover from than an OOM.
2164  *
2165  * If @force is true, try to unreserve a pageblock even though highatomic
2166  * pageblock is exhausted.
2167  */
2168 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2169 						bool force)
2170 {
2171 	struct zonelist *zonelist = ac->zonelist;
2172 	unsigned long flags;
2173 	struct zoneref *z;
2174 	struct zone *zone;
2175 	struct page *page;
2176 	int order;
2177 	bool ret;
2178 
2179 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2180 								ac->nodemask) {
2181 		/*
2182 		 * Preserve at least one pageblock unless memory pressure
2183 		 * is really high.
2184 		 */
2185 		if (!force && zone->nr_reserved_highatomic <=
2186 					pageblock_nr_pages)
2187 			continue;
2188 
2189 		spin_lock_irqsave(&zone->lock, flags);
2190 		for (order = 0; order < MAX_ORDER; order++) {
2191 			struct free_area *area = &(zone->free_area[order]);
2192 
2193 			page = list_first_entry_or_null(
2194 					&area->free_list[MIGRATE_HIGHATOMIC],
2195 					struct page, lru);
2196 			if (!page)
2197 				continue;
2198 
2199 			/*
2200 			 * In page freeing path, migratetype change is racy so
2201 			 * we can counter several free pages in a pageblock
2202 			 * in this loop althoug we changed the pageblock type
2203 			 * from highatomic to ac->migratetype. So we should
2204 			 * adjust the count once.
2205 			 */
2206 			if (is_migrate_highatomic_page(page)) {
2207 				/*
2208 				 * It should never happen but changes to
2209 				 * locking could inadvertently allow a per-cpu
2210 				 * drain to add pages to MIGRATE_HIGHATOMIC
2211 				 * while unreserving so be safe and watch for
2212 				 * underflows.
2213 				 */
2214 				zone->nr_reserved_highatomic -= min(
2215 						pageblock_nr_pages,
2216 						zone->nr_reserved_highatomic);
2217 			}
2218 
2219 			/*
2220 			 * Convert to ac->migratetype and avoid the normal
2221 			 * pageblock stealing heuristics. Minimally, the caller
2222 			 * is doing the work and needs the pages. More
2223 			 * importantly, if the block was always converted to
2224 			 * MIGRATE_UNMOVABLE or another type then the number
2225 			 * of pageblocks that cannot be completely freed
2226 			 * may increase.
2227 			 */
2228 			set_pageblock_migratetype(page, ac->migratetype);
2229 			ret = move_freepages_block(zone, page, ac->migratetype,
2230 									NULL);
2231 			if (ret) {
2232 				spin_unlock_irqrestore(&zone->lock, flags);
2233 				return ret;
2234 			}
2235 		}
2236 		spin_unlock_irqrestore(&zone->lock, flags);
2237 	}
2238 
2239 	return false;
2240 }
2241 
2242 /*
2243  * Try finding a free buddy page on the fallback list and put it on the free
2244  * list of requested migratetype, possibly along with other pages from the same
2245  * block, depending on fragmentation avoidance heuristics. Returns true if
2246  * fallback was found so that __rmqueue_smallest() can grab it.
2247  *
2248  * The use of signed ints for order and current_order is a deliberate
2249  * deviation from the rest of this file, to make the for loop
2250  * condition simpler.
2251  */
2252 static __always_inline bool
2253 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2254 {
2255 	struct free_area *area;
2256 	int current_order;
2257 	struct page *page;
2258 	int fallback_mt;
2259 	bool can_steal;
2260 
2261 	/*
2262 	 * Find the largest available free page in the other list. This roughly
2263 	 * approximates finding the pageblock with the most free pages, which
2264 	 * would be too costly to do exactly.
2265 	 */
2266 	for (current_order = MAX_ORDER - 1; current_order >= order;
2267 				--current_order) {
2268 		area = &(zone->free_area[current_order]);
2269 		fallback_mt = find_suitable_fallback(area, current_order,
2270 				start_migratetype, false, &can_steal);
2271 		if (fallback_mt == -1)
2272 			continue;
2273 
2274 		/*
2275 		 * We cannot steal all free pages from the pageblock and the
2276 		 * requested migratetype is movable. In that case it's better to
2277 		 * steal and split the smallest available page instead of the
2278 		 * largest available page, because even if the next movable
2279 		 * allocation falls back into a different pageblock than this
2280 		 * one, it won't cause permanent fragmentation.
2281 		 */
2282 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2283 					&& current_order > order)
2284 			goto find_smallest;
2285 
2286 		goto do_steal;
2287 	}
2288 
2289 	return false;
2290 
2291 find_smallest:
2292 	for (current_order = order; current_order < MAX_ORDER;
2293 							current_order++) {
2294 		area = &(zone->free_area[current_order]);
2295 		fallback_mt = find_suitable_fallback(area, current_order,
2296 				start_migratetype, false, &can_steal);
2297 		if (fallback_mt != -1)
2298 			break;
2299 	}
2300 
2301 	/*
2302 	 * This should not happen - we already found a suitable fallback
2303 	 * when looking for the largest page.
2304 	 */
2305 	VM_BUG_ON(current_order == MAX_ORDER);
2306 
2307 do_steal:
2308 	page = list_first_entry(&area->free_list[fallback_mt],
2309 							struct page, lru);
2310 
2311 	steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2312 
2313 	trace_mm_page_alloc_extfrag(page, order, current_order,
2314 		start_migratetype, fallback_mt);
2315 
2316 	return true;
2317 
2318 }
2319 
2320 /*
2321  * Do the hard work of removing an element from the buddy allocator.
2322  * Call me with the zone->lock already held.
2323  */
2324 static __always_inline struct page *
2325 __rmqueue(struct zone *zone, unsigned int order, int migratetype)
2326 {
2327 	struct page *page;
2328 
2329 retry:
2330 	page = __rmqueue_smallest(zone, order, migratetype);
2331 	if (unlikely(!page)) {
2332 		if (migratetype == MIGRATE_MOVABLE)
2333 			page = __rmqueue_cma_fallback(zone, order);
2334 
2335 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2336 			goto retry;
2337 	}
2338 
2339 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2340 	return page;
2341 }
2342 
2343 /*
2344  * Obtain a specified number of elements from the buddy allocator, all under
2345  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2346  * Returns the number of new pages which were placed at *list.
2347  */
2348 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2349 			unsigned long count, struct list_head *list,
2350 			int migratetype)
2351 {
2352 	int i, alloced = 0;
2353 
2354 	spin_lock(&zone->lock);
2355 	for (i = 0; i < count; ++i) {
2356 		struct page *page = __rmqueue(zone, order, migratetype);
2357 		if (unlikely(page == NULL))
2358 			break;
2359 
2360 		if (unlikely(check_pcp_refill(page)))
2361 			continue;
2362 
2363 		/*
2364 		 * Split buddy pages returned by expand() are received here in
2365 		 * physical page order. The page is added to the tail of
2366 		 * caller's list. From the callers perspective, the linked list
2367 		 * is ordered by page number under some conditions. This is
2368 		 * useful for IO devices that can forward direction from the
2369 		 * head, thus also in the physical page order. This is useful
2370 		 * for IO devices that can merge IO requests if the physical
2371 		 * pages are ordered properly.
2372 		 */
2373 		list_add_tail(&page->lru, list);
2374 		alloced++;
2375 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2376 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2377 					      -(1 << order));
2378 	}
2379 
2380 	/*
2381 	 * i pages were removed from the buddy list even if some leak due
2382 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2383 	 * on i. Do not confuse with 'alloced' which is the number of
2384 	 * pages added to the pcp list.
2385 	 */
2386 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2387 	spin_unlock(&zone->lock);
2388 	return alloced;
2389 }
2390 
2391 #ifdef CONFIG_NUMA
2392 /*
2393  * Called from the vmstat counter updater to drain pagesets of this
2394  * currently executing processor on remote nodes after they have
2395  * expired.
2396  *
2397  * Note that this function must be called with the thread pinned to
2398  * a single processor.
2399  */
2400 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2401 {
2402 	unsigned long flags;
2403 	int to_drain, batch;
2404 
2405 	local_irq_save(flags);
2406 	batch = READ_ONCE(pcp->batch);
2407 	to_drain = min(pcp->count, batch);
2408 	if (to_drain > 0) {
2409 		free_pcppages_bulk(zone, to_drain, pcp);
2410 		pcp->count -= to_drain;
2411 	}
2412 	local_irq_restore(flags);
2413 }
2414 #endif
2415 
2416 /*
2417  * Drain pcplists of the indicated processor and zone.
2418  *
2419  * The processor must either be the current processor and the
2420  * thread pinned to the current processor or a processor that
2421  * is not online.
2422  */
2423 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2424 {
2425 	unsigned long flags;
2426 	struct per_cpu_pageset *pset;
2427 	struct per_cpu_pages *pcp;
2428 
2429 	local_irq_save(flags);
2430 	pset = per_cpu_ptr(zone->pageset, cpu);
2431 
2432 	pcp = &pset->pcp;
2433 	if (pcp->count) {
2434 		free_pcppages_bulk(zone, pcp->count, pcp);
2435 		pcp->count = 0;
2436 	}
2437 	local_irq_restore(flags);
2438 }
2439 
2440 /*
2441  * Drain pcplists of all zones on the indicated processor.
2442  *
2443  * The processor must either be the current processor and the
2444  * thread pinned to the current processor or a processor that
2445  * is not online.
2446  */
2447 static void drain_pages(unsigned int cpu)
2448 {
2449 	struct zone *zone;
2450 
2451 	for_each_populated_zone(zone) {
2452 		drain_pages_zone(cpu, zone);
2453 	}
2454 }
2455 
2456 /*
2457  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2458  *
2459  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2460  * the single zone's pages.
2461  */
2462 void drain_local_pages(struct zone *zone)
2463 {
2464 	int cpu = smp_processor_id();
2465 
2466 	if (zone)
2467 		drain_pages_zone(cpu, zone);
2468 	else
2469 		drain_pages(cpu);
2470 }
2471 
2472 static void drain_local_pages_wq(struct work_struct *work)
2473 {
2474 	/*
2475 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2476 	 * we can race with cpu offline when the WQ can move this from
2477 	 * a cpu pinned worker to an unbound one. We can operate on a different
2478 	 * cpu which is allright but we also have to make sure to not move to
2479 	 * a different one.
2480 	 */
2481 	preempt_disable();
2482 	drain_local_pages(NULL);
2483 	preempt_enable();
2484 }
2485 
2486 /*
2487  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2488  *
2489  * When zone parameter is non-NULL, spill just the single zone's pages.
2490  *
2491  * Note that this can be extremely slow as the draining happens in a workqueue.
2492  */
2493 void drain_all_pages(struct zone *zone)
2494 {
2495 	int cpu;
2496 
2497 	/*
2498 	 * Allocate in the BSS so we wont require allocation in
2499 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2500 	 */
2501 	static cpumask_t cpus_with_pcps;
2502 
2503 	/*
2504 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2505 	 * initialized.
2506 	 */
2507 	if (WARN_ON_ONCE(!mm_percpu_wq))
2508 		return;
2509 
2510 	/*
2511 	 * Do not drain if one is already in progress unless it's specific to
2512 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2513 	 * the drain to be complete when the call returns.
2514 	 */
2515 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2516 		if (!zone)
2517 			return;
2518 		mutex_lock(&pcpu_drain_mutex);
2519 	}
2520 
2521 	/*
2522 	 * We don't care about racing with CPU hotplug event
2523 	 * as offline notification will cause the notified
2524 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2525 	 * disables preemption as part of its processing
2526 	 */
2527 	for_each_online_cpu(cpu) {
2528 		struct per_cpu_pageset *pcp;
2529 		struct zone *z;
2530 		bool has_pcps = false;
2531 
2532 		if (zone) {
2533 			pcp = per_cpu_ptr(zone->pageset, cpu);
2534 			if (pcp->pcp.count)
2535 				has_pcps = true;
2536 		} else {
2537 			for_each_populated_zone(z) {
2538 				pcp = per_cpu_ptr(z->pageset, cpu);
2539 				if (pcp->pcp.count) {
2540 					has_pcps = true;
2541 					break;
2542 				}
2543 			}
2544 		}
2545 
2546 		if (has_pcps)
2547 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2548 		else
2549 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2550 	}
2551 
2552 	for_each_cpu(cpu, &cpus_with_pcps) {
2553 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2554 		INIT_WORK(work, drain_local_pages_wq);
2555 		queue_work_on(cpu, mm_percpu_wq, work);
2556 	}
2557 	for_each_cpu(cpu, &cpus_with_pcps)
2558 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2559 
2560 	mutex_unlock(&pcpu_drain_mutex);
2561 }
2562 
2563 #ifdef CONFIG_HIBERNATION
2564 
2565 /*
2566  * Touch the watchdog for every WD_PAGE_COUNT pages.
2567  */
2568 #define WD_PAGE_COUNT	(128*1024)
2569 
2570 void mark_free_pages(struct zone *zone)
2571 {
2572 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2573 	unsigned long flags;
2574 	unsigned int order, t;
2575 	struct page *page;
2576 
2577 	if (zone_is_empty(zone))
2578 		return;
2579 
2580 	spin_lock_irqsave(&zone->lock, flags);
2581 
2582 	max_zone_pfn = zone_end_pfn(zone);
2583 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2584 		if (pfn_valid(pfn)) {
2585 			page = pfn_to_page(pfn);
2586 
2587 			if (!--page_count) {
2588 				touch_nmi_watchdog();
2589 				page_count = WD_PAGE_COUNT;
2590 			}
2591 
2592 			if (page_zone(page) != zone)
2593 				continue;
2594 
2595 			if (!swsusp_page_is_forbidden(page))
2596 				swsusp_unset_page_free(page);
2597 		}
2598 
2599 	for_each_migratetype_order(order, t) {
2600 		list_for_each_entry(page,
2601 				&zone->free_area[order].free_list[t], lru) {
2602 			unsigned long i;
2603 
2604 			pfn = page_to_pfn(page);
2605 			for (i = 0; i < (1UL << order); i++) {
2606 				if (!--page_count) {
2607 					touch_nmi_watchdog();
2608 					page_count = WD_PAGE_COUNT;
2609 				}
2610 				swsusp_set_page_free(pfn_to_page(pfn + i));
2611 			}
2612 		}
2613 	}
2614 	spin_unlock_irqrestore(&zone->lock, flags);
2615 }
2616 #endif /* CONFIG_PM */
2617 
2618 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2619 {
2620 	int migratetype;
2621 
2622 	if (!free_pcp_prepare(page))
2623 		return false;
2624 
2625 	migratetype = get_pfnblock_migratetype(page, pfn);
2626 	set_pcppage_migratetype(page, migratetype);
2627 	return true;
2628 }
2629 
2630 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2631 {
2632 	struct zone *zone = page_zone(page);
2633 	struct per_cpu_pages *pcp;
2634 	int migratetype;
2635 
2636 	migratetype = get_pcppage_migratetype(page);
2637 	__count_vm_event(PGFREE);
2638 
2639 	/*
2640 	 * We only track unmovable, reclaimable and movable on pcp lists.
2641 	 * Free ISOLATE pages back to the allocator because they are being
2642 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2643 	 * areas back if necessary. Otherwise, we may have to free
2644 	 * excessively into the page allocator
2645 	 */
2646 	if (migratetype >= MIGRATE_PCPTYPES) {
2647 		if (unlikely(is_migrate_isolate(migratetype))) {
2648 			free_one_page(zone, page, pfn, 0, migratetype);
2649 			return;
2650 		}
2651 		migratetype = MIGRATE_MOVABLE;
2652 	}
2653 
2654 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2655 	list_add(&page->lru, &pcp->lists[migratetype]);
2656 	pcp->count++;
2657 	if (pcp->count >= pcp->high) {
2658 		unsigned long batch = READ_ONCE(pcp->batch);
2659 		free_pcppages_bulk(zone, batch, pcp);
2660 		pcp->count -= batch;
2661 	}
2662 }
2663 
2664 /*
2665  * Free a 0-order page
2666  */
2667 void free_unref_page(struct page *page)
2668 {
2669 	unsigned long flags;
2670 	unsigned long pfn = page_to_pfn(page);
2671 
2672 	if (!free_unref_page_prepare(page, pfn))
2673 		return;
2674 
2675 	local_irq_save(flags);
2676 	free_unref_page_commit(page, pfn);
2677 	local_irq_restore(flags);
2678 }
2679 
2680 /*
2681  * Free a list of 0-order pages
2682  */
2683 void free_unref_page_list(struct list_head *list)
2684 {
2685 	struct page *page, *next;
2686 	unsigned long flags, pfn;
2687 
2688 	/* Prepare pages for freeing */
2689 	list_for_each_entry_safe(page, next, list, lru) {
2690 		pfn = page_to_pfn(page);
2691 		if (!free_unref_page_prepare(page, pfn))
2692 			list_del(&page->lru);
2693 		set_page_private(page, pfn);
2694 	}
2695 
2696 	local_irq_save(flags);
2697 	list_for_each_entry_safe(page, next, list, lru) {
2698 		unsigned long pfn = page_private(page);
2699 
2700 		set_page_private(page, 0);
2701 		trace_mm_page_free_batched(page);
2702 		free_unref_page_commit(page, pfn);
2703 	}
2704 	local_irq_restore(flags);
2705 }
2706 
2707 /*
2708  * split_page takes a non-compound higher-order page, and splits it into
2709  * n (1<<order) sub-pages: page[0..n]
2710  * Each sub-page must be freed individually.
2711  *
2712  * Note: this is probably too low level an operation for use in drivers.
2713  * Please consult with lkml before using this in your driver.
2714  */
2715 void split_page(struct page *page, unsigned int order)
2716 {
2717 	int i;
2718 
2719 	VM_BUG_ON_PAGE(PageCompound(page), page);
2720 	VM_BUG_ON_PAGE(!page_count(page), page);
2721 
2722 	for (i = 1; i < (1 << order); i++)
2723 		set_page_refcounted(page + i);
2724 	split_page_owner(page, order);
2725 }
2726 EXPORT_SYMBOL_GPL(split_page);
2727 
2728 int __isolate_free_page(struct page *page, unsigned int order)
2729 {
2730 	unsigned long watermark;
2731 	struct zone *zone;
2732 	int mt;
2733 
2734 	BUG_ON(!PageBuddy(page));
2735 
2736 	zone = page_zone(page);
2737 	mt = get_pageblock_migratetype(page);
2738 
2739 	if (!is_migrate_isolate(mt)) {
2740 		/*
2741 		 * Obey watermarks as if the page was being allocated. We can
2742 		 * emulate a high-order watermark check with a raised order-0
2743 		 * watermark, because we already know our high-order page
2744 		 * exists.
2745 		 */
2746 		watermark = min_wmark_pages(zone) + (1UL << order);
2747 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2748 			return 0;
2749 
2750 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2751 	}
2752 
2753 	/* Remove page from free list */
2754 	list_del(&page->lru);
2755 	zone->free_area[order].nr_free--;
2756 	rmv_page_order(page);
2757 
2758 	/*
2759 	 * Set the pageblock if the isolated page is at least half of a
2760 	 * pageblock
2761 	 */
2762 	if (order >= pageblock_order - 1) {
2763 		struct page *endpage = page + (1 << order) - 1;
2764 		for (; page < endpage; page += pageblock_nr_pages) {
2765 			int mt = get_pageblock_migratetype(page);
2766 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2767 			    && !is_migrate_highatomic(mt))
2768 				set_pageblock_migratetype(page,
2769 							  MIGRATE_MOVABLE);
2770 		}
2771 	}
2772 
2773 
2774 	return 1UL << order;
2775 }
2776 
2777 /*
2778  * Update NUMA hit/miss statistics
2779  *
2780  * Must be called with interrupts disabled.
