1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/interrupt.h> 22 #include <linux/jiffies.h> 23 #include <linux/compiler.h> 24 #include <linux/kernel.h> 25 #include <linux/kasan.h> 26 #include <linux/kmsan.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/ratelimit.h> 30 #include <linux/oom.h> 31 #include <linux/topology.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/cpuset.h> 35 #include <linux/pagevec.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmstat.h> 39 #include <linux/fault-inject.h> 40 #include <linux/compaction.h> 41 #include <trace/events/kmem.h> 42 #include <trace/events/oom.h> 43 #include <linux/prefetch.h> 44 #include <linux/mm_inline.h> 45 #include <linux/mmu_notifier.h> 46 #include <linux/migrate.h> 47 #include <linux/sched/mm.h> 48 #include <linux/page_owner.h> 49 #include <linux/page_table_check.h> 50 #include <linux/memcontrol.h> 51 #include <linux/ftrace.h> 52 #include <linux/lockdep.h> 53 #include <linux/psi.h> 54 #include <linux/khugepaged.h> 55 #include <linux/delayacct.h> 56 #include <linux/cacheinfo.h> 57 #include <linux/pgalloc_tag.h> 58 #include <asm/div64.h> 59 #include "internal.h" 60 #include "shuffle.h" 61 #include "page_reporting.h" 62 63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 64 typedef int __bitwise fpi_t; 65 66 /* No special request */ 67 #define FPI_NONE ((__force fpi_t)0) 68 69 /* 70 * Skip free page reporting notification for the (possibly merged) page. 71 * This does not hinder free page reporting from grabbing the page, 72 * reporting it and marking it "reported" - it only skips notifying 73 * the free page reporting infrastructure about a newly freed page. For 74 * example, used when temporarily pulling a page from a freelist and 75 * putting it back unmodified. 76 */ 77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 78 79 /* 80 * Place the (possibly merged) page to the tail of the freelist. Will ignore 81 * page shuffling (relevant code - e.g., memory onlining - is expected to 82 * shuffle the whole zone). 83 * 84 * Note: No code should rely on this flag for correctness - it's purely 85 * to allow for optimizations when handing back either fresh pages 86 * (memory onlining) or untouched pages (page isolation, free page 87 * reporting). 88 */ 89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 90 91 /* Free the page without taking locks. Rely on trylock only. */ 92 #define FPI_TRYLOCK ((__force fpi_t)BIT(2)) 93 94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 95 static DEFINE_MUTEX(pcp_batch_high_lock); 96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 97 98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 99 /* 100 * On SMP, spin_trylock is sufficient protection. 101 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 102 */ 103 #define pcp_trylock_prepare(flags) do { } while (0) 104 #define pcp_trylock_finish(flag) do { } while (0) 105 #else 106 107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 108 #define pcp_trylock_prepare(flags) local_irq_save(flags) 109 #define pcp_trylock_finish(flags) local_irq_restore(flags) 110 #endif 111 112 /* 113 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 114 * a migration causing the wrong PCP to be locked and remote memory being 115 * potentially allocated, pin the task to the CPU for the lookup+lock. 116 * preempt_disable is used on !RT because it is faster than migrate_disable. 117 * migrate_disable is used on RT because otherwise RT spinlock usage is 118 * interfered with and a high priority task cannot preempt the allocator. 119 */ 120 #ifndef CONFIG_PREEMPT_RT 121 #define pcpu_task_pin() preempt_disable() 122 #define pcpu_task_unpin() preempt_enable() 123 #else 124 #define pcpu_task_pin() migrate_disable() 125 #define pcpu_task_unpin() migrate_enable() 126 #endif 127 128 /* 129 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 130 * Return value should be used with equivalent unlock helper. 131 */ 132 #define pcpu_spin_lock(type, member, ptr) \ 133 ({ \ 134 type *_ret; \ 135 pcpu_task_pin(); \ 136 _ret = this_cpu_ptr(ptr); \ 137 spin_lock(&_ret->member); \ 138 _ret; \ 139 }) 140 141 #define pcpu_spin_trylock(type, member, ptr) \ 142 ({ \ 143 type *_ret; \ 144 pcpu_task_pin(); \ 145 _ret = this_cpu_ptr(ptr); \ 146 if (!spin_trylock(&_ret->member)) { \ 147 pcpu_task_unpin(); \ 148 _ret = NULL; \ 149 } \ 150 _ret; \ 151 }) 152 153 #define pcpu_spin_unlock(member, ptr) \ 154 ({ \ 155 spin_unlock(&ptr->member); \ 156 pcpu_task_unpin(); \ 157 }) 158 159 /* struct per_cpu_pages specific helpers. */ 160 #define pcp_spin_lock(ptr) \ 161 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 162 163 #define pcp_spin_trylock(ptr) \ 164 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 165 166 #define pcp_spin_unlock(ptr) \ 167 pcpu_spin_unlock(lock, ptr) 168 169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 170 DEFINE_PER_CPU(int, numa_node); 171 EXPORT_PER_CPU_SYMBOL(numa_node); 172 #endif 173 174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 175 176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 177 /* 178 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 179 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 180 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 181 * defined in <linux/topology.h>. 182 */ 183 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 184 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 185 #endif 186 187 static DEFINE_MUTEX(pcpu_drain_mutex); 188 189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 190 volatile unsigned long latent_entropy __latent_entropy; 191 EXPORT_SYMBOL(latent_entropy); 192 #endif 193 194 /* 195 * Array of node states. 196 */ 197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 198 [N_POSSIBLE] = NODE_MASK_ALL, 199 [N_ONLINE] = { { [0] = 1UL } }, 200 #ifndef CONFIG_NUMA 201 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 202 #ifdef CONFIG_HIGHMEM 203 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 204 #endif 205 [N_MEMORY] = { { [0] = 1UL } }, 206 [N_CPU] = { { [0] = 1UL } }, 207 #endif /* NUMA */ 208 }; 209 EXPORT_SYMBOL(node_states); 210 211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 212 213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 214 unsigned int pageblock_order __read_mostly; 215 #endif 216 217 static void __free_pages_ok(struct page *page, unsigned int order, 218 fpi_t fpi_flags); 219 220 /* 221 * results with 256, 32 in the lowmem_reserve sysctl: 222 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 223 * 1G machine -> (16M dma, 784M normal, 224M high) 224 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 225 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 226 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 227 * 228 * TBD: should special case ZONE_DMA32 machines here - in those we normally 229 * don't need any ZONE_NORMAL reservation 230 */ 231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 232 #ifdef CONFIG_ZONE_DMA 233 [ZONE_DMA] = 256, 234 #endif 235 #ifdef CONFIG_ZONE_DMA32 236 [ZONE_DMA32] = 256, 237 #endif 238 [ZONE_NORMAL] = 32, 239 #ifdef CONFIG_HIGHMEM 240 [ZONE_HIGHMEM] = 0, 241 #endif 242 [ZONE_MOVABLE] = 0, 243 }; 244 245 char * const zone_names[MAX_NR_ZONES] = { 246 #ifdef CONFIG_ZONE_DMA 247 "DMA", 248 #endif 249 #ifdef CONFIG_ZONE_DMA32 250 "DMA32", 251 #endif 252 "Normal", 253 #ifdef CONFIG_HIGHMEM 254 "HighMem", 255 #endif 256 "Movable", 257 #ifdef CONFIG_ZONE_DEVICE 258 "Device", 259 #endif 260 }; 261 262 const char * const migratetype_names[MIGRATE_TYPES] = { 263 "Unmovable", 264 "Movable", 265 "Reclaimable", 266 "HighAtomic", 267 #ifdef CONFIG_CMA 268 "CMA", 269 #endif 270 #ifdef CONFIG_MEMORY_ISOLATION 271 "Isolate", 272 #endif 273 }; 274 275 int min_free_kbytes = 1024; 276 int user_min_free_kbytes = -1; 277 static int watermark_boost_factor __read_mostly = 15000; 278 static int watermark_scale_factor = 10; 279 int defrag_mode; 280 281 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 282 int movable_zone; 283 EXPORT_SYMBOL(movable_zone); 284 285 #if MAX_NUMNODES > 1 286 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 287 unsigned int nr_online_nodes __read_mostly = 1; 288 EXPORT_SYMBOL(nr_node_ids); 289 EXPORT_SYMBOL(nr_online_nodes); 290 #endif 291 292 static bool page_contains_unaccepted(struct page *page, unsigned int order); 293 static bool cond_accept_memory(struct zone *zone, unsigned int order, 294 int alloc_flags); 295 static bool __free_unaccepted(struct page *page); 296 297 int page_group_by_mobility_disabled __read_mostly; 298 299 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 300 /* 301 * During boot we initialize deferred pages on-demand, as needed, but once 302 * page_alloc_init_late() has finished, the deferred pages are all initialized, 303 * and we can permanently disable that path. 304 */ 305 DEFINE_STATIC_KEY_TRUE(deferred_pages); 306 307 static inline bool deferred_pages_enabled(void) 308 { 309 return static_branch_unlikely(&deferred_pages); 310 } 311 312 /* 313 * deferred_grow_zone() is __init, but it is called from 314 * get_page_from_freelist() during early boot until deferred_pages permanently 315 * disables this call. This is why we have refdata wrapper to avoid warning, 316 * and to ensure that the function body gets unloaded. 317 */ 318 static bool __ref 319 _deferred_grow_zone(struct zone *zone, unsigned int order) 320 { 321 return deferred_grow_zone(zone, order); 322 } 323 #else 324 static inline bool deferred_pages_enabled(void) 325 { 326 return false; 327 } 328 329 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order) 330 { 331 return false; 332 } 333 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 334 335 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 336 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 337 unsigned long pfn) 338 { 339 #ifdef CONFIG_SPARSEMEM 340 return section_to_usemap(__pfn_to_section(pfn)); 341 #else 342 return page_zone(page)->pageblock_flags; 343 #endif /* CONFIG_SPARSEMEM */ 344 } 345 346 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 347 { 348 #ifdef CONFIG_SPARSEMEM 349 pfn &= (PAGES_PER_SECTION-1); 350 #else 351 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 352 #endif /* CONFIG_SPARSEMEM */ 353 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 354 } 355 356 /** 357 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 358 * @page: The page within the block of interest 359 * @pfn: The target page frame number 360 * @mask: mask of bits that the caller is interested in 361 * 362 * Return: pageblock_bits flags 363 */ 364 unsigned long get_pfnblock_flags_mask(const struct page *page, 365 unsigned long pfn, unsigned long mask) 366 { 367 unsigned long *bitmap; 368 unsigned long bitidx, word_bitidx; 369 unsigned long word; 370 371 bitmap = get_pageblock_bitmap(page, pfn); 372 bitidx = pfn_to_bitidx(page, pfn); 373 word_bitidx = bitidx / BITS_PER_LONG; 374 bitidx &= (BITS_PER_LONG-1); 375 /* 376 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 377 * a consistent read of the memory array, so that results, even though 378 * racy, are not corrupted. 379 */ 380 word = READ_ONCE(bitmap[word_bitidx]); 381 return (word >> bitidx) & mask; 382 } 383 384 static __always_inline int get_pfnblock_migratetype(const struct page *page, 385 unsigned long pfn) 386 { 387 return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 388 } 389 390 /** 391 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 392 * @page: The page within the block of interest 393 * @flags: The flags to set 394 * @pfn: The target page frame number 395 * @mask: mask of bits that the caller is interested in 396 */ 397 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 398 unsigned long pfn, 399 unsigned long mask) 400 { 401 unsigned long *bitmap; 402 unsigned long bitidx, word_bitidx; 403 unsigned long word; 404 405 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 406 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 407 408 bitmap = get_pageblock_bitmap(page, pfn); 409 bitidx = pfn_to_bitidx(page, pfn); 410 word_bitidx = bitidx / BITS_PER_LONG; 411 bitidx &= (BITS_PER_LONG-1); 412 413 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 414 415 mask <<= bitidx; 416 flags <<= bitidx; 417 418 word = READ_ONCE(bitmap[word_bitidx]); 419 do { 420 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 421 } 422 423 void set_pageblock_migratetype(struct page *page, int migratetype) 424 { 425 if (unlikely(page_group_by_mobility_disabled && 426 migratetype < MIGRATE_PCPTYPES)) 427 migratetype = MIGRATE_UNMOVABLE; 428 429 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 430 page_to_pfn(page), MIGRATETYPE_MASK); 431 } 432 433 #ifdef CONFIG_DEBUG_VM 434 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 435 { 436 int ret; 437 unsigned seq; 438 unsigned long pfn = page_to_pfn(page); 439 unsigned long sp, start_pfn; 440 441 do { 442 seq = zone_span_seqbegin(zone); 443 start_pfn = zone->zone_start_pfn; 444 sp = zone->spanned_pages; 445 ret = !zone_spans_pfn(zone, pfn); 446 } while (zone_span_seqretry(zone, seq)); 447 448 if (ret) 449 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 450 pfn, zone_to_nid(zone), zone->name, 451 start_pfn, start_pfn + sp); 452 453 return ret; 454 } 455 456 /* 457 * Temporary debugging check for pages not lying within a given zone. 458 */ 459 static bool __maybe_unused bad_range(struct zone *zone, struct page *page) 460 { 461 if (page_outside_zone_boundaries(zone, page)) 462 return true; 463 if (zone != page_zone(page)) 464 return true; 465 466 return false; 467 } 468 #else 469 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page) 470 { 471 return false; 472 } 473 #endif 474 475 static void bad_page(struct page *page, const char *reason) 476 { 477 static unsigned long resume; 478 static unsigned long nr_shown; 479 static unsigned long nr_unshown; 480 481 /* 482 * Allow a burst of 60 reports, then keep quiet for that minute; 483 * or allow a steady drip of one report per second. 484 */ 485 if (nr_shown == 60) { 486 if (time_before(jiffies, resume)) { 487 nr_unshown++; 488 goto out; 489 } 490 if (nr_unshown) { 491 pr_alert( 492 "BUG: Bad page state: %lu messages suppressed\n", 493 nr_unshown); 494 nr_unshown = 0; 495 } 496 nr_shown = 0; 497 } 498 if (nr_shown++ == 0) 499 resume = jiffies + 60 * HZ; 500 501 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 502 current->comm, page_to_pfn(page)); 503 dump_page(page, reason); 504 505 print_modules(); 506 dump_stack(); 507 out: 508 /* Leave bad fields for debug, except PageBuddy could make trouble */ 509 if (PageBuddy(page)) 510 __ClearPageBuddy(page); 511 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 512 } 513 514 static inline unsigned int order_to_pindex(int migratetype, int order) 515 { 516 517 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 518 bool movable; 519 if (order > PAGE_ALLOC_COSTLY_ORDER) { 520 VM_BUG_ON(order != HPAGE_PMD_ORDER); 521 522 movable = migratetype == MIGRATE_MOVABLE; 523 524 return NR_LOWORDER_PCP_LISTS + movable; 525 } 526 #else 527 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 528 #endif 529 530 return (MIGRATE_PCPTYPES * order) + migratetype; 531 } 532 533 static inline int pindex_to_order(unsigned int pindex) 534 { 535 int order = pindex / MIGRATE_PCPTYPES; 536 537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 538 if (pindex >= NR_LOWORDER_PCP_LISTS) 539 order = HPAGE_PMD_ORDER; 540 #else 541 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 542 #endif 543 544 return order; 545 } 546 547 static inline bool pcp_allowed_order(unsigned int order) 548 { 549 if (order <= PAGE_ALLOC_COSTLY_ORDER) 550 return true; 551 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 552 if (order == HPAGE_PMD_ORDER) 553 return true; 554 #endif 555 return false; 556 } 557 558 /* 559 * Higher-order pages are called "compound pages". They are structured thusly: 560 * 561 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 562 * 563 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 564 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 565 * 566 * The first tail page's ->compound_order holds the order of allocation. 567 * This usage means that zero-order pages may not be compound. 568 */ 569 570 void prep_compound_page(struct page *page, unsigned int order) 571 { 572 int i; 573 int nr_pages = 1 << order; 574 575 __SetPageHead(page); 576 for (i = 1; i < nr_pages; i++) 577 prep_compound_tail(page, i); 578 579 prep_compound_head(page, order); 580 } 581 582 static inline void set_buddy_order(struct page *page, unsigned int order) 583 { 584 set_page_private(page, order); 585 __SetPageBuddy(page); 586 } 587 588 #ifdef CONFIG_COMPACTION 589 static inline struct capture_control *task_capc(struct zone *zone) 590 { 591 struct capture_control *capc = current->capture_control; 592 593 return unlikely(capc) && 594 !(current->flags & PF_KTHREAD) && 595 !capc->page && 596 capc->cc->zone == zone ? capc : NULL; 597 } 598 599 static inline bool 600 compaction_capture(struct capture_control *capc, struct page *page, 601 int order, int migratetype) 602 { 603 if (!capc || order != capc->cc->order) 604 return false; 605 606 /* Do not accidentally pollute CMA or isolated regions*/ 607 if (is_migrate_cma(migratetype) || 608 is_migrate_isolate(migratetype)) 609 return false; 610 611 /* 612 * Do not let lower order allocations pollute a movable pageblock 613 * unless compaction is also requesting movable pages. 614 * This might let an unmovable request use a reclaimable pageblock 615 * and vice-versa but no more than normal fallback logic which can 616 * have trouble finding a high-order free page. 617 */ 618 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE && 619 capc->cc->migratetype != MIGRATE_MOVABLE) 620 return false; 621 622 if (migratetype != capc->cc->migratetype) 623 trace_mm_page_alloc_extfrag(page, capc->cc->order, order, 624 capc->cc->migratetype, migratetype); 625 626 capc->page = page; 627 return true; 628 } 629 630 #else 631 static inline struct capture_control *task_capc(struct zone *zone) 632 { 633 return NULL; 634 } 635 636 static inline bool 637 compaction_capture(struct capture_control *capc, struct page *page, 638 int order, int migratetype) 639 { 640 return false; 641 } 642 #endif /* CONFIG_COMPACTION */ 643 644 static inline void account_freepages(struct zone *zone, int nr_pages, 645 int migratetype) 646 { 647 lockdep_assert_held(&zone->lock); 648 649 if (is_migrate_isolate(migratetype)) 650 return; 651 652 __mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages); 653 654 if (is_migrate_cma(migratetype)) 655 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages); 656 else if (is_migrate_highatomic(migratetype)) 657 WRITE_ONCE(zone->nr_free_highatomic, 658 zone->nr_free_highatomic + nr_pages); 659 } 660 661 /* Used for pages not on another list */ 662 static inline void __add_to_free_list(struct page *page, struct zone *zone, 663 unsigned int order, int migratetype, 664 bool tail) 665 { 666 struct free_area *area = &zone->free_area[order]; 667 int nr_pages = 1 << order; 668 669 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 670 "page type is %lu, passed migratetype is %d (nr=%d)\n", 671 get_pageblock_migratetype(page), migratetype, nr_pages); 672 673 if (tail) 674 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 675 else 676 list_add(&page->buddy_list, &area->free_list[migratetype]); 677 area->nr_free++; 678 679 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 680 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 681 } 682 683 /* 684 * Used for pages which are on another list. Move the pages to the tail 685 * of the list - so the moved pages won't immediately be considered for 686 * allocation again (e.g., optimization for memory onlining). 687 */ 688 static inline void move_to_free_list(struct page *page, struct zone *zone, 689 unsigned int order, int old_mt, int new_mt) 690 { 691 struct free_area *area = &zone->free_area[order]; 692 int nr_pages = 1 << order; 693 694 /* Free page moving can fail, so it happens before the type update */ 695 VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt, 696 "page type is %lu, passed migratetype is %d (nr=%d)\n", 697 get_pageblock_migratetype(page), old_mt, nr_pages); 698 699 list_move_tail(&page->buddy_list, &area->free_list[new_mt]); 700 701 account_freepages(zone, -nr_pages, old_mt); 702 account_freepages(zone, nr_pages, new_mt); 703 704 if (order >= pageblock_order && 705 is_migrate_isolate(old_mt) != is_migrate_isolate(new_mt)) { 706 if (!is_migrate_isolate(old_mt)) 707 nr_pages = -nr_pages; 708 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, nr_pages); 709 } 710 } 711 712 static inline void __del_page_from_free_list(struct page *page, struct zone *zone, 713 unsigned int order, int migratetype) 714 { 715 int nr_pages = 1 << order; 716 717 VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype, 718 "page type is %lu, passed migratetype is %d (nr=%d)\n", 719 get_pageblock_migratetype(page), migratetype, nr_pages); 720 721 /* clear reported state and update reported page count */ 722 if (page_reported(page)) 723 __ClearPageReported(page); 724 725 list_del(&page->buddy_list); 726 __ClearPageBuddy(page); 727 set_page_private(page, 0); 728 zone->free_area[order].nr_free--; 729 730 if (order >= pageblock_order && !is_migrate_isolate(migratetype)) 731 __mod_zone_page_state(zone, NR_FREE_PAGES_BLOCKS, -nr_pages); 732 } 733 734 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 735 unsigned int order, int migratetype) 736 { 737 __del_page_from_free_list(page, zone, order, migratetype); 738 account_freepages(zone, -(1 << order), migratetype); 739 } 740 741 static inline struct page *get_page_from_free_area(struct free_area *area, 742 int migratetype) 743 { 744 return list_first_entry_or_null(&area->free_list[migratetype], 745 struct page, buddy_list); 746 } 747 748 /* 749 * If this is less than the 2nd largest possible page, check if the buddy 750 * of the next-higher order is free. If it is, it's possible 751 * that pages are being freed that will coalesce soon. In case, 752 * that is happening, add the free page to the tail of the list 753 * so it's less likely to be used soon and more likely to be merged 754 * as a 2-level higher order page 755 */ 756 static inline bool 757 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 758 struct page *page, unsigned int order) 759 { 760 unsigned long higher_page_pfn; 761 struct page *higher_page; 762 763 if (order >= MAX_PAGE_ORDER - 1) 764 return false; 765 766 higher_page_pfn = buddy_pfn & pfn; 767 higher_page = page + (higher_page_pfn - pfn); 768 769 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 770 NULL) != NULL; 771 } 772 773 /* 774 * Freeing function for a buddy system allocator. 775 * 776 * The concept of a buddy system is to maintain direct-mapped table 777 * (containing bit values) for memory blocks of various "orders". 778 * The bottom level table contains the map for the smallest allocatable 779 * units of memory (here, pages), and each level above it describes 780 * pairs of units from the levels below, hence, "buddies". 781 * At a high level, all that happens here is marking the table entry 782 * at the bottom level available, and propagating the changes upward 783 * as necessary, plus some accounting needed to play nicely with other 784 * parts of the VM system. 