1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 /* Protect totalram_pages and zone->managed_pages */ 126 static DEFINE_SPINLOCK(managed_page_count_lock); 127 128 unsigned long totalram_pages __read_mostly; 129 unsigned long totalreserve_pages __read_mostly; 130 unsigned long totalcma_pages __read_mostly; 131 132 int percpu_pagelist_fraction; 133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 134 135 /* 136 * A cached value of the page's pageblock's migratetype, used when the page is 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 139 * Also the migratetype set in the page does not necessarily match the pcplist 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 141 * other index - this ensures that it will be put on the correct CMA freelist. 142 */ 143 static inline int get_pcppage_migratetype(struct page *page) 144 { 145 return page->index; 146 } 147 148 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 149 { 150 page->index = migratetype; 151 } 152 153 #ifdef CONFIG_PM_SLEEP 154 /* 155 * The following functions are used by the suspend/hibernate code to temporarily 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 157 * while devices are suspended. To avoid races with the suspend/hibernate code, 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is 160 * guaranteed not to run in parallel with that modification). 161 */ 162 163 static gfp_t saved_gfp_mask; 164 165 void pm_restore_gfp_mask(void) 166 { 167 WARN_ON(!mutex_is_locked(&pm_mutex)); 168 if (saved_gfp_mask) { 169 gfp_allowed_mask = saved_gfp_mask; 170 saved_gfp_mask = 0; 171 } 172 } 173 174 void pm_restrict_gfp_mask(void) 175 { 176 WARN_ON(!mutex_is_locked(&pm_mutex)); 177 WARN_ON(saved_gfp_mask); 178 saved_gfp_mask = gfp_allowed_mask; 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 180 } 181 182 bool pm_suspended_storage(void) 183 { 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 185 return false; 186 return true; 187 } 188 #endif /* CONFIG_PM_SLEEP */ 189 190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 191 unsigned int pageblock_order __read_mostly; 192 #endif 193 194 static void __free_pages_ok(struct page *page, unsigned int order); 195 196 /* 197 * results with 256, 32 in the lowmem_reserve sysctl: 198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 199 * 1G machine -> (16M dma, 784M normal, 224M high) 200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 203 * 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally 205 * don't need any ZONE_NORMAL reservation 206 */ 207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 208 #ifdef CONFIG_ZONE_DMA 209 256, 210 #endif 211 #ifdef CONFIG_ZONE_DMA32 212 256, 213 #endif 214 #ifdef CONFIG_HIGHMEM 215 32, 216 #endif 217 32, 218 }; 219 220 EXPORT_SYMBOL(totalram_pages); 221 222 static char * const zone_names[MAX_NR_ZONES] = { 223 #ifdef CONFIG_ZONE_DMA 224 "DMA", 225 #endif 226 #ifdef CONFIG_ZONE_DMA32 227 "DMA32", 228 #endif 229 "Normal", 230 #ifdef CONFIG_HIGHMEM 231 "HighMem", 232 #endif 233 "Movable", 234 #ifdef CONFIG_ZONE_DEVICE 235 "Device", 236 #endif 237 }; 238 239 char * const migratetype_names[MIGRATE_TYPES] = { 240 "Unmovable", 241 "Movable", 242 "Reclaimable", 243 "HighAtomic", 244 #ifdef CONFIG_CMA 245 "CMA", 246 #endif 247 #ifdef CONFIG_MEMORY_ISOLATION 248 "Isolate", 249 #endif 250 }; 251 252 compound_page_dtor * const compound_page_dtors[] = { 253 NULL, 254 free_compound_page, 255 #ifdef CONFIG_HUGETLB_PAGE 256 free_huge_page, 257 #endif 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 free_transhuge_page, 260 #endif 261 }; 262 263 int min_free_kbytes = 1024; 264 int user_min_free_kbytes = -1; 265 int watermark_scale_factor = 10; 266 267 static unsigned long __meminitdata nr_kernel_pages; 268 static unsigned long __meminitdata nr_all_pages; 269 static unsigned long __meminitdata dma_reserve; 270 271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 274 static unsigned long __initdata required_kernelcore; 275 static unsigned long __initdata required_movablecore; 276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 277 static bool mirrored_kernelcore; 278 279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 280 int movable_zone; 281 EXPORT_SYMBOL(movable_zone); 282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 283 284 #if MAX_NUMNODES > 1 285 int nr_node_ids __read_mostly = MAX_NUMNODES; 286 int nr_online_nodes __read_mostly = 1; 287 EXPORT_SYMBOL(nr_node_ids); 288 EXPORT_SYMBOL(nr_online_nodes); 289 #endif 290 291 int page_group_by_mobility_disabled __read_mostly; 292 293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 294 295 /* 296 * Determine how many pages need to be initialized durig early boot 297 * (non-deferred initialization). 298 * The value of first_deferred_pfn will be set later, once non-deferred pages 299 * are initialized, but for now set it ULONG_MAX. 300 */ 301 static inline void reset_deferred_meminit(pg_data_t *pgdat) 302 { 303 phys_addr_t start_addr, end_addr; 304 unsigned long max_pgcnt; 305 unsigned long reserved; 306 307 /* 308 * Initialise at least 2G of a node but also take into account that 309 * two large system hashes that can take up 1GB for 0.25TB/node. 310 */ 311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT), 312 (pgdat->node_spanned_pages >> 8)); 313 314 /* 315 * Compensate the all the memblock reservations (e.g. crash kernel) 316 * from the initial estimation to make sure we will initialize enough 317 * memory to boot. 318 */ 319 start_addr = PFN_PHYS(pgdat->node_start_pfn); 320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt); 321 reserved = memblock_reserved_memory_within(start_addr, end_addr); 322 max_pgcnt += PHYS_PFN(reserved); 323 324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages); 325 pgdat->first_deferred_pfn = ULONG_MAX; 326 } 327 328 /* Returns true if the struct page for the pfn is uninitialised */ 329 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 330 { 331 int nid = early_pfn_to_nid(pfn); 332 333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 334 return true; 335 336 return false; 337 } 338 339 /* 340 * Returns false when the remaining initialisation should be deferred until 341 * later in the boot cycle when it can be parallelised. 342 */ 343 static inline bool update_defer_init(pg_data_t *pgdat, 344 unsigned long pfn, unsigned long zone_end, 345 unsigned long *nr_initialised) 346 { 347 /* Always populate low zones for address-contrained allocations */ 348 if (zone_end < pgdat_end_pfn(pgdat)) 349 return true; 350 (*nr_initialised)++; 351 if ((*nr_initialised > pgdat->static_init_pgcnt) && 352 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 353 pgdat->first_deferred_pfn = pfn; 354 return false; 355 } 356 357 return true; 358 } 359 #else 360 static inline void reset_deferred_meminit(pg_data_t *pgdat) 361 { 362 } 363 364 static inline bool early_page_uninitialised(unsigned long pfn) 365 { 366 return false; 367 } 368 369 static inline bool update_defer_init(pg_data_t *pgdat, 370 unsigned long pfn, unsigned long zone_end, 371 unsigned long *nr_initialised) 372 { 373 return true; 374 } 375 #endif 376 377 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 378 static inline unsigned long *get_pageblock_bitmap(struct page *page, 379 unsigned long pfn) 380 { 381 #ifdef CONFIG_SPARSEMEM 382 return __pfn_to_section(pfn)->pageblock_flags; 383 #else 384 return page_zone(page)->pageblock_flags; 385 #endif /* CONFIG_SPARSEMEM */ 386 } 387 388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 389 { 390 #ifdef CONFIG_SPARSEMEM 391 pfn &= (PAGES_PER_SECTION-1); 392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 393 #else 394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 396 #endif /* CONFIG_SPARSEMEM */ 397 } 398 399 /** 400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 401 * @page: The page within the block of interest 402 * @pfn: The target page frame number 403 * @end_bitidx: The last bit of interest to retrieve 404 * @mask: mask of bits that the caller is interested in 405 * 406 * Return: pageblock_bits flags 407 */ 408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 409 unsigned long pfn, 410 unsigned long end_bitidx, 411 unsigned long mask) 412 { 413 unsigned long *bitmap; 414 unsigned long bitidx, word_bitidx; 415 unsigned long word; 416 417 bitmap = get_pageblock_bitmap(page, pfn); 418 bitidx = pfn_to_bitidx(page, pfn); 419 word_bitidx = bitidx / BITS_PER_LONG; 420 bitidx &= (BITS_PER_LONG-1); 421 422 word = bitmap[word_bitidx]; 423 bitidx += end_bitidx; 424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 425 } 426 427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 428 unsigned long end_bitidx, 429 unsigned long mask) 430 { 431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 432 } 433 434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 435 { 436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 437 } 438 439 /** 440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 441 * @page: The page within the block of interest 442 * @flags: The flags to set 443 * @pfn: The target page frame number 444 * @end_bitidx: The last bit of interest 445 * @mask: mask of bits that the caller is interested in 446 */ 447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 448 unsigned long pfn, 449 unsigned long end_bitidx, 450 unsigned long mask) 451 { 452 unsigned long *bitmap; 453 unsigned long bitidx, word_bitidx; 454 unsigned long old_word, word; 455 456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 457 458 bitmap = get_pageblock_bitmap(page, pfn); 459 bitidx = pfn_to_bitidx(page, pfn); 460 word_bitidx = bitidx / BITS_PER_LONG; 461 bitidx &= (BITS_PER_LONG-1); 462 463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 464 465 bitidx += end_bitidx; 466 mask <<= (BITS_PER_LONG - bitidx - 1); 467 flags <<= (BITS_PER_LONG - bitidx - 1); 468 469 word = READ_ONCE(bitmap[word_bitidx]); 470 for (;;) { 471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 472 if (word == old_word) 473 break; 474 word = old_word; 475 } 476 } 477 478 void set_pageblock_migratetype(struct page *page, int migratetype) 479 { 480 if (unlikely(page_group_by_mobility_disabled && 481 migratetype < MIGRATE_PCPTYPES)) 482 migratetype = MIGRATE_UNMOVABLE; 483 484 set_pageblock_flags_group(page, (unsigned long)migratetype, 485 PB_migrate, PB_migrate_end); 486 } 487 488 #ifdef CONFIG_DEBUG_VM 489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 490 { 491 int ret = 0; 492 unsigned seq; 493 unsigned long pfn = page_to_pfn(page); 494 unsigned long sp, start_pfn; 495 496 do { 497 seq = zone_span_seqbegin(zone); 498 start_pfn = zone->zone_start_pfn; 499 sp = zone->spanned_pages; 500 if (!zone_spans_pfn(zone, pfn)) 501 ret = 1; 502 } while (zone_span_seqretry(zone, seq)); 503 504 if (ret) 505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 506 pfn, zone_to_nid(zone), zone->name, 507 start_pfn, start_pfn + sp); 508 509 return ret; 510 } 511 512 static int page_is_consistent(struct zone *zone, struct page *page) 513 { 514 if (!pfn_valid_within(page_to_pfn(page))) 515 return 0; 516 if (zone != page_zone(page)) 517 return 0; 518 519 return 1; 520 } 521 /* 522 * Temporary debugging check for pages not lying within a given zone. 523 */ 524 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 525 { 526 if (page_outside_zone_boundaries(zone, page)) 527 return 1; 528 if (!page_is_consistent(zone, page)) 529 return 1; 530 531 return 0; 532 } 533 #else 534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 535 { 536 return 0; 537 } 538 #endif 539 540 static void bad_page(struct page *page, const char *reason, 541 unsigned long bad_flags) 542 { 543 static unsigned long resume; 544 static unsigned long nr_shown; 545 static unsigned long nr_unshown; 546 547 /* 548 * Allow a burst of 60 reports, then keep quiet for that minute; 549 * or allow a steady drip of one report per second. 550 */ 551 if (nr_shown == 60) { 552 if (time_before(jiffies, resume)) { 553 nr_unshown++; 554 goto out; 555 } 556 if (nr_unshown) { 557 pr_alert( 558 "BUG: Bad page state: %lu messages suppressed\n", 559 nr_unshown); 560 nr_unshown = 0; 561 } 562 nr_shown = 0; 563 } 564 if (nr_shown++ == 0) 565 resume = jiffies + 60 * HZ; 566 567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 568 current->comm, page_to_pfn(page)); 569 __dump_page(page, reason); 570 bad_flags &= page->flags; 571 if (bad_flags) 572 pr_alert("bad because of flags: %#lx(%pGp)\n", 573 bad_flags, &bad_flags); 574 dump_page_owner(page); 575 576 print_modules(); 577 dump_stack(); 578 out: 579 /* Leave bad fields for debug, except PageBuddy could make trouble */ 580 page_mapcount_reset(page); /* remove PageBuddy */ 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 582 } 583 584 /* 585 * Higher-order pages are called "compound pages". They are structured thusly: 586 * 587 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 588 * 589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 591 * 592 * The first tail page's ->compound_dtor holds the offset in array of compound 593 * page destructors. See compound_page_dtors. 594 * 595 * The first tail page's ->compound_order holds the order of allocation. 596 * This usage means that zero-order pages may not be compound. 597 */ 598 599 void free_compound_page(struct page *page) 600 { 601 __free_pages_ok(page, compound_order(page)); 602 } 603 604 void prep_compound_page(struct page *page, unsigned int order) 605 { 606 int i; 607 int nr_pages = 1 << order; 608 609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 610 set_compound_order(page, order); 611 __SetPageHead(page); 612 for (i = 1; i < nr_pages; i++) { 613 struct page *p = page + i; 614 set_page_count(p, 0); 615 p->mapping = TAIL_MAPPING; 616 set_compound_head(p, page); 617 } 618 atomic_set(compound_mapcount_ptr(page), -1); 619 } 620 621 #ifdef CONFIG_DEBUG_PAGEALLOC 622 unsigned int _debug_guardpage_minorder; 623 bool _debug_pagealloc_enabled __read_mostly 624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 625 EXPORT_SYMBOL(_debug_pagealloc_enabled); 626 bool _debug_guardpage_enabled __read_mostly; 627 628 static int __init early_debug_pagealloc(char *buf) 629 { 630 if (!buf) 631 return -EINVAL; 632 return kstrtobool(buf, &_debug_pagealloc_enabled); 633 } 634 early_param("debug_pagealloc", early_debug_pagealloc); 635 636 static bool need_debug_guardpage(void) 637 { 638 /* If we don't use debug_pagealloc, we don't need guard page */ 639 if (!debug_pagealloc_enabled()) 640 return false; 641 642 if (!debug_guardpage_minorder()) 643 return false; 644 645 return true; 646 } 647 648 static void init_debug_guardpage(void) 649 { 650 if (!debug_pagealloc_enabled()) 651 return; 652 653 if (!debug_guardpage_minorder()) 654 return; 655 656 _debug_guardpage_enabled = true; 657 } 658 659 struct page_ext_operations debug_guardpage_ops = { 660 .need = need_debug_guardpage, 661 .init = init_debug_guardpage, 662 }; 663 664 static int __init debug_guardpage_minorder_setup(char *buf) 665 { 666 unsigned long res; 667 668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 669 pr_err("Bad debug_guardpage_minorder value\n"); 670 return 0; 671 } 672 _debug_guardpage_minorder = res; 673 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 674 return 0; 675 } 676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 677 678 static inline bool set_page_guard(struct zone *zone, struct page *page, 679 unsigned int order, int migratetype) 680 { 681 struct page_ext *page_ext; 682 683 if (!debug_guardpage_enabled()) 684 return false; 685 686 if (order >= debug_guardpage_minorder()) 687 return false; 688 689 page_ext = lookup_page_ext(page); 690 if (unlikely(!page_ext)) 691 return false; 692 693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 694 695 INIT_LIST_HEAD(&page->lru); 696 set_page_private(page, order); 697 /* Guard pages are not available for any usage */ 698 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 699 700 return true; 701 } 702 703 static inline void clear_page_guard(struct zone *zone, struct page *page, 704 unsigned int order, int migratetype) 705 { 706 struct page_ext *page_ext; 707 708 if (!debug_guardpage_enabled()) 709 return; 710 711 page_ext = lookup_page_ext(page); 712 if (unlikely(!page_ext)) 713 return; 714 715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 716 717 set_page_private(page, 0); 718 if (!is_migrate_isolate(migratetype)) 719 __mod_zone_freepage_state(zone, (1 << order), migratetype); 720 } 721 #else 722 struct page_ext_operations debug_guardpage_ops; 723 static inline bool set_page_guard(struct zone *zone, struct page *page, 724 unsigned int order, int migratetype) { return false; } 725 static inline void clear_page_guard(struct zone *zone, struct page *page, 726 unsigned int order, int migratetype) {} 727 #endif 728 729 static inline void set_page_order(struct page *page, unsigned int order) 730 { 731 set_page_private(page, order); 732 __SetPageBuddy(page); 733 } 734 735 static inline void rmv_page_order(struct page *page) 736 { 737 __ClearPageBuddy(page); 738 set_page_private(page, 0); 739 } 740 741 /* 742 * This function checks whether a page is free && is the buddy 743 * we can do coalesce a page and its buddy if 744 * (a) the buddy is not in a hole (check before calling!) && 745 * (b) the buddy is in the buddy system && 746 * (c) a page and its buddy have the same order && 747 * (d) a page and its buddy are in the same zone. 748 * 749 * For recording whether a page is in the buddy system, we set ->_mapcount 750 * PAGE_BUDDY_MAPCOUNT_VALUE. 751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 752 * serialized by zone->lock. 753 * 754 * For recording page's order, we use page_private(page). 755 */ 756 static inline int page_is_buddy(struct page *page, struct page *buddy, 757 unsigned int order) 758 { 759 if (page_is_guard(buddy) && page_order(buddy) == order) { 760 if (page_zone_id(page) != page_zone_id(buddy)) 761 return 0; 762 763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 764 765 return 1; 766 } 767 768 if (PageBuddy(buddy) && page_order(buddy) == order) { 769 /* 770 * zone check is done late to avoid uselessly 771 * calculating zone/node ids for pages that could 772 * never merge. 773 */ 774 if (page_zone_id(page) != page_zone_id(buddy)) 775 return 0; 776 777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 778 779 return 1; 780 } 781 return 0; 782 } 783 784 /* 785 * Freeing function for a buddy system allocator. 786 * 787 * The concept of a buddy system is to maintain direct-mapped table 788 * (containing bit values) for memory blocks of various "orders". 789 * The bottom level table contains the map for the smallest allocatable 790 * units of memory (here, pages), and each level above it describes 791 * pairs of units from the levels below, hence, "buddies". 792 * At a high level, all that happens here is marking the table entry 793 * at the bottom level available, and propagating the changes upward 794 * as necessary, plus some accounting needed to play nicely with other 795 * parts of the VM system. 796 * At each level, we keep a list of pages, which are heads of continuous 797 * free pages of length of (1 << order) and marked with _mapcount 798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 799 * field. 800 * So when we are allocating or freeing one, we can derive the state of the 801 * other. That is, if we allocate a small block, and both were 802 * free, the remainder of the region must be split into blocks. 803 * If a block is freed, and its buddy is also free, then this 804 * triggers coalescing into a block of larger size. 805 * 806 * -- nyc 807 */ 808 809 static inline void __free_one_page(struct page *page, 810 unsigned long pfn, 811 struct zone *zone, unsigned int order, 812 int migratetype) 813 { 814 unsigned long combined_pfn; 815 unsigned long uninitialized_var(buddy_pfn); 816 struct page *buddy; 817 unsigned int max_order; 818 819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 820 821 VM_BUG_ON(!zone_is_initialized(zone)); 822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 823 824 VM_BUG_ON(migratetype == -1); 825 if (likely(!is_migrate_isolate(migratetype))) 826 __mod_zone_freepage_state(zone, 1 << order, migratetype); 827 828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 829 VM_BUG_ON_PAGE(bad_range(zone, page), page); 830 831 continue_merging: 832 while (order < max_order - 1) { 833 buddy_pfn = __find_buddy_pfn(pfn, order); 834 buddy = page + (buddy_pfn - pfn); 835 836 if (!pfn_valid_within(buddy_pfn)) 837 goto done_merging; 838 if (!page_is_buddy(page, buddy, order)) 839 goto done_merging; 840 /* 841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 842 * merge with it and move up one order. 843 */ 844 if (page_is_guard(buddy)) { 845 clear_page_guard(zone, buddy, order, migratetype); 846 } else { 847 list_del(&buddy->lru); 848 zone->free_area[order].nr_free--; 849 rmv_page_order(buddy); 850 } 851 combined_pfn = buddy_pfn & pfn; 852 page = page + (combined_pfn - pfn); 853 pfn = combined_pfn; 854 order++; 855 } 856 if (max_order < MAX_ORDER) { 857 /* If we are here, it means order is >= pageblock_order. 858 * We want to prevent merge between freepages on isolate 859 * pageblock and normal pageblock. Without this, pageblock 860 * isolation could cause incorrect freepage or CMA accounting. 861 * 862 * We don't want to hit this code for the more frequent 863 * low-order merging. 864 */ 865 if (unlikely(has_isolate_pageblock(zone))) { 866 int buddy_mt; 867 868 buddy_pfn = __find_buddy_pfn(pfn, order); 869 buddy = page + (buddy_pfn - pfn); 870 buddy_mt = get_pageblock_migratetype(buddy); 871 872 if (migratetype != buddy_mt 873 && (is_migrate_isolate(migratetype) || 874 is_migrate_isolate(buddy_mt))) 875 goto done_merging; 876 } 877 max_order++; 878 goto continue_merging; 879 } 880 881 done_merging: 882 set_page_order(page, order); 883 884 /* 885 * If this is not the largest possible page, check if the buddy 886 * of the next-highest order is free. If it is, it's possible 887 * that pages are being freed that will coalesce soon. In case, 888 * that is happening, add the free page to the tail of the list 889 * so it's less likely to be used soon and more likely to be merged 890 * as a higher order page 891 */ 892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 893 struct page *higher_page, *higher_buddy; 894 combined_pfn = buddy_pfn & pfn; 895 higher_page = page + (combined_pfn - pfn); 896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 897 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 898 if (pfn_valid_within(buddy_pfn) && 899 page_is_buddy(higher_page, higher_buddy, order + 1)) { 900 list_add_tail(&page->lru, 901 &zone->free_area[order].free_list[migratetype]); 902 goto out; 903 } 904 } 905 906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 907 out: 908 zone->free_area[order].nr_free++; 909 } 910 911 /* 912 * A bad page could be due to a number of fields. Instead of multiple branches, 913 * try and check multiple fields with one check. The caller must do a detailed 914 * check if necessary. 915 */ 916 static inline bool page_expected_state(struct page *page, 917 unsigned long check_flags) 918 { 919 if (unlikely(atomic_read(&page->_mapcount) != -1)) 920 return false; 921 922 if (unlikely((unsigned long)page->mapping | 923 page_ref_count(page) | 924 #ifdef CONFIG_MEMCG 925 (unsigned long)page->mem_cgroup | 926 #endif 927 (page->flags & check_flags))) 928 return false; 929 930 return true; 931 } 932 933 static void free_pages_check_bad(struct page *page) 934 { 935 const char *bad_reason; 936 unsigned long bad_flags; 937 938 bad_reason = NULL; 939 bad_flags = 0; 940 941 if (unlikely(atomic_read(&page->_mapcount) != -1)) 942 bad_reason = "nonzero mapcount"; 943 if (unlikely(page->mapping != NULL)) 944 bad_reason = "non-NULL mapping"; 945 if (unlikely(page_ref_count(page) != 0)) 946 bad_reason = "nonzero _refcount"; 947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 950 } 951 #ifdef CONFIG_MEMCG 952 if (unlikely(page->mem_cgroup)) 953 bad_reason = "page still charged to cgroup"; 954 #endif 955 bad_page(page, bad_reason, bad_flags); 956 } 957 958 static inline int free_pages_check(struct page *page) 959 { 960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 961 return 0; 962 963 /* Something has gone sideways, find it */ 964 free_pages_check_bad(page); 965 return 1; 966 } 967 968 static int free_tail_pages_check(struct page *head_page, struct page *page) 969 { 970 int ret = 1; 971 972 /* 973 * We rely page->lru.next never has bit 0 set, unless the page 974 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 975 */ 976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 977 978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 979 ret = 0; 980 goto out; 981 } 982 switch (page - head_page) { 983 case 1: 984 /* the first tail page: ->mapping is compound_mapcount() */ 985 if (unlikely(compound_mapcount(page))) { 986 bad_page(page, "nonzero compound_mapcount", 0); 987 goto out; 988 } 989 break; 990 case 2: 991 /* 992 * the second tail page: ->mapping is 993 * page_deferred_list().next -- ignore value. 994 */ 995 break; 996 default: 997 if (page->mapping != TAIL_MAPPING) { 998 bad_page(page, "corrupted mapping in tail page", 0); 999 goto out; 1000 } 1001 break; 1002 } 1003 if (unlikely(!PageTail(page))) { 1004 bad_page(page, "PageTail not set", 0); 1005 goto out; 1006 } 1007 if (unlikely(compound_head(page) != head_page)) { 1008 bad_page(page, "compound_head not consistent", 0); 1009 goto out; 1010 } 1011 ret = 0; 1012 out: 1013 page->mapping = NULL; 1014 clear_compound_head(page); 1015 return ret; 1016 } 1017 1018 static __always_inline bool free_pages_prepare(struct page *page, 1019 unsigned int order, bool check_free) 1020 { 1021 int bad = 0; 1022 1023 VM_BUG_ON_PAGE(PageTail(page), page); 1024 1025 trace_mm_page_free(page, order); 1026 1027 /* 1028 * Check tail pages before head page information is cleared to 1029 * avoid checking PageCompound for order-0 pages. 1030 */ 1031 if (unlikely(order)) { 1032 bool compound = PageCompound(page); 1033 int i; 1034 1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1036 1037 if (compound) 1038 ClearPageDoubleMap(page); 1039 for (i = 1; i < (1 << order); i++) { 1040 if (compound) 1041 bad += free_tail_pages_check(page, page + i); 1042 if (unlikely(free_pages_check(page + i))) { 1043 bad++; 1044 continue; 1045 } 1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1047 } 1048 } 1049 if (PageMappingFlags(page)) 1050 page->mapping = NULL; 1051 if (memcg_kmem_enabled() && PageKmemcg(page)) 1052 memcg_kmem_uncharge(page, order); 1053 if (check_free) 1054 bad += free_pages_check(page); 1055 if (bad) 1056 return false; 1057 1058 page_cpupid_reset_last(page); 1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1060 reset_page_owner(page, order); 1061 1062 if (!PageHighMem(page)) { 1063 debug_check_no_locks_freed(page_address(page), 1064 PAGE_SIZE << order); 1065 debug_check_no_obj_freed(page_address(page), 1066 PAGE_SIZE << order); 1067 } 1068 arch_free_page(page, order); 1069 kernel_poison_pages(page, 1 << order, 0); 1070 kernel_map_pages(page, 1 << order, 0); 1071 kasan_free_pages(page, order); 1072 1073 return true; 1074 } 1075 1076 #ifdef CONFIG_DEBUG_VM 1077 static inline bool free_pcp_prepare(struct page *page) 1078 { 1079 return free_pages_prepare(page, 0, true); 1080 } 1081 1082 static inline bool bulkfree_pcp_prepare(struct page *page) 1083 { 1084 return false; 1085 } 1086 #else 1087 static bool free_pcp_prepare(struct page *page) 1088 { 1089 return free_pages_prepare(page, 0, false); 1090 } 1091 1092 static bool bulkfree_pcp_prepare(struct page *page) 1093 { 1094 return free_pages_check(page); 1095 } 1096 #endif /* CONFIG_DEBUG_VM */ 1097 1098 /* 1099 * Frees a number of pages from the PCP lists 1100 * Assumes all pages on list are in same zone, and of same order. 1101 * count is the number of pages to free. 1102 * 1103 * If the zone was previously in an "all pages pinned" state then look to 1104 * see if this freeing clears that state. 1105 * 1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1107 * pinned" detection logic. 