2781  */
2782 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2783 {
2784 #ifdef CONFIG_NUMA
2785 	enum numa_stat_item local_stat = NUMA_LOCAL;
2786 
2787 	/* skip numa counters update if numa stats is disabled */
2788 	if (!static_branch_likely(&vm_numa_stat_key))
2789 		return;
2790 
2791 	if (z->node != numa_node_id())
2792 		local_stat = NUMA_OTHER;
2793 
2794 	if (z->node == preferred_zone->node)
2795 		__inc_numa_state(z, NUMA_HIT);
2796 	else {
2797 		__inc_numa_state(z, NUMA_MISS);
2798 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
2799 	}
2800 	__inc_numa_state(z, local_stat);
2801 #endif
2802 }
2803 
2804 /* Remove page from the per-cpu list, caller must protect the list */
2805 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2806 			struct per_cpu_pages *pcp,
2807 			struct list_head *list)
2808 {
2809 	struct page *page;
2810 
2811 	do {
2812 		if (list_empty(list)) {
2813 			pcp->count += rmqueue_bulk(zone, 0,
2814 					pcp->batch, list,
2815 					migratetype);
2816 			if (unlikely(list_empty(list)))
2817 				return NULL;
2818 		}
2819 
2820 		page = list_first_entry(list, struct page, lru);
2821 		list_del(&page->lru);
2822 		pcp->count--;
2823 	} while (check_new_pcp(page));
2824 
2825 	return page;
2826 }
2827 
2828 /* Lock and remove page from the per-cpu list */
2829 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2830 			struct zone *zone, unsigned int order,
2831 			gfp_t gfp_flags, int migratetype)
2832 {
2833 	struct per_cpu_pages *pcp;
2834 	struct list_head *list;
2835 	struct page *page;
2836 	unsigned long flags;
2837 
2838 	local_irq_save(flags);
2839 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2840 	list = &pcp->lists[migratetype];
2841 	page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2842 	if (page) {
2843 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2844 		zone_statistics(preferred_zone, zone);
2845 	}
2846 	local_irq_restore(flags);
2847 	return page;
2848 }
2849 
2850 /*
2851  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2852  */
2853 static inline
2854 struct page *rmqueue(struct zone *preferred_zone,
2855 			struct zone *zone, unsigned int order,
2856 			gfp_t gfp_flags, unsigned int alloc_flags,
2857 			int migratetype)
2858 {
2859 	unsigned long flags;
2860 	struct page *page;
2861 
2862 	if (likely(order == 0)) {
2863 		page = rmqueue_pcplist(preferred_zone, zone, order,
2864 				gfp_flags, migratetype);
2865 		goto out;
2866 	}
2867 
2868 	/*
2869 	 * We most definitely don't want callers attempting to
2870 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2871 	 */
2872 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2873 	spin_lock_irqsave(&zone->lock, flags);
2874 
2875 	do {
2876 		page = NULL;
2877 		if (alloc_flags & ALLOC_HARDER) {
2878 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2879 			if (page)
2880 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2881 		}
2882 		if (!page)
2883 			page = __rmqueue(zone, order, migratetype);
2884 	} while (page && check_new_pages(page, order));
2885 	spin_unlock(&zone->lock);
2886 	if (!page)
2887 		goto failed;
2888 	__mod_zone_freepage_state(zone, -(1 << order),
2889 				  get_pcppage_migratetype(page));
2890 
2891 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2892 	zone_statistics(preferred_zone, zone);
2893 	local_irq_restore(flags);
2894 
2895 out:
2896 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2897 	return page;
2898 
2899 failed:
2900 	local_irq_restore(flags);
2901 	return NULL;
2902 }
2903 
2904 #ifdef CONFIG_FAIL_PAGE_ALLOC
2905 
2906 static struct {
2907 	struct fault_attr attr;
2908 
2909 	bool ignore_gfp_highmem;
2910 	bool ignore_gfp_reclaim;
2911 	u32 min_order;
2912 } fail_page_alloc = {
2913 	.attr = FAULT_ATTR_INITIALIZER,
2914 	.ignore_gfp_reclaim = true,
2915 	.ignore_gfp_highmem = true,
2916 	.min_order = 1,
2917 };
2918 
2919 static int __init setup_fail_page_alloc(char *str)
2920 {
2921 	return setup_fault_attr(&fail_page_alloc.attr, str);
2922 }
2923 __setup("fail_page_alloc=", setup_fail_page_alloc);
2924 
2925 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2926 {
2927 	if (order < fail_page_alloc.min_order)
2928 		return false;
2929 	if (gfp_mask & __GFP_NOFAIL)
2930 		return false;
2931 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2932 		return false;
2933 	if (fail_page_alloc.ignore_gfp_reclaim &&
2934 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2935 		return false;
2936 
2937 	return should_fail(&fail_page_alloc.attr, 1 << order);
2938 }
2939 
2940 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2941 
2942 static int __init fail_page_alloc_debugfs(void)
2943 {
2944 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2945 	struct dentry *dir;
2946 
2947 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2948 					&fail_page_alloc.attr);
2949 	if (IS_ERR(dir))
2950 		return PTR_ERR(dir);
2951 
2952 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2953 				&fail_page_alloc.ignore_gfp_reclaim))
2954 		goto fail;
2955 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2956 				&fail_page_alloc.ignore_gfp_highmem))
2957 		goto fail;
2958 	if (!debugfs_create_u32("min-order", mode, dir,
2959 				&fail_page_alloc.min_order))
2960 		goto fail;
2961 
2962 	return 0;
2963 fail:
2964 	debugfs_remove_recursive(dir);
2965 
2966 	return -ENOMEM;
2967 }
2968 
2969 late_initcall(fail_page_alloc_debugfs);
2970 
2971 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2972 
2973 #else /* CONFIG_FAIL_PAGE_ALLOC */
2974 
2975 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2976 {
2977 	return false;
2978 }
2979 
2980 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2981 
2982 /*
2983  * Return true if free base pages are above 'mark'. For high-order checks it
2984  * will return true of the order-0 watermark is reached and there is at least
2985  * one free page of a suitable size. Checking now avoids taking the zone lock
2986  * to check in the allocation paths if no pages are free.
2987  */
2988 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2989 			 int classzone_idx, unsigned int alloc_flags,
2990 			 long free_pages)
2991 {
2992 	long min = mark;
2993 	int o;
2994 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2995 
2996 	/* free_pages may go negative - that's OK */
2997 	free_pages -= (1 << order) - 1;
2998 
2999 	if (alloc_flags & ALLOC_HIGH)
3000 		min -= min / 2;
3001 
3002 	/*
3003 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3004 	 * the high-atomic reserves. This will over-estimate the size of the
3005 	 * atomic reserve but it avoids a search.
3006 	 */
3007 	if (likely(!alloc_harder)) {
3008 		free_pages -= z->nr_reserved_highatomic;
3009 	} else {
3010 		/*
3011 		 * OOM victims can try even harder than normal ALLOC_HARDER
3012 		 * users on the grounds that it's definitely going to be in
3013 		 * the exit path shortly and free memory. Any allocation it
3014 		 * makes during the free path will be small and short-lived.
3015 		 */
3016 		if (alloc_flags & ALLOC_OOM)
3017 			min -= min / 2;
3018 		else
3019 			min -= min / 4;
3020 	}
3021 
3022 
3023 #ifdef CONFIG_CMA
3024 	/* If allocation can't use CMA areas don't use free CMA pages */
3025 	if (!(alloc_flags & ALLOC_CMA))
3026 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3027 #endif
3028 
3029 	/*
3030 	 * Check watermarks for an order-0 allocation request. If these
3031 	 * are not met, then a high-order request also cannot go ahead
3032 	 * even if a suitable page happened to be free.
3033 	 */
3034 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3035 		return false;
3036 
3037 	/* If this is an order-0 request then the watermark is fine */
3038 	if (!order)
3039 		return true;
3040 
3041 	/* For a high-order request, check at least one suitable page is free */
3042 	for (o = order; o < MAX_ORDER; o++) {
3043 		struct free_area *area = &z->free_area[o];
3044 		int mt;
3045 
3046 		if (!area->nr_free)
3047 			continue;
3048 
3049 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3050 			if (!list_empty(&area->free_list[mt]))
3051 				return true;
3052 		}
3053 
3054 #ifdef CONFIG_CMA
3055 		if ((alloc_flags & ALLOC_CMA) &&
3056 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
3057 			return true;
3058 		}
3059 #endif
3060 		if (alloc_harder &&
3061 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3062 			return true;
3063 	}
3064 	return false;
3065 }
3066 
3067 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3068 		      int classzone_idx, unsigned int alloc_flags)
3069 {
3070 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3071 					zone_page_state(z, NR_FREE_PAGES));
3072 }
3073 
3074 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3075 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3076 {
3077 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3078 	long cma_pages = 0;
3079 
3080 #ifdef CONFIG_CMA
3081 	/* If allocation can't use CMA areas don't use free CMA pages */
3082 	if (!(alloc_flags & ALLOC_CMA))
3083 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3084 #endif
3085 
3086 	/*
3087 	 * Fast check for order-0 only. If this fails then the reserves
3088 	 * need to be calculated. There is a corner case where the check
3089 	 * passes but only the high-order atomic reserve are free. If
3090 	 * the caller is !atomic then it'll uselessly search the free
3091 	 * list. That corner case is then slower but it is harmless.
3092 	 */
3093 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3094 		return true;
3095 
3096 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3097 					free_pages);
3098 }
3099 
3100 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3101 			unsigned long mark, int classzone_idx)
3102 {
3103 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3104 
3105 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3106 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3107 
3108 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3109 								free_pages);
3110 }
3111 
3112 #ifdef CONFIG_NUMA
3113 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3114 {
3115 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3116 				RECLAIM_DISTANCE;
3117 }
3118 #else	/* CONFIG_NUMA */
3119 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3120 {
3121 	return true;
3122 }
3123 #endif	/* CONFIG_NUMA */
3124 
3125 /*
3126  * get_page_from_freelist goes through the zonelist trying to allocate
3127  * a page.
3128  */
3129 static struct page *
3130 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3131 						const struct alloc_context *ac)
3132 {
3133 	struct zoneref *z = ac->preferred_zoneref;
3134 	struct zone *zone;
3135 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3136 
3137 	/*
3138 	 * Scan zonelist, looking for a zone with enough free.
3139 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3140 	 */
3141 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3142 								ac->nodemask) {
3143 		struct page *page;
3144 		unsigned long mark;
3145 
3146 		if (cpusets_enabled() &&
3147 			(alloc_flags & ALLOC_CPUSET) &&
3148 			!__cpuset_zone_allowed(zone, gfp_mask))
3149 				continue;
3150 		/*
3151 		 * When allocating a page cache page for writing, we
3152 		 * want to get it from a node that is within its dirty
3153 		 * limit, such that no single node holds more than its
3154 		 * proportional share of globally allowed dirty pages.
3155 		 * The dirty limits take into account the node's
3156 		 * lowmem reserves and high watermark so that kswapd
3157 		 * should be able to balance it without having to
3158 		 * write pages from its LRU list.
3159 		 *
3160 		 * XXX: For now, allow allocations to potentially
3161 		 * exceed the per-node dirty limit in the slowpath
3162 		 * (spread_dirty_pages unset) before going into reclaim,
3163 		 * which is important when on a NUMA setup the allowed
3164 		 * nodes are together not big enough to reach the
3165 		 * global limit.  The proper fix for these situations
3166 		 * will require awareness of nodes in the
3167 		 * dirty-throttling and the flusher threads.
3168 		 */
3169 		if (ac->spread_dirty_pages) {
3170 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3171 				continue;
3172 
3173 			if (!node_dirty_ok(zone->zone_pgdat)) {
3174 				last_pgdat_dirty_limit = zone->zone_pgdat;
3175 				continue;
3176 			}
3177 		}
3178 
3179 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3180 		if (!zone_watermark_fast(zone, order, mark,
3181 				       ac_classzone_idx(ac), alloc_flags)) {
3182 			int ret;
3183 
3184 			/* Checked here to keep the fast path fast */
3185 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3186 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3187 				goto try_this_zone;
3188 
3189 			if (node_reclaim_mode == 0 ||
3190 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3191 				continue;
3192 
3193 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3194 			switch (ret) {
3195 			case NODE_RECLAIM_NOSCAN:
3196 				/* did not scan */
3197 				continue;
3198 			case NODE_RECLAIM_FULL:
3199 				/* scanned but unreclaimable */
3200 				continue;
3201 			default:
3202 				/* did we reclaim enough */
3203 				if (zone_watermark_ok(zone, order, mark,
3204 						ac_classzone_idx(ac), alloc_flags))
3205 					goto try_this_zone;
3206 
3207 				continue;
3208 			}
3209 		}
3210 
3211 try_this_zone:
3212 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3213 				gfp_mask, alloc_flags, ac->migratetype);
3214 		if (page) {
3215 			prep_new_page(page, order, gfp_mask, alloc_flags);
3216 
3217 			/*
3218 			 * If this is a high-order atomic allocation then check
3219 			 * if the pageblock should be reserved for the future
3220 			 */
3221 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3222 				reserve_highatomic_pageblock(page, zone, order);
3223 
3224 			return page;
3225 		}
3226 	}
3227 
3228 	return NULL;
3229 }
3230 
3231 /*
3232  * Large machines with many possible nodes should not always dump per-node
3233  * meminfo in irq context.
3234  */
3235 static inline bool should_suppress_show_mem(void)
3236 {
3237 	bool ret = false;
3238 
3239 #if NODES_SHIFT > 8
3240 	ret = in_interrupt();
3241 #endif
3242 	return ret;
3243 }
3244 
3245 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3246 {
3247 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3248 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3249 
3250 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3251 		return;
3252 
3253 	/*
3254 	 * This documents exceptions given to allocations in certain
3255 	 * contexts that are allowed to allocate outside current's set
3256 	 * of allowed nodes.
3257 	 */
3258 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3259 		if (tsk_is_oom_victim(current) ||
3260 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3261 			filter &= ~SHOW_MEM_FILTER_NODES;
3262 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3263 		filter &= ~SHOW_MEM_FILTER_NODES;
3264 
3265 	show_mem(filter, nodemask);
3266 }
3267 
3268 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3269 {
3270 	struct va_format vaf;
3271 	va_list args;
3272 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3273 				      DEFAULT_RATELIMIT_BURST);
3274 
3275 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3276 		return;
3277 
3278 	va_start(args, fmt);
3279 	vaf.fmt = fmt;
3280 	vaf.va = &args;
3281 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3282 			current->comm, &vaf, gfp_mask, &gfp_mask,
3283 			nodemask_pr_args(nodemask));
3284 	va_end(args);
3285 
3286 	cpuset_print_current_mems_allowed();
3287 
3288 	dump_stack();
3289 	warn_alloc_show_mem(gfp_mask, nodemask);
3290 }
3291 
3292 static inline struct page *
3293 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3294 			      unsigned int alloc_flags,
3295 			      const struct alloc_context *ac)
3296 {
3297 	struct page *page;
3298 
3299 	page = get_page_from_freelist(gfp_mask, order,
3300 			alloc_flags|ALLOC_CPUSET, ac);
3301 	/*
3302 	 * fallback to ignore cpuset restriction if our nodes
3303 	 * are depleted
3304 	 */
3305 	if (!page)
3306 		page = get_page_from_freelist(gfp_mask, order,
3307 				alloc_flags, ac);
3308 
3309 	return page;
3310 }
3311 
3312 static inline struct page *
3313 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3314 	const struct alloc_context *ac, unsigned long *did_some_progress)
3315 {
3316 	struct oom_control oc = {
3317 		.zonelist = ac->zonelist,
3318 		.nodemask = ac->nodemask,
3319 		.memcg = NULL,
3320 		.gfp_mask = gfp_mask,
3321 		.order = order,
3322 	};
3323 	struct page *page;
3324 
3325 	*did_some_progress = 0;
3326 
3327 	/*
3328 	 * Acquire the oom lock.  If that fails, somebody else is
3329 	 * making progress for us.
3330 	 */
3331 	if (!mutex_trylock(&oom_lock)) {
3332 		*did_some_progress = 1;
3333 		schedule_timeout_uninterruptible(1);
3334 		return NULL;
3335 	}
3336 
3337 	/*
3338 	 * Go through the zonelist yet one more time, keep very high watermark
3339 	 * here, this is only to catch a parallel oom killing, we must fail if
3340 	 * we're still under heavy pressure. But make sure that this reclaim
3341 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3342 	 * allocation which will never fail due to oom_lock already held.
3343 	 */
3344 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3345 				      ~__GFP_DIRECT_RECLAIM, order,
3346 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3347 	if (page)
3348 		goto out;
3349 
3350 	/* Coredumps can quickly deplete all memory reserves */
3351 	if (current->flags & PF_DUMPCORE)
3352 		goto out;
3353 	/* The OOM killer will not help higher order allocs */
3354 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3355 		goto out;
3356 	/*
3357 	 * We have already exhausted all our reclaim opportunities without any
3358 	 * success so it is time to admit defeat. We will skip the OOM killer
3359 	 * because it is very likely that the caller has a more reasonable
3360 	 * fallback than shooting a random task.
3361 	 */
3362 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3363 		goto out;
3364 	/* The OOM killer does not needlessly kill tasks for lowmem */
3365 	if (ac->high_zoneidx < ZONE_NORMAL)
3366 		goto out;
3367 	if (pm_suspended_storage())
3368 		goto out;
3369 	/*
3370 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3371 	 * other request to make a forward progress.
3372 	 * We are in an unfortunate situation where out_of_memory cannot
3373 	 * do much for this context but let's try it to at least get
3374 	 * access to memory reserved if the current task is killed (see
3375 	 * out_of_memory). Once filesystems are ready to handle allocation
3376 	 * failures more gracefully we should just bail out here.
3377 	 */
3378 
3379 	/* The OOM killer may not free memory on a specific node */
3380 	if (gfp_mask & __GFP_THISNODE)
3381 		goto out;
3382 
3383 	/* Exhausted what can be done so it's blamo time */
3384 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3385 		*did_some_progress = 1;
3386 
3387 		/*
3388 		 * Help non-failing allocations by giving them access to memory
3389 		 * reserves
3390 		 */
3391 		if (gfp_mask & __GFP_NOFAIL)
3392 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3393 					ALLOC_NO_WATERMARKS, ac);
3394 	}
3395 out:
3396 	mutex_unlock(&oom_lock);
3397 	return page;
3398 }
3399 
3400 /*
3401  * Maximum number of compaction retries wit a progress before OOM
3402  * killer is consider as the only way to move forward.
3403  */
3404 #define MAX_COMPACT_RETRIES 16
3405 
3406 #ifdef CONFIG_COMPACTION
3407 /* Try memory compaction for high-order allocations before reclaim */
3408 static struct page *
3409 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3410 		unsigned int alloc_flags, const struct alloc_context *ac,
3411 		enum compact_priority prio, enum compact_result *compact_result)
3412 {
3413 	struct page *page;
3414 	unsigned int noreclaim_flag;
3415 
3416 	if (!order)
3417 		return NULL;
3418 
3419 	noreclaim_flag = memalloc_noreclaim_save();
3420 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3421 									prio);
3422 	memalloc_noreclaim_restore(noreclaim_flag);
3423 
3424 	if (*compact_result <= COMPACT_INACTIVE)
3425 		return NULL;
3426 
3427 	/*
3428 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3429 	 * count a compaction stall
3430 	 */
3431 	count_vm_event(COMPACTSTALL);
3432 
3433 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3434 
3435 	if (page) {
3436 		struct zone *zone = page_zone(page);
3437 
3438 		zone->compact_blockskip_flush = false;
3439 		compaction_defer_reset(zone, order, true);
3440 		count_vm_event(COMPACTSUCCESS);
3441 		return page;
3442 	}
3443 
3444 	/*
3445 	 * It's bad if compaction run occurs and fails. The most likely reason
3446 	 * is that pages exist, but not enough to satisfy watermarks.
3447 	 */
3448 	count_vm_event(COMPACTFAIL);
3449 
3450 	cond_resched();
3451 
3452 	return NULL;
3453 }
3454 
3455 static inline bool
3456 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3457 		     enum compact_result compact_result,
3458 		     enum compact_priority *compact_priority,
3459 		     int *compaction_retries)
3460 {
3461 	int max_retries = MAX_COMPACT_RETRIES;
3462 	int min_priority;
3463 	bool ret = false;
3464 	int retries = *compaction_retries;
3465 	enum compact_priority priority = *compact_priority;
3466 
3467 	if (!order)
3468 		return false;
3469 
3470 	if (compaction_made_progress(compact_result))
3471 		(*compaction_retries)++;
3472 
3473 	/*
3474 	 * compaction considers all the zone as desperately out of memory
3475 	 * so it doesn't really make much sense to retry except when the
3476 	 * failure could be caused by insufficient priority
3477 	 */
3478 	if (compaction_failed(compact_result))
3479 		goto check_priority;
3480 
3481 	/*
3482 	 * make sure the compaction wasn't deferred or didn't bail out early
3483 	 * due to locks contention before we declare that we should give up.
3484 	 * But do not retry if the given zonelist is not suitable for
3485 	 * compaction.
3486 	 */
3487 	if (compaction_withdrawn(compact_result)) {
3488 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3489 		goto out;
3490 	}
3491 
3492 	/*
3493 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3494 	 * costly ones because they are de facto nofail and invoke OOM
3495 	 * killer to move on while costly can fail and users are ready
3496 	 * to cope with that. 1/4 retries is rather arbitrary but we
3497 	 * would need much more detailed feedback from compaction to
3498 	 * make a better decision.
3499 	 */
3500 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3501 		max_retries /= 4;
3502 	if (*compaction_retries <= max_retries) {
3503 		ret = true;
3504 		goto out;
3505 	}
3506 
3507 	/*
3508 	 * Make sure there are attempts at the highest priority if we exhausted
3509 	 * all retries or failed at the lower priorities.
3510 	 */
3511 check_priority:
3512 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3513 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3514 
3515 	if (*compact_priority > min_priority) {
3516 		(*compact_priority)--;
3517 		*compaction_retries = 0;
3518 		ret = true;
3519 	}
3520 out:
3521 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3522 	return ret;
3523 }
3524 #else
3525 static inline struct page *
3526 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3527 		unsigned int alloc_flags, const struct alloc_context *ac,
3528 		enum compact_priority prio, enum compact_result *compact_result)
3529 {
3530 	*compact_result = COMPACT_SKIPPED;
3531 	return NULL;
3532 }
3533 
3534 static inline bool
3535 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3536 		     enum compact_result compact_result,
3537 		     enum compact_priority *compact_priority,
3538 		     int *compaction_retries)
3539 {
3540 	struct zone *zone;
3541 	struct zoneref *z;
3542 
3543 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3544 		return false;
3545 
3546 	/*
3547 	 * There are setups with compaction disabled which would prefer to loop
3548 	 * inside the allocator rather than hit the oom killer prematurely.
3549 	 * Let's give them a good hope and keep retrying while the order-0
3550 	 * watermarks are OK.
3551 	 */
3552 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3553 					ac->nodemask) {
3554 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3555 					ac_classzone_idx(ac), alloc_flags))
3556 			return true;
3557 	}
3558 	return false;
3559 }
3560 #endif /* CONFIG_COMPACTION */
3561 
3562 #ifdef CONFIG_LOCKDEP
3563 struct lockdep_map __fs_reclaim_map =
3564 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3565 
3566 static bool __need_fs_reclaim(gfp_t gfp_mask)
3567 {
3568 	gfp_mask = current_gfp_context(gfp_mask);
3569 
3570 	/* no reclaim without waiting on it */
3571 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3572 		return false;
3573 
3574 	/* this guy won't enter reclaim */
3575 	if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
3576 		return false;
3577 
3578 	/* We're only interested __GFP_FS allocations for now */
3579 	if (!(gfp_mask & __GFP_FS))
3580 		return false;
3581 
3582 	if (gfp_mask & __GFP_NOLOCKDEP)
3583 		return false;
3584 
3585 	return true;
3586 }
3587 
3588 void fs_reclaim_acquire(gfp_t gfp_mask)
3589 {
3590 	if (__need_fs_reclaim(gfp_mask))
3591 		lock_map_acquire(&__fs_reclaim_map);
3592 }
3593 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3594 
3595 void fs_reclaim_release(gfp_t gfp_mask)
3596 {
3597 	if (__need_fs_reclaim(gfp_mask))
3598 		lock_map_release(&__fs_reclaim_map);
3599 }
3600 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3601 #endif
3602 
3603 /* Perform direct synchronous page reclaim */
3604 static int
3605 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3606 					const struct alloc_context *ac)
3607 {
3608 	struct reclaim_state reclaim_state;
3609 	int progress;
3610 	unsigned int noreclaim_flag;
3611 
3612 	cond_resched();
3613 
3614 	/* We now go into synchronous reclaim */
3615 	cpuset_memory_pressure_bump();
3616 	noreclaim_flag = memalloc_noreclaim_save();
3617 	fs_reclaim_acquire(gfp_mask);
3618 	reclaim_state.reclaimed_slab = 0;
3619 	current->reclaim_state = &reclaim_state;
3620 
3621 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3622 								ac->nodemask);
3623 
3624 	current->reclaim_state = NULL;
3625 	fs_reclaim_release(gfp_mask);
3626 	memalloc_noreclaim_restore(noreclaim_flag);
3627 
3628 	cond_resched();
3629 
3630 	return progress;
3631 }
3632 
3633 /* The really slow allocator path where we enter direct reclaim */
3634 static inline struct page *
3635 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3636 		unsigned int alloc_flags, const struct alloc_context *ac,
3637 		unsigned long *did_some_progress)
3638 {
3639 	struct page *page = NULL;
3640 	bool drained = false;
3641 
3642 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3643 	if (unlikely(!(*did_some_progress)))
3644 		return NULL;
3645 
3646 retry:
3647 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3648 
3649 	/*
3650 	 * If an allocation failed after direct reclaim, it could be because
3651 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3652 	 * Shrink them them and try again
3653 	 */
3654 	if (!page && !drained) {
3655 		unreserve_highatomic_pageblock(ac, false);
3656 		drain_all_pages(NULL);
3657 		drained = true;
3658 		goto retry;
3659 	}
3660 
3661 	return page;
3662 }
3663 
3664 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3665 {
3666 	struct zoneref *z;
3667 	struct zone *zone;
3668 	pg_data_t *last_pgdat = NULL;
3669 
3670 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3671 					ac->high_zoneidx, ac->nodemask) {
3672 		if (last_pgdat != zone->zone_pgdat)
3673 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3674 		last_pgdat = zone->zone_pgdat;
3675 	}
3676 }
3677 
3678 static inline unsigned int
3679 gfp_to_alloc_flags(gfp_t gfp_mask)
3680 {
3681 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3682 
3683 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3684 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3685 
3686 	/*
3687 	 * The caller may dip into page reserves a bit more if the caller
3688 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3689 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3690 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3691 	 */
3692 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3693 
3694 	if (gfp_mask & __GFP_ATOMIC) {
3695 		/*
3696 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3697 		 * if it can't schedule.