785 * At each level, we keep a list of pages, which are heads of continuous 786 * free pages of length of (1 << order) and marked with PageBuddy. 787 * Page's order is recorded in page_private(page) field. 788 * So when we are allocating or freeing one, we can derive the state of the 789 * other. That is, if we allocate a small block, and both were 790 * free, the remainder of the region must be split into blocks. 791 * If a block is freed, and its buddy is also free, then this 792 * triggers coalescing into a block of larger size. 793 * 794 * -- nyc 795 */ 796 797 static inline void __free_one_page(struct page *page, 798 unsigned long pfn, 799 struct zone *zone, unsigned int order, 800 int migratetype, fpi_t fpi_flags) 801 { 802 struct capture_control *capc = task_capc(zone); 803 unsigned long buddy_pfn = 0; 804 unsigned long combined_pfn; 805 struct page *buddy; 806 bool to_tail; 807 808 VM_BUG_ON(!zone_is_initialized(zone)); 809 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 810 811 VM_BUG_ON(migratetype == -1); 812 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 813 VM_BUG_ON_PAGE(bad_range(zone, page), page); 814 815 account_freepages(zone, 1 << order, migratetype); 816 817 while (order < MAX_PAGE_ORDER) { 818 int buddy_mt = migratetype; 819 820 if (compaction_capture(capc, page, order, migratetype)) { 821 account_freepages(zone, -(1 << order), migratetype); 822 return; 823 } 824 825 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 826 if (!buddy) 827 goto done_merging; 828 829 if (unlikely(order >= pageblock_order)) { 830 /* 831 * We want to prevent merge between freepages on pageblock 832 * without fallbacks and normal pageblock. Without this, 833 * pageblock isolation could cause incorrect freepage or CMA 834 * accounting or HIGHATOMIC accounting. 835 */ 836 buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn); 837 838 if (migratetype != buddy_mt && 839 (!migratetype_is_mergeable(migratetype) || 840 !migratetype_is_mergeable(buddy_mt))) 841 goto done_merging; 842 } 843 844 /* 845 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 846 * merge with it and move up one order. 847 */ 848 if (page_is_guard(buddy)) 849 clear_page_guard(zone, buddy, order); 850 else 851 __del_page_from_free_list(buddy, zone, order, buddy_mt); 852 853 if (unlikely(buddy_mt != migratetype)) { 854 /* 855 * Match buddy type. This ensures that an 856 * expand() down the line puts the sub-blocks 857 * on the right freelists. 858 */ 859 set_pageblock_migratetype(buddy, migratetype); 860 } 861 862 combined_pfn = buddy_pfn & pfn; 863 page = page + (combined_pfn - pfn); 864 pfn = combined_pfn; 865 order++; 866 } 867 868 done_merging: 869 set_buddy_order(page, order); 870 871 if (fpi_flags & FPI_TO_TAIL) 872 to_tail = true; 873 else if (is_shuffle_order(order)) 874 to_tail = shuffle_pick_tail(); 875 else 876 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 877 878 __add_to_free_list(page, zone, order, migratetype, to_tail); 879 880 /* Notify page reporting subsystem of freed page */ 881 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 882 page_reporting_notify_free(order); 883 } 884 885 /* 886 * A bad page could be due to a number of fields. Instead of multiple branches, 887 * try and check multiple fields with one check. The caller must do a detailed 888 * check if necessary. 889 */ 890 static inline bool page_expected_state(struct page *page, 891 unsigned long check_flags) 892 { 893 if (unlikely(atomic_read(&page->_mapcount) != -1)) 894 return false; 895 896 if (unlikely((unsigned long)page->mapping | 897 page_ref_count(page) | 898 #ifdef CONFIG_MEMCG 899 page->memcg_data | 900 #endif 901 page_pool_page_is_pp(page) | 902 (page->flags & check_flags))) 903 return false; 904 905 return true; 906 } 907 908 static const char *page_bad_reason(struct page *page, unsigned long flags) 909 { 910 const char *bad_reason = NULL; 911 912 if (unlikely(atomic_read(&page->_mapcount) != -1)) 913 bad_reason = "nonzero mapcount"; 914 if (unlikely(page->mapping != NULL)) 915 bad_reason = "non-NULL mapping"; 916 if (unlikely(page_ref_count(page) != 0)) 917 bad_reason = "nonzero _refcount"; 918 if (unlikely(page->flags & flags)) { 919 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 920 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 921 else 922 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 923 } 924 #ifdef CONFIG_MEMCG 925 if (unlikely(page->memcg_data)) 926 bad_reason = "page still charged to cgroup"; 927 #endif 928 if (unlikely(page_pool_page_is_pp(page))) 929 bad_reason = "page_pool leak"; 930 return bad_reason; 931 } 932 933 static inline bool free_page_is_bad(struct page *page) 934 { 935 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 936 return false; 937 938 /* Something has gone sideways, find it */ 939 bad_page(page, page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 940 return true; 941 } 942 943 static inline bool is_check_pages_enabled(void) 944 { 945 return static_branch_unlikely(&check_pages_enabled); 946 } 947 948 static int free_tail_page_prepare(struct page *head_page, struct page *page) 949 { 950 struct folio *folio = (struct folio *)head_page; 951 int ret = 1; 952 953 /* 954 * We rely page->lru.next never has bit 0 set, unless the page 955 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 956 */ 957 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 958 959 if (!is_check_pages_enabled()) { 960 ret = 0; 961 goto out; 962 } 963 switch (page - head_page) { 964 case 1: 965 /* the first tail page: these may be in place of ->mapping */ 966 if (unlikely(folio_large_mapcount(folio))) { 967 bad_page(page, "nonzero large_mapcount"); 968 goto out; 969 } 970 if (IS_ENABLED(CONFIG_PAGE_MAPCOUNT) && 971 unlikely(atomic_read(&folio->_nr_pages_mapped))) { 972 bad_page(page, "nonzero nr_pages_mapped"); 973 goto out; 974 } 975 if (IS_ENABLED(CONFIG_MM_ID)) { 976 if (unlikely(folio->_mm_id_mapcount[0] != -1)) { 977 bad_page(page, "nonzero mm mapcount 0"); 978 goto out; 979 } 980 if (unlikely(folio->_mm_id_mapcount[1] != -1)) { 981 bad_page(page, "nonzero mm mapcount 1"); 982 goto out; 983 } 984 } 985 if (IS_ENABLED(CONFIG_64BIT)) { 986 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 987 bad_page(page, "nonzero entire_mapcount"); 988 goto out; 989 } 990 if (unlikely(atomic_read(&folio->_pincount))) { 991 bad_page(page, "nonzero pincount"); 992 goto out; 993 } 994 } 995 break; 996 case 2: 997 /* the second tail page: deferred_list overlaps ->mapping */ 998 if (unlikely(!list_empty(&folio->_deferred_list))) { 999 bad_page(page, "on deferred list"); 1000 goto out; 1001 } 1002 if (!IS_ENABLED(CONFIG_64BIT)) { 1003 if (unlikely(atomic_read(&folio->_entire_mapcount) + 1)) { 1004 bad_page(page, "nonzero entire_mapcount"); 1005 goto out; 1006 } 1007 if (unlikely(atomic_read(&folio->_pincount))) { 1008 bad_page(page, "nonzero pincount"); 1009 goto out; 1010 } 1011 } 1012 break; 1013 case 3: 1014 /* the third tail page: hugetlb specifics overlap ->mappings */ 1015 if (IS_ENABLED(CONFIG_HUGETLB_PAGE)) 1016 break; 1017 fallthrough; 1018 default: 1019 if (page->mapping != TAIL_MAPPING) { 1020 bad_page(page, "corrupted mapping in tail page"); 1021 goto out; 1022 } 1023 break; 1024 } 1025 if (unlikely(!PageTail(page))) { 1026 bad_page(page, "PageTail not set"); 1027 goto out; 1028 } 1029 if (unlikely(compound_head(page) != head_page)) { 1030 bad_page(page, "compound_head not consistent"); 1031 goto out; 1032 } 1033 ret = 0; 1034 out: 1035 page->mapping = NULL; 1036 clear_compound_head(page); 1037 return ret; 1038 } 1039 1040 /* 1041 * Skip KASAN memory poisoning when either: 1042 * 1043 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1044 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1045 * using page tags instead (see below). 1046 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1047 * that error detection is disabled for accesses via the page address. 1048 * 1049 * Pages will have match-all tags in the following circumstances: 1050 * 1051 * 1. Pages are being initialized for the first time, including during deferred 1052 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1053 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1054 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1055 * 3. The allocation was excluded from being checked due to sampling, 1056 * see the call to kasan_unpoison_pages. 1057 * 1058 * Poisoning pages during deferred memory init will greatly lengthen the 1059 * process and cause problem in large memory systems as the deferred pages 1060 * initialization is done with interrupt disabled. 1061 * 1062 * Assuming that there will be no reference to those newly initialized 1063 * pages before they are ever allocated, this should have no effect on 1064 * KASAN memory tracking as the poison will be properly inserted at page 1065 * allocation time. The only corner case is when pages are allocated by 1066 * on-demand allocation and then freed again before the deferred pages 1067 * initialization is done, but this is not likely to happen. 1068 */ 1069 static inline bool should_skip_kasan_poison(struct page *page) 1070 { 1071 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1072 return deferred_pages_enabled(); 1073 1074 return page_kasan_tag(page) == KASAN_TAG_KERNEL; 1075 } 1076 1077 static void kernel_init_pages(struct page *page, int numpages) 1078 { 1079 int i; 1080 1081 /* s390's use of memset() could override KASAN redzones. */ 1082 kasan_disable_current(); 1083 for (i = 0; i < numpages; i++) 1084 clear_highpage_kasan_tagged(page + i); 1085 kasan_enable_current(); 1086 } 1087 1088 #ifdef CONFIG_MEM_ALLOC_PROFILING 1089 1090 /* Should be called only if mem_alloc_profiling_enabled() */ 1091 void __clear_page_tag_ref(struct page *page) 1092 { 1093 union pgtag_ref_handle handle; 1094 union codetag_ref ref; 1095 1096 if (get_page_tag_ref(page, &ref, &handle)) { 1097 set_codetag_empty(&ref); 1098 update_page_tag_ref(handle, &ref); 1099 put_page_tag_ref(handle); 1100 } 1101 } 1102 1103 /* Should be called only if mem_alloc_profiling_enabled() */ 1104 static noinline 1105 void __pgalloc_tag_add(struct page *page, struct task_struct *task, 1106 unsigned int nr) 1107 { 1108 union pgtag_ref_handle handle; 1109 union codetag_ref ref; 1110 1111 if (get_page_tag_ref(page, &ref, &handle)) { 1112 alloc_tag_add(&ref, task->alloc_tag, PAGE_SIZE * nr); 1113 update_page_tag_ref(handle, &ref); 1114 put_page_tag_ref(handle); 1115 } 1116 } 1117 1118 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1119 unsigned int nr) 1120 { 1121 if (mem_alloc_profiling_enabled()) 1122 __pgalloc_tag_add(page, task, nr); 1123 } 1124 1125 /* Should be called only if mem_alloc_profiling_enabled() */ 1126 static noinline 1127 void __pgalloc_tag_sub(struct page *page, unsigned int nr) 1128 { 1129 union pgtag_ref_handle handle; 1130 union codetag_ref ref; 1131 1132 if (get_page_tag_ref(page, &ref, &handle)) { 1133 alloc_tag_sub(&ref, PAGE_SIZE * nr); 1134 update_page_tag_ref(handle, &ref); 1135 put_page_tag_ref(handle); 1136 } 1137 } 1138 1139 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) 1140 { 1141 if (mem_alloc_profiling_enabled()) 1142 __pgalloc_tag_sub(page, nr); 1143 } 1144 1145 /* When tag is not NULL, assuming mem_alloc_profiling_enabled */ 1146 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) 1147 { 1148 if (tag) 1149 this_cpu_sub(tag->counters->bytes, PAGE_SIZE * nr); 1150 } 1151 1152 #else /* CONFIG_MEM_ALLOC_PROFILING */ 1153 1154 static inline void pgalloc_tag_add(struct page *page, struct task_struct *task, 1155 unsigned int nr) {} 1156 static inline void pgalloc_tag_sub(struct page *page, unsigned int nr) {} 1157 static inline void pgalloc_tag_sub_pages(struct alloc_tag *tag, unsigned int nr) {} 1158 1159 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 1160 1161 __always_inline bool free_pages_prepare(struct page *page, 1162 unsigned int order) 1163 { 1164 int bad = 0; 1165 bool skip_kasan_poison = should_skip_kasan_poison(page); 1166 bool init = want_init_on_free(); 1167 bool compound = PageCompound(page); 1168 struct folio *folio = page_folio(page); 1169 1170 VM_BUG_ON_PAGE(PageTail(page), page); 1171 1172 trace_mm_page_free(page, order); 1173 kmsan_free_page(page, order); 1174 1175 if (memcg_kmem_online() && PageMemcgKmem(page)) 1176 __memcg_kmem_uncharge_page(page, order); 1177 1178 /* 1179 * In rare cases, when truncation or holepunching raced with 1180 * munlock after VM_LOCKED was cleared, Mlocked may still be 1181 * found set here. This does not indicate a problem, unless 1182 * "unevictable_pgs_cleared" appears worryingly large. 1183 */ 1184 if (unlikely(folio_test_mlocked(folio))) { 1185 long nr_pages = folio_nr_pages(folio); 1186 1187 __folio_clear_mlocked(folio); 1188 zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages); 1189 count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages); 1190 } 1191 1192 if (unlikely(PageHWPoison(page)) && !order) { 1193 /* Do not let hwpoison pages hit pcplists/buddy */ 1194 reset_page_owner(page, order); 1195 page_table_check_free(page, order); 1196 pgalloc_tag_sub(page, 1 << order); 1197 1198 /* 1199 * The page is isolated and accounted for. 1200 * Mark the codetag as empty to avoid accounting error 1201 * when the page is freed by unpoison_memory(). 1202 */ 1203 clear_page_tag_ref(page); 1204 return false; 1205 } 1206 1207 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1208 1209 /* 1210 * Check tail pages before head page information is cleared to 1211 * avoid checking PageCompound for order-0 pages. 1212 */ 1213 if (unlikely(order)) { 1214 int i; 1215 1216 if (compound) { 1217 page[1].flags &= ~PAGE_FLAGS_SECOND; 1218 #ifdef NR_PAGES_IN_LARGE_FOLIO 1219 folio->_nr_pages = 0; 1220 #endif 1221 } 1222 for (i = 1; i < (1 << order); i++) { 1223 if (compound) 1224 bad += free_tail_page_prepare(page, page + i); 1225 if (is_check_pages_enabled()) { 1226 if (free_page_is_bad(page + i)) { 1227 bad++; 1228 continue; 1229 } 1230 } 1231 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1232 } 1233 } 1234 if (PageMappingFlags(page)) { 1235 if (PageAnon(page)) 1236 mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1); 1237 page->mapping = NULL; 1238 } 1239 if (is_check_pages_enabled()) { 1240 if (free_page_is_bad(page)) 1241 bad++; 1242 if (bad) 1243 return false; 1244 } 1245 1246 page_cpupid_reset_last(page); 1247 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1248 reset_page_owner(page, order); 1249 page_table_check_free(page, order); 1250 pgalloc_tag_sub(page, 1 << order); 1251 1252 if (!PageHighMem(page)) { 1253 debug_check_no_locks_freed(page_address(page), 1254 PAGE_SIZE << order); 1255 debug_check_no_obj_freed(page_address(page), 1256 PAGE_SIZE << order); 1257 } 1258 1259 kernel_poison_pages(page, 1 << order); 1260 1261 /* 1262 * As memory initialization might be integrated into KASAN, 1263 * KASAN poisoning and memory initialization code must be 1264 * kept together to avoid discrepancies in behavior. 1265 * 1266 * With hardware tag-based KASAN, memory tags must be set before the 1267 * page becomes unavailable via debug_pagealloc or arch_free_page. 1268 */ 1269 if (!skip_kasan_poison) { 1270 kasan_poison_pages(page, order, init); 1271 1272 /* Memory is already initialized if KASAN did it internally. */ 1273 if (kasan_has_integrated_init()) 1274 init = false; 1275 } 1276 if (init) 1277 kernel_init_pages(page, 1 << order); 1278 1279 /* 1280 * arch_free_page() can make the page's contents inaccessible. s390 1281 * does this. So nothing which can access the page's contents should 1282 * happen after this. 1283 */ 1284 arch_free_page(page, order); 1285 1286 debug_pagealloc_unmap_pages(page, 1 << order); 1287 1288 return true; 1289 } 1290 1291 /* 1292 * Frees a number of pages from the PCP lists 1293 * Assumes all pages on list are in same zone. 1294 * count is the number of pages to free. 1295 */ 1296 static void free_pcppages_bulk(struct zone *zone, int count, 1297 struct per_cpu_pages *pcp, 1298 int pindex) 1299 { 1300 unsigned long flags; 1301 unsigned int order; 1302 struct page *page; 1303 1304 /* 1305 * Ensure proper count is passed which otherwise would stuck in the 1306 * below while (list_empty(list)) loop. 1307 */ 1308 count = min(pcp->count, count); 1309 1310 /* Ensure requested pindex is drained first. */ 1311 pindex = pindex - 1; 1312 1313 spin_lock_irqsave(&zone->lock, flags); 1314 1315 while (count > 0) { 1316 struct list_head *list; 1317 int nr_pages; 1318 1319 /* Remove pages from lists in a round-robin fashion. */ 1320 do { 1321 if (++pindex > NR_PCP_LISTS - 1) 1322 pindex = 0; 1323 list = &pcp->lists[pindex]; 1324 } while (list_empty(list)); 1325 1326 order = pindex_to_order(pindex); 1327 nr_pages = 1 << order; 1328 do { 1329 unsigned long pfn; 1330 int mt; 1331 1332 page = list_last_entry(list, struct page, pcp_list); 1333 pfn = page_to_pfn(page); 1334 mt = get_pfnblock_migratetype(page, pfn); 1335 1336 /* must delete to avoid corrupting pcp list */ 1337 list_del(&page->pcp_list); 1338 count -= nr_pages; 1339 pcp->count -= nr_pages; 1340 1341 __free_one_page(page, pfn, zone, order, mt, FPI_NONE); 1342 trace_mm_page_pcpu_drain(page, order, mt); 1343 } while (count > 0 && !list_empty(list)); 1344 } 1345 1346 spin_unlock_irqrestore(&zone->lock, flags); 1347 } 1348 1349 /* Split a multi-block free page into its individual pageblocks. */ 1350 static void split_large_buddy(struct zone *zone, struct page *page, 1351 unsigned long pfn, int order, fpi_t fpi) 1352 { 1353 unsigned long end = pfn + (1 << order); 1354 1355 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order)); 1356 /* Caller removed page from freelist, buddy info cleared! */ 1357 VM_WARN_ON_ONCE(PageBuddy(page)); 1358 1359 if (order > pageblock_order) 1360 order = pageblock_order; 1361 1362 do { 1363 int mt = get_pfnblock_migratetype(page, pfn); 1364 1365 __free_one_page(page, pfn, zone, order, mt, fpi); 1366 pfn += 1 << order; 1367 if (pfn == end) 1368 break; 1369 page = pfn_to_page(pfn); 1370 } while (1); 1371 } 1372 1373 static void add_page_to_zone_llist(struct zone *zone, struct page *page, 1374 unsigned int order) 1375 { 1376 /* Remember the order */ 1377 page->order = order; 1378 /* Add the page to the free list */ 1379 llist_add(&page->pcp_llist, &zone->trylock_free_pages); 1380 } 1381 1382 static void free_one_page(struct zone *zone, struct page *page, 1383 unsigned long pfn, unsigned int order, 1384 fpi_t fpi_flags) 1385 { 1386 struct llist_head *llhead; 1387 unsigned long flags; 1388 1389 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 1390 if (!spin_trylock_irqsave(&zone->lock, flags)) { 1391 add_page_to_zone_llist(zone, page, order); 1392 return; 1393 } 1394 } else { 1395 spin_lock_irqsave(&zone->lock, flags); 1396 } 1397 1398 /* The lock succeeded. Process deferred pages. */ 1399 llhead = &zone->trylock_free_pages; 1400 if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) { 1401 struct llist_node *llnode; 1402 struct page *p, *tmp; 1403 1404 llnode = llist_del_all(llhead); 1405 llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) { 1406 unsigned int p_order = p->order; 1407 1408 split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags); 1409 __count_vm_events(PGFREE, 1 << p_order); 1410 } 1411 } 1412 split_large_buddy(zone, page, pfn, order, fpi_flags); 1413 spin_unlock_irqrestore(&zone->lock, flags); 1414 1415 __count_vm_events(PGFREE, 1 << order); 1416 } 1417 1418 static void __free_pages_ok(struct page *page, unsigned int order, 1419 fpi_t fpi_flags) 1420 { 1421 unsigned long pfn = page_to_pfn(page); 1422 struct zone *zone = page_zone(page); 1423 1424 if (free_pages_prepare(page, order)) 1425 free_one_page(zone, page, pfn, order, fpi_flags); 1426 } 1427 1428 void __meminit __free_pages_core(struct page *page, unsigned int order, 1429 enum meminit_context context) 1430 { 1431 unsigned int nr_pages = 1 << order; 1432 struct page *p = page; 1433 unsigned int loop; 1434 1435 /* 1436 * When initializing the memmap, __init_single_page() sets the refcount 1437 * of all pages to 1 ("allocated"/"not free"). We have to set the 1438 * refcount of all involved pages to 0. 1439 * 1440 * Note that hotplugged memory pages are initialized to PageOffline(). 1441 * Pages freed from memblock might be marked as reserved. 1442 */ 1443 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) && 1444 unlikely(context == MEMINIT_HOTPLUG)) { 1445 for (loop = 0; loop < nr_pages; loop++, p++) { 1446 VM_WARN_ON_ONCE(PageReserved(p)); 1447 __ClearPageOffline(p); 1448 set_page_count(p, 0); 1449 } 1450 1451 adjust_managed_page_count(page, nr_pages); 1452 } else { 1453 for (loop = 0; loop < nr_pages; loop++, p++) { 1454 __ClearPageReserved(p); 1455 set_page_count(p, 0); 1456 } 1457 1458 /* memblock adjusts totalram_pages() manually. */ 1459 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1460 } 1461 1462 if (page_contains_unaccepted(page, order)) { 1463 if (order == MAX_PAGE_ORDER && __free_unaccepted(page)) 1464 return; 1465 1466 accept_memory(page_to_phys(page), PAGE_SIZE << order); 1467 } 1468 1469 /* 1470 * Bypass PCP and place fresh pages right to the tail, primarily 1471 * relevant for memory onlining. 1472 */ 1473 __free_pages_ok(page, order, FPI_TO_TAIL); 1474 } 1475 1476 /* 1477 * Check that the whole (or subset of) a pageblock given by the interval of 1478 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1479 * with the migration of free compaction scanner. 1480 * 1481 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1482 * 1483 * It's possible on some configurations to have a setup like node0 node1 node0 1484 * i.e. it's possible that all pages within a zones range of pages do not 1485 * belong to a single zone. We assume that a border between node0 and node1 1486 * can occur within a single pageblock, but not a node0 node1 node0 1487 * interleaving within a single pageblock. It is therefore sufficient to check 1488 * the first and last page of a pageblock and avoid checking each individual 1489 * page in a pageblock. 1490 * 1491 * Note: the function may return non-NULL struct page even for a page block 1492 * which contains a memory hole (i.e. there is no physical memory for a subset 1493 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which 1494 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1495 * even though the start pfn is online and valid. This should be safe most of 1496 * the time because struct pages are still initialized via init_unavailable_range() 1497 * and pfn walkers shouldn't touch any physical memory range for which they do 1498 * not recognize any specific metadata in struct pages. 1499 */ 1500 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1501 unsigned long end_pfn, struct zone *zone) 1502 { 1503 struct page *start_page; 1504 struct page *end_page; 1505 1506 /* end_pfn is one past the range we are checking */ 1507 end_pfn--; 1508 1509 if (!pfn_valid(end_pfn)) 1510 return NULL; 1511 1512 start_page = pfn_to_online_page(start_pfn); 1513 if (!start_page) 1514 return NULL; 1515 1516 if (page_zone(start_page) != zone) 1517 return NULL; 1518 1519 end_page = pfn_to_page(end_pfn); 1520 1521 /* This gives a shorter code than deriving page_zone(end_page) */ 1522 if (page_zone_id(start_page) != page_zone_id(end_page)) 1523 return NULL; 1524 1525 return start_page; 1526 } 1527 1528 /* 1529 * The order of subdivision here is critical for the IO subsystem. 