1108 */ 1109 static void free_pcppages_bulk(struct zone *zone, int count, 1110 struct per_cpu_pages *pcp) 1111 { 1112 int migratetype = 0; 1113 int batch_free = 0; 1114 bool isolated_pageblocks; 1115 1116 spin_lock(&zone->lock); 1117 isolated_pageblocks = has_isolate_pageblock(zone); 1118 1119 while (count) { 1120 struct page *page; 1121 struct list_head *list; 1122 1123 /* 1124 * Remove pages from lists in a round-robin fashion. A 1125 * batch_free count is maintained that is incremented when an 1126 * empty list is encountered. This is so more pages are freed 1127 * off fuller lists instead of spinning excessively around empty 1128 * lists 1129 */ 1130 do { 1131 batch_free++; 1132 if (++migratetype == MIGRATE_PCPTYPES) 1133 migratetype = 0; 1134 list = &pcp->lists[migratetype]; 1135 } while (list_empty(list)); 1136 1137 /* This is the only non-empty list. Free them all. */ 1138 if (batch_free == MIGRATE_PCPTYPES) 1139 batch_free = count; 1140 1141 do { 1142 int mt; /* migratetype of the to-be-freed page */ 1143 1144 page = list_last_entry(list, struct page, lru); 1145 /* must delete as __free_one_page list manipulates */ 1146 list_del(&page->lru); 1147 1148 mt = get_pcppage_migratetype(page); 1149 /* MIGRATE_ISOLATE page should not go to pcplists */ 1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1151 /* Pageblock could have been isolated meanwhile */ 1152 if (unlikely(isolated_pageblocks)) 1153 mt = get_pageblock_migratetype(page); 1154 1155 if (bulkfree_pcp_prepare(page)) 1156 continue; 1157 1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1159 trace_mm_page_pcpu_drain(page, 0, mt); 1160 } while (--count && --batch_free && !list_empty(list)); 1161 } 1162 spin_unlock(&zone->lock); 1163 } 1164 1165 static void free_one_page(struct zone *zone, 1166 struct page *page, unsigned long pfn, 1167 unsigned int order, 1168 int migratetype) 1169 { 1170 spin_lock(&zone->lock); 1171 if (unlikely(has_isolate_pageblock(zone) || 1172 is_migrate_isolate(migratetype))) { 1173 migratetype = get_pfnblock_migratetype(page, pfn); 1174 } 1175 __free_one_page(page, pfn, zone, order, migratetype); 1176 spin_unlock(&zone->lock); 1177 } 1178 1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1180 unsigned long zone, int nid) 1181 { 1182 mm_zero_struct_page(page); 1183 set_page_links(page, zone, nid, pfn); 1184 init_page_count(page); 1185 page_mapcount_reset(page); 1186 page_cpupid_reset_last(page); 1187 1188 INIT_LIST_HEAD(&page->lru); 1189 #ifdef WANT_PAGE_VIRTUAL 1190 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1191 if (!is_highmem_idx(zone)) 1192 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1193 #endif 1194 } 1195 1196 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1197 int nid) 1198 { 1199 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 1200 } 1201 1202 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1203 static void __meminit init_reserved_page(unsigned long pfn) 1204 { 1205 pg_data_t *pgdat; 1206 int nid, zid; 1207 1208 if (!early_page_uninitialised(pfn)) 1209 return; 1210 1211 nid = early_pfn_to_nid(pfn); 1212 pgdat = NODE_DATA(nid); 1213 1214 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1215 struct zone *zone = &pgdat->node_zones[zid]; 1216 1217 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1218 break; 1219 } 1220 __init_single_pfn(pfn, zid, nid); 1221 } 1222 #else 1223 static inline void init_reserved_page(unsigned long pfn) 1224 { 1225 } 1226 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1227 1228 /* 1229 * Initialised pages do not have PageReserved set. This function is 1230 * called for each range allocated by the bootmem allocator and 1231 * marks the pages PageReserved. The remaining valid pages are later 1232 * sent to the buddy page allocator. 1233 */ 1234 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1235 { 1236 unsigned long start_pfn = PFN_DOWN(start); 1237 unsigned long end_pfn = PFN_UP(end); 1238 1239 for (; start_pfn < end_pfn; start_pfn++) { 1240 if (pfn_valid(start_pfn)) { 1241 struct page *page = pfn_to_page(start_pfn); 1242 1243 init_reserved_page(start_pfn); 1244 1245 /* Avoid false-positive PageTail() */ 1246 INIT_LIST_HEAD(&page->lru); 1247 1248 SetPageReserved(page); 1249 } 1250 } 1251 } 1252 1253 static void __free_pages_ok(struct page *page, unsigned int order) 1254 { 1255 unsigned long flags; 1256 int migratetype; 1257 unsigned long pfn = page_to_pfn(page); 1258 1259 if (!free_pages_prepare(page, order, true)) 1260 return; 1261 1262 migratetype = get_pfnblock_migratetype(page, pfn); 1263 local_irq_save(flags); 1264 __count_vm_events(PGFREE, 1 << order); 1265 free_one_page(page_zone(page), page, pfn, order, migratetype); 1266 local_irq_restore(flags); 1267 } 1268 1269 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1270 { 1271 unsigned int nr_pages = 1 << order; 1272 struct page *p = page; 1273 unsigned int loop; 1274 1275 prefetchw(p); 1276 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1277 prefetchw(p + 1); 1278 __ClearPageReserved(p); 1279 set_page_count(p, 0); 1280 } 1281 __ClearPageReserved(p); 1282 set_page_count(p, 0); 1283 1284 page_zone(page)->managed_pages += nr_pages; 1285 set_page_refcounted(page); 1286 __free_pages(page, order); 1287 } 1288 1289 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1290 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1291 1292 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1293 1294 int __meminit early_pfn_to_nid(unsigned long pfn) 1295 { 1296 static DEFINE_SPINLOCK(early_pfn_lock); 1297 int nid; 1298 1299 spin_lock(&early_pfn_lock); 1300 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1301 if (nid < 0) 1302 nid = first_online_node; 1303 spin_unlock(&early_pfn_lock); 1304 1305 return nid; 1306 } 1307 #endif 1308 1309 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1310 static inline bool __meminit __maybe_unused 1311 meminit_pfn_in_nid(unsigned long pfn, int node, 1312 struct mminit_pfnnid_cache *state) 1313 { 1314 int nid; 1315 1316 nid = __early_pfn_to_nid(pfn, state); 1317 if (nid >= 0 && nid != node) 1318 return false; 1319 return true; 1320 } 1321 1322 /* Only safe to use early in boot when initialisation is single-threaded */ 1323 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1324 { 1325 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1326 } 1327 1328 #else 1329 1330 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1331 { 1332 return true; 1333 } 1334 static inline bool __meminit __maybe_unused 1335 meminit_pfn_in_nid(unsigned long pfn, int node, 1336 struct mminit_pfnnid_cache *state) 1337 { 1338 return true; 1339 } 1340 #endif 1341 1342 1343 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1344 unsigned int order) 1345 { 1346 if (early_page_uninitialised(pfn)) 1347 return; 1348 return __free_pages_boot_core(page, order); 1349 } 1350 1351 /* 1352 * Check that the whole (or subset of) a pageblock given by the interval of 1353 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1354 * with the migration of free compaction scanner. The scanners then need to 1355 * use only pfn_valid_within() check for arches that allow holes within 1356 * pageblocks. 1357 * 1358 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1359 * 1360 * It's possible on some configurations to have a setup like node0 node1 node0 1361 * i.e. it's possible that all pages within a zones range of pages do not 1362 * belong to a single zone. We assume that a border between node0 and node1 1363 * can occur within a single pageblock, but not a node0 node1 node0 1364 * interleaving within a single pageblock. It is therefore sufficient to check 1365 * the first and last page of a pageblock and avoid checking each individual 1366 * page in a pageblock. 1367 */ 1368 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1369 unsigned long end_pfn, struct zone *zone) 1370 { 1371 struct page *start_page; 1372 struct page *end_page; 1373 1374 /* end_pfn is one past the range we are checking */ 1375 end_pfn--; 1376 1377 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1378 return NULL; 1379 1380 start_page = pfn_to_online_page(start_pfn); 1381 if (!start_page) 1382 return NULL; 1383 1384 if (page_zone(start_page) != zone) 1385 return NULL; 1386 1387 end_page = pfn_to_page(end_pfn); 1388 1389 /* This gives a shorter code than deriving page_zone(end_page) */ 1390 if (page_zone_id(start_page) != page_zone_id(end_page)) 1391 return NULL; 1392 1393 return start_page; 1394 } 1395 1396 void set_zone_contiguous(struct zone *zone) 1397 { 1398 unsigned long block_start_pfn = zone->zone_start_pfn; 1399 unsigned long block_end_pfn; 1400 1401 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1402 for (; block_start_pfn < zone_end_pfn(zone); 1403 block_start_pfn = block_end_pfn, 1404 block_end_pfn += pageblock_nr_pages) { 1405 1406 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1407 1408 if (!__pageblock_pfn_to_page(block_start_pfn, 1409 block_end_pfn, zone)) 1410 return; 1411 } 1412 1413 /* We confirm that there is no hole */ 1414 zone->contiguous = true; 1415 } 1416 1417 void clear_zone_contiguous(struct zone *zone) 1418 { 1419 zone->contiguous = false; 1420 } 1421 1422 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1423 static void __init deferred_free_range(unsigned long pfn, 1424 unsigned long nr_pages) 1425 { 1426 struct page *page; 1427 unsigned long i; 1428 1429 if (!nr_pages) 1430 return; 1431 1432 page = pfn_to_page(pfn); 1433 1434 /* Free a large naturally-aligned chunk if possible */ 1435 if (nr_pages == pageblock_nr_pages && 1436 (pfn & (pageblock_nr_pages - 1)) == 0) { 1437 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1438 __free_pages_boot_core(page, pageblock_order); 1439 return; 1440 } 1441 1442 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1443 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1444 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1445 __free_pages_boot_core(page, 0); 1446 } 1447 } 1448 1449 /* Completion tracking for deferred_init_memmap() threads */ 1450 static atomic_t pgdat_init_n_undone __initdata; 1451 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1452 1453 static inline void __init pgdat_init_report_one_done(void) 1454 { 1455 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1456 complete(&pgdat_init_all_done_comp); 1457 } 1458 1459 /* 1460 * Helper for deferred_init_range, free the given range, reset the counters, and 1461 * return number of pages freed. 1462 */ 1463 static inline unsigned long __init __def_free(unsigned long *nr_free, 1464 unsigned long *free_base_pfn, 1465 struct page **page) 1466 { 1467 unsigned long nr = *nr_free; 1468 1469 deferred_free_range(*free_base_pfn, nr); 1470 *free_base_pfn = 0; 1471 *nr_free = 0; 1472 *page = NULL; 1473 1474 return nr; 1475 } 1476 1477 static unsigned long __init deferred_init_range(int nid, int zid, 1478 unsigned long start_pfn, 1479 unsigned long end_pfn) 1480 { 1481 struct mminit_pfnnid_cache nid_init_state = { }; 1482 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1483 unsigned long free_base_pfn = 0; 1484 unsigned long nr_pages = 0; 1485 unsigned long nr_free = 0; 1486 struct page *page = NULL; 1487 unsigned long pfn; 1488 1489 /* 1490 * First we check if pfn is valid on architectures where it is possible 1491 * to have holes within pageblock_nr_pages. On systems where it is not 1492 * possible, this function is optimized out. 1493 * 1494 * Then, we check if a current large page is valid by only checking the 1495 * validity of the head pfn. 1496 * 1497 * meminit_pfn_in_nid is checked on systems where pfns can interleave 1498 * within a node: a pfn is between start and end of a node, but does not 1499 * belong to this memory node. 1500 * 1501 * Finally, we minimize pfn page lookups and scheduler checks by 1502 * performing it only once every pageblock_nr_pages. 1503 * 1504 * We do it in two loops: first we initialize struct page, than free to 1505 * buddy allocator, becuse while we are freeing pages we can access 1506 * pages that are ahead (computing buddy page in __free_one_page()). 1507 */ 1508 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1509 if (!pfn_valid_within(pfn)) 1510 continue; 1511 if ((pfn & nr_pgmask) || pfn_valid(pfn)) { 1512 if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1513 if (page && (pfn & nr_pgmask)) 1514 page++; 1515 else 1516 page = pfn_to_page(pfn); 1517 __init_single_page(page, pfn, zid, nid); 1518 cond_resched(); 1519 } 1520 } 1521 } 1522 1523 page = NULL; 1524 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1525 if (!pfn_valid_within(pfn)) { 1526 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1527 } else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) { 1528 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1529 } else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1530 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1531 } else if (page && (pfn & nr_pgmask)) { 1532 page++; 1533 nr_free++; 1534 } else { 1535 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1536 page = pfn_to_page(pfn); 1537 free_base_pfn = pfn; 1538 nr_free = 1; 1539 cond_resched(); 1540 } 1541 } 1542 /* Free the last block of pages to allocator */ 1543 nr_pages += __def_free(&nr_free, &free_base_pfn, &page); 1544 1545 return nr_pages; 1546 } 1547 1548 /* Initialise remaining memory on a node */ 1549 static int __init deferred_init_memmap(void *data) 1550 { 1551 pg_data_t *pgdat = data; 1552 int nid = pgdat->node_id; 1553 unsigned long start = jiffies; 1554 unsigned long nr_pages = 0; 1555 unsigned long spfn, epfn; 1556 phys_addr_t spa, epa; 1557 int zid; 1558 struct zone *zone; 1559 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1560 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1561 u64 i; 1562 1563 if (first_init_pfn == ULONG_MAX) { 1564 pgdat_init_report_one_done(); 1565 return 0; 1566 } 1567 1568 /* Bind memory initialisation thread to a local node if possible */ 1569 if (!cpumask_empty(cpumask)) 1570 set_cpus_allowed_ptr(current, cpumask); 1571 1572 /* Sanity check boundaries */ 1573 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1574 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1575 pgdat->first_deferred_pfn = ULONG_MAX; 1576 1577 /* Only the highest zone is deferred so find it */ 1578 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1579 zone = pgdat->node_zones + zid; 1580 if (first_init_pfn < zone_end_pfn(zone)) 1581 break; 1582 } 1583 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1584 1585 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1586 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1587 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1588 nr_pages += deferred_init_range(nid, zid, spfn, epfn); 1589 } 1590 1591 /* Sanity check that the next zone really is unpopulated */ 1592 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1593 1594 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1595 jiffies_to_msecs(jiffies - start)); 1596 1597 pgdat_init_report_one_done(); 1598 return 0; 1599 } 1600 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1601 1602 void __init page_alloc_init_late(void) 1603 { 1604 struct zone *zone; 1605 1606 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1607 int nid; 1608 1609 /* There will be num_node_state(N_MEMORY) threads */ 1610 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1611 for_each_node_state(nid, N_MEMORY) { 1612 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1613 } 1614 1615 /* Block until all are initialised */ 1616 wait_for_completion(&pgdat_init_all_done_comp); 1617 1618 /* Reinit limits that are based on free pages after the kernel is up */ 1619 files_maxfiles_init(); 1620 #endif 1621 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1622 /* Discard memblock private memory */ 1623 memblock_discard(); 1624 #endif 1625 1626 for_each_populated_zone(zone) 1627 set_zone_contiguous(zone); 1628 } 1629 1630 #ifdef CONFIG_CMA 1631 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1632 void __init init_cma_reserved_pageblock(struct page *page) 1633 { 1634 unsigned i = pageblock_nr_pages; 1635 struct page *p = page; 1636 1637 do { 1638 __ClearPageReserved(p); 1639 set_page_count(p, 0); 1640 } while (++p, --i); 1641 1642 set_pageblock_migratetype(page, MIGRATE_CMA); 1643 1644 if (pageblock_order >= MAX_ORDER) { 1645 i = pageblock_nr_pages; 1646 p = page; 1647 do { 1648 set_page_refcounted(p); 1649 __free_pages(p, MAX_ORDER - 1); 1650 p += MAX_ORDER_NR_PAGES; 1651 } while (i -= MAX_ORDER_NR_PAGES); 1652 } else { 1653 set_page_refcounted(page); 1654 __free_pages(page, pageblock_order); 1655 } 1656 1657 adjust_managed_page_count(page, pageblock_nr_pages); 1658 } 1659 #endif 1660 1661 /* 1662 * The order of subdivision here is critical for the IO subsystem. 1663 * Please do not alter this order without good reasons and regression 1664 * testing. Specifically, as large blocks of memory are subdivided, 1665 * the order in which smaller blocks are delivered depends on the order 1666 * they're subdivided in this function. This is the primary factor 1667 * influencing the order in which pages are delivered to the IO 1668 * subsystem according to empirical testing, and this is also justified 1669 * by considering the behavior of a buddy system containing a single 1670 * large block of memory acted on by a series of small allocations. 1671 * This behavior is a critical factor in sglist merging's success. 1672 * 1673 * -- nyc 1674 */ 1675 static inline void expand(struct zone *zone, struct page *page, 1676 int low, int high, struct free_area *area, 1677 int migratetype) 1678 { 1679 unsigned long size = 1 << high; 1680 1681 while (high > low) { 1682 area--; 1683 high--; 1684 size >>= 1; 1685 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1686 1687 /* 1688 * Mark as guard pages (or page), that will allow to 1689 * merge back to allocator when buddy will be freed. 1690 * Corresponding page table entries will not be touched, 1691 * pages will stay not present in virtual address space 1692 */ 1693 if (set_page_guard(zone, &page[size], high, migratetype)) 1694 continue; 1695 1696 list_add(&page[size].lru, &area->free_list[migratetype]); 1697 area->nr_free++; 1698 set_page_order(&page[size], high); 1699 } 1700 } 1701 1702 static void check_new_page_bad(struct page *page) 1703 { 1704 const char *bad_reason = NULL; 1705 unsigned long bad_flags = 0; 1706 1707 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1708 bad_reason = "nonzero mapcount"; 1709 if (unlikely(page->mapping != NULL)) 1710 bad_reason = "non-NULL mapping"; 1711 if (unlikely(page_ref_count(page) != 0)) 1712 bad_reason = "nonzero _count"; 1713 if (unlikely(page->flags & __PG_HWPOISON)) { 1714 bad_reason = "HWPoisoned (hardware-corrupted)"; 1715 bad_flags = __PG_HWPOISON; 1716 /* Don't complain about hwpoisoned pages */ 1717 page_mapcount_reset(page); /* remove PageBuddy */ 1718 return; 1719 } 1720 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1721 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1722 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1723 } 1724 #ifdef CONFIG_MEMCG 1725 if (unlikely(page->mem_cgroup)) 1726 bad_reason = "page still charged to cgroup"; 1727 #endif 1728 bad_page(page, bad_reason, bad_flags); 1729 } 1730 1731 /* 1732 * This page is about to be returned from the page allocator 1733 */ 1734 static inline int check_new_page(struct page *page) 1735 { 1736 if (likely(page_expected_state(page, 1737 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1738 return 0; 1739 1740 check_new_page_bad(page); 1741 return 1; 1742 } 1743 1744 static inline bool free_pages_prezeroed(void) 1745 { 1746 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1747 page_poisoning_enabled(); 1748 } 1749 1750 #ifdef CONFIG_DEBUG_VM 1751 static bool check_pcp_refill(struct page *page) 1752 { 1753 return false; 1754 } 1755 1756 static bool check_new_pcp(struct page *page) 1757 { 1758 return check_new_page(page); 1759 } 1760 #else 1761 static bool check_pcp_refill(struct page *page) 1762 { 1763 return check_new_page(page); 1764 } 1765 static bool check_new_pcp(struct page *page) 1766 { 1767 return false; 1768 } 1769 #endif /* CONFIG_DEBUG_VM */ 1770 1771 static bool check_new_pages(struct page *page, unsigned int order) 1772 { 1773 int i; 1774 for (i = 0; i < (1 << order); i++) { 1775 struct page *p = page + i; 1776 1777 if (unlikely(check_new_page(p))) 1778 return true; 1779 } 1780 1781 return false; 1782 } 1783 1784 inline void post_alloc_hook(struct page *page, unsigned int order, 1785 gfp_t gfp_flags) 1786 { 1787 set_page_private(page, 0); 1788 set_page_refcounted(page); 1789 1790 arch_alloc_page(page, order); 1791 kernel_map_pages(page, 1 << order, 1); 1792 kernel_poison_pages(page, 1 << order, 1); 1793 kasan_alloc_pages(page, order); 1794 set_page_owner(page, order, gfp_flags); 1795 } 1796 1797 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1798 unsigned int alloc_flags) 1799 { 1800 int i; 1801 1802 post_alloc_hook(page, order, gfp_flags); 1803 1804 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1805 for (i = 0; i < (1 << order); i++) 1806 clear_highpage(page + i); 1807 1808 if (order && (gfp_flags & __GFP_COMP)) 1809 prep_compound_page(page, order); 1810 1811 /* 1812 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1813 * allocate the page. The expectation is that the caller is taking 1814 * steps that will free more memory. The caller should avoid the page 1815 * being used for !PFMEMALLOC purposes. 1816 */ 1817 if (alloc_flags & ALLOC_NO_WATERMARKS) 1818 set_page_pfmemalloc(page); 1819 else 1820 clear_page_pfmemalloc(page); 1821 } 1822 1823 /* 1824 * Go through the free lists for the given migratetype and remove 1825 * the smallest available page from the freelists 1826 */ 1827 static __always_inline 1828 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1829 int migratetype) 1830 { 1831 unsigned int current_order; 1832 struct free_area *area; 1833 struct page *page; 1834 1835 /* Find a page of the appropriate size in the preferred list */ 1836 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1837 area = &(zone->free_area[current_order]); 1838 page = list_first_entry_or_null(&area->free_list[migratetype], 1839 struct page, lru); 1840 if (!page) 1841 continue; 1842 list_del(&page->lru); 1843 rmv_page_order(page); 1844 area->nr_free--; 1845 expand(zone, page, order, current_order, area, migratetype); 1846 set_pcppage_migratetype(page, migratetype); 1847 return page; 1848 } 1849 1850 return NULL; 1851 } 1852 1853 1854 /* 1855 * This array describes the order lists are fallen back to when 1856 * the free lists for the desirable migrate type are depleted 1857 */ 1858 static int fallbacks[MIGRATE_TYPES][4] = { 1859 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1860 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1861 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1862 #ifdef CONFIG_CMA 1863 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1864 #endif 1865 #ifdef CONFIG_MEMORY_ISOLATION 1866 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1867 #endif 1868 }; 1869 1870 #ifdef CONFIG_CMA 1871 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1872 unsigned int order) 1873 { 1874 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1875 } 1876 #else 1877 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1878 unsigned int order) { return NULL; } 1879 #endif 1880 1881 /* 1882 * Move the free pages in a range to the free lists of the requested type. 1883 * Note that start_page and end_pages are not aligned on a pageblock 1884 * boundary. If alignment is required, use move_freepages_block() 1885 */ 1886 static int move_freepages(struct zone *zone, 1887 struct page *start_page, struct page *end_page, 1888 int migratetype, int *num_movable) 1889 { 1890 struct page *page; 1891 unsigned int order; 1892 int pages_moved = 0; 1893 1894 #ifndef CONFIG_HOLES_IN_ZONE 1895 /* 1896 * page_zone is not safe to call in this context when 1897 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1898 * anyway as we check zone boundaries in move_freepages_block(). 1899 * Remove at a later date when no bug reports exist related to 1900 * grouping pages by mobility 1901 */ 1902 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1903 #endif 1904 1905 if (num_movable) 1906 *num_movable = 0; 1907 1908 for (page = start_page; page <= end_page;) { 1909 if (!pfn_valid_within(page_to_pfn(page))) { 1910 page++; 1911 continue; 1912 } 1913 1914 /* Make sure we are not inadvertently changing nodes */ 1915 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1916 1917 if (!PageBuddy(page)) { 1918 /* 1919 * We assume that pages that could be isolated for 1920 * migration are movable. But we don't actually try 1921 * isolating, as that would be expensive. 1922 */ 1923 if (num_movable && 1924 (PageLRU(page) || __PageMovable(page))) 1925 (*num_movable)++; 1926 1927 page++; 1928 continue; 1929 } 1930 1931 order = page_order(page); 1932 list_move(&page->lru, 1933 &zone->free_area[order].free_list[migratetype]); 1934 page += 1 << order; 1935 pages_moved += 1 << order; 1936 } 1937 1938 return pages_moved; 1939 } 1940 1941 int move_freepages_block(struct zone *zone, struct page *page, 1942 int migratetype, int *num_movable) 1943 { 1944 unsigned long start_pfn, end_pfn; 1945 struct page *start_page, *end_page; 1946 1947 start_pfn = page_to_pfn(page); 1948 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1949 start_page = pfn_to_page(start_pfn); 1950 end_page = start_page + pageblock_nr_pages - 1; 1951 end_pfn = start_pfn + pageblock_nr_pages - 1; 1952 1953 /* Do not cross zone boundaries */ 1954 if (!zone_spans_pfn(zone, start_pfn)) 1955 start_page = page; 1956 if (!zone_spans_pfn(zone, end_pfn)) 1957 return 0; 1958 1959 return move_freepages(zone, start_page, end_page, migratetype, 1960 num_movable); 1961 } 1962 1963 static void change_pageblock_range(struct page *pageblock_page, 1964 int start_order, int migratetype) 1965 { 1966 int nr_pageblocks = 1 << (start_order - pageblock_order); 1967 1968 while (nr_pageblocks--) { 1969 set_pageblock_migratetype(pageblock_page, migratetype); 1970 pageblock_page += pageblock_nr_pages; 1971 } 1972 } 1973 1974 /* 1975 * When we are falling back to another migratetype during allocation, try to 1976 * steal extra free pages from the same pageblocks to satisfy further 1977 * allocations, instead of polluting multiple pageblocks. 1978 * 1979 * If we are stealing a relatively large buddy page, it is likely there will 1980 * be more free pages in the pageblock, so try to steal them all. For 1981 * reclaimable and unmovable allocations, we steal regardless of page size, 1982 * as fragmentation caused by those allocations polluting movable pageblocks 1983 * is worse than movable allocations stealing from unmovable and reclaimable 1984 * pageblocks. 1985 */ 1986 static bool can_steal_fallback(unsigned int order, int start_mt) 1987 { 1988 /* 1989 * Leaving this order check is intended, although there is 1990 * relaxed order check in next check. The reason is that 1991 * we can actually steal whole pageblock if this condition met, 1992 * but, below check doesn't guarantee it and that is just heuristic 1993 * so could be changed anytime. 1994 */ 1995 if (order >= pageblock_order) 1996 return true; 1997 1998 if (order >= pageblock_order / 2 || 1999 start_mt == MIGRATE_RECLAIMABLE || 2000 start_mt == MIGRATE_UNMOVABLE || 2001 page_group_by_mobility_disabled) 2002 return true; 2003 2004 return false; 2005 } 2006 2007 /* 2008 * This function implements actual steal behaviour. If order is large enough, 2009 * we can steal whole pageblock. If not, we first move freepages in this 2010 * pageblock to our migratetype and determine how many already-allocated pages 2011 * are there in the pageblock with a compatible migratetype. If at least half 2012 * of pages are free or compatible, we can change migratetype of the pageblock 2013 * itself, so pages freed in the future will be put on the correct free list. 2014 */ 2015 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2016 int start_type, bool whole_block) 2017 { 2018 unsigned int current_order = page_order(page); 2019 struct free_area *area; 2020 int free_pages, movable_pages, alike_pages; 2021 int old_block_type; 2022 2023 old_block_type = get_pageblock_migratetype(page); 2024 2025 /* 2026 * This can happen due to races and we want to prevent broken 2027 * highatomic accounting. 2028 */ 2029 if (is_migrate_highatomic(old_block_type)) 2030 goto single_page; 2031 2032 /* Take ownership for orders >= pageblock_order */ 2033 if (current_order >= pageblock_order) { 2034 change_pageblock_range(page, current_order, start_type); 2035 goto single_page; 2036 } 2037 2038 /* We are not allowed to try stealing from the whole block */ 2039 if (!whole_block) 2040 goto single_page; 2041 2042 free_pages = move_freepages_block(zone, page, start_type, 2043 &movable_pages); 2044 /* 2045 * Determine how many pages are compatible with our allocation. 2046 * For movable allocation, it's the number of movable pages which 2047 * we just obtained. For other types it's a bit more tricky. 2048 */ 2049 if (start_type == MIGRATE_MOVABLE) { 2050 alike_pages = movable_pages; 2051 } else { 2052 /* 2053 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2054 * to MOVABLE pageblock, consider all non-movable pages as 2055 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2056 * vice versa, be conservative since we can't distinguish the 2057 * exact migratetype of non-movable pages. 2058 */ 2059 if (old_block_type == MIGRATE_MOVABLE) 2060 alike_pages = pageblock_nr_pages 2061 - (free_pages + movable_pages); 2062 else 2063 alike_pages = 0; 2064 } 2065 2066 /* moving whole block can fail due to zone boundary conditions */ 2067 if (!free_pages) 2068 goto single_page; 2069 2070 /* 2071 * If a sufficient number of pages in the block are either free or of 2072 * comparable migratability as our allocation, claim the whole block. 2073 */ 2074 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2075 page_group_by_mobility_disabled) 2076 set_pageblock_migratetype(page, start_type); 2077 2078 return; 2079 2080 single_page: 2081 area = &zone->free_area[current_order]; 2082 list_move(&page->lru, &area->free_list[start_type]); 2083 } 2084 2085 /* 2086 * Check whether there is a suitable fallback freepage with requested order. 2087 * If only_stealable is true, this function returns fallback_mt only if 2088 * we can steal other freepages all together. This would help to reduce 2089 * fragmentation due to mixed migratetype pages in one pageblock. 