3698 		 */
3699 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3700 			alloc_flags |= ALLOC_HARDER;
3701 		/*
3702 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3703 		 * comment for __cpuset_node_allowed().
3704 		 */
3705 		alloc_flags &= ~ALLOC_CPUSET;
3706 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3707 		alloc_flags |= ALLOC_HARDER;
3708 
3709 #ifdef CONFIG_CMA
3710 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3711 		alloc_flags |= ALLOC_CMA;
3712 #endif
3713 	return alloc_flags;
3714 }
3715 
3716 static bool oom_reserves_allowed(struct task_struct *tsk)
3717 {
3718 	if (!tsk_is_oom_victim(tsk))
3719 		return false;
3720 
3721 	/*
3722 	 * !MMU doesn't have oom reaper so give access to memory reserves
3723 	 * only to the thread with TIF_MEMDIE set
3724 	 */
3725 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3726 		return false;
3727 
3728 	return true;
3729 }
3730 
3731 /*
3732  * Distinguish requests which really need access to full memory
3733  * reserves from oom victims which can live with a portion of it
3734  */
3735 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3736 {
3737 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3738 		return 0;
3739 	if (gfp_mask & __GFP_MEMALLOC)
3740 		return ALLOC_NO_WATERMARKS;
3741 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3742 		return ALLOC_NO_WATERMARKS;
3743 	if (!in_interrupt()) {
3744 		if (current->flags & PF_MEMALLOC)
3745 			return ALLOC_NO_WATERMARKS;
3746 		else if (oom_reserves_allowed(current))
3747 			return ALLOC_OOM;
3748 	}
3749 
3750 	return 0;
3751 }
3752 
3753 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3754 {
3755 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3756 }
3757 
3758 /*
3759  * Checks whether it makes sense to retry the reclaim to make a forward progress
3760  * for the given allocation request.
3761  *
3762  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3763  * without success, or when we couldn't even meet the watermark if we
3764  * reclaimed all remaining pages on the LRU lists.
3765  *
3766  * Returns true if a retry is viable or false to enter the oom path.
3767  */
3768 static inline bool
3769 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3770 		     struct alloc_context *ac, int alloc_flags,
3771 		     bool did_some_progress, int *no_progress_loops)
3772 {
3773 	struct zone *zone;
3774 	struct zoneref *z;
3775 
3776 	/*
3777 	 * Costly allocations might have made a progress but this doesn't mean
3778 	 * their order will become available due to high fragmentation so
3779 	 * always increment the no progress counter for them
3780 	 */
3781 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3782 		*no_progress_loops = 0;
3783 	else
3784 		(*no_progress_loops)++;
3785 
3786 	/*
3787 	 * Make sure we converge to OOM if we cannot make any progress
3788 	 * several times in the row.
3789 	 */
3790 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3791 		/* Before OOM, exhaust highatomic_reserve */
3792 		return unreserve_highatomic_pageblock(ac, true);
3793 	}
3794 
3795 	/*
3796 	 * Keep reclaiming pages while there is a chance this will lead
3797 	 * somewhere.  If none of the target zones can satisfy our allocation
3798 	 * request even if all reclaimable pages are considered then we are
3799 	 * screwed and have to go OOM.
3800 	 */
3801 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3802 					ac->nodemask) {
3803 		unsigned long available;
3804 		unsigned long reclaimable;
3805 		unsigned long min_wmark = min_wmark_pages(zone);
3806 		bool wmark;
3807 
3808 		available = reclaimable = zone_reclaimable_pages(zone);
3809 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3810 
3811 		/*
3812 		 * Would the allocation succeed if we reclaimed all
3813 		 * reclaimable pages?
3814 		 */
3815 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3816 				ac_classzone_idx(ac), alloc_flags, available);
3817 		trace_reclaim_retry_zone(z, order, reclaimable,
3818 				available, min_wmark, *no_progress_loops, wmark);
3819 		if (wmark) {
3820 			/*
3821 			 * If we didn't make any progress and have a lot of
3822 			 * dirty + writeback pages then we should wait for
3823 			 * an IO to complete to slow down the reclaim and
3824 			 * prevent from pre mature OOM
3825 			 */
3826 			if (!did_some_progress) {
3827 				unsigned long write_pending;
3828 
3829 				write_pending = zone_page_state_snapshot(zone,
3830 							NR_ZONE_WRITE_PENDING);
3831 
3832 				if (2 * write_pending > reclaimable) {
3833 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3834 					return true;
3835 				}
3836 			}
3837 
3838 			/*
3839 			 * Memory allocation/reclaim might be called from a WQ
3840 			 * context and the current implementation of the WQ
3841 			 * concurrency control doesn't recognize that
3842 			 * a particular WQ is congested if the worker thread is
3843 			 * looping without ever sleeping. Therefore we have to
3844 			 * do a short sleep here rather than calling
3845 			 * cond_resched().
3846 			 */
3847 			if (current->flags & PF_WQ_WORKER)
3848 				schedule_timeout_uninterruptible(1);
3849 			else
3850 				cond_resched();
3851 
3852 			return true;
3853 		}
3854 	}
3855 
3856 	return false;
3857 }
3858 
3859 static inline bool
3860 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3861 {
3862 	/*
3863 	 * It's possible that cpuset's mems_allowed and the nodemask from
3864 	 * mempolicy don't intersect. This should be normally dealt with by
3865 	 * policy_nodemask(), but it's possible to race with cpuset update in
3866 	 * such a way the check therein was true, and then it became false
3867 	 * before we got our cpuset_mems_cookie here.
3868 	 * This assumes that for all allocations, ac->nodemask can come only
3869 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3870 	 * when it does not intersect with the cpuset restrictions) or the
3871 	 * caller can deal with a violated nodemask.
3872 	 */
3873 	if (cpusets_enabled() && ac->nodemask &&
3874 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3875 		ac->nodemask = NULL;
3876 		return true;
3877 	}
3878 
3879 	/*
3880 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3881 	 * possible to race with parallel threads in such a way that our
3882 	 * allocation can fail while the mask is being updated. If we are about
3883 	 * to fail, check if the cpuset changed during allocation and if so,
3884 	 * retry.
3885 	 */
3886 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3887 		return true;
3888 
3889 	return false;
3890 }
3891 
3892 static inline struct page *
3893 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3894 						struct alloc_context *ac)
3895 {
3896 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3897 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3898 	struct page *page = NULL;
3899 	unsigned int alloc_flags;
3900 	unsigned long did_some_progress;
3901 	enum compact_priority compact_priority;
3902 	enum compact_result compact_result;
3903 	int compaction_retries;
3904 	int no_progress_loops;
3905 	unsigned int cpuset_mems_cookie;
3906 	int reserve_flags;
3907 
3908 	/*
3909 	 * In the slowpath, we sanity check order to avoid ever trying to
3910 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3911 	 * be using allocators in order of preference for an area that is
3912 	 * too large.
3913 	 */
3914 	if (order >= MAX_ORDER) {
3915 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3916 		return NULL;
3917 	}
3918 
3919 	/*
3920 	 * We also sanity check to catch abuse of atomic reserves being used by
3921 	 * callers that are not in atomic context.
3922 	 */
3923 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3924 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3925 		gfp_mask &= ~__GFP_ATOMIC;
3926 
3927 retry_cpuset:
3928 	compaction_retries = 0;
3929 	no_progress_loops = 0;
3930 	compact_priority = DEF_COMPACT_PRIORITY;
3931 	cpuset_mems_cookie = read_mems_allowed_begin();
3932 
3933 	/*
3934 	 * The fast path uses conservative alloc_flags to succeed only until
3935 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3936 	 * alloc_flags precisely. So we do that now.
3937 	 */
3938 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3939 
3940 	/*
3941 	 * We need to recalculate the starting point for the zonelist iterator
3942 	 * because we might have used different nodemask in the fast path, or
3943 	 * there was a cpuset modification and we are retrying - otherwise we
3944 	 * could end up iterating over non-eligible zones endlessly.
3945 	 */
3946 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3947 					ac->high_zoneidx, ac->nodemask);
3948 	if (!ac->preferred_zoneref->zone)
3949 		goto nopage;
3950 
3951 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3952 		wake_all_kswapds(order, ac);
3953 
3954 	/*
3955 	 * The adjusted alloc_flags might result in immediate success, so try
3956 	 * that first
3957 	 */
3958 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3959 	if (page)
3960 		goto got_pg;
3961 
3962 	/*
3963 	 * For costly allocations, try direct compaction first, as it's likely
3964 	 * that we have enough base pages and don't need to reclaim. For non-
3965 	 * movable high-order allocations, do that as well, as compaction will
3966 	 * try prevent permanent fragmentation by migrating from blocks of the
3967 	 * same migratetype.
3968 	 * Don't try this for allocations that are allowed to ignore
3969 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3970 	 */
3971 	if (can_direct_reclaim &&
3972 			(costly_order ||
3973 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3974 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3975 		page = __alloc_pages_direct_compact(gfp_mask, order,
3976 						alloc_flags, ac,
3977 						INIT_COMPACT_PRIORITY,
3978 						&compact_result);
3979 		if (page)
3980 			goto got_pg;
3981 
3982 		/*
3983 		 * Checks for costly allocations with __GFP_NORETRY, which
3984 		 * includes THP page fault allocations
3985 		 */
3986 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3987 			/*
3988 			 * If compaction is deferred for high-order allocations,
3989 			 * it is because sync compaction recently failed. If
3990 			 * this is the case and the caller requested a THP
3991 			 * allocation, we do not want to heavily disrupt the
3992 			 * system, so we fail the allocation instead of entering
3993 			 * direct reclaim.
3994 			 */
3995 			if (compact_result == COMPACT_DEFERRED)
3996 				goto nopage;
3997 
3998 			/*
3999 			 * Looks like reclaim/compaction is worth trying, but
4000 			 * sync compaction could be very expensive, so keep
4001 			 * using async compaction.
4002 			 */
4003 			compact_priority = INIT_COMPACT_PRIORITY;
4004 		}
4005 	}
4006 
4007 retry:
4008 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4009 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4010 		wake_all_kswapds(order, ac);
4011 
4012 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4013 	if (reserve_flags)
4014 		alloc_flags = reserve_flags;
4015 
4016 	/*
4017 	 * Reset the zonelist iterators if memory policies can be ignored.
4018 	 * These allocations are high priority and system rather than user
4019 	 * orientated.
4020 	 */
4021 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4022 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
4023 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4024 					ac->high_zoneidx, ac->nodemask);
4025 	}
4026 
4027 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4028 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4029 	if (page)
4030 		goto got_pg;
4031 
4032 	/* Caller is not willing to reclaim, we can't balance anything */
4033 	if (!can_direct_reclaim)
4034 		goto nopage;
4035 
4036 	/* Avoid recursion of direct reclaim */
4037 	if (current->flags & PF_MEMALLOC)
4038 		goto nopage;
4039 
4040 	/* Try direct reclaim and then allocating */
4041 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4042 							&did_some_progress);
4043 	if (page)
4044 		goto got_pg;
4045 
4046 	/* Try direct compaction and then allocating */
4047 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4048 					compact_priority, &compact_result);
4049 	if (page)
4050 		goto got_pg;
4051 
4052 	/* Do not loop if specifically requested */
4053 	if (gfp_mask & __GFP_NORETRY)
4054 		goto nopage;
4055 
4056 	/*
4057 	 * Do not retry costly high order allocations unless they are
4058 	 * __GFP_RETRY_MAYFAIL
4059 	 */
4060 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4061 		goto nopage;
4062 
4063 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4064 				 did_some_progress > 0, &no_progress_loops))
4065 		goto retry;
4066 
4067 	/*
4068 	 * It doesn't make any sense to retry for the compaction if the order-0
4069 	 * reclaim is not able to make any progress because the current
4070 	 * implementation of the compaction depends on the sufficient amount
4071 	 * of free memory (see __compaction_suitable)
4072 	 */
4073 	if (did_some_progress > 0 &&
4074 			should_compact_retry(ac, order, alloc_flags,
4075 				compact_result, &compact_priority,
4076 				&compaction_retries))
4077 		goto retry;
4078 
4079 
4080 	/* Deal with possible cpuset update races before we start OOM killing */
4081 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4082 		goto retry_cpuset;
4083 
4084 	/* Reclaim has failed us, start killing things */
4085 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4086 	if (page)
4087 		goto got_pg;
4088 
4089 	/* Avoid allocations with no watermarks from looping endlessly */
4090 	if (tsk_is_oom_victim(current) &&
4091 	    (alloc_flags == ALLOC_OOM ||
4092 	     (gfp_mask & __GFP_NOMEMALLOC)))
4093 		goto nopage;
4094 
4095 	/* Retry as long as the OOM killer is making progress */
4096 	if (did_some_progress) {
4097 		no_progress_loops = 0;
4098 		goto retry;
4099 	}
4100 
4101 nopage:
4102 	/* Deal with possible cpuset update races before we fail */
4103 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4104 		goto retry_cpuset;
4105 
4106 	/*
4107 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4108 	 * we always retry
4109 	 */
4110 	if (gfp_mask & __GFP_NOFAIL) {
4111 		/*
4112 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4113 		 * of any new users that actually require GFP_NOWAIT
4114 		 */
4115 		if (WARN_ON_ONCE(!can_direct_reclaim))
4116 			goto fail;
4117 
4118 		/*
4119 		 * PF_MEMALLOC request from this context is rather bizarre
4120 		 * because we cannot reclaim anything and only can loop waiting
4121 		 * for somebody to do a work for us
4122 		 */
4123 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4124 
4125 		/*
4126 		 * non failing costly orders are a hard requirement which we
4127 		 * are not prepared for much so let's warn about these users
4128 		 * so that we can identify them and convert them to something
4129 		 * else.
4130 		 */
4131 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4132 
4133 		/*
4134 		 * Help non-failing allocations by giving them access to memory
4135 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4136 		 * could deplete whole memory reserves which would just make
4137 		 * the situation worse
4138 		 */
4139 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4140 		if (page)
4141 			goto got_pg;
4142 
4143 		cond_resched();
4144 		goto retry;
4145 	}
4146 fail:
4147 	warn_alloc(gfp_mask, ac->nodemask,
4148 			"page allocation failure: order:%u", order);
4149 got_pg:
4150 	return page;
4151 }
4152 
4153 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4154 		int preferred_nid, nodemask_t *nodemask,
4155 		struct alloc_context *ac, gfp_t *alloc_mask,
4156 		unsigned int *alloc_flags)
4157 {
4158 	ac->high_zoneidx = gfp_zone(gfp_mask);
4159 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4160 	ac->nodemask = nodemask;
4161 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4162 
4163 	if (cpusets_enabled()) {
4164 		*alloc_mask |= __GFP_HARDWALL;
4165 		if (!ac->nodemask)
4166 			ac->nodemask = &cpuset_current_mems_allowed;
4167 		else
4168 			*alloc_flags |= ALLOC_CPUSET;
4169 	}
4170 
4171 	fs_reclaim_acquire(gfp_mask);
4172 	fs_reclaim_release(gfp_mask);
4173 
4174 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4175 
4176 	if (should_fail_alloc_page(gfp_mask, order))
4177 		return false;
4178 
4179 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4180 		*alloc_flags |= ALLOC_CMA;
4181 
4182 	return true;
4183 }
4184 
4185 /* Determine whether to spread dirty pages and what the first usable zone */
4186 static inline void finalise_ac(gfp_t gfp_mask,
4187 		unsigned int order, struct alloc_context *ac)
4188 {
4189 	/* Dirty zone balancing only done in the fast path */
4190 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4191 
4192 	/*
4193 	 * The preferred zone is used for statistics but crucially it is
4194 	 * also used as the starting point for the zonelist iterator. It
4195 	 * may get reset for allocations that ignore memory policies.
4196 	 */
4197 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4198 					ac->high_zoneidx, ac->nodemask);
4199 }
4200 
4201 /*
4202  * This is the 'heart' of the zoned buddy allocator.
4203  */
4204 struct page *
4205 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4206 							nodemask_t *nodemask)
4207 {
4208 	struct page *page;
4209 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4210 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4211 	struct alloc_context ac = { };
4212 
4213 	gfp_mask &= gfp_allowed_mask;
4214 	alloc_mask = gfp_mask;
4215 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4216 		return NULL;
4217 
4218 	finalise_ac(gfp_mask, order, &ac);
4219 
4220 	/* First allocation attempt */
4221 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4222 	if (likely(page))
4223 		goto out;
4224 
4225 	/*
4226 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4227 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4228 	 * from a particular context which has been marked by
4229 	 * memalloc_no{fs,io}_{save,restore}.
4230 	 */
4231 	alloc_mask = current_gfp_context(gfp_mask);
4232 	ac.spread_dirty_pages = false;
4233 
4234 	/*
4235 	 * Restore the original nodemask if it was potentially replaced with
4236 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4237 	 */
4238 	if (unlikely(ac.nodemask != nodemask))
4239 		ac.nodemask = nodemask;
4240 
4241 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4242 
4243 out:
4244 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4245 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4246 		__free_pages(page, order);
4247 		page = NULL;
4248 	}
4249 
4250 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4251 
4252 	return page;
4253 }
4254 EXPORT_SYMBOL(__alloc_pages_nodemask);
4255 
4256 /*
4257  * Common helper functions.
4258  */
4259 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4260 {
4261 	struct page *page;
4262 
4263 	/*
4264 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4265 	 * a highmem page
4266 	 */
4267 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4268 
4269 	page = alloc_pages(gfp_mask, order);
4270 	if (!page)
4271 		return 0;
4272 	return (unsigned long) page_address(page);
4273 }
4274 EXPORT_SYMBOL(__get_free_pages);
4275 
4276 unsigned long get_zeroed_page(gfp_t gfp_mask)
4277 {
4278 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4279 }
4280 EXPORT_SYMBOL(get_zeroed_page);
4281 
4282 void __free_pages(struct page *page, unsigned int order)
4283 {
4284 	if (put_page_testzero(page)) {
4285 		if (order == 0)
4286 			free_unref_page(page);
4287 		else
4288 			__free_pages_ok(page, order);
4289 	}
4290 }
4291 
4292 EXPORT_SYMBOL(__free_pages);
4293 
4294 void free_pages(unsigned long addr, unsigned int order)
4295 {
4296 	if (addr != 0) {
4297 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4298 		__free_pages(virt_to_page((void *)addr), order);
4299 	}
4300 }
4301 
4302 EXPORT_SYMBOL(free_pages);
4303 
4304 /*
4305  * Page Fragment:
4306  *  An arbitrary-length arbitrary-offset area of memory which resides
4307  *  within a 0 or higher order page.  Multiple fragments within that page
4308  *  are individually refcounted, in the page's reference counter.
4309  *
4310  * The page_frag functions below provide a simple allocation framework for
4311  * page fragments.  This is used by the network stack and network device
4312  * drivers to provide a backing region of memory for use as either an
4313  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4314  */
4315 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4316 					     gfp_t gfp_mask)
4317 {
4318 	struct page *page = NULL;
4319 	gfp_t gfp = gfp_mask;
4320 
4321 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4322 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4323 		    __GFP_NOMEMALLOC;
4324 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4325 				PAGE_FRAG_CACHE_MAX_ORDER);
4326 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4327 #endif
4328 	if (unlikely(!page))
4329 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4330 
4331 	nc->va = page ? page_address(page) : NULL;
4332 
4333 	return page;
4334 }
4335 
4336 void __page_frag_cache_drain(struct page *page, unsigned int count)
4337 {
4338 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4339 
4340 	if (page_ref_sub_and_test(page, count)) {
4341 		unsigned int order = compound_order(page);
4342 
4343 		if (order == 0)
4344 			free_unref_page(page);
4345 		else
4346 			__free_pages_ok(page, order);
4347 	}
4348 }
4349 EXPORT_SYMBOL(__page_frag_cache_drain);
4350 
4351 void *page_frag_alloc(struct page_frag_cache *nc,
4352 		      unsigned int fragsz, gfp_t gfp_mask)
4353 {
4354 	unsigned int size = PAGE_SIZE;
4355 	struct page *page;
4356 	int offset;
4357 
4358 	if (unlikely(!nc->va)) {
4359 refill:
4360 		page = __page_frag_cache_refill(nc, gfp_mask);
4361 		if (!page)
4362 			return NULL;
4363 
4364 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4365 		/* if size can vary use size else just use PAGE_SIZE */
4366 		size = nc->size;
4367 #endif
4368 		/* Even if we own the page, we do not use atomic_set().
4369 		 * This would break get_page_unless_zero() users.