1530 * Please do not alter this order without good reasons and regression 1531 * testing. Specifically, as large blocks of memory are subdivided, 1532 * the order in which smaller blocks are delivered depends on the order 1533 * they're subdivided in this function. This is the primary factor 1534 * influencing the order in which pages are delivered to the IO 1535 * subsystem according to empirical testing, and this is also justified 1536 * by considering the behavior of a buddy system containing a single 1537 * large block of memory acted on by a series of small allocations. 1538 * This behavior is a critical factor in sglist merging's success. 1539 * 1540 * -- nyc 1541 */ 1542 static inline unsigned int expand(struct zone *zone, struct page *page, int low, 1543 int high, int migratetype) 1544 { 1545 unsigned int size = 1 << high; 1546 unsigned int nr_added = 0; 1547 1548 while (high > low) { 1549 high--; 1550 size >>= 1; 1551 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1552 1553 /* 1554 * Mark as guard pages (or page), that will allow to 1555 * merge back to allocator when buddy will be freed. 1556 * Corresponding page table entries will not be touched, 1557 * pages will stay not present in virtual address space 1558 */ 1559 if (set_page_guard(zone, &page[size], high)) 1560 continue; 1561 1562 __add_to_free_list(&page[size], zone, high, migratetype, false); 1563 set_buddy_order(&page[size], high); 1564 nr_added += size; 1565 } 1566 1567 return nr_added; 1568 } 1569 1570 static __always_inline void page_del_and_expand(struct zone *zone, 1571 struct page *page, int low, 1572 int high, int migratetype) 1573 { 1574 int nr_pages = 1 << high; 1575 1576 __del_page_from_free_list(page, zone, high, migratetype); 1577 nr_pages -= expand(zone, page, low, high, migratetype); 1578 account_freepages(zone, -nr_pages, migratetype); 1579 } 1580 1581 static void check_new_page_bad(struct page *page) 1582 { 1583 if (unlikely(PageHWPoison(page))) { 1584 /* Don't complain about hwpoisoned pages */ 1585 if (PageBuddy(page)) 1586 __ClearPageBuddy(page); 1587 return; 1588 } 1589 1590 bad_page(page, 1591 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1592 } 1593 1594 /* 1595 * This page is about to be returned from the page allocator 1596 */ 1597 static bool check_new_page(struct page *page) 1598 { 1599 if (likely(page_expected_state(page, 1600 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1601 return false; 1602 1603 check_new_page_bad(page); 1604 return true; 1605 } 1606 1607 static inline bool check_new_pages(struct page *page, unsigned int order) 1608 { 1609 if (is_check_pages_enabled()) { 1610 for (int i = 0; i < (1 << order); i++) { 1611 struct page *p = page + i; 1612 1613 if (check_new_page(p)) 1614 return true; 1615 } 1616 } 1617 1618 return false; 1619 } 1620 1621 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1622 { 1623 /* Don't skip if a software KASAN mode is enabled. */ 1624 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1625 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1626 return false; 1627 1628 /* Skip, if hardware tag-based KASAN is not enabled. */ 1629 if (!kasan_hw_tags_enabled()) 1630 return true; 1631 1632 /* 1633 * With hardware tag-based KASAN enabled, skip if this has been 1634 * requested via __GFP_SKIP_KASAN. 1635 */ 1636 return flags & __GFP_SKIP_KASAN; 1637 } 1638 1639 static inline bool should_skip_init(gfp_t flags) 1640 { 1641 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1642 if (!kasan_hw_tags_enabled()) 1643 return false; 1644 1645 /* For hardware tag-based KASAN, skip if requested. */ 1646 return (flags & __GFP_SKIP_ZERO); 1647 } 1648 1649 inline void post_alloc_hook(struct page *page, unsigned int order, 1650 gfp_t gfp_flags) 1651 { 1652 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1653 !should_skip_init(gfp_flags); 1654 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1655 int i; 1656 1657 set_page_private(page, 0); 1658 1659 arch_alloc_page(page, order); 1660 debug_pagealloc_map_pages(page, 1 << order); 1661 1662 /* 1663 * Page unpoisoning must happen before memory initialization. 1664 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1665 * allocations and the page unpoisoning code will complain. 1666 */ 1667 kernel_unpoison_pages(page, 1 << order); 1668 1669 /* 1670 * As memory initialization might be integrated into KASAN, 1671 * KASAN unpoisoning and memory initializion code must be 1672 * kept together to avoid discrepancies in behavior. 1673 */ 1674 1675 /* 1676 * If memory tags should be zeroed 1677 * (which happens only when memory should be initialized as well). 1678 */ 1679 if (zero_tags) { 1680 /* Initialize both memory and memory tags. */ 1681 for (i = 0; i != 1 << order; ++i) 1682 tag_clear_highpage(page + i); 1683 1684 /* Take note that memory was initialized by the loop above. */ 1685 init = false; 1686 } 1687 if (!should_skip_kasan_unpoison(gfp_flags) && 1688 kasan_unpoison_pages(page, order, init)) { 1689 /* Take note that memory was initialized by KASAN. */ 1690 if (kasan_has_integrated_init()) 1691 init = false; 1692 } else { 1693 /* 1694 * If memory tags have not been set by KASAN, reset the page 1695 * tags to ensure page_address() dereferencing does not fault. 1696 */ 1697 for (i = 0; i != 1 << order; ++i) 1698 page_kasan_tag_reset(page + i); 1699 } 1700 /* If memory is still not initialized, initialize it now. */ 1701 if (init) 1702 kernel_init_pages(page, 1 << order); 1703 1704 set_page_owner(page, order, gfp_flags); 1705 page_table_check_alloc(page, order); 1706 pgalloc_tag_add(page, current, 1 << order); 1707 } 1708 1709 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1710 unsigned int alloc_flags) 1711 { 1712 post_alloc_hook(page, order, gfp_flags); 1713 1714 if (order && (gfp_flags & __GFP_COMP)) 1715 prep_compound_page(page, order); 1716 1717 /* 1718 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1719 * allocate the page. The expectation is that the caller is taking 1720 * steps that will free more memory. The caller should avoid the page 1721 * being used for !PFMEMALLOC purposes. 1722 */ 1723 if (alloc_flags & ALLOC_NO_WATERMARKS) 1724 set_page_pfmemalloc(page); 1725 else 1726 clear_page_pfmemalloc(page); 1727 } 1728 1729 /* 1730 * Go through the free lists for the given migratetype and remove 1731 * the smallest available page from the freelists 1732 */ 1733 static __always_inline 1734 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1735 int migratetype) 1736 { 1737 unsigned int current_order; 1738 struct free_area *area; 1739 struct page *page; 1740 1741 /* Find a page of the appropriate size in the preferred list */ 1742 for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) { 1743 area = &(zone->free_area[current_order]); 1744 page = get_page_from_free_area(area, migratetype); 1745 if (!page) 1746 continue; 1747 1748 page_del_and_expand(zone, page, order, current_order, 1749 migratetype); 1750 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1751 pcp_allowed_order(order) && 1752 migratetype < MIGRATE_PCPTYPES); 1753 return page; 1754 } 1755 1756 return NULL; 1757 } 1758 1759 1760 /* 1761 * This array describes the order lists are fallen back to when 1762 * the free lists for the desirable migrate type are depleted 1763 * 1764 * The other migratetypes do not have fallbacks. 1765 */ 1766 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = { 1767 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1768 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1769 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1770 }; 1771 1772 #ifdef CONFIG_CMA 1773 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1774 unsigned int order) 1775 { 1776 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1777 } 1778 #else 1779 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1780 unsigned int order) { return NULL; } 1781 #endif 1782 1783 /* 1784 * Change the type of a block and move all its free pages to that 1785 * type's freelist. 1786 */ 1787 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn, 1788 int old_mt, int new_mt) 1789 { 1790 struct page *page; 1791 unsigned long pfn, end_pfn; 1792 unsigned int order; 1793 int pages_moved = 0; 1794 1795 VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1)); 1796 end_pfn = pageblock_end_pfn(start_pfn); 1797 1798 for (pfn = start_pfn; pfn < end_pfn;) { 1799 page = pfn_to_page(pfn); 1800 if (!PageBuddy(page)) { 1801 pfn++; 1802 continue; 1803 } 1804 1805 /* Make sure we are not inadvertently changing nodes */ 1806 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1807 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1808 1809 order = buddy_order(page); 1810 1811 move_to_free_list(page, zone, order, old_mt, new_mt); 1812 1813 pfn += 1 << order; 1814 pages_moved += 1 << order; 1815 } 1816 1817 set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt); 1818 1819 return pages_moved; 1820 } 1821 1822 static bool prep_move_freepages_block(struct zone *zone, struct page *page, 1823 unsigned long *start_pfn, 1824 int *num_free, int *num_movable) 1825 { 1826 unsigned long pfn, start, end; 1827 1828 pfn = page_to_pfn(page); 1829 start = pageblock_start_pfn(pfn); 1830 end = pageblock_end_pfn(pfn); 1831 1832 /* 1833 * The caller only has the lock for @zone, don't touch ranges 1834 * that straddle into other zones. While we could move part of 1835 * the range that's inside the zone, this call is usually 1836 * accompanied by other operations such as migratetype updates 1837 * which also should be locked. 1838 */ 1839 if (!zone_spans_pfn(zone, start)) 1840 return false; 1841 if (!zone_spans_pfn(zone, end - 1)) 1842 return false; 1843 1844 *start_pfn = start; 1845 1846 if (num_free) { 1847 *num_free = 0; 1848 *num_movable = 0; 1849 for (pfn = start; pfn < end;) { 1850 page = pfn_to_page(pfn); 1851 if (PageBuddy(page)) { 1852 int nr = 1 << buddy_order(page); 1853 1854 *num_free += nr; 1855 pfn += nr; 1856 continue; 1857 } 1858 /* 1859 * We assume that pages that could be isolated for 1860 * migration are movable. But we don't actually try 1861 * isolating, as that would be expensive. 1862 */ 1863 if (PageLRU(page) || __PageMovable(page)) 1864 (*num_movable)++; 1865 pfn++; 1866 } 1867 } 1868 1869 return true; 1870 } 1871 1872 static int move_freepages_block(struct zone *zone, struct page *page, 1873 int old_mt, int new_mt) 1874 { 1875 unsigned long start_pfn; 1876 1877 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1878 return -1; 1879 1880 return __move_freepages_block(zone, start_pfn, old_mt, new_mt); 1881 } 1882 1883 #ifdef CONFIG_MEMORY_ISOLATION 1884 /* Look for a buddy that straddles start_pfn */ 1885 static unsigned long find_large_buddy(unsigned long start_pfn) 1886 { 1887 int order = 0; 1888 struct page *page; 1889 unsigned long pfn = start_pfn; 1890 1891 while (!PageBuddy(page = pfn_to_page(pfn))) { 1892 /* Nothing found */ 1893 if (++order > MAX_PAGE_ORDER) 1894 return start_pfn; 1895 pfn &= ~0UL << order; 1896 } 1897 1898 /* 1899 * Found a preceding buddy, but does it straddle? 1900 */ 1901 if (pfn + (1 << buddy_order(page)) > start_pfn) 1902 return pfn; 1903 1904 /* Nothing found */ 1905 return start_pfn; 1906 } 1907 1908 /** 1909 * move_freepages_block_isolate - move free pages in block for page isolation 1910 * @zone: the zone 1911 * @page: the pageblock page 1912 * @migratetype: migratetype to set on the pageblock 1913 * 1914 * This is similar to move_freepages_block(), but handles the special 1915 * case encountered in page isolation, where the block of interest 1916 * might be part of a larger buddy spanning multiple pageblocks. 1917 * 1918 * Unlike the regular page allocator path, which moves pages while 1919 * stealing buddies off the freelist, page isolation is interested in 1920 * arbitrary pfn ranges that may have overlapping buddies on both ends. 1921 * 1922 * This function handles that. Straddling buddies are split into 1923 * individual pageblocks. Only the block of interest is moved. 1924 * 1925 * Returns %true if pages could be moved, %false otherwise. 1926 */ 1927 bool move_freepages_block_isolate(struct zone *zone, struct page *page, 1928 int migratetype) 1929 { 1930 unsigned long start_pfn, pfn; 1931 1932 if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL)) 1933 return false; 1934 1935 /* No splits needed if buddies can't span multiple blocks */ 1936 if (pageblock_order == MAX_PAGE_ORDER) 1937 goto move; 1938 1939 /* We're a tail block in a larger buddy */ 1940 pfn = find_large_buddy(start_pfn); 1941 if (pfn != start_pfn) { 1942 struct page *buddy = pfn_to_page(pfn); 1943 int order = buddy_order(buddy); 1944 1945 del_page_from_free_list(buddy, zone, order, 1946 get_pfnblock_migratetype(buddy, pfn)); 1947 set_pageblock_migratetype(page, migratetype); 1948 split_large_buddy(zone, buddy, pfn, order, FPI_NONE); 1949 return true; 1950 } 1951 1952 /* We're the starting block of a larger buddy */ 1953 if (PageBuddy(page) && buddy_order(page) > pageblock_order) { 1954 int order = buddy_order(page); 1955 1956 del_page_from_free_list(page, zone, order, 1957 get_pfnblock_migratetype(page, pfn)); 1958 set_pageblock_migratetype(page, migratetype); 1959 split_large_buddy(zone, page, pfn, order, FPI_NONE); 1960 return true; 1961 } 1962 move: 1963 __move_freepages_block(zone, start_pfn, 1964 get_pfnblock_migratetype(page, start_pfn), 1965 migratetype); 1966 return true; 1967 } 1968 #endif /* CONFIG_MEMORY_ISOLATION */ 1969 1970 static void change_pageblock_range(struct page *pageblock_page, 1971 int start_order, int migratetype) 1972 { 1973 int nr_pageblocks = 1 << (start_order - pageblock_order); 1974 1975 while (nr_pageblocks--) { 1976 set_pageblock_migratetype(pageblock_page, migratetype); 1977 pageblock_page += pageblock_nr_pages; 1978 } 1979 } 1980 1981 static inline bool boost_watermark(struct zone *zone) 1982 { 1983 unsigned long max_boost; 1984 1985 if (!watermark_boost_factor) 1986 return false; 1987 /* 1988 * Don't bother in zones that are unlikely to produce results. 1989 * On small machines, including kdump capture kernels running 1990 * in a small area, boosting the watermark can cause an out of 1991 * memory situation immediately. 1992 */ 1993 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1994 return false; 1995 1996 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1997 watermark_boost_factor, 10000); 1998 1999 /* 2000 * high watermark may be uninitialised if fragmentation occurs 2001 * very early in boot so do not boost. We do not fall 2002 * through and boost by pageblock_nr_pages as failing 2003 * allocations that early means that reclaim is not going 2004 * to help and it may even be impossible to reclaim the 2005 * boosted watermark resulting in a hang. 2006 */ 2007 if (!max_boost) 2008 return false; 2009 2010 max_boost = max(pageblock_nr_pages, max_boost); 2011 2012 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2013 max_boost); 2014 2015 return true; 2016 } 2017 2018 /* 2019 * When we are falling back to another migratetype during allocation, should we 2020 * try to claim an entire block to satisfy further allocations, instead of 2021 * polluting multiple pageblocks? 2022 */ 2023 static bool should_try_claim_block(unsigned int order, int start_mt) 2024 { 2025 /* 2026 * Leaving this order check is intended, although there is 2027 * relaxed order check in next check. The reason is that 2028 * we can actually claim the whole pageblock if this condition met, 2029 * but, below check doesn't guarantee it and that is just heuristic 2030 * so could be changed anytime. 2031 */ 2032 if (order >= pageblock_order) 2033 return true; 2034 2035 /* 2036 * Above a certain threshold, always try to claim, as it's likely there 2037 * will be more free pages in the pageblock. 2038 */ 2039 if (order >= pageblock_order / 2) 2040 return true; 2041 2042 /* 2043 * Unmovable/reclaimable allocations would cause permanent 2044 * fragmentations if they fell back to allocating from a movable block 2045 * (polluting it), so we try to claim the whole block regardless of the 2046 * allocation size. Later movable allocations can always steal from this 2047 * block, which is less problematic. 2048 */ 2049 if (start_mt == MIGRATE_RECLAIMABLE || start_mt == MIGRATE_UNMOVABLE) 2050 return true; 2051 2052 if (page_group_by_mobility_disabled) 2053 return true; 2054 2055 /* 2056 * Movable pages won't cause permanent fragmentation, so when you alloc 2057 * small pages, we just need to temporarily steal unmovable or 2058 * reclaimable pages that are closest to the request size. After a 2059 * while, memory compaction may occur to form large contiguous pages, 2060 * and the next movable allocation may not need to steal. 2061 */ 2062 return false; 2063 } 2064 2065 /* 2066 * Check whether there is a suitable fallback freepage with requested order. 2067 * If claimable is true, this function returns fallback_mt only if 2068 * we would do this whole-block claiming. This would help to reduce 2069 * fragmentation due to mixed migratetype pages in one pageblock. 2070 */ 2071 int find_suitable_fallback(struct free_area *area, unsigned int order, 2072 int migratetype, bool claimable) 2073 { 2074 int i; 2075 2076 if (claimable && !should_try_claim_block(order, migratetype)) 2077 return -2; 2078 2079 if (area->nr_free == 0) 2080 return -1; 2081 2082 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2083 int fallback_mt = fallbacks[migratetype][i]; 2084 2085 if (!free_area_empty(area, fallback_mt)) 2086 return fallback_mt; 2087 } 2088 2089 return -1; 2090 } 2091 2092 /* 2093 * This function implements actual block claiming behaviour. If order is large 2094 * enough, we can claim the whole pageblock for the requested migratetype. If 2095 * not, we check the pageblock for constituent pages; if at least half of the 2096 * pages are free or compatible, we can still claim the whole block, so pages 2097 * freed in the future will be put on the correct free list. 2098 */ 2099 static struct page * 2100 try_to_claim_block(struct zone *zone, struct page *page, 2101 int current_order, int order, int start_type, 2102 int block_type, unsigned int alloc_flags) 2103 { 2104 int free_pages, movable_pages, alike_pages; 2105 unsigned long start_pfn; 2106 2107 /* Take ownership for orders >= pageblock_order */ 2108 if (current_order >= pageblock_order) { 2109 unsigned int nr_added; 2110 2111 del_page_from_free_list(page, zone, current_order, block_type); 2112 change_pageblock_range(page, current_order, start_type); 2113 nr_added = expand(zone, page, order, current_order, start_type); 2114 account_freepages(zone, nr_added, start_type); 2115 return page; 2116 } 2117 2118 /* 2119 * Boost watermarks to increase reclaim pressure to reduce the 2120 * likelihood of future fallbacks. Wake kswapd now as the node 2121 * may be balanced overall and kswapd will not wake naturally. 2122 */ 2123 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2124 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2125 2126 /* moving whole block can fail due to zone boundary conditions */ 2127 if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages, 2128 &movable_pages)) 2129 return NULL; 2130 2131 /* 2132 * Determine how many pages are compatible with our allocation. 2133 * For movable allocation, it's the number of movable pages which 2134 * we just obtained. For other types it's a bit more tricky. 2135 */ 2136 if (start_type == MIGRATE_MOVABLE) { 2137 alike_pages = movable_pages; 2138 } else { 2139 /* 2140 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2141 * to MOVABLE pageblock, consider all non-movable pages as 2142 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2143 * vice versa, be conservative since we can't distinguish the 2144 * exact migratetype of non-movable pages. 2145 */ 2146 if (block_type == MIGRATE_MOVABLE) 2147 alike_pages = pageblock_nr_pages 2148 - (free_pages + movable_pages); 2149 else 2150 alike_pages = 0; 2151 } 2152 /* 2153 * If a sufficient number of pages in the block are either free or of 2154 * compatible migratability as our allocation, claim the whole block. 2155 */ 2156 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2157 page_group_by_mobility_disabled) { 2158 __move_freepages_block(zone, start_pfn, block_type, start_type); 2159 return __rmqueue_smallest(zone, order, start_type); 2160 } 2161 2162 return NULL; 2163 } 2164 2165 /* 2166 * Try to allocate from some fallback migratetype by claiming the entire block, 2167 * i.e. converting it to the allocation's start migratetype. 2168 * 2169 * The use of signed ints for order and current_order is a deliberate 2170 * deviation from the rest of this file, to make the for loop 2171 * condition simpler. 2172 */ 2173 static __always_inline struct page * 2174 __rmqueue_claim(struct zone *zone, int order, int start_migratetype, 2175 unsigned int alloc_flags) 2176 { 2177 struct free_area *area; 2178 int current_order; 2179 int min_order = order; 2180 struct page *page; 2181 int fallback_mt; 2182 2183 /* 2184 * Do not steal pages from freelists belonging to other pageblocks 2185 * i.e. orders < pageblock_order. If there are no local zones free, 2186 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2187 */ 2188 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2189 min_order = pageblock_order; 2190 2191 /* 2192 * Find the largest available free page in the other list. This roughly 2193 * approximates finding the pageblock with the most free pages, which 2194 * would be too costly to do exactly. 2195 */ 2196 for (current_order = MAX_PAGE_ORDER; current_order >= min_order; 2197 --current_order) { 2198 area = &(zone->free_area[current_order]); 2199 fallback_mt = find_suitable_fallback(area, current_order, 2200 start_migratetype, true); 2201 2202 /* No block in that order */ 2203 if (fallback_mt == -1) 2204 continue; 2205 2206 /* Advanced into orders too low to claim, abort */ 2207 if (fallback_mt == -2) 2208 break; 2209 2210 page = get_page_from_free_area(area, fallback_mt); 2211 page = try_to_claim_block(zone, page, current_order, order, 2212 start_migratetype, fallback_mt, 2213 alloc_flags); 2214 if (page) { 2215 trace_mm_page_alloc_extfrag(page, order, current_order, 2216 start_migratetype, fallback_mt); 2217 return page; 2218 } 2219 } 2220 2221 return NULL; 2222 } 2223 2224 /* 2225 * Try to steal a single page from some fallback migratetype. Leave the rest of 2226 * the block as its current migratetype, potentially causing fragmentation. 2227 */ 2228 static __always_inline struct page * 2229 __rmqueue_steal(struct zone *zone, int order, int start_migratetype) 2230 { 2231 struct free_area *area; 2232 int current_order; 2233 struct page *page; 2234 int fallback_mt; 2235 2236 for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) { 2237 area = &(zone->free_area[current_order]); 2238 fallback_mt = find_suitable_fallback(area, current_order, 2239 start_migratetype, false); 2240 if (fallback_mt == -1) 2241 continue; 2242 2243 page = get_page_from_free_area(area, fallback_mt); 2244 page_del_and_expand(zone, page, order, current_order, fallback_mt); 2245 trace_mm_page_alloc_extfrag(page, order, current_order, 2246 start_migratetype, fallback_mt); 2247 return page; 2248 } 2249 2250 return NULL; 2251 } 2252 2253 enum rmqueue_mode { 2254 RMQUEUE_NORMAL, 2255 RMQUEUE_CMA, 2256 RMQUEUE_CLAIM, 2257 RMQUEUE_STEAL, 2258 }; 2259 2260 /* 2261 * Do the hard work of removing an element from the buddy allocator. 