2090 */ 2091 int find_suitable_fallback(struct free_area *area, unsigned int order, 2092 int migratetype, bool only_stealable, bool *can_steal) 2093 { 2094 int i; 2095 int fallback_mt; 2096 2097 if (area->nr_free == 0) 2098 return -1; 2099 2100 *can_steal = false; 2101 for (i = 0;; i++) { 2102 fallback_mt = fallbacks[migratetype][i]; 2103 if (fallback_mt == MIGRATE_TYPES) 2104 break; 2105 2106 if (list_empty(&area->free_list[fallback_mt])) 2107 continue; 2108 2109 if (can_steal_fallback(order, migratetype)) 2110 *can_steal = true; 2111 2112 if (!only_stealable) 2113 return fallback_mt; 2114 2115 if (*can_steal) 2116 return fallback_mt; 2117 } 2118 2119 return -1; 2120 } 2121 2122 /* 2123 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2124 * there are no empty page blocks that contain a page with a suitable order 2125 */ 2126 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2127 unsigned int alloc_order) 2128 { 2129 int mt; 2130 unsigned long max_managed, flags; 2131 2132 /* 2133 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2134 * Check is race-prone but harmless. 2135 */ 2136 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2137 if (zone->nr_reserved_highatomic >= max_managed) 2138 return; 2139 2140 spin_lock_irqsave(&zone->lock, flags); 2141 2142 /* Recheck the nr_reserved_highatomic limit under the lock */ 2143 if (zone->nr_reserved_highatomic >= max_managed) 2144 goto out_unlock; 2145 2146 /* Yoink! */ 2147 mt = get_pageblock_migratetype(page); 2148 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2149 && !is_migrate_cma(mt)) { 2150 zone->nr_reserved_highatomic += pageblock_nr_pages; 2151 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2152 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2153 } 2154 2155 out_unlock: 2156 spin_unlock_irqrestore(&zone->lock, flags); 2157 } 2158 2159 /* 2160 * Used when an allocation is about to fail under memory pressure. This 2161 * potentially hurts the reliability of high-order allocations when under 2162 * intense memory pressure but failed atomic allocations should be easier 2163 * to recover from than an OOM. 2164 * 2165 * If @force is true, try to unreserve a pageblock even though highatomic 2166 * pageblock is exhausted. 2167 */ 2168 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2169 bool force) 2170 { 2171 struct zonelist *zonelist = ac->zonelist; 2172 unsigned long flags; 2173 struct zoneref *z; 2174 struct zone *zone; 2175 struct page *page; 2176 int order; 2177 bool ret; 2178 2179 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2180 ac->nodemask) { 2181 /* 2182 * Preserve at least one pageblock unless memory pressure 2183 * is really high. 2184 */ 2185 if (!force && zone->nr_reserved_highatomic <= 2186 pageblock_nr_pages) 2187 continue; 2188 2189 spin_lock_irqsave(&zone->lock, flags); 2190 for (order = 0; order < MAX_ORDER; order++) { 2191 struct free_area *area = &(zone->free_area[order]); 2192 2193 page = list_first_entry_or_null( 2194 &area->free_list[MIGRATE_HIGHATOMIC], 2195 struct page, lru); 2196 if (!page) 2197 continue; 2198 2199 /* 2200 * In page freeing path, migratetype change is racy so 2201 * we can counter several free pages in a pageblock 2202 * in this loop althoug we changed the pageblock type 2203 * from highatomic to ac->migratetype. So we should 2204 * adjust the count once. 2205 */ 2206 if (is_migrate_highatomic_page(page)) { 2207 /* 2208 * It should never happen but changes to 2209 * locking could inadvertently allow a per-cpu 2210 * drain to add pages to MIGRATE_HIGHATOMIC 2211 * while unreserving so be safe and watch for 2212 * underflows. 2213 */ 2214 zone->nr_reserved_highatomic -= min( 2215 pageblock_nr_pages, 2216 zone->nr_reserved_highatomic); 2217 } 2218 2219 /* 2220 * Convert to ac->migratetype and avoid the normal 2221 * pageblock stealing heuristics. Minimally, the caller 2222 * is doing the work and needs the pages. More 2223 * importantly, if the block was always converted to 2224 * MIGRATE_UNMOVABLE or another type then the number 2225 * of pageblocks that cannot be completely freed 2226 * may increase. 2227 */ 2228 set_pageblock_migratetype(page, ac->migratetype); 2229 ret = move_freepages_block(zone, page, ac->migratetype, 2230 NULL); 2231 if (ret) { 2232 spin_unlock_irqrestore(&zone->lock, flags); 2233 return ret; 2234 } 2235 } 2236 spin_unlock_irqrestore(&zone->lock, flags); 2237 } 2238 2239 return false; 2240 } 2241 2242 /* 2243 * Try finding a free buddy page on the fallback list and put it on the free 2244 * list of requested migratetype, possibly along with other pages from the same 2245 * block, depending on fragmentation avoidance heuristics. Returns true if 2246 * fallback was found so that __rmqueue_smallest() can grab it. 2247 * 2248 * The use of signed ints for order and current_order is a deliberate 2249 * deviation from the rest of this file, to make the for loop 2250 * condition simpler. 2251 */ 2252 static __always_inline bool 2253 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2254 { 2255 struct free_area *area; 2256 int current_order; 2257 struct page *page; 2258 int fallback_mt; 2259 bool can_steal; 2260 2261 /* 2262 * Find the largest available free page in the other list. This roughly 2263 * approximates finding the pageblock with the most free pages, which 2264 * would be too costly to do exactly. 2265 */ 2266 for (current_order = MAX_ORDER - 1; current_order >= order; 2267 --current_order) { 2268 area = &(zone->free_area[current_order]); 2269 fallback_mt = find_suitable_fallback(area, current_order, 2270 start_migratetype, false, &can_steal); 2271 if (fallback_mt == -1) 2272 continue; 2273 2274 /* 2275 * We cannot steal all free pages from the pageblock and the 2276 * requested migratetype is movable. In that case it's better to 2277 * steal and split the smallest available page instead of the 2278 * largest available page, because even if the next movable 2279 * allocation falls back into a different pageblock than this 2280 * one, it won't cause permanent fragmentation. 2281 */ 2282 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2283 && current_order > order) 2284 goto find_smallest; 2285 2286 goto do_steal; 2287 } 2288 2289 return false; 2290 2291 find_smallest: 2292 for (current_order = order; current_order < MAX_ORDER; 2293 current_order++) { 2294 area = &(zone->free_area[current_order]); 2295 fallback_mt = find_suitable_fallback(area, current_order, 2296 start_migratetype, false, &can_steal); 2297 if (fallback_mt != -1) 2298 break; 2299 } 2300 2301 /* 2302 * This should not happen - we already found a suitable fallback 2303 * when looking for the largest page. 2304 */ 2305 VM_BUG_ON(current_order == MAX_ORDER); 2306 2307 do_steal: 2308 page = list_first_entry(&area->free_list[fallback_mt], 2309 struct page, lru); 2310 2311 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2312 2313 trace_mm_page_alloc_extfrag(page, order, current_order, 2314 start_migratetype, fallback_mt); 2315 2316 return true; 2317 2318 } 2319 2320 /* 2321 * Do the hard work of removing an element from the buddy allocator. 2322 * Call me with the zone->lock already held. 2323 */ 2324 static __always_inline struct page * 2325 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2326 { 2327 struct page *page; 2328 2329 retry: 2330 page = __rmqueue_smallest(zone, order, migratetype); 2331 if (unlikely(!page)) { 2332 if (migratetype == MIGRATE_MOVABLE) 2333 page = __rmqueue_cma_fallback(zone, order); 2334 2335 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2336 goto retry; 2337 } 2338 2339 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2340 return page; 2341 } 2342 2343 /* 2344 * Obtain a specified number of elements from the buddy allocator, all under 2345 * a single hold of the lock, for efficiency. Add them to the supplied list. 2346 * Returns the number of new pages which were placed at *list. 2347 */ 2348 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2349 unsigned long count, struct list_head *list, 2350 int migratetype) 2351 { 2352 int i, alloced = 0; 2353 2354 spin_lock(&zone->lock); 2355 for (i = 0; i < count; ++i) { 2356 struct page *page = __rmqueue(zone, order, migratetype); 2357 if (unlikely(page == NULL)) 2358 break; 2359 2360 if (unlikely(check_pcp_refill(page))) 2361 continue; 2362 2363 /* 2364 * Split buddy pages returned by expand() are received here in 2365 * physical page order. The page is added to the tail of 2366 * caller's list. From the callers perspective, the linked list 2367 * is ordered by page number under some conditions. This is 2368 * useful for IO devices that can forward direction from the 2369 * head, thus also in the physical page order. This is useful 2370 * for IO devices that can merge IO requests if the physical 2371 * pages are ordered properly. 2372 */ 2373 list_add_tail(&page->lru, list); 2374 alloced++; 2375 if (is_migrate_cma(get_pcppage_migratetype(page))) 2376 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2377 -(1 << order)); 2378 } 2379 2380 /* 2381 * i pages were removed from the buddy list even if some leak due 2382 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2383 * on i. Do not confuse with 'alloced' which is the number of 2384 * pages added to the pcp list. 2385 */ 2386 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2387 spin_unlock(&zone->lock); 2388 return alloced; 2389 } 2390 2391 #ifdef CONFIG_NUMA 2392 /* 2393 * Called from the vmstat counter updater to drain pagesets of this 2394 * currently executing processor on remote nodes after they have 2395 * expired. 2396 * 2397 * Note that this function must be called with the thread pinned to 2398 * a single processor. 2399 */ 2400 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2401 { 2402 unsigned long flags; 2403 int to_drain, batch; 2404 2405 local_irq_save(flags); 2406 batch = READ_ONCE(pcp->batch); 2407 to_drain = min(pcp->count, batch); 2408 if (to_drain > 0) { 2409 free_pcppages_bulk(zone, to_drain, pcp); 2410 pcp->count -= to_drain; 2411 } 2412 local_irq_restore(flags); 2413 } 2414 #endif 2415 2416 /* 2417 * Drain pcplists of the indicated processor and zone. 2418 * 2419 * The processor must either be the current processor and the 2420 * thread pinned to the current processor or a processor that 2421 * is not online. 2422 */ 2423 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2424 { 2425 unsigned long flags; 2426 struct per_cpu_pageset *pset; 2427 struct per_cpu_pages *pcp; 2428 2429 local_irq_save(flags); 2430 pset = per_cpu_ptr(zone->pageset, cpu); 2431 2432 pcp = &pset->pcp; 2433 if (pcp->count) { 2434 free_pcppages_bulk(zone, pcp->count, pcp); 2435 pcp->count = 0; 2436 } 2437 local_irq_restore(flags); 2438 } 2439 2440 /* 2441 * Drain pcplists of all zones on the indicated processor. 2442 * 2443 * The processor must either be the current processor and the 2444 * thread pinned to the current processor or a processor that 2445 * is not online. 2446 */ 2447 static void drain_pages(unsigned int cpu) 2448 { 2449 struct zone *zone; 2450 2451 for_each_populated_zone(zone) { 2452 drain_pages_zone(cpu, zone); 2453 } 2454 } 2455 2456 /* 2457 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2458 * 2459 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2460 * the single zone's pages. 2461 */ 2462 void drain_local_pages(struct zone *zone) 2463 { 2464 int cpu = smp_processor_id(); 2465 2466 if (zone) 2467 drain_pages_zone(cpu, zone); 2468 else 2469 drain_pages(cpu); 2470 } 2471 2472 static void drain_local_pages_wq(struct work_struct *work) 2473 { 2474 /* 2475 * drain_all_pages doesn't use proper cpu hotplug protection so 2476 * we can race with cpu offline when the WQ can move this from 2477 * a cpu pinned worker to an unbound one. We can operate on a different 2478 * cpu which is allright but we also have to make sure to not move to 2479 * a different one. 2480 */ 2481 preempt_disable(); 2482 drain_local_pages(NULL); 2483 preempt_enable(); 2484 } 2485 2486 /* 2487 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2488 * 2489 * When zone parameter is non-NULL, spill just the single zone's pages. 2490 * 2491 * Note that this can be extremely slow as the draining happens in a workqueue. 2492 */ 2493 void drain_all_pages(struct zone *zone) 2494 { 2495 int cpu; 2496 2497 /* 2498 * Allocate in the BSS so we wont require allocation in 2499 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2500 */ 2501 static cpumask_t cpus_with_pcps; 2502 2503 /* 2504 * Make sure nobody triggers this path before mm_percpu_wq is fully 2505 * initialized. 2506 */ 2507 if (WARN_ON_ONCE(!mm_percpu_wq)) 2508 return; 2509 2510 /* 2511 * Do not drain if one is already in progress unless it's specific to 2512 * a zone. Such callers are primarily CMA and memory hotplug and need 2513 * the drain to be complete when the call returns. 2514 */ 2515 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2516 if (!zone) 2517 return; 2518 mutex_lock(&pcpu_drain_mutex); 2519 } 2520 2521 /* 2522 * We don't care about racing with CPU hotplug event 2523 * as offline notification will cause the notified 2524 * cpu to drain that CPU pcps and on_each_cpu_mask 2525 * disables preemption as part of its processing 2526 */ 2527 for_each_online_cpu(cpu) { 2528 struct per_cpu_pageset *pcp; 2529 struct zone *z; 2530 bool has_pcps = false; 2531 2532 if (zone) { 2533 pcp = per_cpu_ptr(zone->pageset, cpu); 2534 if (pcp->pcp.count) 2535 has_pcps = true; 2536 } else { 2537 for_each_populated_zone(z) { 2538 pcp = per_cpu_ptr(z->pageset, cpu); 2539 if (pcp->pcp.count) { 2540 has_pcps = true; 2541 break; 2542 } 2543 } 2544 } 2545 2546 if (has_pcps) 2547 cpumask_set_cpu(cpu, &cpus_with_pcps); 2548 else 2549 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2550 } 2551 2552 for_each_cpu(cpu, &cpus_with_pcps) { 2553 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2554 INIT_WORK(work, drain_local_pages_wq); 2555 queue_work_on(cpu, mm_percpu_wq, work); 2556 } 2557 for_each_cpu(cpu, &cpus_with_pcps) 2558 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2559 2560 mutex_unlock(&pcpu_drain_mutex); 2561 } 2562 2563 #ifdef CONFIG_HIBERNATION 2564 2565 /* 2566 * Touch the watchdog for every WD_PAGE_COUNT pages. 2567 */ 2568 #define WD_PAGE_COUNT (128*1024) 2569 2570 void mark_free_pages(struct zone *zone) 2571 { 2572 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2573 unsigned long flags; 2574 unsigned int order, t; 2575 struct page *page; 2576 2577 if (zone_is_empty(zone)) 2578 return; 2579 2580 spin_lock_irqsave(&zone->lock, flags); 2581 2582 max_zone_pfn = zone_end_pfn(zone); 2583 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2584 if (pfn_valid(pfn)) { 2585 page = pfn_to_page(pfn); 2586 2587 if (!--page_count) { 2588 touch_nmi_watchdog(); 2589 page_count = WD_PAGE_COUNT; 2590 } 2591 2592 if (page_zone(page) != zone) 2593 continue; 2594 2595 if (!swsusp_page_is_forbidden(page)) 2596 swsusp_unset_page_free(page); 2597 } 2598 2599 for_each_migratetype_order(order, t) { 2600 list_for_each_entry(page, 2601 &zone->free_area[order].free_list[t], lru) { 2602 unsigned long i; 2603 2604 pfn = page_to_pfn(page); 2605 for (i = 0; i < (1UL << order); i++) { 2606 if (!--page_count) { 2607 touch_nmi_watchdog(); 2608 page_count = WD_PAGE_COUNT; 2609 } 2610 swsusp_set_page_free(pfn_to_page(pfn + i)); 2611 } 2612 } 2613 } 2614 spin_unlock_irqrestore(&zone->lock, flags); 2615 } 2616 #endif /* CONFIG_PM */ 2617 2618 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2619 { 2620 int migratetype; 2621 2622 if (!free_pcp_prepare(page)) 2623 return false; 2624 2625 migratetype = get_pfnblock_migratetype(page, pfn); 2626 set_pcppage_migratetype(page, migratetype); 2627 return true; 2628 } 2629 2630 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2631 { 2632 struct zone *zone = page_zone(page); 2633 struct per_cpu_pages *pcp; 2634 int migratetype; 2635 2636 migratetype = get_pcppage_migratetype(page); 2637 __count_vm_event(PGFREE); 2638 2639 /* 2640 * We only track unmovable, reclaimable and movable on pcp lists. 2641 * Free ISOLATE pages back to the allocator because they are being 2642 * offlined but treat HIGHATOMIC as movable pages so we can get those 2643 * areas back if necessary. Otherwise, we may have to free 2644 * excessively into the page allocator 2645 */ 2646 if (migratetype >= MIGRATE_PCPTYPES) { 2647 if (unlikely(is_migrate_isolate(migratetype))) { 2648 free_one_page(zone, page, pfn, 0, migratetype); 2649 return; 2650 } 2651 migratetype = MIGRATE_MOVABLE; 2652 } 2653 2654 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2655 list_add(&page->lru, &pcp->lists[migratetype]); 2656 pcp->count++; 2657 if (pcp->count >= pcp->high) { 2658 unsigned long batch = READ_ONCE(pcp->batch); 2659 free_pcppages_bulk(zone, batch, pcp); 2660 pcp->count -= batch; 2661 } 2662 } 2663 2664 /* 2665 * Free a 0-order page 2666 */ 2667 void free_unref_page(struct page *page) 2668 { 2669 unsigned long flags; 2670 unsigned long pfn = page_to_pfn(page); 2671 2672 if (!free_unref_page_prepare(page, pfn)) 2673 return; 2674 2675 local_irq_save(flags); 2676 free_unref_page_commit(page, pfn); 2677 local_irq_restore(flags); 2678 } 2679 2680 /* 2681 * Free a list of 0-order pages 2682 */ 2683 void free_unref_page_list(struct list_head *list) 2684 { 2685 struct page *page, *next; 2686 unsigned long flags, pfn; 2687 2688 /* Prepare pages for freeing */ 2689 list_for_each_entry_safe(page, next, list, lru) { 2690 pfn = page_to_pfn(page); 2691 if (!free_unref_page_prepare(page, pfn)) 2692 list_del(&page->lru); 2693 set_page_private(page, pfn); 2694 } 2695 2696 local_irq_save(flags); 2697 list_for_each_entry_safe(page, next, list, lru) { 2698 unsigned long pfn = page_private(page); 2699 2700 set_page_private(page, 0); 2701 trace_mm_page_free_batched(page); 2702 free_unref_page_commit(page, pfn); 2703 } 2704 local_irq_restore(flags); 2705 } 2706 2707 /* 2708 * split_page takes a non-compound higher-order page, and splits it into 2709 * n (1<<order) sub-pages: page[0..n] 2710 * Each sub-page must be freed individually. 2711 * 2712 * Note: this is probably too low level an operation for use in drivers. 2713 * Please consult with lkml before using this in your driver. 2714 */ 2715 void split_page(struct page *page, unsigned int order) 2716 { 2717 int i; 2718 2719 VM_BUG_ON_PAGE(PageCompound(page), page); 2720 VM_BUG_ON_PAGE(!page_count(page), page); 2721 2722 for (i = 1; i < (1 << order); i++) 2723 set_page_refcounted(page + i); 2724 split_page_owner(page, order); 2725 } 2726 EXPORT_SYMBOL_GPL(split_page); 2727 2728 int __isolate_free_page(struct page *page, unsigned int order) 2729 { 2730 unsigned long watermark; 2731 struct zone *zone; 2732 int mt; 2733 2734 BUG_ON(!PageBuddy(page)); 2735 2736 zone = page_zone(page); 2737 mt = get_pageblock_migratetype(page); 2738 2739 if (!is_migrate_isolate(mt)) { 2740 /* 2741 * Obey watermarks as if the page was being allocated. We can 2742 * emulate a high-order watermark check with a raised order-0 2743 * watermark, because we already know our high-order page 2744 * exists. 2745 */ 2746 watermark = min_wmark_pages(zone) + (1UL << order); 2747 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2748 return 0; 2749 2750 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2751 } 2752 2753 /* Remove page from free list */ 2754 list_del(&page->lru); 2755 zone->free_area[order].nr_free--; 2756 rmv_page_order(page); 2757 2758 /* 2759 * Set the pageblock if the isolated page is at least half of a 2760 * pageblock 2761 */ 2762 if (order >= pageblock_order - 1) { 2763 struct page *endpage = page + (1 << order) - 1; 2764 for (; page < endpage; page += pageblock_nr_pages) { 2765 int mt = get_pageblock_migratetype(page); 2766 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2767 && !is_migrate_highatomic(mt)) 2768 set_pageblock_migratetype(page, 2769 MIGRATE_MOVABLE); 2770 } 2771 } 2772 2773 2774 return 1UL << order; 2775 } 2776 2777 /* 2778 * Update NUMA hit/miss statistics 2779 * 2780 * Must be called with interrupts disabled. 2781 */ 2782 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2783 { 2784 #ifdef CONFIG_NUMA 2785 enum numa_stat_item local_stat = NUMA_LOCAL; 2786 2787 /* skip numa counters update if numa stats is disabled */ 2788 if (!static_branch_likely(&vm_numa_stat_key)) 2789 return; 2790 2791 if (z->node != numa_node_id()) 2792 local_stat = NUMA_OTHER; 2793 2794 if (z->node == preferred_zone->node) 2795 __inc_numa_state(z, NUMA_HIT); 2796 else { 2797 __inc_numa_state(z, NUMA_MISS); 2798 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2799 } 2800 __inc_numa_state(z, local_stat); 2801 #endif 2802 } 2803 2804 /* Remove page from the per-cpu list, caller must protect the list */ 2805 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2806 struct per_cpu_pages *pcp, 2807 struct list_head *list) 2808 { 2809 struct page *page; 2810 2811 do { 2812 if (list_empty(list)) { 2813 pcp->count += rmqueue_bulk(zone, 0, 2814 pcp->batch, list, 2815 migratetype); 2816 if (unlikely(list_empty(list))) 2817 return NULL; 2818 } 2819 2820 page = list_first_entry(list, struct page, lru); 2821 list_del(&page->lru); 2822 pcp->count--; 2823 } while (check_new_pcp(page)); 2824 2825 return page; 2826 } 2827 2828 /* Lock and remove page from the per-cpu list */ 2829 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2830 struct zone *zone, unsigned int order, 2831 gfp_t gfp_flags, int migratetype) 2832 { 2833 struct per_cpu_pages *pcp; 2834 struct list_head *list; 2835 struct page *page; 2836 unsigned long flags; 2837 2838 local_irq_save(flags); 2839 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2840 list = &pcp->lists[migratetype]; 2841 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2842 if (page) { 2843 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2844 zone_statistics(preferred_zone, zone); 2845 } 2846 local_irq_restore(flags); 2847 return page; 2848 } 2849 2850 /* 2851 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2852 */ 2853 static inline 2854 struct page *rmqueue(struct zone *preferred_zone, 2855 struct zone *zone, unsigned int order, 2856 gfp_t gfp_flags, unsigned int alloc_flags, 2857 int migratetype) 2858 { 2859 unsigned long flags; 2860 struct page *page; 2861 2862 if (likely(order == 0)) { 2863 page = rmqueue_pcplist(preferred_zone, zone, order, 2864 gfp_flags, migratetype); 2865 goto out; 2866 } 2867 2868 /* 2869 * We most definitely don't want callers attempting to 2870 * allocate greater than order-1 page units with __GFP_NOFAIL. 2871 */ 2872 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2873 spin_lock_irqsave(&zone->lock, flags); 2874 2875 do { 2876 page = NULL; 2877 if (alloc_flags & ALLOC_HARDER) { 2878 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2879 if (page) 2880 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2881 } 2882 if (!page) 2883 page = __rmqueue(zone, order, migratetype); 2884 } while (page && check_new_pages(page, order)); 2885 spin_unlock(&zone->lock); 2886 if (!page) 2887 goto failed; 2888 __mod_zone_freepage_state(zone, -(1 << order), 2889 get_pcppage_migratetype(page)); 2890 2891 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2892 zone_statistics(preferred_zone, zone); 2893 local_irq_restore(flags); 2894 2895 out: 2896 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2897 return page; 2898 2899 failed: 2900 local_irq_restore(flags); 2901 return NULL; 2902 } 2903 2904 #ifdef CONFIG_FAIL_PAGE_ALLOC 2905 2906 static struct { 2907 struct fault_attr attr; 2908 2909 bool ignore_gfp_highmem; 2910 bool ignore_gfp_reclaim; 2911 u32 min_order; 2912 } fail_page_alloc = { 2913 .attr = FAULT_ATTR_INITIALIZER, 2914 .ignore_gfp_reclaim = true, 2915 .ignore_gfp_highmem = true, 2916 .min_order = 1, 2917 }; 2918 2919 static int __init setup_fail_page_alloc(char *str) 2920 { 2921 return setup_fault_attr(&fail_page_alloc.attr, str); 2922 } 2923 __setup("fail_page_alloc=", setup_fail_page_alloc); 2924 2925 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2926 { 2927 if (order < fail_page_alloc.min_order) 2928 return false; 2929 if (gfp_mask & __GFP_NOFAIL) 2930 return false; 2931 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2932 return false; 2933 if (fail_page_alloc.ignore_gfp_reclaim && 2934 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2935 return false; 2936 2937 return should_fail(&fail_page_alloc.attr, 1 << order); 2938 } 2939 2940 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2941 2942 static int __init fail_page_alloc_debugfs(void) 2943 { 2944 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2945 struct dentry *dir; 2946 2947 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2948 &fail_page_alloc.attr); 2949 if (IS_ERR(dir)) 2950 return PTR_ERR(dir); 2951 2952 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2953 &fail_page_alloc.ignore_gfp_reclaim)) 2954 goto fail; 2955 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2956 &fail_page_alloc.ignore_gfp_highmem)) 2957 goto fail; 2958 if (!debugfs_create_u32("min-order", mode, dir, 2959 &fail_page_alloc.min_order)) 2960 goto fail; 2961 2962 return 0; 2963 fail: 2964 debugfs_remove_recursive(dir); 2965 2966 return -ENOMEM; 2967 } 2968 2969 late_initcall(fail_page_alloc_debugfs); 2970 2971 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2972 2973 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2974 2975 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2976 { 2977 return false; 2978 } 2979 2980 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2981 2982 /* 2983 * Return true if free base pages are above 'mark'. For high-order checks it 2984 * will return true of the order-0 watermark is reached and there is at least 2985 * one free page of a suitable size. Checking now avoids taking the zone lock 2986 * to check in the allocation paths if no pages are free. 2987 */ 2988 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2989 int classzone_idx, unsigned int alloc_flags, 2990 long free_pages) 2991 { 2992 long min = mark; 2993 int o; 2994 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 2995 2996 /* free_pages may go negative - that's OK */ 2997 free_pages -= (1 << order) - 1; 2998 2999 if (alloc_flags & ALLOC_HIGH) 3000 min -= min / 2; 3001 3002 /* 3003 * If the caller does not have rights to ALLOC_HARDER then subtract 3004 * the high-atomic reserves. This will over-estimate the size of the 3005 * atomic reserve but it avoids a search. 3006 */ 3007 if (likely(!alloc_harder)) { 3008 free_pages -= z->nr_reserved_highatomic; 3009 } else { 3010 /* 3011 * OOM victims can try even harder than normal ALLOC_HARDER 3012 * users on the grounds that it's definitely going to be in 3013 * the exit path shortly and free memory. Any allocation it 3014 * makes during the free path will be small and short-lived. 3015 */ 3016 if (alloc_flags & ALLOC_OOM) 3017 min -= min / 2; 3018 else 3019 min -= min / 4; 3020 } 3021 3022 3023 #ifdef CONFIG_CMA 3024 /* If allocation can't use CMA areas don't use free CMA pages */ 3025 if (!(alloc_flags & ALLOC_CMA)) 3026 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3027 #endif 3028 3029 /* 3030 * Check watermarks for an order-0 allocation request. If these 3031 * are not met, then a high-order request also cannot go ahead 3032 * even if a suitable page happened to be free. 3033 */ 3034 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3035 return false; 3036 3037 /* If this is an order-0 request then the watermark is fine */ 3038 if (!order) 3039 return true; 3040 3041 /* For a high-order request, check at least one suitable page is free */ 3042 for (o = order; o < MAX_ORDER; o++) { 3043 struct free_area *area = &z->free_area[o]; 3044 int mt; 3045 3046 if (!area->nr_free) 3047 continue; 3048 3049 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3050 if (!list_empty(&area->free_list[mt])) 3051 return true; 3052 } 3053 3054 #ifdef CONFIG_CMA 3055 if ((alloc_flags & ALLOC_CMA) && 3056 !list_empty(&area->free_list[MIGRATE_CMA])) { 3057 return true; 3058 } 3059 #endif 3060 if (alloc_harder && 3061 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3062 return true; 3063 } 3064 return false; 3065 } 3066 3067 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3068 int classzone_idx, unsigned int alloc_flags) 3069 { 3070 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3071 zone_page_state(z, NR_FREE_PAGES)); 3072 } 3073 3074 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3075 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3076 { 3077 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3078 long cma_pages = 0; 3079 3080 #ifdef CONFIG_CMA 3081 /* If allocation can't use CMA areas don't use free CMA pages */ 3082 if (!(alloc_flags & ALLOC_CMA)) 3083 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3084 #endif 3085 3086 /* 3087 * Fast check for order-0 only. If this fails then the reserves 3088 * need to be calculated. There is a corner case where the check 3089 * passes but only the high-order atomic reserve are free. If 3090 * the caller is !atomic then it'll uselessly search the free 3091 * list. That corner case is then slower but it is harmless. 