4370 		 */
4371 		page_ref_add(page, size - 1);
4372 
4373 		/* reset page count bias and offset to start of new frag */
4374 		nc->pfmemalloc = page_is_pfmemalloc(page);
4375 		nc->pagecnt_bias = size;
4376 		nc->offset = size;
4377 	}
4378 
4379 	offset = nc->offset - fragsz;
4380 	if (unlikely(offset < 0)) {
4381 		page = virt_to_page(nc->va);
4382 
4383 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4384 			goto refill;
4385 
4386 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4387 		/* if size can vary use size else just use PAGE_SIZE */
4388 		size = nc->size;
4389 #endif
4390 		/* OK, page count is 0, we can safely set it */
4391 		set_page_count(page, size);
4392 
4393 		/* reset page count bias and offset to start of new frag */
4394 		nc->pagecnt_bias = size;
4395 		offset = size - fragsz;
4396 	}
4397 
4398 	nc->pagecnt_bias--;
4399 	nc->offset = offset;
4400 
4401 	return nc->va + offset;
4402 }
4403 EXPORT_SYMBOL(page_frag_alloc);
4404 
4405 /*
4406  * Frees a page fragment allocated out of either a compound or order 0 page.
4407  */
4408 void page_frag_free(void *addr)
4409 {
4410 	struct page *page = virt_to_head_page(addr);
4411 
4412 	if (unlikely(put_page_testzero(page)))
4413 		__free_pages_ok(page, compound_order(page));
4414 }
4415 EXPORT_SYMBOL(page_frag_free);
4416 
4417 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4418 		size_t size)
4419 {
4420 	if (addr) {
4421 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4422 		unsigned long used = addr + PAGE_ALIGN(size);
4423 
4424 		split_page(virt_to_page((void *)addr), order);
4425 		while (used < alloc_end) {
4426 			free_page(used);
4427 			used += PAGE_SIZE;
4428 		}
4429 	}
4430 	return (void *)addr;
4431 }
4432 
4433 /**
4434  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4435  * @size: the number of bytes to allocate
4436  * @gfp_mask: GFP flags for the allocation
4437  *
4438  * This function is similar to alloc_pages(), except that it allocates the
4439  * minimum number of pages to satisfy the request.  alloc_pages() can only
4440  * allocate memory in power-of-two pages.
4441  *
4442  * This function is also limited by MAX_ORDER.
4443  *
4444  * Memory allocated by this function must be released by free_pages_exact().
4445  */
4446 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4447 {
4448 	unsigned int order = get_order(size);
4449 	unsigned long addr;
4450 
4451 	addr = __get_free_pages(gfp_mask, order);
4452 	return make_alloc_exact(addr, order, size);
4453 }
4454 EXPORT_SYMBOL(alloc_pages_exact);
4455 
4456 /**
4457  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4458  *			   pages on a node.
4459  * @nid: the preferred node ID where memory should be allocated
4460  * @size: the number of bytes to allocate
4461  * @gfp_mask: GFP flags for the allocation
4462  *
4463  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4464  * back.
4465  */
4466 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4467 {
4468 	unsigned int order = get_order(size);
4469 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4470 	if (!p)
4471 		return NULL;
4472 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4473 }
4474 
4475 /**
4476  * free_pages_exact - release memory allocated via alloc_pages_exact()
4477  * @virt: the value returned by alloc_pages_exact.
4478  * @size: size of allocation, same value as passed to alloc_pages_exact().
4479  *
4480  * Release the memory allocated by a previous call to alloc_pages_exact.
4481  */
4482 void free_pages_exact(void *virt, size_t size)
4483 {
4484 	unsigned long addr = (unsigned long)virt;
4485 	unsigned long end = addr + PAGE_ALIGN(size);
4486 
4487 	while (addr < end) {
4488 		free_page(addr);
4489 		addr += PAGE_SIZE;
4490 	}
4491 }
4492 EXPORT_SYMBOL(free_pages_exact);
4493 
4494 /**
4495  * nr_free_zone_pages - count number of pages beyond high watermark
4496  * @offset: The zone index of the highest zone
4497  *
4498  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4499  * high watermark within all zones at or below a given zone index.  For each
4500  * zone, the number of pages is calculated as:
4501  *
4502  *     nr_free_zone_pages = managed_pages - high_pages
4503  */
4504 static unsigned long nr_free_zone_pages(int offset)
4505 {
4506 	struct zoneref *z;
4507 	struct zone *zone;
4508 
4509 	/* Just pick one node, since fallback list is circular */
4510 	unsigned long sum = 0;
4511 
4512 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4513 
4514 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4515 		unsigned long size = zone->managed_pages;
4516 		unsigned long high = high_wmark_pages(zone);
4517 		if (size > high)
4518 			sum += size - high;
4519 	}
4520 
4521 	return sum;
4522 }
4523 
4524 /**
4525  * nr_free_buffer_pages - count number of pages beyond high watermark
4526  *
4527  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4528  * watermark within ZONE_DMA and ZONE_NORMAL.
4529  */
4530 unsigned long nr_free_buffer_pages(void)
4531 {
4532 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4533 }
4534 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4535 
4536 /**
4537  * nr_free_pagecache_pages - count number of pages beyond high watermark
4538  *
4539  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4540  * high watermark within all zones.
4541  */
4542 unsigned long nr_free_pagecache_pages(void)
4543 {
4544 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4545 }
4546 
4547 static inline void show_node(struct zone *zone)
4548 {
4549 	if (IS_ENABLED(CONFIG_NUMA))
4550 		printk("Node %d ", zone_to_nid(zone));
4551 }
4552 
4553 long si_mem_available(void)
4554 {
4555 	long available;
4556 	unsigned long pagecache;
4557 	unsigned long wmark_low = 0;
4558 	unsigned long pages[NR_LRU_LISTS];
4559 	struct zone *zone;
4560 	int lru;
4561 
4562 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4563 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4564 
4565 	for_each_zone(zone)
4566 		wmark_low += zone->watermark[WMARK_LOW];
4567 
4568 	/*
4569 	 * Estimate the amount of memory available for userspace allocations,
4570 	 * without causing swapping.
4571 	 */
4572 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4573 
4574 	/*
4575 	 * Not all the page cache can be freed, otherwise the system will
4576 	 * start swapping. Assume at least half of the page cache, or the
4577 	 * low watermark worth of cache, needs to stay.
4578 	 */
4579 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4580 	pagecache -= min(pagecache / 2, wmark_low);
4581 	available += pagecache;
4582 
4583 	/*
4584 	 * Part of the reclaimable slab consists of items that are in use,
4585 	 * and cannot be freed. Cap this estimate at the low watermark.
4586 	 */
4587 	available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4588 		     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4589 			 wmark_low);
4590 
4591 	if (available < 0)
4592 		available = 0;
4593 	return available;
4594 }
4595 EXPORT_SYMBOL_GPL(si_mem_available);
4596 
4597 void si_meminfo(struct sysinfo *val)
4598 {
4599 	val->totalram = totalram_pages;
4600 	val->sharedram = global_node_page_state(NR_SHMEM);
4601 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
4602 	val->bufferram = nr_blockdev_pages();
4603 	val->totalhigh = totalhigh_pages;
4604 	val->freehigh = nr_free_highpages();
4605 	val->mem_unit = PAGE_SIZE;
4606 }
4607 
4608 EXPORT_SYMBOL(si_meminfo);
4609 
4610 #ifdef CONFIG_NUMA
4611 void si_meminfo_node(struct sysinfo *val, int nid)
4612 {
4613 	int zone_type;		/* needs to be signed */
4614 	unsigned long managed_pages = 0;
4615 	unsigned long managed_highpages = 0;
4616 	unsigned long free_highpages = 0;
4617 	pg_data_t *pgdat = NODE_DATA(nid);
4618 
4619 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4620 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4621 	val->totalram = managed_pages;
4622 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4623 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4624 #ifdef CONFIG_HIGHMEM
4625 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4626 		struct zone *zone = &pgdat->node_zones[zone_type];
4627 
4628 		if (is_highmem(zone)) {
4629 			managed_highpages += zone->managed_pages;
4630 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4631 		}
4632 	}
4633 	val->totalhigh = managed_highpages;
4634 	val->freehigh = free_highpages;
4635 #else
4636 	val->totalhigh = managed_highpages;
4637 	val->freehigh = free_highpages;
4638 #endif
4639 	val->mem_unit = PAGE_SIZE;
4640 }
4641 #endif
4642 
4643 /*
4644  * Determine whether the node should be displayed or not, depending on whether
4645  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4646  */
4647 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4648 {
4649 	if (!(flags & SHOW_MEM_FILTER_NODES))
4650 		return false;
4651 
4652 	/*
4653 	 * no node mask - aka implicit memory numa policy. Do not bother with
4654 	 * the synchronization - read_mems_allowed_begin - because we do not
4655 	 * have to be precise here.
4656 	 */
4657 	if (!nodemask)
4658 		nodemask = &cpuset_current_mems_allowed;
4659 
4660 	return !node_isset(nid, *nodemask);
4661 }
4662 
4663 #define K(x) ((x) << (PAGE_SHIFT-10))
4664 
4665 static void show_migration_types(unsigned char type)
4666 {
4667 	static const char types[MIGRATE_TYPES] = {
4668 		[MIGRATE_UNMOVABLE]	= 'U',
4669 		[MIGRATE_MOVABLE]	= 'M',
4670 		[MIGRATE_RECLAIMABLE]	= 'E',
4671 		[MIGRATE_HIGHATOMIC]	= 'H',
4672 #ifdef CONFIG_CMA
4673 		[MIGRATE_CMA]		= 'C',
4674 #endif
4675 #ifdef CONFIG_MEMORY_ISOLATION
4676 		[MIGRATE_ISOLATE]	= 'I',
4677 #endif
4678 	};
4679 	char tmp[MIGRATE_TYPES + 1];
4680 	char *p = tmp;
4681 	int i;
4682 
4683 	for (i = 0; i < MIGRATE_TYPES; i++) {
4684 		if (type & (1 << i))
4685 			*p++ = types[i];
4686 	}
4687 
4688 	*p = '\0';
4689 	printk(KERN_CONT "(%s) ", tmp);
4690 }
4691 
4692 /*
4693  * Show free area list (used inside shift_scroll-lock stuff)
4694  * We also calculate the percentage fragmentation. We do this by counting the
4695  * memory on each free list with the exception of the first item on the list.
4696  *
4697  * Bits in @filter:
4698  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4699  *   cpuset.
4700  */
4701 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4702 {
4703 	unsigned long free_pcp = 0;
4704 	int cpu;
4705 	struct zone *zone;
4706 	pg_data_t *pgdat;
4707 
4708 	for_each_populated_zone(zone) {
4709 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4710 			continue;
4711 
4712 		for_each_online_cpu(cpu)
4713 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4714 	}
4715 
4716 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4717 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4718 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4719 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4720 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4721 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4722 		global_node_page_state(NR_ACTIVE_ANON),
4723 		global_node_page_state(NR_INACTIVE_ANON),
4724 		global_node_page_state(NR_ISOLATED_ANON),
4725 		global_node_page_state(NR_ACTIVE_FILE),
4726 		global_node_page_state(NR_INACTIVE_FILE),
4727 		global_node_page_state(NR_ISOLATED_FILE),
4728 		global_node_page_state(NR_UNEVICTABLE),
4729 		global_node_page_state(NR_FILE_DIRTY),
4730 		global_node_page_state(NR_WRITEBACK),
4731 		global_node_page_state(NR_UNSTABLE_NFS),
4732 		global_node_page_state(NR_SLAB_RECLAIMABLE),
4733 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4734 		global_node_page_state(NR_FILE_MAPPED),
4735 		global_node_page_state(NR_SHMEM),
4736 		global_zone_page_state(NR_PAGETABLE),
4737 		global_zone_page_state(NR_BOUNCE),
4738 		global_zone_page_state(NR_FREE_PAGES),
4739 		free_pcp,
4740 		global_zone_page_state(NR_FREE_CMA_PAGES));
4741 
4742 	for_each_online_pgdat(pgdat) {
4743 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4744 			continue;
4745 
4746 		printk("Node %d"
4747 			" active_anon:%lukB"
4748 			" inactive_anon:%lukB"
4749 			" active_file:%lukB"
4750 			" inactive_file:%lukB"
4751 			" unevictable:%lukB"
4752 			" isolated(anon):%lukB"
4753 			" isolated(file):%lukB"
4754 			" mapped:%lukB"
4755 			" dirty:%lukB"
4756 			" writeback:%lukB"
4757 			" shmem:%lukB"
4758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4759 			" shmem_thp: %lukB"
4760 			" shmem_pmdmapped: %lukB"
4761 			" anon_thp: %lukB"
4762 #endif
4763 			" writeback_tmp:%lukB"
4764 			" unstable:%lukB"
4765 			" all_unreclaimable? %s"
4766 			"\n",
4767 			pgdat->node_id,
4768 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4769 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4770 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4771 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4772 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4773 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4774 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4775 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4776 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4777 			K(node_page_state(pgdat, NR_WRITEBACK)),
4778 			K(node_page_state(pgdat, NR_SHMEM)),
4779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4780 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4781 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4782 					* HPAGE_PMD_NR),
4783 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4784 #endif
4785 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4786 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4787 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4788 				"yes" : "no");
4789 	}
4790 
4791 	for_each_populated_zone(zone) {
4792 		int i;
4793 
4794 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4795 			continue;
4796 
4797 		free_pcp = 0;
4798 		for_each_online_cpu(cpu)
4799 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4800 
4801 		show_node(zone);
4802 		printk(KERN_CONT
4803 			"%s"
4804 			" free:%lukB"
4805 			" min:%lukB"
4806 			" low:%lukB"
4807 			" high:%lukB"
4808 			" active_anon:%lukB"
4809 			" inactive_anon:%lukB"
4810 			" active_file:%lukB"
4811 			" inactive_file:%lukB"
4812 			" unevictable:%lukB"
4813 			" writepending:%lukB"
4814 			" present:%lukB"
4815 			" managed:%lukB"
4816 			" mlocked:%lukB"
4817 			" kernel_stack:%lukB"
4818 			" pagetables:%lukB"
4819 			" bounce:%lukB"
4820 			" free_pcp:%lukB"
4821 			" local_pcp:%ukB"
4822 			" free_cma:%lukB"
4823 			"\n",
4824 			zone->name,
4825 			K(zone_page_state(zone, NR_FREE_PAGES)),
4826 			K(min_wmark_pages(zone)),
4827 			K(low_wmark_pages(zone)),
4828 			K(high_wmark_pages(zone)),
4829 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4830 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4831 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4832 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4833 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4834 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4835 			K(zone->present_pages),
4836 			K(zone->managed_pages),
4837 			K(zone_page_state(zone, NR_MLOCK)),
4838 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4839 			K(zone_page_state(zone, NR_PAGETABLE)),
4840 			K(zone_page_state(zone, NR_BOUNCE)),
4841 			K(free_pcp),
4842 			K(this_cpu_read(zone->pageset->pcp.count)),
4843 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4844 		printk("lowmem_reserve[]:");
4845 		for (i = 0; i < MAX_NR_ZONES; i++)
4846 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4847 		printk(KERN_CONT "\n");
4848 	}
4849 
4850 	for_each_populated_zone(zone) {
4851 		unsigned int order;
4852 		unsigned long nr[MAX_ORDER], flags, total = 0;
4853 		unsigned char types[MAX_ORDER];
4854 
4855 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4856 			continue;
4857 		show_node(zone);
4858 		printk(KERN_CONT "%s: ", zone->name);
4859 
4860 		spin_lock_irqsave(&zone->lock, flags);
4861 		for (order = 0; order < MAX_ORDER; order++) {
4862 			struct free_area *area = &zone->free_area[order];
4863 			int type;
4864 
4865 			nr[order] = area->nr_free;
4866 			total += nr[order] << order;
4867 
4868 			types[order] = 0;
4869 			for (type = 0; type < MIGRATE_TYPES; type++) {
4870 				if (!list_empty(&area->free_list[type]))
4871 					types[order] |= 1 << type;
4872 			}
4873 		}
4874 		spin_unlock_irqrestore(&zone->lock, flags);
4875 		for (order = 0; order < MAX_ORDER; order++) {
4876 			printk(KERN_CONT "%lu*%lukB ",
4877 			       nr[order], K(1UL) << order);
4878 			if (nr[order])
4879 				show_migration_types(types[order]);
4880 		}
4881 		printk(KERN_CONT "= %lukB\n", K(total));
4882 	}
4883 
4884 	hugetlb_show_meminfo();
4885 
4886 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4887 
4888 	show_swap_cache_info();
4889 }
4890 
4891 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4892 {
4893 	zoneref->zone = zone;
4894 	zoneref->zone_idx = zone_idx(zone);
4895 }
4896 
4897 /*
4898  * Builds allocation fallback zone lists.
4899  *
4900  * Add all populated zones of a node to the zonelist.
4901  */
4902 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4903 {
4904 	struct zone *zone;
4905 	enum zone_type zone_type = MAX_NR_ZONES;
4906 	int nr_zones = 0;
4907 
4908 	do {
4909 		zone_type--;
4910 		zone = pgdat->node_zones + zone_type;
4911 		if (managed_zone(zone)) {
4912 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4913 			check_highest_zone(zone_type);
4914 		}
4915 	} while (zone_type);
4916 
4917 	return nr_zones;
4918 }
4919 
4920 #ifdef CONFIG_NUMA
4921 
4922 static int __parse_numa_zonelist_order(char *s)
4923 {
4924 	/*
4925 	 * We used to support different zonlists modes but they turned
4926 	 * out to be just not useful. Let's keep the warning in place
4927 	 * if somebody still use the cmd line parameter so that we do
4928 	 * not fail it silently
4929 	 */
4930 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4931 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4932 		return -EINVAL;
4933 	}
4934 	return 0;
4935 }
4936 
4937 static __init int setup_numa_zonelist_order(char *s)
4938 {
4939 	if (!s)
4940 		return 0;
4941 
4942 	return __parse_numa_zonelist_order(s);
4943 }
4944 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4945 
4946 char numa_zonelist_order[] = "Node";
4947 
4948 /*
4949  * sysctl handler for numa_zonelist_order
4950  */
4951 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4952 		void __user *buffer, size_t *length,
4953 		loff_t *ppos)
4954 {
4955 	char *str;
4956 	int ret;
4957 
4958 	if (!write)
4959 		return proc_dostring(table, write, buffer, length, ppos);
4960 	str = memdup_user_nul(buffer, 16);
4961 	if (IS_ERR(str))
4962 		return PTR_ERR(str);
4963 
4964 	ret = __parse_numa_zonelist_order(str);
4965 	kfree(str);
4966 	return ret;
4967 }
4968 
4969 
4970 #define MAX_NODE_LOAD (nr_online_nodes)
4971 static int node_load[MAX_NUMNODES];
4972 
4973 /**
4974  * find_next_best_node - find the next node that should appear in a given node's fallback list
4975  * @node: node whose fallback list we're appending
4976  * @used_node_mask: nodemask_t of already used nodes
4977  *
4978  * We use a number of factors to determine which is the next node that should
4979  * appear on a given node's fallback list.  The node should not have appeared
4980  * already in @node's fallback list, and it should be the next closest node
4981  * according to the distance array (which contains arbitrary distance values
4982  * from each node to each node in the system), and should also prefer nodes
4983  * with no CPUs, since presumably they'll have very little allocation pressure
4984  * on them otherwise.
4985  * It returns -1 if no node is found.
4986  */
4987 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4988 {
4989 	int n, val;
4990 	int min_val = INT_MAX;
4991 	int best_node = NUMA_NO_NODE;
4992 	const struct cpumask *tmp = cpumask_of_node(0);
4993 
4994 	/* Use the local node if we haven't already */
4995 	if (!node_isset(node, *used_node_mask)) {
4996 		node_set(node, *used_node_mask);
4997 		return node;
4998 	}
4999 
5000 	for_each_node_state(n, N_MEMORY) {
5001 
5002 		/* Don't want a node to appear more than once */
5003 		if (node_isset(n, *used_node_mask))
5004 			continue;
5005 
5006 		/* Use the distance array to find the distance */
5007 		val = node_distance(node, n);
5008 
5009 		/* Penalize nodes under us ("prefer the next node") */
5010 		val += (n < node);
5011 
5012 		/* Give preference to headless and unused nodes */
5013 		tmp = cpumask_of_node(n);
5014 		if (!cpumask_empty(tmp))
5015 			val += PENALTY_FOR_NODE_WITH_CPUS;
5016 
5017 		/* Slight preference for less loaded node */
5018 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5019 		val += node_load[n];
5020 
5021 		if (val < min_val) {
5022 			min_val = val;
5023 			best_node = n;
5024 		}
5025 	}
5026 
5027 	if (best_node >= 0)
5028 		node_set(best_node, *used_node_mask);
5029 
5030 	return best_node;
5031 }
5032 
5033 
5034 /*
5035  * Build zonelists ordered by node and zones within node.
5036  * This results in maximum locality--normal zone overflows into local
5037  * DMA zone, if any--but risks exhausting DMA zone.
5038  */
5039 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5040 		unsigned nr_nodes)
5041 {
5042 	struct zoneref *zonerefs;
5043 	int i;
5044 
5045 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5046 
5047 	for (i = 0; i < nr_nodes; i++) {
5048 		int nr_zones;
5049 
5050 		pg_data_t *node = NODE_DATA(node_order[i]);
5051 
5052 		nr_zones = build_zonerefs_node(node, zonerefs);
5053 		zonerefs += nr_zones;
5054 	}
5055 	zonerefs->zone = NULL;
5056 	zonerefs->zone_idx = 0;
5057 }
5058 
5059 /*
5060  * Build gfp_thisnode zonelists
5061  */
5062 static void build_thisnode_zonelists(pg_data_t *pgdat)
5063 {
5064 	struct zoneref *zonerefs;
5065 	int nr_zones;
5066 
5067 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5068 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5069 	zonerefs += nr_zones;
5070 	zonerefs->zone = NULL;
5071 	zonerefs->zone_idx = 0;
5072 }
5073 
5074 /*
5075  * Build zonelists ordered by zone and nodes within zones.
5076  * This results in conserving DMA zone[s] until all Normal memory is
5077  * exhausted, but results in overflowing to remote node while memory
5078  * may still exist in local DMA zone.
5079  */
5080 
5081 static void build_zonelists(pg_data_t *pgdat)
5082 {
5083 	static int node_order[MAX_NUMNODES];
5084 	int node, load, nr_nodes = 0;
5085 	nodemask_t used_mask;
5086 	int local_node, prev_node;
5087 
5088 	/* NUMA-aware ordering of nodes */
5089 	local_node = pgdat->node_id;
5090 	load = nr_online_nodes;
5091 	prev_node = local_node;
5092 	nodes_clear(used_mask);
5093 
5094 	memset(node_order, 0, sizeof(node_order));
5095 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5096 		/*
5097 		 * We don't want to pressure a particular node.
