xref: /linux/mm/page_alloc.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	lockdep_assert_held(&zone->lock);
639 
640 	if (is_migrate_isolate(migratetype))
641 		return;
642 
643 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644 
645 	if (is_migrate_cma(migratetype))
646 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 	else if (is_migrate_highatomic(migratetype))
648 		WRITE_ONCE(zone->nr_free_highatomic,
649 			   zone->nr_free_highatomic + nr_pages);
650 }
651 
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 				      unsigned int order, int migratetype,
655 				      bool tail)
656 {
657 	struct free_area *area = &zone->free_area[order];
658 
659 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 		     get_pageblock_migratetype(page), migratetype, 1 << order);
662 
663 	if (tail)
664 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 	else
666 		list_add(&page->buddy_list, &area->free_list[migratetype]);
667 	area->nr_free++;
668 }
669 
670 /*
671  * Used for pages which are on another list. Move the pages to the tail
672  * of the list - so the moved pages won't immediately be considered for
673  * allocation again (e.g., optimization for memory onlining).
674  */
675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 				     unsigned int order, int old_mt, int new_mt)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	/* Free page moving can fail, so it happens before the type update */
681 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 		     get_pageblock_migratetype(page), old_mt, 1 << order);
684 
685 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686 
687 	account_freepages(zone, -(1 << order), old_mt);
688 	account_freepages(zone, 1 << order, new_mt);
689 }
690 
691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 					     unsigned int order, int migratetype)
693 {
694         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), migratetype, 1 << order);
697 
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 					   unsigned int order, int migratetype)
710 {
711 	__del_page_from_free_list(page, zone, order, migratetype);
712 	account_freepages(zone, -(1 << order), migratetype);
713 }
714 
715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 					    int migratetype)
717 {
718 	return list_first_entry_or_null(&area->free_list[migratetype],
719 					struct page, buddy_list);
720 }
721 
722 /*
723  * If this is less than the 2nd largest possible page, check if the buddy
724  * of the next-higher order is free. If it is, it's possible
725  * that pages are being freed that will coalesce soon. In case,
726  * that is happening, add the free page to the tail of the list
727  * so it's less likely to be used soon and more likely to be merged
728  * as a 2-level higher order page
729  */
730 static inline bool
731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 		   struct page *page, unsigned int order)
733 {
734 	unsigned long higher_page_pfn;
735 	struct page *higher_page;
736 
737 	if (order >= MAX_PAGE_ORDER - 1)
738 		return false;
739 
740 	higher_page_pfn = buddy_pfn & pfn;
741 	higher_page = page + (higher_page_pfn - pfn);
742 
743 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 			NULL) != NULL;
745 }
746 
747 /*
748  * Freeing function for a buddy system allocator.
749  *
750  * The concept of a buddy system is to maintain direct-mapped table
751  * (containing bit values) for memory blocks of various "orders".
752  * The bottom level table contains the map for the smallest allocatable
753  * units of memory (here, pages), and each level above it describes
754  * pairs of units from the levels below, hence, "buddies".
755  * At a high level, all that happens here is marking the table entry
756  * at the bottom level available, and propagating the changes upward
757  * as necessary, plus some accounting needed to play nicely with other
758  * parts of the VM system.
759  * At each level, we keep a list of pages, which are heads of continuous
760  * free pages of length of (1 << order) and marked with PageBuddy.
761  * Page's order is recorded in page_private(page) field.
762  * So when we are allocating or freeing one, we can derive the state of the
763  * other.  That is, if we allocate a small block, and both were
764  * free, the remainder of the region must be split into blocks.
765  * If a block is freed, and its buddy is also free, then this
766  * triggers coalescing into a block of larger size.
767  *
768  * -- nyc
769  */
770 
771 static inline void __free_one_page(struct page *page,
772 		unsigned long pfn,
773 		struct zone *zone, unsigned int order,
774 		int migratetype, fpi_t fpi_flags)
775 {
776 	struct capture_control *capc = task_capc(zone);
777 	unsigned long buddy_pfn = 0;
778 	unsigned long combined_pfn;
779 	struct page *buddy;
780 	bool to_tail;
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	account_freepages(zone, 1 << order, migratetype);
790 
791 	while (order < MAX_PAGE_ORDER) {
792 		int buddy_mt = migratetype;
793 
794 		if (compaction_capture(capc, page, order, migratetype)) {
795 			account_freepages(zone, -(1 << order), migratetype);
796 			return;
797 		}
798 
799 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 		if (!buddy)
801 			goto done_merging;
802 
803 		if (unlikely(order >= pageblock_order)) {
804 			/*
805 			 * We want to prevent merge between freepages on pageblock
806 			 * without fallbacks and normal pageblock. Without this,
807 			 * pageblock isolation could cause incorrect freepage or CMA
808 			 * accounting or HIGHATOMIC accounting.
809 			 */
810 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811 
812 			if (migratetype != buddy_mt &&
813 			    (!migratetype_is_mergeable(migratetype) ||
814 			     !migratetype_is_mergeable(buddy_mt)))
815 				goto done_merging;
816 		}
817 
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy))
823 			clear_page_guard(zone, buddy, order);
824 		else
825 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
826 
827 		if (unlikely(buddy_mt != migratetype)) {
828 			/*
829 			 * Match buddy type. This ensures that an
830 			 * expand() down the line puts the sub-blocks
831 			 * on the right freelists.
832 			 */
833 			set_pageblock_migratetype(buddy, migratetype);
834 		}
835 
836 		combined_pfn = buddy_pfn & pfn;
837 		page = page + (combined_pfn - pfn);
838 		pfn = combined_pfn;
839 		order++;
840 	}
841 
842 done_merging:
843 	set_buddy_order(page, order);
844 
845 	if (fpi_flags & FPI_TO_TAIL)
846 		to_tail = true;
847 	else if (is_shuffle_order(order))
848 		to_tail = shuffle_pick_tail();
849 	else
850 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851 
852 	__add_to_free_list(page, zone, order, migratetype, to_tail);
853 
854 	/* Notify page reporting subsystem of freed page */
855 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 		page_reporting_notify_free(order);
857 }
858 
859 /*
860  * A bad page could be due to a number of fields. Instead of multiple branches,
861  * try and check multiple fields with one check. The caller must do a detailed
862  * check if necessary.
863  */
864 static inline bool page_expected_state(struct page *page,
865 					unsigned long check_flags)
866 {
867 	if (unlikely(atomic_read(&page->_mapcount) != -1))
868 		return false;
869 
870 	if (unlikely((unsigned long)page->mapping |
871 			page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 			page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 			(page->flags & check_flags)))
879 		return false;
880 
881 	return true;
882 }
883 
884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 	const char *bad_reason = NULL;
887 
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		bad_reason = "nonzero mapcount";
890 	if (unlikely(page->mapping != NULL))
891 		bad_reason = "non-NULL mapping";
892 	if (unlikely(page_ref_count(page) != 0))
893 		bad_reason = "nonzero _refcount";
894 	if (unlikely(page->flags & flags)) {
895 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 		else
898 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 	}
900 #ifdef CONFIG_MEMCG
901 	if (unlikely(page->memcg_data))
902 		bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 		bad_reason = "page_pool leak";
907 #endif
908 	return bad_reason;
909 }
910 
911 static void free_page_is_bad_report(struct page *page)
912 {
913 	bad_page(page,
914 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916 
917 static inline bool free_page_is_bad(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return false;
921 
922 	/* Something has gone sideways, find it */
923 	free_page_is_bad_report(page);
924 	return true;
925 }
926 
927 static inline bool is_check_pages_enabled(void)
928 {
929 	return static_branch_unlikely(&check_pages_enabled);
930 }
931 
932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 	struct folio *folio = (struct folio *)head_page;
935 	int ret = 1;
936 
937 	/*
938 	 * We rely page->lru.next never has bit 0 set, unless the page
939 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 	 */
941 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942 
943 	if (!is_check_pages_enabled()) {
944 		ret = 0;
945 		goto out;
946 	}
947 	switch (page - head_page) {
948 	case 1:
949 		/* the first tail page: these may be in place of ->mapping */
950 		if (unlikely(folio_entire_mapcount(folio))) {
951 			bad_page(page, "nonzero entire_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(folio_large_mapcount(folio))) {
955 			bad_page(page, "nonzero large_mapcount");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 			bad_page(page, "nonzero nr_pages_mapped");
960 			goto out;
961 		}
962 		if (unlikely(atomic_read(&folio->_pincount))) {
963 			bad_page(page, "nonzero pincount");
964 			goto out;
965 		}
966 		break;
967 	case 2:
968 		/* the second tail page: deferred_list overlaps ->mapping */
969 		if (unlikely(!list_empty(&folio->_deferred_list))) {
970 			bad_page(page, "on deferred list");
971 			goto out;
972 		}
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page");
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set");
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent");
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 /*
997  * Skip KASAN memory poisoning when either:
998  *
999  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001  *    using page tags instead (see below).
1002  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003  *    that error detection is disabled for accesses via the page address.
1004  *
1005  * Pages will have match-all tags in the following circumstances:
1006  *
1007  * 1. Pages are being initialized for the first time, including during deferred
1008  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011  * 3. The allocation was excluded from being checked due to sampling,
1012  *    see the call to kasan_unpoison_pages.
1013  *
1014  * Poisoning pages during deferred memory init will greatly lengthen the
1015  * process and cause problem in large memory systems as the deferred pages
1016  * initialization is done with interrupt disabled.
1017  *
1018  * Assuming that there will be no reference to those newly initialized
1019  * pages before they are ever allocated, this should have no effect on
1020  * KASAN memory tracking as the poison will be properly inserted at page
1021  * allocation time. The only corner case is when pages are allocated by
1022  * on-demand allocation and then freed again before the deferred pages
1023  * initialization is done, but this is not likely to happen.
1024  */
1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 		return deferred_pages_enabled();
1029 
1030 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032 
1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 	int i;
1036 
1037 	/* s390's use of memset() could override KASAN redzones. */
1038 	kasan_disable_current();
1039 	for (i = 0; i < numpages; i++)
1040 		clear_highpage_kasan_tagged(page + i);
1041 	kasan_enable_current();
1042 }
1043 
1044 __always_inline bool free_pages_prepare(struct page *page,
1045 			unsigned int order)
1046 {
1047 	int bad = 0;
1048 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1049 	bool init = want_init_on_free();
1050 	bool compound = PageCompound(page);
1051 	struct folio *folio = page_folio(page);
1052 
1053 	VM_BUG_ON_PAGE(PageTail(page), page);
1054 
1055 	trace_mm_page_free(page, order);
1056 	kmsan_free_page(page, order);
1057 
1058 	if (memcg_kmem_online() && PageMemcgKmem(page))
1059 		__memcg_kmem_uncharge_page(page, order);
1060 
1061 	/*
1062 	 * In rare cases, when truncation or holepunching raced with
1063 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064 	 * found set here.  This does not indicate a problem, unless
1065 	 * "unevictable_pgs_cleared" appears worryingly large.
1066 	 */
1067 	if (unlikely(folio_test_mlocked(folio))) {
1068 		long nr_pages = folio_nr_pages(folio);
1069 
1070 		__folio_clear_mlocked(folio);
1071 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1072 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1073 	}
1074 
1075 	if (unlikely(PageHWPoison(page)) && !order) {
1076 		/* Do not let hwpoison pages hit pcplists/buddy */
1077 		reset_page_owner(page, order);
1078 		page_table_check_free(page, order);
1079 		pgalloc_tag_sub(page, 1 << order);
1080 
1081 		/*
1082 		 * The page is isolated and accounted for.
1083 		 * Mark the codetag as empty to avoid accounting error
1084 		 * when the page is freed by unpoison_memory().
1085 		 */
1086 		clear_page_tag_ref(page);
1087 		return false;
1088 	}
1089 
1090 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1091 
1092 	/*
1093 	 * Check tail pages before head page information is cleared to
1094 	 * avoid checking PageCompound for order-0 pages.
1095 	 */
1096 	if (unlikely(order)) {
1097 		int i;
1098 
1099 		if (compound)
1100 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1101 		for (i = 1; i < (1 << order); i++) {
1102 			if (compound)
1103 				bad += free_tail_page_prepare(page, page + i);
1104 			if (is_check_pages_enabled()) {
1105 				if (free_page_is_bad(page + i)) {
1106 					bad++;
1107 					continue;
1108 				}
1109 			}
1110 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111 		}
1112 	}
1113 	if (PageMappingFlags(page)) {
1114 		if (PageAnon(page))
1115 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1116 		page->mapping = NULL;
1117 	}
1118 	if (is_check_pages_enabled()) {
1119 		if (free_page_is_bad(page))
1120 			bad++;
1121 		if (bad)
1122 			return false;
1123 	}
1124 
1125 	page_cpupid_reset_last(page);
1126 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127 	reset_page_owner(page, order);
1128 	page_table_check_free(page, order);
1129 	pgalloc_tag_sub(page, 1 << order);
1130 
1131 	if (!PageHighMem(page)) {
1132 		debug_check_no_locks_freed(page_address(page),
1133 					   PAGE_SIZE << order);
1134 		debug_check_no_obj_freed(page_address(page),
1135 					   PAGE_SIZE << order);
1136 	}
1137 
1138 	kernel_poison_pages(page, 1 << order);
1139 
1140 	/*
1141 	 * As memory initialization might be integrated into KASAN,
1142 	 * KASAN poisoning and memory initialization code must be
1143 	 * kept together to avoid discrepancies in behavior.
1144 	 *
1145 	 * With hardware tag-based KASAN, memory tags must be set before the
1146 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1147 	 */
1148 	if (!skip_kasan_poison) {
1149 		kasan_poison_pages(page, order, init);
1150 
1151 		/* Memory is already initialized if KASAN did it internally. */
1152 		if (kasan_has_integrated_init())
1153 			init = false;
1154 	}
1155 	if (init)
1156 		kernel_init_pages(page, 1 << order);
1157 
1158 	/*
1159 	 * arch_free_page() can make the page's contents inaccessible.  s390
1160 	 * does this.  So nothing which can access the page's contents should
1161 	 * happen after this.
1162 	 */
1163 	arch_free_page(page, order);
1164 
1165 	debug_pagealloc_unmap_pages(page, 1 << order);
1166 
1167 	return true;
1168 }
1169 
1170 /*
1171  * Frees a number of pages from the PCP lists
1172  * Assumes all pages on list are in same zone.
1173  * count is the number of pages to free.
1174  */
1175 static void free_pcppages_bulk(struct zone *zone, int count,
1176 					struct per_cpu_pages *pcp,
1177 					int pindex)
1178 {
1179 	unsigned long flags;
1180 	unsigned int order;
1181 	struct page *page;
1182 
1183 	/*
1184 	 * Ensure proper count is passed which otherwise would stuck in the
1185 	 * below while (list_empty(list)) loop.
1186 	 */
1187 	count = min(pcp->count, count);
1188 
1189 	/* Ensure requested pindex is drained first. */
1190 	pindex = pindex - 1;
1191 
1192 	spin_lock_irqsave(&zone->lock, flags);
1193 
1194 	while (count > 0) {
1195 		struct list_head *list;
1196 		int nr_pages;
1197 
1198 		/* Remove pages from lists in a round-robin fashion. */
1199 		do {
1200 			if (++pindex > NR_PCP_LISTS - 1)
1201 				pindex = 0;
1202 			list = &pcp->lists[pindex];
1203 		} while (list_empty(list));
1204 
1205 		order = pindex_to_order(pindex);
1206 		nr_pages = 1 << order;
1207 		do {
1208 			unsigned long pfn;
1209 			int mt;
1210 
1211 			page = list_last_entry(list, struct page, pcp_list);
1212 			pfn = page_to_pfn(page);
1213 			mt = get_pfnblock_migratetype(page, pfn);
1214 
1215 			/* must delete to avoid corrupting pcp list */
1216 			list_del(&page->pcp_list);
1217 			count -= nr_pages;
1218 			pcp->count -= nr_pages;
1219 
1220 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1221 			trace_mm_page_pcpu_drain(page, order, mt);
1222 		} while (count > 0 && !list_empty(list));
1223 	}
1224 
1225 	spin_unlock_irqrestore(&zone->lock, flags);
1226 }
1227 
1228 /* Split a multi-block free page into its individual pageblocks. */
1229 static void split_large_buddy(struct zone *zone, struct page *page,
1230 			      unsigned long pfn, int order, fpi_t fpi)
1231 {
1232 	unsigned long end = pfn + (1 << order);
1233 
1234 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1235 	/* Caller removed page from freelist, buddy info cleared! */
1236 	VM_WARN_ON_ONCE(PageBuddy(page));
1237 
1238 	if (order > pageblock_order)
1239 		order = pageblock_order;
1240 
1241 	while (pfn != end) {
1242 		int mt = get_pfnblock_migratetype(page, pfn);
1243 
1244 		__free_one_page(page, pfn, zone, order, mt, fpi);
1245 		pfn += 1 << order;
1246 		page = pfn_to_page(pfn);
1247 	}
1248 }
1249 
1250 static void free_one_page(struct zone *zone, struct page *page,
1251 			  unsigned long pfn, unsigned int order,
1252 			  fpi_t fpi_flags)
1253 {
1254 	unsigned long flags;
1255 
1256 	spin_lock_irqsave(&zone->lock, flags);
1257 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1258 	spin_unlock_irqrestore(&zone->lock, flags);
1259 
1260 	__count_vm_events(PGFREE, 1 << order);
1261 }
1262 
1263 static void __free_pages_ok(struct page *page, unsigned int order,
1264 			    fpi_t fpi_flags)
1265 {
1266 	unsigned long pfn = page_to_pfn(page);
1267 	struct zone *zone = page_zone(page);
1268 
1269 	if (free_pages_prepare(page, order))
1270 		free_one_page(zone, page, pfn, order, fpi_flags);
1271 }
1272 
1273 void __meminit __free_pages_core(struct page *page, unsigned int order,
1274 		enum meminit_context context)
1275 {
1276 	unsigned int nr_pages = 1 << order;
1277 	struct page *p = page;
1278 	unsigned int loop;
1279 
1280 	/*
1281 	 * When initializing the memmap, __init_single_page() sets the refcount
1282 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1283 	 * refcount of all involved pages to 0.
1284 	 *
1285 	 * Note that hotplugged memory pages are initialized to PageOffline().
1286 	 * Pages freed from memblock might be marked as reserved.
1287 	 */
1288 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1289 	    unlikely(context == MEMINIT_HOTPLUG)) {
1290 		for (loop = 0; loop < nr_pages; loop++, p++) {
1291 			VM_WARN_ON_ONCE(PageReserved(p));
1292 			__ClearPageOffline(p);
1293 			set_page_count(p, 0);
1294 		}
1295 
1296 		/*
1297 		 * Freeing the page with debug_pagealloc enabled will try to
1298 		 * unmap it; some archs don't like double-unmappings, so
1299 		 * map it first.
1300 		 */
1301 		debug_pagealloc_map_pages(page, nr_pages);
1302 		adjust_managed_page_count(page, nr_pages);
1303 	} else {
1304 		for (loop = 0; loop < nr_pages; loop++, p++) {
1305 			__ClearPageReserved(p);
1306 			set_page_count(p, 0);
1307 		}
1308 
1309 		/* memblock adjusts totalram_pages() manually. */
1310 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1311 	}
1312 
1313 	if (page_contains_unaccepted(page, order)) {
1314 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1315 			return;
1316 
1317 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1318 	}
1319 
1320 	/*
1321 	 * Bypass PCP and place fresh pages right to the tail, primarily
1322 	 * relevant for memory onlining.
1323 	 */
1324 	__free_pages_ok(page, order, FPI_TO_TAIL);
1325 }
1326 
1327 /*
1328  * Check that the whole (or subset of) a pageblock given by the interval of
1329  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1330  * with the migration of free compaction scanner.
1331  *
1332  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1333  *
1334  * It's possible on some configurations to have a setup like node0 node1 node0
1335  * i.e. it's possible that all pages within a zones range of pages do not
1336  * belong to a single zone. We assume that a border between node0 and node1
1337  * can occur within a single pageblock, but not a node0 node1 node0
1338  * interleaving within a single pageblock. It is therefore sufficient to check
1339  * the first and last page of a pageblock and avoid checking each individual
1340  * page in a pageblock.
1341  *
1342  * Note: the function may return non-NULL struct page even for a page block
1343  * which contains a memory hole (i.e. there is no physical memory for a subset
1344  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1345  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1346  * even though the start pfn is online and valid. This should be safe most of
1347  * the time because struct pages are still initialized via init_unavailable_range()
1348  * and pfn walkers shouldn't touch any physical memory range for which they do
1349  * not recognize any specific metadata in struct pages.
1350  */
1351 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1352 				     unsigned long end_pfn, struct zone *zone)
1353 {
1354 	struct page *start_page;
1355 	struct page *end_page;
1356 
1357 	/* end_pfn is one past the range we are checking */
1358 	end_pfn--;
1359 
1360 	if (!pfn_valid(end_pfn))
1361 		return NULL;
1362 
1363 	start_page = pfn_to_online_page(start_pfn);
1364 	if (!start_page)
1365 		return NULL;
1366 
1367 	if (page_zone(start_page) != zone)
1368 		return NULL;
1369 
1370 	end_page = pfn_to_page(end_pfn);
1371 
1372 	/* This gives a shorter code than deriving page_zone(end_page) */
1373 	if (page_zone_id(start_page) != page_zone_id(end_page))
1374 		return NULL;
1375 
1376 	return start_page;
1377 }
1378 
1379 /*
1380  * The order of subdivision here is critical for the IO subsystem.
1381  * Please do not alter this order without good reasons and regression
1382  * testing. Specifically, as large blocks of memory are subdivided,
1383  * the order in which smaller blocks are delivered depends on the order
1384  * they're subdivided in this function. This is the primary factor
1385  * influencing the order in which pages are delivered to the IO
1386  * subsystem according to empirical testing, and this is also justified
1387  * by considering the behavior of a buddy system containing a single
1388  * large block of memory acted on by a series of small allocations.
1389  * This behavior is a critical factor in sglist merging's success.
1390  *
1391  * -- nyc
1392  */
1393 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1394 				  int high, int migratetype)
1395 {
1396 	unsigned int size = 1 << high;
1397 	unsigned int nr_added = 0;
1398 
1399 	while (high > low) {
1400 		high--;
1401 		size >>= 1;
1402 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1403 
1404 		/*
1405 		 * Mark as guard pages (or page), that will allow to
1406 		 * merge back to allocator when buddy will be freed.
1407 		 * Corresponding page table entries will not be touched,
1408 		 * pages will stay not present in virtual address space
1409 		 */
1410 		if (set_page_guard(zone, &page[size], high))
1411 			continue;
1412 
1413 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1414 		set_buddy_order(&page[size], high);
1415 		nr_added += size;
1416 	}
1417 
1418 	return nr_added;
1419 }
1420 
1421 static __always_inline void page_del_and_expand(struct zone *zone,
1422 						struct page *page, int low,
1423 						int high, int migratetype)
1424 {
1425 	int nr_pages = 1 << high;
1426 
1427 	__del_page_from_free_list(page, zone, high, migratetype);
1428 	nr_pages -= expand(zone, page, low, high, migratetype);
1429 	account_freepages(zone, -nr_pages, migratetype);
1430 }
1431 
1432 static void check_new_page_bad(struct page *page)
1433 {
1434 	if (unlikely(page->flags & __PG_HWPOISON)) {
1435 		/* Don't complain about hwpoisoned pages */
1436 		if (PageBuddy(page))
1437 			__ClearPageBuddy(page);
1438 		return;
1439 	}
1440 
1441 	bad_page(page,
1442 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1443 }
1444 
1445 /*
1446  * This page is about to be returned from the page allocator
1447  */
1448 static bool check_new_page(struct page *page)
1449 {
1450 	if (likely(page_expected_state(page,
1451 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1452 		return false;
1453 
1454 	check_new_page_bad(page);
1455 	return true;
1456 }
1457 
1458 static inline bool check_new_pages(struct page *page, unsigned int order)
1459 {
1460 	if (is_check_pages_enabled()) {
1461 		for (int i = 0; i < (1 << order); i++) {
1462 			struct page *p = page + i;
1463 
1464 			if (check_new_page(p))
1465 				return true;
1466 		}
1467 	}
1468 
1469 	return false;
1470 }
1471 
1472 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1473 {
1474 	/* Don't skip if a software KASAN mode is enabled. */
1475 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1476 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1477 		return false;
1478 
1479 	/* Skip, if hardware tag-based KASAN is not enabled. */
1480 	if (!kasan_hw_tags_enabled())
1481 		return true;
1482 
1483 	/*
1484 	 * With hardware tag-based KASAN enabled, skip if this has been
1485 	 * requested via __GFP_SKIP_KASAN.