3092 */ 3093 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3094 return true; 3095 3096 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3097 free_pages); 3098 } 3099 3100 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3101 unsigned long mark, int classzone_idx) 3102 { 3103 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3104 3105 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3106 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3107 3108 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3109 free_pages); 3110 } 3111 3112 #ifdef CONFIG_NUMA 3113 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3114 { 3115 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3116 RECLAIM_DISTANCE; 3117 } 3118 #else /* CONFIG_NUMA */ 3119 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3120 { 3121 return true; 3122 } 3123 #endif /* CONFIG_NUMA */ 3124 3125 /* 3126 * get_page_from_freelist goes through the zonelist trying to allocate 3127 * a page. 3128 */ 3129 static struct page * 3130 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3131 const struct alloc_context *ac) 3132 { 3133 struct zoneref *z = ac->preferred_zoneref; 3134 struct zone *zone; 3135 struct pglist_data *last_pgdat_dirty_limit = NULL; 3136 3137 /* 3138 * Scan zonelist, looking for a zone with enough free. 3139 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3140 */ 3141 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3142 ac->nodemask) { 3143 struct page *page; 3144 unsigned long mark; 3145 3146 if (cpusets_enabled() && 3147 (alloc_flags & ALLOC_CPUSET) && 3148 !__cpuset_zone_allowed(zone, gfp_mask)) 3149 continue; 3150 /* 3151 * When allocating a page cache page for writing, we 3152 * want to get it from a node that is within its dirty 3153 * limit, such that no single node holds more than its 3154 * proportional share of globally allowed dirty pages. 3155 * The dirty limits take into account the node's 3156 * lowmem reserves and high watermark so that kswapd 3157 * should be able to balance it without having to 3158 * write pages from its LRU list. 3159 * 3160 * XXX: For now, allow allocations to potentially 3161 * exceed the per-node dirty limit in the slowpath 3162 * (spread_dirty_pages unset) before going into reclaim, 3163 * which is important when on a NUMA setup the allowed 3164 * nodes are together not big enough to reach the 3165 * global limit. The proper fix for these situations 3166 * will require awareness of nodes in the 3167 * dirty-throttling and the flusher threads. 3168 */ 3169 if (ac->spread_dirty_pages) { 3170 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3171 continue; 3172 3173 if (!node_dirty_ok(zone->zone_pgdat)) { 3174 last_pgdat_dirty_limit = zone->zone_pgdat; 3175 continue; 3176 } 3177 } 3178 3179 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3180 if (!zone_watermark_fast(zone, order, mark, 3181 ac_classzone_idx(ac), alloc_flags)) { 3182 int ret; 3183 3184 /* Checked here to keep the fast path fast */ 3185 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3186 if (alloc_flags & ALLOC_NO_WATERMARKS) 3187 goto try_this_zone; 3188 3189 if (node_reclaim_mode == 0 || 3190 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3191 continue; 3192 3193 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3194 switch (ret) { 3195 case NODE_RECLAIM_NOSCAN: 3196 /* did not scan */ 3197 continue; 3198 case NODE_RECLAIM_FULL: 3199 /* scanned but unreclaimable */ 3200 continue; 3201 default: 3202 /* did we reclaim enough */ 3203 if (zone_watermark_ok(zone, order, mark, 3204 ac_classzone_idx(ac), alloc_flags)) 3205 goto try_this_zone; 3206 3207 continue; 3208 } 3209 } 3210 3211 try_this_zone: 3212 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3213 gfp_mask, alloc_flags, ac->migratetype); 3214 if (page) { 3215 prep_new_page(page, order, gfp_mask, alloc_flags); 3216 3217 /* 3218 * If this is a high-order atomic allocation then check 3219 * if the pageblock should be reserved for the future 3220 */ 3221 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3222 reserve_highatomic_pageblock(page, zone, order); 3223 3224 return page; 3225 } 3226 } 3227 3228 return NULL; 3229 } 3230 3231 /* 3232 * Large machines with many possible nodes should not always dump per-node 3233 * meminfo in irq context. 3234 */ 3235 static inline bool should_suppress_show_mem(void) 3236 { 3237 bool ret = false; 3238 3239 #if NODES_SHIFT > 8 3240 ret = in_interrupt(); 3241 #endif 3242 return ret; 3243 } 3244 3245 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3246 { 3247 unsigned int filter = SHOW_MEM_FILTER_NODES; 3248 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3249 3250 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3251 return; 3252 3253 /* 3254 * This documents exceptions given to allocations in certain 3255 * contexts that are allowed to allocate outside current's set 3256 * of allowed nodes. 3257 */ 3258 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3259 if (tsk_is_oom_victim(current) || 3260 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3261 filter &= ~SHOW_MEM_FILTER_NODES; 3262 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3263 filter &= ~SHOW_MEM_FILTER_NODES; 3264 3265 show_mem(filter, nodemask); 3266 } 3267 3268 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3269 { 3270 struct va_format vaf; 3271 va_list args; 3272 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3273 DEFAULT_RATELIMIT_BURST); 3274 3275 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3276 return; 3277 3278 va_start(args, fmt); 3279 vaf.fmt = fmt; 3280 vaf.va = &args; 3281 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3282 current->comm, &vaf, gfp_mask, &gfp_mask, 3283 nodemask_pr_args(nodemask)); 3284 va_end(args); 3285 3286 cpuset_print_current_mems_allowed(); 3287 3288 dump_stack(); 3289 warn_alloc_show_mem(gfp_mask, nodemask); 3290 } 3291 3292 static inline struct page * 3293 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3294 unsigned int alloc_flags, 3295 const struct alloc_context *ac) 3296 { 3297 struct page *page; 3298 3299 page = get_page_from_freelist(gfp_mask, order, 3300 alloc_flags|ALLOC_CPUSET, ac); 3301 /* 3302 * fallback to ignore cpuset restriction if our nodes 3303 * are depleted 3304 */ 3305 if (!page) 3306 page = get_page_from_freelist(gfp_mask, order, 3307 alloc_flags, ac); 3308 3309 return page; 3310 } 3311 3312 static inline struct page * 3313 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3314 const struct alloc_context *ac, unsigned long *did_some_progress) 3315 { 3316 struct oom_control oc = { 3317 .zonelist = ac->zonelist, 3318 .nodemask = ac->nodemask, 3319 .memcg = NULL, 3320 .gfp_mask = gfp_mask, 3321 .order = order, 3322 }; 3323 struct page *page; 3324 3325 *did_some_progress = 0; 3326 3327 /* 3328 * Acquire the oom lock. If that fails, somebody else is 3329 * making progress for us. 3330 */ 3331 if (!mutex_trylock(&oom_lock)) { 3332 *did_some_progress = 1; 3333 schedule_timeout_uninterruptible(1); 3334 return NULL; 3335 } 3336 3337 /* 3338 * Go through the zonelist yet one more time, keep very high watermark 3339 * here, this is only to catch a parallel oom killing, we must fail if 3340 * we're still under heavy pressure. But make sure that this reclaim 3341 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3342 * allocation which will never fail due to oom_lock already held. 3343 */ 3344 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3345 ~__GFP_DIRECT_RECLAIM, order, 3346 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3347 if (page) 3348 goto out; 3349 3350 /* Coredumps can quickly deplete all memory reserves */ 3351 if (current->flags & PF_DUMPCORE) 3352 goto out; 3353 /* The OOM killer will not help higher order allocs */ 3354 if (order > PAGE_ALLOC_COSTLY_ORDER) 3355 goto out; 3356 /* 3357 * We have already exhausted all our reclaim opportunities without any 3358 * success so it is time to admit defeat. We will skip the OOM killer 3359 * because it is very likely that the caller has a more reasonable 3360 * fallback than shooting a random task. 3361 */ 3362 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3363 goto out; 3364 /* The OOM killer does not needlessly kill tasks for lowmem */ 3365 if (ac->high_zoneidx < ZONE_NORMAL) 3366 goto out; 3367 if (pm_suspended_storage()) 3368 goto out; 3369 /* 3370 * XXX: GFP_NOFS allocations should rather fail than rely on 3371 * other request to make a forward progress. 3372 * We are in an unfortunate situation where out_of_memory cannot 3373 * do much for this context but let's try it to at least get 3374 * access to memory reserved if the current task is killed (see 3375 * out_of_memory). Once filesystems are ready to handle allocation 3376 * failures more gracefully we should just bail out here. 3377 */ 3378 3379 /* The OOM killer may not free memory on a specific node */ 3380 if (gfp_mask & __GFP_THISNODE) 3381 goto out; 3382 3383 /* Exhausted what can be done so it's blamo time */ 3384 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3385 *did_some_progress = 1; 3386 3387 /* 3388 * Help non-failing allocations by giving them access to memory 3389 * reserves 3390 */ 3391 if (gfp_mask & __GFP_NOFAIL) 3392 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3393 ALLOC_NO_WATERMARKS, ac); 3394 } 3395 out: 3396 mutex_unlock(&oom_lock); 3397 return page; 3398 } 3399 3400 /* 3401 * Maximum number of compaction retries wit a progress before OOM 3402 * killer is consider as the only way to move forward. 3403 */ 3404 #define MAX_COMPACT_RETRIES 16 3405 3406 #ifdef CONFIG_COMPACTION 3407 /* Try memory compaction for high-order allocations before reclaim */ 3408 static struct page * 3409 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3410 unsigned int alloc_flags, const struct alloc_context *ac, 3411 enum compact_priority prio, enum compact_result *compact_result) 3412 { 3413 struct page *page; 3414 unsigned int noreclaim_flag; 3415 3416 if (!order) 3417 return NULL; 3418 3419 noreclaim_flag = memalloc_noreclaim_save(); 3420 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3421 prio); 3422 memalloc_noreclaim_restore(noreclaim_flag); 3423 3424 if (*compact_result <= COMPACT_INACTIVE) 3425 return NULL; 3426 3427 /* 3428 * At least in one zone compaction wasn't deferred or skipped, so let's 3429 * count a compaction stall 3430 */ 3431 count_vm_event(COMPACTSTALL); 3432 3433 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3434 3435 if (page) { 3436 struct zone *zone = page_zone(page); 3437 3438 zone->compact_blockskip_flush = false; 3439 compaction_defer_reset(zone, order, true); 3440 count_vm_event(COMPACTSUCCESS); 3441 return page; 3442 } 3443 3444 /* 3445 * It's bad if compaction run occurs and fails. The most likely reason 3446 * is that pages exist, but not enough to satisfy watermarks. 3447 */ 3448 count_vm_event(COMPACTFAIL); 3449 3450 cond_resched(); 3451 3452 return NULL; 3453 } 3454 3455 static inline bool 3456 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3457 enum compact_result compact_result, 3458 enum compact_priority *compact_priority, 3459 int *compaction_retries) 3460 { 3461 int max_retries = MAX_COMPACT_RETRIES; 3462 int min_priority; 3463 bool ret = false; 3464 int retries = *compaction_retries; 3465 enum compact_priority priority = *compact_priority; 3466 3467 if (!order) 3468 return false; 3469 3470 if (compaction_made_progress(compact_result)) 3471 (*compaction_retries)++; 3472 3473 /* 3474 * compaction considers all the zone as desperately out of memory 3475 * so it doesn't really make much sense to retry except when the 3476 * failure could be caused by insufficient priority 3477 */ 3478 if (compaction_failed(compact_result)) 3479 goto check_priority; 3480 3481 /* 3482 * make sure the compaction wasn't deferred or didn't bail out early 3483 * due to locks contention before we declare that we should give up. 3484 * But do not retry if the given zonelist is not suitable for 3485 * compaction. 3486 */ 3487 if (compaction_withdrawn(compact_result)) { 3488 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3489 goto out; 3490 } 3491 3492 /* 3493 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3494 * costly ones because they are de facto nofail and invoke OOM 3495 * killer to move on while costly can fail and users are ready 3496 * to cope with that. 1/4 retries is rather arbitrary but we 3497 * would need much more detailed feedback from compaction to 3498 * make a better decision. 3499 */ 3500 if (order > PAGE_ALLOC_COSTLY_ORDER) 3501 max_retries /= 4; 3502 if (*compaction_retries <= max_retries) { 3503 ret = true; 3504 goto out; 3505 } 3506 3507 /* 3508 * Make sure there are attempts at the highest priority if we exhausted 3509 * all retries or failed at the lower priorities. 3510 */ 3511 check_priority: 3512 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3513 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3514 3515 if (*compact_priority > min_priority) { 3516 (*compact_priority)--; 3517 *compaction_retries = 0; 3518 ret = true; 3519 } 3520 out: 3521 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3522 return ret; 3523 } 3524 #else 3525 static inline struct page * 3526 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3527 unsigned int alloc_flags, const struct alloc_context *ac, 3528 enum compact_priority prio, enum compact_result *compact_result) 3529 { 3530 *compact_result = COMPACT_SKIPPED; 3531 return NULL; 3532 } 3533 3534 static inline bool 3535 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3536 enum compact_result compact_result, 3537 enum compact_priority *compact_priority, 3538 int *compaction_retries) 3539 { 3540 struct zone *zone; 3541 struct zoneref *z; 3542 3543 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3544 return false; 3545 3546 /* 3547 * There are setups with compaction disabled which would prefer to loop 3548 * inside the allocator rather than hit the oom killer prematurely. 3549 * Let's give them a good hope and keep retrying while the order-0 3550 * watermarks are OK. 3551 */ 3552 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3553 ac->nodemask) { 3554 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3555 ac_classzone_idx(ac), alloc_flags)) 3556 return true; 3557 } 3558 return false; 3559 } 3560 #endif /* CONFIG_COMPACTION */ 3561 3562 #ifdef CONFIG_LOCKDEP 3563 struct lockdep_map __fs_reclaim_map = 3564 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3565 3566 static bool __need_fs_reclaim(gfp_t gfp_mask) 3567 { 3568 gfp_mask = current_gfp_context(gfp_mask); 3569 3570 /* no reclaim without waiting on it */ 3571 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3572 return false; 3573 3574 /* this guy won't enter reclaim */ 3575 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 3576 return false; 3577 3578 /* We're only interested __GFP_FS allocations for now */ 3579 if (!(gfp_mask & __GFP_FS)) 3580 return false; 3581 3582 if (gfp_mask & __GFP_NOLOCKDEP) 3583 return false; 3584 3585 return true; 3586 } 3587 3588 void fs_reclaim_acquire(gfp_t gfp_mask) 3589 { 3590 if (__need_fs_reclaim(gfp_mask)) 3591 lock_map_acquire(&__fs_reclaim_map); 3592 } 3593 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3594 3595 void fs_reclaim_release(gfp_t gfp_mask) 3596 { 3597 if (__need_fs_reclaim(gfp_mask)) 3598 lock_map_release(&__fs_reclaim_map); 3599 } 3600 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3601 #endif 3602 3603 /* Perform direct synchronous page reclaim */ 3604 static int 3605 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3606 const struct alloc_context *ac) 3607 { 3608 struct reclaim_state reclaim_state; 3609 int progress; 3610 unsigned int noreclaim_flag; 3611 3612 cond_resched(); 3613 3614 /* We now go into synchronous reclaim */ 3615 cpuset_memory_pressure_bump(); 3616 noreclaim_flag = memalloc_noreclaim_save(); 3617 fs_reclaim_acquire(gfp_mask); 3618 reclaim_state.reclaimed_slab = 0; 3619 current->reclaim_state = &reclaim_state; 3620 3621 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3622 ac->nodemask); 3623 3624 current->reclaim_state = NULL; 3625 fs_reclaim_release(gfp_mask); 3626 memalloc_noreclaim_restore(noreclaim_flag); 3627 3628 cond_resched(); 3629 3630 return progress; 3631 } 3632 3633 /* The really slow allocator path where we enter direct reclaim */ 3634 static inline struct page * 3635 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3636 unsigned int alloc_flags, const struct alloc_context *ac, 3637 unsigned long *did_some_progress) 3638 { 3639 struct page *page = NULL; 3640 bool drained = false; 3641 3642 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3643 if (unlikely(!(*did_some_progress))) 3644 return NULL; 3645 3646 retry: 3647 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3648 3649 /* 3650 * If an allocation failed after direct reclaim, it could be because 3651 * pages are pinned on the per-cpu lists or in high alloc reserves. 3652 * Shrink them them and try again 3653 */ 3654 if (!page && !drained) { 3655 unreserve_highatomic_pageblock(ac, false); 3656 drain_all_pages(NULL); 3657 drained = true; 3658 goto retry; 3659 } 3660 3661 return page; 3662 } 3663 3664 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3665 { 3666 struct zoneref *z; 3667 struct zone *zone; 3668 pg_data_t *last_pgdat = NULL; 3669 3670 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3671 ac->high_zoneidx, ac->nodemask) { 3672 if (last_pgdat != zone->zone_pgdat) 3673 wakeup_kswapd(zone, order, ac->high_zoneidx); 3674 last_pgdat = zone->zone_pgdat; 3675 } 3676 } 3677 3678 static inline unsigned int 3679 gfp_to_alloc_flags(gfp_t gfp_mask) 3680 { 3681 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3682 3683 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3684 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3685 3686 /* 3687 * The caller may dip into page reserves a bit more if the caller 3688 * cannot run direct reclaim, or if the caller has realtime scheduling 3689 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3690 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3691 */ 3692 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3693 3694 if (gfp_mask & __GFP_ATOMIC) { 3695 /* 3696 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3697 * if it can't schedule. 3698 */ 3699 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3700 alloc_flags |= ALLOC_HARDER; 3701 /* 3702 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3703 * comment for __cpuset_node_allowed(). 3704 */ 3705 alloc_flags &= ~ALLOC_CPUSET; 3706 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3707 alloc_flags |= ALLOC_HARDER; 3708 3709 #ifdef CONFIG_CMA 3710 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3711 alloc_flags |= ALLOC_CMA; 3712 #endif 3713 return alloc_flags; 3714 } 3715 3716 static bool oom_reserves_allowed(struct task_struct *tsk) 3717 { 3718 if (!tsk_is_oom_victim(tsk)) 3719 return false; 3720 3721 /* 3722 * !MMU doesn't have oom reaper so give access to memory reserves 3723 * only to the thread with TIF_MEMDIE set 3724 */ 3725 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3726 return false; 3727 3728 return true; 3729 } 3730 3731 /* 3732 * Distinguish requests which really need access to full memory 3733 * reserves from oom victims which can live with a portion of it 3734 */ 3735 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3736 { 3737 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3738 return 0; 3739 if (gfp_mask & __GFP_MEMALLOC) 3740 return ALLOC_NO_WATERMARKS; 3741 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3742 return ALLOC_NO_WATERMARKS; 3743 if (!in_interrupt()) { 3744 if (current->flags & PF_MEMALLOC) 3745 return ALLOC_NO_WATERMARKS; 3746 else if (oom_reserves_allowed(current)) 3747 return ALLOC_OOM; 3748 } 3749 3750 return 0; 3751 } 3752 3753 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3754 { 3755 return !!__gfp_pfmemalloc_flags(gfp_mask); 3756 } 3757 3758 /* 3759 * Checks whether it makes sense to retry the reclaim to make a forward progress 3760 * for the given allocation request. 3761 * 3762 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3763 * without success, or when we couldn't even meet the watermark if we 3764 * reclaimed all remaining pages on the LRU lists. 3765 * 3766 * Returns true if a retry is viable or false to enter the oom path. 3767 */ 3768 static inline bool 3769 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3770 struct alloc_context *ac, int alloc_flags, 3771 bool did_some_progress, int *no_progress_loops) 3772 { 3773 struct zone *zone; 3774 struct zoneref *z; 3775 3776 /* 3777 * Costly allocations might have made a progress but this doesn't mean 3778 * their order will become available due to high fragmentation so 3779 * always increment the no progress counter for them 3780 */ 3781 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3782 *no_progress_loops = 0; 3783 else 3784 (*no_progress_loops)++; 3785 3786 /* 3787 * Make sure we converge to OOM if we cannot make any progress 3788 * several times in the row. 3789 */ 3790 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3791 /* Before OOM, exhaust highatomic_reserve */ 3792 return unreserve_highatomic_pageblock(ac, true); 3793 } 3794 3795 /* 3796 * Keep reclaiming pages while there is a chance this will lead 3797 * somewhere. If none of the target zones can satisfy our allocation 3798 * request even if all reclaimable pages are considered then we are 3799 * screwed and have to go OOM. 3800 */ 3801 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3802 ac->nodemask) { 3803 unsigned long available; 3804 unsigned long reclaimable; 3805 unsigned long min_wmark = min_wmark_pages(zone); 3806 bool wmark; 3807 3808 available = reclaimable = zone_reclaimable_pages(zone); 3809 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3810 3811 /* 3812 * Would the allocation succeed if we reclaimed all 3813 * reclaimable pages? 3814 */ 3815 wmark = __zone_watermark_ok(zone, order, min_wmark, 3816 ac_classzone_idx(ac), alloc_flags, available); 3817 trace_reclaim_retry_zone(z, order, reclaimable, 3818 available, min_wmark, *no_progress_loops, wmark); 3819 if (wmark) { 3820 /* 3821 * If we didn't make any progress and have a lot of 3822 * dirty + writeback pages then we should wait for 3823 * an IO to complete to slow down the reclaim and 3824 * prevent from pre mature OOM 3825 */ 3826 if (!did_some_progress) { 3827 unsigned long write_pending; 3828 3829 write_pending = zone_page_state_snapshot(zone, 3830 NR_ZONE_WRITE_PENDING); 3831 3832 if (2 * write_pending > reclaimable) { 3833 congestion_wait(BLK_RW_ASYNC, HZ/10); 3834 return true; 3835 } 3836 } 3837 3838 /* 3839 * Memory allocation/reclaim might be called from a WQ 3840 * context and the current implementation of the WQ 3841 * concurrency control doesn't recognize that 3842 * a particular WQ is congested if the worker thread is 3843 * looping without ever sleeping. Therefore we have to 3844 * do a short sleep here rather than calling 3845 * cond_resched(). 3846 */ 3847 if (current->flags & PF_WQ_WORKER) 3848 schedule_timeout_uninterruptible(1); 3849 else 3850 cond_resched(); 3851 3852 return true; 3853 } 3854 } 3855 3856 return false; 3857 } 3858 3859 static inline bool 3860 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3861 { 3862 /* 3863 * It's possible that cpuset's mems_allowed and the nodemask from 3864 * mempolicy don't intersect. This should be normally dealt with by 3865 * policy_nodemask(), but it's possible to race with cpuset update in 3866 * such a way the check therein was true, and then it became false 3867 * before we got our cpuset_mems_cookie here. 3868 * This assumes that for all allocations, ac->nodemask can come only 3869 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3870 * when it does not intersect with the cpuset restrictions) or the 3871 * caller can deal with a violated nodemask. 3872 */ 3873 if (cpusets_enabled() && ac->nodemask && 3874 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3875 ac->nodemask = NULL; 3876 return true; 3877 } 3878 3879 /* 3880 * When updating a task's mems_allowed or mempolicy nodemask, it is 3881 * possible to race with parallel threads in such a way that our 3882 * allocation can fail while the mask is being updated. If we are about 3883 * to fail, check if the cpuset changed during allocation and if so, 3884 * retry. 3885 */ 3886 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3887 return true; 3888 3889 return false; 3890 } 3891 3892 static inline struct page * 3893 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3894 struct alloc_context *ac) 3895 { 3896 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3897 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3898 struct page *page = NULL; 3899 unsigned int alloc_flags; 3900 unsigned long did_some_progress; 3901 enum compact_priority compact_priority; 3902 enum compact_result compact_result; 3903 int compaction_retries; 3904 int no_progress_loops; 3905 unsigned int cpuset_mems_cookie; 3906 int reserve_flags; 3907 3908 /* 3909 * In the slowpath, we sanity check order to avoid ever trying to 3910 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3911 * be using allocators in order of preference for an area that is 3912 * too large. 3913 */ 3914 if (order >= MAX_ORDER) { 3915 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3916 return NULL; 3917 } 3918 3919 /* 3920 * We also sanity check to catch abuse of atomic reserves being used by 3921 * callers that are not in atomic context. 3922 */ 3923 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3924 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3925 gfp_mask &= ~__GFP_ATOMIC; 3926 3927 retry_cpuset: 3928 compaction_retries = 0; 3929 no_progress_loops = 0; 3930 compact_priority = DEF_COMPACT_PRIORITY; 3931 cpuset_mems_cookie = read_mems_allowed_begin(); 3932 3933 /* 3934 * The fast path uses conservative alloc_flags to succeed only until 3935 * kswapd needs to be woken up, and to avoid the cost of setting up 3936 * alloc_flags precisely. So we do that now. 3937 */ 3938 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3939 3940 /* 3941 * We need to recalculate the starting point for the zonelist iterator 3942 * because we might have used different nodemask in the fast path, or 3943 * there was a cpuset modification and we are retrying - otherwise we 3944 * could end up iterating over non-eligible zones endlessly. 3945 */ 3946 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3947 ac->high_zoneidx, ac->nodemask); 3948 if (!ac->preferred_zoneref->zone) 3949 goto nopage; 3950 3951 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3952 wake_all_kswapds(order, ac); 3953 3954 /* 3955 * The adjusted alloc_flags might result in immediate success, so try 3956 * that first 3957 */ 3958 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3959 if (page) 3960 goto got_pg; 3961 3962 /* 3963 * For costly allocations, try direct compaction first, as it's likely 3964 * that we have enough base pages and don't need to reclaim. For non- 3965 * movable high-order allocations, do that as well, as compaction will 3966 * try prevent permanent fragmentation by migrating from blocks of the 3967 * same migratetype. 3968 * Don't try this for allocations that are allowed to ignore 3969 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3970 */ 3971 if (can_direct_reclaim && 3972 (costly_order || 3973 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3974 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3975 page = __alloc_pages_direct_compact(gfp_mask, order, 3976 alloc_flags, ac, 3977 INIT_COMPACT_PRIORITY, 3978 &compact_result); 3979 if (page) 3980 goto got_pg; 3981 3982 /* 3983 * Checks for costly allocations with __GFP_NORETRY, which 3984 * includes THP page fault allocations 3985 */ 3986 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 3987 /* 3988 * If compaction is deferred for high-order allocations, 3989 * it is because sync compaction recently failed. If 3990 * this is the case and the caller requested a THP 3991 * allocation, we do not want to heavily disrupt the 3992 * system, so we fail the allocation instead of entering 3993 * direct reclaim. 3994 */ 3995 if (compact_result == COMPACT_DEFERRED) 3996 goto nopage; 3997 3998 /* 3999 * Looks like reclaim/compaction is worth trying, but 4000 * sync compaction could be very expensive, so keep 4001 * using async compaction. 4002 */ 4003 compact_priority = INIT_COMPACT_PRIORITY; 4004 } 4005 } 4006 4007 retry: 4008 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4009 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4010 wake_all_kswapds(order, ac); 4011 4012 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4013 if (reserve_flags) 4014 alloc_flags = reserve_flags; 4015 4016 /* 4017 * Reset the zonelist iterators if memory policies can be ignored. 4018 * These allocations are high priority and system rather than user 4019 * orientated. 