5098 		 * So adding penalty to the first node in same
5099 		 * distance group to make it round-robin.
5100 		 */
5101 		if (node_distance(local_node, node) !=
5102 		    node_distance(local_node, prev_node))
5103 			node_load[node] = load;
5104 
5105 		node_order[nr_nodes++] = node;
5106 		prev_node = node;
5107 		load--;
5108 	}
5109 
5110 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5111 	build_thisnode_zonelists(pgdat);
5112 }
5113 
5114 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5115 /*
5116  * Return node id of node used for "local" allocations.
5117  * I.e., first node id of first zone in arg node's generic zonelist.
5118  * Used for initializing percpu 'numa_mem', which is used primarily
5119  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5120  */
5121 int local_memory_node(int node)
5122 {
5123 	struct zoneref *z;
5124 
5125 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5126 				   gfp_zone(GFP_KERNEL),
5127 				   NULL);
5128 	return z->zone->node;
5129 }
5130 #endif
5131 
5132 static void setup_min_unmapped_ratio(void);
5133 static void setup_min_slab_ratio(void);
5134 #else	/* CONFIG_NUMA */
5135 
5136 static void build_zonelists(pg_data_t *pgdat)
5137 {
5138 	int node, local_node;
5139 	struct zoneref *zonerefs;
5140 	int nr_zones;
5141 
5142 	local_node = pgdat->node_id;
5143 
5144 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5145 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5146 	zonerefs += nr_zones;
5147 
5148 	/*
5149 	 * Now we build the zonelist so that it contains the zones
5150 	 * of all the other nodes.
5151 	 * We don't want to pressure a particular node, so when
5152 	 * building the zones for node N, we make sure that the
5153 	 * zones coming right after the local ones are those from
5154 	 * node N+1 (modulo N)
5155 	 */
5156 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5157 		if (!node_online(node))
5158 			continue;
5159 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5160 		zonerefs += nr_zones;
5161 	}
5162 	for (node = 0; node < local_node; node++) {
5163 		if (!node_online(node))
5164 			continue;
5165 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5166 		zonerefs += nr_zones;
5167 	}
5168 
5169 	zonerefs->zone = NULL;
5170 	zonerefs->zone_idx = 0;
5171 }
5172 
5173 #endif	/* CONFIG_NUMA */
5174 
5175 /*
5176  * Boot pageset table. One per cpu which is going to be used for all
5177  * zones and all nodes. The parameters will be set in such a way
5178  * that an item put on a list will immediately be handed over to
5179  * the buddy list. This is safe since pageset manipulation is done
5180  * with interrupts disabled.
5181  *
5182  * The boot_pagesets must be kept even after bootup is complete for
5183  * unused processors and/or zones. They do play a role for bootstrapping
5184  * hotplugged processors.
5185  *
5186  * zoneinfo_show() and maybe other functions do
5187  * not check if the processor is online before following the pageset pointer.
5188  * Other parts of the kernel may not check if the zone is available.
5189  */
5190 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5191 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5192 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5193 
5194 static void __build_all_zonelists(void *data)
5195 {
5196 	int nid;
5197 	int __maybe_unused cpu;
5198 	pg_data_t *self = data;
5199 	static DEFINE_SPINLOCK(lock);
5200 
5201 	spin_lock(&lock);
5202 
5203 #ifdef CONFIG_NUMA
5204 	memset(node_load, 0, sizeof(node_load));
5205 #endif
5206 
5207 	/*
5208 	 * This node is hotadded and no memory is yet present.   So just
5209 	 * building zonelists is fine - no need to touch other nodes.
5210 	 */
5211 	if (self && !node_online(self->node_id)) {
5212 		build_zonelists(self);
5213 	} else {
5214 		for_each_online_node(nid) {
5215 			pg_data_t *pgdat = NODE_DATA(nid);
5216 
5217 			build_zonelists(pgdat);
5218 		}
5219 
5220 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5221 		/*
5222 		 * We now know the "local memory node" for each node--
5223 		 * i.e., the node of the first zone in the generic zonelist.
5224 		 * Set up numa_mem percpu variable for on-line cpus.  During
5225 		 * boot, only the boot cpu should be on-line;  we'll init the
5226 		 * secondary cpus' numa_mem as they come on-line.  During
5227 		 * node/memory hotplug, we'll fixup all on-line cpus.
5228 		 */
5229 		for_each_online_cpu(cpu)
5230 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5231 #endif
5232 	}
5233 
5234 	spin_unlock(&lock);
5235 }
5236 
5237 static noinline void __init
5238 build_all_zonelists_init(void)
5239 {
5240 	int cpu;
5241 
5242 	__build_all_zonelists(NULL);
5243 
5244 	/*
5245 	 * Initialize the boot_pagesets that are going to be used
5246 	 * for bootstrapping processors. The real pagesets for
5247 	 * each zone will be allocated later when the per cpu
5248 	 * allocator is available.
5249 	 *
5250 	 * boot_pagesets are used also for bootstrapping offline
5251 	 * cpus if the system is already booted because the pagesets
5252 	 * are needed to initialize allocators on a specific cpu too.
5253 	 * F.e. the percpu allocator needs the page allocator which
5254 	 * needs the percpu allocator in order to allocate its pagesets
5255 	 * (a chicken-egg dilemma).
5256 	 */
5257 	for_each_possible_cpu(cpu)
5258 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5259 
5260 	mminit_verify_zonelist();
5261 	cpuset_init_current_mems_allowed();
5262 }
5263 
5264 /*
5265  * unless system_state == SYSTEM_BOOTING.
5266  *
5267  * __ref due to call of __init annotated helper build_all_zonelists_init
5268  * [protected by SYSTEM_BOOTING].
5269  */
5270 void __ref build_all_zonelists(pg_data_t *pgdat)
5271 {
5272 	if (system_state == SYSTEM_BOOTING) {
5273 		build_all_zonelists_init();
5274 	} else {
5275 		__build_all_zonelists(pgdat);
5276 		/* cpuset refresh routine should be here */
5277 	}
5278 	vm_total_pages = nr_free_pagecache_pages();
5279 	/*
5280 	 * Disable grouping by mobility if the number of pages in the
5281 	 * system is too low to allow the mechanism to work. It would be
5282 	 * more accurate, but expensive to check per-zone. This check is
5283 	 * made on memory-hotadd so a system can start with mobility
5284 	 * disabled and enable it later
5285 	 */
5286 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5287 		page_group_by_mobility_disabled = 1;
5288 	else
5289 		page_group_by_mobility_disabled = 0;
5290 
5291 	pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5292 		nr_online_nodes,
5293 		page_group_by_mobility_disabled ? "off" : "on",
5294 		vm_total_pages);
5295 #ifdef CONFIG_NUMA
5296 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5297 #endif
5298 }
5299 
5300 /*
5301  * Initially all pages are reserved - free ones are freed
5302  * up by free_all_bootmem() once the early boot process is
5303  * done. Non-atomic initialization, single-pass.
5304  */
5305 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5306 		unsigned long start_pfn, enum memmap_context context)
5307 {
5308 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5309 	unsigned long end_pfn = start_pfn + size;
5310 	pg_data_t *pgdat = NODE_DATA(nid);
5311 	unsigned long pfn;
5312 	unsigned long nr_initialised = 0;
5313 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5314 	struct memblock_region *r = NULL, *tmp;
5315 #endif
5316 
5317 	if (highest_memmap_pfn < end_pfn - 1)
5318 		highest_memmap_pfn = end_pfn - 1;
5319 
5320 	/*
5321 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5322 	 * memory
5323 	 */
5324 	if (altmap && start_pfn == altmap->base_pfn)
5325 		start_pfn += altmap->reserve;
5326 
5327 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5328 		/*
5329 		 * There can be holes in boot-time mem_map[]s handed to this
5330 		 * function.  They do not exist on hotplugged memory.
5331 		 */
5332 		if (context != MEMMAP_EARLY)
5333 			goto not_early;
5334 
5335 		if (!early_pfn_valid(pfn)) {
5336 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5337 			/*
5338 			 * Skip to the pfn preceding the next valid one (or
5339 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5340 			 * on our next iteration of the loop.
5341 			 */
5342 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5343 #endif
5344 			continue;
5345 		}
5346 		if (!early_pfn_in_nid(pfn, nid))
5347 			continue;
5348 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5349 			break;
5350 
5351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5352 		/*
5353 		 * Check given memblock attribute by firmware which can affect
5354 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5355 		 * mirrored, it's an overlapped memmap init. skip it.
5356 		 */
5357 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5358 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5359 				for_each_memblock(memory, tmp)
5360 					if (pfn < memblock_region_memory_end_pfn(tmp))
5361 						break;
5362 				r = tmp;
5363 			}
5364 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5365 			    memblock_is_mirror(r)) {
5366 				/* already initialized as NORMAL */
5367 				pfn = memblock_region_memory_end_pfn(r);
5368 				continue;
5369 			}
5370 		}
5371 #endif
5372 
5373 not_early:
5374 		/*
5375 		 * Mark the block movable so that blocks are reserved for
5376 		 * movable at startup. This will force kernel allocations
5377 		 * to reserve their blocks rather than leaking throughout
5378 		 * the address space during boot when many long-lived
5379 		 * kernel allocations are made.
5380 		 *
5381 		 * bitmap is created for zone's valid pfn range. but memmap
5382 		 * can be created for invalid pages (for alignment)
5383 		 * check here not to call set_pageblock_migratetype() against
5384 		 * pfn out of zone.
5385 		 */
5386 		if (!(pfn & (pageblock_nr_pages - 1))) {
5387 			struct page *page = pfn_to_page(pfn);
5388 
5389 			__init_single_page(page, pfn, zone, nid);
5390 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5391 			cond_resched();
5392 		} else {
5393 			__init_single_pfn(pfn, zone, nid);
5394 		}
5395 	}
5396 }
5397 
5398 static void __meminit zone_init_free_lists(struct zone *zone)
5399 {
5400 	unsigned int order, t;
5401 	for_each_migratetype_order(order, t) {
5402 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5403 		zone->free_area[order].nr_free = 0;
5404 	}
5405 }
5406 
5407 #ifndef __HAVE_ARCH_MEMMAP_INIT
5408 #define memmap_init(size, nid, zone, start_pfn) \
5409 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5410 #endif
5411 
5412 static int zone_batchsize(struct zone *zone)
5413 {
5414 #ifdef CONFIG_MMU
5415 	int batch;
5416 
5417 	/*
5418 	 * The per-cpu-pages pools are set to around 1000th of the
5419 	 * size of the zone.  But no more than 1/2 of a meg.
5420 	 *
5421 	 * OK, so we don't know how big the cache is.  So guess.
5422 	 */
5423 	batch = zone->managed_pages / 1024;
5424 	if (batch * PAGE_SIZE > 512 * 1024)
5425 		batch = (512 * 1024) / PAGE_SIZE;
5426 	batch /= 4;		/* We effectively *= 4 below */
5427 	if (batch < 1)
5428 		batch = 1;
5429 
5430 	/*
5431 	 * Clamp the batch to a 2^n - 1 value. Having a power
5432 	 * of 2 value was found to be more likely to have
5433 	 * suboptimal cache aliasing properties in some cases.
5434 	 *
5435 	 * For example if 2 tasks are alternately allocating
5436 	 * batches of pages, one task can end up with a lot
5437 	 * of pages of one half of the possible page colors
5438 	 * and the other with pages of the other colors.
5439 	 */
5440 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5441 
5442 	return batch;
5443 
5444 #else
5445 	/* The deferral and batching of frees should be suppressed under NOMMU
5446 	 * conditions.
5447 	 *
5448 	 * The problem is that NOMMU needs to be able to allocate large chunks
5449 	 * of contiguous memory as there's no hardware page translation to
5450 	 * assemble apparent contiguous memory from discontiguous pages.
5451 	 *
5452 	 * Queueing large contiguous runs of pages for batching, however,
5453 	 * causes the pages to actually be freed in smaller chunks.  As there
5454 	 * can be a significant delay between the individual batches being
5455 	 * recycled, this leads to the once large chunks of space being
5456 	 * fragmented and becoming unavailable for high-order allocations.
5457 	 */
5458 	return 0;
5459 #endif
5460 }
5461 
5462 /*
5463  * pcp->high and pcp->batch values are related and dependent on one another:
5464  * ->batch must never be higher then ->high.
5465  * The following function updates them in a safe manner without read side
5466  * locking.
5467  *
5468  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5469  * those fields changing asynchronously (acording the the above rule).
5470  *
5471  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5472  * outside of boot time (or some other assurance that no concurrent updaters
5473  * exist).
5474  */
5475 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5476 		unsigned long batch)
5477 {
5478        /* start with a fail safe value for batch */
5479 	pcp->batch = 1;
5480 	smp_wmb();
5481 
5482        /* Update high, then batch, in order */
5483 	pcp->high = high;
5484 	smp_wmb();
5485 
5486 	pcp->batch = batch;
5487 }
5488 
5489 /* a companion to pageset_set_high() */
5490 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5491 {
5492 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5493 }
5494 
5495 static void pageset_init(struct per_cpu_pageset *p)
5496 {
5497 	struct per_cpu_pages *pcp;
5498 	int migratetype;
5499 
5500 	memset(p, 0, sizeof(*p));
5501 
5502 	pcp = &p->pcp;
5503 	pcp->count = 0;
5504 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5505 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5506 }
5507 
5508 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5509 {
5510 	pageset_init(p);
5511 	pageset_set_batch(p, batch);
5512 }
5513 
5514 /*
5515  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5516  * to the value high for the pageset p.
5517  */
5518 static void pageset_set_high(struct per_cpu_pageset *p,
5519 				unsigned long high)
5520 {
5521 	unsigned long batch = max(1UL, high / 4);
5522 	if ((high / 4) > (PAGE_SHIFT * 8))
5523 		batch = PAGE_SHIFT * 8;
5524 
5525 	pageset_update(&p->pcp, high, batch);
5526 }
5527 
5528 static void pageset_set_high_and_batch(struct zone *zone,
5529 				       struct per_cpu_pageset *pcp)
5530 {
5531 	if (percpu_pagelist_fraction)
5532 		pageset_set_high(pcp,
5533 			(zone->managed_pages /
5534 				percpu_pagelist_fraction));
5535 	else
5536 		pageset_set_batch(pcp, zone_batchsize(zone));
5537 }
5538 
5539 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5540 {
5541 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5542 
5543 	pageset_init(pcp);
5544 	pageset_set_high_and_batch(zone, pcp);
5545 }
5546 
5547 void __meminit setup_zone_pageset(struct zone *zone)
5548 {
5549 	int cpu;
5550 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5551 	for_each_possible_cpu(cpu)
5552 		zone_pageset_init(zone, cpu);
5553 }
5554 
5555 /*
5556  * Allocate per cpu pagesets and initialize them.
5557  * Before this call only boot pagesets were available.
5558  */
5559 void __init setup_per_cpu_pageset(void)
5560 {
5561 	struct pglist_data *pgdat;
5562 	struct zone *zone;
5563 
5564 	for_each_populated_zone(zone)
5565 		setup_zone_pageset(zone);
5566 
5567 	for_each_online_pgdat(pgdat)
5568 		pgdat->per_cpu_nodestats =
5569 			alloc_percpu(struct per_cpu_nodestat);
5570 }
5571 
5572 static __meminit void zone_pcp_init(struct zone *zone)
5573 {
5574 	/*
5575 	 * per cpu subsystem is not up at this point. The following code
5576 	 * relies on the ability of the linker to provide the
5577 	 * offset of a (static) per cpu variable into the per cpu area.
5578 	 */
5579 	zone->pageset = &boot_pageset;
5580 
5581 	if (populated_zone(zone))
5582 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5583 			zone->name, zone->present_pages,
5584 					 zone_batchsize(zone));
5585 }
5586 
5587 void __meminit init_currently_empty_zone(struct zone *zone,
5588 					unsigned long zone_start_pfn,
5589 					unsigned long size)
5590 {
5591 	struct pglist_data *pgdat = zone->zone_pgdat;
5592 
5593 	pgdat->nr_zones = zone_idx(zone) + 1;
5594 
5595 	zone->zone_start_pfn = zone_start_pfn;
5596 
5597 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5598 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5599 			pgdat->node_id,
5600 			(unsigned long)zone_idx(zone),
5601 			zone_start_pfn, (zone_start_pfn + size));
5602 
5603 	zone_init_free_lists(zone);
5604 	zone->initialized = 1;
5605 }
5606 
5607 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5608 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5609 
5610 /*
5611  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5612  */
5613 int __meminit __early_pfn_to_nid(unsigned long pfn,
5614 					struct mminit_pfnnid_cache *state)
5615 {
5616 	unsigned long start_pfn, end_pfn;
5617 	int nid;
5618 
5619 	if (state->last_start <= pfn && pfn < state->last_end)
5620 		return state->last_nid;
5621 
5622 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5623 	if (nid != -1) {
5624 		state->last_start = start_pfn;
5625 		state->last_end = end_pfn;
5626 		state->last_nid = nid;
5627 	}
5628 
5629 	return nid;
5630 }
5631 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5632 
5633 /**
5634  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5635  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5636  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5637  *
5638  * If an architecture guarantees that all ranges registered contain no holes
5639  * and may be freed, this this function may be used instead of calling
5640  * memblock_free_early_nid() manually.
5641  */
5642 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5643 {
5644 	unsigned long start_pfn, end_pfn;
5645 	int i, this_nid;
5646 
5647 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5648 		start_pfn = min(start_pfn, max_low_pfn);
5649 		end_pfn = min(end_pfn, max_low_pfn);
5650 
5651 		if (start_pfn < end_pfn)
5652 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5653 					(end_pfn - start_pfn) << PAGE_SHIFT,
5654 					this_nid);
5655 	}
5656 }
5657 
5658 /**
5659  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5660  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5661  *
5662  * If an architecture guarantees that all ranges registered contain no holes and may
5663  * be freed, this function may be used instead of calling memory_present() manually.
5664  */
5665 void __init sparse_memory_present_with_active_regions(int nid)
5666 {
5667 	unsigned long start_pfn, end_pfn;
5668 	int i, this_nid;
5669 
5670 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5671 		memory_present(this_nid, start_pfn, end_pfn);
5672 }
5673 
5674 /**
5675  * get_pfn_range_for_nid - Return the start and end page frames for a node
5676  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5677  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5678  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5679  *
5680  * It returns the start and end page frame of a node based on information
5681  * provided by memblock_set_node(). If called for a node
5682  * with no available memory, a warning is printed and the start and end
5683  * PFNs will be 0.
5684  */
5685 void __meminit get_pfn_range_for_nid(unsigned int nid,
5686 			unsigned long *start_pfn, unsigned long *end_pfn)
5687 {
5688 	unsigned long this_start_pfn, this_end_pfn;
5689 	int i;
5690 
5691 	*start_pfn = -1UL;
5692 	*end_pfn = 0;
5693 
5694 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5695 		*start_pfn = min(*start_pfn, this_start_pfn);
5696 		*end_pfn = max(*end_pfn, this_end_pfn);
5697 	}
5698 
5699 	if (*start_pfn == -1UL)
5700 		*start_pfn = 0;
5701 }
5702 
5703 /*
5704  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5705  * assumption is made that zones within a node are ordered in monotonic
5706  * increasing memory addresses so that the "highest" populated zone is used
5707  */
5708 static void __init find_usable_zone_for_movable(void)
5709 {
5710 	int zone_index;
5711 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5712 		if (zone_index == ZONE_MOVABLE)
5713 			continue;
5714 
5715 		if (arch_zone_highest_possible_pfn[zone_index] >
5716 				arch_zone_lowest_possible_pfn[zone_index])
5717 			break;
5718 	}
5719 
5720 	VM_BUG_ON(zone_index == -1);
5721 	movable_zone = zone_index;
5722 }
5723 
5724 /*
5725  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5726  * because it is sized independent of architecture. Unlike the other zones,
5727  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5728  * in each node depending on the size of each node and how evenly kernelcore
5729  * is distributed. This helper function adjusts the zone ranges
5730  * provided by the architecture for a given node by using the end of the
5731  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5732  * zones within a node are in order of monotonic increases memory addresses
5733  */
5734 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5735 					unsigned long zone_type,
5736 					unsigned long node_start_pfn,
5737 					unsigned long node_end_pfn,
5738 					unsigned long *zone_start_pfn,
5739 					unsigned long *zone_end_pfn)
5740 {
5741 	/* Only adjust if ZONE_MOVABLE is on this node */
5742 	if (zone_movable_pfn[nid]) {
5743 		/* Size ZONE_MOVABLE */
5744 		if (zone_type == ZONE_MOVABLE) {
5745 			*zone_start_pfn = zone_movable_pfn[nid];
5746 			*zone_end_pfn = min(node_end_pfn,
5747 				arch_zone_highest_possible_pfn[movable_zone]);
5748 
5749 		/* Adjust for ZONE_MOVABLE starting within this range */
5750 		} else if (!mirrored_kernelcore &&
5751 			*zone_start_pfn < zone_movable_pfn[nid] &&
5752 			*zone_end_pfn > zone_movable_pfn[nid]) {
5753 			*zone_end_pfn = zone_movable_pfn[nid];
5754 
5755 		/* Check if this whole range is within ZONE_MOVABLE */
5756 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5757 			*zone_start_pfn = *zone_end_pfn;
5758 	}
5759 }
5760 
5761 /*
5762  * Return the number of pages a zone spans in a node, including holes
5763  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5764  */
5765 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5766 					unsigned long zone_type,
5767 					unsigned long node_start_pfn,
5768 					unsigned long node_end_pfn,
5769 					unsigned long *zone_start_pfn,
5770 					unsigned long *zone_end_pfn,
5771 					unsigned long *ignored)
5772 {
5773 	/* When hotadd a new node from cpu_up(), the node should be empty */
5774 	if (!node_start_pfn && !node_end_pfn)
5775 		return 0;
5776 
5777 	/* Get the start and end of the zone */
5778 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5779 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5780 	adjust_zone_range_for_zone_movable(nid, zone_type,
5781 				node_start_pfn, node_end_pfn,
5782 				zone_start_pfn, zone_end_pfn);
5783 
5784 	/* Check that this node has pages within the zone's required range */
5785 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5786 		return 0;
5787 
5788 	/* Move the zone boundaries inside the node if necessary */
5789 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5790 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5791 
5792 	/* Return the spanned pages */
5793 	return *zone_end_pfn - *zone_start_pfn;
5794 }
5795 
5796 /*
5797  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5798  * then all holes in the requested range will be accounted for.