1486 	 */
1487 	return flags & __GFP_SKIP_KASAN;
1488 }
1489 
1490 static inline bool should_skip_init(gfp_t flags)
1491 {
1492 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1493 	if (!kasan_hw_tags_enabled())
1494 		return false;
1495 
1496 	/* For hardware tag-based KASAN, skip if requested. */
1497 	return (flags & __GFP_SKIP_ZERO);
1498 }
1499 
1500 inline void post_alloc_hook(struct page *page, unsigned int order,
1501 				gfp_t gfp_flags)
1502 {
1503 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1504 			!should_skip_init(gfp_flags);
1505 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1506 	int i;
1507 
1508 	set_page_private(page, 0);
1509 	set_page_refcounted(page);
1510 
1511 	arch_alloc_page(page, order);
1512 	debug_pagealloc_map_pages(page, 1 << order);
1513 
1514 	/*
1515 	 * Page unpoisoning must happen before memory initialization.
1516 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1517 	 * allocations and the page unpoisoning code will complain.
1518 	 */
1519 	kernel_unpoison_pages(page, 1 << order);
1520 
1521 	/*
1522 	 * As memory initialization might be integrated into KASAN,
1523 	 * KASAN unpoisoning and memory initializion code must be
1524 	 * kept together to avoid discrepancies in behavior.
1525 	 */
1526 
1527 	/*
1528 	 * If memory tags should be zeroed
1529 	 * (which happens only when memory should be initialized as well).
1530 	 */
1531 	if (zero_tags) {
1532 		/* Initialize both memory and memory tags. */
1533 		for (i = 0; i != 1 << order; ++i)
1534 			tag_clear_highpage(page + i);
1535 
1536 		/* Take note that memory was initialized by the loop above. */
1537 		init = false;
1538 	}
1539 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1540 	    kasan_unpoison_pages(page, order, init)) {
1541 		/* Take note that memory was initialized by KASAN. */
1542 		if (kasan_has_integrated_init())
1543 			init = false;
1544 	} else {
1545 		/*
1546 		 * If memory tags have not been set by KASAN, reset the page
1547 		 * tags to ensure page_address() dereferencing does not fault.
1548 		 */
1549 		for (i = 0; i != 1 << order; ++i)
1550 			page_kasan_tag_reset(page + i);
1551 	}
1552 	/* If memory is still not initialized, initialize it now. */
1553 	if (init)
1554 		kernel_init_pages(page, 1 << order);
1555 
1556 	set_page_owner(page, order, gfp_flags);
1557 	page_table_check_alloc(page, order);
1558 	pgalloc_tag_add(page, current, 1 << order);
1559 }
1560 
1561 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1562 							unsigned int alloc_flags)
1563 {
1564 	post_alloc_hook(page, order, gfp_flags);
1565 
1566 	if (order && (gfp_flags & __GFP_COMP))
1567 		prep_compound_page(page, order);
1568 
1569 	/*
1570 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1571 	 * allocate the page. The expectation is that the caller is taking
1572 	 * steps that will free more memory. The caller should avoid the page
1573 	 * being used for !PFMEMALLOC purposes.
1574 	 */
1575 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1576 		set_page_pfmemalloc(page);
1577 	else
1578 		clear_page_pfmemalloc(page);
1579 }
1580 
1581 /*
1582  * Go through the free lists for the given migratetype and remove
1583  * the smallest available page from the freelists
1584  */
1585 static __always_inline
1586 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1587 						int migratetype)
1588 {
1589 	unsigned int current_order;
1590 	struct free_area *area;
1591 	struct page *page;
1592 
1593 	/* Find a page of the appropriate size in the preferred list */
1594 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1595 		area = &(zone->free_area[current_order]);
1596 		page = get_page_from_free_area(area, migratetype);
1597 		if (!page)
1598 			continue;
1599 
1600 		page_del_and_expand(zone, page, order, current_order,
1601 				    migratetype);
1602 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1603 				pcp_allowed_order(order) &&
1604 				migratetype < MIGRATE_PCPTYPES);
1605 		return page;
1606 	}
1607 
1608 	return NULL;
1609 }
1610 
1611 
1612 /*
1613  * This array describes the order lists are fallen back to when
1614  * the free lists for the desirable migrate type are depleted
1615  *
1616  * The other migratetypes do not have fallbacks.
1617  */
1618 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1619 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1620 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1621 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1622 };
1623 
1624 #ifdef CONFIG_CMA
1625 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1626 					unsigned int order)
1627 {
1628 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1629 }
1630 #else
1631 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1632 					unsigned int order) { return NULL; }
1633 #endif
1634 
1635 /*
1636  * Change the type of a block and move all its free pages to that
1637  * type's freelist.
1638  */
1639 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1640 				  int old_mt, int new_mt)
1641 {
1642 	struct page *page;
1643 	unsigned long pfn, end_pfn;
1644 	unsigned int order;
1645 	int pages_moved = 0;
1646 
1647 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1648 	end_pfn = pageblock_end_pfn(start_pfn);
1649 
1650 	for (pfn = start_pfn; pfn < end_pfn;) {
1651 		page = pfn_to_page(pfn);
1652 		if (!PageBuddy(page)) {
1653 			pfn++;
1654 			continue;
1655 		}
1656 
1657 		/* Make sure we are not inadvertently changing nodes */
1658 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1659 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1660 
1661 		order = buddy_order(page);
1662 
1663 		move_to_free_list(page, zone, order, old_mt, new_mt);
1664 
1665 		pfn += 1 << order;
1666 		pages_moved += 1 << order;
1667 	}
1668 
1669 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1670 
1671 	return pages_moved;
1672 }
1673 
1674 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1675 				      unsigned long *start_pfn,
1676 				      int *num_free, int *num_movable)
1677 {
1678 	unsigned long pfn, start, end;
1679 
1680 	pfn = page_to_pfn(page);
1681 	start = pageblock_start_pfn(pfn);
1682 	end = pageblock_end_pfn(pfn);
1683 
1684 	/*
1685 	 * The caller only has the lock for @zone, don't touch ranges
1686 	 * that straddle into other zones. While we could move part of
1687 	 * the range that's inside the zone, this call is usually
1688 	 * accompanied by other operations such as migratetype updates
1689 	 * which also should be locked.
1690 	 */
1691 	if (!zone_spans_pfn(zone, start))
1692 		return false;
1693 	if (!zone_spans_pfn(zone, end - 1))
1694 		return false;
1695 
1696 	*start_pfn = start;
1697 
1698 	if (num_free) {
1699 		*num_free = 0;
1700 		*num_movable = 0;
1701 		for (pfn = start; pfn < end;) {
1702 			page = pfn_to_page(pfn);
1703 			if (PageBuddy(page)) {
1704 				int nr = 1 << buddy_order(page);
1705 
1706 				*num_free += nr;
1707 				pfn += nr;
1708 				continue;
1709 			}
1710 			/*
1711 			 * We assume that pages that could be isolated for
1712 			 * migration are movable. But we don't actually try
1713 			 * isolating, as that would be expensive.
1714 			 */
1715 			if (PageLRU(page) || __PageMovable(page))
1716 				(*num_movable)++;
1717 			pfn++;
1718 		}
1719 	}
1720 
1721 	return true;
1722 }
1723 
1724 static int move_freepages_block(struct zone *zone, struct page *page,
1725 				int old_mt, int new_mt)
1726 {
1727 	unsigned long start_pfn;
1728 
1729 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1730 		return -1;
1731 
1732 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1733 }
1734 
1735 #ifdef CONFIG_MEMORY_ISOLATION
1736 /* Look for a buddy that straddles start_pfn */
1737 static unsigned long find_large_buddy(unsigned long start_pfn)
1738 {
1739 	int order = 0;
1740 	struct page *page;
1741 	unsigned long pfn = start_pfn;
1742 
1743 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1744 		/* Nothing found */
1745 		if (++order > MAX_PAGE_ORDER)
1746 			return start_pfn;
1747 		pfn &= ~0UL << order;
1748 	}
1749 
1750 	/*
1751 	 * Found a preceding buddy, but does it straddle?
1752 	 */
1753 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1754 		return pfn;
1755 
1756 	/* Nothing found */
1757 	return start_pfn;
1758 }
1759 
1760 /**
1761  * move_freepages_block_isolate - move free pages in block for page isolation
1762  * @zone: the zone
1763  * @page: the pageblock page
1764  * @migratetype: migratetype to set on the pageblock
1765  *
1766  * This is similar to move_freepages_block(), but handles the special
1767  * case encountered in page isolation, where the block of interest
1768  * might be part of a larger buddy spanning multiple pageblocks.
1769  *
1770  * Unlike the regular page allocator path, which moves pages while
1771  * stealing buddies off the freelist, page isolation is interested in
1772  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1773  *
1774  * This function handles that. Straddling buddies are split into
1775  * individual pageblocks. Only the block of interest is moved.
1776  *
1777  * Returns %true if pages could be moved, %false otherwise.
1778  */
1779 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1780 				  int migratetype)
1781 {
1782 	unsigned long start_pfn, pfn;
1783 
1784 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1785 		return false;
1786 
1787 	/* No splits needed if buddies can't span multiple blocks */
1788 	if (pageblock_order == MAX_PAGE_ORDER)
1789 		goto move;
1790 
1791 	/* We're a tail block in a larger buddy */
1792 	pfn = find_large_buddy(start_pfn);
1793 	if (pfn != start_pfn) {
1794 		struct page *buddy = pfn_to_page(pfn);
1795 		int order = buddy_order(buddy);
1796 
1797 		del_page_from_free_list(buddy, zone, order,
1798 					get_pfnblock_migratetype(buddy, pfn));
1799 		set_pageblock_migratetype(page, migratetype);
1800 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1801 		return true;
1802 	}
1803 
1804 	/* We're the starting block of a larger buddy */
1805 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1806 		int order = buddy_order(page);
1807 
1808 		del_page_from_free_list(page, zone, order,
1809 					get_pfnblock_migratetype(page, pfn));
1810 		set_pageblock_migratetype(page, migratetype);
1811 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1812 		return true;
1813 	}
1814 move:
1815 	__move_freepages_block(zone, start_pfn,
1816 			       get_pfnblock_migratetype(page, start_pfn),
1817 			       migratetype);
1818 	return true;
1819 }
1820 #endif /* CONFIG_MEMORY_ISOLATION */
1821 
1822 static void change_pageblock_range(struct page *pageblock_page,
1823 					int start_order, int migratetype)
1824 {
1825 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1826 
1827 	while (nr_pageblocks--) {
1828 		set_pageblock_migratetype(pageblock_page, migratetype);
1829 		pageblock_page += pageblock_nr_pages;
1830 	}
1831 }
1832 
1833 /*
1834  * When we are falling back to another migratetype during allocation, try to
1835  * steal extra free pages from the same pageblocks to satisfy further
1836  * allocations, instead of polluting multiple pageblocks.
1837  *
1838  * If we are stealing a relatively large buddy page, it is likely there will
1839  * be more free pages in the pageblock, so try to steal them all. For
1840  * reclaimable and unmovable allocations, we steal regardless of page size,
1841  * as fragmentation caused by those allocations polluting movable pageblocks
1842  * is worse than movable allocations stealing from unmovable and reclaimable
1843  * pageblocks.
1844  */
1845 static bool can_steal_fallback(unsigned int order, int start_mt)
1846 {
1847 	/*
1848 	 * Leaving this order check is intended, although there is
1849 	 * relaxed order check in next check. The reason is that
1850 	 * we can actually steal whole pageblock if this condition met,
1851 	 * but, below check doesn't guarantee it and that is just heuristic
1852 	 * so could be changed anytime.
1853 	 */
1854 	if (order >= pageblock_order)
1855 		return true;
1856 
1857 	if (order >= pageblock_order / 2 ||
1858 		start_mt == MIGRATE_RECLAIMABLE ||
1859 		start_mt == MIGRATE_UNMOVABLE ||
1860 		page_group_by_mobility_disabled)
1861 		return true;
1862 
1863 	return false;
1864 }
1865 
1866 static inline bool boost_watermark(struct zone *zone)
1867 {
1868 	unsigned long max_boost;
1869 
1870 	if (!watermark_boost_factor)
1871 		return false;
1872 	/*
1873 	 * Don't bother in zones that are unlikely to produce results.
1874 	 * On small machines, including kdump capture kernels running
1875 	 * in a small area, boosting the watermark can cause an out of
1876 	 * memory situation immediately.
1877 	 */
1878 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1879 		return false;
1880 
1881 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1882 			watermark_boost_factor, 10000);
1883 
1884 	/*
1885 	 * high watermark may be uninitialised if fragmentation occurs
1886 	 * very early in boot so do not boost. We do not fall
1887 	 * through and boost by pageblock_nr_pages as failing
1888 	 * allocations that early means that reclaim is not going
1889 	 * to help and it may even be impossible to reclaim the
1890 	 * boosted watermark resulting in a hang.
1891 	 */
1892 	if (!max_boost)
1893 		return false;
1894 
1895 	max_boost = max(pageblock_nr_pages, max_boost);
1896 
1897 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1898 		max_boost);
1899 
1900 	return true;
1901 }
1902 
1903 /*
1904  * This function implements actual steal behaviour. If order is large enough, we
1905  * can claim the whole pageblock for the requested migratetype. If not, we check
1906  * the pageblock for constituent pages; if at least half of the pages are free
1907  * or compatible, we can still claim the whole block, so pages freed in the
1908  * future will be put on the correct free list. Otherwise, we isolate exactly
1909  * the order we need from the fallback block and leave its migratetype alone.
1910  */
1911 static struct page *
1912 steal_suitable_fallback(struct zone *zone, struct page *page,
1913 			int current_order, int order, int start_type,
1914 			unsigned int alloc_flags, bool whole_block)
1915 {
1916 	int free_pages, movable_pages, alike_pages;
1917 	unsigned long start_pfn;
1918 	int block_type;
1919 
1920 	block_type = get_pageblock_migratetype(page);
1921 
1922 	/*
1923 	 * This can happen due to races and we want to prevent broken
1924 	 * highatomic accounting.
1925 	 */
1926 	if (is_migrate_highatomic(block_type))
1927 		goto single_page;
1928 
1929 	/* Take ownership for orders >= pageblock_order */
1930 	if (current_order >= pageblock_order) {
1931 		unsigned int nr_added;
1932 
1933 		del_page_from_free_list(page, zone, current_order, block_type);
1934 		change_pageblock_range(page, current_order, start_type);
1935 		nr_added = expand(zone, page, order, current_order, start_type);
1936 		account_freepages(zone, nr_added, start_type);
1937 		return page;
1938 	}
1939 
1940 	/*
1941 	 * Boost watermarks to increase reclaim pressure to reduce the
1942 	 * likelihood of future fallbacks. Wake kswapd now as the node
1943 	 * may be balanced overall and kswapd will not wake naturally.
1944 	 */
1945 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1946 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1947 
1948 	/* We are not allowed to try stealing from the whole block */
1949 	if (!whole_block)
1950 		goto single_page;
1951 
1952 	/* moving whole block can fail due to zone boundary conditions */
1953 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1954 				       &movable_pages))
1955 		goto single_page;
1956 
1957 	/*
1958 	 * Determine how many pages are compatible with our allocation.
1959 	 * For movable allocation, it's the number of movable pages which
1960 	 * we just obtained. For other types it's a bit more tricky.
1961 	 */
1962 	if (start_type == MIGRATE_MOVABLE) {
1963 		alike_pages = movable_pages;
1964 	} else {
1965 		/*
1966 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1967 		 * to MOVABLE pageblock, consider all non-movable pages as
1968 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1969 		 * vice versa, be conservative since we can't distinguish the
1970 		 * exact migratetype of non-movable pages.
1971 		 */
1972 		if (block_type == MIGRATE_MOVABLE)
1973 			alike_pages = pageblock_nr_pages
1974 						- (free_pages + movable_pages);
1975 		else
1976 			alike_pages = 0;
1977 	}
1978 	/*
1979 	 * If a sufficient number of pages in the block are either free or of
1980 	 * compatible migratability as our allocation, claim the whole block.
1981 	 */
1982 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1983 			page_group_by_mobility_disabled) {
1984 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1985 		return __rmqueue_smallest(zone, order, start_type);
1986 	}
1987 
1988 single_page:
1989 	page_del_and_expand(zone, page, order, current_order, block_type);
1990 	return page;
1991 }
1992 
1993 /*
1994  * Check whether there is a suitable fallback freepage with requested order.
1995  * If only_stealable is true, this function returns fallback_mt only if
1996  * we can steal other freepages all together. This would help to reduce
1997  * fragmentation due to mixed migratetype pages in one pageblock.
1998  */
1999 int find_suitable_fallback(struct free_area *area, unsigned int order,
2000 			int migratetype, bool only_stealable, bool *can_steal)
2001 {
2002 	int i;
2003 	int fallback_mt;
2004 
2005 	if (area->nr_free == 0)
2006 		return -1;
2007 
2008 	*can_steal = false;
2009 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2010 		fallback_mt = fallbacks[migratetype][i];
2011 		if (free_area_empty(area, fallback_mt))
2012 			continue;
2013 
2014 		if (can_steal_fallback(order, migratetype))
2015 			*can_steal = true;
2016 
2017 		if (!only_stealable)
2018 			return fallback_mt;
2019 
2020 		if (*can_steal)
2021 			return fallback_mt;
2022 	}
2023 
2024 	return -1;
2025 }
2026 
2027 /*
2028  * Reserve the pageblock(s) surrounding an allocation request for
2029  * exclusive use of high-order atomic allocations if there are no
2030  * empty page blocks that contain a page with a suitable order
2031  */
2032 static void reserve_highatomic_pageblock(struct page *page, int order,
2033 					 struct zone *zone)
2034 {
2035 	int mt;
2036 	unsigned long max_managed, flags;
2037 
2038 	/*
2039 	 * The number reserved as: minimum is 1 pageblock, maximum is
2040 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2041 	 * pageblock size, then don't reserve any pageblocks.
2042 	 * Check is race-prone but harmless.
2043 	 */
2044 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2045 		return;
2046 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2047 	if (zone->nr_reserved_highatomic >= max_managed)
2048 		return;
2049 
2050 	spin_lock_irqsave(&zone->lock, flags);
2051 
2052 	/* Recheck the nr_reserved_highatomic limit under the lock */
2053 	if (zone->nr_reserved_highatomic >= max_managed)
2054 		goto out_unlock;
2055 
2056 	/* Yoink! */
2057 	mt = get_pageblock_migratetype(page);
2058 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2059 	if (!migratetype_is_mergeable(mt))
2060 		goto out_unlock;
2061 
2062 	if (order < pageblock_order) {
2063 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2064 			goto out_unlock;
2065 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2066 	} else {
2067 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2068 		zone->nr_reserved_highatomic += 1 << order;
2069 	}
2070 
2071 out_unlock:
2072 	spin_unlock_irqrestore(&zone->lock, flags);
2073 }
2074 
2075 /*
2076  * Used when an allocation is about to fail under memory pressure. This
2077  * potentially hurts the reliability of high-order allocations when under
2078  * intense memory pressure but failed atomic allocations should be easier
2079  * to recover from than an OOM.
2080  *
2081  * If @force is true, try to unreserve pageblocks even though highatomic
2082  * pageblock is exhausted.
2083  */
2084 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2085 						bool force)
2086 {
2087 	struct zonelist *zonelist = ac->zonelist;
2088 	unsigned long flags;
2089 	struct zoneref *z;
2090 	struct zone *zone;
2091 	struct page *page;
2092 	int order;
2093 	int ret;
2094 
2095 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2096 								ac->nodemask) {
2097 		/*
2098 		 * Preserve at least one pageblock unless memory pressure
2099 		 * is really high.
2100 		 */
2101 		if (!force && zone->nr_reserved_highatomic <=
2102 					pageblock_nr_pages)
2103 			continue;
2104 
2105 		spin_lock_irqsave(&zone->lock, flags);
2106 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2107 			struct free_area *area = &(zone->free_area[order]);
2108 			int mt;
2109 
2110 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2111 			if (!page)
2112 				continue;
2113 
2114 			mt = get_pageblock_migratetype(page);
2115 			/*
2116 			 * In page freeing path, migratetype change is racy so
2117 			 * we can counter several free pages in a pageblock
2118 			 * in this loop although we changed the pageblock type
2119 			 * from highatomic to ac->migratetype. So we should
2120 			 * adjust the count once.
2121 			 */
2122 			if (is_migrate_highatomic(mt)) {
2123 				unsigned long size;
2124 				/*
2125 				 * It should never happen but changes to
2126 				 * locking could inadvertently allow a per-cpu
2127 				 * drain to add pages to MIGRATE_HIGHATOMIC
2128 				 * while unreserving so be safe and watch for
2129 				 * underflows.
2130 				 */
2131 				size = max(pageblock_nr_pages, 1UL << order);
2132 				size = min(size, zone->nr_reserved_highatomic);
2133 				zone->nr_reserved_highatomic -= size;
2134 			}
2135 
2136 			/*
2137 			 * Convert to ac->migratetype and avoid the normal
2138 			 * pageblock stealing heuristics. Minimally, the caller
2139 			 * is doing the work and needs the pages. More
2140 			 * importantly, if the block was always converted to
2141 			 * MIGRATE_UNMOVABLE or another type then the number
2142 			 * of pageblocks that cannot be completely freed
2143 			 * may increase.
2144 			 */
2145 			if (order < pageblock_order)
2146 				ret = move_freepages_block(zone, page, mt,
2147 							   ac->migratetype);
2148 			else {
2149 				move_to_free_list(page, zone, order, mt,
2150 						  ac->migratetype);
2151 				change_pageblock_range(page, order,
2152 						       ac->migratetype);
2153 				ret = 1;
2154 			}
2155 			/*
2156 			 * Reserving the block(s) already succeeded,
2157 			 * so this should not fail on zone boundaries.
2158 			 */
2159 			WARN_ON_ONCE(ret == -1);
2160 			if (ret > 0) {
2161 				spin_unlock_irqrestore(&zone->lock, flags);
2162 				return ret;
2163 			}
2164 		}
2165 		spin_unlock_irqrestore(&zone->lock, flags);
2166 	}
2167 
2168 	return false;
2169 }
2170 
2171 /*
2172  * Try finding a free buddy page on the fallback list and put it on the free
2173  * list of requested migratetype, possibly along with other pages from the same
2174  * block, depending on fragmentation avoidance heuristics. Returns true if
2175  * fallback was found so that __rmqueue_smallest() can grab it.
2176  *
2177  * The use of signed ints for order and current_order is a deliberate
2178  * deviation from the rest of this file, to make the for loop
2179  * condition simpler.
2180  */
2181 static __always_inline struct page *
2182 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2183 						unsigned int alloc_flags)
2184 {
2185 	struct free_area *area;
2186 	int current_order;
2187 	int min_order = order;
2188 	struct page *page;
2189 	int fallback_mt;
2190 	bool can_steal;
2191 
2192 	/*
2193 	 * Do not steal pages from freelists belonging to other pageblocks
2194 	 * i.e. orders < pageblock_order. If there are no local zones free,
2195 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2196 	 */
2197 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2198 		min_order = pageblock_order;
2199 
2200 	/*
2201 	 * Find the largest available free page in the other list. This roughly
2202 	 * approximates finding the pageblock with the most free pages, which
2203 	 * would be too costly to do exactly.
2204 	 */
2205 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2206 				--current_order) {
2207 		area = &(zone->free_area[current_order]);
2208 		fallback_mt = find_suitable_fallback(area, current_order,
2209 				start_migratetype, false, &can_steal);
2210 		if (fallback_mt == -1)
2211 			continue;
2212 
2213 		/*
2214 		 * We cannot steal all free pages from the pageblock and the
2215 		 * requested migratetype is movable. In that case it's better to
2216 		 * steal and split the smallest available page instead of the
2217 		 * largest available page, because even if the next movable
2218 		 * allocation falls back into a different pageblock than this
2219 		 * one, it won't cause permanent fragmentation.
2220 		 */
2221 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2222 					&& current_order > order)
2223 			goto find_smallest;
2224 
2225 		goto do_steal;
2226 	}
2227 
2228 	return NULL;
2229 
2230 find_smallest:
2231 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2232 		area = &(zone->free_area[current_order]);
2233 		fallback_mt = find_suitable_fallback(area, current_order,
2234 				start_migratetype, false, &can_steal);
2235 		if (fallback_mt != -1)
2236 			break;
2237 	}
2238 
2239 	/*
2240 	 * This should not happen - we already found a suitable fallback
2241 	 * when looking for the largest page.