2262 * Call me with the zone->lock already held. 2263 */ 2264 static __always_inline struct page * 2265 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2266 unsigned int alloc_flags, enum rmqueue_mode *mode) 2267 { 2268 struct page *page; 2269 2270 if (IS_ENABLED(CONFIG_CMA)) { 2271 /* 2272 * Balance movable allocations between regular and CMA areas by 2273 * allocating from CMA when over half of the zone's free memory 2274 * is in the CMA area. 2275 */ 2276 if (alloc_flags & ALLOC_CMA && 2277 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2278 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2279 page = __rmqueue_cma_fallback(zone, order); 2280 if (page) 2281 return page; 2282 } 2283 } 2284 2285 /* 2286 * First try the freelists of the requested migratetype, then try 2287 * fallbacks modes with increasing levels of fragmentation risk. 2288 * 2289 * The fallback logic is expensive and rmqueue_bulk() calls in 2290 * a loop with the zone->lock held, meaning the freelists are 2291 * not subject to any outside changes. Remember in *mode where 2292 * we found pay dirt, to save us the search on the next call. 2293 */ 2294 switch (*mode) { 2295 case RMQUEUE_NORMAL: 2296 page = __rmqueue_smallest(zone, order, migratetype); 2297 if (page) 2298 return page; 2299 fallthrough; 2300 case RMQUEUE_CMA: 2301 if (alloc_flags & ALLOC_CMA) { 2302 page = __rmqueue_cma_fallback(zone, order); 2303 if (page) { 2304 *mode = RMQUEUE_CMA; 2305 return page; 2306 } 2307 } 2308 fallthrough; 2309 case RMQUEUE_CLAIM: 2310 page = __rmqueue_claim(zone, order, migratetype, alloc_flags); 2311 if (page) { 2312 /* Replenished preferred freelist, back to normal mode. */ 2313 *mode = RMQUEUE_NORMAL; 2314 return page; 2315 } 2316 fallthrough; 2317 case RMQUEUE_STEAL: 2318 if (!(alloc_flags & ALLOC_NOFRAGMENT)) { 2319 page = __rmqueue_steal(zone, order, migratetype); 2320 if (page) { 2321 *mode = RMQUEUE_STEAL; 2322 return page; 2323 } 2324 } 2325 } 2326 return NULL; 2327 } 2328 2329 /* 2330 * Obtain a specified number of elements from the buddy allocator, all under 2331 * a single hold of the lock, for efficiency. Add them to the supplied list. 2332 * Returns the number of new pages which were placed at *list. 2333 */ 2334 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2335 unsigned long count, struct list_head *list, 2336 int migratetype, unsigned int alloc_flags) 2337 { 2338 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2339 unsigned long flags; 2340 int i; 2341 2342 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2343 if (!spin_trylock_irqsave(&zone->lock, flags)) 2344 return 0; 2345 } else { 2346 spin_lock_irqsave(&zone->lock, flags); 2347 } 2348 for (i = 0; i < count; ++i) { 2349 struct page *page = __rmqueue(zone, order, migratetype, 2350 alloc_flags, &rmqm); 2351 if (unlikely(page == NULL)) 2352 break; 2353 2354 /* 2355 * Split buddy pages returned by expand() are received here in 2356 * physical page order. The page is added to the tail of 2357 * caller's list. From the callers perspective, the linked list 2358 * is ordered by page number under some conditions. This is 2359 * useful for IO devices that can forward direction from the 2360 * head, thus also in the physical page order. This is useful 2361 * for IO devices that can merge IO requests if the physical 2362 * pages are ordered properly. 2363 */ 2364 list_add_tail(&page->pcp_list, list); 2365 } 2366 spin_unlock_irqrestore(&zone->lock, flags); 2367 2368 return i; 2369 } 2370 2371 /* 2372 * Called from the vmstat counter updater to decay the PCP high. 2373 * Return whether there are addition works to do. 2374 */ 2375 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp) 2376 { 2377 int high_min, to_drain, batch; 2378 int todo = 0; 2379 2380 high_min = READ_ONCE(pcp->high_min); 2381 batch = READ_ONCE(pcp->batch); 2382 /* 2383 * Decrease pcp->high periodically to try to free possible 2384 * idle PCP pages. And, avoid to free too many pages to 2385 * control latency. This caps pcp->high decrement too. 2386 */ 2387 if (pcp->high > high_min) { 2388 pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2389 pcp->high - (pcp->high >> 3), high_min); 2390 if (pcp->high > high_min) 2391 todo++; 2392 } 2393 2394 to_drain = pcp->count - pcp->high; 2395 if (to_drain > 0) { 2396 spin_lock(&pcp->lock); 2397 free_pcppages_bulk(zone, to_drain, pcp, 0); 2398 spin_unlock(&pcp->lock); 2399 todo++; 2400 } 2401 2402 return todo; 2403 } 2404 2405 #ifdef CONFIG_NUMA 2406 /* 2407 * Called from the vmstat counter updater to drain pagesets of this 2408 * currently executing processor on remote nodes after they have 2409 * expired. 2410 */ 2411 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2412 { 2413 int to_drain, batch; 2414 2415 batch = READ_ONCE(pcp->batch); 2416 to_drain = min(pcp->count, batch); 2417 if (to_drain > 0) { 2418 spin_lock(&pcp->lock); 2419 free_pcppages_bulk(zone, to_drain, pcp, 0); 2420 spin_unlock(&pcp->lock); 2421 } 2422 } 2423 #endif 2424 2425 /* 2426 * Drain pcplists of the indicated processor and zone. 2427 */ 2428 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2429 { 2430 struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2431 int count; 2432 2433 do { 2434 spin_lock(&pcp->lock); 2435 count = pcp->count; 2436 if (count) { 2437 int to_drain = min(count, 2438 pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX); 2439 2440 free_pcppages_bulk(zone, to_drain, pcp, 0); 2441 count -= to_drain; 2442 } 2443 spin_unlock(&pcp->lock); 2444 } while (count); 2445 } 2446 2447 /* 2448 * Drain pcplists of all zones on the indicated processor. 2449 */ 2450 static void drain_pages(unsigned int cpu) 2451 { 2452 struct zone *zone; 2453 2454 for_each_populated_zone(zone) { 2455 drain_pages_zone(cpu, zone); 2456 } 2457 } 2458 2459 /* 2460 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2461 */ 2462 void drain_local_pages(struct zone *zone) 2463 { 2464 int cpu = smp_processor_id(); 2465 2466 if (zone) 2467 drain_pages_zone(cpu, zone); 2468 else 2469 drain_pages(cpu); 2470 } 2471 2472 /* 2473 * The implementation of drain_all_pages(), exposing an extra parameter to 2474 * drain on all cpus. 2475 * 2476 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2477 * not empty. The check for non-emptiness can however race with a free to 2478 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2479 * that need the guarantee that every CPU has drained can disable the 2480 * optimizing racy check. 2481 */ 2482 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2483 { 2484 int cpu; 2485 2486 /* 2487 * Allocate in the BSS so we won't require allocation in 2488 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2489 */ 2490 static cpumask_t cpus_with_pcps; 2491 2492 /* 2493 * Do not drain if one is already in progress unless it's specific to 2494 * a zone. Such callers are primarily CMA and memory hotplug and need 2495 * the drain to be complete when the call returns. 2496 */ 2497 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2498 if (!zone) 2499 return; 2500 mutex_lock(&pcpu_drain_mutex); 2501 } 2502 2503 /* 2504 * We don't care about racing with CPU hotplug event 2505 * as offline notification will cause the notified 2506 * cpu to drain that CPU pcps and on_each_cpu_mask 2507 * disables preemption as part of its processing 2508 */ 2509 for_each_online_cpu(cpu) { 2510 struct per_cpu_pages *pcp; 2511 struct zone *z; 2512 bool has_pcps = false; 2513 2514 if (force_all_cpus) { 2515 /* 2516 * The pcp.count check is racy, some callers need a 2517 * guarantee that no cpu is missed. 2518 */ 2519 has_pcps = true; 2520 } else if (zone) { 2521 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2522 if (pcp->count) 2523 has_pcps = true; 2524 } else { 2525 for_each_populated_zone(z) { 2526 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2527 if (pcp->count) { 2528 has_pcps = true; 2529 break; 2530 } 2531 } 2532 } 2533 2534 if (has_pcps) 2535 cpumask_set_cpu(cpu, &cpus_with_pcps); 2536 else 2537 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2538 } 2539 2540 for_each_cpu(cpu, &cpus_with_pcps) { 2541 if (zone) 2542 drain_pages_zone(cpu, zone); 2543 else 2544 drain_pages(cpu); 2545 } 2546 2547 mutex_unlock(&pcpu_drain_mutex); 2548 } 2549 2550 /* 2551 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2552 * 2553 * When zone parameter is non-NULL, spill just the single zone's pages. 2554 */ 2555 void drain_all_pages(struct zone *zone) 2556 { 2557 __drain_all_pages(zone, false); 2558 } 2559 2560 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high) 2561 { 2562 int min_nr_free, max_nr_free; 2563 2564 /* Free as much as possible if batch freeing high-order pages. */ 2565 if (unlikely(free_high)) 2566 return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX); 2567 2568 /* Check for PCP disabled or boot pageset */ 2569 if (unlikely(high < batch)) 2570 return 1; 2571 2572 /* Leave at least pcp->batch pages on the list */ 2573 min_nr_free = batch; 2574 max_nr_free = high - batch; 2575 2576 /* 2577 * Increase the batch number to the number of the consecutive 2578 * freed pages to reduce zone lock contention. 2579 */ 2580 batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free); 2581 2582 return batch; 2583 } 2584 2585 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2586 int batch, bool free_high) 2587 { 2588 int high, high_min, high_max; 2589 2590 high_min = READ_ONCE(pcp->high_min); 2591 high_max = READ_ONCE(pcp->high_max); 2592 high = pcp->high = clamp(pcp->high, high_min, high_max); 2593 2594 if (unlikely(!high)) 2595 return 0; 2596 2597 if (unlikely(free_high)) { 2598 pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX), 2599 high_min); 2600 return 0; 2601 } 2602 2603 /* 2604 * If reclaim is active, limit the number of pages that can be 2605 * stored on pcp lists 2606 */ 2607 if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) { 2608 int free_count = max_t(int, pcp->free_count, batch); 2609 2610 pcp->high = max(high - free_count, high_min); 2611 return min(batch << 2, pcp->high); 2612 } 2613 2614 if (high_min == high_max) 2615 return high; 2616 2617 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) { 2618 int free_count = max_t(int, pcp->free_count, batch); 2619 2620 pcp->high = max(high - free_count, high_min); 2621 high = max(pcp->count, high_min); 2622 } else if (pcp->count >= high) { 2623 int need_high = pcp->free_count + batch; 2624 2625 /* pcp->high should be large enough to hold batch freed pages */ 2626 if (pcp->high < need_high) 2627 pcp->high = clamp(need_high, high_min, high_max); 2628 } 2629 2630 return high; 2631 } 2632 2633 static void free_frozen_page_commit(struct zone *zone, 2634 struct per_cpu_pages *pcp, struct page *page, int migratetype, 2635 unsigned int order, fpi_t fpi_flags) 2636 { 2637 int high, batch; 2638 int pindex; 2639 bool free_high = false; 2640 2641 /* 2642 * On freeing, reduce the number of pages that are batch allocated. 2643 * See nr_pcp_alloc() where alloc_factor is increased for subsequent 2644 * allocations. 2645 */ 2646 pcp->alloc_factor >>= 1; 2647 __count_vm_events(PGFREE, 1 << order); 2648 pindex = order_to_pindex(migratetype, order); 2649 list_add(&page->pcp_list, &pcp->lists[pindex]); 2650 pcp->count += 1 << order; 2651 2652 batch = READ_ONCE(pcp->batch); 2653 /* 2654 * As high-order pages other than THP's stored on PCP can contribute 2655 * to fragmentation, limit the number stored when PCP is heavily 2656 * freeing without allocation. The remainder after bulk freeing 2657 * stops will be drained from vmstat refresh context. 2658 */ 2659 if (order && order <= PAGE_ALLOC_COSTLY_ORDER) { 2660 free_high = (pcp->free_count >= (batch + pcp->high_min / 2) && 2661 (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) && 2662 (!(pcp->flags & PCPF_FREE_HIGH_BATCH) || 2663 pcp->count >= batch)); 2664 pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER; 2665 } else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) { 2666 pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER; 2667 } 2668 if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX)) 2669 pcp->free_count += (1 << order); 2670 2671 if (unlikely(fpi_flags & FPI_TRYLOCK)) { 2672 /* 2673 * Do not attempt to take a zone lock. Let pcp->count get 2674 * over high mark temporarily. 2675 */ 2676 return; 2677 } 2678 high = nr_pcp_high(pcp, zone, batch, free_high); 2679 if (pcp->count >= high) { 2680 free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high), 2681 pcp, pindex); 2682 if (test_bit(ZONE_BELOW_HIGH, &zone->flags) && 2683 zone_watermark_ok(zone, 0, high_wmark_pages(zone), 2684 ZONE_MOVABLE, 0)) 2685 clear_bit(ZONE_BELOW_HIGH, &zone->flags); 2686 } 2687 } 2688 2689 /* 2690 * Free a pcp page 2691 */ 2692 static void __free_frozen_pages(struct page *page, unsigned int order, 2693 fpi_t fpi_flags) 2694 { 2695 unsigned long __maybe_unused UP_flags; 2696 struct per_cpu_pages *pcp; 2697 struct zone *zone; 2698 unsigned long pfn = page_to_pfn(page); 2699 int migratetype; 2700 2701 if (!pcp_allowed_order(order)) { 2702 __free_pages_ok(page, order, fpi_flags); 2703 return; 2704 } 2705 2706 if (!free_pages_prepare(page, order)) 2707 return; 2708 2709 /* 2710 * We only track unmovable, reclaimable and movable on pcp lists. 2711 * Place ISOLATE pages on the isolated list because they are being 2712 * offlined but treat HIGHATOMIC and CMA as movable pages so we can 2713 * get those areas back if necessary. Otherwise, we may have to free 2714 * excessively into the page allocator 2715 */ 2716 zone = page_zone(page); 2717 migratetype = get_pfnblock_migratetype(page, pfn); 2718 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2719 if (unlikely(is_migrate_isolate(migratetype))) { 2720 free_one_page(zone, page, pfn, order, fpi_flags); 2721 return; 2722 } 2723 migratetype = MIGRATE_MOVABLE; 2724 } 2725 2726 if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT) 2727 && (in_nmi() || in_hardirq()))) { 2728 add_page_to_zone_llist(zone, page, order); 2729 return; 2730 } 2731 pcp_trylock_prepare(UP_flags); 2732 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2733 if (pcp) { 2734 free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags); 2735 pcp_spin_unlock(pcp); 2736 } else { 2737 free_one_page(zone, page, pfn, order, fpi_flags); 2738 } 2739 pcp_trylock_finish(UP_flags); 2740 } 2741 2742 void free_frozen_pages(struct page *page, unsigned int order) 2743 { 2744 __free_frozen_pages(page, order, FPI_NONE); 2745 } 2746 2747 /* 2748 * Free a batch of folios 2749 */ 2750 void free_unref_folios(struct folio_batch *folios) 2751 { 2752 unsigned long __maybe_unused UP_flags; 2753 struct per_cpu_pages *pcp = NULL; 2754 struct zone *locked_zone = NULL; 2755 int i, j; 2756 2757 /* Prepare folios for freeing */ 2758 for (i = 0, j = 0; i < folios->nr; i++) { 2759 struct folio *folio = folios->folios[i]; 2760 unsigned long pfn = folio_pfn(folio); 2761 unsigned int order = folio_order(folio); 2762 2763 if (!free_pages_prepare(&folio->page, order)) 2764 continue; 2765 /* 2766 * Free orders not handled on the PCP directly to the 2767 * allocator. 2768 */ 2769 if (!pcp_allowed_order(order)) { 2770 free_one_page(folio_zone(folio), &folio->page, 2771 pfn, order, FPI_NONE); 2772 continue; 2773 } 2774 folio->private = (void *)(unsigned long)order; 2775 if (j != i) 2776 folios->folios[j] = folio; 2777 j++; 2778 } 2779 folios->nr = j; 2780 2781 for (i = 0; i < folios->nr; i++) { 2782 struct folio *folio = folios->folios[i]; 2783 struct zone *zone = folio_zone(folio); 2784 unsigned long pfn = folio_pfn(folio); 2785 unsigned int order = (unsigned long)folio->private; 2786 int migratetype; 2787 2788 folio->private = NULL; 2789 migratetype = get_pfnblock_migratetype(&folio->page, pfn); 2790 2791 /* Different zone requires a different pcp lock */ 2792 if (zone != locked_zone || 2793 is_migrate_isolate(migratetype)) { 2794 if (pcp) { 2795 pcp_spin_unlock(pcp); 2796 pcp_trylock_finish(UP_flags); 2797 locked_zone = NULL; 2798 pcp = NULL; 2799 } 2800 2801 /* 2802 * Free isolated pages directly to the 2803 * allocator, see comment in free_frozen_pages. 2804 */ 2805 if (is_migrate_isolate(migratetype)) { 2806 free_one_page(zone, &folio->page, pfn, 2807 order, FPI_NONE); 2808 continue; 2809 } 2810 2811 /* 2812 * trylock is necessary as folios may be getting freed 2813 * from IRQ or SoftIRQ context after an IO completion. 2814 */ 2815 pcp_trylock_prepare(UP_flags); 2816 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2817 if (unlikely(!pcp)) { 2818 pcp_trylock_finish(UP_flags); 2819 free_one_page(zone, &folio->page, pfn, 2820 order, FPI_NONE); 2821 continue; 2822 } 2823 locked_zone = zone; 2824 } 2825 2826 /* 2827 * Non-isolated types over MIGRATE_PCPTYPES get added 2828 * to the MIGRATE_MOVABLE pcp list. 2829 */ 2830 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2831 migratetype = MIGRATE_MOVABLE; 2832 2833 trace_mm_page_free_batched(&folio->page); 2834 free_frozen_page_commit(zone, pcp, &folio->page, migratetype, 2835 order, FPI_NONE); 2836 } 2837 2838 if (pcp) { 2839 pcp_spin_unlock(pcp); 2840 pcp_trylock_finish(UP_flags); 2841 } 2842 folio_batch_reinit(folios); 2843 } 2844 2845 /* 2846 * split_page takes a non-compound higher-order page, and splits it into 2847 * n (1<<order) sub-pages: page[0..n] 2848 * Each sub-page must be freed individually. 2849 * 2850 * Note: this is probably too low level an operation for use in drivers. 2851 * Please consult with lkml before using this in your driver. 2852 */ 2853 void split_page(struct page *page, unsigned int order) 2854 { 2855 int i; 2856 2857 VM_BUG_ON_PAGE(PageCompound(page), page); 2858 VM_BUG_ON_PAGE(!page_count(page), page); 2859 2860 for (i = 1; i < (1 << order); i++) 2861 set_page_refcounted(page + i); 2862 split_page_owner(page, order, 0); 2863 pgalloc_tag_split(page_folio(page), order, 0); 2864 split_page_memcg(page, order); 2865 } 2866 EXPORT_SYMBOL_GPL(split_page); 2867 2868 int __isolate_free_page(struct page *page, unsigned int order) 2869 { 2870 struct zone *zone = page_zone(page); 2871 int mt = get_pageblock_migratetype(page); 2872 2873 if (!is_migrate_isolate(mt)) { 2874 unsigned long watermark; 2875 /* 2876 * Obey watermarks as if the page was being allocated. We can 2877 * emulate a high-order watermark check with a raised order-0 2878 * watermark, because we already know our high-order page 2879 * exists. 2880 */ 2881 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2882 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2883 return 0; 2884 } 2885 2886 del_page_from_free_list(page, zone, order, mt); 2887 2888 /* 2889 * Set the pageblock if the isolated page is at least half of a 2890 * pageblock 2891 */ 2892 if (order >= pageblock_order - 1) { 2893 struct page *endpage = page + (1 << order) - 1; 2894 for (; page < endpage; page += pageblock_nr_pages) { 2895 int mt = get_pageblock_migratetype(page); 2896 /* 2897 * Only change normal pageblocks (i.e., they can merge 2898 * with others) 2899 */ 2900 if (migratetype_is_mergeable(mt)) 2901 move_freepages_block(zone, page, mt, 2902 MIGRATE_MOVABLE); 2903 } 2904 } 2905 2906 return 1UL << order; 2907 } 2908 2909 /** 2910 * __putback_isolated_page - Return a now-isolated page back where we got it 2911 * @page: Page that was isolated 2912 * @order: Order of the isolated page 2913 * @mt: The page's pageblock's migratetype 2914 * 2915 * This function is meant to return a page pulled from the free lists via 2916 * __isolate_free_page back to the free lists they were pulled from. 2917 */ 2918 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2919 { 2920 struct zone *zone = page_zone(page); 2921 2922 /* zone lock should be held when this function is called */ 2923 lockdep_assert_held(&zone->lock); 2924 2925 /* Return isolated page to tail of freelist. */ 2926 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2927 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2928 } 2929 2930 /* 2931 * Update NUMA hit/miss statistics 2932 */ 2933 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2934 long nr_account) 2935 { 2936 #ifdef CONFIG_NUMA 2937 enum numa_stat_item local_stat = NUMA_LOCAL; 2938 2939 /* skip numa counters update if numa stats is disabled */ 2940 if (!static_branch_likely(&vm_numa_stat_key)) 2941 return; 2942 2943 if (zone_to_nid(z) != numa_node_id()) 2944 local_stat = NUMA_OTHER; 2945 2946 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2947 __count_numa_events(z, NUMA_HIT, nr_account); 2948 else { 2949 __count_numa_events(z, NUMA_MISS, nr_account); 2950 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2951 } 2952 __count_numa_events(z, local_stat, nr_account); 2953 #endif 2954 } 2955 2956 static __always_inline 2957 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2958 unsigned int order, unsigned int alloc_flags, 2959 int migratetype) 2960 { 2961 struct page *page; 2962 unsigned long flags; 2963 2964 do { 2965 page = NULL; 2966 if (unlikely(alloc_flags & ALLOC_TRYLOCK)) { 2967 if (!spin_trylock_irqsave(&zone->lock, flags)) 2968 return NULL; 2969 } else { 2970 spin_lock_irqsave(&zone->lock, flags); 2971 } 2972 if (alloc_flags & ALLOC_HIGHATOMIC) 2973 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2974 if (!page) { 2975 enum rmqueue_mode rmqm = RMQUEUE_NORMAL; 2976 2977 page = __rmqueue(zone, order, migratetype, alloc_flags, &rmqm); 2978 2979 /* 2980 * If the allocation fails, allow OOM handling and 2981 * order-0 (atomic) allocs access to HIGHATOMIC 2982 * reserves as failing now is worse than failing a 2983 * high-order atomic allocation in the future. 2984 */ 2985 if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK))) 2986 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2987 2988 if (!page) { 2989 spin_unlock_irqrestore(&zone->lock, flags); 2990 return NULL; 2991 } 2992 } 2993 spin_unlock_irqrestore(&zone->lock, flags); 2994 } while (check_new_pages(page, order)); 2995 2996 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2997 zone_statistics(preferred_zone, zone, 1); 2998 2999 return page; 3000 } 3001 3002 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order) 3003 { 3004 int high, base_batch, batch, max_nr_alloc; 3005 int high_max, high_min; 3006 3007 base_batch = READ_ONCE(pcp->batch); 3008 high_min = READ_ONCE(pcp->high_min); 3009 high_max = READ_ONCE(pcp->high_max); 3010 high = pcp->high = clamp(pcp->high, high_min, high_max); 3011 3012 /* Check for PCP disabled or boot pageset */ 3013 if (unlikely(high < base_batch)) 3014 return 1; 3015 3016 if (order) 3017 batch = base_batch; 3018 else 3019 batch = (base_batch << pcp->alloc_factor); 3020 3021 /* 3022 * If we had larger pcp->high, we could avoid to allocate from 3023 * zone. 3024 */ 3025 if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3026 high = pcp->high = min(high + batch, high_max); 3027 3028 if (!order) { 3029 max_nr_alloc = max(high - pcp->count - base_batch, base_batch); 3030 /* 3031 * Double the number of pages allocated each time there is 3032 * subsequent allocation of order-0 pages without any freeing. 3033 */ 3034 if (batch <= max_nr_alloc && 3035 pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX) 3036 pcp->alloc_factor++; 3037 batch = min(batch, max_nr_alloc); 3038 } 3039 3040 /* 3041 * Scale batch relative to order if batch implies free pages 3042 * can be stored on the PCP. Batch can be 1 for small zones or 3043 * for boot pagesets which should never store free pages as 3044 * the pages may belong to arbitrary zones. 