4020 */ 4021 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4022 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4023 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4024 ac->high_zoneidx, ac->nodemask); 4025 } 4026 4027 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4028 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4029 if (page) 4030 goto got_pg; 4031 4032 /* Caller is not willing to reclaim, we can't balance anything */ 4033 if (!can_direct_reclaim) 4034 goto nopage; 4035 4036 /* Avoid recursion of direct reclaim */ 4037 if (current->flags & PF_MEMALLOC) 4038 goto nopage; 4039 4040 /* Try direct reclaim and then allocating */ 4041 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4042 &did_some_progress); 4043 if (page) 4044 goto got_pg; 4045 4046 /* Try direct compaction and then allocating */ 4047 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4048 compact_priority, &compact_result); 4049 if (page) 4050 goto got_pg; 4051 4052 /* Do not loop if specifically requested */ 4053 if (gfp_mask & __GFP_NORETRY) 4054 goto nopage; 4055 4056 /* 4057 * Do not retry costly high order allocations unless they are 4058 * __GFP_RETRY_MAYFAIL 4059 */ 4060 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4061 goto nopage; 4062 4063 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4064 did_some_progress > 0, &no_progress_loops)) 4065 goto retry; 4066 4067 /* 4068 * It doesn't make any sense to retry for the compaction if the order-0 4069 * reclaim is not able to make any progress because the current 4070 * implementation of the compaction depends on the sufficient amount 4071 * of free memory (see __compaction_suitable) 4072 */ 4073 if (did_some_progress > 0 && 4074 should_compact_retry(ac, order, alloc_flags, 4075 compact_result, &compact_priority, 4076 &compaction_retries)) 4077 goto retry; 4078 4079 4080 /* Deal with possible cpuset update races before we start OOM killing */ 4081 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4082 goto retry_cpuset; 4083 4084 /* Reclaim has failed us, start killing things */ 4085 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4086 if (page) 4087 goto got_pg; 4088 4089 /* Avoid allocations with no watermarks from looping endlessly */ 4090 if (tsk_is_oom_victim(current) && 4091 (alloc_flags == ALLOC_OOM || 4092 (gfp_mask & __GFP_NOMEMALLOC))) 4093 goto nopage; 4094 4095 /* Retry as long as the OOM killer is making progress */ 4096 if (did_some_progress) { 4097 no_progress_loops = 0; 4098 goto retry; 4099 } 4100 4101 nopage: 4102 /* Deal with possible cpuset update races before we fail */ 4103 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4104 goto retry_cpuset; 4105 4106 /* 4107 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4108 * we always retry 4109 */ 4110 if (gfp_mask & __GFP_NOFAIL) { 4111 /* 4112 * All existing users of the __GFP_NOFAIL are blockable, so warn 4113 * of any new users that actually require GFP_NOWAIT 4114 */ 4115 if (WARN_ON_ONCE(!can_direct_reclaim)) 4116 goto fail; 4117 4118 /* 4119 * PF_MEMALLOC request from this context is rather bizarre 4120 * because we cannot reclaim anything and only can loop waiting 4121 * for somebody to do a work for us 4122 */ 4123 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4124 4125 /* 4126 * non failing costly orders are a hard requirement which we 4127 * are not prepared for much so let's warn about these users 4128 * so that we can identify them and convert them to something 4129 * else. 4130 */ 4131 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4132 4133 /* 4134 * Help non-failing allocations by giving them access to memory 4135 * reserves but do not use ALLOC_NO_WATERMARKS because this 4136 * could deplete whole memory reserves which would just make 4137 * the situation worse 4138 */ 4139 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4140 if (page) 4141 goto got_pg; 4142 4143 cond_resched(); 4144 goto retry; 4145 } 4146 fail: 4147 warn_alloc(gfp_mask, ac->nodemask, 4148 "page allocation failure: order:%u", order); 4149 got_pg: 4150 return page; 4151 } 4152 4153 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4154 int preferred_nid, nodemask_t *nodemask, 4155 struct alloc_context *ac, gfp_t *alloc_mask, 4156 unsigned int *alloc_flags) 4157 { 4158 ac->high_zoneidx = gfp_zone(gfp_mask); 4159 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4160 ac->nodemask = nodemask; 4161 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4162 4163 if (cpusets_enabled()) { 4164 *alloc_mask |= __GFP_HARDWALL; 4165 if (!ac->nodemask) 4166 ac->nodemask = &cpuset_current_mems_allowed; 4167 else 4168 *alloc_flags |= ALLOC_CPUSET; 4169 } 4170 4171 fs_reclaim_acquire(gfp_mask); 4172 fs_reclaim_release(gfp_mask); 4173 4174 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4175 4176 if (should_fail_alloc_page(gfp_mask, order)) 4177 return false; 4178 4179 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4180 *alloc_flags |= ALLOC_CMA; 4181 4182 return true; 4183 } 4184 4185 /* Determine whether to spread dirty pages and what the first usable zone */ 4186 static inline void finalise_ac(gfp_t gfp_mask, 4187 unsigned int order, struct alloc_context *ac) 4188 { 4189 /* Dirty zone balancing only done in the fast path */ 4190 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4191 4192 /* 4193 * The preferred zone is used for statistics but crucially it is 4194 * also used as the starting point for the zonelist iterator. It 4195 * may get reset for allocations that ignore memory policies. 4196 */ 4197 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4198 ac->high_zoneidx, ac->nodemask); 4199 } 4200 4201 /* 4202 * This is the 'heart' of the zoned buddy allocator. 4203 */ 4204 struct page * 4205 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4206 nodemask_t *nodemask) 4207 { 4208 struct page *page; 4209 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4210 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4211 struct alloc_context ac = { }; 4212 4213 gfp_mask &= gfp_allowed_mask; 4214 alloc_mask = gfp_mask; 4215 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4216 return NULL; 4217 4218 finalise_ac(gfp_mask, order, &ac); 4219 4220 /* First allocation attempt */ 4221 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4222 if (likely(page)) 4223 goto out; 4224 4225 /* 4226 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4227 * resp. GFP_NOIO which has to be inherited for all allocation requests 4228 * from a particular context which has been marked by 4229 * memalloc_no{fs,io}_{save,restore}. 4230 */ 4231 alloc_mask = current_gfp_context(gfp_mask); 4232 ac.spread_dirty_pages = false; 4233 4234 /* 4235 * Restore the original nodemask if it was potentially replaced with 4236 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4237 */ 4238 if (unlikely(ac.nodemask != nodemask)) 4239 ac.nodemask = nodemask; 4240 4241 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4242 4243 out: 4244 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4245 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4246 __free_pages(page, order); 4247 page = NULL; 4248 } 4249 4250 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4251 4252 return page; 4253 } 4254 EXPORT_SYMBOL(__alloc_pages_nodemask); 4255 4256 /* 4257 * Common helper functions. 4258 */ 4259 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4260 { 4261 struct page *page; 4262 4263 /* 4264 * __get_free_pages() returns a 32-bit address, which cannot represent 4265 * a highmem page 4266 */ 4267 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4268 4269 page = alloc_pages(gfp_mask, order); 4270 if (!page) 4271 return 0; 4272 return (unsigned long) page_address(page); 4273 } 4274 EXPORT_SYMBOL(__get_free_pages); 4275 4276 unsigned long get_zeroed_page(gfp_t gfp_mask) 4277 { 4278 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4279 } 4280 EXPORT_SYMBOL(get_zeroed_page); 4281 4282 void __free_pages(struct page *page, unsigned int order) 4283 { 4284 if (put_page_testzero(page)) { 4285 if (order == 0) 4286 free_unref_page(page); 4287 else 4288 __free_pages_ok(page, order); 4289 } 4290 } 4291 4292 EXPORT_SYMBOL(__free_pages); 4293 4294 void free_pages(unsigned long addr, unsigned int order) 4295 { 4296 if (addr != 0) { 4297 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4298 __free_pages(virt_to_page((void *)addr), order); 4299 } 4300 } 4301 4302 EXPORT_SYMBOL(free_pages); 4303 4304 /* 4305 * Page Fragment: 4306 * An arbitrary-length arbitrary-offset area of memory which resides 4307 * within a 0 or higher order page. Multiple fragments within that page 4308 * are individually refcounted, in the page's reference counter. 4309 * 4310 * The page_frag functions below provide a simple allocation framework for 4311 * page fragments. This is used by the network stack and network device 4312 * drivers to provide a backing region of memory for use as either an 4313 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4314 */ 4315 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4316 gfp_t gfp_mask) 4317 { 4318 struct page *page = NULL; 4319 gfp_t gfp = gfp_mask; 4320 4321 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4322 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4323 __GFP_NOMEMALLOC; 4324 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4325 PAGE_FRAG_CACHE_MAX_ORDER); 4326 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4327 #endif 4328 if (unlikely(!page)) 4329 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4330 4331 nc->va = page ? page_address(page) : NULL; 4332 4333 return page; 4334 } 4335 4336 void __page_frag_cache_drain(struct page *page, unsigned int count) 4337 { 4338 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4339 4340 if (page_ref_sub_and_test(page, count)) { 4341 unsigned int order = compound_order(page); 4342 4343 if (order == 0) 4344 free_unref_page(page); 4345 else 4346 __free_pages_ok(page, order); 4347 } 4348 } 4349 EXPORT_SYMBOL(__page_frag_cache_drain); 4350 4351 void *page_frag_alloc(struct page_frag_cache *nc, 4352 unsigned int fragsz, gfp_t gfp_mask) 4353 { 4354 unsigned int size = PAGE_SIZE; 4355 struct page *page; 4356 int offset; 4357 4358 if (unlikely(!nc->va)) { 4359 refill: 4360 page = __page_frag_cache_refill(nc, gfp_mask); 4361 if (!page) 4362 return NULL; 4363 4364 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4365 /* if size can vary use size else just use PAGE_SIZE */ 4366 size = nc->size; 4367 #endif 4368 /* Even if we own the page, we do not use atomic_set(). 4369 * This would break get_page_unless_zero() users. 4370 */ 4371 page_ref_add(page, size - 1); 4372 4373 /* reset page count bias and offset to start of new frag */ 4374 nc->pfmemalloc = page_is_pfmemalloc(page); 4375 nc->pagecnt_bias = size; 4376 nc->offset = size; 4377 } 4378 4379 offset = nc->offset - fragsz; 4380 if (unlikely(offset < 0)) { 4381 page = virt_to_page(nc->va); 4382 4383 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4384 goto refill; 4385 4386 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4387 /* if size can vary use size else just use PAGE_SIZE */ 4388 size = nc->size; 4389 #endif 4390 /* OK, page count is 0, we can safely set it */ 4391 set_page_count(page, size); 4392 4393 /* reset page count bias and offset to start of new frag */ 4394 nc->pagecnt_bias = size; 4395 offset = size - fragsz; 4396 } 4397 4398 nc->pagecnt_bias--; 4399 nc->offset = offset; 4400 4401 return nc->va + offset; 4402 } 4403 EXPORT_SYMBOL(page_frag_alloc); 4404 4405 /* 4406 * Frees a page fragment allocated out of either a compound or order 0 page. 4407 */ 4408 void page_frag_free(void *addr) 4409 { 4410 struct page *page = virt_to_head_page(addr); 4411 4412 if (unlikely(put_page_testzero(page))) 4413 __free_pages_ok(page, compound_order(page)); 4414 } 4415 EXPORT_SYMBOL(page_frag_free); 4416 4417 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4418 size_t size) 4419 { 4420 if (addr) { 4421 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4422 unsigned long used = addr + PAGE_ALIGN(size); 4423 4424 split_page(virt_to_page((void *)addr), order); 4425 while (used < alloc_end) { 4426 free_page(used); 4427 used += PAGE_SIZE; 4428 } 4429 } 4430 return (void *)addr; 4431 } 4432 4433 /** 4434 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4435 * @size: the number of bytes to allocate 4436 * @gfp_mask: GFP flags for the allocation 4437 * 4438 * This function is similar to alloc_pages(), except that it allocates the 4439 * minimum number of pages to satisfy the request. alloc_pages() can only 4440 * allocate memory in power-of-two pages. 4441 * 4442 * This function is also limited by MAX_ORDER. 4443 * 4444 * Memory allocated by this function must be released by free_pages_exact(). 4445 */ 4446 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4447 { 4448 unsigned int order = get_order(size); 4449 unsigned long addr; 4450 4451 addr = __get_free_pages(gfp_mask, order); 4452 return make_alloc_exact(addr, order, size); 4453 } 4454 EXPORT_SYMBOL(alloc_pages_exact); 4455 4456 /** 4457 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4458 * pages on a node. 4459 * @nid: the preferred node ID where memory should be allocated 4460 * @size: the number of bytes to allocate 4461 * @gfp_mask: GFP flags for the allocation 4462 * 4463 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4464 * back. 4465 */ 4466 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4467 { 4468 unsigned int order = get_order(size); 4469 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4470 if (!p) 4471 return NULL; 4472 return make_alloc_exact((unsigned long)page_address(p), order, size); 4473 } 4474 4475 /** 4476 * free_pages_exact - release memory allocated via alloc_pages_exact() 4477 * @virt: the value returned by alloc_pages_exact. 4478 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4479 * 4480 * Release the memory allocated by a previous call to alloc_pages_exact. 4481 */ 4482 void free_pages_exact(void *virt, size_t size) 4483 { 4484 unsigned long addr = (unsigned long)virt; 4485 unsigned long end = addr + PAGE_ALIGN(size); 4486 4487 while (addr < end) { 4488 free_page(addr); 4489 addr += PAGE_SIZE; 4490 } 4491 } 4492 EXPORT_SYMBOL(free_pages_exact); 4493 4494 /** 4495 * nr_free_zone_pages - count number of pages beyond high watermark 4496 * @offset: The zone index of the highest zone 4497 * 4498 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4499 * high watermark within all zones at or below a given zone index. For each 4500 * zone, the number of pages is calculated as: 4501 * 4502 * nr_free_zone_pages = managed_pages - high_pages 4503 */ 4504 static unsigned long nr_free_zone_pages(int offset) 4505 { 4506 struct zoneref *z; 4507 struct zone *zone; 4508 4509 /* Just pick one node, since fallback list is circular */ 4510 unsigned long sum = 0; 4511 4512 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4513 4514 for_each_zone_zonelist(zone, z, zonelist, offset) { 4515 unsigned long size = zone->managed_pages; 4516 unsigned long high = high_wmark_pages(zone); 4517 if (size > high) 4518 sum += size - high; 4519 } 4520 4521 return sum; 4522 } 4523 4524 /** 4525 * nr_free_buffer_pages - count number of pages beyond high watermark 4526 * 4527 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4528 * watermark within ZONE_DMA and ZONE_NORMAL. 4529 */ 4530 unsigned long nr_free_buffer_pages(void) 4531 { 4532 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4533 } 4534 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4535 4536 /** 4537 * nr_free_pagecache_pages - count number of pages beyond high watermark 4538 * 4539 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4540 * high watermark within all zones. 4541 */ 4542 unsigned long nr_free_pagecache_pages(void) 4543 { 4544 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4545 } 4546 4547 static inline void show_node(struct zone *zone) 4548 { 4549 if (IS_ENABLED(CONFIG_NUMA)) 4550 printk("Node %d ", zone_to_nid(zone)); 4551 } 4552 4553 long si_mem_available(void) 4554 { 4555 long available; 4556 unsigned long pagecache; 4557 unsigned long wmark_low = 0; 4558 unsigned long pages[NR_LRU_LISTS]; 4559 struct zone *zone; 4560 int lru; 4561 4562 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4563 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4564 4565 for_each_zone(zone) 4566 wmark_low += zone->watermark[WMARK_LOW]; 4567 4568 /* 4569 * Estimate the amount of memory available for userspace allocations, 4570 * without causing swapping. 4571 */ 4572 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4573 4574 /* 4575 * Not all the page cache can be freed, otherwise the system will 4576 * start swapping. Assume at least half of the page cache, or the 4577 * low watermark worth of cache, needs to stay. 4578 */ 4579 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4580 pagecache -= min(pagecache / 2, wmark_low); 4581 available += pagecache; 4582 4583 /* 4584 * Part of the reclaimable slab consists of items that are in use, 4585 * and cannot be freed. Cap this estimate at the low watermark. 4586 */ 4587 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4588 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4589 wmark_low); 4590 4591 if (available < 0) 4592 available = 0; 4593 return available; 4594 } 4595 EXPORT_SYMBOL_GPL(si_mem_available); 4596 4597 void si_meminfo(struct sysinfo *val) 4598 { 4599 val->totalram = totalram_pages; 4600 val->sharedram = global_node_page_state(NR_SHMEM); 4601 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4602 val->bufferram = nr_blockdev_pages(); 4603 val->totalhigh = totalhigh_pages; 4604 val->freehigh = nr_free_highpages(); 4605 val->mem_unit = PAGE_SIZE; 4606 } 4607 4608 EXPORT_SYMBOL(si_meminfo); 4609 4610 #ifdef CONFIG_NUMA 4611 void si_meminfo_node(struct sysinfo *val, int nid) 4612 { 4613 int zone_type; /* needs to be signed */ 4614 unsigned long managed_pages = 0; 4615 unsigned long managed_highpages = 0; 4616 unsigned long free_highpages = 0; 4617 pg_data_t *pgdat = NODE_DATA(nid); 4618 4619 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4620 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4621 val->totalram = managed_pages; 4622 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4623 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4624 #ifdef CONFIG_HIGHMEM 4625 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4626 struct zone *zone = &pgdat->node_zones[zone_type]; 4627 4628 if (is_highmem(zone)) { 4629 managed_highpages += zone->managed_pages; 4630 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4631 } 4632 } 4633 val->totalhigh = managed_highpages; 4634 val->freehigh = free_highpages; 4635 #else 4636 val->totalhigh = managed_highpages; 4637 val->freehigh = free_highpages; 4638 #endif 4639 val->mem_unit = PAGE_SIZE; 4640 } 4641 #endif 4642 4643 /* 4644 * Determine whether the node should be displayed or not, depending on whether 4645 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4646 */ 4647 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4648 { 4649 if (!(flags & SHOW_MEM_FILTER_NODES)) 4650 return false; 4651 4652 /* 4653 * no node mask - aka implicit memory numa policy. Do not bother with 4654 * the synchronization - read_mems_allowed_begin - because we do not 4655 * have to be precise here. 4656 */ 4657 if (!nodemask) 4658 nodemask = &cpuset_current_mems_allowed; 4659 4660 return !node_isset(nid, *nodemask); 4661 } 4662 4663 #define K(x) ((x) << (PAGE_SHIFT-10)) 4664 4665 static void show_migration_types(unsigned char type) 4666 { 4667 static const char types[MIGRATE_TYPES] = { 4668 [MIGRATE_UNMOVABLE] = 'U', 4669 [MIGRATE_MOVABLE] = 'M', 4670 [MIGRATE_RECLAIMABLE] = 'E', 4671 [MIGRATE_HIGHATOMIC] = 'H', 4672 #ifdef CONFIG_CMA 4673 [MIGRATE_CMA] = 'C', 4674 #endif 4675 #ifdef CONFIG_MEMORY_ISOLATION 4676 [MIGRATE_ISOLATE] = 'I', 4677 #endif 4678 }; 4679 char tmp[MIGRATE_TYPES + 1]; 4680 char *p = tmp; 4681 int i; 4682 4683 for (i = 0; i < MIGRATE_TYPES; i++) { 4684 if (type & (1 << i)) 4685 *p++ = types[i]; 4686 } 4687 4688 *p = '\0'; 4689 printk(KERN_CONT "(%s) ", tmp); 4690 } 4691 4692 /* 4693 * Show free area list (used inside shift_scroll-lock stuff) 4694 * We also calculate the percentage fragmentation. We do this by counting the 4695 * memory on each free list with the exception of the first item on the list. 4696 * 4697 * Bits in @filter: 4698 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4699 * cpuset. 4700 */ 4701 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4702 { 4703 unsigned long free_pcp = 0; 4704 int cpu; 4705 struct zone *zone; 4706 pg_data_t *pgdat; 4707 4708 for_each_populated_zone(zone) { 4709 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4710 continue; 4711 4712 for_each_online_cpu(cpu) 4713 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4714 } 4715 4716 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4717 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4718 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4719 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4720 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4721 " free:%lu free_pcp:%lu free_cma:%lu\n", 4722 global_node_page_state(NR_ACTIVE_ANON), 4723 global_node_page_state(NR_INACTIVE_ANON), 4724 global_node_page_state(NR_ISOLATED_ANON), 4725 global_node_page_state(NR_ACTIVE_FILE), 4726 global_node_page_state(NR_INACTIVE_FILE), 4727 global_node_page_state(NR_ISOLATED_FILE), 4728 global_node_page_state(NR_UNEVICTABLE), 4729 global_node_page_state(NR_FILE_DIRTY), 4730 global_node_page_state(NR_WRITEBACK), 4731 global_node_page_state(NR_UNSTABLE_NFS), 4732 global_node_page_state(NR_SLAB_RECLAIMABLE), 4733 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4734 global_node_page_state(NR_FILE_MAPPED), 4735 global_node_page_state(NR_SHMEM), 4736 global_zone_page_state(NR_PAGETABLE), 4737 global_zone_page_state(NR_BOUNCE), 4738 global_zone_page_state(NR_FREE_PAGES), 4739 free_pcp, 4740 global_zone_page_state(NR_FREE_CMA_PAGES)); 4741 4742 for_each_online_pgdat(pgdat) { 4743 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4744 continue; 4745 4746 printk("Node %d" 4747 " active_anon:%lukB" 4748 " inactive_anon:%lukB" 4749 " active_file:%lukB" 4750 " inactive_file:%lukB" 4751 " unevictable:%lukB" 4752 " isolated(anon):%lukB" 4753 " isolated(file):%lukB" 4754 " mapped:%lukB" 4755 " dirty:%lukB" 4756 " writeback:%lukB" 4757 " shmem:%lukB" 4758 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4759 " shmem_thp: %lukB" 4760 " shmem_pmdmapped: %lukB" 4761 " anon_thp: %lukB" 4762 #endif 4763 " writeback_tmp:%lukB" 4764 " unstable:%lukB" 4765 " all_unreclaimable? %s" 4766 "\n", 4767 pgdat->node_id, 4768 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4769 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4770 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4771 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4772 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4773 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4774 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4775 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4776 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4777 K(node_page_state(pgdat, NR_WRITEBACK)), 4778 K(node_page_state(pgdat, NR_SHMEM)), 4779 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4780 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4781 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4782 * HPAGE_PMD_NR), 4783 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4784 #endif 4785 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4786 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4787 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4788 "yes" : "no"); 4789 } 4790 4791 for_each_populated_zone(zone) { 4792 int i; 4793 4794 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4795 continue; 4796 4797 free_pcp = 0; 4798 for_each_online_cpu(cpu) 4799 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4800 4801 show_node(zone); 4802 printk(KERN_CONT 4803 "%s" 4804 " free:%lukB" 4805 " min:%lukB" 4806 " low:%lukB" 4807 " high:%lukB" 4808 " active_anon:%lukB" 4809 " inactive_anon:%lukB" 4810 " active_file:%lukB" 4811 " inactive_file:%lukB" 4812 " unevictable:%lukB" 4813 " writepending:%lukB" 4814 " present:%lukB" 4815 " managed:%lukB" 4816 " mlocked:%lukB" 4817 " kernel_stack:%lukB" 4818 " pagetables:%lukB" 4819 " bounce:%lukB" 4820 " free_pcp:%lukB" 4821 " local_pcp:%ukB" 4822 " free_cma:%lukB" 4823 "\n", 4824 zone->name, 4825 K(zone_page_state(zone, NR_FREE_PAGES)), 4826 K(min_wmark_pages(zone)), 4827 K(low_wmark_pages(zone)), 4828 K(high_wmark_pages(zone)), 4829 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4830 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4831 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4832 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4833 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4834 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4835 K(zone->present_pages), 4836 K(zone->managed_pages), 4837 K(zone_page_state(zone, NR_MLOCK)), 4838 zone_page_state(zone, NR_KERNEL_STACK_KB), 4839 K(zone_page_state(zone, NR_PAGETABLE)), 4840 K(zone_page_state(zone, NR_BOUNCE)), 4841 K(free_pcp), 4842 K(this_cpu_read(zone->pageset->pcp.count)), 4843 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4844 printk("lowmem_reserve[]:"); 4845 for (i = 0; i < MAX_NR_ZONES; i++) 4846 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4847 printk(KERN_CONT "\n"); 4848 } 4849 4850 for_each_populated_zone(zone) { 4851 unsigned int order; 4852 unsigned long nr[MAX_ORDER], flags, total = 0; 4853 unsigned char types[MAX_ORDER]; 4854 4855 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4856 continue; 4857 show_node(zone); 4858 printk(KERN_CONT "%s: ", zone->name); 4859 4860 spin_lock_irqsave(&zone->lock, flags); 4861 for (order = 0; order < MAX_ORDER; order++) { 4862 struct free_area *area = &zone->free_area[order]; 4863 int type; 4864 4865 nr[order] = area->nr_free; 4866 total += nr[order] << order; 4867 4868 types[order] = 0; 4869 for (type = 0; type < MIGRATE_TYPES; type++) { 4870 if (!list_empty(&area->free_list[type])) 4871 types[order] |= 1 << type; 4872 } 4873 } 4874 spin_unlock_irqrestore(&zone->lock, flags); 4875 for (order = 0; order < MAX_ORDER; order++) { 4876 printk(KERN_CONT "%lu*%lukB ", 4877 nr[order], K(1UL) << order); 4878 if (nr[order]) 4879 show_migration_types(types[order]); 4880 } 4881 printk(KERN_CONT "= %lukB\n", K(total)); 4882 } 4883 4884 hugetlb_show_meminfo(); 4885 4886 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4887 4888 show_swap_cache_info(); 4889 } 4890 4891 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4892 { 4893 zoneref->zone = zone; 4894 zoneref->zone_idx = zone_idx(zone); 4895 } 4896 4897 /* 4898 * Builds allocation fallback zone lists. 4899 * 4900 * Add all populated zones of a node to the zonelist. 4901 */ 4902 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4903 { 4904 struct zone *zone; 4905 enum zone_type zone_type = MAX_NR_ZONES; 4906 int nr_zones = 0; 4907 4908 do { 4909 zone_type--; 4910 zone = pgdat->node_zones + zone_type; 4911 if (managed_zone(zone)) { 4912 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4913 check_highest_zone(zone_type); 4914 } 4915 } while (zone_type); 4916 4917 return nr_zones; 4918 } 4919 4920 #ifdef CONFIG_NUMA 4921 4922 static int __parse_numa_zonelist_order(char *s) 4923 { 4924 /* 4925 * We used to support different zonlists modes but they turned 4926 * out to be just not useful. Let's keep the warning in place 4927 * if somebody still use the cmd line parameter so that we do 4928 * not fail it silently 4929 */ 4930 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4931 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4932 return -EINVAL; 4933 } 4934 return 0; 4935 } 4936 4937 static __init int setup_numa_zonelist_order(char *s) 4938 { 4939 if (!s) 4940 return 0; 4941 4942 return __parse_numa_zonelist_order(s); 4943 } 4944 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4945 4946 char numa_zonelist_order[] = "Node"; 4947 4948 /* 4949 * sysctl handler for numa_zonelist_order 4950 */ 4951 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4952 void __user *buffer, size_t *length, 4953 loff_t *ppos) 4954 { 4955 char *str; 4956 int ret; 4957 4958 if (!write) 4959 return proc_dostring(table, write, buffer, length, ppos); 4960 str = memdup_user_nul(buffer, 16); 4961 if (IS_ERR(str)) 4962 return PTR_ERR(str); 4963 4964 ret = __parse_numa_zonelist_order(str); 4965 kfree(str); 4966 return ret; 4967 } 4968 4969 4970 #define MAX_NODE_LOAD (nr_online_nodes) 4971 static int node_load[MAX_NUMNODES]; 4972 4973 /** 4974 * find_next_best_node - find the next node that should appear in a given node's fallback list 4975 * @node: node whose fallback list we're appending 4976 * @used_node_mask: nodemask_t of already used nodes 4977 * 4978 * We use a number of factors to determine which is the next node that should 4979 * appear on a given node's fallback list. The node should not have appeared 4980 * already in @node's fallback list, and it should be the next closest node 4981 * according to the distance array (which contains arbitrary distance values 4982 * from each node to each node in the system), and should also prefer nodes 4983 * with no CPUs, since presumably they'll have very little allocation pressure 4984 * on them otherwise. 4985 * It returns -1 if no node is found. 