2242 	 */
2243 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2244 
2245 do_steal:
2246 	page = get_page_from_free_area(area, fallback_mt);
2247 
2248 	/* take off list, maybe claim block, expand remainder */
2249 	page = steal_suitable_fallback(zone, page, current_order, order,
2250 				       start_migratetype, alloc_flags, can_steal);
2251 
2252 	trace_mm_page_alloc_extfrag(page, order, current_order,
2253 		start_migratetype, fallback_mt);
2254 
2255 	return page;
2256 }
2257 
2258 /*
2259  * Do the hard work of removing an element from the buddy allocator.
2260  * Call me with the zone->lock already held.
2261  */
2262 static __always_inline struct page *
2263 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2264 						unsigned int alloc_flags)
2265 {
2266 	struct page *page;
2267 
2268 	if (IS_ENABLED(CONFIG_CMA)) {
2269 		/*
2270 		 * Balance movable allocations between regular and CMA areas by
2271 		 * allocating from CMA when over half of the zone's free memory
2272 		 * is in the CMA area.
2273 		 */
2274 		if (alloc_flags & ALLOC_CMA &&
2275 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2276 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2277 			page = __rmqueue_cma_fallback(zone, order);
2278 			if (page)
2279 				return page;
2280 		}
2281 	}
2282 
2283 	page = __rmqueue_smallest(zone, order, migratetype);
2284 	if (unlikely(!page)) {
2285 		if (alloc_flags & ALLOC_CMA)
2286 			page = __rmqueue_cma_fallback(zone, order);
2287 
2288 		if (!page)
2289 			page = __rmqueue_fallback(zone, order, migratetype,
2290 						  alloc_flags);
2291 	}
2292 	return page;
2293 }
2294 
2295 /*
2296  * Obtain a specified number of elements from the buddy allocator, all under
2297  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2298  * Returns the number of new pages which were placed at *list.
2299  */
2300 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2301 			unsigned long count, struct list_head *list,
2302 			int migratetype, unsigned int alloc_flags)
2303 {
2304 	unsigned long flags;
2305 	int i;
2306 
2307 	spin_lock_irqsave(&zone->lock, flags);
2308 	for (i = 0; i < count; ++i) {
2309 		struct page *page = __rmqueue(zone, order, migratetype,
2310 								alloc_flags);
2311 		if (unlikely(page == NULL))
2312 			break;
2313 
2314 		/*
2315 		 * Split buddy pages returned by expand() are received here in
2316 		 * physical page order. The page is added to the tail of
2317 		 * caller's list. From the callers perspective, the linked list
2318 		 * is ordered by page number under some conditions. This is
2319 		 * useful for IO devices that can forward direction from the
2320 		 * head, thus also in the physical page order. This is useful
2321 		 * for IO devices that can merge IO requests if the physical
2322 		 * pages are ordered properly.
2323 		 */
2324 		list_add_tail(&page->pcp_list, list);
2325 	}
2326 	spin_unlock_irqrestore(&zone->lock, flags);
2327 
2328 	return i;
2329 }
2330 
2331 /*
2332  * Called from the vmstat counter updater to decay the PCP high.
2333  * Return whether there are addition works to do.
2334  */
2335 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2336 {
2337 	int high_min, to_drain, batch;
2338 	int todo = 0;
2339 
2340 	high_min = READ_ONCE(pcp->high_min);
2341 	batch = READ_ONCE(pcp->batch);
2342 	/*
2343 	 * Decrease pcp->high periodically to try to free possible
2344 	 * idle PCP pages.  And, avoid to free too many pages to
2345 	 * control latency.  This caps pcp->high decrement too.
2346 	 */
2347 	if (pcp->high > high_min) {
2348 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2349 				 pcp->high - (pcp->high >> 3), high_min);
2350 		if (pcp->high > high_min)
2351 			todo++;
2352 	}
2353 
2354 	to_drain = pcp->count - pcp->high;
2355 	if (to_drain > 0) {
2356 		spin_lock(&pcp->lock);
2357 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2358 		spin_unlock(&pcp->lock);
2359 		todo++;
2360 	}
2361 
2362 	return todo;
2363 }
2364 
2365 #ifdef CONFIG_NUMA
2366 /*
2367  * Called from the vmstat counter updater to drain pagesets of this
2368  * currently executing processor on remote nodes after they have
2369  * expired.
2370  */
2371 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2372 {
2373 	int to_drain, batch;
2374 
2375 	batch = READ_ONCE(pcp->batch);
2376 	to_drain = min(pcp->count, batch);
2377 	if (to_drain > 0) {
2378 		spin_lock(&pcp->lock);
2379 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2380 		spin_unlock(&pcp->lock);
2381 	}
2382 }
2383 #endif
2384 
2385 /*
2386  * Drain pcplists of the indicated processor and zone.
2387  */
2388 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2389 {
2390 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2391 	int count;
2392 
2393 	do {
2394 		spin_lock(&pcp->lock);
2395 		count = pcp->count;
2396 		if (count) {
2397 			int to_drain = min(count,
2398 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2399 
2400 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2401 			count -= to_drain;
2402 		}
2403 		spin_unlock(&pcp->lock);
2404 	} while (count);
2405 }
2406 
2407 /*
2408  * Drain pcplists of all zones on the indicated processor.
2409  */
2410 static void drain_pages(unsigned int cpu)
2411 {
2412 	struct zone *zone;
2413 
2414 	for_each_populated_zone(zone) {
2415 		drain_pages_zone(cpu, zone);
2416 	}
2417 }
2418 
2419 /*
2420  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2421  */
2422 void drain_local_pages(struct zone *zone)
2423 {
2424 	int cpu = smp_processor_id();
2425 
2426 	if (zone)
2427 		drain_pages_zone(cpu, zone);
2428 	else
2429 		drain_pages(cpu);
2430 }
2431 
2432 /*
2433  * The implementation of drain_all_pages(), exposing an extra parameter to
2434  * drain on all cpus.
2435  *
2436  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2437  * not empty. The check for non-emptiness can however race with a free to
2438  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2439  * that need the guarantee that every CPU has drained can disable the
2440  * optimizing racy check.
2441  */
2442 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2443 {
2444 	int cpu;
2445 
2446 	/*
2447 	 * Allocate in the BSS so we won't require allocation in
2448 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2449 	 */
2450 	static cpumask_t cpus_with_pcps;
2451 
2452 	/*
2453 	 * Do not drain if one is already in progress unless it's specific to
2454 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2455 	 * the drain to be complete when the call returns.
2456 	 */
2457 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2458 		if (!zone)
2459 			return;
2460 		mutex_lock(&pcpu_drain_mutex);
2461 	}
2462 
2463 	/*
2464 	 * We don't care about racing with CPU hotplug event
2465 	 * as offline notification will cause the notified
2466 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2467 	 * disables preemption as part of its processing
2468 	 */
2469 	for_each_online_cpu(cpu) {
2470 		struct per_cpu_pages *pcp;
2471 		struct zone *z;
2472 		bool has_pcps = false;
2473 
2474 		if (force_all_cpus) {
2475 			/*
2476 			 * The pcp.count check is racy, some callers need a
2477 			 * guarantee that no cpu is missed.
2478 			 */
2479 			has_pcps = true;
2480 		} else if (zone) {
2481 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2482 			if (pcp->count)
2483 				has_pcps = true;
2484 		} else {
2485 			for_each_populated_zone(z) {
2486 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2487 				if (pcp->count) {
2488 					has_pcps = true;
2489 					break;
2490 				}
2491 			}
2492 		}
2493 
2494 		if (has_pcps)
2495 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2496 		else
2497 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2498 	}
2499 
2500 	for_each_cpu(cpu, &cpus_with_pcps) {
2501 		if (zone)
2502 			drain_pages_zone(cpu, zone);
2503 		else
2504 			drain_pages(cpu);
2505 	}
2506 
2507 	mutex_unlock(&pcpu_drain_mutex);
2508 }
2509 
2510 /*
2511  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2512  *
2513  * When zone parameter is non-NULL, spill just the single zone's pages.
2514  */
2515 void drain_all_pages(struct zone *zone)
2516 {
2517 	__drain_all_pages(zone, false);
2518 }
2519 
2520 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2521 {
2522 	int min_nr_free, max_nr_free;
2523 
2524 	/* Free as much as possible if batch freeing high-order pages. */
2525 	if (unlikely(free_high))
2526 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2527 
2528 	/* Check for PCP disabled or boot pageset */
2529 	if (unlikely(high < batch))
2530 		return 1;
2531 
2532 	/* Leave at least pcp->batch pages on the list */
2533 	min_nr_free = batch;
2534 	max_nr_free = high - batch;
2535 
2536 	/*
2537 	 * Increase the batch number to the number of the consecutive
2538 	 * freed pages to reduce zone lock contention.
2539 	 */
2540 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2541 
2542 	return batch;
2543 }
2544 
2545 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2546 		       int batch, bool free_high)
2547 {
2548 	int high, high_min, high_max;
2549 
2550 	high_min = READ_ONCE(pcp->high_min);
2551 	high_max = READ_ONCE(pcp->high_max);
2552 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2553 
2554 	if (unlikely(!high))
2555 		return 0;
2556 
2557 	if (unlikely(free_high)) {
2558 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2559 				high_min);
2560 		return 0;
2561 	}
2562 
2563 	/*
2564 	 * If reclaim is active, limit the number of pages that can be
2565 	 * stored on pcp lists
2566 	 */
2567 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2568 		int free_count = max_t(int, pcp->free_count, batch);
2569 
2570 		pcp->high = max(high - free_count, high_min);
2571 		return min(batch << 2, pcp->high);
2572 	}
2573 
2574 	if (high_min == high_max)
2575 		return high;
2576 
2577 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2578 		int free_count = max_t(int, pcp->free_count, batch);
2579 
2580 		pcp->high = max(high - free_count, high_min);
2581 		high = max(pcp->count, high_min);
2582 	} else if (pcp->count >= high) {
2583 		int need_high = pcp->free_count + batch;
2584 
2585 		/* pcp->high should be large enough to hold batch freed pages */
2586 		if (pcp->high < need_high)
2587 			pcp->high = clamp(need_high, high_min, high_max);
2588 	}
2589 
2590 	return high;
2591 }
2592 
2593 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2594 				   struct page *page, int migratetype,
2595 				   unsigned int order)
2596 {
2597 	int high, batch;
2598 	int pindex;
2599 	bool free_high = false;
2600 
2601 	/*
2602 	 * On freeing, reduce the number of pages that are batch allocated.
2603 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2604 	 * allocations.
2605 	 */
2606 	pcp->alloc_factor >>= 1;
2607 	__count_vm_events(PGFREE, 1 << order);
2608 	pindex = order_to_pindex(migratetype, order);
2609 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2610 	pcp->count += 1 << order;
2611 
2612 	batch = READ_ONCE(pcp->batch);
2613 	/*
2614 	 * As high-order pages other than THP's stored on PCP can contribute
2615 	 * to fragmentation, limit the number stored when PCP is heavily
2616 	 * freeing without allocation. The remainder after bulk freeing
2617 	 * stops will be drained from vmstat refresh context.
2618 	 */
2619 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2620 		free_high = (pcp->free_count >= batch &&
2621 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2622 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2623 			      pcp->count >= READ_ONCE(batch)));
2624 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2625 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2626 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2627 	}
2628 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2629 		pcp->free_count += (1 << order);
2630 	high = nr_pcp_high(pcp, zone, batch, free_high);
2631 	if (pcp->count >= high) {
2632 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2633 				   pcp, pindex);
2634 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2635 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2636 				      ZONE_MOVABLE, 0))
2637 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2638 	}
2639 }
2640 
2641 /*
2642  * Free a pcp page
2643  */
2644 void free_unref_page(struct page *page, unsigned int order)
2645 {
2646 	unsigned long __maybe_unused UP_flags;
2647 	struct per_cpu_pages *pcp;
2648 	struct zone *zone;
2649 	unsigned long pfn = page_to_pfn(page);
2650 	int migratetype;
2651 
2652 	if (!pcp_allowed_order(order)) {
2653 		__free_pages_ok(page, order, FPI_NONE);
2654 		return;
2655 	}
2656 
2657 	if (!free_pages_prepare(page, order))
2658 		return;
2659 
2660 	/*
2661 	 * We only track unmovable, reclaimable and movable on pcp lists.
2662 	 * Place ISOLATE pages on the isolated list because they are being
2663 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2664 	 * get those areas back if necessary. Otherwise, we may have to free
2665 	 * excessively into the page allocator
2666 	 */
2667 	migratetype = get_pfnblock_migratetype(page, pfn);
2668 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2669 		if (unlikely(is_migrate_isolate(migratetype))) {
2670 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2671 			return;
2672 		}
2673 		migratetype = MIGRATE_MOVABLE;
2674 	}
2675 
2676 	zone = page_zone(page);
2677 	pcp_trylock_prepare(UP_flags);
2678 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2679 	if (pcp) {
2680 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2681 		pcp_spin_unlock(pcp);
2682 	} else {
2683 		free_one_page(zone, page, pfn, order, FPI_NONE);
2684 	}
2685 	pcp_trylock_finish(UP_flags);
2686 }
2687 
2688 /*
2689  * Free a batch of folios
2690  */
2691 void free_unref_folios(struct folio_batch *folios)
2692 {
2693 	unsigned long __maybe_unused UP_flags;
2694 	struct per_cpu_pages *pcp = NULL;
2695 	struct zone *locked_zone = NULL;
2696 	int i, j;
2697 
2698 	/* Prepare folios for freeing */
2699 	for (i = 0, j = 0; i < folios->nr; i++) {
2700 		struct folio *folio = folios->folios[i];
2701 		unsigned long pfn = folio_pfn(folio);
2702 		unsigned int order = folio_order(folio);
2703 
2704 		if (!free_pages_prepare(&folio->page, order))
2705 			continue;
2706 		/*
2707 		 * Free orders not handled on the PCP directly to the
2708 		 * allocator.
2709 		 */
2710 		if (!pcp_allowed_order(order)) {
2711 			free_one_page(folio_zone(folio), &folio->page,
2712 				      pfn, order, FPI_NONE);
2713 			continue;
2714 		}
2715 		folio->private = (void *)(unsigned long)order;
2716 		if (j != i)
2717 			folios->folios[j] = folio;
2718 		j++;
2719 	}
2720 	folios->nr = j;
2721 
2722 	for (i = 0; i < folios->nr; i++) {
2723 		struct folio *folio = folios->folios[i];
2724 		struct zone *zone = folio_zone(folio);
2725 		unsigned long pfn = folio_pfn(folio);
2726 		unsigned int order = (unsigned long)folio->private;
2727 		int migratetype;
2728 
2729 		folio->private = NULL;
2730 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2731 
2732 		/* Different zone requires a different pcp lock */
2733 		if (zone != locked_zone ||
2734 		    is_migrate_isolate(migratetype)) {
2735 			if (pcp) {
2736 				pcp_spin_unlock(pcp);
2737 				pcp_trylock_finish(UP_flags);
2738 				locked_zone = NULL;
2739 				pcp = NULL;
2740 			}
2741 
2742 			/*
2743 			 * Free isolated pages directly to the
2744 			 * allocator, see comment in free_unref_page.
2745 			 */
2746 			if (is_migrate_isolate(migratetype)) {
2747 				free_one_page(zone, &folio->page, pfn,
2748 					      order, FPI_NONE);
2749 				continue;
2750 			}
2751 
2752 			/*
2753 			 * trylock is necessary as folios may be getting freed
2754 			 * from IRQ or SoftIRQ context after an IO completion.
2755 			 */
2756 			pcp_trylock_prepare(UP_flags);
2757 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2758 			if (unlikely(!pcp)) {
2759 				pcp_trylock_finish(UP_flags);
2760 				free_one_page(zone, &folio->page, pfn,
2761 					      order, FPI_NONE);
2762 				continue;
2763 			}
2764 			locked_zone = zone;
2765 		}
2766 
2767 		/*
2768 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2769 		 * to the MIGRATE_MOVABLE pcp list.
2770 		 */
2771 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2772 			migratetype = MIGRATE_MOVABLE;
2773 
2774 		trace_mm_page_free_batched(&folio->page);
2775 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2776 				order);
2777 	}
2778 
2779 	if (pcp) {
2780 		pcp_spin_unlock(pcp);
2781 		pcp_trylock_finish(UP_flags);
2782 	}
2783 	folio_batch_reinit(folios);
2784 }
2785 
2786 /*
2787  * split_page takes a non-compound higher-order page, and splits it into
2788  * n (1<<order) sub-pages: page[0..n]
2789  * Each sub-page must be freed individually.
2790  *
2791  * Note: this is probably too low level an operation for use in drivers.
2792  * Please consult with lkml before using this in your driver.
2793  */
2794 void split_page(struct page *page, unsigned int order)
2795 {
2796 	int i;
2797 
2798 	VM_BUG_ON_PAGE(PageCompound(page), page);
2799 	VM_BUG_ON_PAGE(!page_count(page), page);
2800 
2801 	for (i = 1; i < (1 << order); i++)
2802 		set_page_refcounted(page + i);
2803 	split_page_owner(page, order, 0);
2804 	pgalloc_tag_split(page_folio(page), order, 0);
2805 	split_page_memcg(page, order, 0);
2806 }
2807 EXPORT_SYMBOL_GPL(split_page);
2808 
2809 int __isolate_free_page(struct page *page, unsigned int order)
2810 {
2811 	struct zone *zone = page_zone(page);
2812 	int mt = get_pageblock_migratetype(page);
2813 
2814 	if (!is_migrate_isolate(mt)) {
2815 		unsigned long watermark;
2816 		/*
2817 		 * Obey watermarks as if the page was being allocated. We can
2818 		 * emulate a high-order watermark check with a raised order-0
2819 		 * watermark, because we already know our high-order page
2820 		 * exists.
2821 		 */
2822 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2823 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2824 			return 0;
2825 	}
2826 
2827 	del_page_from_free_list(page, zone, order, mt);
2828 
2829 	/*
2830 	 * Set the pageblock if the isolated page is at least half of a
2831 	 * pageblock
2832 	 */
2833 	if (order >= pageblock_order - 1) {
2834 		struct page *endpage = page + (1 << order) - 1;
2835 		for (; page < endpage; page += pageblock_nr_pages) {
2836 			int mt = get_pageblock_migratetype(page);
2837 			/*
2838 			 * Only change normal pageblocks (i.e., they can merge
2839 			 * with others)
2840 			 */
2841 			if (migratetype_is_mergeable(mt))
2842 				move_freepages_block(zone, page, mt,
2843 						     MIGRATE_MOVABLE);
2844 		}
2845 	}
2846 
2847 	return 1UL << order;
2848 }
2849 
2850 /**
2851  * __putback_isolated_page - Return a now-isolated page back where we got it
2852  * @page: Page that was isolated
2853  * @order: Order of the isolated page
2854  * @mt: The page's pageblock's migratetype
2855  *
2856  * This function is meant to return a page pulled from the free lists via
2857  * __isolate_free_page back to the free lists they were pulled from.
2858  */
2859 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2860 {
2861 	struct zone *zone = page_zone(page);
2862 
2863 	/* zone lock should be held when this function is called */
2864 	lockdep_assert_held(&zone->lock);
2865 
2866 	/* Return isolated page to tail of freelist. */
2867 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2868 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2869 }
2870 
2871 /*
2872  * Update NUMA hit/miss statistics
2873  */
2874 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2875 				   long nr_account)
2876 {
2877 #ifdef CONFIG_NUMA
2878 	enum numa_stat_item local_stat = NUMA_LOCAL;
2879 
2880 	/* skip numa counters update if numa stats is disabled */
2881 	if (!static_branch_likely(&vm_numa_stat_key))
2882 		return;
2883 
2884 	if (zone_to_nid(z) != numa_node_id())
2885 		local_stat = NUMA_OTHER;
2886 
2887 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2888 		__count_numa_events(z, NUMA_HIT, nr_account);
2889 	else {
2890 		__count_numa_events(z, NUMA_MISS, nr_account);
2891 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2892 	}
2893 	__count_numa_events(z, local_stat, nr_account);
2894 #endif
2895 }
2896 
2897 static __always_inline
2898 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2899 			   unsigned int order, unsigned int alloc_flags,
2900 			   int migratetype)
2901 {
2902 	struct page *page;
2903 	unsigned long flags;
2904 
2905 	do {
2906 		page = NULL;
2907 		spin_lock_irqsave(&zone->lock, flags);
2908 		if (alloc_flags & ALLOC_HIGHATOMIC)
2909 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2910 		if (!page) {
2911 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2912 
2913 			/*
2914 			 * If the allocation fails, allow OOM handling and
2915 			 * order-0 (atomic) allocs access to HIGHATOMIC
2916 			 * reserves as failing now is worse than failing a
2917 			 * high-order atomic allocation in the future.
2918 			 */
2919 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2920 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2921 
2922 			if (!page) {
2923 				spin_unlock_irqrestore(&zone->lock, flags);
2924 				return NULL;
2925 			}
2926 		}
2927 		spin_unlock_irqrestore(&zone->lock, flags);
2928 	} while (check_new_pages(page, order));
2929 
2930 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2931 	zone_statistics(preferred_zone, zone, 1);
2932 
2933 	return page;
2934 }
2935 
2936 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2937 {
2938 	int high, base_batch, batch, max_nr_alloc;
2939 	int high_max, high_min;
2940 
2941 	base_batch = READ_ONCE(pcp->batch);
2942 	high_min = READ_ONCE(pcp->high_min);
2943 	high_max = READ_ONCE(pcp->high_max);
2944 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2945 
2946 	/* Check for PCP disabled or boot pageset */
2947 	if (unlikely(high < base_batch))
2948 		return 1;
2949 
2950 	if (order)
2951 		batch = base_batch;
2952 	else
2953 		batch = (base_batch << pcp->alloc_factor);
2954 
2955 	/*
2956 	 * If we had larger pcp->high, we could avoid to allocate from
2957 	 * zone.
2958 	 */
2959 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2960 		high = pcp->high = min(high + batch, high_max);
2961 
2962 	if (!order) {
2963 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2964 		/*
2965 		 * Double the number of pages allocated each time there is
2966 		 * subsequent allocation of order-0 pages without any freeing.
2967 		 */
2968 		if (batch <= max_nr_alloc &&
2969 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2970 			pcp->alloc_factor++;
2971 		batch = min(batch, max_nr_alloc);
2972 	}
2973 
2974 	/*
2975 	 * Scale batch relative to order if batch implies free pages
2976 	 * can be stored on the PCP. Batch can be 1 for small zones or
2977 	 * for boot pagesets which should never store free pages as
2978 	 * the pages may belong to arbitrary zones.
2979 	 */
2980 	if (batch > 1)
2981 		batch = max(batch >> order, 2);
2982 
2983 	return batch;
2984 }
2985 
2986 /* Remove page from the per-cpu list, caller must protect the list */
2987 static inline
2988 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2989 			int migratetype,
2990 			unsigned int alloc_flags,
2991 			struct per_cpu_pages *pcp,
2992 			struct list_head *list)
2993 {
2994 	struct page *page;
2995 
2996 	do {
2997 		if (list_empty(list)) {
2998 			int batch = nr_pcp_alloc(pcp, zone, order);
2999 			int alloced;
3000 
3001 			alloced = rmqueue_bulk(zone, order,
3002 					batch, list,
3003 					migratetype, alloc_flags);
3004 
3005 			pcp->count += alloced << order;
3006 			if (unlikely(list_empty(list)))
3007 				return NULL;
3008 		}
3009 
3010 		page = list_first_entry(list, struct page, pcp_list);
3011 		list_del(&page->pcp_list);
3012 		pcp->count -= 1 << order;
3013 	} while (check_new_pages(page, order));
3014 
3015 	return page;
3016 }
3017 
3018 /* Lock and remove page from the per-cpu list */
3019 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3020 			struct zone *zone, unsigned int order,
3021 			int migratetype, unsigned int alloc_flags)
3022 {
3023 	struct per_cpu_pages *pcp;
3024 	struct list_head *list;
3025 	struct page *page;
3026 	unsigned long __maybe_unused UP_flags;
3027 
3028 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3029 	pcp_trylock_prepare(UP_flags);
3030 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3031 	if (!pcp) {
3032 		pcp_trylock_finish(UP_flags);
3033 		return NULL;
3034 	}
3035 
3036 	/*
3037 	 * On allocation, reduce the number of pages that are batch freed.
3038 	 * See nr_pcp_free() where free_factor is increased for subsequent
3039 	 * frees.