3045 */ 3046 if (batch > 1) 3047 batch = max(batch >> order, 2); 3048 3049 return batch; 3050 } 3051 3052 /* Remove page from the per-cpu list, caller must protect the list */ 3053 static inline 3054 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3055 int migratetype, 3056 unsigned int alloc_flags, 3057 struct per_cpu_pages *pcp, 3058 struct list_head *list) 3059 { 3060 struct page *page; 3061 3062 do { 3063 if (list_empty(list)) { 3064 int batch = nr_pcp_alloc(pcp, zone, order); 3065 int alloced; 3066 3067 alloced = rmqueue_bulk(zone, order, 3068 batch, list, 3069 migratetype, alloc_flags); 3070 3071 pcp->count += alloced << order; 3072 if (unlikely(list_empty(list))) 3073 return NULL; 3074 } 3075 3076 page = list_first_entry(list, struct page, pcp_list); 3077 list_del(&page->pcp_list); 3078 pcp->count -= 1 << order; 3079 } while (check_new_pages(page, order)); 3080 3081 return page; 3082 } 3083 3084 /* Lock and remove page from the per-cpu list */ 3085 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3086 struct zone *zone, unsigned int order, 3087 int migratetype, unsigned int alloc_flags) 3088 { 3089 struct per_cpu_pages *pcp; 3090 struct list_head *list; 3091 struct page *page; 3092 unsigned long __maybe_unused UP_flags; 3093 3094 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 3095 pcp_trylock_prepare(UP_flags); 3096 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 3097 if (!pcp) { 3098 pcp_trylock_finish(UP_flags); 3099 return NULL; 3100 } 3101 3102 /* 3103 * On allocation, reduce the number of pages that are batch freed. 3104 * See nr_pcp_free() where free_factor is increased for subsequent 3105 * frees. 3106 */ 3107 pcp->free_count >>= 1; 3108 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3109 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3110 pcp_spin_unlock(pcp); 3111 pcp_trylock_finish(UP_flags); 3112 if (page) { 3113 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3114 zone_statistics(preferred_zone, zone, 1); 3115 } 3116 return page; 3117 } 3118 3119 /* 3120 * Allocate a page from the given zone. 3121 * Use pcplists for THP or "cheap" high-order allocations. 3122 */ 3123 3124 /* 3125 * Do not instrument rmqueue() with KMSAN. This function may call 3126 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3127 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3128 * may call rmqueue() again, which will result in a deadlock. 3129 */ 3130 __no_sanitize_memory 3131 static inline 3132 struct page *rmqueue(struct zone *preferred_zone, 3133 struct zone *zone, unsigned int order, 3134 gfp_t gfp_flags, unsigned int alloc_flags, 3135 int migratetype) 3136 { 3137 struct page *page; 3138 3139 if (likely(pcp_allowed_order(order))) { 3140 page = rmqueue_pcplist(preferred_zone, zone, order, 3141 migratetype, alloc_flags); 3142 if (likely(page)) 3143 goto out; 3144 } 3145 3146 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3147 migratetype); 3148 3149 out: 3150 /* Separate test+clear to avoid unnecessary atomics */ 3151 if ((alloc_flags & ALLOC_KSWAPD) && 3152 unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3153 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3154 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3155 } 3156 3157 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3158 return page; 3159 } 3160 3161 /* 3162 * Reserve the pageblock(s) surrounding an allocation request for 3163 * exclusive use of high-order atomic allocations if there are no 3164 * empty page blocks that contain a page with a suitable order 3165 */ 3166 static void reserve_highatomic_pageblock(struct page *page, int order, 3167 struct zone *zone) 3168 { 3169 int mt; 3170 unsigned long max_managed, flags; 3171 3172 /* 3173 * The number reserved as: minimum is 1 pageblock, maximum is 3174 * roughly 1% of a zone. But if 1% of a zone falls below a 3175 * pageblock size, then don't reserve any pageblocks. 3176 * Check is race-prone but harmless. 3177 */ 3178 if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages) 3179 return; 3180 max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages); 3181 if (zone->nr_reserved_highatomic >= max_managed) 3182 return; 3183 3184 spin_lock_irqsave(&zone->lock, flags); 3185 3186 /* Recheck the nr_reserved_highatomic limit under the lock */ 3187 if (zone->nr_reserved_highatomic >= max_managed) 3188 goto out_unlock; 3189 3190 /* Yoink! */ 3191 mt = get_pageblock_migratetype(page); 3192 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 3193 if (!migratetype_is_mergeable(mt)) 3194 goto out_unlock; 3195 3196 if (order < pageblock_order) { 3197 if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1) 3198 goto out_unlock; 3199 zone->nr_reserved_highatomic += pageblock_nr_pages; 3200 } else { 3201 change_pageblock_range(page, order, MIGRATE_HIGHATOMIC); 3202 zone->nr_reserved_highatomic += 1 << order; 3203 } 3204 3205 out_unlock: 3206 spin_unlock_irqrestore(&zone->lock, flags); 3207 } 3208 3209 /* 3210 * Used when an allocation is about to fail under memory pressure. This 3211 * potentially hurts the reliability of high-order allocations when under 3212 * intense memory pressure but failed atomic allocations should be easier 3213 * to recover from than an OOM. 3214 * 3215 * If @force is true, try to unreserve pageblocks even though highatomic 3216 * pageblock is exhausted. 3217 */ 3218 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 3219 bool force) 3220 { 3221 struct zonelist *zonelist = ac->zonelist; 3222 unsigned long flags; 3223 struct zoneref *z; 3224 struct zone *zone; 3225 struct page *page; 3226 int order; 3227 int ret; 3228 3229 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 3230 ac->nodemask) { 3231 /* 3232 * Preserve at least one pageblock unless memory pressure 3233 * is really high. 3234 */ 3235 if (!force && zone->nr_reserved_highatomic <= 3236 pageblock_nr_pages) 3237 continue; 3238 3239 spin_lock_irqsave(&zone->lock, flags); 3240 for (order = 0; order < NR_PAGE_ORDERS; order++) { 3241 struct free_area *area = &(zone->free_area[order]); 3242 unsigned long size; 3243 3244 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 3245 if (!page) 3246 continue; 3247 3248 size = max(pageblock_nr_pages, 1UL << order); 3249 /* 3250 * It should never happen but changes to 3251 * locking could inadvertently allow a per-cpu 3252 * drain to add pages to MIGRATE_HIGHATOMIC 3253 * while unreserving so be safe and watch for 3254 * underflows. 3255 */ 3256 if (WARN_ON_ONCE(size > zone->nr_reserved_highatomic)) 3257 size = zone->nr_reserved_highatomic; 3258 zone->nr_reserved_highatomic -= size; 3259 3260 /* 3261 * Convert to ac->migratetype and avoid the normal 3262 * pageblock stealing heuristics. Minimally, the caller 3263 * is doing the work and needs the pages. More 3264 * importantly, if the block was always converted to 3265 * MIGRATE_UNMOVABLE or another type then the number 3266 * of pageblocks that cannot be completely freed 3267 * may increase. 3268 */ 3269 if (order < pageblock_order) 3270 ret = move_freepages_block(zone, page, 3271 MIGRATE_HIGHATOMIC, 3272 ac->migratetype); 3273 else { 3274 move_to_free_list(page, zone, order, 3275 MIGRATE_HIGHATOMIC, 3276 ac->migratetype); 3277 change_pageblock_range(page, order, 3278 ac->migratetype); 3279 ret = 1; 3280 } 3281 /* 3282 * Reserving the block(s) already succeeded, 3283 * so this should not fail on zone boundaries. 3284 */ 3285 WARN_ON_ONCE(ret == -1); 3286 if (ret > 0) { 3287 spin_unlock_irqrestore(&zone->lock, flags); 3288 return ret; 3289 } 3290 } 3291 spin_unlock_irqrestore(&zone->lock, flags); 3292 } 3293 3294 return false; 3295 } 3296 3297 static inline long __zone_watermark_unusable_free(struct zone *z, 3298 unsigned int order, unsigned int alloc_flags) 3299 { 3300 long unusable_free = (1 << order) - 1; 3301 3302 /* 3303 * If the caller does not have rights to reserves below the min 3304 * watermark then subtract the free pages reserved for highatomic. 3305 */ 3306 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3307 unusable_free += READ_ONCE(z->nr_free_highatomic); 3308 3309 #ifdef CONFIG_CMA 3310 /* If allocation can't use CMA areas don't use free CMA pages */ 3311 if (!(alloc_flags & ALLOC_CMA)) 3312 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3313 #endif 3314 3315 return unusable_free; 3316 } 3317 3318 /* 3319 * Return true if free base pages are above 'mark'. For high-order checks it 3320 * will return true of the order-0 watermark is reached and there is at least 3321 * one free page of a suitable size. Checking now avoids taking the zone lock 3322 * to check in the allocation paths if no pages are free. 3323 */ 3324 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3325 int highest_zoneidx, unsigned int alloc_flags, 3326 long free_pages) 3327 { 3328 long min = mark; 3329 int o; 3330 3331 /* free_pages may go negative - that's OK */ 3332 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3333 3334 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3335 /* 3336 * __GFP_HIGH allows access to 50% of the min reserve as well 3337 * as OOM. 3338 */ 3339 if (alloc_flags & ALLOC_MIN_RESERVE) { 3340 min -= min / 2; 3341 3342 /* 3343 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3344 * access more reserves than just __GFP_HIGH. Other 3345 * non-blocking allocations requests such as GFP_NOWAIT 3346 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3347 * access to the min reserve. 3348 */ 3349 if (alloc_flags & ALLOC_NON_BLOCK) 3350 min -= min / 4; 3351 } 3352 3353 /* 3354 * OOM victims can try even harder than the normal reserve 3355 * users on the grounds that it's definitely going to be in 3356 * the exit path shortly and free memory. Any allocation it 3357 * makes during the free path will be small and short-lived. 3358 */ 3359 if (alloc_flags & ALLOC_OOM) 3360 min -= min / 2; 3361 } 3362 3363 /* 3364 * Check watermarks for an order-0 allocation request. If these 3365 * are not met, then a high-order request also cannot go ahead 3366 * even if a suitable page happened to be free. 3367 */ 3368 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3369 return false; 3370 3371 /* If this is an order-0 request then the watermark is fine */ 3372 if (!order) 3373 return true; 3374 3375 /* For a high-order request, check at least one suitable page is free */ 3376 for (o = order; o < NR_PAGE_ORDERS; o++) { 3377 struct free_area *area = &z->free_area[o]; 3378 int mt; 3379 3380 if (!area->nr_free) 3381 continue; 3382 3383 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3384 if (!free_area_empty(area, mt)) 3385 return true; 3386 } 3387 3388 #ifdef CONFIG_CMA 3389 if ((alloc_flags & ALLOC_CMA) && 3390 !free_area_empty(area, MIGRATE_CMA)) { 3391 return true; 3392 } 3393 #endif 3394 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3395 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3396 return true; 3397 } 3398 } 3399 return false; 3400 } 3401 3402 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3403 int highest_zoneidx, unsigned int alloc_flags) 3404 { 3405 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3406 zone_page_state(z, NR_FREE_PAGES)); 3407 } 3408 3409 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3410 unsigned long mark, int highest_zoneidx, 3411 unsigned int alloc_flags, gfp_t gfp_mask) 3412 { 3413 long free_pages; 3414 3415 free_pages = zone_page_state(z, NR_FREE_PAGES); 3416 3417 /* 3418 * Fast check for order-0 only. If this fails then the reserves 3419 * need to be calculated. 3420 */ 3421 if (!order) { 3422 long usable_free; 3423 long reserved; 3424 3425 usable_free = free_pages; 3426 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3427 3428 /* reserved may over estimate high-atomic reserves. */ 3429 usable_free -= min(usable_free, reserved); 3430 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3431 return true; 3432 } 3433 3434 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3435 free_pages)) 3436 return true; 3437 3438 /* 3439 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3440 * when checking the min watermark. The min watermark is the 3441 * point where boosting is ignored so that kswapd is woken up 3442 * when below the low watermark. 3443 */ 3444 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3445 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3446 mark = z->_watermark[WMARK_MIN]; 3447 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3448 alloc_flags, free_pages); 3449 } 3450 3451 return false; 3452 } 3453 3454 #ifdef CONFIG_NUMA 3455 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3456 3457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3458 { 3459 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3460 node_reclaim_distance; 3461 } 3462 #else /* CONFIG_NUMA */ 3463 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3464 { 3465 return true; 3466 } 3467 #endif /* CONFIG_NUMA */ 3468 3469 /* 3470 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3471 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3472 * premature use of a lower zone may cause lowmem pressure problems that 3473 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3474 * probably too small. It only makes sense to spread allocations to avoid 3475 * fragmentation between the Normal and DMA32 zones. 3476 */ 3477 static inline unsigned int 3478 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3479 { 3480 unsigned int alloc_flags; 3481 3482 /* 3483 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3484 * to save a branch. 3485 */ 3486 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3487 3488 if (defrag_mode) { 3489 alloc_flags |= ALLOC_NOFRAGMENT; 3490 return alloc_flags; 3491 } 3492 3493 #ifdef CONFIG_ZONE_DMA32 3494 if (!zone) 3495 return alloc_flags; 3496 3497 if (zone_idx(zone) != ZONE_NORMAL) 3498 return alloc_flags; 3499 3500 /* 3501 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3502 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3503 * on UMA that if Normal is populated then so is DMA32. 3504 */ 3505 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3506 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3507 return alloc_flags; 3508 3509 alloc_flags |= ALLOC_NOFRAGMENT; 3510 #endif /* CONFIG_ZONE_DMA32 */ 3511 return alloc_flags; 3512 } 3513 3514 /* Must be called after current_gfp_context() which can change gfp_mask */ 3515 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3516 unsigned int alloc_flags) 3517 { 3518 #ifdef CONFIG_CMA 3519 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3520 alloc_flags |= ALLOC_CMA; 3521 #endif 3522 return alloc_flags; 3523 } 3524 3525 /* 3526 * get_page_from_freelist goes through the zonelist trying to allocate 3527 * a page. 3528 */ 3529 static struct page * 3530 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3531 const struct alloc_context *ac) 3532 { 3533 struct zoneref *z; 3534 struct zone *zone; 3535 struct pglist_data *last_pgdat = NULL; 3536 bool last_pgdat_dirty_ok = false; 3537 bool no_fallback; 3538 3539 retry: 3540 /* 3541 * Scan zonelist, looking for a zone with enough free. 3542 * See also cpuset_current_node_allowed() comment in kernel/cgroup/cpuset.c. 3543 */ 3544 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3545 z = ac->preferred_zoneref; 3546 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3547 ac->nodemask) { 3548 struct page *page; 3549 unsigned long mark; 3550 3551 if (cpusets_enabled() && 3552 (alloc_flags & ALLOC_CPUSET) && 3553 !__cpuset_zone_allowed(zone, gfp_mask)) 3554 continue; 3555 /* 3556 * When allocating a page cache page for writing, we 3557 * want to get it from a node that is within its dirty 3558 * limit, such that no single node holds more than its 3559 * proportional share of globally allowed dirty pages. 3560 * The dirty limits take into account the node's 3561 * lowmem reserves and high watermark so that kswapd 3562 * should be able to balance it without having to 3563 * write pages from its LRU list. 3564 * 3565 * XXX: For now, allow allocations to potentially 3566 * exceed the per-node dirty limit in the slowpath 3567 * (spread_dirty_pages unset) before going into reclaim, 3568 * which is important when on a NUMA setup the allowed 3569 * nodes are together not big enough to reach the 3570 * global limit. The proper fix for these situations 3571 * will require awareness of nodes in the 3572 * dirty-throttling and the flusher threads. 3573 */ 3574 if (ac->spread_dirty_pages) { 3575 if (last_pgdat != zone->zone_pgdat) { 3576 last_pgdat = zone->zone_pgdat; 3577 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3578 } 3579 3580 if (!last_pgdat_dirty_ok) 3581 continue; 3582 } 3583 3584 if (no_fallback && !defrag_mode && nr_online_nodes > 1 && 3585 zone != zonelist_zone(ac->preferred_zoneref)) { 3586 int local_nid; 3587 3588 /* 3589 * If moving to a remote node, retry but allow 3590 * fragmenting fallbacks. Locality is more important 3591 * than fragmentation avoidance. 3592 */ 3593 local_nid = zonelist_node_idx(ac->preferred_zoneref); 3594 if (zone_to_nid(zone) != local_nid) { 3595 alloc_flags &= ~ALLOC_NOFRAGMENT; 3596 goto retry; 3597 } 3598 } 3599 3600 cond_accept_memory(zone, order, alloc_flags); 3601 3602 /* 3603 * Detect whether the number of free pages is below high 3604 * watermark. If so, we will decrease pcp->high and free 3605 * PCP pages in free path to reduce the possibility of 3606 * premature page reclaiming. Detection is done here to 3607 * avoid to do that in hotter free path. 3608 */ 3609 if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) 3610 goto check_alloc_wmark; 3611 3612 mark = high_wmark_pages(zone); 3613 if (zone_watermark_fast(zone, order, mark, 3614 ac->highest_zoneidx, alloc_flags, 3615 gfp_mask)) 3616 goto try_this_zone; 3617 else 3618 set_bit(ZONE_BELOW_HIGH, &zone->flags); 3619 3620 check_alloc_wmark: 3621 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3622 if (!zone_watermark_fast(zone, order, mark, 3623 ac->highest_zoneidx, alloc_flags, 3624 gfp_mask)) { 3625 int ret; 3626 3627 if (cond_accept_memory(zone, order, alloc_flags)) 3628 goto try_this_zone; 3629 3630 /* 3631 * Watermark failed for this zone, but see if we can 3632 * grow this zone if it contains deferred pages. 3633 */ 3634 if (deferred_pages_enabled()) { 3635 if (_deferred_grow_zone(zone, order)) 3636 goto try_this_zone; 3637 } 3638 /* Checked here to keep the fast path fast */ 3639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3640 if (alloc_flags & ALLOC_NO_WATERMARKS) 3641 goto try_this_zone; 3642 3643 if (!node_reclaim_enabled() || 3644 !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone)) 3645 continue; 3646 3647 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3648 switch (ret) { 3649 case NODE_RECLAIM_NOSCAN: 3650 /* did not scan */ 3651 continue; 3652 case NODE_RECLAIM_FULL: 3653 /* scanned but unreclaimable */ 3654 continue; 3655 default: 3656 /* did we reclaim enough */ 3657 if (zone_watermark_ok(zone, order, mark, 3658 ac->highest_zoneidx, alloc_flags)) 3659 goto try_this_zone; 3660 3661 continue; 3662 } 3663 } 3664 3665 try_this_zone: 3666 page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order, 3667 gfp_mask, alloc_flags, ac->migratetype); 3668 if (page) { 3669 prep_new_page(page, order, gfp_mask, alloc_flags); 3670 3671 /* 3672 * If this is a high-order atomic allocation then check 3673 * if the pageblock should be reserved for the future 3674 */ 3675 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3676 reserve_highatomic_pageblock(page, order, zone); 3677 3678 return page; 3679 } else { 3680 if (cond_accept_memory(zone, order, alloc_flags)) 3681 goto try_this_zone; 3682 3683 /* Try again if zone has deferred pages */ 3684 if (deferred_pages_enabled()) { 3685 if (_deferred_grow_zone(zone, order)) 3686 goto try_this_zone; 3687 } 3688 } 3689 } 3690 3691 /* 3692 * It's possible on a UMA machine to get through all zones that are 3693 * fragmented. If avoiding fragmentation, reset and try again. 3694 */ 3695 if (no_fallback && !defrag_mode) { 3696 alloc_flags &= ~ALLOC_NOFRAGMENT; 3697 goto retry; 3698 } 3699 3700 return NULL; 3701 } 3702 3703 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3704 { 3705 unsigned int filter = SHOW_MEM_FILTER_NODES; 3706 3707 /* 3708 * This documents exceptions given to allocations in certain 3709 * contexts that are allowed to allocate outside current's set 3710 * of allowed nodes. 3711 */ 3712 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3713 if (tsk_is_oom_victim(current) || 3714 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3715 filter &= ~SHOW_MEM_FILTER_NODES; 3716 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3717 filter &= ~SHOW_MEM_FILTER_NODES; 3718 3719 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3720 } 3721 3722 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3723 { 3724 struct va_format vaf; 3725 va_list args; 3726 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3727 3728 if ((gfp_mask & __GFP_NOWARN) || 3729 !__ratelimit(&nopage_rs) || 3730 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3731 return; 3732 3733 va_start(args, fmt); 3734 vaf.fmt = fmt; 3735 vaf.va = &args; 3736 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3737 current->comm, &vaf, gfp_mask, &gfp_mask, 3738 nodemask_pr_args(nodemask)); 3739 va_end(args); 3740 3741 cpuset_print_current_mems_allowed(); 3742 pr_cont("\n"); 3743 dump_stack(); 3744 warn_alloc_show_mem(gfp_mask, nodemask); 3745 } 3746 3747 static inline struct page * 3748 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3749 unsigned int alloc_flags, 3750 const struct alloc_context *ac) 3751 { 3752 struct page *page; 3753 3754 page = get_page_from_freelist(gfp_mask, order, 3755 alloc_flags|ALLOC_CPUSET, ac); 3756 /* 3757 * fallback to ignore cpuset restriction if our nodes 3758 * are depleted 3759 */ 3760 if (!page) 3761 page = get_page_from_freelist(gfp_mask, order, 3762 alloc_flags, ac); 3763 return page; 3764 } 3765 3766 static inline struct page * 3767 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3768 const struct alloc_context *ac, unsigned long *did_some_progress) 3769 { 3770 struct oom_control oc = { 3771 .zonelist = ac->zonelist, 3772 .nodemask = ac->nodemask, 3773 .memcg = NULL, 3774 .gfp_mask = gfp_mask, 3775 .order = order, 3776 }; 3777 struct page *page; 3778 3779 *did_some_progress = 0; 3780 3781 /* 3782 * Acquire the oom lock. If that fails, somebody else is 3783 * making progress for us. 3784 */ 3785 if (!mutex_trylock(&oom_lock)) { 3786 *did_some_progress = 1; 3787 schedule_timeout_uninterruptible(1); 3788 return NULL; 3789 } 3790 3791 /* 3792 * Go through the zonelist yet one more time, keep very high watermark 3793 * here, this is only to catch a parallel oom killing, we must fail if 3794 * we're still under heavy pressure. But make sure that this reclaim 3795 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3796 * allocation which will never fail due to oom_lock already held. 3797 */ 3798 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3799 ~__GFP_DIRECT_RECLAIM, order, 3800 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3801 if (page) 3802 goto out; 3803 3804 /* Coredumps can quickly deplete all memory reserves */ 3805 if (current->flags & PF_DUMPCORE) 3806 goto out; 3807 /* The OOM killer will not help higher order allocs */ 3808 if (order > PAGE_ALLOC_COSTLY_ORDER) 3809 goto out; 3810 /* 3811 * We have already exhausted all our reclaim opportunities without any 3812 * success so it is time to admit defeat. We will skip the OOM killer 3813 * because it is very likely that the caller has a more reasonable 3814 * fallback than shooting a random task. 3815 * 3816 * The OOM killer may not free memory on a specific node. 3817 */ 3818 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3819 goto out; 3820 /* The OOM killer does not needlessly kill tasks for lowmem */ 3821 if (ac->highest_zoneidx < ZONE_NORMAL) 3822 goto out; 3823 if (pm_suspended_storage()) 3824 goto out; 3825 /* 3826 * XXX: GFP_NOFS allocations should rather fail than rely on 3827 * other request to make a forward progress. 