4986 */ 4987 static int find_next_best_node(int node, nodemask_t *used_node_mask) 4988 { 4989 int n, val; 4990 int min_val = INT_MAX; 4991 int best_node = NUMA_NO_NODE; 4992 const struct cpumask *tmp = cpumask_of_node(0); 4993 4994 /* Use the local node if we haven't already */ 4995 if (!node_isset(node, *used_node_mask)) { 4996 node_set(node, *used_node_mask); 4997 return node; 4998 } 4999 5000 for_each_node_state(n, N_MEMORY) { 5001 5002 /* Don't want a node to appear more than once */ 5003 if (node_isset(n, *used_node_mask)) 5004 continue; 5005 5006 /* Use the distance array to find the distance */ 5007 val = node_distance(node, n); 5008 5009 /* Penalize nodes under us ("prefer the next node") */ 5010 val += (n < node); 5011 5012 /* Give preference to headless and unused nodes */ 5013 tmp = cpumask_of_node(n); 5014 if (!cpumask_empty(tmp)) 5015 val += PENALTY_FOR_NODE_WITH_CPUS; 5016 5017 /* Slight preference for less loaded node */ 5018 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5019 val += node_load[n]; 5020 5021 if (val < min_val) { 5022 min_val = val; 5023 best_node = n; 5024 } 5025 } 5026 5027 if (best_node >= 0) 5028 node_set(best_node, *used_node_mask); 5029 5030 return best_node; 5031 } 5032 5033 5034 /* 5035 * Build zonelists ordered by node and zones within node. 5036 * This results in maximum locality--normal zone overflows into local 5037 * DMA zone, if any--but risks exhausting DMA zone. 5038 */ 5039 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5040 unsigned nr_nodes) 5041 { 5042 struct zoneref *zonerefs; 5043 int i; 5044 5045 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5046 5047 for (i = 0; i < nr_nodes; i++) { 5048 int nr_zones; 5049 5050 pg_data_t *node = NODE_DATA(node_order[i]); 5051 5052 nr_zones = build_zonerefs_node(node, zonerefs); 5053 zonerefs += nr_zones; 5054 } 5055 zonerefs->zone = NULL; 5056 zonerefs->zone_idx = 0; 5057 } 5058 5059 /* 5060 * Build gfp_thisnode zonelists 5061 */ 5062 static void build_thisnode_zonelists(pg_data_t *pgdat) 5063 { 5064 struct zoneref *zonerefs; 5065 int nr_zones; 5066 5067 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5068 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5069 zonerefs += nr_zones; 5070 zonerefs->zone = NULL; 5071 zonerefs->zone_idx = 0; 5072 } 5073 5074 /* 5075 * Build zonelists ordered by zone and nodes within zones. 5076 * This results in conserving DMA zone[s] until all Normal memory is 5077 * exhausted, but results in overflowing to remote node while memory 5078 * may still exist in local DMA zone. 5079 */ 5080 5081 static void build_zonelists(pg_data_t *pgdat) 5082 { 5083 static int node_order[MAX_NUMNODES]; 5084 int node, load, nr_nodes = 0; 5085 nodemask_t used_mask; 5086 int local_node, prev_node; 5087 5088 /* NUMA-aware ordering of nodes */ 5089 local_node = pgdat->node_id; 5090 load = nr_online_nodes; 5091 prev_node = local_node; 5092 nodes_clear(used_mask); 5093 5094 memset(node_order, 0, sizeof(node_order)); 5095 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5096 /* 5097 * We don't want to pressure a particular node. 5098 * So adding penalty to the first node in same 5099 * distance group to make it round-robin. 5100 */ 5101 if (node_distance(local_node, node) != 5102 node_distance(local_node, prev_node)) 5103 node_load[node] = load; 5104 5105 node_order[nr_nodes++] = node; 5106 prev_node = node; 5107 load--; 5108 } 5109 5110 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5111 build_thisnode_zonelists(pgdat); 5112 } 5113 5114 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5115 /* 5116 * Return node id of node used for "local" allocations. 5117 * I.e., first node id of first zone in arg node's generic zonelist. 5118 * Used for initializing percpu 'numa_mem', which is used primarily 5119 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5120 */ 5121 int local_memory_node(int node) 5122 { 5123 struct zoneref *z; 5124 5125 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5126 gfp_zone(GFP_KERNEL), 5127 NULL); 5128 return z->zone->node; 5129 } 5130 #endif 5131 5132 static void setup_min_unmapped_ratio(void); 5133 static void setup_min_slab_ratio(void); 5134 #else /* CONFIG_NUMA */ 5135 5136 static void build_zonelists(pg_data_t *pgdat) 5137 { 5138 int node, local_node; 5139 struct zoneref *zonerefs; 5140 int nr_zones; 5141 5142 local_node = pgdat->node_id; 5143 5144 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5145 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5146 zonerefs += nr_zones; 5147 5148 /* 5149 * Now we build the zonelist so that it contains the zones 5150 * of all the other nodes. 5151 * We don't want to pressure a particular node, so when 5152 * building the zones for node N, we make sure that the 5153 * zones coming right after the local ones are those from 5154 * node N+1 (modulo N) 5155 */ 5156 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5157 if (!node_online(node)) 5158 continue; 5159 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5160 zonerefs += nr_zones; 5161 } 5162 for (node = 0; node < local_node; node++) { 5163 if (!node_online(node)) 5164 continue; 5165 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5166 zonerefs += nr_zones; 5167 } 5168 5169 zonerefs->zone = NULL; 5170 zonerefs->zone_idx = 0; 5171 } 5172 5173 #endif /* CONFIG_NUMA */ 5174 5175 /* 5176 * Boot pageset table. One per cpu which is going to be used for all 5177 * zones and all nodes. The parameters will be set in such a way 5178 * that an item put on a list will immediately be handed over to 5179 * the buddy list. This is safe since pageset manipulation is done 5180 * with interrupts disabled. 5181 * 5182 * The boot_pagesets must be kept even after bootup is complete for 5183 * unused processors and/or zones. They do play a role for bootstrapping 5184 * hotplugged processors. 5185 * 5186 * zoneinfo_show() and maybe other functions do 5187 * not check if the processor is online before following the pageset pointer. 5188 * Other parts of the kernel may not check if the zone is available. 5189 */ 5190 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5191 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5192 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5193 5194 static void __build_all_zonelists(void *data) 5195 { 5196 int nid; 5197 int __maybe_unused cpu; 5198 pg_data_t *self = data; 5199 static DEFINE_SPINLOCK(lock); 5200 5201 spin_lock(&lock); 5202 5203 #ifdef CONFIG_NUMA 5204 memset(node_load, 0, sizeof(node_load)); 5205 #endif 5206 5207 /* 5208 * This node is hotadded and no memory is yet present. So just 5209 * building zonelists is fine - no need to touch other nodes. 5210 */ 5211 if (self && !node_online(self->node_id)) { 5212 build_zonelists(self); 5213 } else { 5214 for_each_online_node(nid) { 5215 pg_data_t *pgdat = NODE_DATA(nid); 5216 5217 build_zonelists(pgdat); 5218 } 5219 5220 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5221 /* 5222 * We now know the "local memory node" for each node-- 5223 * i.e., the node of the first zone in the generic zonelist. 5224 * Set up numa_mem percpu variable for on-line cpus. During 5225 * boot, only the boot cpu should be on-line; we'll init the 5226 * secondary cpus' numa_mem as they come on-line. During 5227 * node/memory hotplug, we'll fixup all on-line cpus. 5228 */ 5229 for_each_online_cpu(cpu) 5230 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5231 #endif 5232 } 5233 5234 spin_unlock(&lock); 5235 } 5236 5237 static noinline void __init 5238 build_all_zonelists_init(void) 5239 { 5240 int cpu; 5241 5242 __build_all_zonelists(NULL); 5243 5244 /* 5245 * Initialize the boot_pagesets that are going to be used 5246 * for bootstrapping processors. The real pagesets for 5247 * each zone will be allocated later when the per cpu 5248 * allocator is available. 5249 * 5250 * boot_pagesets are used also for bootstrapping offline 5251 * cpus if the system is already booted because the pagesets 5252 * are needed to initialize allocators on a specific cpu too. 5253 * F.e. the percpu allocator needs the page allocator which 5254 * needs the percpu allocator in order to allocate its pagesets 5255 * (a chicken-egg dilemma). 5256 */ 5257 for_each_possible_cpu(cpu) 5258 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5259 5260 mminit_verify_zonelist(); 5261 cpuset_init_current_mems_allowed(); 5262 } 5263 5264 /* 5265 * unless system_state == SYSTEM_BOOTING. 5266 * 5267 * __ref due to call of __init annotated helper build_all_zonelists_init 5268 * [protected by SYSTEM_BOOTING]. 5269 */ 5270 void __ref build_all_zonelists(pg_data_t *pgdat) 5271 { 5272 if (system_state == SYSTEM_BOOTING) { 5273 build_all_zonelists_init(); 5274 } else { 5275 __build_all_zonelists(pgdat); 5276 /* cpuset refresh routine should be here */ 5277 } 5278 vm_total_pages = nr_free_pagecache_pages(); 5279 /* 5280 * Disable grouping by mobility if the number of pages in the 5281 * system is too low to allow the mechanism to work. It would be 5282 * more accurate, but expensive to check per-zone. This check is 5283 * made on memory-hotadd so a system can start with mobility 5284 * disabled and enable it later 5285 */ 5286 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5287 page_group_by_mobility_disabled = 1; 5288 else 5289 page_group_by_mobility_disabled = 0; 5290 5291 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5292 nr_online_nodes, 5293 page_group_by_mobility_disabled ? "off" : "on", 5294 vm_total_pages); 5295 #ifdef CONFIG_NUMA 5296 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5297 #endif 5298 } 5299 5300 /* 5301 * Initially all pages are reserved - free ones are freed 5302 * up by free_all_bootmem() once the early boot process is 5303 * done. Non-atomic initialization, single-pass. 5304 */ 5305 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5306 unsigned long start_pfn, enum memmap_context context) 5307 { 5308 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn)); 5309 unsigned long end_pfn = start_pfn + size; 5310 pg_data_t *pgdat = NODE_DATA(nid); 5311 unsigned long pfn; 5312 unsigned long nr_initialised = 0; 5313 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5314 struct memblock_region *r = NULL, *tmp; 5315 #endif 5316 5317 if (highest_memmap_pfn < end_pfn - 1) 5318 highest_memmap_pfn = end_pfn - 1; 5319 5320 /* 5321 * Honor reservation requested by the driver for this ZONE_DEVICE 5322 * memory 5323 */ 5324 if (altmap && start_pfn == altmap->base_pfn) 5325 start_pfn += altmap->reserve; 5326 5327 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5328 /* 5329 * There can be holes in boot-time mem_map[]s handed to this 5330 * function. They do not exist on hotplugged memory. 5331 */ 5332 if (context != MEMMAP_EARLY) 5333 goto not_early; 5334 5335 if (!early_pfn_valid(pfn)) { 5336 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5337 /* 5338 * Skip to the pfn preceding the next valid one (or 5339 * end_pfn), such that we hit a valid pfn (or end_pfn) 5340 * on our next iteration of the loop. 5341 */ 5342 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5343 #endif 5344 continue; 5345 } 5346 if (!early_pfn_in_nid(pfn, nid)) 5347 continue; 5348 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5349 break; 5350 5351 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5352 /* 5353 * Check given memblock attribute by firmware which can affect 5354 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5355 * mirrored, it's an overlapped memmap init. skip it. 5356 */ 5357 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5358 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5359 for_each_memblock(memory, tmp) 5360 if (pfn < memblock_region_memory_end_pfn(tmp)) 5361 break; 5362 r = tmp; 5363 } 5364 if (pfn >= memblock_region_memory_base_pfn(r) && 5365 memblock_is_mirror(r)) { 5366 /* already initialized as NORMAL */ 5367 pfn = memblock_region_memory_end_pfn(r); 5368 continue; 5369 } 5370 } 5371 #endif 5372 5373 not_early: 5374 /* 5375 * Mark the block movable so that blocks are reserved for 5376 * movable at startup. This will force kernel allocations 5377 * to reserve their blocks rather than leaking throughout 5378 * the address space during boot when many long-lived 5379 * kernel allocations are made. 5380 * 5381 * bitmap is created for zone's valid pfn range. but memmap 5382 * can be created for invalid pages (for alignment) 5383 * check here not to call set_pageblock_migratetype() against 5384 * pfn out of zone. 5385 */ 5386 if (!(pfn & (pageblock_nr_pages - 1))) { 5387 struct page *page = pfn_to_page(pfn); 5388 5389 __init_single_page(page, pfn, zone, nid); 5390 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5391 cond_resched(); 5392 } else { 5393 __init_single_pfn(pfn, zone, nid); 5394 } 5395 } 5396 } 5397 5398 static void __meminit zone_init_free_lists(struct zone *zone) 5399 { 5400 unsigned int order, t; 5401 for_each_migratetype_order(order, t) { 5402 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5403 zone->free_area[order].nr_free = 0; 5404 } 5405 } 5406 5407 #ifndef __HAVE_ARCH_MEMMAP_INIT 5408 #define memmap_init(size, nid, zone, start_pfn) \ 5409 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 5410 #endif 5411 5412 static int zone_batchsize(struct zone *zone) 5413 { 5414 #ifdef CONFIG_MMU 5415 int batch; 5416 5417 /* 5418 * The per-cpu-pages pools are set to around 1000th of the 5419 * size of the zone. But no more than 1/2 of a meg. 5420 * 5421 * OK, so we don't know how big the cache is. So guess. 5422 */ 5423 batch = zone->managed_pages / 1024; 5424 if (batch * PAGE_SIZE > 512 * 1024) 5425 batch = (512 * 1024) / PAGE_SIZE; 5426 batch /= 4; /* We effectively *= 4 below */ 5427 if (batch < 1) 5428 batch = 1; 5429 5430 /* 5431 * Clamp the batch to a 2^n - 1 value. Having a power 5432 * of 2 value was found to be more likely to have 5433 * suboptimal cache aliasing properties in some cases. 5434 * 5435 * For example if 2 tasks are alternately allocating 5436 * batches of pages, one task can end up with a lot 5437 * of pages of one half of the possible page colors 5438 * and the other with pages of the other colors. 5439 */ 5440 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5441 5442 return batch; 5443 5444 #else 5445 /* The deferral and batching of frees should be suppressed under NOMMU 5446 * conditions. 5447 * 5448 * The problem is that NOMMU needs to be able to allocate large chunks 5449 * of contiguous memory as there's no hardware page translation to 5450 * assemble apparent contiguous memory from discontiguous pages. 5451 * 5452 * Queueing large contiguous runs of pages for batching, however, 5453 * causes the pages to actually be freed in smaller chunks. As there 5454 * can be a significant delay between the individual batches being 5455 * recycled, this leads to the once large chunks of space being 5456 * fragmented and becoming unavailable for high-order allocations. 5457 */ 5458 return 0; 5459 #endif 5460 } 5461 5462 /* 5463 * pcp->high and pcp->batch values are related and dependent on one another: 5464 * ->batch must never be higher then ->high. 5465 * The following function updates them in a safe manner without read side 5466 * locking. 5467 * 5468 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5469 * those fields changing asynchronously (acording the the above rule). 5470 * 5471 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5472 * outside of boot time (or some other assurance that no concurrent updaters 5473 * exist). 5474 */ 5475 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5476 unsigned long batch) 5477 { 5478 /* start with a fail safe value for batch */ 5479 pcp->batch = 1; 5480 smp_wmb(); 5481 5482 /* Update high, then batch, in order */ 5483 pcp->high = high; 5484 smp_wmb(); 5485 5486 pcp->batch = batch; 5487 } 5488 5489 /* a companion to pageset_set_high() */ 5490 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5491 { 5492 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5493 } 5494 5495 static void pageset_init(struct per_cpu_pageset *p) 5496 { 5497 struct per_cpu_pages *pcp; 5498 int migratetype; 5499 5500 memset(p, 0, sizeof(*p)); 5501 5502 pcp = &p->pcp; 5503 pcp->count = 0; 5504 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5505 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5506 } 5507 5508 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5509 { 5510 pageset_init(p); 5511 pageset_set_batch(p, batch); 5512 } 5513 5514 /* 5515 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5516 * to the value high for the pageset p. 5517 */ 5518 static void pageset_set_high(struct per_cpu_pageset *p, 5519 unsigned long high) 5520 { 5521 unsigned long batch = max(1UL, high / 4); 5522 if ((high / 4) > (PAGE_SHIFT * 8)) 5523 batch = PAGE_SHIFT * 8; 5524 5525 pageset_update(&p->pcp, high, batch); 5526 } 5527 5528 static void pageset_set_high_and_batch(struct zone *zone, 5529 struct per_cpu_pageset *pcp) 5530 { 5531 if (percpu_pagelist_fraction) 5532 pageset_set_high(pcp, 5533 (zone->managed_pages / 5534 percpu_pagelist_fraction)); 5535 else 5536 pageset_set_batch(pcp, zone_batchsize(zone)); 5537 } 5538 5539 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5540 { 5541 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5542 5543 pageset_init(pcp); 5544 pageset_set_high_and_batch(zone, pcp); 5545 } 5546 5547 void __meminit setup_zone_pageset(struct zone *zone) 5548 { 5549 int cpu; 5550 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5551 for_each_possible_cpu(cpu) 5552 zone_pageset_init(zone, cpu); 5553 } 5554 5555 /* 5556 * Allocate per cpu pagesets and initialize them. 5557 * Before this call only boot pagesets were available. 5558 */ 5559 void __init setup_per_cpu_pageset(void) 5560 { 5561 struct pglist_data *pgdat; 5562 struct zone *zone; 5563 5564 for_each_populated_zone(zone) 5565 setup_zone_pageset(zone); 5566 5567 for_each_online_pgdat(pgdat) 5568 pgdat->per_cpu_nodestats = 5569 alloc_percpu(struct per_cpu_nodestat); 5570 } 5571 5572 static __meminit void zone_pcp_init(struct zone *zone) 5573 { 5574 /* 5575 * per cpu subsystem is not up at this point. The following code 5576 * relies on the ability of the linker to provide the 5577 * offset of a (static) per cpu variable into the per cpu area. 5578 */ 5579 zone->pageset = &boot_pageset; 5580 5581 if (populated_zone(zone)) 5582 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5583 zone->name, zone->present_pages, 5584 zone_batchsize(zone)); 5585 } 5586 5587 void __meminit init_currently_empty_zone(struct zone *zone, 5588 unsigned long zone_start_pfn, 5589 unsigned long size) 5590 { 5591 struct pglist_data *pgdat = zone->zone_pgdat; 5592 5593 pgdat->nr_zones = zone_idx(zone) + 1; 5594 5595 zone->zone_start_pfn = zone_start_pfn; 5596 5597 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5598 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5599 pgdat->node_id, 5600 (unsigned long)zone_idx(zone), 5601 zone_start_pfn, (zone_start_pfn + size)); 5602 5603 zone_init_free_lists(zone); 5604 zone->initialized = 1; 5605 } 5606 5607 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5608 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5609 5610 /* 5611 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5612 */ 5613 int __meminit __early_pfn_to_nid(unsigned long pfn, 5614 struct mminit_pfnnid_cache *state) 5615 { 5616 unsigned long start_pfn, end_pfn; 5617 int nid; 5618 5619 if (state->last_start <= pfn && pfn < state->last_end) 5620 return state->last_nid; 5621 5622 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5623 if (nid != -1) { 5624 state->last_start = start_pfn; 5625 state->last_end = end_pfn; 5626 state->last_nid = nid; 5627 } 5628 5629 return nid; 5630 } 5631 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5632 5633 /** 5634 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5635 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5636 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5637 * 5638 * If an architecture guarantees that all ranges registered contain no holes 5639 * and may be freed, this this function may be used instead of calling 5640 * memblock_free_early_nid() manually. 5641 */ 5642 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5643 { 5644 unsigned long start_pfn, end_pfn; 5645 int i, this_nid; 5646 5647 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5648 start_pfn = min(start_pfn, max_low_pfn); 5649 end_pfn = min(end_pfn, max_low_pfn); 5650 5651 if (start_pfn < end_pfn) 5652 memblock_free_early_nid(PFN_PHYS(start_pfn), 5653 (end_pfn - start_pfn) << PAGE_SHIFT, 5654 this_nid); 5655 } 5656 } 5657 5658 /** 5659 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5660 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5661 * 5662 * If an architecture guarantees that all ranges registered contain no holes and may 5663 * be freed, this function may be used instead of calling memory_present() manually. 5664 */ 5665 void __init sparse_memory_present_with_active_regions(int nid) 5666 { 5667 unsigned long start_pfn, end_pfn; 5668 int i, this_nid; 5669 5670 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5671 memory_present(this_nid, start_pfn, end_pfn); 5672 } 5673 5674 /** 5675 * get_pfn_range_for_nid - Return the start and end page frames for a node 5676 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5677 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5678 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5679 * 5680 * It returns the start and end page frame of a node based on information 5681 * provided by memblock_set_node(). If called for a node 5682 * with no available memory, a warning is printed and the start and end 5683 * PFNs will be 0. 5684 */ 5685 void __meminit get_pfn_range_for_nid(unsigned int nid, 5686 unsigned long *start_pfn, unsigned long *end_pfn) 5687 { 5688 unsigned long this_start_pfn, this_end_pfn; 5689 int i; 5690 5691 *start_pfn = -1UL; 5692 *end_pfn = 0; 5693 5694 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5695 *start_pfn = min(*start_pfn, this_start_pfn); 5696 *end_pfn = max(*end_pfn, this_end_pfn); 5697 } 5698 5699 if (*start_pfn == -1UL) 5700 *start_pfn = 0; 5701 } 5702 5703 /* 5704 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5705 * assumption is made that zones within a node are ordered in monotonic 5706 * increasing memory addresses so that the "highest" populated zone is used 5707 */ 5708 static void __init find_usable_zone_for_movable(void) 5709 { 5710 int zone_index; 5711 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5712 if (zone_index == ZONE_MOVABLE) 5713 continue; 5714 5715 if (arch_zone_highest_possible_pfn[zone_index] > 5716 arch_zone_lowest_possible_pfn[zone_index]) 5717 break; 5718 } 5719 5720 VM_BUG_ON(zone_index == -1); 5721 movable_zone = zone_index; 5722 } 5723 5724 /* 5725 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5726 * because it is sized independent of architecture. Unlike the other zones, 5727 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5728 * in each node depending on the size of each node and how evenly kernelcore 5729 * is distributed. This helper function adjusts the zone ranges 5730 * provided by the architecture for a given node by using the end of the 5731 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5732 * zones within a node are in order of monotonic increases memory addresses 5733 */ 5734 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5735 unsigned long zone_type, 5736 unsigned long node_start_pfn, 5737 unsigned long node_end_pfn, 5738 unsigned long *zone_start_pfn, 5739 unsigned long *zone_end_pfn) 5740 { 5741 /* Only adjust if ZONE_MOVABLE is on this node */ 5742 if (zone_movable_pfn[nid]) { 5743 /* Size ZONE_MOVABLE */ 5744 if (zone_type == ZONE_MOVABLE) { 5745 *zone_start_pfn = zone_movable_pfn[nid]; 5746 *zone_end_pfn = min(node_end_pfn, 5747 arch_zone_highest_possible_pfn[movable_zone]); 5748 5749 /* Adjust for ZONE_MOVABLE starting within this range */ 5750 } else if (!mirrored_kernelcore && 5751 *zone_start_pfn < zone_movable_pfn[nid] && 5752 *zone_end_pfn > zone_movable_pfn[nid]) { 5753 *zone_end_pfn = zone_movable_pfn[nid]; 5754 5755 /* Check if this whole range is within ZONE_MOVABLE */ 5756 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5757 *zone_start_pfn = *zone_end_pfn; 5758 } 5759 } 5760 5761 /* 5762 * Return the number of pages a zone spans in a node, including holes 5763 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5764 */ 5765 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5766 unsigned long zone_type, 5767 unsigned long node_start_pfn, 5768 unsigned long node_end_pfn, 5769 unsigned long *zone_start_pfn, 5770 unsigned long *zone_end_pfn, 5771 unsigned long *ignored) 5772 { 5773 /* When hotadd a new node from cpu_up(), the node should be empty */ 5774 if (!node_start_pfn && !node_end_pfn) 5775 return 0; 5776 5777 /* Get the start and end of the zone */ 5778 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5779 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5780 adjust_zone_range_for_zone_movable(nid, zone_type, 5781 node_start_pfn, node_end_pfn, 5782 zone_start_pfn, zone_end_pfn); 5783 5784 /* Check that this node has pages within the zone's required range */ 5785 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5786 return 0; 5787 5788 /* Move the zone boundaries inside the node if necessary */ 5789 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5790 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5791 5792 /* Return the spanned pages */ 5793 return *zone_end_pfn - *zone_start_pfn; 5794 } 5795 5796 /* 5797 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5798 * then all holes in the requested range will be accounted for. 5799 */ 5800 unsigned long __meminit __absent_pages_in_range(int nid, 5801 unsigned long range_start_pfn, 5802 unsigned long range_end_pfn) 5803 { 5804 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5805 unsigned long start_pfn, end_pfn; 5806 int i; 5807 5808 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5809 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5810 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5811 nr_absent -= end_pfn - start_pfn; 5812 } 5813 return nr_absent; 5814 } 5815 5816 /** 5817 * absent_pages_in_range - Return number of page frames in holes within a range 5818 * @start_pfn: The start PFN to start searching for holes 5819 * @end_pfn: The end PFN to stop searching for holes 5820 * 5821 * It returns the number of pages frames in memory holes within a range. 5822 */ 5823 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5824 unsigned long end_pfn) 5825 { 5826 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5827 } 5828 5829 /* Return the number of page frames in holes in a zone on a node */ 5830 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5831 unsigned long zone_type, 5832 unsigned long node_start_pfn, 5833 unsigned long node_end_pfn, 5834 unsigned long *ignored) 5835 { 5836 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5837 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5838 unsigned long zone_start_pfn, zone_end_pfn; 5839 unsigned long nr_absent; 5840 5841 /* When hotadd a new node from cpu_up(), the node should be empty */ 5842 if (!node_start_pfn && !node_end_pfn) 5843 return 0; 5844 5845 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5846 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5847 5848 adjust_zone_range_for_zone_movable(nid, zone_type, 5849 node_start_pfn, node_end_pfn, 5850 &zone_start_pfn, &zone_end_pfn); 5851 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5852 5853 /* 5854 * ZONE_MOVABLE handling. 5855 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5856 * and vice versa. 5857 */ 5858 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5859 unsigned long start_pfn, end_pfn; 5860 struct memblock_region *r; 5861 5862 for_each_memblock(memory, r) { 5863 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5864 zone_start_pfn, zone_end_pfn); 5865 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5866 zone_start_pfn, zone_end_pfn); 5867 5868 if (zone_type == ZONE_MOVABLE && 5869 memblock_is_mirror(r)) 5870 nr_absent += end_pfn - start_pfn; 5871 5872 if (zone_type == ZONE_NORMAL && 5873 !memblock_is_mirror(r)) 5874 nr_absent += end_pfn - start_pfn; 5875 } 5876 } 5877 5878 return nr_absent; 5879 } 5880 5881 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5882 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5883 unsigned long zone_type, 5884 unsigned long node_start_pfn, 5885 unsigned long node_end_pfn, 5886 unsigned long *zone_start_pfn, 5887 unsigned long *zone_end_pfn, 5888 unsigned long *zones_size) 5889 { 5890 unsigned int zone; 5891 5892 *zone_start_pfn = node_start_pfn; 5893 for (zone = 0; zone < zone_type; zone++) 5894 *zone_start_pfn += zones_size[zone]; 5895 5896 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5897 5898 return zones_size[zone_type]; 5899 } 5900 5901 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5902 unsigned long zone_type, 5903 unsigned long node_start_pfn, 5904 unsigned long node_end_pfn, 5905 unsigned long *zholes_size) 5906 { 5907 if (!zholes_size) 5908 return 0; 5909 5910 return zholes_size[zone_type]; 5911 } 5912 5913 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5914 5915 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5916 unsigned long node_start_pfn, 5917 unsigned long node_end_pfn, 5918 unsigned long *zones_size, 5919 unsigned long *zholes_size) 5920 { 5921 unsigned long realtotalpages = 0, totalpages = 0; 5922 enum zone_type i; 5923 5924 for (i = 0; i < MAX_NR_ZONES; i++) { 5925 struct zone *zone = pgdat->node_zones + i; 5926 unsigned long zone_start_pfn, zone_end_pfn; 5927 unsigned long size, real_size; 5928 5929 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5930 node_start_pfn, 5931 node_end_pfn, 5932 &zone_start_pfn, 5933 &zone_end_pfn, 5934 zones_size); 5935 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5936 node_start_pfn, node_end_pfn, 5937 zholes_size); 5938 if (size) 5939 zone->zone_start_pfn = zone_start_pfn; 5940 else 5941 zone->zone_start_pfn = 0; 5942 zone->spanned_pages = size; 5943 zone->present_pages = real_size; 5944 5945 totalpages += size; 5946 realtotalpages += real_size; 5947 } 5948 5949 pgdat->node_spanned_pages = totalpages; 5950 pgdat->node_present_pages = realtotalpages; 5951 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5952 realtotalpages); 5953 } 5954 5955 #ifndef CONFIG_SPARSEMEM 5956 /* 5957 * Calculate the size of the zone->blockflags rounded to an unsigned long 5958 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5959 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5960 * round what is now in bits to nearest long in bits, then return it in 5961 * bytes. 