3040 	 */
3041 	pcp->free_count >>= 1;
3042 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3043 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3044 	pcp_spin_unlock(pcp);
3045 	pcp_trylock_finish(UP_flags);
3046 	if (page) {
3047 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3048 		zone_statistics(preferred_zone, zone, 1);
3049 	}
3050 	return page;
3051 }
3052 
3053 /*
3054  * Allocate a page from the given zone.
3055  * Use pcplists for THP or "cheap" high-order allocations.
3056  */
3057 
3058 /*
3059  * Do not instrument rmqueue() with KMSAN. This function may call
3060  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3061  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3062  * may call rmqueue() again, which will result in a deadlock.
3063  */
3064 __no_sanitize_memory
3065 static inline
3066 struct page *rmqueue(struct zone *preferred_zone,
3067 			struct zone *zone, unsigned int order,
3068 			gfp_t gfp_flags, unsigned int alloc_flags,
3069 			int migratetype)
3070 {
3071 	struct page *page;
3072 
3073 	if (likely(pcp_allowed_order(order))) {
3074 		page = rmqueue_pcplist(preferred_zone, zone, order,
3075 				       migratetype, alloc_flags);
3076 		if (likely(page))
3077 			goto out;
3078 	}
3079 
3080 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3081 							migratetype);
3082 
3083 out:
3084 	/* Separate test+clear to avoid unnecessary atomics */
3085 	if ((alloc_flags & ALLOC_KSWAPD) &&
3086 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3087 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3088 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3089 	}
3090 
3091 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3092 	return page;
3093 }
3094 
3095 static inline long __zone_watermark_unusable_free(struct zone *z,
3096 				unsigned int order, unsigned int alloc_flags)
3097 {
3098 	long unusable_free = (1 << order) - 1;
3099 
3100 	/*
3101 	 * If the caller does not have rights to reserves below the min
3102 	 * watermark then subtract the free pages reserved for highatomic.
3103 	 */
3104 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3105 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3106 
3107 #ifdef CONFIG_CMA
3108 	/* If allocation can't use CMA areas don't use free CMA pages */
3109 	if (!(alloc_flags & ALLOC_CMA))
3110 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3111 #endif
3112 
3113 	return unusable_free;
3114 }
3115 
3116 /*
3117  * Return true if free base pages are above 'mark'. For high-order checks it
3118  * will return true of the order-0 watermark is reached and there is at least
3119  * one free page of a suitable size. Checking now avoids taking the zone lock
3120  * to check in the allocation paths if no pages are free.
3121  */
3122 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3123 			 int highest_zoneidx, unsigned int alloc_flags,
3124 			 long free_pages)
3125 {
3126 	long min = mark;
3127 	int o;
3128 
3129 	/* free_pages may go negative - that's OK */
3130 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3131 
3132 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3133 		/*
3134 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3135 		 * as OOM.
3136 		 */
3137 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3138 			min -= min / 2;
3139 
3140 			/*
3141 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3142 			 * access more reserves than just __GFP_HIGH. Other
3143 			 * non-blocking allocations requests such as GFP_NOWAIT
3144 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3145 			 * access to the min reserve.
3146 			 */
3147 			if (alloc_flags & ALLOC_NON_BLOCK)
3148 				min -= min / 4;
3149 		}
3150 
3151 		/*
3152 		 * OOM victims can try even harder than the normal reserve
3153 		 * users on the grounds that it's definitely going to be in
3154 		 * the exit path shortly and free memory. Any allocation it
3155 		 * makes during the free path will be small and short-lived.
3156 		 */
3157 		if (alloc_flags & ALLOC_OOM)
3158 			min -= min / 2;
3159 	}
3160 
3161 	/*
3162 	 * Check watermarks for an order-0 allocation request. If these
3163 	 * are not met, then a high-order request also cannot go ahead
3164 	 * even if a suitable page happened to be free.
3165 	 */
3166 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3167 		return false;
3168 
3169 	/* If this is an order-0 request then the watermark is fine */
3170 	if (!order)
3171 		return true;
3172 
3173 	/* For a high-order request, check at least one suitable page is free */
3174 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3175 		struct free_area *area = &z->free_area[o];
3176 		int mt;
3177 
3178 		if (!area->nr_free)
3179 			continue;
3180 
3181 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3182 			if (!free_area_empty(area, mt))
3183 				return true;
3184 		}
3185 
3186 #ifdef CONFIG_CMA
3187 		if ((alloc_flags & ALLOC_CMA) &&
3188 		    !free_area_empty(area, MIGRATE_CMA)) {
3189 			return true;
3190 		}
3191 #endif
3192 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3193 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3194 			return true;
3195 		}
3196 	}
3197 	return false;
3198 }
3199 
3200 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3201 		      int highest_zoneidx, unsigned int alloc_flags)
3202 {
3203 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3204 					zone_page_state(z, NR_FREE_PAGES));
3205 }
3206 
3207 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3208 				unsigned long mark, int highest_zoneidx,
3209 				unsigned int alloc_flags, gfp_t gfp_mask)
3210 {
3211 	long free_pages;
3212 
3213 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3214 
3215 	/*
3216 	 * Fast check for order-0 only. If this fails then the reserves
3217 	 * need to be calculated.
3218 	 */
3219 	if (!order) {
3220 		long usable_free;
3221 		long reserved;
3222 
3223 		usable_free = free_pages;
3224 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3225 
3226 		/* reserved may over estimate high-atomic reserves. */
3227 		usable_free -= min(usable_free, reserved);
3228 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3229 			return true;
3230 	}
3231 
3232 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3233 					free_pages))
3234 		return true;
3235 
3236 	/*
3237 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3238 	 * when checking the min watermark. The min watermark is the
3239 	 * point where boosting is ignored so that kswapd is woken up
3240 	 * when below the low watermark.
3241 	 */
3242 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3243 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3244 		mark = z->_watermark[WMARK_MIN];
3245 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3246 					alloc_flags, free_pages);
3247 	}
3248 
3249 	return false;
3250 }
3251 
3252 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3253 			unsigned long mark, int highest_zoneidx)
3254 {
3255 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3256 
3257 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3258 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3259 
3260 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3261 								free_pages);
3262 }
3263 
3264 #ifdef CONFIG_NUMA
3265 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3266 
3267 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3268 {
3269 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3270 				node_reclaim_distance;
3271 }
3272 #else	/* CONFIG_NUMA */
3273 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3274 {
3275 	return true;
3276 }
3277 #endif	/* CONFIG_NUMA */
3278 
3279 /*
3280  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3281  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3282  * premature use of a lower zone may cause lowmem pressure problems that
3283  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3284  * probably too small. It only makes sense to spread allocations to avoid
3285  * fragmentation between the Normal and DMA32 zones.
3286  */
3287 static inline unsigned int
3288 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3289 {
3290 	unsigned int alloc_flags;
3291 
3292 	/*
3293 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3294 	 * to save a branch.
3295 	 */
3296 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3297 
3298 #ifdef CONFIG_ZONE_DMA32
3299 	if (!zone)
3300 		return alloc_flags;
3301 
3302 	if (zone_idx(zone) != ZONE_NORMAL)
3303 		return alloc_flags;
3304 
3305 	/*
3306 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3307 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3308 	 * on UMA that if Normal is populated then so is DMA32.
3309 	 */
3310 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3311 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3312 		return alloc_flags;
3313 
3314 	alloc_flags |= ALLOC_NOFRAGMENT;
3315 #endif /* CONFIG_ZONE_DMA32 */
3316 	return alloc_flags;
3317 }
3318 
3319 /* Must be called after current_gfp_context() which can change gfp_mask */
3320 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3321 						  unsigned int alloc_flags)
3322 {
3323 #ifdef CONFIG_CMA
3324 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3325 		alloc_flags |= ALLOC_CMA;
3326 #endif
3327 	return alloc_flags;
3328 }
3329 
3330 /*
3331  * get_page_from_freelist goes through the zonelist trying to allocate
3332  * a page.
3333  */
3334 static struct page *
3335 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3336 						const struct alloc_context *ac)
3337 {
3338 	struct zoneref *z;
3339 	struct zone *zone;
3340 	struct pglist_data *last_pgdat = NULL;
3341 	bool last_pgdat_dirty_ok = false;
3342 	bool no_fallback;
3343 
3344 retry:
3345 	/*
3346 	 * Scan zonelist, looking for a zone with enough free.
3347 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3348 	 */
3349 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3350 	z = ac->preferred_zoneref;
3351 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3352 					ac->nodemask) {
3353 		struct page *page;
3354 		unsigned long mark;
3355 
3356 		if (cpusets_enabled() &&
3357 			(alloc_flags & ALLOC_CPUSET) &&
3358 			!__cpuset_zone_allowed(zone, gfp_mask))
3359 				continue;
3360 		/*
3361 		 * When allocating a page cache page for writing, we
3362 		 * want to get it from a node that is within its dirty
3363 		 * limit, such that no single node holds more than its
3364 		 * proportional share of globally allowed dirty pages.
3365 		 * The dirty limits take into account the node's
3366 		 * lowmem reserves and high watermark so that kswapd
3367 		 * should be able to balance it without having to
3368 		 * write pages from its LRU list.
3369 		 *
3370 		 * XXX: For now, allow allocations to potentially
3371 		 * exceed the per-node dirty limit in the slowpath
3372 		 * (spread_dirty_pages unset) before going into reclaim,
3373 		 * which is important when on a NUMA setup the allowed
3374 		 * nodes are together not big enough to reach the
3375 		 * global limit.  The proper fix for these situations
3376 		 * will require awareness of nodes in the
3377 		 * dirty-throttling and the flusher threads.
3378 		 */
3379 		if (ac->spread_dirty_pages) {
3380 			if (last_pgdat != zone->zone_pgdat) {
3381 				last_pgdat = zone->zone_pgdat;
3382 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3383 			}
3384 
3385 			if (!last_pgdat_dirty_ok)
3386 				continue;
3387 		}
3388 
3389 		if (no_fallback && nr_online_nodes > 1 &&
3390 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3391 			int local_nid;
3392 
3393 			/*
3394 			 * If moving to a remote node, retry but allow
3395 			 * fragmenting fallbacks. Locality is more important
3396 			 * than fragmentation avoidance.
3397 			 */
3398 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3399 			if (zone_to_nid(zone) != local_nid) {
3400 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3401 				goto retry;
3402 			}
3403 		}
3404 
3405 		cond_accept_memory(zone, order);
3406 
3407 		/*
3408 		 * Detect whether the number of free pages is below high
3409 		 * watermark.  If so, we will decrease pcp->high and free
3410 		 * PCP pages in free path to reduce the possibility of
3411 		 * premature page reclaiming.  Detection is done here to
3412 		 * avoid to do that in hotter free path.
3413 		 */
3414 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3415 			goto check_alloc_wmark;
3416 
3417 		mark = high_wmark_pages(zone);
3418 		if (zone_watermark_fast(zone, order, mark,
3419 					ac->highest_zoneidx, alloc_flags,
3420 					gfp_mask))
3421 			goto try_this_zone;
3422 		else
3423 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3424 
3425 check_alloc_wmark:
3426 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3427 		if (!zone_watermark_fast(zone, order, mark,
3428 				       ac->highest_zoneidx, alloc_flags,
3429 				       gfp_mask)) {
3430 			int ret;
3431 
3432 			if (cond_accept_memory(zone, order))
3433 				goto try_this_zone;
3434 
3435 			/*
3436 			 * Watermark failed for this zone, but see if we can
3437 			 * grow this zone if it contains deferred pages.
3438 			 */
3439 			if (deferred_pages_enabled()) {
3440 				if (_deferred_grow_zone(zone, order))
3441 					goto try_this_zone;
3442 			}
3443 			/* Checked here to keep the fast path fast */
3444 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3445 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3446 				goto try_this_zone;
3447 
3448 			if (!node_reclaim_enabled() ||
3449 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3450 				continue;
3451 
3452 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3453 			switch (ret) {
3454 			case NODE_RECLAIM_NOSCAN:
3455 				/* did not scan */
3456 				continue;
3457 			case NODE_RECLAIM_FULL:
3458 				/* scanned but unreclaimable */
3459 				continue;
3460 			default:
3461 				/* did we reclaim enough */
3462 				if (zone_watermark_ok(zone, order, mark,
3463 					ac->highest_zoneidx, alloc_flags))
3464 					goto try_this_zone;
3465 
3466 				continue;
3467 			}
3468 		}
3469 
3470 try_this_zone:
3471 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3472 				gfp_mask, alloc_flags, ac->migratetype);
3473 		if (page) {
3474 			prep_new_page(page, order, gfp_mask, alloc_flags);
3475 
3476 			/*
3477 			 * If this is a high-order atomic allocation then check
3478 			 * if the pageblock should be reserved for the future
3479 			 */
3480 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3481 				reserve_highatomic_pageblock(page, order, zone);
3482 
3483 			return page;
3484 		} else {
3485 			if (cond_accept_memory(zone, order))
3486 				goto try_this_zone;
3487 
3488 			/* Try again if zone has deferred pages */
3489 			if (deferred_pages_enabled()) {
3490 				if (_deferred_grow_zone(zone, order))
3491 					goto try_this_zone;
3492 			}
3493 		}
3494 	}
3495 
3496 	/*
3497 	 * It's possible on a UMA machine to get through all zones that are
3498 	 * fragmented. If avoiding fragmentation, reset and try again.
3499 	 */
3500 	if (no_fallback) {
3501 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3502 		goto retry;
3503 	}
3504 
3505 	return NULL;
3506 }
3507 
3508 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3509 {
3510 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3511 
3512 	/*
3513 	 * This documents exceptions given to allocations in certain
3514 	 * contexts that are allowed to allocate outside current's set
3515 	 * of allowed nodes.
3516 	 */
3517 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3518 		if (tsk_is_oom_victim(current) ||
3519 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3520 			filter &= ~SHOW_MEM_FILTER_NODES;
3521 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3522 		filter &= ~SHOW_MEM_FILTER_NODES;
3523 
3524 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3525 }
3526 
3527 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3528 {
3529 	struct va_format vaf;
3530 	va_list args;
3531 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3532 
3533 	if ((gfp_mask & __GFP_NOWARN) ||
3534 	     !__ratelimit(&nopage_rs) ||
3535 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3536 		return;
3537 
3538 	va_start(args, fmt);
3539 	vaf.fmt = fmt;
3540 	vaf.va = &args;
3541 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3542 			current->comm, &vaf, gfp_mask, &gfp_mask,
3543 			nodemask_pr_args(nodemask));
3544 	va_end(args);
3545 
3546 	cpuset_print_current_mems_allowed();
3547 	pr_cont("\n");
3548 	dump_stack();
3549 	warn_alloc_show_mem(gfp_mask, nodemask);
3550 }
3551 
3552 static inline struct page *
3553 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3554 			      unsigned int alloc_flags,
3555 			      const struct alloc_context *ac)
3556 {
3557 	struct page *page;
3558 
3559 	page = get_page_from_freelist(gfp_mask, order,
3560 			alloc_flags|ALLOC_CPUSET, ac);
3561 	/*
3562 	 * fallback to ignore cpuset restriction if our nodes
3563 	 * are depleted
3564 	 */
3565 	if (!page)
3566 		page = get_page_from_freelist(gfp_mask, order,
3567 				alloc_flags, ac);
3568 
3569 	return page;
3570 }
3571 
3572 static inline struct page *
3573 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3574 	const struct alloc_context *ac, unsigned long *did_some_progress)
3575 {
3576 	struct oom_control oc = {
3577 		.zonelist = ac->zonelist,
3578 		.nodemask = ac->nodemask,
3579 		.memcg = NULL,
3580 		.gfp_mask = gfp_mask,
3581 		.order = order,
3582 	};
3583 	struct page *page;
3584 
3585 	*did_some_progress = 0;
3586 
3587 	/*
3588 	 * Acquire the oom lock.  If that fails, somebody else is
3589 	 * making progress for us.
3590 	 */
3591 	if (!mutex_trylock(&oom_lock)) {
3592 		*did_some_progress = 1;
3593 		schedule_timeout_uninterruptible(1);
3594 		return NULL;
3595 	}
3596 
3597 	/*
3598 	 * Go through the zonelist yet one more time, keep very high watermark
3599 	 * here, this is only to catch a parallel oom killing, we must fail if
3600 	 * we're still under heavy pressure. But make sure that this reclaim
3601 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3602 	 * allocation which will never fail due to oom_lock already held.
3603 	 */
3604 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3605 				      ~__GFP_DIRECT_RECLAIM, order,
3606 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3607 	if (page)
3608 		goto out;
3609 
3610 	/* Coredumps can quickly deplete all memory reserves */
3611 	if (current->flags & PF_DUMPCORE)
3612 		goto out;
3613 	/* The OOM killer will not help higher order allocs */
3614 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3615 		goto out;
3616 	/*
3617 	 * We have already exhausted all our reclaim opportunities without any
3618 	 * success so it is time to admit defeat. We will skip the OOM killer
3619 	 * because it is very likely that the caller has a more reasonable
3620 	 * fallback than shooting a random task.
3621 	 *
3622 	 * The OOM killer may not free memory on a specific node.
3623 	 */
3624 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3625 		goto out;
3626 	/* The OOM killer does not needlessly kill tasks for lowmem */
3627 	if (ac->highest_zoneidx < ZONE_NORMAL)
3628 		goto out;
3629 	if (pm_suspended_storage())
3630 		goto out;
3631 	/*
3632 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3633 	 * other request to make a forward progress.
3634 	 * We are in an unfortunate situation where out_of_memory cannot
3635 	 * do much for this context but let's try it to at least get
3636 	 * access to memory reserved if the current task is killed (see
3637 	 * out_of_memory). Once filesystems are ready to handle allocation
3638 	 * failures more gracefully we should just bail out here.
3639 	 */
3640 
3641 	/* Exhausted what can be done so it's blame time */
3642 	if (out_of_memory(&oc) ||
3643 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3644 		*did_some_progress = 1;
3645 
3646 		/*
3647 		 * Help non-failing allocations by giving them access to memory
3648 		 * reserves
3649 		 */
3650 		if (gfp_mask & __GFP_NOFAIL)
3651 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3652 					ALLOC_NO_WATERMARKS, ac);
3653 	}
3654 out:
3655 	mutex_unlock(&oom_lock);
3656 	return page;
3657 }
3658 
3659 /*
3660  * Maximum number of compaction retries with a progress before OOM
3661  * killer is consider as the only way to move forward.
3662  */
3663 #define MAX_COMPACT_RETRIES 16
3664 
3665 #ifdef CONFIG_COMPACTION
3666 /* Try memory compaction for high-order allocations before reclaim */
3667 static struct page *
3668 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3669 		unsigned int alloc_flags, const struct alloc_context *ac,
3670 		enum compact_priority prio, enum compact_result *compact_result)
3671 {
3672 	struct page *page = NULL;
3673 	unsigned long pflags;
3674 	unsigned int noreclaim_flag;
3675 
3676 	if (!order)
3677 		return NULL;
3678 
3679 	psi_memstall_enter(&pflags);
3680 	delayacct_compact_start();
3681 	noreclaim_flag = memalloc_noreclaim_save();
3682 
3683 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3684 								prio, &page);
3685 
3686 	memalloc_noreclaim_restore(noreclaim_flag);
3687 	psi_memstall_leave(&pflags);
3688 	delayacct_compact_end();
3689 
3690 	if (*compact_result == COMPACT_SKIPPED)
3691 		return NULL;
3692 	/*
3693 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3694 	 * count a compaction stall
3695 	 */
3696 	count_vm_event(COMPACTSTALL);
3697 
3698 	/* Prep a captured page if available */
3699 	if (page)
3700 		prep_new_page(page, order, gfp_mask, alloc_flags);
3701 
3702 	/* Try get a page from the freelist if available */
3703 	if (!page)
3704 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3705 
3706 	if (page) {
3707 		struct zone *zone = page_zone(page);
3708 
3709 		zone->compact_blockskip_flush = false;
3710 		compaction_defer_reset(zone, order, true);
3711 		count_vm_event(COMPACTSUCCESS);
3712 		return page;
3713 	}
3714 
3715 	/*
3716 	 * It's bad if compaction run occurs and fails. The most likely reason
3717 	 * is that pages exist, but not enough to satisfy watermarks.
3718 	 */
3719 	count_vm_event(COMPACTFAIL);
3720 
3721 	cond_resched();
3722 
3723 	return NULL;
3724 }
3725 
3726 static inline bool
3727 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3728 		     enum compact_result compact_result,
3729 		     enum compact_priority *compact_priority,
3730 		     int *compaction_retries)
3731 {
3732 	int max_retries = MAX_COMPACT_RETRIES;
3733 	int min_priority;
3734 	bool ret = false;
3735 	int retries = *compaction_retries;
3736 	enum compact_priority priority = *compact_priority;
3737 
3738 	if (!order)
3739 		return false;
3740 
3741 	if (fatal_signal_pending(current))
3742 		return false;
3743 
3744 	/*
3745 	 * Compaction was skipped due to a lack of free order-0
3746 	 * migration targets. Continue if reclaim can help.
3747 	 */
3748 	if (compact_result == COMPACT_SKIPPED) {
3749 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3750 		goto out;
3751 	}
3752 
3753 	/*
3754 	 * Compaction managed to coalesce some page blocks, but the
3755 	 * allocation failed presumably due to a race. Retry some.
3756 	 */
3757 	if (compact_result == COMPACT_SUCCESS) {
3758 		/*
3759 		 * !costly requests are much more important than
3760 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3761 		 * facto nofail and invoke OOM killer to move on while
3762 		 * costly can fail and users are ready to cope with
3763 		 * that. 1/4 retries is rather arbitrary but we would
3764 		 * need much more detailed feedback from compaction to
3765 		 * make a better decision.
3766 		 */
3767 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3768 			max_retries /= 4;
3769 
3770 		if (++(*compaction_retries) <= max_retries) {
3771 			ret = true;
3772 			goto out;
3773 		}
3774 	}
3775 
3776 	/*
3777 	 * Compaction failed. Retry with increasing priority.
3778 	 */
3779 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3780 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3781 
3782 	if (*compact_priority > min_priority) {
3783 		(*compact_priority)--;
3784 		*compaction_retries = 0;
3785 		ret = true;
3786 	}
3787 out:
3788 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3789 	return ret;
3790 }
3791 #else
3792 static inline struct page *
3793 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3794 		unsigned int alloc_flags, const struct alloc_context *ac,
3795 		enum compact_priority prio, enum compact_result *compact_result)
3796 {
3797 	*compact_result = COMPACT_SKIPPED;
3798 	return NULL;
3799 }
3800 
3801 static inline bool
3802 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3803 		     enum compact_result compact_result,
3804 		     enum compact_priority *compact_priority,
3805 		     int *compaction_retries)
3806 {
3807 	struct zone *zone;
3808 	struct zoneref *z;
3809 
3810 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3811 		return false;
3812 
3813 	/*
3814 	 * There are setups with compaction disabled which would prefer to loop
3815 	 * inside the allocator rather than hit the oom killer prematurely.
3816 	 * Let's give them a good hope and keep retrying while the order-0
3817 	 * watermarks are OK.
3818 	 */
3819 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3820 				ac->highest_zoneidx, ac->nodemask) {
3821 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3822 					ac->highest_zoneidx, alloc_flags))
3823 			return true;
3824 	}
3825 	return false;
3826 }
3827 #endif /* CONFIG_COMPACTION */
3828 
3829 #ifdef CONFIG_LOCKDEP
3830 static struct lockdep_map __fs_reclaim_map =
3831 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3832 
3833 static bool __need_reclaim(gfp_t gfp_mask)
3834 {
3835 	/* no reclaim without waiting on it */
3836 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3837 		return false;
3838 
3839 	/* this guy won't enter reclaim */
3840 	if (current->flags & PF_MEMALLOC)
3841 		return false;
3842 
3843 	if (gfp_mask & __GFP_NOLOCKDEP)
3844 		return false;
3845 
3846 	return true;
3847 }
3848 
3849 void __fs_reclaim_acquire(unsigned long ip)
3850 {
3851 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3852 }
3853 
3854 void __fs_reclaim_release(unsigned long ip)
3855 {
3856 	lock_release(&__fs_reclaim_map, ip);
3857 }
3858 
3859 void fs_reclaim_acquire(gfp_t gfp_mask)
3860 {
3861 	gfp_mask = current_gfp_context(gfp_mask);
3862 
3863 	if (__need_reclaim(gfp_mask)) {
3864 		if (gfp_mask & __GFP_FS)
3865 			__fs_reclaim_acquire(_RET_IP_);
3866 
3867 #ifdef CONFIG_MMU_NOTIFIER
3868 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3869 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3870 #endif
3871 
3872 	}
3873 }
3874 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3875 
3876 void fs_reclaim_release(gfp_t gfp_mask)
3877 {
3878 	gfp_mask = current_gfp_context(gfp_mask);
3879 
3880 	if (__need_reclaim(gfp_mask)) {
3881 		if (gfp_mask & __GFP_FS)
3882 			__fs_reclaim_release(_RET_IP_);
3883 	}
3884 }
3885 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3886 #endif
3887 
3888 /*
3889  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3890  * have been rebuilt so allocation retries. Reader side does not lock and
3891  * retries the allocation if zonelist changes. Writer side is protected by the
3892  * embedded spin_lock.