3828 * We are in an unfortunate situation where out_of_memory cannot 3829 * do much for this context but let's try it to at least get 3830 * access to memory reserved if the current task is killed (see 3831 * out_of_memory). Once filesystems are ready to handle allocation 3832 * failures more gracefully we should just bail out here. 3833 */ 3834 3835 /* Exhausted what can be done so it's blame time */ 3836 if (out_of_memory(&oc) || 3837 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3838 *did_some_progress = 1; 3839 3840 /* 3841 * Help non-failing allocations by giving them access to memory 3842 * reserves 3843 */ 3844 if (gfp_mask & __GFP_NOFAIL) 3845 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3846 ALLOC_NO_WATERMARKS, ac); 3847 } 3848 out: 3849 mutex_unlock(&oom_lock); 3850 return page; 3851 } 3852 3853 /* 3854 * Maximum number of compaction retries with a progress before OOM 3855 * killer is consider as the only way to move forward. 3856 */ 3857 #define MAX_COMPACT_RETRIES 16 3858 3859 #ifdef CONFIG_COMPACTION 3860 /* Try memory compaction for high-order allocations before reclaim */ 3861 static struct page * 3862 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3863 unsigned int alloc_flags, const struct alloc_context *ac, 3864 enum compact_priority prio, enum compact_result *compact_result) 3865 { 3866 struct page *page = NULL; 3867 unsigned long pflags; 3868 unsigned int noreclaim_flag; 3869 3870 if (!order) 3871 return NULL; 3872 3873 psi_memstall_enter(&pflags); 3874 delayacct_compact_start(); 3875 noreclaim_flag = memalloc_noreclaim_save(); 3876 3877 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3878 prio, &page); 3879 3880 memalloc_noreclaim_restore(noreclaim_flag); 3881 psi_memstall_leave(&pflags); 3882 delayacct_compact_end(); 3883 3884 if (*compact_result == COMPACT_SKIPPED) 3885 return NULL; 3886 /* 3887 * At least in one zone compaction wasn't deferred or skipped, so let's 3888 * count a compaction stall 3889 */ 3890 count_vm_event(COMPACTSTALL); 3891 3892 /* Prep a captured page if available */ 3893 if (page) 3894 prep_new_page(page, order, gfp_mask, alloc_flags); 3895 3896 /* Try get a page from the freelist if available */ 3897 if (!page) 3898 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3899 3900 if (page) { 3901 struct zone *zone = page_zone(page); 3902 3903 zone->compact_blockskip_flush = false; 3904 compaction_defer_reset(zone, order, true); 3905 count_vm_event(COMPACTSUCCESS); 3906 return page; 3907 } 3908 3909 /* 3910 * It's bad if compaction run occurs and fails. The most likely reason 3911 * is that pages exist, but not enough to satisfy watermarks. 3912 */ 3913 count_vm_event(COMPACTFAIL); 3914 3915 cond_resched(); 3916 3917 return NULL; 3918 } 3919 3920 static inline bool 3921 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3922 enum compact_result compact_result, 3923 enum compact_priority *compact_priority, 3924 int *compaction_retries) 3925 { 3926 int max_retries = MAX_COMPACT_RETRIES; 3927 int min_priority; 3928 bool ret = false; 3929 int retries = *compaction_retries; 3930 enum compact_priority priority = *compact_priority; 3931 3932 if (!order) 3933 return false; 3934 3935 if (fatal_signal_pending(current)) 3936 return false; 3937 3938 /* 3939 * Compaction was skipped due to a lack of free order-0 3940 * migration targets. Continue if reclaim can help. 3941 */ 3942 if (compact_result == COMPACT_SKIPPED) { 3943 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3944 goto out; 3945 } 3946 3947 /* 3948 * Compaction managed to coalesce some page blocks, but the 3949 * allocation failed presumably due to a race. Retry some. 3950 */ 3951 if (compact_result == COMPACT_SUCCESS) { 3952 /* 3953 * !costly requests are much more important than 3954 * __GFP_RETRY_MAYFAIL costly ones because they are de 3955 * facto nofail and invoke OOM killer to move on while 3956 * costly can fail and users are ready to cope with 3957 * that. 1/4 retries is rather arbitrary but we would 3958 * need much more detailed feedback from compaction to 3959 * make a better decision. 3960 */ 3961 if (order > PAGE_ALLOC_COSTLY_ORDER) 3962 max_retries /= 4; 3963 3964 if (++(*compaction_retries) <= max_retries) { 3965 ret = true; 3966 goto out; 3967 } 3968 } 3969 3970 /* 3971 * Compaction failed. Retry with increasing priority. 3972 */ 3973 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3974 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3975 3976 if (*compact_priority > min_priority) { 3977 (*compact_priority)--; 3978 *compaction_retries = 0; 3979 ret = true; 3980 } 3981 out: 3982 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3983 return ret; 3984 } 3985 #else 3986 static inline struct page * 3987 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3988 unsigned int alloc_flags, const struct alloc_context *ac, 3989 enum compact_priority prio, enum compact_result *compact_result) 3990 { 3991 *compact_result = COMPACT_SKIPPED; 3992 return NULL; 3993 } 3994 3995 static inline bool 3996 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3997 enum compact_result compact_result, 3998 enum compact_priority *compact_priority, 3999 int *compaction_retries) 4000 { 4001 struct zone *zone; 4002 struct zoneref *z; 4003 4004 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4005 return false; 4006 4007 /* 4008 * There are setups with compaction disabled which would prefer to loop 4009 * inside the allocator rather than hit the oom killer prematurely. 4010 * Let's give them a good hope and keep retrying while the order-0 4011 * watermarks are OK. 4012 */ 4013 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4014 ac->highest_zoneidx, ac->nodemask) { 4015 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4016 ac->highest_zoneidx, alloc_flags)) 4017 return true; 4018 } 4019 return false; 4020 } 4021 #endif /* CONFIG_COMPACTION */ 4022 4023 #ifdef CONFIG_LOCKDEP 4024 static struct lockdep_map __fs_reclaim_map = 4025 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4026 4027 static bool __need_reclaim(gfp_t gfp_mask) 4028 { 4029 /* no reclaim without waiting on it */ 4030 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4031 return false; 4032 4033 /* this guy won't enter reclaim */ 4034 if (current->flags & PF_MEMALLOC) 4035 return false; 4036 4037 if (gfp_mask & __GFP_NOLOCKDEP) 4038 return false; 4039 4040 return true; 4041 } 4042 4043 void __fs_reclaim_acquire(unsigned long ip) 4044 { 4045 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 4046 } 4047 4048 void __fs_reclaim_release(unsigned long ip) 4049 { 4050 lock_release(&__fs_reclaim_map, ip); 4051 } 4052 4053 void fs_reclaim_acquire(gfp_t gfp_mask) 4054 { 4055 gfp_mask = current_gfp_context(gfp_mask); 4056 4057 if (__need_reclaim(gfp_mask)) { 4058 if (gfp_mask & __GFP_FS) 4059 __fs_reclaim_acquire(_RET_IP_); 4060 4061 #ifdef CONFIG_MMU_NOTIFIER 4062 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4063 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4064 #endif 4065 4066 } 4067 } 4068 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4069 4070 void fs_reclaim_release(gfp_t gfp_mask) 4071 { 4072 gfp_mask = current_gfp_context(gfp_mask); 4073 4074 if (__need_reclaim(gfp_mask)) { 4075 if (gfp_mask & __GFP_FS) 4076 __fs_reclaim_release(_RET_IP_); 4077 } 4078 } 4079 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4080 #endif 4081 4082 /* 4083 * Zonelists may change due to hotplug during allocation. Detect when zonelists 4084 * have been rebuilt so allocation retries. Reader side does not lock and 4085 * retries the allocation if zonelist changes. Writer side is protected by the 4086 * embedded spin_lock. 4087 */ 4088 static DEFINE_SEQLOCK(zonelist_update_seq); 4089 4090 static unsigned int zonelist_iter_begin(void) 4091 { 4092 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4093 return read_seqbegin(&zonelist_update_seq); 4094 4095 return 0; 4096 } 4097 4098 static unsigned int check_retry_zonelist(unsigned int seq) 4099 { 4100 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 4101 return read_seqretry(&zonelist_update_seq, seq); 4102 4103 return seq; 4104 } 4105 4106 /* Perform direct synchronous page reclaim */ 4107 static unsigned long 4108 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4109 const struct alloc_context *ac) 4110 { 4111 unsigned int noreclaim_flag; 4112 unsigned long progress; 4113 4114 cond_resched(); 4115 4116 /* We now go into synchronous reclaim */ 4117 cpuset_memory_pressure_bump(); 4118 fs_reclaim_acquire(gfp_mask); 4119 noreclaim_flag = memalloc_noreclaim_save(); 4120 4121 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4122 ac->nodemask); 4123 4124 memalloc_noreclaim_restore(noreclaim_flag); 4125 fs_reclaim_release(gfp_mask); 4126 4127 cond_resched(); 4128 4129 return progress; 4130 } 4131 4132 /* The really slow allocator path where we enter direct reclaim */ 4133 static inline struct page * 4134 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4135 unsigned int alloc_flags, const struct alloc_context *ac, 4136 unsigned long *did_some_progress) 4137 { 4138 struct page *page = NULL; 4139 unsigned long pflags; 4140 bool drained = false; 4141 4142 psi_memstall_enter(&pflags); 4143 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4144 if (unlikely(!(*did_some_progress))) 4145 goto out; 4146 4147 retry: 4148 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4149 4150 /* 4151 * If an allocation failed after direct reclaim, it could be because 4152 * pages are pinned on the per-cpu lists or in high alloc reserves. 4153 * Shrink them and try again 4154 */ 4155 if (!page && !drained) { 4156 unreserve_highatomic_pageblock(ac, false); 4157 drain_all_pages(NULL); 4158 drained = true; 4159 goto retry; 4160 } 4161 out: 4162 psi_memstall_leave(&pflags); 4163 4164 return page; 4165 } 4166 4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4168 const struct alloc_context *ac) 4169 { 4170 struct zoneref *z; 4171 struct zone *zone; 4172 pg_data_t *last_pgdat = NULL; 4173 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4174 unsigned int reclaim_order; 4175 4176 if (defrag_mode) 4177 reclaim_order = max(order, pageblock_order); 4178 else 4179 reclaim_order = order; 4180 4181 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4182 ac->nodemask) { 4183 if (!managed_zone(zone)) 4184 continue; 4185 if (last_pgdat == zone->zone_pgdat) 4186 continue; 4187 wakeup_kswapd(zone, gfp_mask, reclaim_order, highest_zoneidx); 4188 last_pgdat = zone->zone_pgdat; 4189 } 4190 } 4191 4192 static inline unsigned int 4193 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4194 { 4195 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4196 4197 /* 4198 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4199 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4200 * to save two branches. 4201 */ 4202 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4203 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4204 4205 /* 4206 * The caller may dip into page reserves a bit more if the caller 4207 * cannot run direct reclaim, or if the caller has realtime scheduling 4208 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4209 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4210 */ 4211 alloc_flags |= (__force int) 4212 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4213 4214 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4215 /* 4216 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4217 * if it can't schedule. 4218 */ 4219 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4220 alloc_flags |= ALLOC_NON_BLOCK; 4221 4222 if (order > 0) 4223 alloc_flags |= ALLOC_HIGHATOMIC; 4224 } 4225 4226 /* 4227 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4228 * GFP_ATOMIC) rather than fail, see the comment for 4229 * cpuset_current_node_allowed(). 4230 */ 4231 if (alloc_flags & ALLOC_MIN_RESERVE) 4232 alloc_flags &= ~ALLOC_CPUSET; 4233 } else if (unlikely(rt_or_dl_task(current)) && in_task()) 4234 alloc_flags |= ALLOC_MIN_RESERVE; 4235 4236 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4237 4238 if (defrag_mode) 4239 alloc_flags |= ALLOC_NOFRAGMENT; 4240 4241 return alloc_flags; 4242 } 4243 4244 static bool oom_reserves_allowed(struct task_struct *tsk) 4245 { 4246 if (!tsk_is_oom_victim(tsk)) 4247 return false; 4248 4249 /* 4250 * !MMU doesn't have oom reaper so give access to memory reserves 4251 * only to the thread with TIF_MEMDIE set 4252 */ 4253 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4254 return false; 4255 4256 return true; 4257 } 4258 4259 /* 4260 * Distinguish requests which really need access to full memory 4261 * reserves from oom victims which can live with a portion of it 4262 */ 4263 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4264 { 4265 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4266 return 0; 4267 if (gfp_mask & __GFP_MEMALLOC) 4268 return ALLOC_NO_WATERMARKS; 4269 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4270 return ALLOC_NO_WATERMARKS; 4271 if (!in_interrupt()) { 4272 if (current->flags & PF_MEMALLOC) 4273 return ALLOC_NO_WATERMARKS; 4274 else if (oom_reserves_allowed(current)) 4275 return ALLOC_OOM; 4276 } 4277 4278 return 0; 4279 } 4280 4281 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4282 { 4283 return !!__gfp_pfmemalloc_flags(gfp_mask); 4284 } 4285 4286 /* 4287 * Checks whether it makes sense to retry the reclaim to make a forward progress 4288 * for the given allocation request. 4289 * 4290 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4291 * without success, or when we couldn't even meet the watermark if we 4292 * reclaimed all remaining pages on the LRU lists. 4293 * 4294 * Returns true if a retry is viable or false to enter the oom path. 4295 */ 4296 static inline bool 4297 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4298 struct alloc_context *ac, int alloc_flags, 4299 bool did_some_progress, int *no_progress_loops) 4300 { 4301 struct zone *zone; 4302 struct zoneref *z; 4303 bool ret = false; 4304 4305 /* 4306 * Costly allocations might have made a progress but this doesn't mean 4307 * their order will become available due to high fragmentation so 4308 * always increment the no progress counter for them 4309 */ 4310 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4311 *no_progress_loops = 0; 4312 else 4313 (*no_progress_loops)++; 4314 4315 if (*no_progress_loops > MAX_RECLAIM_RETRIES) 4316 goto out; 4317 4318 4319 /* 4320 * Keep reclaiming pages while there is a chance this will lead 4321 * somewhere. If none of the target zones can satisfy our allocation 4322 * request even if all reclaimable pages are considered then we are 4323 * screwed and have to go OOM. 4324 */ 4325 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4326 ac->highest_zoneidx, ac->nodemask) { 4327 unsigned long available; 4328 unsigned long reclaimable; 4329 unsigned long min_wmark = min_wmark_pages(zone); 4330 bool wmark; 4331 4332 if (cpusets_enabled() && 4333 (alloc_flags & ALLOC_CPUSET) && 4334 !__cpuset_zone_allowed(zone, gfp_mask)) 4335 continue; 4336 4337 available = reclaimable = zone_reclaimable_pages(zone); 4338 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4339 4340 /* 4341 * Would the allocation succeed if we reclaimed all 4342 * reclaimable pages? 4343 */ 4344 wmark = __zone_watermark_ok(zone, order, min_wmark, 4345 ac->highest_zoneidx, alloc_flags, available); 4346 trace_reclaim_retry_zone(z, order, reclaimable, 4347 available, min_wmark, *no_progress_loops, wmark); 4348 if (wmark) { 4349 ret = true; 4350 break; 4351 } 4352 } 4353 4354 /* 4355 * Memory allocation/reclaim might be called from a WQ context and the 4356 * current implementation of the WQ concurrency control doesn't 4357 * recognize that a particular WQ is congested if the worker thread is 4358 * looping without ever sleeping. Therefore we have to do a short sleep 4359 * here rather than calling cond_resched(). 4360 */ 4361 if (current->flags & PF_WQ_WORKER) 4362 schedule_timeout_uninterruptible(1); 4363 else 4364 cond_resched(); 4365 out: 4366 /* Before OOM, exhaust highatomic_reserve */ 4367 if (!ret) 4368 return unreserve_highatomic_pageblock(ac, true); 4369 4370 return ret; 4371 } 4372 4373 static inline bool 4374 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4375 { 4376 /* 4377 * It's possible that cpuset's mems_allowed and the nodemask from 4378 * mempolicy don't intersect. This should be normally dealt with by 4379 * policy_nodemask(), but it's possible to race with cpuset update in 4380 * such a way the check therein was true, and then it became false 4381 * before we got our cpuset_mems_cookie here. 4382 * This assumes that for all allocations, ac->nodemask can come only 4383 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4384 * when it does not intersect with the cpuset restrictions) or the 4385 * caller can deal with a violated nodemask. 4386 */ 4387 if (cpusets_enabled() && ac->nodemask && 4388 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4389 ac->nodemask = NULL; 4390 return true; 4391 } 4392 4393 /* 4394 * When updating a task's mems_allowed or mempolicy nodemask, it is 4395 * possible to race with parallel threads in such a way that our 4396 * allocation can fail while the mask is being updated. If we are about 4397 * to fail, check if the cpuset changed during allocation and if so, 4398 * retry. 4399 */ 4400 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4401 return true; 4402 4403 return false; 4404 } 4405 4406 static inline struct page * 4407 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4408 struct alloc_context *ac) 4409 { 4410 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4411 bool can_compact = gfp_compaction_allowed(gfp_mask); 4412 bool nofail = gfp_mask & __GFP_NOFAIL; 4413 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4414 struct page *page = NULL; 4415 unsigned int alloc_flags; 4416 unsigned long did_some_progress; 4417 enum compact_priority compact_priority; 4418 enum compact_result compact_result; 4419 int compaction_retries; 4420 int no_progress_loops; 4421 unsigned int cpuset_mems_cookie; 4422 unsigned int zonelist_iter_cookie; 4423 int reserve_flags; 4424 4425 if (unlikely(nofail)) { 4426 /* 4427 * We most definitely don't want callers attempting to 4428 * allocate greater than order-1 page units with __GFP_NOFAIL. 4429 */ 4430 WARN_ON_ONCE(order > 1); 4431 /* 4432 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM, 4433 * otherwise, we may result in lockup. 4434 */ 4435 WARN_ON_ONCE(!can_direct_reclaim); 4436 /* 4437 * PF_MEMALLOC request from this context is rather bizarre 4438 * because we cannot reclaim anything and only can loop waiting 4439 * for somebody to do a work for us. 4440 */ 4441 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4442 } 4443 4444 restart: 4445 compaction_retries = 0; 4446 no_progress_loops = 0; 4447 compact_result = COMPACT_SKIPPED; 4448 compact_priority = DEF_COMPACT_PRIORITY; 4449 cpuset_mems_cookie = read_mems_allowed_begin(); 4450 zonelist_iter_cookie = zonelist_iter_begin(); 4451 4452 /* 4453 * The fast path uses conservative alloc_flags to succeed only until 4454 * kswapd needs to be woken up, and to avoid the cost of setting up 4455 * alloc_flags precisely. So we do that now. 4456 */ 4457 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4458 4459 /* 4460 * We need to recalculate the starting point for the zonelist iterator 4461 * because we might have used different nodemask in the fast path, or 4462 * there was a cpuset modification and we are retrying - otherwise we 4463 * could end up iterating over non-eligible zones endlessly. 4464 */ 4465 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4466 ac->highest_zoneidx, ac->nodemask); 4467 if (!zonelist_zone(ac->preferred_zoneref)) 4468 goto nopage; 4469 4470 /* 4471 * Check for insane configurations where the cpuset doesn't contain 4472 * any suitable zone to satisfy the request - e.g. non-movable 4473 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4474 */ 4475 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4476 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4477 ac->highest_zoneidx, 4478 &cpuset_current_mems_allowed); 4479 if (!zonelist_zone(z)) 4480 goto nopage; 4481 } 4482 4483 if (alloc_flags & ALLOC_KSWAPD) 4484 wake_all_kswapds(order, gfp_mask, ac); 4485 4486 /* 4487 * The adjusted alloc_flags might result in immediate success, so try 4488 * that first 4489 */ 4490 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4491 if (page) 4492 goto got_pg; 4493 4494 /* 4495 * For costly allocations, try direct compaction first, as it's likely 4496 * that we have enough base pages and don't need to reclaim. For non- 4497 * movable high-order allocations, do that as well, as compaction will 4498 * try prevent permanent fragmentation by migrating from blocks of the 4499 * same migratetype. 4500 * Don't try this for allocations that are allowed to ignore 4501 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4502 */ 4503 if (can_direct_reclaim && can_compact && 4504 (costly_order || 4505 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4506 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4507 page = __alloc_pages_direct_compact(gfp_mask, order, 4508 alloc_flags, ac, 4509 INIT_COMPACT_PRIORITY, 4510 &compact_result); 4511 if (page) 4512 goto got_pg; 4513 4514 /* 4515 * Checks for costly allocations with __GFP_NORETRY, which 4516 * includes some THP page fault allocations 4517 */ 4518 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4519 /* 4520 * If allocating entire pageblock(s) and compaction 4521 * failed because all zones are below low watermarks 4522 * or is prohibited because it recently failed at this 4523 * order, fail immediately unless the allocator has 4524 * requested compaction and reclaim retry. 4525 * 4526 * Reclaim is 4527 * - potentially very expensive because zones are far 4528 * below their low watermarks or this is part of very 4529 * bursty high order allocations, 4530 * - not guaranteed to help because isolate_freepages() 4531 * may not iterate over freed pages as part of its 4532 * linear scan, and 4533 * - unlikely to make entire pageblocks free on its 4534 * own. 4535 */ 4536 if (compact_result == COMPACT_SKIPPED || 4537 compact_result == COMPACT_DEFERRED) 4538 goto nopage; 4539 4540 /* 4541 * Looks like reclaim/compaction is worth trying, but 4542 * sync compaction could be very expensive, so keep 4543 * using async compaction. 