5799  */
5800 unsigned long __meminit __absent_pages_in_range(int nid,
5801 				unsigned long range_start_pfn,
5802 				unsigned long range_end_pfn)
5803 {
5804 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5805 	unsigned long start_pfn, end_pfn;
5806 	int i;
5807 
5808 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5809 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5810 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5811 		nr_absent -= end_pfn - start_pfn;
5812 	}
5813 	return nr_absent;
5814 }
5815 
5816 /**
5817  * absent_pages_in_range - Return number of page frames in holes within a range
5818  * @start_pfn: The start PFN to start searching for holes
5819  * @end_pfn: The end PFN to stop searching for holes
5820  *
5821  * It returns the number of pages frames in memory holes within a range.
5822  */
5823 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5824 							unsigned long end_pfn)
5825 {
5826 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5827 }
5828 
5829 /* Return the number of page frames in holes in a zone on a node */
5830 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5831 					unsigned long zone_type,
5832 					unsigned long node_start_pfn,
5833 					unsigned long node_end_pfn,
5834 					unsigned long *ignored)
5835 {
5836 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5837 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5838 	unsigned long zone_start_pfn, zone_end_pfn;
5839 	unsigned long nr_absent;
5840 
5841 	/* When hotadd a new node from cpu_up(), the node should be empty */
5842 	if (!node_start_pfn && !node_end_pfn)
5843 		return 0;
5844 
5845 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5846 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5847 
5848 	adjust_zone_range_for_zone_movable(nid, zone_type,
5849 			node_start_pfn, node_end_pfn,
5850 			&zone_start_pfn, &zone_end_pfn);
5851 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5852 
5853 	/*
5854 	 * ZONE_MOVABLE handling.
5855 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5856 	 * and vice versa.
5857 	 */
5858 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5859 		unsigned long start_pfn, end_pfn;
5860 		struct memblock_region *r;
5861 
5862 		for_each_memblock(memory, r) {
5863 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5864 					  zone_start_pfn, zone_end_pfn);
5865 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5866 					zone_start_pfn, zone_end_pfn);
5867 
5868 			if (zone_type == ZONE_MOVABLE &&
5869 			    memblock_is_mirror(r))
5870 				nr_absent += end_pfn - start_pfn;
5871 
5872 			if (zone_type == ZONE_NORMAL &&
5873 			    !memblock_is_mirror(r))
5874 				nr_absent += end_pfn - start_pfn;
5875 		}
5876 	}
5877 
5878 	return nr_absent;
5879 }
5880 
5881 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5882 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5883 					unsigned long zone_type,
5884 					unsigned long node_start_pfn,
5885 					unsigned long node_end_pfn,
5886 					unsigned long *zone_start_pfn,
5887 					unsigned long *zone_end_pfn,
5888 					unsigned long *zones_size)
5889 {
5890 	unsigned int zone;
5891 
5892 	*zone_start_pfn = node_start_pfn;
5893 	for (zone = 0; zone < zone_type; zone++)
5894 		*zone_start_pfn += zones_size[zone];
5895 
5896 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5897 
5898 	return zones_size[zone_type];
5899 }
5900 
5901 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5902 						unsigned long zone_type,
5903 						unsigned long node_start_pfn,
5904 						unsigned long node_end_pfn,
5905 						unsigned long *zholes_size)
5906 {
5907 	if (!zholes_size)
5908 		return 0;
5909 
5910 	return zholes_size[zone_type];
5911 }
5912 
5913 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5914 
5915 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5916 						unsigned long node_start_pfn,
5917 						unsigned long node_end_pfn,
5918 						unsigned long *zones_size,
5919 						unsigned long *zholes_size)
5920 {
5921 	unsigned long realtotalpages = 0, totalpages = 0;
5922 	enum zone_type i;
5923 
5924 	for (i = 0; i < MAX_NR_ZONES; i++) {
5925 		struct zone *zone = pgdat->node_zones + i;
5926 		unsigned long zone_start_pfn, zone_end_pfn;
5927 		unsigned long size, real_size;
5928 
5929 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5930 						  node_start_pfn,
5931 						  node_end_pfn,
5932 						  &zone_start_pfn,
5933 						  &zone_end_pfn,
5934 						  zones_size);
5935 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5936 						  node_start_pfn, node_end_pfn,
5937 						  zholes_size);
5938 		if (size)
5939 			zone->zone_start_pfn = zone_start_pfn;
5940 		else
5941 			zone->zone_start_pfn = 0;
5942 		zone->spanned_pages = size;
5943 		zone->present_pages = real_size;
5944 
5945 		totalpages += size;
5946 		realtotalpages += real_size;
5947 	}
5948 
5949 	pgdat->node_spanned_pages = totalpages;
5950 	pgdat->node_present_pages = realtotalpages;
5951 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5952 							realtotalpages);
5953 }
5954 
5955 #ifndef CONFIG_SPARSEMEM
5956 /*
5957  * Calculate the size of the zone->blockflags rounded to an unsigned long
5958  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5959  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5960  * round what is now in bits to nearest long in bits, then return it in
5961  * bytes.
5962  */
5963 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5964 {
5965 	unsigned long usemapsize;
5966 
5967 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5968 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5969 	usemapsize = usemapsize >> pageblock_order;
5970 	usemapsize *= NR_PAGEBLOCK_BITS;
5971 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5972 
5973 	return usemapsize / 8;
5974 }
5975 
5976 static void __init setup_usemap(struct pglist_data *pgdat,
5977 				struct zone *zone,
5978 				unsigned long zone_start_pfn,
5979 				unsigned long zonesize)
5980 {
5981 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5982 	zone->pageblock_flags = NULL;
5983 	if (usemapsize)
5984 		zone->pageblock_flags =
5985 			memblock_virt_alloc_node_nopanic(usemapsize,
5986 							 pgdat->node_id);
5987 }
5988 #else
5989 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5990 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5991 #endif /* CONFIG_SPARSEMEM */
5992 
5993 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5994 
5995 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5996 void __paginginit set_pageblock_order(void)
5997 {
5998 	unsigned int order;
5999 
6000 	/* Check that pageblock_nr_pages has not already been setup */
6001 	if (pageblock_order)
6002 		return;
6003 
6004 	if (HPAGE_SHIFT > PAGE_SHIFT)
6005 		order = HUGETLB_PAGE_ORDER;
6006 	else
6007 		order = MAX_ORDER - 1;
6008 
6009 	/*
6010 	 * Assume the largest contiguous order of interest is a huge page.
6011 	 * This value may be variable depending on boot parameters on IA64 and
6012 	 * powerpc.
6013 	 */
6014 	pageblock_order = order;
6015 }
6016 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6017 
6018 /*
6019  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6020  * is unused as pageblock_order is set at compile-time. See
6021  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6022  * the kernel config
6023  */
6024 void __paginginit set_pageblock_order(void)
6025 {
6026 }
6027 
6028 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6029 
6030 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6031 						   unsigned long present_pages)
6032 {
6033 	unsigned long pages = spanned_pages;
6034 
6035 	/*
6036 	 * Provide a more accurate estimation if there are holes within
6037 	 * the zone and SPARSEMEM is in use. If there are holes within the
6038 	 * zone, each populated memory region may cost us one or two extra
6039 	 * memmap pages due to alignment because memmap pages for each
6040 	 * populated regions may not be naturally aligned on page boundary.
6041 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6042 	 */
6043 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6044 	    IS_ENABLED(CONFIG_SPARSEMEM))
6045 		pages = present_pages;
6046 
6047 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6048 }
6049 
6050 /*
6051  * Set up the zone data structures:
6052  *   - mark all pages reserved
6053  *   - mark all memory queues empty
6054  *   - clear the memory bitmaps
6055  *
6056  * NOTE: pgdat should get zeroed by caller.
6057  */
6058 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6059 {
6060 	enum zone_type j;
6061 	int nid = pgdat->node_id;
6062 
6063 	pgdat_resize_init(pgdat);
6064 #ifdef CONFIG_NUMA_BALANCING
6065 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6066 	pgdat->numabalancing_migrate_nr_pages = 0;
6067 	pgdat->numabalancing_migrate_next_window = jiffies;
6068 #endif
6069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6070 	spin_lock_init(&pgdat->split_queue_lock);
6071 	INIT_LIST_HEAD(&pgdat->split_queue);
6072 	pgdat->split_queue_len = 0;
6073 #endif
6074 	init_waitqueue_head(&pgdat->kswapd_wait);
6075 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6076 #ifdef CONFIG_COMPACTION
6077 	init_waitqueue_head(&pgdat->kcompactd_wait);
6078 #endif
6079 	pgdat_page_ext_init(pgdat);
6080 	spin_lock_init(&pgdat->lru_lock);
6081 	lruvec_init(node_lruvec(pgdat));
6082 
6083 	pgdat->per_cpu_nodestats = &boot_nodestats;
6084 
6085 	for (j = 0; j < MAX_NR_ZONES; j++) {
6086 		struct zone *zone = pgdat->node_zones + j;
6087 		unsigned long size, realsize, freesize, memmap_pages;
6088 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6089 
6090 		size = zone->spanned_pages;
6091 		realsize = freesize = zone->present_pages;
6092 
6093 		/*
6094 		 * Adjust freesize so that it accounts for how much memory
6095 		 * is used by this zone for memmap. This affects the watermark
6096 		 * and per-cpu initialisations
6097 		 */
6098 		memmap_pages = calc_memmap_size(size, realsize);
6099 		if (!is_highmem_idx(j)) {
6100 			if (freesize >= memmap_pages) {
6101 				freesize -= memmap_pages;
6102 				if (memmap_pages)
6103 					printk(KERN_DEBUG
6104 					       "  %s zone: %lu pages used for memmap\n",
6105 					       zone_names[j], memmap_pages);
6106 			} else
6107 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6108 					zone_names[j], memmap_pages, freesize);
6109 		}
6110 
6111 		/* Account for reserved pages */
6112 		if (j == 0 && freesize > dma_reserve) {
6113 			freesize -= dma_reserve;
6114 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6115 					zone_names[0], dma_reserve);
6116 		}
6117 
6118 		if (!is_highmem_idx(j))
6119 			nr_kernel_pages += freesize;
6120 		/* Charge for highmem memmap if there are enough kernel pages */
6121 		else if (nr_kernel_pages > memmap_pages * 2)
6122 			nr_kernel_pages -= memmap_pages;
6123 		nr_all_pages += freesize;
6124 
6125 		/*
6126 		 * Set an approximate value for lowmem here, it will be adjusted
6127 		 * when the bootmem allocator frees pages into the buddy system.
6128 		 * And all highmem pages will be managed by the buddy system.
6129 		 */
6130 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6131 #ifdef CONFIG_NUMA
6132 		zone->node = nid;
6133 #endif
6134 		zone->name = zone_names[j];
6135 		zone->zone_pgdat = pgdat;
6136 		spin_lock_init(&zone->lock);
6137 		zone_seqlock_init(zone);
6138 		zone_pcp_init(zone);
6139 
6140 		if (!size)
6141 			continue;
6142 
6143 		set_pageblock_order();
6144 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6145 		init_currently_empty_zone(zone, zone_start_pfn, size);
6146 		memmap_init(size, nid, j, zone_start_pfn);
6147 	}
6148 }
6149 
6150 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6151 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6152 {
6153 	unsigned long __maybe_unused start = 0;
6154 	unsigned long __maybe_unused offset = 0;
6155 
6156 	/* Skip empty nodes */
6157 	if (!pgdat->node_spanned_pages)
6158 		return;
6159 
6160 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6161 	offset = pgdat->node_start_pfn - start;
6162 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6163 	if (!pgdat->node_mem_map) {
6164 		unsigned long size, end;
6165 		struct page *map;
6166 
6167 		/*
6168 		 * The zone's endpoints aren't required to be MAX_ORDER
6169 		 * aligned but the node_mem_map endpoints must be in order
6170 		 * for the buddy allocator to function correctly.
6171 		 */
6172 		end = pgdat_end_pfn(pgdat);
6173 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6174 		size =  (end - start) * sizeof(struct page);
6175 		map = alloc_remap(pgdat->node_id, size);
6176 		if (!map)
6177 			map = memblock_virt_alloc_node_nopanic(size,
6178 							       pgdat->node_id);
6179 		pgdat->node_mem_map = map + offset;
6180 	}
6181 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6182 				__func__, pgdat->node_id, (unsigned long)pgdat,
6183 				(unsigned long)pgdat->node_mem_map);
6184 #ifndef CONFIG_NEED_MULTIPLE_NODES
6185 	/*
6186 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6187 	 */
6188 	if (pgdat == NODE_DATA(0)) {
6189 		mem_map = NODE_DATA(0)->node_mem_map;
6190 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6191 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6192 			mem_map -= offset;
6193 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6194 	}
6195 #endif
6196 }
6197 #else
6198 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6199 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6200 
6201 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6202 		unsigned long node_start_pfn, unsigned long *zholes_size)
6203 {
6204 	pg_data_t *pgdat = NODE_DATA(nid);
6205 	unsigned long start_pfn = 0;
6206 	unsigned long end_pfn = 0;
6207 
6208 	/* pg_data_t should be reset to zero when it's allocated */
6209 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6210 
6211 	pgdat->node_id = nid;
6212 	pgdat->node_start_pfn = node_start_pfn;
6213 	pgdat->per_cpu_nodestats = NULL;
6214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6215 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6216 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6217 		(u64)start_pfn << PAGE_SHIFT,
6218 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6219 #else
6220 	start_pfn = node_start_pfn;
6221 #endif
6222 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6223 				  zones_size, zholes_size);
6224 
6225 	alloc_node_mem_map(pgdat);
6226 
6227 	reset_deferred_meminit(pgdat);
6228 	free_area_init_core(pgdat);
6229 }
6230 
6231 #ifdef CONFIG_HAVE_MEMBLOCK
6232 /*
6233  * Only struct pages that are backed by physical memory are zeroed and
6234  * initialized by going through __init_single_page(). But, there are some
6235  * struct pages which are reserved in memblock allocator and their fields
6236  * may be accessed (for example page_to_pfn() on some configuration accesses
6237  * flags). We must explicitly zero those struct pages.
6238  */
6239 void __paginginit zero_resv_unavail(void)
6240 {
6241 	phys_addr_t start, end;
6242 	unsigned long pfn;
6243 	u64 i, pgcnt;
6244 
6245 	/*
6246 	 * Loop through ranges that are reserved, but do not have reported
6247 	 * physical memory backing.
6248 	 */
6249 	pgcnt = 0;
6250 	for_each_resv_unavail_range(i, &start, &end) {
6251 		for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6252 			mm_zero_struct_page(pfn_to_page(pfn));
6253 			pgcnt++;
6254 		}
6255 	}
6256 
6257 	/*
6258 	 * Struct pages that do not have backing memory. This could be because
6259 	 * firmware is using some of this memory, or for some other reasons.
6260 	 * Once memblock is changed so such behaviour is not allowed: i.e.
6261 	 * list of "reserved" memory must be a subset of list of "memory", then
6262 	 * this code can be removed.
6263 	 */
6264 	if (pgcnt)
6265 		pr_info("Reserved but unavailable: %lld pages", pgcnt);
6266 }
6267 #endif /* CONFIG_HAVE_MEMBLOCK */
6268 
6269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6270 
6271 #if MAX_NUMNODES > 1
6272 /*
6273  * Figure out the number of possible node ids.
6274  */
6275 void __init setup_nr_node_ids(void)
6276 {
6277 	unsigned int highest;
6278 
6279 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6280 	nr_node_ids = highest + 1;
6281 }
6282 #endif
6283 
6284 /**
6285  * node_map_pfn_alignment - determine the maximum internode alignment
6286  *
6287  * This function should be called after node map is populated and sorted.
6288  * It calculates the maximum power of two alignment which can distinguish
6289  * all the nodes.
6290  *
6291  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6292  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6293  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6294  * shifted, 1GiB is enough and this function will indicate so.
6295  *
6296  * This is used to test whether pfn -> nid mapping of the chosen memory
6297  * model has fine enough granularity to avoid incorrect mapping for the
6298  * populated node map.
6299  *
6300  * Returns the determined alignment in pfn's.  0 if there is no alignment
6301  * requirement (single node).
6302  */
6303 unsigned long __init node_map_pfn_alignment(void)
6304 {
6305 	unsigned long accl_mask = 0, last_end = 0;
6306 	unsigned long start, end, mask;
6307 	int last_nid = -1;
6308 	int i, nid;
6309 
6310 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6311 		if (!start || last_nid < 0 || last_nid == nid) {
6312 			last_nid = nid;
6313 			last_end = end;
6314 			continue;
6315 		}
6316 
6317 		/*
6318 		 * Start with a mask granular enough to pin-point to the
6319 		 * start pfn and tick off bits one-by-one until it becomes
6320 		 * too coarse to separate the current node from the last.
6321 		 */
6322 		mask = ~((1 << __ffs(start)) - 1);
6323 		while (mask && last_end <= (start & (mask << 1)))
6324 			mask <<= 1;
6325 
6326 		/* accumulate all internode masks */
6327 		accl_mask |= mask;
6328 	}
6329 
6330 	/* convert mask to number of pages */
6331 	return ~accl_mask + 1;
6332 }
6333 
6334 /* Find the lowest pfn for a node */
6335 static unsigned long __init find_min_pfn_for_node(int nid)
6336 {
6337 	unsigned long min_pfn = ULONG_MAX;
6338 	unsigned long start_pfn;
6339 	int i;
6340 
6341 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6342 		min_pfn = min(min_pfn, start_pfn);
6343 
6344 	if (min_pfn == ULONG_MAX) {
6345 		pr_warn("Could not find start_pfn for node %d\n", nid);
6346 		return 0;
6347 	}
6348 
6349 	return min_pfn;
6350 }
6351 
6352 /**
6353  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6354  *
6355  * It returns the minimum PFN based on information provided via
6356  * memblock_set_node().
6357  */
6358 unsigned long __init find_min_pfn_with_active_regions(void)
6359 {
6360 	return find_min_pfn_for_node(MAX_NUMNODES);
6361 }
6362 
6363 /*
6364  * early_calculate_totalpages()
6365  * Sum pages in active regions for movable zone.
6366  * Populate N_MEMORY for calculating usable_nodes.
6367  */
6368 static unsigned long __init early_calculate_totalpages(void)
6369 {
6370 	unsigned long totalpages = 0;
6371 	unsigned long start_pfn, end_pfn;
6372 	int i, nid;
6373 
6374 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6375 		unsigned long pages = end_pfn - start_pfn;
6376 
6377 		totalpages += pages;
6378 		if (pages)
6379 			node_set_state(nid, N_MEMORY);
6380 	}
6381 	return totalpages;
6382 }
6383 
6384 /*
6385  * Find the PFN the Movable zone begins in each node. Kernel memory
6386  * is spread evenly between nodes as long as the nodes have enough
6387  * memory. When they don't, some nodes will have more kernelcore than
6388  * others
6389  */
6390 static void __init find_zone_movable_pfns_for_nodes(void)
6391 {
6392 	int i, nid;
6393 	unsigned long usable_startpfn;
6394 	unsigned long kernelcore_node, kernelcore_remaining;
6395 	/* save the state before borrow the nodemask */
6396 	nodemask_t saved_node_state = node_states[N_MEMORY];
6397 	unsigned long totalpages = early_calculate_totalpages();
6398 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6399 	struct memblock_region *r;
6400 
6401 	/* Need to find movable_zone earlier when movable_node is specified. */
6402 	find_usable_zone_for_movable();
6403 
6404 	/*
6405 	 * If movable_node is specified, ignore kernelcore and movablecore
6406 	 * options.
6407 	 */
6408 	if (movable_node_is_enabled()) {
6409 		for_each_memblock(memory, r) {
6410 			if (!memblock_is_hotpluggable(r))
6411 				continue;
6412 
6413 			nid = r->nid;
6414 
6415 			usable_startpfn = PFN_DOWN(r->base);
6416 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6417 				min(usable_startpfn, zone_movable_pfn[nid]) :
6418 				usable_startpfn;
6419 		}
6420 
6421 		goto out2;
6422 	}
6423 
6424 	/*
6425 	 * If kernelcore=mirror is specified, ignore movablecore option
6426 	 */
6427 	if (mirrored_kernelcore) {
6428 		bool mem_below_4gb_not_mirrored = false;
6429 
6430 		for_each_memblock(memory, r) {
6431 			if (memblock_is_mirror(r))
6432 				continue;
6433 
6434 			nid = r->nid;
6435 
6436 			usable_startpfn = memblock_region_memory_base_pfn(r);
6437 
6438 			if (usable_startpfn < 0x100000) {
6439 				mem_below_4gb_not_mirrored = true;
6440 				continue;
6441 			}
6442 
6443 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6444 				min(usable_startpfn, zone_movable_pfn[nid]) :
6445 				usable_startpfn;
6446 		}
6447 
6448 		if (mem_below_4gb_not_mirrored)
6449 			pr_warn("This configuration results in unmirrored kernel memory.");
6450 
6451 		goto out2;
6452 	}
6453 
6454 	/*
6455 	 * If movablecore=nn[KMG] was specified, calculate what size of
6456 	 * kernelcore that corresponds so that memory usable for
6457 	 * any allocation type is evenly spread. If both kernelcore
6458 	 * and movablecore are specified, then the value of kernelcore
6459 	 * will be used for required_kernelcore if it's greater than
6460 	 * what movablecore would have allowed.
6461 	 */
6462 	if (required_movablecore) {
6463 		unsigned long corepages;
6464 
6465 		/*
6466 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6467 		 * was requested by the user
6468 		 */
6469 		required_movablecore =
6470 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6471 		required_movablecore = min(totalpages, required_movablecore);
6472 		corepages = totalpages - required_movablecore;
6473 
6474 		required_kernelcore = max(required_kernelcore, corepages);
6475 	}
6476 
6477 	/*
6478 	 * If kernelcore was not specified or kernelcore size is larger
6479 	 * than totalpages, there is no ZONE_MOVABLE.