5962 */ 5963 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5964 { 5965 unsigned long usemapsize; 5966 5967 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5968 usemapsize = roundup(zonesize, pageblock_nr_pages); 5969 usemapsize = usemapsize >> pageblock_order; 5970 usemapsize *= NR_PAGEBLOCK_BITS; 5971 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5972 5973 return usemapsize / 8; 5974 } 5975 5976 static void __init setup_usemap(struct pglist_data *pgdat, 5977 struct zone *zone, 5978 unsigned long zone_start_pfn, 5979 unsigned long zonesize) 5980 { 5981 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5982 zone->pageblock_flags = NULL; 5983 if (usemapsize) 5984 zone->pageblock_flags = 5985 memblock_virt_alloc_node_nopanic(usemapsize, 5986 pgdat->node_id); 5987 } 5988 #else 5989 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5990 unsigned long zone_start_pfn, unsigned long zonesize) {} 5991 #endif /* CONFIG_SPARSEMEM */ 5992 5993 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5994 5995 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5996 void __paginginit set_pageblock_order(void) 5997 { 5998 unsigned int order; 5999 6000 /* Check that pageblock_nr_pages has not already been setup */ 6001 if (pageblock_order) 6002 return; 6003 6004 if (HPAGE_SHIFT > PAGE_SHIFT) 6005 order = HUGETLB_PAGE_ORDER; 6006 else 6007 order = MAX_ORDER - 1; 6008 6009 /* 6010 * Assume the largest contiguous order of interest is a huge page. 6011 * This value may be variable depending on boot parameters on IA64 and 6012 * powerpc. 6013 */ 6014 pageblock_order = order; 6015 } 6016 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6017 6018 /* 6019 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6020 * is unused as pageblock_order is set at compile-time. See 6021 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6022 * the kernel config 6023 */ 6024 void __paginginit set_pageblock_order(void) 6025 { 6026 } 6027 6028 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6029 6030 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6031 unsigned long present_pages) 6032 { 6033 unsigned long pages = spanned_pages; 6034 6035 /* 6036 * Provide a more accurate estimation if there are holes within 6037 * the zone and SPARSEMEM is in use. If there are holes within the 6038 * zone, each populated memory region may cost us one or two extra 6039 * memmap pages due to alignment because memmap pages for each 6040 * populated regions may not be naturally aligned on page boundary. 6041 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6042 */ 6043 if (spanned_pages > present_pages + (present_pages >> 4) && 6044 IS_ENABLED(CONFIG_SPARSEMEM)) 6045 pages = present_pages; 6046 6047 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6048 } 6049 6050 /* 6051 * Set up the zone data structures: 6052 * - mark all pages reserved 6053 * - mark all memory queues empty 6054 * - clear the memory bitmaps 6055 * 6056 * NOTE: pgdat should get zeroed by caller. 6057 */ 6058 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6059 { 6060 enum zone_type j; 6061 int nid = pgdat->node_id; 6062 6063 pgdat_resize_init(pgdat); 6064 #ifdef CONFIG_NUMA_BALANCING 6065 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6066 pgdat->numabalancing_migrate_nr_pages = 0; 6067 pgdat->numabalancing_migrate_next_window = jiffies; 6068 #endif 6069 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6070 spin_lock_init(&pgdat->split_queue_lock); 6071 INIT_LIST_HEAD(&pgdat->split_queue); 6072 pgdat->split_queue_len = 0; 6073 #endif 6074 init_waitqueue_head(&pgdat->kswapd_wait); 6075 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6076 #ifdef CONFIG_COMPACTION 6077 init_waitqueue_head(&pgdat->kcompactd_wait); 6078 #endif 6079 pgdat_page_ext_init(pgdat); 6080 spin_lock_init(&pgdat->lru_lock); 6081 lruvec_init(node_lruvec(pgdat)); 6082 6083 pgdat->per_cpu_nodestats = &boot_nodestats; 6084 6085 for (j = 0; j < MAX_NR_ZONES; j++) { 6086 struct zone *zone = pgdat->node_zones + j; 6087 unsigned long size, realsize, freesize, memmap_pages; 6088 unsigned long zone_start_pfn = zone->zone_start_pfn; 6089 6090 size = zone->spanned_pages; 6091 realsize = freesize = zone->present_pages; 6092 6093 /* 6094 * Adjust freesize so that it accounts for how much memory 6095 * is used by this zone for memmap. This affects the watermark 6096 * and per-cpu initialisations 6097 */ 6098 memmap_pages = calc_memmap_size(size, realsize); 6099 if (!is_highmem_idx(j)) { 6100 if (freesize >= memmap_pages) { 6101 freesize -= memmap_pages; 6102 if (memmap_pages) 6103 printk(KERN_DEBUG 6104 " %s zone: %lu pages used for memmap\n", 6105 zone_names[j], memmap_pages); 6106 } else 6107 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6108 zone_names[j], memmap_pages, freesize); 6109 } 6110 6111 /* Account for reserved pages */ 6112 if (j == 0 && freesize > dma_reserve) { 6113 freesize -= dma_reserve; 6114 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6115 zone_names[0], dma_reserve); 6116 } 6117 6118 if (!is_highmem_idx(j)) 6119 nr_kernel_pages += freesize; 6120 /* Charge for highmem memmap if there are enough kernel pages */ 6121 else if (nr_kernel_pages > memmap_pages * 2) 6122 nr_kernel_pages -= memmap_pages; 6123 nr_all_pages += freesize; 6124 6125 /* 6126 * Set an approximate value for lowmem here, it will be adjusted 6127 * when the bootmem allocator frees pages into the buddy system. 6128 * And all highmem pages will be managed by the buddy system. 6129 */ 6130 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6131 #ifdef CONFIG_NUMA 6132 zone->node = nid; 6133 #endif 6134 zone->name = zone_names[j]; 6135 zone->zone_pgdat = pgdat; 6136 spin_lock_init(&zone->lock); 6137 zone_seqlock_init(zone); 6138 zone_pcp_init(zone); 6139 6140 if (!size) 6141 continue; 6142 6143 set_pageblock_order(); 6144 setup_usemap(pgdat, zone, zone_start_pfn, size); 6145 init_currently_empty_zone(zone, zone_start_pfn, size); 6146 memmap_init(size, nid, j, zone_start_pfn); 6147 } 6148 } 6149 6150 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6151 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6152 { 6153 unsigned long __maybe_unused start = 0; 6154 unsigned long __maybe_unused offset = 0; 6155 6156 /* Skip empty nodes */ 6157 if (!pgdat->node_spanned_pages) 6158 return; 6159 6160 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6161 offset = pgdat->node_start_pfn - start; 6162 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6163 if (!pgdat->node_mem_map) { 6164 unsigned long size, end; 6165 struct page *map; 6166 6167 /* 6168 * The zone's endpoints aren't required to be MAX_ORDER 6169 * aligned but the node_mem_map endpoints must be in order 6170 * for the buddy allocator to function correctly. 6171 */ 6172 end = pgdat_end_pfn(pgdat); 6173 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6174 size = (end - start) * sizeof(struct page); 6175 map = alloc_remap(pgdat->node_id, size); 6176 if (!map) 6177 map = memblock_virt_alloc_node_nopanic(size, 6178 pgdat->node_id); 6179 pgdat->node_mem_map = map + offset; 6180 } 6181 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6182 __func__, pgdat->node_id, (unsigned long)pgdat, 6183 (unsigned long)pgdat->node_mem_map); 6184 #ifndef CONFIG_NEED_MULTIPLE_NODES 6185 /* 6186 * With no DISCONTIG, the global mem_map is just set as node 0's 6187 */ 6188 if (pgdat == NODE_DATA(0)) { 6189 mem_map = NODE_DATA(0)->node_mem_map; 6190 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6191 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6192 mem_map -= offset; 6193 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6194 } 6195 #endif 6196 } 6197 #else 6198 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6199 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6200 6201 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6202 unsigned long node_start_pfn, unsigned long *zholes_size) 6203 { 6204 pg_data_t *pgdat = NODE_DATA(nid); 6205 unsigned long start_pfn = 0; 6206 unsigned long end_pfn = 0; 6207 6208 /* pg_data_t should be reset to zero when it's allocated */ 6209 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6210 6211 pgdat->node_id = nid; 6212 pgdat->node_start_pfn = node_start_pfn; 6213 pgdat->per_cpu_nodestats = NULL; 6214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6215 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6216 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6217 (u64)start_pfn << PAGE_SHIFT, 6218 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6219 #else 6220 start_pfn = node_start_pfn; 6221 #endif 6222 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6223 zones_size, zholes_size); 6224 6225 alloc_node_mem_map(pgdat); 6226 6227 reset_deferred_meminit(pgdat); 6228 free_area_init_core(pgdat); 6229 } 6230 6231 #ifdef CONFIG_HAVE_MEMBLOCK 6232 /* 6233 * Only struct pages that are backed by physical memory are zeroed and 6234 * initialized by going through __init_single_page(). But, there are some 6235 * struct pages which are reserved in memblock allocator and their fields 6236 * may be accessed (for example page_to_pfn() on some configuration accesses 6237 * flags). We must explicitly zero those struct pages. 6238 */ 6239 void __paginginit zero_resv_unavail(void) 6240 { 6241 phys_addr_t start, end; 6242 unsigned long pfn; 6243 u64 i, pgcnt; 6244 6245 /* 6246 * Loop through ranges that are reserved, but do not have reported 6247 * physical memory backing. 6248 */ 6249 pgcnt = 0; 6250 for_each_resv_unavail_range(i, &start, &end) { 6251 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6252 mm_zero_struct_page(pfn_to_page(pfn)); 6253 pgcnt++; 6254 } 6255 } 6256 6257 /* 6258 * Struct pages that do not have backing memory. This could be because 6259 * firmware is using some of this memory, or for some other reasons. 6260 * Once memblock is changed so such behaviour is not allowed: i.e. 6261 * list of "reserved" memory must be a subset of list of "memory", then 6262 * this code can be removed. 6263 */ 6264 if (pgcnt) 6265 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6266 } 6267 #endif /* CONFIG_HAVE_MEMBLOCK */ 6268 6269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6270 6271 #if MAX_NUMNODES > 1 6272 /* 6273 * Figure out the number of possible node ids. 6274 */ 6275 void __init setup_nr_node_ids(void) 6276 { 6277 unsigned int highest; 6278 6279 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6280 nr_node_ids = highest + 1; 6281 } 6282 #endif 6283 6284 /** 6285 * node_map_pfn_alignment - determine the maximum internode alignment 6286 * 6287 * This function should be called after node map is populated and sorted. 6288 * It calculates the maximum power of two alignment which can distinguish 6289 * all the nodes. 6290 * 6291 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6292 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6293 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6294 * shifted, 1GiB is enough and this function will indicate so. 6295 * 6296 * This is used to test whether pfn -> nid mapping of the chosen memory 6297 * model has fine enough granularity to avoid incorrect mapping for the 6298 * populated node map. 6299 * 6300 * Returns the determined alignment in pfn's. 0 if there is no alignment 6301 * requirement (single node). 6302 */ 6303 unsigned long __init node_map_pfn_alignment(void) 6304 { 6305 unsigned long accl_mask = 0, last_end = 0; 6306 unsigned long start, end, mask; 6307 int last_nid = -1; 6308 int i, nid; 6309 6310 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6311 if (!start || last_nid < 0 || last_nid == nid) { 6312 last_nid = nid; 6313 last_end = end; 6314 continue; 6315 } 6316 6317 /* 6318 * Start with a mask granular enough to pin-point to the 6319 * start pfn and tick off bits one-by-one until it becomes 6320 * too coarse to separate the current node from the last. 6321 */ 6322 mask = ~((1 << __ffs(start)) - 1); 6323 while (mask && last_end <= (start & (mask << 1))) 6324 mask <<= 1; 6325 6326 /* accumulate all internode masks */ 6327 accl_mask |= mask; 6328 } 6329 6330 /* convert mask to number of pages */ 6331 return ~accl_mask + 1; 6332 } 6333 6334 /* Find the lowest pfn for a node */ 6335 static unsigned long __init find_min_pfn_for_node(int nid) 6336 { 6337 unsigned long min_pfn = ULONG_MAX; 6338 unsigned long start_pfn; 6339 int i; 6340 6341 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6342 min_pfn = min(min_pfn, start_pfn); 6343 6344 if (min_pfn == ULONG_MAX) { 6345 pr_warn("Could not find start_pfn for node %d\n", nid); 6346 return 0; 6347 } 6348 6349 return min_pfn; 6350 } 6351 6352 /** 6353 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6354 * 6355 * It returns the minimum PFN based on information provided via 6356 * memblock_set_node(). 6357 */ 6358 unsigned long __init find_min_pfn_with_active_regions(void) 6359 { 6360 return find_min_pfn_for_node(MAX_NUMNODES); 6361 } 6362 6363 /* 6364 * early_calculate_totalpages() 6365 * Sum pages in active regions for movable zone. 6366 * Populate N_MEMORY for calculating usable_nodes. 6367 */ 6368 static unsigned long __init early_calculate_totalpages(void) 6369 { 6370 unsigned long totalpages = 0; 6371 unsigned long start_pfn, end_pfn; 6372 int i, nid; 6373 6374 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6375 unsigned long pages = end_pfn - start_pfn; 6376 6377 totalpages += pages; 6378 if (pages) 6379 node_set_state(nid, N_MEMORY); 6380 } 6381 return totalpages; 6382 } 6383 6384 /* 6385 * Find the PFN the Movable zone begins in each node. Kernel memory 6386 * is spread evenly between nodes as long as the nodes have enough 6387 * memory. When they don't, some nodes will have more kernelcore than 6388 * others 6389 */ 6390 static void __init find_zone_movable_pfns_for_nodes(void) 6391 { 6392 int i, nid; 6393 unsigned long usable_startpfn; 6394 unsigned long kernelcore_node, kernelcore_remaining; 6395 /* save the state before borrow the nodemask */ 6396 nodemask_t saved_node_state = node_states[N_MEMORY]; 6397 unsigned long totalpages = early_calculate_totalpages(); 6398 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6399 struct memblock_region *r; 6400 6401 /* Need to find movable_zone earlier when movable_node is specified. */ 6402 find_usable_zone_for_movable(); 6403 6404 /* 6405 * If movable_node is specified, ignore kernelcore and movablecore 6406 * options. 6407 */ 6408 if (movable_node_is_enabled()) { 6409 for_each_memblock(memory, r) { 6410 if (!memblock_is_hotpluggable(r)) 6411 continue; 6412 6413 nid = r->nid; 6414 6415 usable_startpfn = PFN_DOWN(r->base); 6416 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6417 min(usable_startpfn, zone_movable_pfn[nid]) : 6418 usable_startpfn; 6419 } 6420 6421 goto out2; 6422 } 6423 6424 /* 6425 * If kernelcore=mirror is specified, ignore movablecore option 6426 */ 6427 if (mirrored_kernelcore) { 6428 bool mem_below_4gb_not_mirrored = false; 6429 6430 for_each_memblock(memory, r) { 6431 if (memblock_is_mirror(r)) 6432 continue; 6433 6434 nid = r->nid; 6435 6436 usable_startpfn = memblock_region_memory_base_pfn(r); 6437 6438 if (usable_startpfn < 0x100000) { 6439 mem_below_4gb_not_mirrored = true; 6440 continue; 6441 } 6442 6443 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6444 min(usable_startpfn, zone_movable_pfn[nid]) : 6445 usable_startpfn; 6446 } 6447 6448 if (mem_below_4gb_not_mirrored) 6449 pr_warn("This configuration results in unmirrored kernel memory."); 6450 6451 goto out2; 6452 } 6453 6454 /* 6455 * If movablecore=nn[KMG] was specified, calculate what size of 6456 * kernelcore that corresponds so that memory usable for 6457 * any allocation type is evenly spread. If both kernelcore 6458 * and movablecore are specified, then the value of kernelcore 6459 * will be used for required_kernelcore if it's greater than 6460 * what movablecore would have allowed. 6461 */ 6462 if (required_movablecore) { 6463 unsigned long corepages; 6464 6465 /* 6466 * Round-up so that ZONE_MOVABLE is at least as large as what 6467 * was requested by the user 6468 */ 6469 required_movablecore = 6470 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6471 required_movablecore = min(totalpages, required_movablecore); 6472 corepages = totalpages - required_movablecore; 6473 6474 required_kernelcore = max(required_kernelcore, corepages); 6475 } 6476 6477 /* 6478 * If kernelcore was not specified or kernelcore size is larger 6479 * than totalpages, there is no ZONE_MOVABLE. 6480 */ 6481 if (!required_kernelcore || required_kernelcore >= totalpages) 6482 goto out; 6483 6484 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6485 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6486 6487 restart: 6488 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6489 kernelcore_node = required_kernelcore / usable_nodes; 6490 for_each_node_state(nid, N_MEMORY) { 6491 unsigned long start_pfn, end_pfn; 6492 6493 /* 6494 * Recalculate kernelcore_node if the division per node 6495 * now exceeds what is necessary to satisfy the requested 6496 * amount of memory for the kernel 6497 */ 6498 if (required_kernelcore < kernelcore_node) 6499 kernelcore_node = required_kernelcore / usable_nodes; 6500 6501 /* 6502 * As the map is walked, we track how much memory is usable 6503 * by the kernel using kernelcore_remaining. When it is 6504 * 0, the rest of the node is usable by ZONE_MOVABLE 6505 */ 6506 kernelcore_remaining = kernelcore_node; 6507 6508 /* Go through each range of PFNs within this node */ 6509 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6510 unsigned long size_pages; 6511 6512 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6513 if (start_pfn >= end_pfn) 6514 continue; 6515 6516 /* Account for what is only usable for kernelcore */ 6517 if (start_pfn < usable_startpfn) { 6518 unsigned long kernel_pages; 6519 kernel_pages = min(end_pfn, usable_startpfn) 6520 - start_pfn; 6521 6522 kernelcore_remaining -= min(kernel_pages, 6523 kernelcore_remaining); 6524 required_kernelcore -= min(kernel_pages, 6525 required_kernelcore); 6526 6527 /* Continue if range is now fully accounted */ 6528 if (end_pfn <= usable_startpfn) { 6529 6530 /* 6531 * Push zone_movable_pfn to the end so 6532 * that if we have to rebalance 6533 * kernelcore across nodes, we will 6534 * not double account here 6535 */ 6536 zone_movable_pfn[nid] = end_pfn; 6537 continue; 6538 } 6539 start_pfn = usable_startpfn; 6540 } 6541 6542 /* 6543 * The usable PFN range for ZONE_MOVABLE is from 6544 * start_pfn->end_pfn. Calculate size_pages as the 6545 * number of pages used as kernelcore 6546 */ 6547 size_pages = end_pfn - start_pfn; 6548 if (size_pages > kernelcore_remaining) 6549 size_pages = kernelcore_remaining; 6550 zone_movable_pfn[nid] = start_pfn + size_pages; 6551 6552 /* 6553 * Some kernelcore has been met, update counts and 6554 * break if the kernelcore for this node has been 6555 * satisfied 6556 */ 6557 required_kernelcore -= min(required_kernelcore, 6558 size_pages); 6559 kernelcore_remaining -= size_pages; 6560 if (!kernelcore_remaining) 6561 break; 6562 } 6563 } 6564 6565 /* 6566 * If there is still required_kernelcore, we do another pass with one 6567 * less node in the count. This will push zone_movable_pfn[nid] further 6568 * along on the nodes that still have memory until kernelcore is 6569 * satisfied 6570 */ 6571 usable_nodes--; 6572 if (usable_nodes && required_kernelcore > usable_nodes) 6573 goto restart; 6574 6575 out2: 6576 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6577 for (nid = 0; nid < MAX_NUMNODES; nid++) 6578 zone_movable_pfn[nid] = 6579 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6580 6581 out: 6582 /* restore the node_state */ 6583 node_states[N_MEMORY] = saved_node_state; 6584 } 6585 6586 /* Any regular or high memory on that node ? */ 6587 static void check_for_memory(pg_data_t *pgdat, int nid) 6588 { 6589 enum zone_type zone_type; 6590 6591 if (N_MEMORY == N_NORMAL_MEMORY) 6592 return; 6593 6594 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6595 struct zone *zone = &pgdat->node_zones[zone_type]; 6596 if (populated_zone(zone)) { 6597 node_set_state(nid, N_HIGH_MEMORY); 6598 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6599 zone_type <= ZONE_NORMAL) 6600 node_set_state(nid, N_NORMAL_MEMORY); 6601 break; 6602 } 6603 } 6604 } 6605 6606 /** 6607 * free_area_init_nodes - Initialise all pg_data_t and zone data 6608 * @max_zone_pfn: an array of max PFNs for each zone 6609 * 6610 * This will call free_area_init_node() for each active node in the system. 6611 * Using the page ranges provided by memblock_set_node(), the size of each 6612 * zone in each node and their holes is calculated. If the maximum PFN 6613 * between two adjacent zones match, it is assumed that the zone is empty. 6614 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6615 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6616 * starts where the previous one ended. For example, ZONE_DMA32 starts 6617 * at arch_max_dma_pfn. 6618 */ 6619 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6620 { 6621 unsigned long start_pfn, end_pfn; 6622 int i, nid; 6623 6624 /* Record where the zone boundaries are */ 6625 memset(arch_zone_lowest_possible_pfn, 0, 6626 sizeof(arch_zone_lowest_possible_pfn)); 6627 memset(arch_zone_highest_possible_pfn, 0, 6628 sizeof(arch_zone_highest_possible_pfn)); 6629 6630 start_pfn = find_min_pfn_with_active_regions(); 6631 6632 for (i = 0; i < MAX_NR_ZONES; i++) { 6633 if (i == ZONE_MOVABLE) 6634 continue; 6635 6636 end_pfn = max(max_zone_pfn[i], start_pfn); 6637 arch_zone_lowest_possible_pfn[i] = start_pfn; 6638 arch_zone_highest_possible_pfn[i] = end_pfn; 6639 6640 start_pfn = end_pfn; 6641 } 6642 6643 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6644 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6645 find_zone_movable_pfns_for_nodes(); 6646 6647 /* Print out the zone ranges */ 6648 pr_info("Zone ranges:\n"); 6649 for (i = 0; i < MAX_NR_ZONES; i++) { 6650 if (i == ZONE_MOVABLE) 6651 continue; 6652 pr_info(" %-8s ", zone_names[i]); 6653 if (arch_zone_lowest_possible_pfn[i] == 6654 arch_zone_highest_possible_pfn[i]) 6655 pr_cont("empty\n"); 6656 else 6657 pr_cont("[mem %#018Lx-%#018Lx]\n", 6658 (u64)arch_zone_lowest_possible_pfn[i] 6659 << PAGE_SHIFT, 6660 ((u64)arch_zone_highest_possible_pfn[i] 6661 << PAGE_SHIFT) - 1); 6662 } 6663 6664 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6665 pr_info("Movable zone start for each node\n"); 6666 for (i = 0; i < MAX_NUMNODES; i++) { 6667 if (zone_movable_pfn[i]) 6668 pr_info(" Node %d: %#018Lx\n", i, 6669 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6670 } 6671 6672 /* Print out the early node map */ 6673 pr_info("Early memory node ranges\n"); 6674 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6675 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6676 (u64)start_pfn << PAGE_SHIFT, 6677 ((u64)end_pfn << PAGE_SHIFT) - 1); 6678 6679 /* Initialise every node */ 6680 mminit_verify_pageflags_layout(); 6681 setup_nr_node_ids(); 6682 for_each_online_node(nid) { 6683 pg_data_t *pgdat = NODE_DATA(nid); 6684 free_area_init_node(nid, NULL, 6685 find_min_pfn_for_node(nid), NULL); 6686 6687 /* Any memory on that node */ 6688 if (pgdat->node_present_pages) 6689 node_set_state(nid, N_MEMORY); 6690 check_for_memory(pgdat, nid); 6691 } 6692 zero_resv_unavail(); 6693 } 6694 6695 static int __init cmdline_parse_core(char *p, unsigned long *core) 6696 { 6697 unsigned long long coremem; 6698 if (!p) 6699 return -EINVAL; 6700 6701 coremem = memparse(p, &p); 6702 *core = coremem >> PAGE_SHIFT; 6703 6704 /* Paranoid check that UL is enough for the coremem value */ 6705 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6706 6707 return 0; 6708 } 6709 6710 /* 6711 * kernelcore=size sets the amount of memory for use for allocations that 6712 * cannot be reclaimed or migrated. 6713 */ 6714 static int __init cmdline_parse_kernelcore(char *p) 6715 { 6716 /* parse kernelcore=mirror */ 6717 if (parse_option_str(p, "mirror")) { 6718 mirrored_kernelcore = true; 6719 return 0; 6720 } 6721 6722 return cmdline_parse_core(p, &required_kernelcore); 6723 } 6724 6725 /* 6726 * movablecore=size sets the amount of memory for use for allocations that 6727 * can be reclaimed or migrated. 6728 */ 6729 static int __init cmdline_parse_movablecore(char *p) 6730 { 6731 return cmdline_parse_core(p, &required_movablecore); 6732 } 6733 6734 early_param("kernelcore", cmdline_parse_kernelcore); 6735 early_param("movablecore", cmdline_parse_movablecore); 6736 6737 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6738 6739 void adjust_managed_page_count(struct page *page, long count) 6740 { 6741 spin_lock(&managed_page_count_lock); 6742 page_zone(page)->managed_pages += count; 6743 totalram_pages += count; 6744 #ifdef CONFIG_HIGHMEM 6745 if (PageHighMem(page)) 6746 totalhigh_pages += count; 6747 #endif 6748 spin_unlock(&managed_page_count_lock); 6749 } 6750 EXPORT_SYMBOL(adjust_managed_page_count); 6751 6752 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6753 { 6754 void *pos; 6755 unsigned long pages = 0; 6756 6757 start = (void *)PAGE_ALIGN((unsigned long)start); 6758 end = (void *)((unsigned long)end & PAGE_MASK); 6759 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6760 if ((unsigned int)poison <= 0xFF) 6761 memset(pos, poison, PAGE_SIZE); 6762 free_reserved_page(virt_to_page(pos)); 6763 } 6764 6765 if (pages && s) 6766 pr_info("Freeing %s memory: %ldK\n", 6767 s, pages << (PAGE_SHIFT - 10)); 6768 6769 return pages; 6770 } 6771 EXPORT_SYMBOL(free_reserved_area); 6772 6773 #ifdef CONFIG_HIGHMEM 6774 void free_highmem_page(struct page *page) 6775 { 6776 __free_reserved_page(page); 6777 totalram_pages++; 6778 page_zone(page)->managed_pages++; 6779 totalhigh_pages++; 6780 } 6781 #endif 6782 6783 6784 void __init mem_init_print_info(const char *str) 6785 { 6786 unsigned long physpages, codesize, datasize, rosize, bss_size; 6787 unsigned long init_code_size, init_data_size; 6788 6789 physpages = get_num_physpages(); 6790 codesize = _etext - _stext; 6791 datasize = _edata - _sdata; 6792 rosize = __end_rodata - __start_rodata; 6793 bss_size = __bss_stop - __bss_start; 6794 init_data_size = __init_end - __init_begin; 6795 init_code_size = _einittext - _sinittext; 6796 6797 /* 6798 * Detect special cases and adjust section sizes accordingly: 6799 * 1) .init.* may be embedded into .data sections 6800 * 2) .init.text.* may be out of [__init_begin, __init_end], 6801 * please refer to arch/tile/kernel/vmlinux.lds.S. 6802 * 3) .rodata.* may be embedded into .text or .data sections. 6803 */ 6804 #define adj_init_size(start, end, size, pos, adj) \ 6805 do { \ 6806 if (start <= pos && pos < end && size > adj) \ 6807 size -= adj; \ 6808 } while (0) 6809 6810 adj_init_size(__init_begin, __init_end, init_data_size, 6811 _sinittext, init_code_size); 6812 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6813 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6814 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6815 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6816 6817 #undef adj_init_size 6818 6819 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6820 #ifdef CONFIG_HIGHMEM 6821 ", %luK highmem" 6822 #endif 6823 "%s%s)\n", 6824 nr_free_pages() << (PAGE_SHIFT - 10), 6825 physpages << (PAGE_SHIFT - 10), 6826 codesize >> 10, datasize >> 10, rosize >> 10, 6827 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6828 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6829 totalcma_pages << (PAGE_SHIFT - 10), 6830 #ifdef CONFIG_HIGHMEM 6831 totalhigh_pages << (PAGE_SHIFT - 10), 6832 #endif 6833 str ? ", " : "", str ? str : ""); 6834 } 6835 6836 /** 6837 * set_dma_reserve - set the specified number of pages reserved in the first zone 6838 * @new_dma_reserve: The number of pages to mark reserved 6839 * 6840 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6841 * In the DMA zone, a significant percentage may be consumed by kernel image 6842 * and other unfreeable allocations which can skew the watermarks badly. This 6843 * function may optionally be used to account for unfreeable pages in the 6844 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6845 * smaller per-cpu batchsize. 