3893  */
3894 static DEFINE_SEQLOCK(zonelist_update_seq);
3895 
3896 static unsigned int zonelist_iter_begin(void)
3897 {
3898 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3899 		return read_seqbegin(&zonelist_update_seq);
3900 
3901 	return 0;
3902 }
3903 
3904 static unsigned int check_retry_zonelist(unsigned int seq)
3905 {
3906 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3907 		return read_seqretry(&zonelist_update_seq, seq);
3908 
3909 	return seq;
3910 }
3911 
3912 /* Perform direct synchronous page reclaim */
3913 static unsigned long
3914 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3915 					const struct alloc_context *ac)
3916 {
3917 	unsigned int noreclaim_flag;
3918 	unsigned long progress;
3919 
3920 	cond_resched();
3921 
3922 	/* We now go into synchronous reclaim */
3923 	cpuset_memory_pressure_bump();
3924 	fs_reclaim_acquire(gfp_mask);
3925 	noreclaim_flag = memalloc_noreclaim_save();
3926 
3927 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3928 								ac->nodemask);
3929 
3930 	memalloc_noreclaim_restore(noreclaim_flag);
3931 	fs_reclaim_release(gfp_mask);
3932 
3933 	cond_resched();
3934 
3935 	return progress;
3936 }
3937 
3938 /* The really slow allocator path where we enter direct reclaim */
3939 static inline struct page *
3940 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3941 		unsigned int alloc_flags, const struct alloc_context *ac,
3942 		unsigned long *did_some_progress)
3943 {
3944 	struct page *page = NULL;
3945 	unsigned long pflags;
3946 	bool drained = false;
3947 
3948 	psi_memstall_enter(&pflags);
3949 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3950 	if (unlikely(!(*did_some_progress)))
3951 		goto out;
3952 
3953 retry:
3954 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3955 
3956 	/*
3957 	 * If an allocation failed after direct reclaim, it could be because
3958 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3959 	 * Shrink them and try again
3960 	 */
3961 	if (!page && !drained) {
3962 		unreserve_highatomic_pageblock(ac, false);
3963 		drain_all_pages(NULL);
3964 		drained = true;
3965 		goto retry;
3966 	}
3967 out:
3968 	psi_memstall_leave(&pflags);
3969 
3970 	return page;
3971 }
3972 
3973 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3974 			     const struct alloc_context *ac)
3975 {
3976 	struct zoneref *z;
3977 	struct zone *zone;
3978 	pg_data_t *last_pgdat = NULL;
3979 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3980 
3981 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3982 					ac->nodemask) {
3983 		if (!managed_zone(zone))
3984 			continue;
3985 		if (last_pgdat != zone->zone_pgdat) {
3986 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3987 			last_pgdat = zone->zone_pgdat;
3988 		}
3989 	}
3990 }
3991 
3992 static inline unsigned int
3993 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3994 {
3995 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3996 
3997 	/*
3998 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3999 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4000 	 * to save two branches.
4001 	 */
4002 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4003 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4004 
4005 	/*
4006 	 * The caller may dip into page reserves a bit more if the caller
4007 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4008 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4009 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4010 	 */
4011 	alloc_flags |= (__force int)
4012 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4013 
4014 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4015 		/*
4016 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4017 		 * if it can't schedule.
4018 		 */
4019 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4020 			alloc_flags |= ALLOC_NON_BLOCK;
4021 
4022 			if (order > 0)
4023 				alloc_flags |= ALLOC_HIGHATOMIC;
4024 		}
4025 
4026 		/*
4027 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4028 		 * GFP_ATOMIC) rather than fail, see the comment for
4029 		 * cpuset_node_allowed().
4030 		 */
4031 		if (alloc_flags & ALLOC_MIN_RESERVE)
4032 			alloc_flags &= ~ALLOC_CPUSET;
4033 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4034 		alloc_flags |= ALLOC_MIN_RESERVE;
4035 
4036 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4037 
4038 	return alloc_flags;
4039 }
4040 
4041 static bool oom_reserves_allowed(struct task_struct *tsk)
4042 {
4043 	if (!tsk_is_oom_victim(tsk))
4044 		return false;
4045 
4046 	/*
4047 	 * !MMU doesn't have oom reaper so give access to memory reserves
4048 	 * only to the thread with TIF_MEMDIE set
4049 	 */
4050 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4051 		return false;
4052 
4053 	return true;
4054 }
4055 
4056 /*
4057  * Distinguish requests which really need access to full memory
4058  * reserves from oom victims which can live with a portion of it
4059  */
4060 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4061 {
4062 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4063 		return 0;
4064 	if (gfp_mask & __GFP_MEMALLOC)
4065 		return ALLOC_NO_WATERMARKS;
4066 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4067 		return ALLOC_NO_WATERMARKS;
4068 	if (!in_interrupt()) {
4069 		if (current->flags & PF_MEMALLOC)
4070 			return ALLOC_NO_WATERMARKS;
4071 		else if (oom_reserves_allowed(current))
4072 			return ALLOC_OOM;
4073 	}
4074 
4075 	return 0;
4076 }
4077 
4078 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4079 {
4080 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4081 }
4082 
4083 /*
4084  * Checks whether it makes sense to retry the reclaim to make a forward progress
4085  * for the given allocation request.
4086  *
4087  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4088  * without success, or when we couldn't even meet the watermark if we
4089  * reclaimed all remaining pages on the LRU lists.
4090  *
4091  * Returns true if a retry is viable or false to enter the oom path.
4092  */
4093 static inline bool
4094 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4095 		     struct alloc_context *ac, int alloc_flags,
4096 		     bool did_some_progress, int *no_progress_loops)
4097 {
4098 	struct zone *zone;
4099 	struct zoneref *z;
4100 	bool ret = false;
4101 
4102 	/*
4103 	 * Costly allocations might have made a progress but this doesn't mean
4104 	 * their order will become available due to high fragmentation so
4105 	 * always increment the no progress counter for them
4106 	 */
4107 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4108 		*no_progress_loops = 0;
4109 	else
4110 		(*no_progress_loops)++;
4111 
4112 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4113 		goto out;
4114 
4115 
4116 	/*
4117 	 * Keep reclaiming pages while there is a chance this will lead
4118 	 * somewhere.  If none of the target zones can satisfy our allocation
4119 	 * request even if all reclaimable pages are considered then we are
4120 	 * screwed and have to go OOM.
4121 	 */
4122 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4123 				ac->highest_zoneidx, ac->nodemask) {
4124 		unsigned long available;
4125 		unsigned long reclaimable;
4126 		unsigned long min_wmark = min_wmark_pages(zone);
4127 		bool wmark;
4128 
4129 		if (cpusets_enabled() &&
4130 			(alloc_flags & ALLOC_CPUSET) &&
4131 			!__cpuset_zone_allowed(zone, gfp_mask))
4132 				continue;
4133 
4134 		available = reclaimable = zone_reclaimable_pages(zone);
4135 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4136 
4137 		/*
4138 		 * Would the allocation succeed if we reclaimed all
4139 		 * reclaimable pages?
4140 		 */
4141 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4142 				ac->highest_zoneidx, alloc_flags, available);
4143 		trace_reclaim_retry_zone(z, order, reclaimable,
4144 				available, min_wmark, *no_progress_loops, wmark);
4145 		if (wmark) {
4146 			ret = true;
4147 			break;
4148 		}
4149 	}
4150 
4151 	/*
4152 	 * Memory allocation/reclaim might be called from a WQ context and the
4153 	 * current implementation of the WQ concurrency control doesn't
4154 	 * recognize that a particular WQ is congested if the worker thread is
4155 	 * looping without ever sleeping. Therefore we have to do a short sleep
4156 	 * here rather than calling cond_resched().
4157 	 */
4158 	if (current->flags & PF_WQ_WORKER)
4159 		schedule_timeout_uninterruptible(1);
4160 	else
4161 		cond_resched();
4162 out:
4163 	/* Before OOM, exhaust highatomic_reserve */
4164 	if (!ret)
4165 		return unreserve_highatomic_pageblock(ac, true);
4166 
4167 	return ret;
4168 }
4169 
4170 static inline bool
4171 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4172 {
4173 	/*
4174 	 * It's possible that cpuset's mems_allowed and the nodemask from
4175 	 * mempolicy don't intersect. This should be normally dealt with by
4176 	 * policy_nodemask(), but it's possible to race with cpuset update in
4177 	 * such a way the check therein was true, and then it became false
4178 	 * before we got our cpuset_mems_cookie here.
4179 	 * This assumes that for all allocations, ac->nodemask can come only
4180 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4181 	 * when it does not intersect with the cpuset restrictions) or the
4182 	 * caller can deal with a violated nodemask.
4183 	 */
4184 	if (cpusets_enabled() && ac->nodemask &&
4185 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4186 		ac->nodemask = NULL;
4187 		return true;
4188 	}
4189 
4190 	/*
4191 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4192 	 * possible to race with parallel threads in such a way that our
4193 	 * allocation can fail while the mask is being updated. If we are about
4194 	 * to fail, check if the cpuset changed during allocation and if so,
4195 	 * retry.
4196 	 */
4197 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4198 		return true;
4199 
4200 	return false;
4201 }
4202 
4203 static inline struct page *
4204 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4205 						struct alloc_context *ac)
4206 {
4207 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4208 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4209 	bool nofail = gfp_mask & __GFP_NOFAIL;
4210 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4211 	struct page *page = NULL;
4212 	unsigned int alloc_flags;
4213 	unsigned long did_some_progress;
4214 	enum compact_priority compact_priority;
4215 	enum compact_result compact_result;
4216 	int compaction_retries;
4217 	int no_progress_loops;
4218 	unsigned int cpuset_mems_cookie;
4219 	unsigned int zonelist_iter_cookie;
4220 	int reserve_flags;
4221 
4222 	if (unlikely(nofail)) {
4223 		/*
4224 		 * We most definitely don't want callers attempting to
4225 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4226 		 */
4227 		WARN_ON_ONCE(order > 1);
4228 		/*
4229 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4230 		 * otherwise, we may result in lockup.
4231 		 */
4232 		WARN_ON_ONCE(!can_direct_reclaim);
4233 		/*
4234 		 * PF_MEMALLOC request from this context is rather bizarre
4235 		 * because we cannot reclaim anything and only can loop waiting
4236 		 * for somebody to do a work for us.
4237 		 */
4238 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4239 	}
4240 
4241 restart:
4242 	compaction_retries = 0;
4243 	no_progress_loops = 0;
4244 	compact_priority = DEF_COMPACT_PRIORITY;
4245 	cpuset_mems_cookie = read_mems_allowed_begin();
4246 	zonelist_iter_cookie = zonelist_iter_begin();
4247 
4248 	/*
4249 	 * The fast path uses conservative alloc_flags to succeed only until
4250 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4251 	 * alloc_flags precisely. So we do that now.
4252 	 */
4253 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4254 
4255 	/*
4256 	 * We need to recalculate the starting point for the zonelist iterator
4257 	 * because we might have used different nodemask in the fast path, or
4258 	 * there was a cpuset modification and we are retrying - otherwise we
4259 	 * could end up iterating over non-eligible zones endlessly.
4260 	 */
4261 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4262 					ac->highest_zoneidx, ac->nodemask);
4263 	if (!zonelist_zone(ac->preferred_zoneref))
4264 		goto nopage;
4265 
4266 	/*
4267 	 * Check for insane configurations where the cpuset doesn't contain
4268 	 * any suitable zone to satisfy the request - e.g. non-movable
4269 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4270 	 */
4271 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4272 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4273 					ac->highest_zoneidx,
4274 					&cpuset_current_mems_allowed);
4275 		if (!zonelist_zone(z))
4276 			goto nopage;
4277 	}
4278 
4279 	if (alloc_flags & ALLOC_KSWAPD)
4280 		wake_all_kswapds(order, gfp_mask, ac);
4281 
4282 	/*
4283 	 * The adjusted alloc_flags might result in immediate success, so try
4284 	 * that first
4285 	 */
4286 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4287 	if (page)
4288 		goto got_pg;
4289 
4290 	/*
4291 	 * For costly allocations, try direct compaction first, as it's likely
4292 	 * that we have enough base pages and don't need to reclaim. For non-
4293 	 * movable high-order allocations, do that as well, as compaction will
4294 	 * try prevent permanent fragmentation by migrating from blocks of the
4295 	 * same migratetype.
4296 	 * Don't try this for allocations that are allowed to ignore
4297 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4298 	 */
4299 	if (can_direct_reclaim && can_compact &&
4300 			(costly_order ||
4301 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4302 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4303 		page = __alloc_pages_direct_compact(gfp_mask, order,
4304 						alloc_flags, ac,
4305 						INIT_COMPACT_PRIORITY,
4306 						&compact_result);
4307 		if (page)
4308 			goto got_pg;
4309 
4310 		/*
4311 		 * Checks for costly allocations with __GFP_NORETRY, which
4312 		 * includes some THP page fault allocations
4313 		 */
4314 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4315 			/*
4316 			 * If allocating entire pageblock(s) and compaction
4317 			 * failed because all zones are below low watermarks
4318 			 * or is prohibited because it recently failed at this
4319 			 * order, fail immediately unless the allocator has
4320 			 * requested compaction and reclaim retry.
4321 			 *
4322 			 * Reclaim is
4323 			 *  - potentially very expensive because zones are far
4324 			 *    below their low watermarks or this is part of very
4325 			 *    bursty high order allocations,
4326 			 *  - not guaranteed to help because isolate_freepages()
4327 			 *    may not iterate over freed pages as part of its
4328 			 *    linear scan, and
4329 			 *  - unlikely to make entire pageblocks free on its
4330 			 *    own.
4331 			 */
4332 			if (compact_result == COMPACT_SKIPPED ||
4333 			    compact_result == COMPACT_DEFERRED)
4334 				goto nopage;
4335 
4336 			/*
4337 			 * Looks like reclaim/compaction is worth trying, but
4338 			 * sync compaction could be very expensive, so keep
4339 			 * using async compaction.
4340 			 */
4341 			compact_priority = INIT_COMPACT_PRIORITY;
4342 		}
4343 	}
4344 
4345 retry:
4346 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4347 	if (alloc_flags & ALLOC_KSWAPD)
4348 		wake_all_kswapds(order, gfp_mask, ac);
4349 
4350 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4351 	if (reserve_flags)
4352 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4353 					  (alloc_flags & ALLOC_KSWAPD);
4354 
4355 	/*
4356 	 * Reset the nodemask and zonelist iterators if memory policies can be
4357 	 * ignored. These allocations are high priority and system rather than
4358 	 * user oriented.
4359 	 */
4360 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4361 		ac->nodemask = NULL;
4362 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4363 					ac->highest_zoneidx, ac->nodemask);
4364 	}
4365 
4366 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4367 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4368 	if (page)
4369 		goto got_pg;
4370 
4371 	/* Caller is not willing to reclaim, we can't balance anything */
4372 	if (!can_direct_reclaim)
4373 		goto nopage;
4374 
4375 	/* Avoid recursion of direct reclaim */
4376 	if (current->flags & PF_MEMALLOC)
4377 		goto nopage;
4378 
4379 	/* Try direct reclaim and then allocating */
4380 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4381 							&did_some_progress);
4382 	if (page)
4383 		goto got_pg;
4384 
4385 	/* Try direct compaction and then allocating */
4386 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4387 					compact_priority, &compact_result);
4388 	if (page)
4389 		goto got_pg;
4390 
4391 	/* Do not loop if specifically requested */
4392 	if (gfp_mask & __GFP_NORETRY)
4393 		goto nopage;
4394 
4395 	/*
4396 	 * Do not retry costly high order allocations unless they are
4397 	 * __GFP_RETRY_MAYFAIL and we can compact
4398 	 */
4399 	if (costly_order && (!can_compact ||
4400 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4401 		goto nopage;
4402 
4403 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4404 				 did_some_progress > 0, &no_progress_loops))
4405 		goto retry;
4406 
4407 	/*
4408 	 * It doesn't make any sense to retry for the compaction if the order-0
4409 	 * reclaim is not able to make any progress because the current
4410 	 * implementation of the compaction depends on the sufficient amount
4411 	 * of free memory (see __compaction_suitable)
4412 	 */
4413 	if (did_some_progress > 0 && can_compact &&
4414 			should_compact_retry(ac, order, alloc_flags,
4415 				compact_result, &compact_priority,
4416 				&compaction_retries))
4417 		goto retry;
4418 
4419 
4420 	/*
4421 	 * Deal with possible cpuset update races or zonelist updates to avoid
4422 	 * a unnecessary OOM kill.
4423 	 */
4424 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4425 	    check_retry_zonelist(zonelist_iter_cookie))
4426 		goto restart;
4427 
4428 	/* Reclaim has failed us, start killing things */
4429 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4430 	if (page)
4431 		goto got_pg;
4432 
4433 	/* Avoid allocations with no watermarks from looping endlessly */
4434 	if (tsk_is_oom_victim(current) &&
4435 	    (alloc_flags & ALLOC_OOM ||
4436 	     (gfp_mask & __GFP_NOMEMALLOC)))
4437 		goto nopage;
4438 
4439 	/* Retry as long as the OOM killer is making progress */
4440 	if (did_some_progress) {
4441 		no_progress_loops = 0;
4442 		goto retry;
4443 	}
4444 
4445 nopage:
4446 	/*
4447 	 * Deal with possible cpuset update races or zonelist updates to avoid
4448 	 * a unnecessary OOM kill.
4449 	 */
4450 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4451 	    check_retry_zonelist(zonelist_iter_cookie))
4452 		goto restart;
4453 
4454 	/*
4455 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4456 	 * we always retry
4457 	 */
4458 	if (unlikely(nofail)) {
4459 		/*
4460 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4461 		 * we disregard these unreasonable nofail requests and still
4462 		 * return NULL
4463 		 */
4464 		if (!can_direct_reclaim)
4465 			goto fail;
4466 
4467 		/*
4468 		 * Help non-failing allocations by giving some access to memory
4469 		 * reserves normally used for high priority non-blocking
4470 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4471 		 * could deplete whole memory reserves which would just make
4472 		 * the situation worse.
4473 		 */
4474 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4475 		if (page)
4476 			goto got_pg;
4477 
4478 		cond_resched();
4479 		goto retry;
4480 	}
4481 fail:
4482 	warn_alloc(gfp_mask, ac->nodemask,
4483 			"page allocation failure: order:%u", order);
4484 got_pg:
4485 	return page;
4486 }
4487 
4488 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4489 		int preferred_nid, nodemask_t *nodemask,
4490 		struct alloc_context *ac, gfp_t *alloc_gfp,
4491 		unsigned int *alloc_flags)
4492 {
4493 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4494 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4495 	ac->nodemask = nodemask;
4496 	ac->migratetype = gfp_migratetype(gfp_mask);
4497 
4498 	if (cpusets_enabled()) {
4499 		*alloc_gfp |= __GFP_HARDWALL;
4500 		/*
4501 		 * When we are in the interrupt context, it is irrelevant
4502 		 * to the current task context. It means that any node ok.
4503 		 */
4504 		if (in_task() && !ac->nodemask)
4505 			ac->nodemask = &cpuset_current_mems_allowed;
4506 		else
4507 			*alloc_flags |= ALLOC_CPUSET;
4508 	}
4509 
4510 	might_alloc(gfp_mask);
4511 
4512 	if (should_fail_alloc_page(gfp_mask, order))
4513 		return false;
4514 
4515 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4516 
4517 	/* Dirty zone balancing only done in the fast path */
4518 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4519 
4520 	/*
4521 	 * The preferred zone is used for statistics but crucially it is
4522 	 * also used as the starting point for the zonelist iterator. It
4523 	 * may get reset for allocations that ignore memory policies.
4524 	 */
4525 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4526 					ac->highest_zoneidx, ac->nodemask);
4527 
4528 	return true;
4529 }
4530 
4531 /*
4532  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4533  * @gfp: GFP flags for the allocation
4534  * @preferred_nid: The preferred NUMA node ID to allocate from
4535  * @nodemask: Set of nodes to allocate from, may be NULL
4536  * @nr_pages: The number of pages desired on the list or array
4537  * @page_list: Optional list to store the allocated pages
4538  * @page_array: Optional array to store the pages
4539  *
4540  * This is a batched version of the page allocator that attempts to
4541  * allocate nr_pages quickly. Pages are added to page_list if page_list
4542  * is not NULL, otherwise it is assumed that the page_array is valid.
4543  *
4544  * For lists, nr_pages is the number of pages that should be allocated.
4545  *
4546  * For arrays, only NULL elements are populated with pages and nr_pages
4547  * is the maximum number of pages that will be stored in the array.
4548  *
4549  * Returns the number of pages on the list or array.
4550  */
4551 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4552 			nodemask_t *nodemask, int nr_pages,
4553 			struct list_head *page_list,
4554 			struct page **page_array)
4555 {
4556 	struct page *page;
4557 	unsigned long __maybe_unused UP_flags;
4558 	struct zone *zone;
4559 	struct zoneref *z;
4560 	struct per_cpu_pages *pcp;
4561 	struct list_head *pcp_list;
4562 	struct alloc_context ac;
4563 	gfp_t alloc_gfp;
4564 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4565 	int nr_populated = 0, nr_account = 0;
4566 
4567 	/*
4568 	 * Skip populated array elements to determine if any pages need
4569 	 * to be allocated before disabling IRQs.
4570 	 */
4571 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4572 		nr_populated++;
4573 
4574 	/* No pages requested? */
4575 	if (unlikely(nr_pages <= 0))
4576 		goto out;
4577 
4578 	/* Already populated array? */
4579 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4580 		goto out;
4581 
4582 	/* Bulk allocator does not support memcg accounting. */
4583 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4584 		goto failed;
4585 
4586 	/* Use the single page allocator for one page. */
4587 	if (nr_pages - nr_populated == 1)
4588 		goto failed;
4589 
4590 #ifdef CONFIG_PAGE_OWNER
4591 	/*
4592 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4593 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4594 	 * removes much of the performance benefit of bulk allocation so
4595 	 * force the caller to allocate one page at a time as it'll have
4596 	 * similar performance to added complexity to the bulk allocator.
4597 	 */
4598 	if (static_branch_unlikely(&page_owner_inited))
4599 		goto failed;
4600 #endif
4601 
4602 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4603 	gfp &= gfp_allowed_mask;
4604 	alloc_gfp = gfp;
4605 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4606 		goto out;
4607 	gfp = alloc_gfp;
4608 
4609 	/* Find an allowed local zone that meets the low watermark. */
4610 	z = ac.preferred_zoneref;
4611 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4612 		unsigned long mark;
4613 
4614 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4615 		    !__cpuset_zone_allowed(zone, gfp)) {
4616 			continue;
4617 		}
4618 
4619 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4620 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4621 			goto failed;
4622 		}
4623 
4624 		cond_accept_memory(zone, 0);
4625 retry_this_zone:
4626 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4627 		if (zone_watermark_fast(zone, 0,  mark,
4628 				zonelist_zone_idx(ac.preferred_zoneref),
4629 				alloc_flags, gfp)) {
4630 			break;
4631 		}
4632 
4633 		if (cond_accept_memory(zone, 0))
4634 			goto retry_this_zone;
4635 
4636 		/* Try again if zone has deferred pages */
4637 		if (deferred_pages_enabled()) {
4638 			if (_deferred_grow_zone(zone, 0))
4639 				goto retry_this_zone;
4640 		}
4641 	}
4642 
4643 	/*
4644 	 * If there are no allowed local zones that meets the watermarks then
4645 	 * try to allocate a single page and reclaim if necessary.