4544 */ 4545 compact_priority = INIT_COMPACT_PRIORITY; 4546 } 4547 } 4548 4549 retry: 4550 /* 4551 * Deal with possible cpuset update races or zonelist updates to avoid 4552 * infinite retries. 4553 */ 4554 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4555 check_retry_zonelist(zonelist_iter_cookie)) 4556 goto restart; 4557 4558 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4559 if (alloc_flags & ALLOC_KSWAPD) 4560 wake_all_kswapds(order, gfp_mask, ac); 4561 4562 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4563 if (reserve_flags) 4564 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4565 (alloc_flags & ALLOC_KSWAPD); 4566 4567 /* 4568 * Reset the nodemask and zonelist iterators if memory policies can be 4569 * ignored. These allocations are high priority and system rather than 4570 * user oriented. 4571 */ 4572 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4573 ac->nodemask = NULL; 4574 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4575 ac->highest_zoneidx, ac->nodemask); 4576 } 4577 4578 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4579 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4580 if (page) 4581 goto got_pg; 4582 4583 /* Caller is not willing to reclaim, we can't balance anything */ 4584 if (!can_direct_reclaim) 4585 goto nopage; 4586 4587 /* Avoid recursion of direct reclaim */ 4588 if (current->flags & PF_MEMALLOC) 4589 goto nopage; 4590 4591 /* Try direct reclaim and then allocating */ 4592 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4593 &did_some_progress); 4594 if (page) 4595 goto got_pg; 4596 4597 /* Try direct compaction and then allocating */ 4598 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4599 compact_priority, &compact_result); 4600 if (page) 4601 goto got_pg; 4602 4603 /* Do not loop if specifically requested */ 4604 if (gfp_mask & __GFP_NORETRY) 4605 goto nopage; 4606 4607 /* 4608 * Do not retry costly high order allocations unless they are 4609 * __GFP_RETRY_MAYFAIL and we can compact 4610 */ 4611 if (costly_order && (!can_compact || 4612 !(gfp_mask & __GFP_RETRY_MAYFAIL))) 4613 goto nopage; 4614 4615 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4616 did_some_progress > 0, &no_progress_loops)) 4617 goto retry; 4618 4619 /* 4620 * It doesn't make any sense to retry for the compaction if the order-0 4621 * reclaim is not able to make any progress because the current 4622 * implementation of the compaction depends on the sufficient amount 4623 * of free memory (see __compaction_suitable) 4624 */ 4625 if (did_some_progress > 0 && can_compact && 4626 should_compact_retry(ac, order, alloc_flags, 4627 compact_result, &compact_priority, 4628 &compaction_retries)) 4629 goto retry; 4630 4631 /* Reclaim/compaction failed to prevent the fallback */ 4632 if (defrag_mode && (alloc_flags & ALLOC_NOFRAGMENT)) { 4633 alloc_flags &= ~ALLOC_NOFRAGMENT; 4634 goto retry; 4635 } 4636 4637 /* 4638 * Deal with possible cpuset update races or zonelist updates to avoid 4639 * a unnecessary OOM kill. 4640 */ 4641 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4642 check_retry_zonelist(zonelist_iter_cookie)) 4643 goto restart; 4644 4645 /* Reclaim has failed us, start killing things */ 4646 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4647 if (page) 4648 goto got_pg; 4649 4650 /* Avoid allocations with no watermarks from looping endlessly */ 4651 if (tsk_is_oom_victim(current) && 4652 (alloc_flags & ALLOC_OOM || 4653 (gfp_mask & __GFP_NOMEMALLOC))) 4654 goto nopage; 4655 4656 /* Retry as long as the OOM killer is making progress */ 4657 if (did_some_progress) { 4658 no_progress_loops = 0; 4659 goto retry; 4660 } 4661 4662 nopage: 4663 /* 4664 * Deal with possible cpuset update races or zonelist updates to avoid 4665 * a unnecessary OOM kill. 4666 */ 4667 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4668 check_retry_zonelist(zonelist_iter_cookie)) 4669 goto restart; 4670 4671 /* 4672 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4673 * we always retry 4674 */ 4675 if (unlikely(nofail)) { 4676 /* 4677 * Lacking direct_reclaim we can't do anything to reclaim memory, 4678 * we disregard these unreasonable nofail requests and still 4679 * return NULL 4680 */ 4681 if (!can_direct_reclaim) 4682 goto fail; 4683 4684 /* 4685 * Help non-failing allocations by giving some access to memory 4686 * reserves normally used for high priority non-blocking 4687 * allocations but do not use ALLOC_NO_WATERMARKS because this 4688 * could deplete whole memory reserves which would just make 4689 * the situation worse. 4690 */ 4691 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4692 if (page) 4693 goto got_pg; 4694 4695 cond_resched(); 4696 goto retry; 4697 } 4698 fail: 4699 warn_alloc(gfp_mask, ac->nodemask, 4700 "page allocation failure: order:%u", order); 4701 got_pg: 4702 return page; 4703 } 4704 4705 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4706 int preferred_nid, nodemask_t *nodemask, 4707 struct alloc_context *ac, gfp_t *alloc_gfp, 4708 unsigned int *alloc_flags) 4709 { 4710 ac->highest_zoneidx = gfp_zone(gfp_mask); 4711 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4712 ac->nodemask = nodemask; 4713 ac->migratetype = gfp_migratetype(gfp_mask); 4714 4715 if (cpusets_enabled()) { 4716 *alloc_gfp |= __GFP_HARDWALL; 4717 /* 4718 * When we are in the interrupt context, it is irrelevant 4719 * to the current task context. It means that any node ok. 4720 */ 4721 if (in_task() && !ac->nodemask) 4722 ac->nodemask = &cpuset_current_mems_allowed; 4723 else 4724 *alloc_flags |= ALLOC_CPUSET; 4725 } 4726 4727 might_alloc(gfp_mask); 4728 4729 /* 4730 * Don't invoke should_fail logic, since it may call 4731 * get_random_u32() and printk() which need to spin_lock. 4732 */ 4733 if (!(*alloc_flags & ALLOC_TRYLOCK) && 4734 should_fail_alloc_page(gfp_mask, order)) 4735 return false; 4736 4737 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4738 4739 /* Dirty zone balancing only done in the fast path */ 4740 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4741 4742 /* 4743 * The preferred zone is used for statistics but crucially it is 4744 * also used as the starting point for the zonelist iterator. It 4745 * may get reset for allocations that ignore memory policies. 4746 */ 4747 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4748 ac->highest_zoneidx, ac->nodemask); 4749 4750 return true; 4751 } 4752 4753 /* 4754 * __alloc_pages_bulk - Allocate a number of order-0 pages to an array 4755 * @gfp: GFP flags for the allocation 4756 * @preferred_nid: The preferred NUMA node ID to allocate from 4757 * @nodemask: Set of nodes to allocate from, may be NULL 4758 * @nr_pages: The number of pages desired in the array 4759 * @page_array: Array to store the pages 4760 * 4761 * This is a batched version of the page allocator that attempts to 4762 * allocate nr_pages quickly. Pages are added to the page_array. 4763 * 4764 * Note that only NULL elements are populated with pages and nr_pages 4765 * is the maximum number of pages that will be stored in the array. 4766 * 4767 * Returns the number of pages in the array. 4768 */ 4769 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid, 4770 nodemask_t *nodemask, int nr_pages, 4771 struct page **page_array) 4772 { 4773 struct page *page; 4774 unsigned long __maybe_unused UP_flags; 4775 struct zone *zone; 4776 struct zoneref *z; 4777 struct per_cpu_pages *pcp; 4778 struct list_head *pcp_list; 4779 struct alloc_context ac; 4780 gfp_t alloc_gfp; 4781 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4782 int nr_populated = 0, nr_account = 0; 4783 4784 /* 4785 * Skip populated array elements to determine if any pages need 4786 * to be allocated before disabling IRQs. 4787 */ 4788 while (nr_populated < nr_pages && page_array[nr_populated]) 4789 nr_populated++; 4790 4791 /* No pages requested? */ 4792 if (unlikely(nr_pages <= 0)) 4793 goto out; 4794 4795 /* Already populated array? */ 4796 if (unlikely(nr_pages - nr_populated == 0)) 4797 goto out; 4798 4799 /* Bulk allocator does not support memcg accounting. */ 4800 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4801 goto failed; 4802 4803 /* Use the single page allocator for one page. */ 4804 if (nr_pages - nr_populated == 1) 4805 goto failed; 4806 4807 #ifdef CONFIG_PAGE_OWNER 4808 /* 4809 * PAGE_OWNER may recurse into the allocator to allocate space to 4810 * save the stack with pagesets.lock held. Releasing/reacquiring 4811 * removes much of the performance benefit of bulk allocation so 4812 * force the caller to allocate one page at a time as it'll have 4813 * similar performance to added complexity to the bulk allocator. 4814 */ 4815 if (static_branch_unlikely(&page_owner_inited)) 4816 goto failed; 4817 #endif 4818 4819 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4820 gfp &= gfp_allowed_mask; 4821 alloc_gfp = gfp; 4822 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4823 goto out; 4824 gfp = alloc_gfp; 4825 4826 /* Find an allowed local zone that meets the low watermark. */ 4827 z = ac.preferred_zoneref; 4828 for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) { 4829 unsigned long mark; 4830 4831 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4832 !__cpuset_zone_allowed(zone, gfp)) { 4833 continue; 4834 } 4835 4836 if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) && 4837 zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) { 4838 goto failed; 4839 } 4840 4841 cond_accept_memory(zone, 0, alloc_flags); 4842 retry_this_zone: 4843 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4844 if (zone_watermark_fast(zone, 0, mark, 4845 zonelist_zone_idx(ac.preferred_zoneref), 4846 alloc_flags, gfp)) { 4847 break; 4848 } 4849 4850 if (cond_accept_memory(zone, 0, alloc_flags)) 4851 goto retry_this_zone; 4852 4853 /* Try again if zone has deferred pages */ 4854 if (deferred_pages_enabled()) { 4855 if (_deferred_grow_zone(zone, 0)) 4856 goto retry_this_zone; 4857 } 4858 } 4859 4860 /* 4861 * If there are no allowed local zones that meets the watermarks then 4862 * try to allocate a single page and reclaim if necessary. 4863 */ 4864 if (unlikely(!zone)) 4865 goto failed; 4866 4867 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4868 pcp_trylock_prepare(UP_flags); 4869 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4870 if (!pcp) 4871 goto failed_irq; 4872 4873 /* Attempt the batch allocation */ 4874 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4875 while (nr_populated < nr_pages) { 4876 4877 /* Skip existing pages */ 4878 if (page_array[nr_populated]) { 4879 nr_populated++; 4880 continue; 4881 } 4882 4883 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4884 pcp, pcp_list); 4885 if (unlikely(!page)) { 4886 /* Try and allocate at least one page */ 4887 if (!nr_account) { 4888 pcp_spin_unlock(pcp); 4889 goto failed_irq; 4890 } 4891 break; 4892 } 4893 nr_account++; 4894 4895 prep_new_page(page, 0, gfp, 0); 4896 set_page_refcounted(page); 4897 page_array[nr_populated++] = page; 4898 } 4899 4900 pcp_spin_unlock(pcp); 4901 pcp_trylock_finish(UP_flags); 4902 4903 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4904 zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account); 4905 4906 out: 4907 return nr_populated; 4908 4909 failed_irq: 4910 pcp_trylock_finish(UP_flags); 4911 4912 failed: 4913 page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask); 4914 if (page) 4915 page_array[nr_populated++] = page; 4916 goto out; 4917 } 4918 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof); 4919 4920 /* 4921 * This is the 'heart' of the zoned buddy allocator. 4922 */ 4923 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order, 4924 int preferred_nid, nodemask_t *nodemask) 4925 { 4926 struct page *page; 4927 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4928 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4929 struct alloc_context ac = { }; 4930 4931 /* 4932 * There are several places where we assume that the order value is sane 4933 * so bail out early if the request is out of bound. 4934 */ 4935 if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp)) 4936 return NULL; 4937 4938 gfp &= gfp_allowed_mask; 4939 /* 4940 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4941 * resp. GFP_NOIO which has to be inherited for all allocation requests 4942 * from a particular context which has been marked by 4943 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4944 * movable zones are not used during allocation. 4945 */ 4946 gfp = current_gfp_context(gfp); 4947 alloc_gfp = gfp; 4948 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4949 &alloc_gfp, &alloc_flags)) 4950 return NULL; 4951 4952 /* 4953 * Forbid the first pass from falling back to types that fragment 4954 * memory until all local zones are considered. 4955 */ 4956 alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp); 4957 4958 /* First allocation attempt */ 4959 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4960 if (likely(page)) 4961 goto out; 4962 4963 alloc_gfp = gfp; 4964 ac.spread_dirty_pages = false; 4965 4966 /* 4967 * Restore the original nodemask if it was potentially replaced with 4968 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4969 */ 4970 ac.nodemask = nodemask; 4971 4972 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4973 4974 out: 4975 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4976 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4977 free_frozen_pages(page, order); 4978 page = NULL; 4979 } 4980 4981 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4982 kmsan_alloc_page(page, order, alloc_gfp); 4983 4984 return page; 4985 } 4986 EXPORT_SYMBOL(__alloc_frozen_pages_noprof); 4987 4988 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order, 4989 int preferred_nid, nodemask_t *nodemask) 4990 { 4991 struct page *page; 4992 4993 page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask); 4994 if (page) 4995 set_page_refcounted(page); 4996 return page; 4997 } 4998 EXPORT_SYMBOL(__alloc_pages_noprof); 4999 5000 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid, 5001 nodemask_t *nodemask) 5002 { 5003 struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order, 5004 preferred_nid, nodemask); 5005 return page_rmappable_folio(page); 5006 } 5007 EXPORT_SYMBOL(__folio_alloc_noprof); 5008 5009 /* 5010 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5011 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5012 * you need to access high mem. 5013 */ 5014 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order) 5015 { 5016 struct page *page; 5017 5018 page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order); 5019 if (!page) 5020 return 0; 5021 return (unsigned long) page_address(page); 5022 } 5023 EXPORT_SYMBOL(get_free_pages_noprof); 5024 5025 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask) 5026 { 5027 return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0); 5028 } 5029 EXPORT_SYMBOL(get_zeroed_page_noprof); 5030 5031 /** 5032 * ___free_pages - Free pages allocated with alloc_pages(). 5033 * @page: The page pointer returned from alloc_pages(). 5034 * @order: The order of the allocation. 5035 * @fpi_flags: Free Page Internal flags. 5036 * 5037 * This function can free multi-page allocations that are not compound 5038 * pages. It does not check that the @order passed in matches that of 5039 * the allocation, so it is easy to leak memory. Freeing more memory 5040 * than was allocated will probably emit a warning. 5041 * 5042 * If the last reference to this page is speculative, it will be released 5043 * by put_page() which only frees the first page of a non-compound 5044 * allocation. To prevent the remaining pages from being leaked, we free 5045 * the subsequent pages here. If you want to use the page's reference 5046 * count to decide when to free the allocation, you should allocate a 5047 * compound page, and use put_page() instead of __free_pages(). 5048 * 5049 * Context: May be called in interrupt context or while holding a normal 5050 * spinlock, but not in NMI context or while holding a raw spinlock. 5051 */ 5052 static void ___free_pages(struct page *page, unsigned int order, 5053 fpi_t fpi_flags) 5054 { 5055 /* get PageHead before we drop reference */ 5056 int head = PageHead(page); 5057 /* get alloc tag in case the page is released by others */ 5058 struct alloc_tag *tag = pgalloc_tag_get(page); 5059 5060 if (put_page_testzero(page)) 5061 __free_frozen_pages(page, order, fpi_flags); 5062 else if (!head) { 5063 pgalloc_tag_sub_pages(tag, (1 << order) - 1); 5064 while (order-- > 0) 5065 __free_frozen_pages(page + (1 << order), order, 5066 fpi_flags); 5067 } 5068 } 5069 void __free_pages(struct page *page, unsigned int order) 5070 { 5071 ___free_pages(page, order, FPI_NONE); 5072 } 5073 EXPORT_SYMBOL(__free_pages); 5074 5075 /* 5076 * Can be called while holding raw_spin_lock or from IRQ and NMI for any 5077 * page type (not only those that came from alloc_pages_nolock) 5078 */ 5079 void free_pages_nolock(struct page *page, unsigned int order) 5080 { 5081 ___free_pages(page, order, FPI_TRYLOCK); 5082 } 5083 5084 void free_pages(unsigned long addr, unsigned int order) 5085 { 5086 if (addr != 0) { 5087 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5088 __free_pages(virt_to_page((void *)addr), order); 5089 } 5090 } 5091 5092 EXPORT_SYMBOL(free_pages); 5093 5094 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5095 size_t size) 5096 { 5097 if (addr) { 5098 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5099 struct page *page = virt_to_page((void *)addr); 5100 struct page *last = page + nr; 5101 5102 split_page_owner(page, order, 0); 5103 pgalloc_tag_split(page_folio(page), order, 0); 5104 split_page_memcg(page, order); 5105 while (page < --last) 5106 set_page_refcounted(last); 5107 5108 last = page + (1UL << order); 5109 for (page += nr; page < last; page++) 5110 __free_pages_ok(page, 0, FPI_TO_TAIL); 5111 } 5112 return (void *)addr; 5113 } 5114 5115 /** 5116 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5117 * @size: the number of bytes to allocate 5118 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5119 * 5120 * This function is similar to alloc_pages(), except that it allocates the 5121 * minimum number of pages to satisfy the request. alloc_pages() can only 5122 * allocate memory in power-of-two pages. 5123 * 5124 * This function is also limited by MAX_PAGE_ORDER. 5125 * 5126 * Memory allocated by this function must be released by free_pages_exact(). 5127 * 5128 * Return: pointer to the allocated area or %NULL in case of error. 5129 */ 5130 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask) 5131 { 5132 unsigned int order = get_order(size); 5133 unsigned long addr; 5134 5135 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5136 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5137 5138 addr = get_free_pages_noprof(gfp_mask, order); 5139 return make_alloc_exact(addr, order, size); 5140 } 5141 EXPORT_SYMBOL(alloc_pages_exact_noprof); 5142 5143 /** 5144 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5145 * pages on a node. 5146 * @nid: the preferred node ID where memory should be allocated 5147 * @size: the number of bytes to allocate 5148 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5149 * 5150 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5151 * back. 5152 * 5153 * Return: pointer to the allocated area or %NULL in case of error. 5154 */ 5155 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask) 5156 { 5157 unsigned int order = get_order(size); 5158 struct page *p; 5159 5160 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5161 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5162 5163 p = alloc_pages_node_noprof(nid, gfp_mask, order); 5164 if (!p) 5165 return NULL; 5166 return make_alloc_exact((unsigned long)page_address(p), order, size); 5167 } 5168 5169 /** 5170 * free_pages_exact - release memory allocated via alloc_pages_exact() 5171 * @virt: the value returned by alloc_pages_exact. 5172 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5173 * 5174 * Release the memory allocated by a previous call to alloc_pages_exact. 5175 */ 5176 void free_pages_exact(void *virt, size_t size) 5177 { 5178 unsigned long addr = (unsigned long)virt; 5179 unsigned long end = addr + PAGE_ALIGN(size); 5180 5181 while (addr < end) { 5182 free_page(addr); 5183 addr += PAGE_SIZE; 5184 } 5185 } 5186 EXPORT_SYMBOL(free_pages_exact); 5187 5188 /** 5189 * nr_free_zone_pages - count number of pages beyond high watermark 5190 * @offset: The zone index of the highest zone 5191 * 5192 * nr_free_zone_pages() counts the number of pages which are beyond the 5193 * high watermark within all zones at or below a given zone index. For each 5194 * zone, the number of pages is calculated as: 5195 * 5196 * nr_free_zone_pages = managed_pages - high_pages 5197 * 5198 * Return: number of pages beyond high watermark. 5199 */ 5200 static unsigned long nr_free_zone_pages(int offset) 5201 { 5202 struct zoneref *z; 5203 struct zone *zone; 5204 5205 /* Just pick one node, since fallback list is circular */ 5206 unsigned long sum = 0; 5207 5208 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5209 5210 for_each_zone_zonelist(zone, z, zonelist, offset) { 5211 unsigned long size = zone_managed_pages(zone); 5212 unsigned long high = high_wmark_pages(zone); 5213 if (size > high) 5214 sum += size - high; 5215 } 5216 5217 return sum; 5218 } 5219 5220 /** 5221 * nr_free_buffer_pages - count number of pages beyond high watermark 5222 * 5223 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5224 * watermark within ZONE_DMA and ZONE_NORMAL. 5225 * 5226 * Return: number of pages beyond high watermark within ZONE_DMA and 5227 * ZONE_NORMAL. 5228 */ 5229 unsigned long nr_free_buffer_pages(void) 5230 { 5231 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5232 } 5233 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5234 5235 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5236 { 5237 zoneref->zone = zone; 5238 zoneref->zone_idx = zone_idx(zone); 5239 } 5240 5241 /* 5242 * Builds allocation fallback zone lists. 5243 * 5244 * Add all populated zones of a node to the zonelist. 5245 */ 5246 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5247 { 5248 struct zone *zone; 5249 enum zone_type zone_type = MAX_NR_ZONES; 5250 int nr_zones = 0; 5251 5252 do { 5253 zone_type--; 5254 zone = pgdat->node_zones + zone_type; 5255 if (populated_zone(zone)) { 5256 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5257 check_highest_zone(zone_type); 5258 } 5259 } while (zone_type); 5260 5261 return nr_zones; 5262 } 5263 5264 #ifdef CONFIG_NUMA 5265 5266 static int __parse_numa_zonelist_order(char *s) 5267 { 5268 /* 5269 * We used to support different zonelists modes but they turned 5270 * out to be just not useful. Let's keep the warning in place 5271 * if somebody still use the cmd line parameter so that we do 5272 * not fail it silently 5273 */ 5274 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5275 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5276 return -EINVAL; 5277 } 5278 return 0; 5279 } 5280 5281 static char numa_zonelist_order[] = "Node"; 5282 #define NUMA_ZONELIST_ORDER_LEN 16 5283 /* 5284 * sysctl handler for numa_zonelist_order 5285 */ 5286 static int numa_zonelist_order_handler(const struct ctl_table *table, int write, 5287 void *buffer, size_t *length, loff_t *ppos) 5288 { 5289 if (write) 5290 return __parse_numa_zonelist_order(buffer); 5291 return proc_dostring(table, write, buffer, length, ppos); 5292 } 5293 5294 static int node_load[MAX_NUMNODES]; 5295 5296 /** 5297 * find_next_best_node - find the next node that should appear in a given node's fallback list 5298 * @node: node whose fallback list we're appending 5299 * @used_node_mask: nodemask_t of already used nodes 5300 * 5301 * We use a number of factors to determine which is the next node that should 5302 * appear on a given node's fallback list. The node should not have appeared 5303 * already in @node's fallback list, and it should be the next closest node 5304 * according to the distance array (which contains arbitrary distance values 5305 * from each node to each node in the system), and should also prefer nodes 5306 * with no CPUs, since presumably they'll have very little allocation pressure 5307 * on them otherwise. 