6846 */ 6847 void __init set_dma_reserve(unsigned long new_dma_reserve) 6848 { 6849 dma_reserve = new_dma_reserve; 6850 } 6851 6852 void __init free_area_init(unsigned long *zones_size) 6853 { 6854 free_area_init_node(0, zones_size, 6855 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6856 zero_resv_unavail(); 6857 } 6858 6859 static int page_alloc_cpu_dead(unsigned int cpu) 6860 { 6861 6862 lru_add_drain_cpu(cpu); 6863 drain_pages(cpu); 6864 6865 /* 6866 * Spill the event counters of the dead processor 6867 * into the current processors event counters. 6868 * This artificially elevates the count of the current 6869 * processor. 6870 */ 6871 vm_events_fold_cpu(cpu); 6872 6873 /* 6874 * Zero the differential counters of the dead processor 6875 * so that the vm statistics are consistent. 6876 * 6877 * This is only okay since the processor is dead and cannot 6878 * race with what we are doing. 6879 */ 6880 cpu_vm_stats_fold(cpu); 6881 return 0; 6882 } 6883 6884 void __init page_alloc_init(void) 6885 { 6886 int ret; 6887 6888 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6889 "mm/page_alloc:dead", NULL, 6890 page_alloc_cpu_dead); 6891 WARN_ON(ret < 0); 6892 } 6893 6894 /* 6895 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6896 * or min_free_kbytes changes. 6897 */ 6898 static void calculate_totalreserve_pages(void) 6899 { 6900 struct pglist_data *pgdat; 6901 unsigned long reserve_pages = 0; 6902 enum zone_type i, j; 6903 6904 for_each_online_pgdat(pgdat) { 6905 6906 pgdat->totalreserve_pages = 0; 6907 6908 for (i = 0; i < MAX_NR_ZONES; i++) { 6909 struct zone *zone = pgdat->node_zones + i; 6910 long max = 0; 6911 6912 /* Find valid and maximum lowmem_reserve in the zone */ 6913 for (j = i; j < MAX_NR_ZONES; j++) { 6914 if (zone->lowmem_reserve[j] > max) 6915 max = zone->lowmem_reserve[j]; 6916 } 6917 6918 /* we treat the high watermark as reserved pages. */ 6919 max += high_wmark_pages(zone); 6920 6921 if (max > zone->managed_pages) 6922 max = zone->managed_pages; 6923 6924 pgdat->totalreserve_pages += max; 6925 6926 reserve_pages += max; 6927 } 6928 } 6929 totalreserve_pages = reserve_pages; 6930 } 6931 6932 /* 6933 * setup_per_zone_lowmem_reserve - called whenever 6934 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6935 * has a correct pages reserved value, so an adequate number of 6936 * pages are left in the zone after a successful __alloc_pages(). 6937 */ 6938 static void setup_per_zone_lowmem_reserve(void) 6939 { 6940 struct pglist_data *pgdat; 6941 enum zone_type j, idx; 6942 6943 for_each_online_pgdat(pgdat) { 6944 for (j = 0; j < MAX_NR_ZONES; j++) { 6945 struct zone *zone = pgdat->node_zones + j; 6946 unsigned long managed_pages = zone->managed_pages; 6947 6948 zone->lowmem_reserve[j] = 0; 6949 6950 idx = j; 6951 while (idx) { 6952 struct zone *lower_zone; 6953 6954 idx--; 6955 6956 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6957 sysctl_lowmem_reserve_ratio[idx] = 1; 6958 6959 lower_zone = pgdat->node_zones + idx; 6960 lower_zone->lowmem_reserve[j] = managed_pages / 6961 sysctl_lowmem_reserve_ratio[idx]; 6962 managed_pages += lower_zone->managed_pages; 6963 } 6964 } 6965 } 6966 6967 /* update totalreserve_pages */ 6968 calculate_totalreserve_pages(); 6969 } 6970 6971 static void __setup_per_zone_wmarks(void) 6972 { 6973 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6974 unsigned long lowmem_pages = 0; 6975 struct zone *zone; 6976 unsigned long flags; 6977 6978 /* Calculate total number of !ZONE_HIGHMEM pages */ 6979 for_each_zone(zone) { 6980 if (!is_highmem(zone)) 6981 lowmem_pages += zone->managed_pages; 6982 } 6983 6984 for_each_zone(zone) { 6985 u64 tmp; 6986 6987 spin_lock_irqsave(&zone->lock, flags); 6988 tmp = (u64)pages_min * zone->managed_pages; 6989 do_div(tmp, lowmem_pages); 6990 if (is_highmem(zone)) { 6991 /* 6992 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6993 * need highmem pages, so cap pages_min to a small 6994 * value here. 6995 * 6996 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6997 * deltas control asynch page reclaim, and so should 6998 * not be capped for highmem. 6999 */ 7000 unsigned long min_pages; 7001 7002 min_pages = zone->managed_pages / 1024; 7003 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7004 zone->watermark[WMARK_MIN] = min_pages; 7005 } else { 7006 /* 7007 * If it's a lowmem zone, reserve a number of pages 7008 * proportionate to the zone's size. 7009 */ 7010 zone->watermark[WMARK_MIN] = tmp; 7011 } 7012 7013 /* 7014 * Set the kswapd watermarks distance according to the 7015 * scale factor in proportion to available memory, but 7016 * ensure a minimum size on small systems. 7017 */ 7018 tmp = max_t(u64, tmp >> 2, 7019 mult_frac(zone->managed_pages, 7020 watermark_scale_factor, 10000)); 7021 7022 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7023 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7024 7025 spin_unlock_irqrestore(&zone->lock, flags); 7026 } 7027 7028 /* update totalreserve_pages */ 7029 calculate_totalreserve_pages(); 7030 } 7031 7032 /** 7033 * setup_per_zone_wmarks - called when min_free_kbytes changes 7034 * or when memory is hot-{added|removed} 7035 * 7036 * Ensures that the watermark[min,low,high] values for each zone are set 7037 * correctly with respect to min_free_kbytes. 7038 */ 7039 void setup_per_zone_wmarks(void) 7040 { 7041 static DEFINE_SPINLOCK(lock); 7042 7043 spin_lock(&lock); 7044 __setup_per_zone_wmarks(); 7045 spin_unlock(&lock); 7046 } 7047 7048 /* 7049 * Initialise min_free_kbytes. 7050 * 7051 * For small machines we want it small (128k min). For large machines 7052 * we want it large (64MB max). But it is not linear, because network 7053 * bandwidth does not increase linearly with machine size. We use 7054 * 7055 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7056 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7057 * 7058 * which yields 7059 * 7060 * 16MB: 512k 7061 * 32MB: 724k 7062 * 64MB: 1024k 7063 * 128MB: 1448k 7064 * 256MB: 2048k 7065 * 512MB: 2896k 7066 * 1024MB: 4096k 7067 * 2048MB: 5792k 7068 * 4096MB: 8192k 7069 * 8192MB: 11584k 7070 * 16384MB: 16384k 7071 */ 7072 int __meminit init_per_zone_wmark_min(void) 7073 { 7074 unsigned long lowmem_kbytes; 7075 int new_min_free_kbytes; 7076 7077 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7078 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7079 7080 if (new_min_free_kbytes > user_min_free_kbytes) { 7081 min_free_kbytes = new_min_free_kbytes; 7082 if (min_free_kbytes < 128) 7083 min_free_kbytes = 128; 7084 if (min_free_kbytes > 65536) 7085 min_free_kbytes = 65536; 7086 } else { 7087 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7088 new_min_free_kbytes, user_min_free_kbytes); 7089 } 7090 setup_per_zone_wmarks(); 7091 refresh_zone_stat_thresholds(); 7092 setup_per_zone_lowmem_reserve(); 7093 7094 #ifdef CONFIG_NUMA 7095 setup_min_unmapped_ratio(); 7096 setup_min_slab_ratio(); 7097 #endif 7098 7099 return 0; 7100 } 7101 core_initcall(init_per_zone_wmark_min) 7102 7103 /* 7104 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7105 * that we can call two helper functions whenever min_free_kbytes 7106 * changes. 7107 */ 7108 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7109 void __user *buffer, size_t *length, loff_t *ppos) 7110 { 7111 int rc; 7112 7113 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7114 if (rc) 7115 return rc; 7116 7117 if (write) { 7118 user_min_free_kbytes = min_free_kbytes; 7119 setup_per_zone_wmarks(); 7120 } 7121 return 0; 7122 } 7123 7124 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7125 void __user *buffer, size_t *length, loff_t *ppos) 7126 { 7127 int rc; 7128 7129 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7130 if (rc) 7131 return rc; 7132 7133 if (write) 7134 setup_per_zone_wmarks(); 7135 7136 return 0; 7137 } 7138 7139 #ifdef CONFIG_NUMA 7140 static void setup_min_unmapped_ratio(void) 7141 { 7142 pg_data_t *pgdat; 7143 struct zone *zone; 7144 7145 for_each_online_pgdat(pgdat) 7146 pgdat->min_unmapped_pages = 0; 7147 7148 for_each_zone(zone) 7149 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7150 sysctl_min_unmapped_ratio) / 100; 7151 } 7152 7153 7154 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7155 void __user *buffer, size_t *length, loff_t *ppos) 7156 { 7157 int rc; 7158 7159 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7160 if (rc) 7161 return rc; 7162 7163 setup_min_unmapped_ratio(); 7164 7165 return 0; 7166 } 7167 7168 static void setup_min_slab_ratio(void) 7169 { 7170 pg_data_t *pgdat; 7171 struct zone *zone; 7172 7173 for_each_online_pgdat(pgdat) 7174 pgdat->min_slab_pages = 0; 7175 7176 for_each_zone(zone) 7177 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7178 sysctl_min_slab_ratio) / 100; 7179 } 7180 7181 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7182 void __user *buffer, size_t *length, loff_t *ppos) 7183 { 7184 int rc; 7185 7186 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7187 if (rc) 7188 return rc; 7189 7190 setup_min_slab_ratio(); 7191 7192 return 0; 7193 } 7194 #endif 7195 7196 /* 7197 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7198 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7199 * whenever sysctl_lowmem_reserve_ratio changes. 7200 * 7201 * The reserve ratio obviously has absolutely no relation with the 7202 * minimum watermarks. The lowmem reserve ratio can only make sense 7203 * if in function of the boot time zone sizes. 7204 */ 7205 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7206 void __user *buffer, size_t *length, loff_t *ppos) 7207 { 7208 proc_dointvec_minmax(table, write, buffer, length, ppos); 7209 setup_per_zone_lowmem_reserve(); 7210 return 0; 7211 } 7212 7213 /* 7214 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7215 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7216 * pagelist can have before it gets flushed back to buddy allocator. 7217 */ 7218 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7219 void __user *buffer, size_t *length, loff_t *ppos) 7220 { 7221 struct zone *zone; 7222 int old_percpu_pagelist_fraction; 7223 int ret; 7224 7225 mutex_lock(&pcp_batch_high_lock); 7226 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7227 7228 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7229 if (!write || ret < 0) 7230 goto out; 7231 7232 /* Sanity checking to avoid pcp imbalance */ 7233 if (percpu_pagelist_fraction && 7234 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7235 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7236 ret = -EINVAL; 7237 goto out; 7238 } 7239 7240 /* No change? */ 7241 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7242 goto out; 7243 7244 for_each_populated_zone(zone) { 7245 unsigned int cpu; 7246 7247 for_each_possible_cpu(cpu) 7248 pageset_set_high_and_batch(zone, 7249 per_cpu_ptr(zone->pageset, cpu)); 7250 } 7251 out: 7252 mutex_unlock(&pcp_batch_high_lock); 7253 return ret; 7254 } 7255 7256 #ifdef CONFIG_NUMA 7257 int hashdist = HASHDIST_DEFAULT; 7258 7259 static int __init set_hashdist(char *str) 7260 { 7261 if (!str) 7262 return 0; 7263 hashdist = simple_strtoul(str, &str, 0); 7264 return 1; 7265 } 7266 __setup("hashdist=", set_hashdist); 7267 #endif 7268 7269 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7270 /* 7271 * Returns the number of pages that arch has reserved but 7272 * is not known to alloc_large_system_hash(). 7273 */ 7274 static unsigned long __init arch_reserved_kernel_pages(void) 7275 { 7276 return 0; 7277 } 7278 #endif 7279 7280 /* 7281 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7282 * machines. As memory size is increased the scale is also increased but at 7283 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7284 * quadruples the scale is increased by one, which means the size of hash table 7285 * only doubles, instead of quadrupling as well. 7286 * Because 32-bit systems cannot have large physical memory, where this scaling 7287 * makes sense, it is disabled on such platforms. 7288 */ 7289 #if __BITS_PER_LONG > 32 7290 #define ADAPT_SCALE_BASE (64ul << 30) 7291 #define ADAPT_SCALE_SHIFT 2 7292 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7293 #endif 7294 7295 /* 7296 * allocate a large system hash table from bootmem 7297 * - it is assumed that the hash table must contain an exact power-of-2 7298 * quantity of entries 7299 * - limit is the number of hash buckets, not the total allocation size 7300 */ 7301 void *__init alloc_large_system_hash(const char *tablename, 7302 unsigned long bucketsize, 7303 unsigned long numentries, 7304 int scale, 7305 int flags, 7306 unsigned int *_hash_shift, 7307 unsigned int *_hash_mask, 7308 unsigned long low_limit, 7309 unsigned long high_limit) 7310 { 7311 unsigned long long max = high_limit; 7312 unsigned long log2qty, size; 7313 void *table = NULL; 7314 gfp_t gfp_flags; 7315 7316 /* allow the kernel cmdline to have a say */ 7317 if (!numentries) { 7318 /* round applicable memory size up to nearest megabyte */ 7319 numentries = nr_kernel_pages; 7320 numentries -= arch_reserved_kernel_pages(); 7321 7322 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7323 if (PAGE_SHIFT < 20) 7324 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7325 7326 #if __BITS_PER_LONG > 32 7327 if (!high_limit) { 7328 unsigned long adapt; 7329 7330 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7331 adapt <<= ADAPT_SCALE_SHIFT) 7332 scale++; 7333 } 7334 #endif 7335 7336 /* limit to 1 bucket per 2^scale bytes of low memory */ 7337 if (scale > PAGE_SHIFT) 7338 numentries >>= (scale - PAGE_SHIFT); 7339 else 7340 numentries <<= (PAGE_SHIFT - scale); 7341 7342 /* Make sure we've got at least a 0-order allocation.. */ 7343 if (unlikely(flags & HASH_SMALL)) { 7344 /* Makes no sense without HASH_EARLY */ 7345 WARN_ON(!(flags & HASH_EARLY)); 7346 if (!(numentries >> *_hash_shift)) { 7347 numentries = 1UL << *_hash_shift; 7348 BUG_ON(!numentries); 7349 } 7350 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7351 numentries = PAGE_SIZE / bucketsize; 7352 } 7353 numentries = roundup_pow_of_two(numentries); 7354 7355 /* limit allocation size to 1/16 total memory by default */ 7356 if (max == 0) { 7357 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7358 do_div(max, bucketsize); 7359 } 7360 max = min(max, 0x80000000ULL); 7361 7362 if (numentries < low_limit) 7363 numentries = low_limit; 7364 if (numentries > max) 7365 numentries = max; 7366 7367 log2qty = ilog2(numentries); 7368 7369 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7370 do { 7371 size = bucketsize << log2qty; 7372 if (flags & HASH_EARLY) { 7373 if (flags & HASH_ZERO) 7374 table = memblock_virt_alloc_nopanic(size, 0); 7375 else 7376 table = memblock_virt_alloc_raw(size, 0); 7377 } else if (hashdist) { 7378 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7379 } else { 7380 /* 7381 * If bucketsize is not a power-of-two, we may free 7382 * some pages at the end of hash table which 7383 * alloc_pages_exact() automatically does 7384 */ 7385 if (get_order(size) < MAX_ORDER) { 7386 table = alloc_pages_exact(size, gfp_flags); 7387 kmemleak_alloc(table, size, 1, gfp_flags); 7388 } 7389 } 7390 } while (!table && size > PAGE_SIZE && --log2qty); 7391 7392 if (!table) 7393 panic("Failed to allocate %s hash table\n", tablename); 7394 7395 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7396 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7397 7398 if (_hash_shift) 7399 *_hash_shift = log2qty; 7400 if (_hash_mask) 7401 *_hash_mask = (1 << log2qty) - 1; 7402 7403 return table; 7404 } 7405 7406 /* 7407 * This function checks whether pageblock includes unmovable pages or not. 7408 * If @count is not zero, it is okay to include less @count unmovable pages 7409 * 7410 * PageLRU check without isolation or lru_lock could race so that 7411 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7412 * check without lock_page also may miss some movable non-lru pages at 7413 * race condition. So you can't expect this function should be exact. 7414 */ 7415 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7416 int migratetype, 7417 bool skip_hwpoisoned_pages) 7418 { 7419 unsigned long pfn, iter, found; 7420 7421 /* 7422 * For avoiding noise data, lru_add_drain_all() should be called 7423 * If ZONE_MOVABLE, the zone never contains unmovable pages 7424 */ 7425 if (zone_idx(zone) == ZONE_MOVABLE) 7426 return false; 7427 7428 /* 7429 * CMA allocations (alloc_contig_range) really need to mark isolate 7430 * CMA pageblocks even when they are not movable in fact so consider 7431 * them movable here. 7432 */ 7433 if (is_migrate_cma(migratetype) && 7434 is_migrate_cma(get_pageblock_migratetype(page))) 7435 return false; 7436 7437 pfn = page_to_pfn(page); 7438 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7439 unsigned long check = pfn + iter; 7440 7441 if (!pfn_valid_within(check)) 7442 continue; 7443 7444 page = pfn_to_page(check); 7445 7446 if (PageReserved(page)) 7447 return true; 7448 7449 /* 7450 * Hugepages are not in LRU lists, but they're movable. 7451 * We need not scan over tail pages bacause we don't 7452 * handle each tail page individually in migration. 7453 */ 7454 if (PageHuge(page)) { 7455 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7456 continue; 7457 } 7458 7459 /* 7460 * We can't use page_count without pin a page 7461 * because another CPU can free compound page. 7462 * This check already skips compound tails of THP 7463 * because their page->_refcount is zero at all time. 7464 */ 7465 if (!page_ref_count(page)) { 7466 if (PageBuddy(page)) 7467 iter += (1 << page_order(page)) - 1; 7468 continue; 7469 } 7470 7471 /* 7472 * The HWPoisoned page may be not in buddy system, and 7473 * page_count() is not 0. 7474 */ 7475 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7476 continue; 7477 7478 if (__PageMovable(page)) 7479 continue; 7480 7481 if (!PageLRU(page)) 7482 found++; 7483 /* 7484 * If there are RECLAIMABLE pages, we need to check 7485 * it. But now, memory offline itself doesn't call 7486 * shrink_node_slabs() and it still to be fixed. 7487 */ 7488 /* 7489 * If the page is not RAM, page_count()should be 0. 7490 * we don't need more check. This is an _used_ not-movable page. 7491 * 7492 * The problematic thing here is PG_reserved pages. PG_reserved 7493 * is set to both of a memory hole page and a _used_ kernel 7494 * page at boot. 7495 */ 7496 if (found > count) 7497 return true; 7498 } 7499 return false; 7500 } 7501 7502 bool is_pageblock_removable_nolock(struct page *page) 7503 { 7504 struct zone *zone; 7505 unsigned long pfn; 7506 7507 /* 7508 * We have to be careful here because we are iterating over memory 7509 * sections which are not zone aware so we might end up outside of 7510 * the zone but still within the section. 7511 * We have to take care about the node as well. If the node is offline 7512 * its NODE_DATA will be NULL - see page_zone. 7513 */ 7514 if (!node_online(page_to_nid(page))) 7515 return false; 7516 7517 zone = page_zone(page); 7518 pfn = page_to_pfn(page); 7519 if (!zone_spans_pfn(zone, pfn)) 7520 return false; 7521 7522 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7523 } 7524 7525 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7526 7527 static unsigned long pfn_max_align_down(unsigned long pfn) 7528 { 7529 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7530 pageblock_nr_pages) - 1); 7531 } 7532 7533 static unsigned long pfn_max_align_up(unsigned long pfn) 7534 { 7535 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7536 pageblock_nr_pages)); 7537 } 7538 7539 /* [start, end) must belong to a single zone. */ 7540 static int __alloc_contig_migrate_range(struct compact_control *cc, 7541 unsigned long start, unsigned long end) 7542 { 7543 /* This function is based on compact_zone() from compaction.c. */ 7544 unsigned long nr_reclaimed; 7545 unsigned long pfn = start; 7546 unsigned int tries = 0; 7547 int ret = 0; 7548 7549 migrate_prep(); 7550 7551 while (pfn < end || !list_empty(&cc->migratepages)) { 7552 if (fatal_signal_pending(current)) { 7553 ret = -EINTR; 7554 break; 7555 } 7556 7557 if (list_empty(&cc->migratepages)) { 7558 cc->nr_migratepages = 0; 7559 pfn = isolate_migratepages_range(cc, pfn, end); 7560 if (!pfn) { 7561 ret = -EINTR; 7562 break; 7563 } 7564 tries = 0; 7565 } else if (++tries == 5) { 7566 ret = ret < 0 ? ret : -EBUSY; 7567 break; 7568 } 7569 7570 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7571 &cc->migratepages); 7572 cc->nr_migratepages -= nr_reclaimed; 7573 7574 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7575 NULL, 0, cc->mode, MR_CMA); 7576 } 7577 if (ret < 0) { 7578 putback_movable_pages(&cc->migratepages); 7579 return ret; 7580 } 7581 return 0; 7582 } 7583 7584 /** 7585 * alloc_contig_range() -- tries to allocate given range of pages 7586 * @start: start PFN to allocate 7587 * @end: one-past-the-last PFN to allocate 7588 * @migratetype: migratetype of the underlaying pageblocks (either 7589 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7590 * in range must have the same migratetype and it must 7591 * be either of the two. 7592 * @gfp_mask: GFP mask to use during compaction 7593 * 7594 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7595 * aligned, however it's the caller's responsibility to guarantee that 7596 * we are the only thread that changes migrate type of pageblocks the 7597 * pages fall in. 7598 * 7599 * The PFN range must belong to a single zone. 7600 * 7601 * Returns zero on success or negative error code. On success all 7602 * pages which PFN is in [start, end) are allocated for the caller and 7603 * need to be freed with free_contig_range(). 7604 */ 7605 int alloc_contig_range(unsigned long start, unsigned long end, 7606 unsigned migratetype, gfp_t gfp_mask) 7607 { 7608 unsigned long outer_start, outer_end; 7609 unsigned int order; 7610 int ret = 0; 7611 7612 struct compact_control cc = { 7613 .nr_migratepages = 0, 7614 .order = -1, 7615 .zone = page_zone(pfn_to_page(start)), 7616 .mode = MIGRATE_SYNC, 7617 .ignore_skip_hint = true, 7618 .no_set_skip_hint = true, 7619 .gfp_mask = current_gfp_context(gfp_mask), 7620 }; 7621 INIT_LIST_HEAD(&cc.migratepages); 7622 7623 /* 7624 * What we do here is we mark all pageblocks in range as 7625 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7626 * have different sizes, and due to the way page allocator 7627 * work, we align the range to biggest of the two pages so 7628 * that page allocator won't try to merge buddies from 7629 * different pageblocks and change MIGRATE_ISOLATE to some 7630 * other migration type. 7631 * 7632 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7633 * migrate the pages from an unaligned range (ie. pages that 7634 * we are interested in). This will put all the pages in 7635 * range back to page allocator as MIGRATE_ISOLATE. 7636 * 7637 * When this is done, we take the pages in range from page 7638 * allocator removing them from the buddy system. This way 7639 * page allocator will never consider using them. 7640 * 7641 * This lets us mark the pageblocks back as 7642 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7643 * aligned range but not in the unaligned, original range are 7644 * put back to page allocator so that buddy can use them. 7645 */ 7646 7647 ret = start_isolate_page_range(pfn_max_align_down(start), 7648 pfn_max_align_up(end), migratetype, 7649 false); 7650 if (ret) 7651 return ret; 7652 7653 /* 7654 * In case of -EBUSY, we'd like to know which page causes problem. 7655 * So, just fall through. test_pages_isolated() has a tracepoint 7656 * which will report the busy page. 7657 * 7658 * It is possible that busy pages could become available before 7659 * the call to test_pages_isolated, and the range will actually be 7660 * allocated. So, if we fall through be sure to clear ret so that 7661 * -EBUSY is not accidentally used or returned to caller. 7662 */ 7663 ret = __alloc_contig_migrate_range(&cc, start, end); 7664 if (ret && ret != -EBUSY) 7665 goto done; 7666 ret =0; 7667 7668 /* 7669 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7670 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7671 * more, all pages in [start, end) are free in page allocator. 7672 * What we are going to do is to allocate all pages from 7673 * [start, end) (that is remove them from page allocator). 7674 * 7675 * The only problem is that pages at the beginning and at the 7676 * end of interesting range may be not aligned with pages that 7677 * page allocator holds, ie. they can be part of higher order 7678 * pages. Because of this, we reserve the bigger range and 7679 * once this is done free the pages we are not interested in. 7680 * 7681 * We don't have to hold zone->lock here because the pages are 7682 * isolated thus they won't get removed from buddy. 7683 */ 7684 7685 lru_add_drain_all(); 7686 drain_all_pages(cc.zone); 7687 7688 order = 0; 7689 outer_start = start; 7690 while (!PageBuddy(pfn_to_page(outer_start))) { 7691 if (++order >= MAX_ORDER) { 7692 outer_start = start; 7693 break; 7694 } 7695 outer_start &= ~0UL << order; 7696 } 7697 7698 if (outer_start != start) { 7699 order = page_order(pfn_to_page(outer_start)); 7700 7701 /* 7702 * outer_start page could be small order buddy page and 7703 * it doesn't include start page. Adjust outer_start 7704 * in this case to report failed page properly 7705 * on tracepoint in test_pages_isolated() 7706 */ 7707 if (outer_start + (1UL << order) <= start) 7708 outer_start = start; 7709 } 7710 7711 /* Make sure the range is really isolated. */ 7712 if (test_pages_isolated(outer_start, end, false)) { 7713 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7714 __func__, outer_start, end); 7715 ret = -EBUSY; 7716 goto done; 7717 } 7718 7719 /* Grab isolated pages from freelists. */ 7720 outer_end = isolate_freepages_range(&cc, outer_start, end); 7721 if (!outer_end) { 7722 ret = -EBUSY; 7723 goto done; 7724 } 7725 7726 /* Free head and tail (if any) */ 7727 if (start != outer_start) 7728 free_contig_range(outer_start, start - outer_start); 7729 if (end != outer_end) 7730 free_contig_range(end, outer_end - end); 7731 7732 done: 7733 undo_isolate_page_range(pfn_max_align_down(start), 7734 pfn_max_align_up(end), migratetype); 7735 return ret; 7736 } 7737 7738 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7739 { 7740 unsigned int count = 0; 7741 7742 for (; nr_pages--; pfn++) { 7743 struct page *page = pfn_to_page(pfn); 7744 7745 count += page_count(page) != 1; 7746 __free_page(page); 7747 } 7748 WARN(count != 0, "%d pages are still in use!\n", count); 7749 } 7750 #endif 7751 7752 #ifdef CONFIG_MEMORY_HOTPLUG 7753 /* 7754 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7755 * page high values need to be recalulated. 7756 */ 7757 void __meminit zone_pcp_update(struct zone *zone) 7758 { 7759 unsigned cpu; 7760 mutex_lock(&pcp_batch_high_lock); 7761 for_each_possible_cpu(cpu) 7762 pageset_set_high_and_batch(zone, 7763 per_cpu_ptr(zone->pageset, cpu)); 7764 mutex_unlock(&pcp_batch_high_lock); 7765 } 7766 #endif 7767 7768 void zone_pcp_reset(struct zone *zone) 7769 { 7770 unsigned long flags; 7771 int cpu; 7772 struct per_cpu_pageset *pset; 7773 7774 /* avoid races with drain_pages() */ 7775 local_irq_save(flags); 7776 if (zone->pageset != &boot_pageset) { 7777 for_each_online_cpu(cpu) { 7778 pset = per_cpu_ptr(zone->pageset, cpu); 7779 drain_zonestat(zone, pset); 7780 } 7781 free_percpu(zone->pageset); 7782 zone->pageset = &boot_pageset; 7783 } 7784 local_irq_restore(flags); 7785 } 7786 7787 #ifdef CONFIG_MEMORY_HOTREMOVE 7788 /* 7789 * All pages in the range must be in a single zone and isolated 7790 * before calling this. 7791 */ 7792 void 7793 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7794 { 7795 struct page *page; 7796 struct zone *zone; 7797 unsigned int order, i; 7798 unsigned long pfn; 7799 unsigned long flags; 7800 /* find the first valid pfn */ 7801 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7802 if (pfn_valid(pfn)) 7803 break; 7804 if (pfn == end_pfn) 7805 return; 7806 offline_mem_sections(pfn, end_pfn); 7807 zone = page_zone(pfn_to_page(pfn)); 7808 spin_lock_irqsave(&zone->lock, flags); 7809 pfn = start_pfn; 7810 while (pfn < end_pfn) { 7811 if (!pfn_valid(pfn)) { 7812 pfn++; 7813 continue; 7814 } 7815 page = pfn_to_page(pfn); 7816 /* 7817 * The HWPoisoned page may be not in buddy system, and 7818 * page_count() is not 0. 7819 */ 7820 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7821 pfn++; 7822 SetPageReserved(page); 7823 continue; 7824 } 7825 7826 BUG_ON(page_count(page)); 7827 BUG_ON(!PageBuddy(page)); 7828 order = page_order(page); 7829 #ifdef CONFIG_DEBUG_VM 7830 pr_info("remove from free list %lx %d %lx\n", 7831 pfn, 1 << order, end_pfn); 7832 #endif 7833 list_del(&page->lru); 7834 rmv_page_order(page); 7835 zone->free_area[order].nr_free--; 7836 for (i = 0; i < (1 << order); i++) 7837 SetPageReserved((page+i)); 7838 pfn += (1 << order); 7839 } 7840 spin_unlock_irqrestore(&zone->lock, flags); 7841 } 7842 #endif 7843 7844 bool is_free_buddy_page(struct page *page) 7845 { 7846 struct zone *zone = page_zone(page); 7847 unsigned long pfn = page_to_pfn(page); 7848 unsigned long flags; 7849 unsigned int order; 7850 7851 spin_lock_irqsave(&zone->lock, flags); 7852 for (order = 0; order < MAX_ORDER; order++) { 7853 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7854 7855 if (PageBuddy(page_head) && page_order(page_head) >= order) 7856 break; 7857 } 7858 spin_unlock_irqrestore(&zone->lock, flags); 7859 7860 return order < MAX_ORDER; 7861 } 7862