4646 	 */
4647 	if (unlikely(!zone))
4648 		goto failed;
4649 
4650 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4651 	pcp_trylock_prepare(UP_flags);
4652 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4653 	if (!pcp)
4654 		goto failed_irq;
4655 
4656 	/* Attempt the batch allocation */
4657 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4658 	while (nr_populated < nr_pages) {
4659 
4660 		/* Skip existing pages */
4661 		if (page_array && page_array[nr_populated]) {
4662 			nr_populated++;
4663 			continue;
4664 		}
4665 
4666 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4667 								pcp, pcp_list);
4668 		if (unlikely(!page)) {
4669 			/* Try and allocate at least one page */
4670 			if (!nr_account) {
4671 				pcp_spin_unlock(pcp);
4672 				goto failed_irq;
4673 			}
4674 			break;
4675 		}
4676 		nr_account++;
4677 
4678 		prep_new_page(page, 0, gfp, 0);
4679 		if (page_list)
4680 			list_add(&page->lru, page_list);
4681 		else
4682 			page_array[nr_populated] = page;
4683 		nr_populated++;
4684 	}
4685 
4686 	pcp_spin_unlock(pcp);
4687 	pcp_trylock_finish(UP_flags);
4688 
4689 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4690 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4691 
4692 out:
4693 	return nr_populated;
4694 
4695 failed_irq:
4696 	pcp_trylock_finish(UP_flags);
4697 
4698 failed:
4699 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4700 	if (page) {
4701 		if (page_list)
4702 			list_add(&page->lru, page_list);
4703 		else
4704 			page_array[nr_populated] = page;
4705 		nr_populated++;
4706 	}
4707 
4708 	goto out;
4709 }
4710 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4711 
4712 /*
4713  * This is the 'heart' of the zoned buddy allocator.
4714  */
4715 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4716 				      int preferred_nid, nodemask_t *nodemask)
4717 {
4718 	struct page *page;
4719 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4720 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4721 	struct alloc_context ac = { };
4722 
4723 	/*
4724 	 * There are several places where we assume that the order value is sane
4725 	 * so bail out early if the request is out of bound.
4726 	 */
4727 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4728 		return NULL;
4729 
4730 	gfp &= gfp_allowed_mask;
4731 	/*
4732 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4733 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4734 	 * from a particular context which has been marked by
4735 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4736 	 * movable zones are not used during allocation.
4737 	 */
4738 	gfp = current_gfp_context(gfp);
4739 	alloc_gfp = gfp;
4740 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4741 			&alloc_gfp, &alloc_flags))
4742 		return NULL;
4743 
4744 	/*
4745 	 * Forbid the first pass from falling back to types that fragment
4746 	 * memory until all local zones are considered.
4747 	 */
4748 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4749 
4750 	/* First allocation attempt */
4751 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4752 	if (likely(page))
4753 		goto out;
4754 
4755 	alloc_gfp = gfp;
4756 	ac.spread_dirty_pages = false;
4757 
4758 	/*
4759 	 * Restore the original nodemask if it was potentially replaced with
4760 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4761 	 */
4762 	ac.nodemask = nodemask;
4763 
4764 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4765 
4766 out:
4767 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4768 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4769 		__free_pages(page, order);
4770 		page = NULL;
4771 	}
4772 
4773 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4774 	kmsan_alloc_page(page, order, alloc_gfp);
4775 
4776 	return page;
4777 }
4778 EXPORT_SYMBOL(__alloc_pages_noprof);
4779 
4780 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4781 		nodemask_t *nodemask)
4782 {
4783 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4784 					preferred_nid, nodemask);
4785 	return page_rmappable_folio(page);
4786 }
4787 EXPORT_SYMBOL(__folio_alloc_noprof);
4788 
4789 /*
4790  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4791  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4792  * you need to access high mem.
4793  */
4794 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4795 {
4796 	struct page *page;
4797 
4798 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4799 	if (!page)
4800 		return 0;
4801 	return (unsigned long) page_address(page);
4802 }
4803 EXPORT_SYMBOL(get_free_pages_noprof);
4804 
4805 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4806 {
4807 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4808 }
4809 EXPORT_SYMBOL(get_zeroed_page_noprof);
4810 
4811 /**
4812  * __free_pages - Free pages allocated with alloc_pages().
4813  * @page: The page pointer returned from alloc_pages().
4814  * @order: The order of the allocation.
4815  *
4816  * This function can free multi-page allocations that are not compound
4817  * pages.  It does not check that the @order passed in matches that of
4818  * the allocation, so it is easy to leak memory.  Freeing more memory
4819  * than was allocated will probably emit a warning.
4820  *
4821  * If the last reference to this page is speculative, it will be released
4822  * by put_page() which only frees the first page of a non-compound
4823  * allocation.  To prevent the remaining pages from being leaked, we free
4824  * the subsequent pages here.  If you want to use the page's reference
4825  * count to decide when to free the allocation, you should allocate a
4826  * compound page, and use put_page() instead of __free_pages().
4827  *
4828  * Context: May be called in interrupt context or while holding a normal
4829  * spinlock, but not in NMI context or while holding a raw spinlock.
4830  */
4831 void __free_pages(struct page *page, unsigned int order)
4832 {
4833 	/* get PageHead before we drop reference */
4834 	int head = PageHead(page);
4835 	struct alloc_tag *tag = pgalloc_tag_get(page);
4836 
4837 	if (put_page_testzero(page))
4838 		free_unref_page(page, order);
4839 	else if (!head) {
4840 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4841 		while (order-- > 0)
4842 			free_unref_page(page + (1 << order), order);
4843 	}
4844 }
4845 EXPORT_SYMBOL(__free_pages);
4846 
4847 void free_pages(unsigned long addr, unsigned int order)
4848 {
4849 	if (addr != 0) {
4850 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4851 		__free_pages(virt_to_page((void *)addr), order);
4852 	}
4853 }
4854 
4855 EXPORT_SYMBOL(free_pages);
4856 
4857 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4858 		size_t size)
4859 {
4860 	if (addr) {
4861 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4862 		struct page *page = virt_to_page((void *)addr);
4863 		struct page *last = page + nr;
4864 
4865 		split_page_owner(page, order, 0);
4866 		pgalloc_tag_split(page_folio(page), order, 0);
4867 		split_page_memcg(page, order, 0);
4868 		while (page < --last)
4869 			set_page_refcounted(last);
4870 
4871 		last = page + (1UL << order);
4872 		for (page += nr; page < last; page++)
4873 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4874 	}
4875 	return (void *)addr;
4876 }
4877 
4878 /**
4879  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4880  * @size: the number of bytes to allocate
4881  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4882  *
4883  * This function is similar to alloc_pages(), except that it allocates the
4884  * minimum number of pages to satisfy the request.  alloc_pages() can only
4885  * allocate memory in power-of-two pages.
4886  *
4887  * This function is also limited by MAX_PAGE_ORDER.
4888  *
4889  * Memory allocated by this function must be released by free_pages_exact().
4890  *
4891  * Return: pointer to the allocated area or %NULL in case of error.
4892  */
4893 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4894 {
4895 	unsigned int order = get_order(size);
4896 	unsigned long addr;
4897 
4898 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4899 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4900 
4901 	addr = get_free_pages_noprof(gfp_mask, order);
4902 	return make_alloc_exact(addr, order, size);
4903 }
4904 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4905 
4906 /**
4907  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4908  *			   pages on a node.
4909  * @nid: the preferred node ID where memory should be allocated
4910  * @size: the number of bytes to allocate
4911  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4912  *
4913  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4914  * back.
4915  *
4916  * Return: pointer to the allocated area or %NULL in case of error.
4917  */
4918 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4919 {
4920 	unsigned int order = get_order(size);
4921 	struct page *p;
4922 
4923 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4924 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4925 
4926 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4927 	if (!p)
4928 		return NULL;
4929 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4930 }
4931 
4932 /**
4933  * free_pages_exact - release memory allocated via alloc_pages_exact()
4934  * @virt: the value returned by alloc_pages_exact.
4935  * @size: size of allocation, same value as passed to alloc_pages_exact().
4936  *
4937  * Release the memory allocated by a previous call to alloc_pages_exact.
4938  */
4939 void free_pages_exact(void *virt, size_t size)
4940 {
4941 	unsigned long addr = (unsigned long)virt;
4942 	unsigned long end = addr + PAGE_ALIGN(size);
4943 
4944 	while (addr < end) {
4945 		free_page(addr);
4946 		addr += PAGE_SIZE;
4947 	}
4948 }
4949 EXPORT_SYMBOL(free_pages_exact);
4950 
4951 /**
4952  * nr_free_zone_pages - count number of pages beyond high watermark
4953  * @offset: The zone index of the highest zone
4954  *
4955  * nr_free_zone_pages() counts the number of pages which are beyond the
4956  * high watermark within all zones at or below a given zone index.  For each
4957  * zone, the number of pages is calculated as:
4958  *
4959  *     nr_free_zone_pages = managed_pages - high_pages
4960  *
4961  * Return: number of pages beyond high watermark.
4962  */
4963 static unsigned long nr_free_zone_pages(int offset)
4964 {
4965 	struct zoneref *z;
4966 	struct zone *zone;
4967 
4968 	/* Just pick one node, since fallback list is circular */
4969 	unsigned long sum = 0;
4970 
4971 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4972 
4973 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4974 		unsigned long size = zone_managed_pages(zone);
4975 		unsigned long high = high_wmark_pages(zone);
4976 		if (size > high)
4977 			sum += size - high;
4978 	}
4979 
4980 	return sum;
4981 }
4982 
4983 /**
4984  * nr_free_buffer_pages - count number of pages beyond high watermark
4985  *
4986  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4987  * watermark within ZONE_DMA and ZONE_NORMAL.
4988  *
4989  * Return: number of pages beyond high watermark within ZONE_DMA and
4990  * ZONE_NORMAL.
4991  */
4992 unsigned long nr_free_buffer_pages(void)
4993 {
4994 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4995 }
4996 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4997 
4998 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4999 {
5000 	zoneref->zone = zone;
5001 	zoneref->zone_idx = zone_idx(zone);
5002 }
5003 
5004 /*
5005  * Builds allocation fallback zone lists.
5006  *
5007  * Add all populated zones of a node to the zonelist.
5008  */
5009 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5010 {
5011 	struct zone *zone;
5012 	enum zone_type zone_type = MAX_NR_ZONES;
5013 	int nr_zones = 0;
5014 
5015 	do {
5016 		zone_type--;
5017 		zone = pgdat->node_zones + zone_type;
5018 		if (populated_zone(zone)) {
5019 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5020 			check_highest_zone(zone_type);
5021 		}
5022 	} while (zone_type);
5023 
5024 	return nr_zones;
5025 }
5026 
5027 #ifdef CONFIG_NUMA
5028 
5029 static int __parse_numa_zonelist_order(char *s)
5030 {
5031 	/*
5032 	 * We used to support different zonelists modes but they turned
5033 	 * out to be just not useful. Let's keep the warning in place
5034 	 * if somebody still use the cmd line parameter so that we do
5035 	 * not fail it silently
5036 	 */
5037 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5038 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5039 		return -EINVAL;
5040 	}
5041 	return 0;
5042 }
5043 
5044 static char numa_zonelist_order[] = "Node";
5045 #define NUMA_ZONELIST_ORDER_LEN	16
5046 /*
5047  * sysctl handler for numa_zonelist_order
5048  */
5049 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5050 		void *buffer, size_t *length, loff_t *ppos)
5051 {
5052 	if (write)
5053 		return __parse_numa_zonelist_order(buffer);
5054 	return proc_dostring(table, write, buffer, length, ppos);
5055 }
5056 
5057 static int node_load[MAX_NUMNODES];
5058 
5059 /**
5060  * find_next_best_node - find the next node that should appear in a given node's fallback list
5061  * @node: node whose fallback list we're appending
5062  * @used_node_mask: nodemask_t of already used nodes
5063  *
5064  * We use a number of factors to determine which is the next node that should
5065  * appear on a given node's fallback list.  The node should not have appeared
5066  * already in @node's fallback list, and it should be the next closest node
5067  * according to the distance array (which contains arbitrary distance values
5068  * from each node to each node in the system), and should also prefer nodes
5069  * with no CPUs, since presumably they'll have very little allocation pressure
5070  * on them otherwise.
5071  *
5072  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5073  */
5074 int find_next_best_node(int node, nodemask_t *used_node_mask)
5075 {
5076 	int n, val;
5077 	int min_val = INT_MAX;
5078 	int best_node = NUMA_NO_NODE;
5079 
5080 	/*
5081 	 * Use the local node if we haven't already, but for memoryless local
5082 	 * node, we should skip it and fall back to other nodes.
5083 	 */
5084 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5085 		node_set(node, *used_node_mask);
5086 		return node;
5087 	}
5088 
5089 	for_each_node_state(n, N_MEMORY) {
5090 
5091 		/* Don't want a node to appear more than once */
5092 		if (node_isset(n, *used_node_mask))
5093 			continue;
5094 
5095 		/* Use the distance array to find the distance */
5096 		val = node_distance(node, n);
5097 
5098 		/* Penalize nodes under us ("prefer the next node") */
5099 		val += (n < node);
5100 
5101 		/* Give preference to headless and unused nodes */
5102 		if (!cpumask_empty(cpumask_of_node(n)))
5103 			val += PENALTY_FOR_NODE_WITH_CPUS;
5104 
5105 		/* Slight preference for less loaded node */
5106 		val *= MAX_NUMNODES;
5107 		val += node_load[n];
5108 
5109 		if (val < min_val) {
5110 			min_val = val;
5111 			best_node = n;
5112 		}
5113 	}
5114 
5115 	if (best_node >= 0)
5116 		node_set(best_node, *used_node_mask);
5117 
5118 	return best_node;
5119 }
5120 
5121 
5122 /*
5123  * Build zonelists ordered by node and zones within node.
5124  * This results in maximum locality--normal zone overflows into local
5125  * DMA zone, if any--but risks exhausting DMA zone.
5126  */
5127 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5128 		unsigned nr_nodes)
5129 {
5130 	struct zoneref *zonerefs;
5131 	int i;
5132 
5133 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5134 
5135 	for (i = 0; i < nr_nodes; i++) {
5136 		int nr_zones;
5137 
5138 		pg_data_t *node = NODE_DATA(node_order[i]);
5139 
5140 		nr_zones = build_zonerefs_node(node, zonerefs);
5141 		zonerefs += nr_zones;
5142 	}
5143 	zonerefs->zone = NULL;
5144 	zonerefs->zone_idx = 0;
5145 }
5146 
5147 /*
5148  * Build __GFP_THISNODE zonelists
5149  */
5150 static void build_thisnode_zonelists(pg_data_t *pgdat)
5151 {
5152 	struct zoneref *zonerefs;
5153 	int nr_zones;
5154 
5155 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5156 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5157 	zonerefs += nr_zones;
5158 	zonerefs->zone = NULL;
5159 	zonerefs->zone_idx = 0;
5160 }
5161 
5162 /*
5163  * Build zonelists ordered by zone and nodes within zones.
5164  * This results in conserving DMA zone[s] until all Normal memory is
5165  * exhausted, but results in overflowing to remote node while memory
5166  * may still exist in local DMA zone.
5167  */
5168 
5169 static void build_zonelists(pg_data_t *pgdat)
5170 {
5171 	static int node_order[MAX_NUMNODES];
5172 	int node, nr_nodes = 0;
5173 	nodemask_t used_mask = NODE_MASK_NONE;
5174 	int local_node, prev_node;
5175 
5176 	/* NUMA-aware ordering of nodes */
5177 	local_node = pgdat->node_id;
5178 	prev_node = local_node;
5179 
5180 	memset(node_order, 0, sizeof(node_order));
5181 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5182 		/*
5183 		 * We don't want to pressure a particular node.
5184 		 * So adding penalty to the first node in same
5185 		 * distance group to make it round-robin.
5186 		 */
5187 		if (node_distance(local_node, node) !=
5188 		    node_distance(local_node, prev_node))
5189 			node_load[node] += 1;
5190 
5191 		node_order[nr_nodes++] = node;
5192 		prev_node = node;
5193 	}
5194 
5195 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5196 	build_thisnode_zonelists(pgdat);
5197 	pr_info("Fallback order for Node %d: ", local_node);
5198 	for (node = 0; node < nr_nodes; node++)
5199 		pr_cont("%d ", node_order[node]);
5200 	pr_cont("\n");
5201 }
5202 
5203 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5204 /*
5205  * Return node id of node used for "local" allocations.
5206  * I.e., first node id of first zone in arg node's generic zonelist.
5207  * Used for initializing percpu 'numa_mem', which is used primarily
5208  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5209  */
5210 int local_memory_node(int node)
5211 {
5212 	struct zoneref *z;
5213 
5214 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5215 				   gfp_zone(GFP_KERNEL),
5216 				   NULL);
5217 	return zonelist_node_idx(z);
5218 }
5219 #endif
5220 
5221 static void setup_min_unmapped_ratio(void);
5222 static void setup_min_slab_ratio(void);
5223 #else	/* CONFIG_NUMA */
5224 
5225 static void build_zonelists(pg_data_t *pgdat)
5226 {
5227 	struct zoneref *zonerefs;
5228 	int nr_zones;
5229 
5230 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5231 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5232 	zonerefs += nr_zones;
5233 
5234 	zonerefs->zone = NULL;
5235 	zonerefs->zone_idx = 0;
5236 }
5237 
5238 #endif	/* CONFIG_NUMA */
5239 
5240 /*
5241  * Boot pageset table. One per cpu which is going to be used for all
5242  * zones and all nodes. The parameters will be set in such a way
5243  * that an item put on a list will immediately be handed over to
5244  * the buddy list. This is safe since pageset manipulation is done
5245  * with interrupts disabled.
5246  *
5247  * The boot_pagesets must be kept even after bootup is complete for
5248  * unused processors and/or zones. They do play a role for bootstrapping
5249  * hotplugged processors.
5250  *
5251  * zoneinfo_show() and maybe other functions do
5252  * not check if the processor is online before following the pageset pointer.
5253  * Other parts of the kernel may not check if the zone is available.
5254  */
5255 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5256 /* These effectively disable the pcplists in the boot pageset completely */
5257 #define BOOT_PAGESET_HIGH	0
5258 #define BOOT_PAGESET_BATCH	1
5259 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5260 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5261 
5262 static void __build_all_zonelists(void *data)
5263 {
5264 	int nid;
5265 	int __maybe_unused cpu;
5266 	pg_data_t *self = data;
5267 	unsigned long flags;
5268 
5269 	/*
5270 	 * The zonelist_update_seq must be acquired with irqsave because the
5271 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5272 	 */
5273 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5274 	/*
5275 	 * Also disable synchronous printk() to prevent any printk() from
5276 	 * trying to hold port->lock, for
5277 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5278 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5279 	 */
5280 	printk_deferred_enter();
5281 
5282 #ifdef CONFIG_NUMA
5283 	memset(node_load, 0, sizeof(node_load));
5284 #endif
5285 
5286 	/*
5287 	 * This node is hotadded and no memory is yet present.   So just
5288 	 * building zonelists is fine - no need to touch other nodes.
5289 	 */
5290 	if (self && !node_online(self->node_id)) {
5291 		build_zonelists(self);
5292 	} else {
5293 		/*
5294 		 * All possible nodes have pgdat preallocated
5295 		 * in free_area_init
5296 		 */
5297 		for_each_node(nid) {
5298 			pg_data_t *pgdat = NODE_DATA(nid);
5299 
5300 			build_zonelists(pgdat);
5301 		}
5302 
5303 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5304 		/*
5305 		 * We now know the "local memory node" for each node--
5306 		 * i.e., the node of the first zone in the generic zonelist.
5307 		 * Set up numa_mem percpu variable for on-line cpus.  During
5308 		 * boot, only the boot cpu should be on-line;  we'll init the
5309 		 * secondary cpus' numa_mem as they come on-line.  During
5310 		 * node/memory hotplug, we'll fixup all on-line cpus.
5311 		 */
5312 		for_each_online_cpu(cpu)
5313 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5314 #endif
5315 	}
5316 
5317 	printk_deferred_exit();
5318 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5319 }
5320 
5321 static noinline void __init
5322 build_all_zonelists_init(void)
5323 {
5324 	int cpu;
5325 
5326 	__build_all_zonelists(NULL);
5327 
5328 	/*
5329 	 * Initialize the boot_pagesets that are going to be used
5330 	 * for bootstrapping processors. The real pagesets for
5331 	 * each zone will be allocated later when the per cpu
5332 	 * allocator is available.
5333 	 *
5334 	 * boot_pagesets are used also for bootstrapping offline
5335 	 * cpus if the system is already booted because the pagesets
5336 	 * are needed to initialize allocators on a specific cpu too.
5337 	 * F.e. the percpu allocator needs the page allocator which
5338 	 * needs the percpu allocator in order to allocate its pagesets
5339 	 * (a chicken-egg dilemma).
5340 	 */
5341 	for_each_possible_cpu(cpu)
5342 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5343 
5344 	mminit_verify_zonelist();
5345 	cpuset_init_current_mems_allowed();
5346 }
5347 
5348 /*
5349  * unless system_state == SYSTEM_BOOTING.
5350  *
5351  * __ref due to call of __init annotated helper build_all_zonelists_init
5352  * [protected by SYSTEM_BOOTING].
5353  */
5354 void __ref build_all_zonelists(pg_data_t *pgdat)
5355 {
5356 	unsigned long vm_total_pages;
5357 
5358 	if (system_state == SYSTEM_BOOTING) {
5359 		build_all_zonelists_init();
5360 	} else {
5361 		__build_all_zonelists(pgdat);
5362 		/* cpuset refresh routine should be here */
5363 	}
5364 	/* Get the number of free pages beyond high watermark in all zones. */
5365 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5366 	/*
5367 	 * Disable grouping by mobility if the number of pages in the
5368 	 * system is too low to allow the mechanism to work. It would be
5369 	 * more accurate, but expensive to check per-zone. This check is
5370 	 * made on memory-hotadd so a system can start with mobility
5371 	 * disabled and enable it later
5372 	 */
5373 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5374 		page_group_by_mobility_disabled = 1;
5375 	else
5376 		page_group_by_mobility_disabled = 0;
5377 
5378 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5379 		nr_online_nodes,
5380 		page_group_by_mobility_disabled ? "off" : "on",
5381 		vm_total_pages);
5382 #ifdef CONFIG_NUMA
5383 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5384 #endif
5385 }
5386 
5387 static int zone_batchsize(struct zone *zone)
5388 {
5389 #ifdef CONFIG_MMU
5390 	int batch;
5391 
5392 	/*
5393 	 * The number of pages to batch allocate is either ~0.1%
5394 	 * of the zone or 1MB, whichever is smaller. The batch
5395 	 * size is striking a balance between allocation latency
5396 	 * and zone lock contention.
5397 	 */
5398 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5399 	batch /= 4;		/* We effectively *= 4 below */
5400 	if (batch < 1)
5401 		batch = 1;
5402 
5403 	/*
5404 	 * Clamp the batch to a 2^n - 1 value. Having a power
5405 	 * of 2 value was found to be more likely to have
5406 	 * suboptimal cache aliasing properties in some cases.
5407 	 *
5408 	 * For example if 2 tasks are alternately allocating
5409 	 * batches of pages, one task can end up with a lot
5410 	 * of pages of one half of the possible page colors
5411 	 * and the other with pages of the other colors.
5412 	 */
5413 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5414 
5415 	return batch;
5416 
5417 #else
5418 	/* The deferral and batching of frees should be suppressed under NOMMU
5419 	 * conditions.
5420 	 *
5421 	 * The problem is that NOMMU needs to be able to allocate large chunks
5422 	 * of contiguous memory as there's no hardware page translation to
5423 	 * assemble apparent contiguous memory from discontiguous pages.
5424 	 *
5425 	 * Queueing large contiguous runs of pages for batching, however,
5426 	 * causes the pages to actually be freed in smaller chunks.  As there
5427 	 * can be a significant delay between the individual batches being
5428 	 * recycled, this leads to the once large chunks of space being
5429 	 * fragmented and becoming unavailable for high-order allocations.
5430 	 */
5431 	return 0;
5432 #endif
5433 }
5434 
5435 static int percpu_pagelist_high_fraction;
5436 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5437 			 int high_fraction)
5438 {
5439 #ifdef CONFIG_MMU
5440 	int high;
5441 	int nr_split_cpus;
5442 	unsigned long total_pages;
5443 
5444 	if (!high_fraction) {
5445 		/*
5446 		 * By default, the high value of the pcp is based on the zone
5447 		 * low watermark so that if they are full then background
5448 		 * reclaim will not be started prematurely.
5449 		 */
5450 		total_pages = low_wmark_pages(zone);
5451 	} else {
5452 		/*
5453 		 * If percpu_pagelist_high_fraction is configured, the high
5454 		 * value is based on a fraction of the managed pages in the
5455 		 * zone.
5456 		 */
5457 		total_pages = zone_managed_pages(zone) / high_fraction;
5458 	}
5459 
5460 	/*
5461 	 * Split the high value across all online CPUs local to the zone. Note
5462 	 * that early in boot that CPUs may not be online yet and that during
5463 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5464 	 * onlined. For memory nodes that have no CPUs, split the high value
5465 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5466 	 * prematurely due to pages stored on pcp lists.