6480 	 */
6481 	if (!required_kernelcore || required_kernelcore >= totalpages)
6482 		goto out;
6483 
6484 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6485 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6486 
6487 restart:
6488 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6489 	kernelcore_node = required_kernelcore / usable_nodes;
6490 	for_each_node_state(nid, N_MEMORY) {
6491 		unsigned long start_pfn, end_pfn;
6492 
6493 		/*
6494 		 * Recalculate kernelcore_node if the division per node
6495 		 * now exceeds what is necessary to satisfy the requested
6496 		 * amount of memory for the kernel
6497 		 */
6498 		if (required_kernelcore < kernelcore_node)
6499 			kernelcore_node = required_kernelcore / usable_nodes;
6500 
6501 		/*
6502 		 * As the map is walked, we track how much memory is usable
6503 		 * by the kernel using kernelcore_remaining. When it is
6504 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6505 		 */
6506 		kernelcore_remaining = kernelcore_node;
6507 
6508 		/* Go through each range of PFNs within this node */
6509 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6510 			unsigned long size_pages;
6511 
6512 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6513 			if (start_pfn >= end_pfn)
6514 				continue;
6515 
6516 			/* Account for what is only usable for kernelcore */
6517 			if (start_pfn < usable_startpfn) {
6518 				unsigned long kernel_pages;
6519 				kernel_pages = min(end_pfn, usable_startpfn)
6520 								- start_pfn;
6521 
6522 				kernelcore_remaining -= min(kernel_pages,
6523 							kernelcore_remaining);
6524 				required_kernelcore -= min(kernel_pages,
6525 							required_kernelcore);
6526 
6527 				/* Continue if range is now fully accounted */
6528 				if (end_pfn <= usable_startpfn) {
6529 
6530 					/*
6531 					 * Push zone_movable_pfn to the end so
6532 					 * that if we have to rebalance
6533 					 * kernelcore across nodes, we will
6534 					 * not double account here
6535 					 */
6536 					zone_movable_pfn[nid] = end_pfn;
6537 					continue;
6538 				}
6539 				start_pfn = usable_startpfn;
6540 			}
6541 
6542 			/*
6543 			 * The usable PFN range for ZONE_MOVABLE is from
6544 			 * start_pfn->end_pfn. Calculate size_pages as the
6545 			 * number of pages used as kernelcore
6546 			 */
6547 			size_pages = end_pfn - start_pfn;
6548 			if (size_pages > kernelcore_remaining)
6549 				size_pages = kernelcore_remaining;
6550 			zone_movable_pfn[nid] = start_pfn + size_pages;
6551 
6552 			/*
6553 			 * Some kernelcore has been met, update counts and
6554 			 * break if the kernelcore for this node has been
6555 			 * satisfied
6556 			 */
6557 			required_kernelcore -= min(required_kernelcore,
6558 								size_pages);
6559 			kernelcore_remaining -= size_pages;
6560 			if (!kernelcore_remaining)
6561 				break;
6562 		}
6563 	}
6564 
6565 	/*
6566 	 * If there is still required_kernelcore, we do another pass with one
6567 	 * less node in the count. This will push zone_movable_pfn[nid] further
6568 	 * along on the nodes that still have memory until kernelcore is
6569 	 * satisfied
6570 	 */
6571 	usable_nodes--;
6572 	if (usable_nodes && required_kernelcore > usable_nodes)
6573 		goto restart;
6574 
6575 out2:
6576 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6577 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6578 		zone_movable_pfn[nid] =
6579 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6580 
6581 out:
6582 	/* restore the node_state */
6583 	node_states[N_MEMORY] = saved_node_state;
6584 }
6585 
6586 /* Any regular or high memory on that node ? */
6587 static void check_for_memory(pg_data_t *pgdat, int nid)
6588 {
6589 	enum zone_type zone_type;
6590 
6591 	if (N_MEMORY == N_NORMAL_MEMORY)
6592 		return;
6593 
6594 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6595 		struct zone *zone = &pgdat->node_zones[zone_type];
6596 		if (populated_zone(zone)) {
6597 			node_set_state(nid, N_HIGH_MEMORY);
6598 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6599 			    zone_type <= ZONE_NORMAL)
6600 				node_set_state(nid, N_NORMAL_MEMORY);
6601 			break;
6602 		}
6603 	}
6604 }
6605 
6606 /**
6607  * free_area_init_nodes - Initialise all pg_data_t and zone data
6608  * @max_zone_pfn: an array of max PFNs for each zone
6609  *
6610  * This will call free_area_init_node() for each active node in the system.
6611  * Using the page ranges provided by memblock_set_node(), the size of each
6612  * zone in each node and their holes is calculated. If the maximum PFN
6613  * between two adjacent zones match, it is assumed that the zone is empty.
6614  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6615  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6616  * starts where the previous one ended. For example, ZONE_DMA32 starts
6617  * at arch_max_dma_pfn.
6618  */
6619 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6620 {
6621 	unsigned long start_pfn, end_pfn;
6622 	int i, nid;
6623 
6624 	/* Record where the zone boundaries are */
6625 	memset(arch_zone_lowest_possible_pfn, 0,
6626 				sizeof(arch_zone_lowest_possible_pfn));
6627 	memset(arch_zone_highest_possible_pfn, 0,
6628 				sizeof(arch_zone_highest_possible_pfn));
6629 
6630 	start_pfn = find_min_pfn_with_active_regions();
6631 
6632 	for (i = 0; i < MAX_NR_ZONES; i++) {
6633 		if (i == ZONE_MOVABLE)
6634 			continue;
6635 
6636 		end_pfn = max(max_zone_pfn[i], start_pfn);
6637 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6638 		arch_zone_highest_possible_pfn[i] = end_pfn;
6639 
6640 		start_pfn = end_pfn;
6641 	}
6642 
6643 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6644 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6645 	find_zone_movable_pfns_for_nodes();
6646 
6647 	/* Print out the zone ranges */
6648 	pr_info("Zone ranges:\n");
6649 	for (i = 0; i < MAX_NR_ZONES; i++) {
6650 		if (i == ZONE_MOVABLE)
6651 			continue;
6652 		pr_info("  %-8s ", zone_names[i]);
6653 		if (arch_zone_lowest_possible_pfn[i] ==
6654 				arch_zone_highest_possible_pfn[i])
6655 			pr_cont("empty\n");
6656 		else
6657 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6658 				(u64)arch_zone_lowest_possible_pfn[i]
6659 					<< PAGE_SHIFT,
6660 				((u64)arch_zone_highest_possible_pfn[i]
6661 					<< PAGE_SHIFT) - 1);
6662 	}
6663 
6664 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6665 	pr_info("Movable zone start for each node\n");
6666 	for (i = 0; i < MAX_NUMNODES; i++) {
6667 		if (zone_movable_pfn[i])
6668 			pr_info("  Node %d: %#018Lx\n", i,
6669 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6670 	}
6671 
6672 	/* Print out the early node map */
6673 	pr_info("Early memory node ranges\n");
6674 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6675 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6676 			(u64)start_pfn << PAGE_SHIFT,
6677 			((u64)end_pfn << PAGE_SHIFT) - 1);
6678 
6679 	/* Initialise every node */
6680 	mminit_verify_pageflags_layout();
6681 	setup_nr_node_ids();
6682 	for_each_online_node(nid) {
6683 		pg_data_t *pgdat = NODE_DATA(nid);
6684 		free_area_init_node(nid, NULL,
6685 				find_min_pfn_for_node(nid), NULL);
6686 
6687 		/* Any memory on that node */
6688 		if (pgdat->node_present_pages)
6689 			node_set_state(nid, N_MEMORY);
6690 		check_for_memory(pgdat, nid);
6691 	}
6692 	zero_resv_unavail();
6693 }
6694 
6695 static int __init cmdline_parse_core(char *p, unsigned long *core)
6696 {
6697 	unsigned long long coremem;
6698 	if (!p)
6699 		return -EINVAL;
6700 
6701 	coremem = memparse(p, &p);
6702 	*core = coremem >> PAGE_SHIFT;
6703 
6704 	/* Paranoid check that UL is enough for the coremem value */
6705 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6706 
6707 	return 0;
6708 }
6709 
6710 /*
6711  * kernelcore=size sets the amount of memory for use for allocations that
6712  * cannot be reclaimed or migrated.
6713  */
6714 static int __init cmdline_parse_kernelcore(char *p)
6715 {
6716 	/* parse kernelcore=mirror */
6717 	if (parse_option_str(p, "mirror")) {
6718 		mirrored_kernelcore = true;
6719 		return 0;
6720 	}
6721 
6722 	return cmdline_parse_core(p, &required_kernelcore);
6723 }
6724 
6725 /*
6726  * movablecore=size sets the amount of memory for use for allocations that
6727  * can be reclaimed or migrated.
6728  */
6729 static int __init cmdline_parse_movablecore(char *p)
6730 {
6731 	return cmdline_parse_core(p, &required_movablecore);
6732 }
6733 
6734 early_param("kernelcore", cmdline_parse_kernelcore);
6735 early_param("movablecore", cmdline_parse_movablecore);
6736 
6737 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6738 
6739 void adjust_managed_page_count(struct page *page, long count)
6740 {
6741 	spin_lock(&managed_page_count_lock);
6742 	page_zone(page)->managed_pages += count;
6743 	totalram_pages += count;
6744 #ifdef CONFIG_HIGHMEM
6745 	if (PageHighMem(page))
6746 		totalhigh_pages += count;
6747 #endif
6748 	spin_unlock(&managed_page_count_lock);
6749 }
6750 EXPORT_SYMBOL(adjust_managed_page_count);
6751 
6752 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6753 {
6754 	void *pos;
6755 	unsigned long pages = 0;
6756 
6757 	start = (void *)PAGE_ALIGN((unsigned long)start);
6758 	end = (void *)((unsigned long)end & PAGE_MASK);
6759 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6760 		if ((unsigned int)poison <= 0xFF)
6761 			memset(pos, poison, PAGE_SIZE);
6762 		free_reserved_page(virt_to_page(pos));
6763 	}
6764 
6765 	if (pages && s)
6766 		pr_info("Freeing %s memory: %ldK\n",
6767 			s, pages << (PAGE_SHIFT - 10));
6768 
6769 	return pages;
6770 }
6771 EXPORT_SYMBOL(free_reserved_area);
6772 
6773 #ifdef	CONFIG_HIGHMEM
6774 void free_highmem_page(struct page *page)
6775 {
6776 	__free_reserved_page(page);
6777 	totalram_pages++;
6778 	page_zone(page)->managed_pages++;
6779 	totalhigh_pages++;
6780 }
6781 #endif
6782 
6783 
6784 void __init mem_init_print_info(const char *str)
6785 {
6786 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6787 	unsigned long init_code_size, init_data_size;
6788 
6789 	physpages = get_num_physpages();
6790 	codesize = _etext - _stext;
6791 	datasize = _edata - _sdata;
6792 	rosize = __end_rodata - __start_rodata;
6793 	bss_size = __bss_stop - __bss_start;
6794 	init_data_size = __init_end - __init_begin;
6795 	init_code_size = _einittext - _sinittext;
6796 
6797 	/*
6798 	 * Detect special cases and adjust section sizes accordingly:
6799 	 * 1) .init.* may be embedded into .data sections
6800 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6801 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6802 	 * 3) .rodata.* may be embedded into .text or .data sections.
6803 	 */
6804 #define adj_init_size(start, end, size, pos, adj) \
6805 	do { \
6806 		if (start <= pos && pos < end && size > adj) \
6807 			size -= adj; \
6808 	} while (0)
6809 
6810 	adj_init_size(__init_begin, __init_end, init_data_size,
6811 		     _sinittext, init_code_size);
6812 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6813 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6814 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6815 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6816 
6817 #undef	adj_init_size
6818 
6819 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6820 #ifdef	CONFIG_HIGHMEM
6821 		", %luK highmem"
6822 #endif
6823 		"%s%s)\n",
6824 		nr_free_pages() << (PAGE_SHIFT - 10),
6825 		physpages << (PAGE_SHIFT - 10),
6826 		codesize >> 10, datasize >> 10, rosize >> 10,
6827 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6828 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6829 		totalcma_pages << (PAGE_SHIFT - 10),
6830 #ifdef	CONFIG_HIGHMEM
6831 		totalhigh_pages << (PAGE_SHIFT - 10),
6832 #endif
6833 		str ? ", " : "", str ? str : "");
6834 }
6835 
6836 /**
6837  * set_dma_reserve - set the specified number of pages reserved in the first zone
6838  * @new_dma_reserve: The number of pages to mark reserved
6839  *
6840  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6841  * In the DMA zone, a significant percentage may be consumed by kernel image
6842  * and other unfreeable allocations which can skew the watermarks badly. This
6843  * function may optionally be used to account for unfreeable pages in the
6844  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6845  * smaller per-cpu batchsize.
6846  */
6847 void __init set_dma_reserve(unsigned long new_dma_reserve)
6848 {
6849 	dma_reserve = new_dma_reserve;
6850 }
6851 
6852 void __init free_area_init(unsigned long *zones_size)
6853 {
6854 	free_area_init_node(0, zones_size,
6855 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6856 	zero_resv_unavail();
6857 }
6858 
6859 static int page_alloc_cpu_dead(unsigned int cpu)
6860 {
6861 
6862 	lru_add_drain_cpu(cpu);
6863 	drain_pages(cpu);
6864 
6865 	/*
6866 	 * Spill the event counters of the dead processor
6867 	 * into the current processors event counters.
6868 	 * This artificially elevates the count of the current
6869 	 * processor.
6870 	 */
6871 	vm_events_fold_cpu(cpu);
6872 
6873 	/*
6874 	 * Zero the differential counters of the dead processor
6875 	 * so that the vm statistics are consistent.
6876 	 *
6877 	 * This is only okay since the processor is dead and cannot
6878 	 * race with what we are doing.
6879 	 */
6880 	cpu_vm_stats_fold(cpu);
6881 	return 0;
6882 }
6883 
6884 void __init page_alloc_init(void)
6885 {
6886 	int ret;
6887 
6888 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6889 					"mm/page_alloc:dead", NULL,
6890 					page_alloc_cpu_dead);
6891 	WARN_ON(ret < 0);
6892 }
6893 
6894 /*
6895  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6896  *	or min_free_kbytes changes.
6897  */
6898 static void calculate_totalreserve_pages(void)
6899 {
6900 	struct pglist_data *pgdat;
6901 	unsigned long reserve_pages = 0;
6902 	enum zone_type i, j;
6903 
6904 	for_each_online_pgdat(pgdat) {
6905 
6906 		pgdat->totalreserve_pages = 0;
6907 
6908 		for (i = 0; i < MAX_NR_ZONES; i++) {
6909 			struct zone *zone = pgdat->node_zones + i;
6910 			long max = 0;
6911 
6912 			/* Find valid and maximum lowmem_reserve in the zone */
6913 			for (j = i; j < MAX_NR_ZONES; j++) {
6914 				if (zone->lowmem_reserve[j] > max)
6915 					max = zone->lowmem_reserve[j];
6916 			}
6917 
6918 			/* we treat the high watermark as reserved pages. */
6919 			max += high_wmark_pages(zone);
6920 
6921 			if (max > zone->managed_pages)
6922 				max = zone->managed_pages;
6923 
6924 			pgdat->totalreserve_pages += max;
6925 
6926 			reserve_pages += max;
6927 		}
6928 	}
6929 	totalreserve_pages = reserve_pages;
6930 }
6931 
6932 /*
6933  * setup_per_zone_lowmem_reserve - called whenever
6934  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6935  *	has a correct pages reserved value, so an adequate number of
6936  *	pages are left in the zone after a successful __alloc_pages().
6937  */
6938 static void setup_per_zone_lowmem_reserve(void)
6939 {
6940 	struct pglist_data *pgdat;
6941 	enum zone_type j, idx;
6942 
6943 	for_each_online_pgdat(pgdat) {
6944 		for (j = 0; j < MAX_NR_ZONES; j++) {
6945 			struct zone *zone = pgdat->node_zones + j;
6946 			unsigned long managed_pages = zone->managed_pages;
6947 
6948 			zone->lowmem_reserve[j] = 0;
6949 
6950 			idx = j;
6951 			while (idx) {
6952 				struct zone *lower_zone;
6953 
6954 				idx--;
6955 
6956 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6957 					sysctl_lowmem_reserve_ratio[idx] = 1;
6958 
6959 				lower_zone = pgdat->node_zones + idx;
6960 				lower_zone->lowmem_reserve[j] = managed_pages /
6961 					sysctl_lowmem_reserve_ratio[idx];
6962 				managed_pages += lower_zone->managed_pages;
6963 			}
6964 		}
6965 	}
6966 
6967 	/* update totalreserve_pages */
6968 	calculate_totalreserve_pages();
6969 }
6970 
6971 static void __setup_per_zone_wmarks(void)
6972 {
6973 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6974 	unsigned long lowmem_pages = 0;
6975 	struct zone *zone;
6976 	unsigned long flags;
6977 
6978 	/* Calculate total number of !ZONE_HIGHMEM pages */
6979 	for_each_zone(zone) {
6980 		if (!is_highmem(zone))
6981 			lowmem_pages += zone->managed_pages;
6982 	}
6983 
6984 	for_each_zone(zone) {
6985 		u64 tmp;
6986 
6987 		spin_lock_irqsave(&zone->lock, flags);
6988 		tmp = (u64)pages_min * zone->managed_pages;
6989 		do_div(tmp, lowmem_pages);
6990 		if (is_highmem(zone)) {
6991 			/*
6992 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6993 			 * need highmem pages, so cap pages_min to a small
6994 			 * value here.
6995 			 *
6996 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6997 			 * deltas control asynch page reclaim, and so should
6998 			 * not be capped for highmem.
6999 			 */
7000 			unsigned long min_pages;
7001 
7002 			min_pages = zone->managed_pages / 1024;
7003 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7004 			zone->watermark[WMARK_MIN] = min_pages;
7005 		} else {
7006 			/*
7007 			 * If it's a lowmem zone, reserve a number of pages
7008 			 * proportionate to the zone's size.
7009 			 */
7010 			zone->watermark[WMARK_MIN] = tmp;
7011 		}
7012 
7013 		/*
7014 		 * Set the kswapd watermarks distance according to the
7015 		 * scale factor in proportion to available memory, but
7016 		 * ensure a minimum size on small systems.
7017 		 */
7018 		tmp = max_t(u64, tmp >> 2,
7019 			    mult_frac(zone->managed_pages,
7020 				      watermark_scale_factor, 10000));
7021 
7022 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7023 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7024 
7025 		spin_unlock_irqrestore(&zone->lock, flags);
7026 	}
7027 
7028 	/* update totalreserve_pages */
7029 	calculate_totalreserve_pages();
7030 }
7031 
7032 /**
7033  * setup_per_zone_wmarks - called when min_free_kbytes changes
7034  * or when memory is hot-{added|removed}
7035  *
7036  * Ensures that the watermark[min,low,high] values for each zone are set
7037  * correctly with respect to min_free_kbytes.
7038  */
7039 void setup_per_zone_wmarks(void)
7040 {
7041 	static DEFINE_SPINLOCK(lock);
7042 
7043 	spin_lock(&lock);
7044 	__setup_per_zone_wmarks();
7045 	spin_unlock(&lock);
7046 }
7047 
7048 /*
7049  * Initialise min_free_kbytes.
7050  *
7051  * For small machines we want it small (128k min).  For large machines
7052  * we want it large (64MB max).  But it is not linear, because network
7053  * bandwidth does not increase linearly with machine size.  We use
7054  *
7055  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7056  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7057  *
7058  * which yields
7059  *
7060  * 16MB:	512k
7061  * 32MB:	724k
7062  * 64MB:	1024k
7063  * 128MB:	1448k
7064  * 256MB:	2048k
7065  * 512MB:	2896k
7066  * 1024MB:	4096k
7067  * 2048MB:	5792k
7068  * 4096MB:	8192k
7069  * 8192MB:	11584k
7070  * 16384MB:	16384k
7071  */
7072 int __meminit init_per_zone_wmark_min(void)
7073 {
7074 	unsigned long lowmem_kbytes;
7075 	int new_min_free_kbytes;
7076 
7077 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7078 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7079 
7080 	if (new_min_free_kbytes > user_min_free_kbytes) {
7081 		min_free_kbytes = new_min_free_kbytes;
7082 		if (min_free_kbytes < 128)
7083 			min_free_kbytes = 128;
7084 		if (min_free_kbytes > 65536)
7085 			min_free_kbytes = 65536;
7086 	} else {
7087 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7088 				new_min_free_kbytes, user_min_free_kbytes);
7089 	}
7090 	setup_per_zone_wmarks();
7091 	refresh_zone_stat_thresholds();
7092 	setup_per_zone_lowmem_reserve();
7093 
7094 #ifdef CONFIG_NUMA
7095 	setup_min_unmapped_ratio();
7096 	setup_min_slab_ratio();
7097 #endif
7098 
7099 	return 0;
7100 }
7101 core_initcall(init_per_zone_wmark_min)
7102 
7103 /*
7104  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7105  *	that we can call two helper functions whenever min_free_kbytes
7106  *	changes.
7107  */
7108 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7109 	void __user *buffer, size_t *length, loff_t *ppos)
7110 {
7111 	int rc;
7112 
7113 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7114 	if (rc)
7115 		return rc;
7116 
7117 	if (write) {
7118 		user_min_free_kbytes = min_free_kbytes;
7119 		setup_per_zone_wmarks();
7120 	}
7121 	return 0;
7122 }
7123 
7124 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7125 	void __user *buffer, size_t *length, loff_t *ppos)
7126 {
7127 	int rc;
7128 
7129 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7130 	if (rc)
7131 		return rc;
7132 
7133 	if (write)
7134 		setup_per_zone_wmarks();
7135 
7136 	return 0;
7137 }
7138 
7139 #ifdef CONFIG_NUMA
7140 static void setup_min_unmapped_ratio(void)
7141 {
7142 	pg_data_t *pgdat;
7143 	struct zone *zone;
7144 
7145 	for_each_online_pgdat(pgdat)
7146 		pgdat->min_unmapped_pages = 0;
7147 
7148 	for_each_zone(zone)
7149 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7150 				sysctl_min_unmapped_ratio) / 100;
7151 }
7152 
7153 
7154 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7155 	void __user *buffer, size_t *length, loff_t *ppos)
7156 {
7157 	int rc;
7158 
7159 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7160 	if (rc)
7161 		return rc;
7162 
7163 	setup_min_unmapped_ratio();
7164 
7165 	return 0;
7166 }
7167 
7168 static void setup_min_slab_ratio(void)
7169 {
7170 	pg_data_t *pgdat;
7171 	struct zone *zone;
7172 
7173 	for_each_online_pgdat(pgdat)
7174 		pgdat->min_slab_pages = 0;
7175 
7176 	for_each_zone(zone)
7177 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7178 				sysctl_min_slab_ratio) / 100;
7179 }
7180 
7181 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7182 	void __user *buffer, size_t *length, loff_t *ppos)
7183 {
7184 	int rc;
7185 
7186 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7187 	if (rc)
7188 		return rc;
7189 
7190 	setup_min_slab_ratio();
7191 
7192 	return 0;
7193 }
7194 #endif
7195 
7196 /*
7197  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7198  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7199  *	whenever sysctl_lowmem_reserve_ratio changes.