5467 	 */
5468 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5469 	if (!nr_split_cpus)
5470 		nr_split_cpus = num_online_cpus();
5471 	high = total_pages / nr_split_cpus;
5472 
5473 	/*
5474 	 * Ensure high is at least batch*4. The multiple is based on the
5475 	 * historical relationship between high and batch.
5476 	 */
5477 	high = max(high, batch << 2);
5478 
5479 	return high;
5480 #else
5481 	return 0;
5482 #endif
5483 }
5484 
5485 /*
5486  * pcp->high and pcp->batch values are related and generally batch is lower
5487  * than high. They are also related to pcp->count such that count is lower
5488  * than high, and as soon as it reaches high, the pcplist is flushed.
5489  *
5490  * However, guaranteeing these relations at all times would require e.g. write
5491  * barriers here but also careful usage of read barriers at the read side, and
5492  * thus be prone to error and bad for performance. Thus the update only prevents
5493  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5494  * should ensure they can cope with those fields changing asynchronously, and
5495  * fully trust only the pcp->count field on the local CPU with interrupts
5496  * disabled.
5497  *
5498  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5499  * outside of boot time (or some other assurance that no concurrent updaters
5500  * exist).
5501  */
5502 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5503 			   unsigned long high_max, unsigned long batch)
5504 {
5505 	WRITE_ONCE(pcp->batch, batch);
5506 	WRITE_ONCE(pcp->high_min, high_min);
5507 	WRITE_ONCE(pcp->high_max, high_max);
5508 }
5509 
5510 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5511 {
5512 	int pindex;
5513 
5514 	memset(pcp, 0, sizeof(*pcp));
5515 	memset(pzstats, 0, sizeof(*pzstats));
5516 
5517 	spin_lock_init(&pcp->lock);
5518 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5519 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5520 
5521 	/*
5522 	 * Set batch and high values safe for a boot pageset. A true percpu
5523 	 * pageset's initialization will update them subsequently. Here we don't
5524 	 * need to be as careful as pageset_update() as nobody can access the
5525 	 * pageset yet.
5526 	 */
5527 	pcp->high_min = BOOT_PAGESET_HIGH;
5528 	pcp->high_max = BOOT_PAGESET_HIGH;
5529 	pcp->batch = BOOT_PAGESET_BATCH;
5530 	pcp->free_count = 0;
5531 }
5532 
5533 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5534 					      unsigned long high_max, unsigned long batch)
5535 {
5536 	struct per_cpu_pages *pcp;
5537 	int cpu;
5538 
5539 	for_each_possible_cpu(cpu) {
5540 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5541 		pageset_update(pcp, high_min, high_max, batch);
5542 	}
5543 }
5544 
5545 /*
5546  * Calculate and set new high and batch values for all per-cpu pagesets of a
5547  * zone based on the zone's size.
5548  */
5549 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5550 {
5551 	int new_high_min, new_high_max, new_batch;
5552 
5553 	new_batch = max(1, zone_batchsize(zone));
5554 	if (percpu_pagelist_high_fraction) {
5555 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5556 					     percpu_pagelist_high_fraction);
5557 		/*
5558 		 * PCP high is tuned manually, disable auto-tuning via
5559 		 * setting high_min and high_max to the manual value.
5560 		 */
5561 		new_high_max = new_high_min;
5562 	} else {
5563 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5564 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5565 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5566 	}
5567 
5568 	if (zone->pageset_high_min == new_high_min &&
5569 	    zone->pageset_high_max == new_high_max &&
5570 	    zone->pageset_batch == new_batch)
5571 		return;
5572 
5573 	zone->pageset_high_min = new_high_min;
5574 	zone->pageset_high_max = new_high_max;
5575 	zone->pageset_batch = new_batch;
5576 
5577 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5578 					  new_batch);
5579 }
5580 
5581 void __meminit setup_zone_pageset(struct zone *zone)
5582 {
5583 	int cpu;
5584 
5585 	/* Size may be 0 on !SMP && !NUMA */
5586 	if (sizeof(struct per_cpu_zonestat) > 0)
5587 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5588 
5589 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5590 	for_each_possible_cpu(cpu) {
5591 		struct per_cpu_pages *pcp;
5592 		struct per_cpu_zonestat *pzstats;
5593 
5594 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5595 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5596 		per_cpu_pages_init(pcp, pzstats);
5597 	}
5598 
5599 	zone_set_pageset_high_and_batch(zone, 0);
5600 }
5601 
5602 /*
5603  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5604  * page high values need to be recalculated.
5605  */
5606 static void zone_pcp_update(struct zone *zone, int cpu_online)
5607 {
5608 	mutex_lock(&pcp_batch_high_lock);
5609 	zone_set_pageset_high_and_batch(zone, cpu_online);
5610 	mutex_unlock(&pcp_batch_high_lock);
5611 }
5612 
5613 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5614 {
5615 	struct per_cpu_pages *pcp;
5616 	struct cpu_cacheinfo *cci;
5617 
5618 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5619 	cci = get_cpu_cacheinfo(cpu);
5620 	/*
5621 	 * If data cache slice of CPU is large enough, "pcp->batch"
5622 	 * pages can be preserved in PCP before draining PCP for
5623 	 * consecutive high-order pages freeing without allocation.
5624 	 * This can reduce zone lock contention without hurting
5625 	 * cache-hot pages sharing.
5626 	 */
5627 	spin_lock(&pcp->lock);
5628 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5629 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5630 	else
5631 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5632 	spin_unlock(&pcp->lock);
5633 }
5634 
5635 void setup_pcp_cacheinfo(unsigned int cpu)
5636 {
5637 	struct zone *zone;
5638 
5639 	for_each_populated_zone(zone)
5640 		zone_pcp_update_cacheinfo(zone, cpu);
5641 }
5642 
5643 /*
5644  * Allocate per cpu pagesets and initialize them.
5645  * Before this call only boot pagesets were available.
5646  */
5647 void __init setup_per_cpu_pageset(void)
5648 {
5649 	struct pglist_data *pgdat;
5650 	struct zone *zone;
5651 	int __maybe_unused cpu;
5652 
5653 	for_each_populated_zone(zone)
5654 		setup_zone_pageset(zone);
5655 
5656 #ifdef CONFIG_NUMA
5657 	/*
5658 	 * Unpopulated zones continue using the boot pagesets.
5659 	 * The numa stats for these pagesets need to be reset.
5660 	 * Otherwise, they will end up skewing the stats of
5661 	 * the nodes these zones are associated with.
5662 	 */
5663 	for_each_possible_cpu(cpu) {
5664 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5665 		memset(pzstats->vm_numa_event, 0,
5666 		       sizeof(pzstats->vm_numa_event));
5667 	}
5668 #endif
5669 
5670 	for_each_online_pgdat(pgdat)
5671 		pgdat->per_cpu_nodestats =
5672 			alloc_percpu(struct per_cpu_nodestat);
5673 }
5674 
5675 __meminit void zone_pcp_init(struct zone *zone)
5676 {
5677 	/*
5678 	 * per cpu subsystem is not up at this point. The following code
5679 	 * relies on the ability of the linker to provide the
5680 	 * offset of a (static) per cpu variable into the per cpu area.
5681 	 */
5682 	zone->per_cpu_pageset = &boot_pageset;
5683 	zone->per_cpu_zonestats = &boot_zonestats;
5684 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5685 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5686 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5687 
5688 	if (populated_zone(zone))
5689 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5690 			 zone->present_pages, zone_batchsize(zone));
5691 }
5692 
5693 void adjust_managed_page_count(struct page *page, long count)
5694 {
5695 	atomic_long_add(count, &page_zone(page)->managed_pages);
5696 	totalram_pages_add(count);
5697 }
5698 EXPORT_SYMBOL(adjust_managed_page_count);
5699 
5700 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5701 {
5702 	void *pos;
5703 	unsigned long pages = 0;
5704 
5705 	start = (void *)PAGE_ALIGN((unsigned long)start);
5706 	end = (void *)((unsigned long)end & PAGE_MASK);
5707 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5708 		struct page *page = virt_to_page(pos);
5709 		void *direct_map_addr;
5710 
5711 		/*
5712 		 * 'direct_map_addr' might be different from 'pos'
5713 		 * because some architectures' virt_to_page()
5714 		 * work with aliases.  Getting the direct map
5715 		 * address ensures that we get a _writeable_
5716 		 * alias for the memset().
5717 		 */
5718 		direct_map_addr = page_address(page);
5719 		/*
5720 		 * Perform a kasan-unchecked memset() since this memory
5721 		 * has not been initialized.
5722 		 */
5723 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5724 		if ((unsigned int)poison <= 0xFF)
5725 			memset(direct_map_addr, poison, PAGE_SIZE);
5726 
5727 		free_reserved_page(page);
5728 	}
5729 
5730 	if (pages && s)
5731 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5732 
5733 	return pages;
5734 }
5735 
5736 void free_reserved_page(struct page *page)
5737 {
5738 	clear_page_tag_ref(page);
5739 	ClearPageReserved(page);
5740 	init_page_count(page);
5741 	__free_page(page);
5742 	adjust_managed_page_count(page, 1);
5743 }
5744 EXPORT_SYMBOL(free_reserved_page);
5745 
5746 static int page_alloc_cpu_dead(unsigned int cpu)
5747 {
5748 	struct zone *zone;
5749 
5750 	lru_add_drain_cpu(cpu);
5751 	mlock_drain_remote(cpu);
5752 	drain_pages(cpu);
5753 
5754 	/*
5755 	 * Spill the event counters of the dead processor
5756 	 * into the current processors event counters.
5757 	 * This artificially elevates the count of the current
5758 	 * processor.
5759 	 */
5760 	vm_events_fold_cpu(cpu);
5761 
5762 	/*
5763 	 * Zero the differential counters of the dead processor
5764 	 * so that the vm statistics are consistent.
5765 	 *
5766 	 * This is only okay since the processor is dead and cannot
5767 	 * race with what we are doing.
5768 	 */
5769 	cpu_vm_stats_fold(cpu);
5770 
5771 	for_each_populated_zone(zone)
5772 		zone_pcp_update(zone, 0);
5773 
5774 	return 0;
5775 }
5776 
5777 static int page_alloc_cpu_online(unsigned int cpu)
5778 {
5779 	struct zone *zone;
5780 
5781 	for_each_populated_zone(zone)
5782 		zone_pcp_update(zone, 1);
5783 	return 0;
5784 }
5785 
5786 void __init page_alloc_init_cpuhp(void)
5787 {
5788 	int ret;
5789 
5790 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5791 					"mm/page_alloc:pcp",
5792 					page_alloc_cpu_online,
5793 					page_alloc_cpu_dead);
5794 	WARN_ON(ret < 0);
5795 }
5796 
5797 /*
5798  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5799  *	or min_free_kbytes changes.
5800  */
5801 static void calculate_totalreserve_pages(void)
5802 {
5803 	struct pglist_data *pgdat;
5804 	unsigned long reserve_pages = 0;
5805 	enum zone_type i, j;
5806 
5807 	for_each_online_pgdat(pgdat) {
5808 
5809 		pgdat->totalreserve_pages = 0;
5810 
5811 		for (i = 0; i < MAX_NR_ZONES; i++) {
5812 			struct zone *zone = pgdat->node_zones + i;
5813 			long max = 0;
5814 			unsigned long managed_pages = zone_managed_pages(zone);
5815 
5816 			/* Find valid and maximum lowmem_reserve in the zone */
5817 			for (j = i; j < MAX_NR_ZONES; j++) {
5818 				if (zone->lowmem_reserve[j] > max)
5819 					max = zone->lowmem_reserve[j];
5820 			}
5821 
5822 			/* we treat the high watermark as reserved pages. */
5823 			max += high_wmark_pages(zone);
5824 
5825 			if (max > managed_pages)
5826 				max = managed_pages;
5827 
5828 			pgdat->totalreserve_pages += max;
5829 
5830 			reserve_pages += max;
5831 		}
5832 	}
5833 	totalreserve_pages = reserve_pages;
5834 }
5835 
5836 /*
5837  * setup_per_zone_lowmem_reserve - called whenever
5838  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5839  *	has a correct pages reserved value, so an adequate number of
5840  *	pages are left in the zone after a successful __alloc_pages().
5841  */
5842 static void setup_per_zone_lowmem_reserve(void)
5843 {
5844 	struct pglist_data *pgdat;
5845 	enum zone_type i, j;
5846 
5847 	for_each_online_pgdat(pgdat) {
5848 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5849 			struct zone *zone = &pgdat->node_zones[i];
5850 			int ratio = sysctl_lowmem_reserve_ratio[i];
5851 			bool clear = !ratio || !zone_managed_pages(zone);
5852 			unsigned long managed_pages = 0;
5853 
5854 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5855 				struct zone *upper_zone = &pgdat->node_zones[j];
5856 				bool empty = !zone_managed_pages(upper_zone);
5857 
5858 				managed_pages += zone_managed_pages(upper_zone);
5859 
5860 				if (clear || empty)
5861 					zone->lowmem_reserve[j] = 0;
5862 				else
5863 					zone->lowmem_reserve[j] = managed_pages / ratio;
5864 			}
5865 		}
5866 	}
5867 
5868 	/* update totalreserve_pages */
5869 	calculate_totalreserve_pages();
5870 }
5871 
5872 static void __setup_per_zone_wmarks(void)
5873 {
5874 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5875 	unsigned long lowmem_pages = 0;
5876 	struct zone *zone;
5877 	unsigned long flags;
5878 
5879 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5880 	for_each_zone(zone) {
5881 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5882 			lowmem_pages += zone_managed_pages(zone);
5883 	}
5884 
5885 	for_each_zone(zone) {
5886 		u64 tmp;
5887 
5888 		spin_lock_irqsave(&zone->lock, flags);
5889 		tmp = (u64)pages_min * zone_managed_pages(zone);
5890 		tmp = div64_ul(tmp, lowmem_pages);
5891 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5892 			/*
5893 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5894 			 * need highmem and movable zones pages, so cap pages_min
5895 			 * to a small  value here.
5896 			 *
5897 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5898 			 * deltas control async page reclaim, and so should
5899 			 * not be capped for highmem and movable zones.
5900 			 */
5901 			unsigned long min_pages;
5902 
5903 			min_pages = zone_managed_pages(zone) / 1024;
5904 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5905 			zone->_watermark[WMARK_MIN] = min_pages;
5906 		} else {
5907 			/*
5908 			 * If it's a lowmem zone, reserve a number of pages
5909 			 * proportionate to the zone's size.
5910 			 */
5911 			zone->_watermark[WMARK_MIN] = tmp;
5912 		}
5913 
5914 		/*
5915 		 * Set the kswapd watermarks distance according to the
5916 		 * scale factor in proportion to available memory, but
5917 		 * ensure a minimum size on small systems.
5918 		 */
5919 		tmp = max_t(u64, tmp >> 2,
5920 			    mult_frac(zone_managed_pages(zone),
5921 				      watermark_scale_factor, 10000));
5922 
5923 		zone->watermark_boost = 0;
5924 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5925 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5926 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5927 
5928 		spin_unlock_irqrestore(&zone->lock, flags);
5929 	}
5930 
5931 	/* update totalreserve_pages */
5932 	calculate_totalreserve_pages();
5933 }
5934 
5935 /**
5936  * setup_per_zone_wmarks - called when min_free_kbytes changes
5937  * or when memory is hot-{added|removed}
5938  *
5939  * Ensures that the watermark[min,low,high] values for each zone are set
5940  * correctly with respect to min_free_kbytes.
5941  */
5942 void setup_per_zone_wmarks(void)
5943 {
5944 	struct zone *zone;
5945 	static DEFINE_SPINLOCK(lock);
5946 
5947 	spin_lock(&lock);
5948 	__setup_per_zone_wmarks();
5949 	spin_unlock(&lock);
5950 
5951 	/*
5952 	 * The watermark size have changed so update the pcpu batch
5953 	 * and high limits or the limits may be inappropriate.
5954 	 */
5955 	for_each_zone(zone)
5956 		zone_pcp_update(zone, 0);
5957 }
5958 
5959 /*
5960  * Initialise min_free_kbytes.
5961  *
5962  * For small machines we want it small (128k min).  For large machines
5963  * we want it large (256MB max).  But it is not linear, because network
5964  * bandwidth does not increase linearly with machine size.  We use
5965  *
5966  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5967  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5968  *
5969  * which yields
5970  *
5971  * 16MB:	512k
5972  * 32MB:	724k
5973  * 64MB:	1024k
5974  * 128MB:	1448k
5975  * 256MB:	2048k
5976  * 512MB:	2896k
5977  * 1024MB:	4096k
5978  * 2048MB:	5792k
5979  * 4096MB:	8192k
5980  * 8192MB:	11584k
5981  * 16384MB:	16384k
5982  */
5983 void calculate_min_free_kbytes(void)
5984 {
5985 	unsigned long lowmem_kbytes;
5986 	int new_min_free_kbytes;
5987 
5988 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5989 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5990 
5991 	if (new_min_free_kbytes > user_min_free_kbytes)
5992 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5993 	else
5994 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5995 				new_min_free_kbytes, user_min_free_kbytes);
5996 
5997 }
5998 
5999 int __meminit init_per_zone_wmark_min(void)
6000 {
6001 	calculate_min_free_kbytes();
6002 	setup_per_zone_wmarks();
6003 	refresh_zone_stat_thresholds();
6004 	setup_per_zone_lowmem_reserve();
6005 
6006 #ifdef CONFIG_NUMA
6007 	setup_min_unmapped_ratio();
6008 	setup_min_slab_ratio();
6009 #endif
6010 
6011 	khugepaged_min_free_kbytes_update();
6012 
6013 	return 0;
6014 }
6015 postcore_initcall(init_per_zone_wmark_min)
6016 
6017 /*
6018  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6019  *	that we can call two helper functions whenever min_free_kbytes
6020  *	changes.
6021  */
6022 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6023 		void *buffer, size_t *length, loff_t *ppos)
6024 {
6025 	int rc;
6026 
6027 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6028 	if (rc)
6029 		return rc;
6030 
6031 	if (write) {
6032 		user_min_free_kbytes = min_free_kbytes;
6033 		setup_per_zone_wmarks();
6034 	}
6035 	return 0;
6036 }
6037 
6038 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6039 		void *buffer, size_t *length, loff_t *ppos)
6040 {
6041 	int rc;
6042 
6043 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6044 	if (rc)
6045 		return rc;
6046 
6047 	if (write)
6048 		setup_per_zone_wmarks();
6049 
6050 	return 0;
6051 }
6052 
6053 #ifdef CONFIG_NUMA
6054 static void setup_min_unmapped_ratio(void)
6055 {
6056 	pg_data_t *pgdat;
6057 	struct zone *zone;
6058 
6059 	for_each_online_pgdat(pgdat)
6060 		pgdat->min_unmapped_pages = 0;
6061 
6062 	for_each_zone(zone)
6063 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6064 						         sysctl_min_unmapped_ratio) / 100;
6065 }
6066 
6067 
6068 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6069 		void *buffer, size_t *length, loff_t *ppos)
6070 {
6071 	int rc;
6072 
6073 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6074 	if (rc)
6075 		return rc;
6076 
6077 	setup_min_unmapped_ratio();
6078 
6079 	return 0;
6080 }
6081 
6082 static void setup_min_slab_ratio(void)
6083 {
6084 	pg_data_t *pgdat;
6085 	struct zone *zone;
6086 
6087 	for_each_online_pgdat(pgdat)
6088 		pgdat->min_slab_pages = 0;
6089 
6090 	for_each_zone(zone)
6091 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6092 						     sysctl_min_slab_ratio) / 100;
6093 }
6094 
6095 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6096 		void *buffer, size_t *length, loff_t *ppos)
6097 {
6098 	int rc;
6099 
6100 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6101 	if (rc)
6102 		return rc;
6103 
6104 	setup_min_slab_ratio();
6105 
6106 	return 0;
6107 }
6108 #endif
6109 
6110 /*
6111  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6112  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6113  *	whenever sysctl_lowmem_reserve_ratio changes.
6114  *
6115  * The reserve ratio obviously has absolutely no relation with the
6116  * minimum watermarks. The lowmem reserve ratio can only make sense
6117  * if in function of the boot time zone sizes.
6118  */
6119 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6120 		int write, void *buffer, size_t *length, loff_t *ppos)
6121 {
6122 	int i;
6123 
6124 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6125 
6126 	for (i = 0; i < MAX_NR_ZONES; i++) {
6127 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6128 			sysctl_lowmem_reserve_ratio[i] = 0;
6129 	}
6130 
6131 	setup_per_zone_lowmem_reserve();
6132 	return 0;
6133 }
6134 
6135 /*
6136  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6137  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6138  * pagelist can have before it gets flushed back to buddy allocator.
6139  */
6140 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6141 		int write, void *buffer, size_t *length, loff_t *ppos)
6142 {
6143 	struct zone *zone;
6144 	int old_percpu_pagelist_high_fraction;
6145 	int ret;
6146 
6147 	mutex_lock(&pcp_batch_high_lock);
6148 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6149 
6150 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6151 	if (!write || ret < 0)
6152 		goto out;
6153 
6154 	/* Sanity checking to avoid pcp imbalance */
6155 	if (percpu_pagelist_high_fraction &&
6156 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6157 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6158 		ret = -EINVAL;
6159 		goto out;
6160 	}
6161 
6162 	/* No change? */
6163 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6164 		goto out;
6165 
6166 	for_each_populated_zone(zone)
6167 		zone_set_pageset_high_and_batch(zone, 0);
6168 out:
6169 	mutex_unlock(&pcp_batch_high_lock);
6170 	return ret;
6171 }
6172 
6173 static struct ctl_table page_alloc_sysctl_table[] = {
6174 	{
6175 		.procname	= "min_free_kbytes",
6176 		.data		= &min_free_kbytes,
6177 		.maxlen		= sizeof(min_free_kbytes),
6178 		.mode		= 0644,
6179 		.proc_handler	= min_free_kbytes_sysctl_handler,
6180 		.extra1		= SYSCTL_ZERO,
6181 	},
6182 	{
6183 		.procname	= "watermark_boost_factor",
6184 		.data		= &watermark_boost_factor,
6185 		.maxlen		= sizeof(watermark_boost_factor),
6186 		.mode		= 0644,
6187 		.proc_handler	= proc_dointvec_minmax,
6188 		.extra1		= SYSCTL_ZERO,
6189 	},
6190 	{
6191 		.procname	= "watermark_scale_factor",
6192 		.data		= &watermark_scale_factor,
6193 		.maxlen		= sizeof(watermark_scale_factor),
6194 		.mode		= 0644,
6195 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6196 		.extra1		= SYSCTL_ONE,
6197 		.extra2		= SYSCTL_THREE_THOUSAND,
6198 	},
6199 	{
6200 		.procname	= "percpu_pagelist_high_fraction",
6201 		.data		= &percpu_pagelist_high_fraction,
6202 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6203 		.mode		= 0644,
6204 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6205 		.extra1		= SYSCTL_ZERO,
6206 	},
6207 	{
6208 		.procname	= "lowmem_reserve_ratio",
6209 		.data		= &sysctl_lowmem_reserve_ratio,
6210 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6211 		.mode		= 0644,
6212 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6213 	},
6214 #ifdef CONFIG_NUMA
6215 	{
6216 		.procname	= "numa_zonelist_order",
6217 		.data		= &numa_zonelist_order,
6218 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6219 		.mode		= 0644,
6220 		.proc_handler	= numa_zonelist_order_handler,
6221 	},
6222 	{
6223 		.procname	= "min_unmapped_ratio",
6224 		.data		= &sysctl_min_unmapped_ratio,
6225 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6226 		.mode		= 0644,
6227 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6228 		.extra1		= SYSCTL_ZERO,
6229 		.extra2		= SYSCTL_ONE_HUNDRED,
6230 	},
6231 	{
6232 		.procname	= "min_slab_ratio",
6233 		.data		= &sysctl_min_slab_ratio,
6234 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6235 		.mode		= 0644,
6236 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6237 		.extra1		= SYSCTL_ZERO,
6238 		.extra2		= SYSCTL_ONE_HUNDRED,
6239 	},
6240 #endif
6241 };
6242 
6243 void __init page_alloc_sysctl_init(void)
6244 {
6245 	register_sysctl_init("vm", page_alloc_sysctl_table);
6246 }
6247 
6248 #ifdef CONFIG_CONTIG_ALLOC
6249 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6250 static void alloc_contig_dump_pages(struct list_head *page_list)
6251 {
6252 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6253 
6254 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6255 		struct page *page;
6256 
6257 		dump_stack();
6258 		list_for_each_entry(page, page_list, lru)
6259 			dump_page(page, "migration failure");
6260 	}
6261 }
6262 
6263 /*
6264  * [start, end) must belong to a single zone.
6265  * @migratetype: using migratetype to filter the type of migration in
6266  *		trace_mm_alloc_contig_migrate_range_info.
6267  */
6268 int __alloc_contig_migrate_range(struct compact_control *cc,
6269 					unsigned long start, unsigned long end,
6270 					int migratetype)
6271 {
6272 	/* This function is based on compact_zone() from compaction.c. */
6273 	unsigned int nr_reclaimed;
6274 	unsigned long pfn = start;
6275 	unsigned int tries = 0;
6276 	int ret = 0;
6277 	struct migration_target_control mtc = {
6278 		.nid = zone_to_nid(cc->zone),
6279 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6280 		.reason = MR_CONTIG_RANGE,
6281 	};
6282 	struct page *page;
6283 	unsigned long total_mapped = 0;
6284 	unsigned long total_migrated = 0;
6285 	unsigned long total_reclaimed = 0;
6286 
6287 	lru_cache_disable();
6288 
6289 	while (pfn < end || !list_empty(&cc->migratepages)) {
6290 		if (fatal_signal_pending(current)) {
6291 			ret = -EINTR;
6292 			break;
6293 		}
6294 
6295 		if (list_empty(&cc->migratepages)) {
6296 			cc->nr_migratepages = 0;
6297 			ret = isolate_migratepages_range(cc, pfn, end);
6298 			if (ret && ret != -EAGAIN)
6299 				break;
6300 			pfn = cc->migrate_pfn;
6301 			tries = 0;
6302 		} else if (++tries == 5) {
6303 			ret = -EBUSY;
6304 			break;
6305 		}
6306 
6307 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6308 							&cc->migratepages);
6309 		cc->nr_migratepages -= nr_reclaimed;
6310 
6311 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6312 			total_reclaimed += nr_reclaimed;
6313 			list_for_each_entry(page, &cc->migratepages, lru) {
6314 				struct folio *folio = page_folio(page);
6315 
6316 				total_mapped += folio_mapped(folio) *
6317 						folio_nr_pages(folio);
6318 			}
6319 		}
6320 
6321 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6322 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6323 
6324 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6325 			total_migrated += cc->nr_migratepages;
6326 
6327 		/*
6328 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6329 		 * to retry again over this error, so do the same here.
6330 		 */
6331 		if (ret == -ENOMEM)
6332 			break;
6333 	}
6334 
6335 	lru_cache_enable();
6336 	if (ret < 0) {
6337 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6338 			alloc_contig_dump_pages(&cc->migratepages);
6339 		putback_movable_pages(&cc->migratepages);
6340 	}
6341 
6342 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6343 						 total_migrated,
6344 						 total_reclaimed,
6345 						 total_mapped);
6346 	return (ret < 0) ? ret : 0;
6347 }
6348 
6349 static void split_free_pages(struct list_head *list)
6350 {
6351 	int order;
6352 
6353 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6354 		struct page *page, *next;
6355 		int nr_pages = 1 << order;
6356 
6357 		list_for_each_entry_safe(page, next, &list[order], lru) {
6358 			int i;
6359 
6360 			post_alloc_hook(page, order, __GFP_MOVABLE);
6361 			if (!order)
6362 				continue;
6363 
6364 			split_page(page, order);
6365 
6366 			/* Add all subpages to the order-0 head, in sequence. */
6367 			list_del(&page->lru);
6368 			for (i = 0; i < nr_pages; i++)
6369 				list_add_tail(&page[i].lru, &list[0]);
6370 		}
6371 	}
6372 }
6373 
6374 /**
6375  * alloc_contig_range() -- tries to allocate given range of pages
6376  * @start:	start PFN to allocate
6377  * @end:	one-past-the-last PFN to allocate
6378  * @migratetype:	migratetype of the underlying pageblocks (either
6379  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6380  *			in range must have the same migratetype and it must
6381  *			be either of the two.
6382  * @gfp_mask:	GFP mask to use during compaction
6383  *
6384  * The PFN range does not have to be pageblock aligned. The PFN range must
6385  * belong to a single zone.
6386  *
6387  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6388  * pageblocks in the range.  Once isolated, the pageblocks should not
6389  * be modified by others.
6390  *
6391  * Return: zero on success or negative error code.  On success all
6392  * pages which PFN is in [start, end) are allocated for the caller and
6393  * need to be freed with free_contig_range().
6394  */
6395 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6396 		       unsigned migratetype, gfp_t gfp_mask)
6397 {
6398 	unsigned long outer_start, outer_end;
6399 	int ret = 0;
6400 
6401 	struct compact_control cc = {
6402 		.nr_migratepages = 0,
6403 		.order = -1,
6404 		.zone = page_zone(pfn_to_page(start)),
6405 		.mode = MIGRATE_SYNC,
6406 		.ignore_skip_hint = true,
6407 		.no_set_skip_hint = true,
6408 		.gfp_mask = current_gfp_context(gfp_mask),
6409 		.alloc_contig = true,
6410 	};
6411 	INIT_LIST_HEAD(&cc.migratepages);
6412 
6413 	/*
6414 	 * What we do here is we mark all pageblocks in range as
6415 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6416 	 * have different sizes, and due to the way page allocator
6417 	 * work, start_isolate_page_range() has special handlings for this.
6418 	 *
6419 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6420 	 * migrate the pages from an unaligned range (ie. pages that
6421 	 * we are interested in). This will put all the pages in
6422 	 * range back to page allocator as MIGRATE_ISOLATE.
6423 	 *
6424 	 * When this is done, we take the pages in range from page
6425 	 * allocator removing them from the buddy system.  This way
6426 	 * page allocator will never consider using them.
6427 	 *
6428 	 * This lets us mark the pageblocks back as
6429 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6430 	 * aligned range but not in the unaligned, original range are
6431 	 * put back to page allocator so that buddy can use them.
6432 	 */
6433 
6434 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6435 	if (ret)
6436 		goto done;
6437 
6438 	drain_all_pages(cc.zone);
6439 
6440 	/*
6441 	 * In case of -EBUSY, we'd like to know which page causes problem.
6442 	 * So, just fall through. test_pages_isolated() has a tracepoint
6443 	 * which will report the busy page.
6444 	 *
6445 	 * It is possible that busy pages could become available before
6446 	 * the call to test_pages_isolated, and the range will actually be
6447 	 * allocated.  So, if we fall through be sure to clear ret so that
6448 	 * -EBUSY is not accidentally used or returned to caller.
6449 	 */
6450 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6451 	if (ret && ret != -EBUSY)
6452 		goto done;
6453 	ret = 0;
6454 
6455 	/*
6456 	 * Pages from [start, end) are within a pageblock_nr_pages
6457 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6458 	 * more, all pages in [start, end) are free in page allocator.
6459 	 * What we are going to do is to allocate all pages from
6460 	 * [start, end) (that is remove them from page allocator).
6461 	 *
6462 	 * The only problem is that pages at the beginning and at the
6463 	 * end of interesting range may be not aligned with pages that
6464 	 * page allocator holds, ie. they can be part of higher order
6465 	 * pages.  Because of this, we reserve the bigger range and
6466 	 * once this is done free the pages we are not interested in.
6467 	 *
6468 	 * We don't have to hold zone->lock here because the pages are
6469 	 * isolated thus they won't get removed from buddy.
6470 	 */
6471 	outer_start = find_large_buddy(start);
6472 
6473 	/* Make sure the range is really isolated. */
6474 	if (test_pages_isolated(outer_start, end, 0)) {
6475 		ret = -EBUSY;
6476 		goto done;
6477 	}
6478 
6479 	/* Grab isolated pages from freelists. */
6480 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6481 	if (!outer_end) {
6482 		ret = -EBUSY;
6483 		goto done;
6484 	}
6485 
6486 	if (!(gfp_mask & __GFP_COMP)) {
6487 		split_free_pages(cc.freepages);
6488 
6489 		/* Free head and tail (if any) */
6490 		if (start != outer_start)
6491 			free_contig_range(outer_start, start - outer_start);
6492 		if (end != outer_end)
6493 			free_contig_range(end, outer_end - end);
6494 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6495 		struct page *head = pfn_to_page(start);
6496 		int order = ilog2(end - start);
6497 
6498 		check_new_pages(head, order);
6499 		prep_new_page(head, order, gfp_mask, 0);
6500 	} else {
6501 		ret = -EINVAL;
6502 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6503 		     start, end, outer_start, outer_end);
6504 	}
6505 done:
6506 	undo_isolate_page_range(start, end, migratetype);
6507 	return ret;
6508 }
6509 EXPORT_SYMBOL(alloc_contig_range_noprof);
6510 
6511 static int __alloc_contig_pages(unsigned long start_pfn,
6512 				unsigned long nr_pages, gfp_t gfp_mask)
6513 {
6514 	unsigned long end_pfn = start_pfn + nr_pages;
6515 
6516 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6517 				   gfp_mask);
6518 }
6519 
6520 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6521 				   unsigned long nr_pages)
6522 {
6523 	unsigned long i, end_pfn = start_pfn + nr_pages;
6524 	struct page *page;
6525 
6526 	for (i = start_pfn; i < end_pfn; i++) {
6527 		page = pfn_to_online_page(i);
6528 		if (!page)
6529 			return false;
6530 
6531 		if (page_zone(page) != z)
6532 			return false;
6533 
6534 		if (PageReserved(page))
6535 			return false;
6536 
6537 		if (PageHuge(page))
6538 			return false;
6539 	}
6540 	return true;
6541 }
6542 
6543 static bool zone_spans_last_pfn(const struct zone *zone,
6544 				unsigned long start_pfn, unsigned long nr_pages)
6545 {
6546 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6547 
6548 	return zone_spans_pfn(zone, last_pfn);
6549 }
6550 
6551 /**
6552  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6553  * @nr_pages:	Number of contiguous pages to allocate
6554  * @gfp_mask:	GFP mask to limit search and used during compaction
6555  * @nid:	Target node
6556  * @nodemask:	Mask for other possible nodes
6557  *
6558  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6559  * on an applicable zonelist to find a contiguous pfn range which can then be
6560  * tried for allocation with alloc_contig_range(). This routine is intended
6561  * for allocation requests which can not be fulfilled with the buddy allocator.
6562  *
6563  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6564  * power of two, then allocated range is also guaranteed to be aligned to same
6565  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6566  *
6567  * Allocated pages can be freed with free_contig_range() or by manually calling
6568  * __free_page() on each allocated page.
6569  *
6570  * Return: pointer to contiguous pages on success, or NULL if not successful.
6571  */
6572 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6573 				 int nid, nodemask_t *nodemask)
6574 {
6575 	unsigned long ret, pfn, flags;
6576 	struct zonelist *zonelist;
6577 	struct zone *zone;
6578 	struct zoneref *z;
6579 
6580 	zonelist = node_zonelist(nid, gfp_mask);
6581 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6582 					gfp_zone(gfp_mask), nodemask) {
6583 		spin_lock_irqsave(&zone->lock, flags);
6584 
6585 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6586 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6587 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6588 				/*
6589 				 * We release the zone lock here because
6590 				 * alloc_contig_range() will also lock the zone
6591 				 * at some point. If there's an allocation
6592 				 * spinning on this lock, it may win the race
6593 				 * and cause alloc_contig_range() to fail...
6594 				 */
6595 				spin_unlock_irqrestore(&zone->lock, flags);
6596 				ret = __alloc_contig_pages(pfn, nr_pages,
6597 							gfp_mask);
6598 				if (!ret)
6599 					return pfn_to_page(pfn);
6600 				spin_lock_irqsave(&zone->lock, flags);
6601 			}
6602 			pfn += nr_pages;
6603 		}
6604 		spin_unlock_irqrestore(&zone->lock, flags);
6605 	}
6606 	return NULL;
6607 }
6608 #endif /* CONFIG_CONTIG_ALLOC */
6609 
6610 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6611 {
6612 	unsigned long count = 0;
6613 	struct folio *folio = pfn_folio(pfn);
6614 
6615 	if (folio_test_large(folio)) {
6616 		int expected = folio_nr_pages(folio);
6617 
6618 		if (nr_pages == expected)
6619 			folio_put(folio);
6620 		else
6621 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6622 			     pfn, nr_pages, expected);
6623 		return;
6624 	}
6625 
6626 	for (; nr_pages--; pfn++) {
6627 		struct page *page = pfn_to_page(pfn);
6628 
6629 		count += page_count(page) != 1;
6630 		__free_page(page);
6631 	}
6632 	WARN(count != 0, "%lu pages are still in use!\n", count);
6633 }
6634 EXPORT_SYMBOL(free_contig_range);
6635 
6636 /*
6637  * Effectively disable pcplists for the zone by setting the high limit to 0
6638  * and draining all cpus. A concurrent page freeing on another CPU that's about
6639  * to put the page on pcplist will either finish before the drain and the page
6640  * will be drained, or observe the new high limit and skip the pcplist.
6641  *
6642  * Must be paired with a call to zone_pcp_enable().
6643  */
6644 void zone_pcp_disable(struct zone *zone)
6645 {
6646 	mutex_lock(&pcp_batch_high_lock);
6647 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6648 	__drain_all_pages(zone, true);
6649 }
6650 
6651 void zone_pcp_enable(struct zone *zone)
6652 {
6653 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6654 		zone->pageset_high_max, zone->pageset_batch);
6655 	mutex_unlock(&pcp_batch_high_lock);
6656 }
6657 
6658 void zone_pcp_reset(struct zone *zone)
6659 {
6660 	int cpu;
6661 	struct per_cpu_zonestat *pzstats;
6662 
6663 	if (zone->per_cpu_pageset != &boot_pageset) {
6664 		for_each_online_cpu(cpu) {
6665 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6666 			drain_zonestat(zone, pzstats);
6667 		}
6668 		free_percpu(zone->per_cpu_pageset);
6669 		zone->per_cpu_pageset = &boot_pageset;
6670 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6671 			free_percpu(zone->per_cpu_zonestats);
6672 			zone->per_cpu_zonestats = &boot_zonestats;
6673 		}
6674 	}
6675 }
6676 
6677 #ifdef CONFIG_MEMORY_HOTREMOVE
6678 /*
6679  * All pages in the range must be in a single zone, must not contain holes,
6680  * must span full sections, and must be isolated before calling this function.
6681  *
6682  * Returns the number of managed (non-PageOffline()) pages in the range: the
6683  * number of pages for which memory offlining code must adjust managed page
6684  * counters using adjust_managed_page_count().
6685  */
6686 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6687 		unsigned long end_pfn)
6688 {
6689 	unsigned long already_offline = 0, flags;
6690 	unsigned long pfn = start_pfn;
6691 	struct page *page;
6692 	struct zone *zone;
6693 	unsigned int order;
6694 
6695 	offline_mem_sections(pfn, end_pfn);
6696 	zone = page_zone(pfn_to_page(pfn));
6697 	spin_lock_irqsave(&zone->lock, flags);
6698 	while (pfn < end_pfn) {
6699 		page = pfn_to_page(pfn);
6700 		/*
6701 		 * The HWPoisoned page may be not in buddy system, and
6702 		 * page_count() is not 0.
6703 		 */
6704 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6705 			pfn++;
6706 			continue;
6707 		}
6708 		/*
6709 		 * At this point all remaining PageOffline() pages have a
6710 		 * reference count of 0 and can simply be skipped.
6711 		 */
6712 		if (PageOffline(page)) {
6713 			BUG_ON(page_count(page));
6714 			BUG_ON(PageBuddy(page));
6715 			already_offline++;
6716 			pfn++;
6717 			continue;
6718 		}
6719 
6720 		BUG_ON(page_count(page));
6721 		BUG_ON(!PageBuddy(page));
6722 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6723 		order = buddy_order(page);
6724 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6725 		pfn += (1 << order);
6726 	}
6727 	spin_unlock_irqrestore(&zone->lock, flags);
6728 
6729 	return end_pfn - start_pfn - already_offline;
6730 }
6731 #endif
6732 
6733 /*
6734  * This function returns a stable result only if called under zone lock.
6735  */
6736 bool is_free_buddy_page(const struct page *page)
6737 {
6738 	unsigned long pfn = page_to_pfn(page);
6739 	unsigned int order;
6740 
6741 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6742 		const struct page *head = page - (pfn & ((1 << order) - 1));
6743 
6744 		if (PageBuddy(head) &&
6745 		    buddy_order_unsafe(head) >= order)
6746 			break;
6747 	}
6748 
6749 	return order <= MAX_PAGE_ORDER;
6750 }
6751 EXPORT_SYMBOL(is_free_buddy_page);
6752 
6753 #ifdef CONFIG_MEMORY_FAILURE
6754 static inline void add_to_free_list(struct page *page, struct zone *zone,
6755 				    unsigned int order, int migratetype,
6756 				    bool tail)
6757 {
6758 	__add_to_free_list(page, zone, order, migratetype, tail);
6759 	account_freepages(zone, 1 << order, migratetype);
6760 }
6761 
6762 /*
6763  * Break down a higher-order page in sub-pages, and keep our target out of
6764  * buddy allocator.
6765  */
6766 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6767 				   struct page *target, int low, int high,
6768 				   int migratetype)
6769 {
6770 	unsigned long size = 1 << high;
6771 	struct page *current_buddy;
6772 
6773 	while (high > low) {
6774 		high--;
6775 		size >>= 1;
6776 
6777 		if (target >= &page[size]) {
6778 			current_buddy = page;
6779 			page = page + size;
6780 		} else {
6781 			current_buddy = page + size;
6782 		}
6783 
6784 		if (set_page_guard(zone, current_buddy, high))
6785 			continue;
6786 
6787 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6788 		set_buddy_order(current_buddy, high);
6789 	}
6790 }
6791 
6792 /*
6793  * Take a page that will be marked as poisoned off the buddy allocator.
6794  */
6795 bool take_page_off_buddy(struct page *page)
6796 {
6797 	struct zone *zone = page_zone(page);
6798 	unsigned long pfn = page_to_pfn(page);
6799 	unsigned long flags;
6800 	unsigned int order;
6801 	bool ret = false;
6802 
6803 	spin_lock_irqsave(&zone->lock, flags);
6804 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6805 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6806 		int page_order = buddy_order(page_head);
6807 
6808 		if (PageBuddy(page_head) && page_order >= order) {
6809 			unsigned long pfn_head = page_to_pfn(page_head);
6810 			int migratetype = get_pfnblock_migratetype(page_head,
6811 								   pfn_head);
6812 
6813 			del_page_from_free_list(page_head, zone, page_order,
6814 						migratetype);
6815 			break_down_buddy_pages(zone, page_head, page, 0,
6816 						page_order, migratetype);
6817 			SetPageHWPoisonTakenOff(page);
6818 			ret = true;
6819 			break;
6820 		}
6821 		if (page_count(page_head) > 0)
6822 			break;
6823 	}
6824 	spin_unlock_irqrestore(&zone->lock, flags);
6825 	return ret;
6826 }
6827 
6828 /*
6829  * Cancel takeoff done by take_page_off_buddy().
6830  */
6831 bool put_page_back_buddy(struct page *page)
6832 {
6833 	struct zone *zone = page_zone(page);
6834 	unsigned long flags;
6835 	bool ret = false;
6836 
6837 	spin_lock_irqsave(&zone->lock, flags);
6838 	if (put_page_testzero(page)) {
6839 		unsigned long pfn = page_to_pfn(page);
6840 		int migratetype = get_pfnblock_migratetype(page, pfn);
6841 
6842 		ClearPageHWPoisonTakenOff(page);
6843 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6844 		if (TestClearPageHWPoison(page)) {
6845 			ret = true;
6846 		}
6847 	}
6848 	spin_unlock_irqrestore(&zone->lock, flags);
6849 
6850 	return ret;
6851 }
6852 #endif
6853 
6854 #ifdef CONFIG_ZONE_DMA
6855 bool has_managed_dma(void)
6856 {
6857 	struct pglist_data *pgdat;
6858 
6859 	for_each_online_pgdat(pgdat) {
6860 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6861 
6862 		if (managed_zone(zone))
6863 			return true;
6864 	}
6865 	return false;
6866 }
6867 #endif /* CONFIG_ZONE_DMA */
6868 
6869 #ifdef CONFIG_UNACCEPTED_MEMORY
6870 
6871 /* Counts number of zones with unaccepted pages. */
6872 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6873 
6874 static bool lazy_accept = true;
6875 
6876 static int __init accept_memory_parse(char *p)
6877 {
6878 	if (!strcmp(p, "lazy")) {
6879 		lazy_accept = true;
6880 		return 0;
6881 	} else if (!strcmp(p, "eager")) {
6882 		lazy_accept = false;
6883 		return 0;
6884 	} else {
6885 		return -EINVAL;
6886 	}
6887 }
6888 early_param("accept_memory", accept_memory_parse);
6889 
6890 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6891 {
6892 	phys_addr_t start = page_to_phys(page);
6893 
6894 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
6895 }
6896 
6897 static void __accept_page(struct zone *zone, unsigned long *flags,
6898 			  struct page *page)
6899 {
6900 	bool last;
6901 
6902 	list_del(&page->lru);
6903 	last = list_empty(&zone->unaccepted_pages);
6904 
6905 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6906 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6907 	__ClearPageUnaccepted(page);
6908 	spin_unlock_irqrestore(&zone->lock, *flags);
6909 
6910 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
6911 
6912 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6913 
6914 	if (last)
6915 		static_branch_dec(&zones_with_unaccepted_pages);
6916 }
6917 
6918 void accept_page(struct page *page)
6919 {
6920 	struct zone *zone = page_zone(page);
6921 	unsigned long flags;
6922 
6923 	spin_lock_irqsave(&zone->lock, flags);
6924 	if (!PageUnaccepted(page)) {
6925 		spin_unlock_irqrestore(&zone->lock, flags);
6926 		return;
6927 	}
6928 
6929 	/* Unlocks zone->lock */
6930 	__accept_page(zone, &flags, page);
6931 }
6932 
6933 static bool try_to_accept_memory_one(struct zone *zone)
6934 {
6935 	unsigned long flags;
6936 	struct page *page;
6937 
6938 	spin_lock_irqsave(&zone->lock, flags);
6939 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6940 					struct page, lru);
6941 	if (!page) {
6942 		spin_unlock_irqrestore(&zone->lock, flags);
6943 		return false;
6944 	}
6945 
6946 	/* Unlocks zone->lock */
6947 	__accept_page(zone, &flags, page);
6948 
6949 	return true;
6950 }
6951 
6952 static inline bool has_unaccepted_memory(void)
6953 {
6954 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6955 }
6956 
6957 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6958 {
6959 	long to_accept;
6960 	bool ret = false;
6961 
6962 	if (!has_unaccepted_memory())
6963 		return false;
6964 
6965 	if (list_empty(&zone->unaccepted_pages))
6966 		return false;
6967 
6968 	/* How much to accept to get to promo watermark? */
6969 	to_accept = promo_wmark_pages(zone) -
6970 		    (zone_page_state(zone, NR_FREE_PAGES) -
6971 		    __zone_watermark_unusable_free(zone, order, 0) -
6972 		    zone_page_state(zone, NR_UNACCEPTED));
6973 
6974 	while (to_accept > 0) {
6975 		if (!try_to_accept_memory_one(zone))
6976 			break;
6977 		ret = true;
6978 		to_accept -= MAX_ORDER_NR_PAGES;
6979 	}
6980 
6981 	return ret;
6982 }
6983 
6984 static bool __free_unaccepted(struct page *page)
6985 {
6986 	struct zone *zone = page_zone(page);
6987 	unsigned long flags;
6988 	bool first = false;
6989 
6990 	if (!lazy_accept)
6991 		return false;
6992 
6993 	spin_lock_irqsave(&zone->lock, flags);
6994 	first = list_empty(&zone->unaccepted_pages);
6995 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6996 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6997 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6998 	__SetPageUnaccepted(page);
6999 	spin_unlock_irqrestore(&zone->lock, flags);
7000 
7001 	if (first)
7002 		static_branch_inc(&zones_with_unaccepted_pages);
7003 
7004 	return true;
7005 }
7006 
7007 #else
7008 
7009 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7010 {
7011 	return false;
7012 }
7013 
7014 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7015 {
7016 	return false;
7017 }
7018 
7019 static bool __free_unaccepted(struct page *page)
7020 {
7021 	BUILD_BUG();
7022 	return false;
7023 }
7024 
7025 #endif /* CONFIG_UNACCEPTED_MEMORY */
7026