7200  *
7201  * The reserve ratio obviously has absolutely no relation with the
7202  * minimum watermarks. The lowmem reserve ratio can only make sense
7203  * if in function of the boot time zone sizes.
7204  */
7205 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7206 	void __user *buffer, size_t *length, loff_t *ppos)
7207 {
7208 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7209 	setup_per_zone_lowmem_reserve();
7210 	return 0;
7211 }
7212 
7213 /*
7214  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7215  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7216  * pagelist can have before it gets flushed back to buddy allocator.
7217  */
7218 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7219 	void __user *buffer, size_t *length, loff_t *ppos)
7220 {
7221 	struct zone *zone;
7222 	int old_percpu_pagelist_fraction;
7223 	int ret;
7224 
7225 	mutex_lock(&pcp_batch_high_lock);
7226 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7227 
7228 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7229 	if (!write || ret < 0)
7230 		goto out;
7231 
7232 	/* Sanity checking to avoid pcp imbalance */
7233 	if (percpu_pagelist_fraction &&
7234 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7235 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7236 		ret = -EINVAL;
7237 		goto out;
7238 	}
7239 
7240 	/* No change? */
7241 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7242 		goto out;
7243 
7244 	for_each_populated_zone(zone) {
7245 		unsigned int cpu;
7246 
7247 		for_each_possible_cpu(cpu)
7248 			pageset_set_high_and_batch(zone,
7249 					per_cpu_ptr(zone->pageset, cpu));
7250 	}
7251 out:
7252 	mutex_unlock(&pcp_batch_high_lock);
7253 	return ret;
7254 }
7255 
7256 #ifdef CONFIG_NUMA
7257 int hashdist = HASHDIST_DEFAULT;
7258 
7259 static int __init set_hashdist(char *str)
7260 {
7261 	if (!str)
7262 		return 0;
7263 	hashdist = simple_strtoul(str, &str, 0);
7264 	return 1;
7265 }
7266 __setup("hashdist=", set_hashdist);
7267 #endif
7268 
7269 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7270 /*
7271  * Returns the number of pages that arch has reserved but
7272  * is not known to alloc_large_system_hash().
7273  */
7274 static unsigned long __init arch_reserved_kernel_pages(void)
7275 {
7276 	return 0;
7277 }
7278 #endif
7279 
7280 /*
7281  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7282  * machines. As memory size is increased the scale is also increased but at
7283  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7284  * quadruples the scale is increased by one, which means the size of hash table
7285  * only doubles, instead of quadrupling as well.
7286  * Because 32-bit systems cannot have large physical memory, where this scaling
7287  * makes sense, it is disabled on such platforms.
7288  */
7289 #if __BITS_PER_LONG > 32
7290 #define ADAPT_SCALE_BASE	(64ul << 30)
7291 #define ADAPT_SCALE_SHIFT	2
7292 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7293 #endif
7294 
7295 /*
7296  * allocate a large system hash table from bootmem
7297  * - it is assumed that the hash table must contain an exact power-of-2
7298  *   quantity of entries
7299  * - limit is the number of hash buckets, not the total allocation size
7300  */
7301 void *__init alloc_large_system_hash(const char *tablename,
7302 				     unsigned long bucketsize,
7303 				     unsigned long numentries,
7304 				     int scale,
7305 				     int flags,
7306 				     unsigned int *_hash_shift,
7307 				     unsigned int *_hash_mask,
7308 				     unsigned long low_limit,
7309 				     unsigned long high_limit)
7310 {
7311 	unsigned long long max = high_limit;
7312 	unsigned long log2qty, size;
7313 	void *table = NULL;
7314 	gfp_t gfp_flags;
7315 
7316 	/* allow the kernel cmdline to have a say */
7317 	if (!numentries) {
7318 		/* round applicable memory size up to nearest megabyte */
7319 		numentries = nr_kernel_pages;
7320 		numentries -= arch_reserved_kernel_pages();
7321 
7322 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7323 		if (PAGE_SHIFT < 20)
7324 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7325 
7326 #if __BITS_PER_LONG > 32
7327 		if (!high_limit) {
7328 			unsigned long adapt;
7329 
7330 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7331 			     adapt <<= ADAPT_SCALE_SHIFT)
7332 				scale++;
7333 		}
7334 #endif
7335 
7336 		/* limit to 1 bucket per 2^scale bytes of low memory */
7337 		if (scale > PAGE_SHIFT)
7338 			numentries >>= (scale - PAGE_SHIFT);
7339 		else
7340 			numentries <<= (PAGE_SHIFT - scale);
7341 
7342 		/* Make sure we've got at least a 0-order allocation.. */
7343 		if (unlikely(flags & HASH_SMALL)) {
7344 			/* Makes no sense without HASH_EARLY */
7345 			WARN_ON(!(flags & HASH_EARLY));
7346 			if (!(numentries >> *_hash_shift)) {
7347 				numentries = 1UL << *_hash_shift;
7348 				BUG_ON(!numentries);
7349 			}
7350 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7351 			numentries = PAGE_SIZE / bucketsize;
7352 	}
7353 	numentries = roundup_pow_of_two(numentries);
7354 
7355 	/* limit allocation size to 1/16 total memory by default */
7356 	if (max == 0) {
7357 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7358 		do_div(max, bucketsize);
7359 	}
7360 	max = min(max, 0x80000000ULL);
7361 
7362 	if (numentries < low_limit)
7363 		numentries = low_limit;
7364 	if (numentries > max)
7365 		numentries = max;
7366 
7367 	log2qty = ilog2(numentries);
7368 
7369 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7370 	do {
7371 		size = bucketsize << log2qty;
7372 		if (flags & HASH_EARLY) {
7373 			if (flags & HASH_ZERO)
7374 				table = memblock_virt_alloc_nopanic(size, 0);
7375 			else
7376 				table = memblock_virt_alloc_raw(size, 0);
7377 		} else if (hashdist) {
7378 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7379 		} else {
7380 			/*
7381 			 * If bucketsize is not a power-of-two, we may free
7382 			 * some pages at the end of hash table which
7383 			 * alloc_pages_exact() automatically does
7384 			 */
7385 			if (get_order(size) < MAX_ORDER) {
7386 				table = alloc_pages_exact(size, gfp_flags);
7387 				kmemleak_alloc(table, size, 1, gfp_flags);
7388 			}
7389 		}
7390 	} while (!table && size > PAGE_SIZE && --log2qty);
7391 
7392 	if (!table)
7393 		panic("Failed to allocate %s hash table\n", tablename);
7394 
7395 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7396 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7397 
7398 	if (_hash_shift)
7399 		*_hash_shift = log2qty;
7400 	if (_hash_mask)
7401 		*_hash_mask = (1 << log2qty) - 1;
7402 
7403 	return table;
7404 }
7405 
7406 /*
7407  * This function checks whether pageblock includes unmovable pages or not.
7408  * If @count is not zero, it is okay to include less @count unmovable pages
7409  *
7410  * PageLRU check without isolation or lru_lock could race so that
7411  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7412  * check without lock_page also may miss some movable non-lru pages at
7413  * race condition. So you can't expect this function should be exact.
7414  */
7415 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7416 			 int migratetype,
7417 			 bool skip_hwpoisoned_pages)
7418 {
7419 	unsigned long pfn, iter, found;
7420 
7421 	/*
7422 	 * For avoiding noise data, lru_add_drain_all() should be called
7423 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7424 	 */
7425 	if (zone_idx(zone) == ZONE_MOVABLE)
7426 		return false;
7427 
7428 	/*
7429 	 * CMA allocations (alloc_contig_range) really need to mark isolate
7430 	 * CMA pageblocks even when they are not movable in fact so consider
7431 	 * them movable here.
7432 	 */
7433 	if (is_migrate_cma(migratetype) &&
7434 			is_migrate_cma(get_pageblock_migratetype(page)))
7435 		return false;
7436 
7437 	pfn = page_to_pfn(page);
7438 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7439 		unsigned long check = pfn + iter;
7440 
7441 		if (!pfn_valid_within(check))
7442 			continue;
7443 
7444 		page = pfn_to_page(check);
7445 
7446 		if (PageReserved(page))
7447 			return true;
7448 
7449 		/*
7450 		 * Hugepages are not in LRU lists, but they're movable.
7451 		 * We need not scan over tail pages bacause we don't
7452 		 * handle each tail page individually in migration.
7453 		 */
7454 		if (PageHuge(page)) {
7455 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7456 			continue;
7457 		}
7458 
7459 		/*
7460 		 * We can't use page_count without pin a page
7461 		 * because another CPU can free compound page.
7462 		 * This check already skips compound tails of THP
7463 		 * because their page->_refcount is zero at all time.
7464 		 */
7465 		if (!page_ref_count(page)) {
7466 			if (PageBuddy(page))
7467 				iter += (1 << page_order(page)) - 1;
7468 			continue;
7469 		}
7470 
7471 		/*
7472 		 * The HWPoisoned page may be not in buddy system, and
7473 		 * page_count() is not 0.
7474 		 */
7475 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7476 			continue;
7477 
7478 		if (__PageMovable(page))
7479 			continue;
7480 
7481 		if (!PageLRU(page))
7482 			found++;
7483 		/*
7484 		 * If there are RECLAIMABLE pages, we need to check
7485 		 * it.  But now, memory offline itself doesn't call
7486 		 * shrink_node_slabs() and it still to be fixed.
7487 		 */
7488 		/*
7489 		 * If the page is not RAM, page_count()should be 0.
7490 		 * we don't need more check. This is an _used_ not-movable page.
7491 		 *
7492 		 * The problematic thing here is PG_reserved pages. PG_reserved
7493 		 * is set to both of a memory hole page and a _used_ kernel
7494 		 * page at boot.
7495 		 */
7496 		if (found > count)
7497 			return true;
7498 	}
7499 	return false;
7500 }
7501 
7502 bool is_pageblock_removable_nolock(struct page *page)
7503 {
7504 	struct zone *zone;
7505 	unsigned long pfn;
7506 
7507 	/*
7508 	 * We have to be careful here because we are iterating over memory
7509 	 * sections which are not zone aware so we might end up outside of
7510 	 * the zone but still within the section.
7511 	 * We have to take care about the node as well. If the node is offline
7512 	 * its NODE_DATA will be NULL - see page_zone.
7513 	 */
7514 	if (!node_online(page_to_nid(page)))
7515 		return false;
7516 
7517 	zone = page_zone(page);
7518 	pfn = page_to_pfn(page);
7519 	if (!zone_spans_pfn(zone, pfn))
7520 		return false;
7521 
7522 	return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true);
7523 }
7524 
7525 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7526 
7527 static unsigned long pfn_max_align_down(unsigned long pfn)
7528 {
7529 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7530 			     pageblock_nr_pages) - 1);
7531 }
7532 
7533 static unsigned long pfn_max_align_up(unsigned long pfn)
7534 {
7535 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7536 				pageblock_nr_pages));
7537 }
7538 
7539 /* [start, end) must belong to a single zone. */
7540 static int __alloc_contig_migrate_range(struct compact_control *cc,
7541 					unsigned long start, unsigned long end)
7542 {
7543 	/* This function is based on compact_zone() from compaction.c. */
7544 	unsigned long nr_reclaimed;
7545 	unsigned long pfn = start;
7546 	unsigned int tries = 0;
7547 	int ret = 0;
7548 
7549 	migrate_prep();
7550 
7551 	while (pfn < end || !list_empty(&cc->migratepages)) {
7552 		if (fatal_signal_pending(current)) {
7553 			ret = -EINTR;
7554 			break;
7555 		}
7556 
7557 		if (list_empty(&cc->migratepages)) {
7558 			cc->nr_migratepages = 0;
7559 			pfn = isolate_migratepages_range(cc, pfn, end);
7560 			if (!pfn) {
7561 				ret = -EINTR;
7562 				break;
7563 			}
7564 			tries = 0;
7565 		} else if (++tries == 5) {
7566 			ret = ret < 0 ? ret : -EBUSY;
7567 			break;
7568 		}
7569 
7570 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7571 							&cc->migratepages);
7572 		cc->nr_migratepages -= nr_reclaimed;
7573 
7574 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7575 				    NULL, 0, cc->mode, MR_CMA);
7576 	}
7577 	if (ret < 0) {
7578 		putback_movable_pages(&cc->migratepages);
7579 		return ret;
7580 	}
7581 	return 0;
7582 }
7583 
7584 /**
7585  * alloc_contig_range() -- tries to allocate given range of pages
7586  * @start:	start PFN to allocate
7587  * @end:	one-past-the-last PFN to allocate
7588  * @migratetype:	migratetype of the underlaying pageblocks (either
7589  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7590  *			in range must have the same migratetype and it must
7591  *			be either of the two.
7592  * @gfp_mask:	GFP mask to use during compaction
7593  *
7594  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7595  * aligned, however it's the caller's responsibility to guarantee that
7596  * we are the only thread that changes migrate type of pageblocks the
7597  * pages fall in.
7598  *
7599  * The PFN range must belong to a single zone.
7600  *
7601  * Returns zero on success or negative error code.  On success all
7602  * pages which PFN is in [start, end) are allocated for the caller and
7603  * need to be freed with free_contig_range().
7604  */
7605 int alloc_contig_range(unsigned long start, unsigned long end,
7606 		       unsigned migratetype, gfp_t gfp_mask)
7607 {
7608 	unsigned long outer_start, outer_end;
7609 	unsigned int order;
7610 	int ret = 0;
7611 
7612 	struct compact_control cc = {
7613 		.nr_migratepages = 0,
7614 		.order = -1,
7615 		.zone = page_zone(pfn_to_page(start)),
7616 		.mode = MIGRATE_SYNC,
7617 		.ignore_skip_hint = true,
7618 		.no_set_skip_hint = true,
7619 		.gfp_mask = current_gfp_context(gfp_mask),
7620 	};
7621 	INIT_LIST_HEAD(&cc.migratepages);
7622 
7623 	/*
7624 	 * What we do here is we mark all pageblocks in range as
7625 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7626 	 * have different sizes, and due to the way page allocator
7627 	 * work, we align the range to biggest of the two pages so
7628 	 * that page allocator won't try to merge buddies from
7629 	 * different pageblocks and change MIGRATE_ISOLATE to some
7630 	 * other migration type.
7631 	 *
7632 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7633 	 * migrate the pages from an unaligned range (ie. pages that
7634 	 * we are interested in).  This will put all the pages in
7635 	 * range back to page allocator as MIGRATE_ISOLATE.
7636 	 *
7637 	 * When this is done, we take the pages in range from page
7638 	 * allocator removing them from the buddy system.  This way
7639 	 * page allocator will never consider using them.
7640 	 *
7641 	 * This lets us mark the pageblocks back as
7642 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7643 	 * aligned range but not in the unaligned, original range are
7644 	 * put back to page allocator so that buddy can use them.
7645 	 */
7646 
7647 	ret = start_isolate_page_range(pfn_max_align_down(start),
7648 				       pfn_max_align_up(end), migratetype,
7649 				       false);
7650 	if (ret)
7651 		return ret;
7652 
7653 	/*
7654 	 * In case of -EBUSY, we'd like to know which page causes problem.
7655 	 * So, just fall through. test_pages_isolated() has a tracepoint
7656 	 * which will report the busy page.
7657 	 *
7658 	 * It is possible that busy pages could become available before
7659 	 * the call to test_pages_isolated, and the range will actually be
7660 	 * allocated.  So, if we fall through be sure to clear ret so that
7661 	 * -EBUSY is not accidentally used or returned to caller.
7662 	 */
7663 	ret = __alloc_contig_migrate_range(&cc, start, end);
7664 	if (ret && ret != -EBUSY)
7665 		goto done;
7666 	ret =0;
7667 
7668 	/*
7669 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7670 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7671 	 * more, all pages in [start, end) are free in page allocator.
7672 	 * What we are going to do is to allocate all pages from
7673 	 * [start, end) (that is remove them from page allocator).
7674 	 *
7675 	 * The only problem is that pages at the beginning and at the
7676 	 * end of interesting range may be not aligned with pages that
7677 	 * page allocator holds, ie. they can be part of higher order
7678 	 * pages.  Because of this, we reserve the bigger range and
7679 	 * once this is done free the pages we are not interested in.
7680 	 *
7681 	 * We don't have to hold zone->lock here because the pages are
7682 	 * isolated thus they won't get removed from buddy.
7683 	 */
7684 
7685 	lru_add_drain_all();
7686 	drain_all_pages(cc.zone);
7687 
7688 	order = 0;
7689 	outer_start = start;
7690 	while (!PageBuddy(pfn_to_page(outer_start))) {
7691 		if (++order >= MAX_ORDER) {
7692 			outer_start = start;
7693 			break;
7694 		}
7695 		outer_start &= ~0UL << order;
7696 	}
7697 
7698 	if (outer_start != start) {
7699 		order = page_order(pfn_to_page(outer_start));
7700 
7701 		/*
7702 		 * outer_start page could be small order buddy page and
7703 		 * it doesn't include start page. Adjust outer_start
7704 		 * in this case to report failed page properly
7705 		 * on tracepoint in test_pages_isolated()
7706 		 */
7707 		if (outer_start + (1UL << order) <= start)
7708 			outer_start = start;
7709 	}
7710 
7711 	/* Make sure the range is really isolated. */
7712 	if (test_pages_isolated(outer_start, end, false)) {
7713 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7714 			__func__, outer_start, end);
7715 		ret = -EBUSY;
7716 		goto done;
7717 	}
7718 
7719 	/* Grab isolated pages from freelists. */
7720 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7721 	if (!outer_end) {
7722 		ret = -EBUSY;
7723 		goto done;
7724 	}
7725 
7726 	/* Free head and tail (if any) */
7727 	if (start != outer_start)
7728 		free_contig_range(outer_start, start - outer_start);
7729 	if (end != outer_end)
7730 		free_contig_range(end, outer_end - end);
7731 
7732 done:
7733 	undo_isolate_page_range(pfn_max_align_down(start),
7734 				pfn_max_align_up(end), migratetype);
7735 	return ret;
7736 }
7737 
7738 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7739 {
7740 	unsigned int count = 0;
7741 
7742 	for (; nr_pages--; pfn++) {
7743 		struct page *page = pfn_to_page(pfn);
7744 
7745 		count += page_count(page) != 1;
7746 		__free_page(page);
7747 	}
7748 	WARN(count != 0, "%d pages are still in use!\n", count);
7749 }
7750 #endif
7751 
7752 #ifdef CONFIG_MEMORY_HOTPLUG
7753 /*
7754  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7755  * page high values need to be recalulated.
7756  */
7757 void __meminit zone_pcp_update(struct zone *zone)
7758 {
7759 	unsigned cpu;
7760 	mutex_lock(&pcp_batch_high_lock);
7761 	for_each_possible_cpu(cpu)
7762 		pageset_set_high_and_batch(zone,
7763 				per_cpu_ptr(zone->pageset, cpu));
7764 	mutex_unlock(&pcp_batch_high_lock);
7765 }
7766 #endif
7767 
7768 void zone_pcp_reset(struct zone *zone)
7769 {
7770 	unsigned long flags;
7771 	int cpu;
7772 	struct per_cpu_pageset *pset;
7773 
7774 	/* avoid races with drain_pages()  */
7775 	local_irq_save(flags);
7776 	if (zone->pageset != &boot_pageset) {
7777 		for_each_online_cpu(cpu) {
7778 			pset = per_cpu_ptr(zone->pageset, cpu);
7779 			drain_zonestat(zone, pset);
7780 		}
7781 		free_percpu(zone->pageset);
7782 		zone->pageset = &boot_pageset;
7783 	}
7784 	local_irq_restore(flags);
7785 }
7786 
7787 #ifdef CONFIG_MEMORY_HOTREMOVE
7788 /*
7789  * All pages in the range must be in a single zone and isolated
7790  * before calling this.
7791  */
7792 void
7793 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7794 {
7795 	struct page *page;
7796 	struct zone *zone;
7797 	unsigned int order, i;
7798 	unsigned long pfn;
7799 	unsigned long flags;
7800 	/* find the first valid pfn */
7801 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7802 		if (pfn_valid(pfn))
7803 			break;
7804 	if (pfn == end_pfn)
7805 		return;
7806 	offline_mem_sections(pfn, end_pfn);
7807 	zone = page_zone(pfn_to_page(pfn));
7808 	spin_lock_irqsave(&zone->lock, flags);
7809 	pfn = start_pfn;
7810 	while (pfn < end_pfn) {
7811 		if (!pfn_valid(pfn)) {
7812 			pfn++;
7813 			continue;
7814 		}
7815 		page = pfn_to_page(pfn);
7816 		/*
7817 		 * The HWPoisoned page may be not in buddy system, and
7818 		 * page_count() is not 0.
7819 		 */
7820 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7821 			pfn++;
7822 			SetPageReserved(page);
7823 			continue;
7824 		}
7825 
7826 		BUG_ON(page_count(page));
7827 		BUG_ON(!PageBuddy(page));
7828 		order = page_order(page);
7829 #ifdef CONFIG_DEBUG_VM
7830 		pr_info("remove from free list %lx %d %lx\n",
7831 			pfn, 1 << order, end_pfn);
7832 #endif
7833 		list_del(&page->lru);
7834 		rmv_page_order(page);
7835 		zone->free_area[order].nr_free--;
7836 		for (i = 0; i < (1 << order); i++)
7837 			SetPageReserved((page+i));
7838 		pfn += (1 << order);
7839 	}
7840 	spin_unlock_irqrestore(&zone->lock, flags);
7841 }
7842 #endif
7843 
7844 bool is_free_buddy_page(struct page *page)
7845 {
7846 	struct zone *zone = page_zone(page);
7847 	unsigned long pfn = page_to_pfn(page);
7848 	unsigned long flags;
7849 	unsigned int order;
7850 
7851 	spin_lock_irqsave(&zone->lock, flags);
7852 	for (order = 0; order < MAX_ORDER; order++) {
7853 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7854 
7855 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7856 			break;
7857 	}
7858 	spin_unlock_irqrestore(&zone->lock, flags);
7859 
7860 	return order < MAX_ORDER;
7861 }
7862