5308 * 5309 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5310 */ 5311 int find_next_best_node(int node, nodemask_t *used_node_mask) 5312 { 5313 int n, val; 5314 int min_val = INT_MAX; 5315 int best_node = NUMA_NO_NODE; 5316 5317 /* 5318 * Use the local node if we haven't already, but for memoryless local 5319 * node, we should skip it and fall back to other nodes. 5320 */ 5321 if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) { 5322 node_set(node, *used_node_mask); 5323 return node; 5324 } 5325 5326 for_each_node_state(n, N_MEMORY) { 5327 5328 /* Don't want a node to appear more than once */ 5329 if (node_isset(n, *used_node_mask)) 5330 continue; 5331 5332 /* Use the distance array to find the distance */ 5333 val = node_distance(node, n); 5334 5335 /* Penalize nodes under us ("prefer the next node") */ 5336 val += (n < node); 5337 5338 /* Give preference to headless and unused nodes */ 5339 if (!cpumask_empty(cpumask_of_node(n))) 5340 val += PENALTY_FOR_NODE_WITH_CPUS; 5341 5342 /* Slight preference for less loaded node */ 5343 val *= MAX_NUMNODES; 5344 val += node_load[n]; 5345 5346 if (val < min_val) { 5347 min_val = val; 5348 best_node = n; 5349 } 5350 } 5351 5352 if (best_node >= 0) 5353 node_set(best_node, *used_node_mask); 5354 5355 return best_node; 5356 } 5357 5358 5359 /* 5360 * Build zonelists ordered by node and zones within node. 5361 * This results in maximum locality--normal zone overflows into local 5362 * DMA zone, if any--but risks exhausting DMA zone. 5363 */ 5364 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5365 unsigned nr_nodes) 5366 { 5367 struct zoneref *zonerefs; 5368 int i; 5369 5370 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5371 5372 for (i = 0; i < nr_nodes; i++) { 5373 int nr_zones; 5374 5375 pg_data_t *node = NODE_DATA(node_order[i]); 5376 5377 nr_zones = build_zonerefs_node(node, zonerefs); 5378 zonerefs += nr_zones; 5379 } 5380 zonerefs->zone = NULL; 5381 zonerefs->zone_idx = 0; 5382 } 5383 5384 /* 5385 * Build __GFP_THISNODE zonelists 5386 */ 5387 static void build_thisnode_zonelists(pg_data_t *pgdat) 5388 { 5389 struct zoneref *zonerefs; 5390 int nr_zones; 5391 5392 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5393 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5394 zonerefs += nr_zones; 5395 zonerefs->zone = NULL; 5396 zonerefs->zone_idx = 0; 5397 } 5398 5399 static void build_zonelists(pg_data_t *pgdat) 5400 { 5401 static int node_order[MAX_NUMNODES]; 5402 int node, nr_nodes = 0; 5403 nodemask_t used_mask = NODE_MASK_NONE; 5404 int local_node, prev_node; 5405 5406 /* NUMA-aware ordering of nodes */ 5407 local_node = pgdat->node_id; 5408 prev_node = local_node; 5409 5410 memset(node_order, 0, sizeof(node_order)); 5411 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5412 /* 5413 * We don't want to pressure a particular node. 5414 * So adding penalty to the first node in same 5415 * distance group to make it round-robin. 5416 */ 5417 if (node_distance(local_node, node) != 5418 node_distance(local_node, prev_node)) 5419 node_load[node] += 1; 5420 5421 node_order[nr_nodes++] = node; 5422 prev_node = node; 5423 } 5424 5425 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5426 build_thisnode_zonelists(pgdat); 5427 pr_info("Fallback order for Node %d: ", local_node); 5428 for (node = 0; node < nr_nodes; node++) 5429 pr_cont("%d ", node_order[node]); 5430 pr_cont("\n"); 5431 } 5432 5433 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5434 /* 5435 * Return node id of node used for "local" allocations. 5436 * I.e., first node id of first zone in arg node's generic zonelist. 5437 * Used for initializing percpu 'numa_mem', which is used primarily 5438 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5439 */ 5440 int local_memory_node(int node) 5441 { 5442 struct zoneref *z; 5443 5444 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5445 gfp_zone(GFP_KERNEL), 5446 NULL); 5447 return zonelist_node_idx(z); 5448 } 5449 #endif 5450 5451 static void setup_min_unmapped_ratio(void); 5452 static void setup_min_slab_ratio(void); 5453 #else /* CONFIG_NUMA */ 5454 5455 static void build_zonelists(pg_data_t *pgdat) 5456 { 5457 struct zoneref *zonerefs; 5458 int nr_zones; 5459 5460 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5461 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5462 zonerefs += nr_zones; 5463 5464 zonerefs->zone = NULL; 5465 zonerefs->zone_idx = 0; 5466 } 5467 5468 #endif /* CONFIG_NUMA */ 5469 5470 /* 5471 * Boot pageset table. One per cpu which is going to be used for all 5472 * zones and all nodes. The parameters will be set in such a way 5473 * that an item put on a list will immediately be handed over to 5474 * the buddy list. This is safe since pageset manipulation is done 5475 * with interrupts disabled. 5476 * 5477 * The boot_pagesets must be kept even after bootup is complete for 5478 * unused processors and/or zones. They do play a role for bootstrapping 5479 * hotplugged processors. 5480 * 5481 * zoneinfo_show() and maybe other functions do 5482 * not check if the processor is online before following the pageset pointer. 5483 * Other parts of the kernel may not check if the zone is available. 5484 */ 5485 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5486 /* These effectively disable the pcplists in the boot pageset completely */ 5487 #define BOOT_PAGESET_HIGH 0 5488 #define BOOT_PAGESET_BATCH 1 5489 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5490 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5491 5492 static void __build_all_zonelists(void *data) 5493 { 5494 int nid; 5495 int __maybe_unused cpu; 5496 pg_data_t *self = data; 5497 unsigned long flags; 5498 5499 /* 5500 * The zonelist_update_seq must be acquired with irqsave because the 5501 * reader can be invoked from IRQ with GFP_ATOMIC. 5502 */ 5503 write_seqlock_irqsave(&zonelist_update_seq, flags); 5504 /* 5505 * Also disable synchronous printk() to prevent any printk() from 5506 * trying to hold port->lock, for 5507 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5508 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5509 */ 5510 printk_deferred_enter(); 5511 5512 #ifdef CONFIG_NUMA 5513 memset(node_load, 0, sizeof(node_load)); 5514 #endif 5515 5516 /* 5517 * This node is hotadded and no memory is yet present. So just 5518 * building zonelists is fine - no need to touch other nodes. 5519 */ 5520 if (self && !node_online(self->node_id)) { 5521 build_zonelists(self); 5522 } else { 5523 /* 5524 * All possible nodes have pgdat preallocated 5525 * in free_area_init 5526 */ 5527 for_each_node(nid) { 5528 pg_data_t *pgdat = NODE_DATA(nid); 5529 5530 build_zonelists(pgdat); 5531 } 5532 5533 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5534 /* 5535 * We now know the "local memory node" for each node-- 5536 * i.e., the node of the first zone in the generic zonelist. 5537 * Set up numa_mem percpu variable for on-line cpus. During 5538 * boot, only the boot cpu should be on-line; we'll init the 5539 * secondary cpus' numa_mem as they come on-line. During 5540 * node/memory hotplug, we'll fixup all on-line cpus. 5541 */ 5542 for_each_online_cpu(cpu) 5543 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5544 #endif 5545 } 5546 5547 printk_deferred_exit(); 5548 write_sequnlock_irqrestore(&zonelist_update_seq, flags); 5549 } 5550 5551 static noinline void __init 5552 build_all_zonelists_init(void) 5553 { 5554 int cpu; 5555 5556 __build_all_zonelists(NULL); 5557 5558 /* 5559 * Initialize the boot_pagesets that are going to be used 5560 * for bootstrapping processors. The real pagesets for 5561 * each zone will be allocated later when the per cpu 5562 * allocator is available. 5563 * 5564 * boot_pagesets are used also for bootstrapping offline 5565 * cpus if the system is already booted because the pagesets 5566 * are needed to initialize allocators on a specific cpu too. 5567 * F.e. the percpu allocator needs the page allocator which 5568 * needs the percpu allocator in order to allocate its pagesets 5569 * (a chicken-egg dilemma). 5570 */ 5571 for_each_possible_cpu(cpu) 5572 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5573 5574 mminit_verify_zonelist(); 5575 cpuset_init_current_mems_allowed(); 5576 } 5577 5578 /* 5579 * unless system_state == SYSTEM_BOOTING. 5580 * 5581 * __ref due to call of __init annotated helper build_all_zonelists_init 5582 * [protected by SYSTEM_BOOTING]. 5583 */ 5584 void __ref build_all_zonelists(pg_data_t *pgdat) 5585 { 5586 unsigned long vm_total_pages; 5587 5588 if (system_state == SYSTEM_BOOTING) { 5589 build_all_zonelists_init(); 5590 } else { 5591 __build_all_zonelists(pgdat); 5592 /* cpuset refresh routine should be here */ 5593 } 5594 /* Get the number of free pages beyond high watermark in all zones. */ 5595 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5596 /* 5597 * Disable grouping by mobility if the number of pages in the 5598 * system is too low to allow the mechanism to work. It would be 5599 * more accurate, but expensive to check per-zone. This check is 5600 * made on memory-hotadd so a system can start with mobility 5601 * disabled and enable it later 5602 */ 5603 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5604 page_group_by_mobility_disabled = 1; 5605 else 5606 page_group_by_mobility_disabled = 0; 5607 5608 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5609 nr_online_nodes, 5610 str_off_on(page_group_by_mobility_disabled), 5611 vm_total_pages); 5612 #ifdef CONFIG_NUMA 5613 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5614 #endif 5615 } 5616 5617 static int zone_batchsize(struct zone *zone) 5618 { 5619 #ifdef CONFIG_MMU 5620 int batch; 5621 5622 /* 5623 * The number of pages to batch allocate is either ~0.1% 5624 * of the zone or 1MB, whichever is smaller. The batch 5625 * size is striking a balance between allocation latency 5626 * and zone lock contention. 5627 */ 5628 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5629 batch /= 4; /* We effectively *= 4 below */ 5630 if (batch < 1) 5631 batch = 1; 5632 5633 /* 5634 * Clamp the batch to a 2^n - 1 value. Having a power 5635 * of 2 value was found to be more likely to have 5636 * suboptimal cache aliasing properties in some cases. 5637 * 5638 * For example if 2 tasks are alternately allocating 5639 * batches of pages, one task can end up with a lot 5640 * of pages of one half of the possible page colors 5641 * and the other with pages of the other colors. 5642 */ 5643 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5644 5645 return batch; 5646 5647 #else 5648 /* The deferral and batching of frees should be suppressed under NOMMU 5649 * conditions. 5650 * 5651 * The problem is that NOMMU needs to be able to allocate large chunks 5652 * of contiguous memory as there's no hardware page translation to 5653 * assemble apparent contiguous memory from discontiguous pages. 5654 * 5655 * Queueing large contiguous runs of pages for batching, however, 5656 * causes the pages to actually be freed in smaller chunks. As there 5657 * can be a significant delay between the individual batches being 5658 * recycled, this leads to the once large chunks of space being 5659 * fragmented and becoming unavailable for high-order allocations. 5660 */ 5661 return 0; 5662 #endif 5663 } 5664 5665 static int percpu_pagelist_high_fraction; 5666 static int zone_highsize(struct zone *zone, int batch, int cpu_online, 5667 int high_fraction) 5668 { 5669 #ifdef CONFIG_MMU 5670 int high; 5671 int nr_split_cpus; 5672 unsigned long total_pages; 5673 5674 if (!high_fraction) { 5675 /* 5676 * By default, the high value of the pcp is based on the zone 5677 * low watermark so that if they are full then background 5678 * reclaim will not be started prematurely. 5679 */ 5680 total_pages = low_wmark_pages(zone); 5681 } else { 5682 /* 5683 * If percpu_pagelist_high_fraction is configured, the high 5684 * value is based on a fraction of the managed pages in the 5685 * zone. 5686 */ 5687 total_pages = zone_managed_pages(zone) / high_fraction; 5688 } 5689 5690 /* 5691 * Split the high value across all online CPUs local to the zone. Note 5692 * that early in boot that CPUs may not be online yet and that during 5693 * CPU hotplug that the cpumask is not yet updated when a CPU is being 5694 * onlined. For memory nodes that have no CPUs, split the high value 5695 * across all online CPUs to mitigate the risk that reclaim is triggered 5696 * prematurely due to pages stored on pcp lists. 5697 */ 5698 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 5699 if (!nr_split_cpus) 5700 nr_split_cpus = num_online_cpus(); 5701 high = total_pages / nr_split_cpus; 5702 5703 /* 5704 * Ensure high is at least batch*4. The multiple is based on the 5705 * historical relationship between high and batch. 5706 */ 5707 high = max(high, batch << 2); 5708 5709 return high; 5710 #else 5711 return 0; 5712 #endif 5713 } 5714 5715 /* 5716 * pcp->high and pcp->batch values are related and generally batch is lower 5717 * than high. They are also related to pcp->count such that count is lower 5718 * than high, and as soon as it reaches high, the pcplist is flushed. 5719 * 5720 * However, guaranteeing these relations at all times would require e.g. write 5721 * barriers here but also careful usage of read barriers at the read side, and 5722 * thus be prone to error and bad for performance. Thus the update only prevents 5723 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max 5724 * should ensure they can cope with those fields changing asynchronously, and 5725 * fully trust only the pcp->count field on the local CPU with interrupts 5726 * disabled. 5727 * 5728 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5729 * outside of boot time (or some other assurance that no concurrent updaters 5730 * exist). 5731 */ 5732 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min, 5733 unsigned long high_max, unsigned long batch) 5734 { 5735 WRITE_ONCE(pcp->batch, batch); 5736 WRITE_ONCE(pcp->high_min, high_min); 5737 WRITE_ONCE(pcp->high_max, high_max); 5738 } 5739 5740 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 5741 { 5742 int pindex; 5743 5744 memset(pcp, 0, sizeof(*pcp)); 5745 memset(pzstats, 0, sizeof(*pzstats)); 5746 5747 spin_lock_init(&pcp->lock); 5748 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 5749 INIT_LIST_HEAD(&pcp->lists[pindex]); 5750 5751 /* 5752 * Set batch and high values safe for a boot pageset. A true percpu 5753 * pageset's initialization will update them subsequently. Here we don't 5754 * need to be as careful as pageset_update() as nobody can access the 5755 * pageset yet. 5756 */ 5757 pcp->high_min = BOOT_PAGESET_HIGH; 5758 pcp->high_max = BOOT_PAGESET_HIGH; 5759 pcp->batch = BOOT_PAGESET_BATCH; 5760 pcp->free_count = 0; 5761 } 5762 5763 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min, 5764 unsigned long high_max, unsigned long batch) 5765 { 5766 struct per_cpu_pages *pcp; 5767 int cpu; 5768 5769 for_each_possible_cpu(cpu) { 5770 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5771 pageset_update(pcp, high_min, high_max, batch); 5772 } 5773 } 5774 5775 /* 5776 * Calculate and set new high and batch values for all per-cpu pagesets of a 5777 * zone based on the zone's size. 5778 */ 5779 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 5780 { 5781 int new_high_min, new_high_max, new_batch; 5782 5783 new_batch = max(1, zone_batchsize(zone)); 5784 if (percpu_pagelist_high_fraction) { 5785 new_high_min = zone_highsize(zone, new_batch, cpu_online, 5786 percpu_pagelist_high_fraction); 5787 /* 5788 * PCP high is tuned manually, disable auto-tuning via 5789 * setting high_min and high_max to the manual value. 5790 */ 5791 new_high_max = new_high_min; 5792 } else { 5793 new_high_min = zone_highsize(zone, new_batch, cpu_online, 0); 5794 new_high_max = zone_highsize(zone, new_batch, cpu_online, 5795 MIN_PERCPU_PAGELIST_HIGH_FRACTION); 5796 } 5797 5798 if (zone->pageset_high_min == new_high_min && 5799 zone->pageset_high_max == new_high_max && 5800 zone->pageset_batch == new_batch) 5801 return; 5802 5803 zone->pageset_high_min = new_high_min; 5804 zone->pageset_high_max = new_high_max; 5805 zone->pageset_batch = new_batch; 5806 5807 __zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max, 5808 new_batch); 5809 } 5810 5811 void __meminit setup_zone_pageset(struct zone *zone) 5812 { 5813 int cpu; 5814 5815 /* Size may be 0 on !SMP && !NUMA */ 5816 if (sizeof(struct per_cpu_zonestat) > 0) 5817 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 5818 5819 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 5820 for_each_possible_cpu(cpu) { 5821 struct per_cpu_pages *pcp; 5822 struct per_cpu_zonestat *pzstats; 5823 5824 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5825 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 5826 per_cpu_pages_init(pcp, pzstats); 5827 } 5828 5829 zone_set_pageset_high_and_batch(zone, 0); 5830 } 5831 5832 /* 5833 * The zone indicated has a new number of managed_pages; batch sizes and percpu 5834 * page high values need to be recalculated. 5835 */ 5836 static void zone_pcp_update(struct zone *zone, int cpu_online) 5837 { 5838 mutex_lock(&pcp_batch_high_lock); 5839 zone_set_pageset_high_and_batch(zone, cpu_online); 5840 mutex_unlock(&pcp_batch_high_lock); 5841 } 5842 5843 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu) 5844 { 5845 struct per_cpu_pages *pcp; 5846 struct cpu_cacheinfo *cci; 5847 5848 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 5849 cci = get_cpu_cacheinfo(cpu); 5850 /* 5851 * If data cache slice of CPU is large enough, "pcp->batch" 5852 * pages can be preserved in PCP before draining PCP for 5853 * consecutive high-order pages freeing without allocation. 5854 * This can reduce zone lock contention without hurting 5855 * cache-hot pages sharing. 5856 */ 5857 spin_lock(&pcp->lock); 5858 if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch) 5859 pcp->flags |= PCPF_FREE_HIGH_BATCH; 5860 else 5861 pcp->flags &= ~PCPF_FREE_HIGH_BATCH; 5862 spin_unlock(&pcp->lock); 5863 } 5864 5865 void setup_pcp_cacheinfo(unsigned int cpu) 5866 { 5867 struct zone *zone; 5868 5869 for_each_populated_zone(zone) 5870 zone_pcp_update_cacheinfo(zone, cpu); 5871 } 5872 5873 /* 5874 * Allocate per cpu pagesets and initialize them. 5875 * Before this call only boot pagesets were available. 5876 */ 5877 void __init setup_per_cpu_pageset(void) 5878 { 5879 struct pglist_data *pgdat; 5880 struct zone *zone; 5881 int __maybe_unused cpu; 5882 5883 for_each_populated_zone(zone) 5884 setup_zone_pageset(zone); 5885 5886 #ifdef CONFIG_NUMA 5887 /* 5888 * Unpopulated zones continue using the boot pagesets. 5889 * The numa stats for these pagesets need to be reset. 5890 * Otherwise, they will end up skewing the stats of 5891 * the nodes these zones are associated with. 5892 */ 5893 for_each_possible_cpu(cpu) { 5894 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 5895 memset(pzstats->vm_numa_event, 0, 5896 sizeof(pzstats->vm_numa_event)); 5897 } 5898 #endif 5899 5900 for_each_online_pgdat(pgdat) 5901 pgdat->per_cpu_nodestats = 5902 alloc_percpu(struct per_cpu_nodestat); 5903 } 5904 5905 __meminit void zone_pcp_init(struct zone *zone) 5906 { 5907 /* 5908 * per cpu subsystem is not up at this point. The following code 5909 * relies on the ability of the linker to provide the 5910 * offset of a (static) per cpu variable into the per cpu area. 5911 */ 5912 zone->per_cpu_pageset = &boot_pageset; 5913 zone->per_cpu_zonestats = &boot_zonestats; 5914 zone->pageset_high_min = BOOT_PAGESET_HIGH; 5915 zone->pageset_high_max = BOOT_PAGESET_HIGH; 5916 zone->pageset_batch = BOOT_PAGESET_BATCH; 5917 5918 if (populated_zone(zone)) 5919 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 5920 zone->present_pages, zone_batchsize(zone)); 5921 } 5922 5923 static void setup_per_zone_lowmem_reserve(void); 5924 5925 void adjust_managed_page_count(struct page *page, long count) 5926 { 5927 atomic_long_add(count, &page_zone(page)->managed_pages); 5928 totalram_pages_add(count); 5929 setup_per_zone_lowmem_reserve(); 5930 } 5931 EXPORT_SYMBOL(adjust_managed_page_count); 5932 5933 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 5934 { 5935 void *pos; 5936 unsigned long pages = 0; 5937 5938 start = (void *)PAGE_ALIGN((unsigned long)start); 5939 end = (void *)((unsigned long)end & PAGE_MASK); 5940 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5941 struct page *page = virt_to_page(pos); 5942 void *direct_map_addr; 5943 5944 /* 5945 * 'direct_map_addr' might be different from 'pos' 5946 * because some architectures' virt_to_page() 5947 * work with aliases. Getting the direct map 5948 * address ensures that we get a _writeable_ 5949 * alias for the memset(). 5950 */ 5951 direct_map_addr = page_address(page); 5952 /* 5953 * Perform a kasan-unchecked memset() since this memory 5954 * has not been initialized. 5955 */ 5956 direct_map_addr = kasan_reset_tag(direct_map_addr); 5957 if ((unsigned int)poison <= 0xFF) 5958 memset(direct_map_addr, poison, PAGE_SIZE); 5959 5960 free_reserved_page(page); 5961 } 5962 5963 if (pages && s) 5964 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 5965 5966 return pages; 5967 } 5968 5969 void free_reserved_page(struct page *page) 5970 { 5971 clear_page_tag_ref(page); 5972 ClearPageReserved(page); 5973 init_page_count(page); 5974 __free_page(page); 5975 adjust_managed_page_count(page, 1); 5976 } 5977 EXPORT_SYMBOL(free_reserved_page); 5978 5979 static int page_alloc_cpu_dead(unsigned int cpu) 5980 { 5981 struct zone *zone; 5982 5983 lru_add_drain_cpu(cpu); 5984 mlock_drain_remote(cpu); 5985 drain_pages(cpu); 5986 5987 /* 5988 * Spill the event counters of the dead processor 5989 * into the current processors event counters. 5990 * This artificially elevates the count of the current 5991 * processor. 5992 */ 5993 vm_events_fold_cpu(cpu); 5994 5995 /* 5996 * Zero the differential counters of the dead processor 5997 * so that the vm statistics are consistent. 5998 * 5999 * This is only okay since the processor is dead and cannot 6000 * race with what we are doing. 6001 */ 6002 cpu_vm_stats_fold(cpu); 6003 6004 for_each_populated_zone(zone) 6005 zone_pcp_update(zone, 0); 6006 6007 return 0; 6008 } 6009 6010 static int page_alloc_cpu_online(unsigned int cpu) 6011 { 6012 struct zone *zone; 6013 6014 for_each_populated_zone(zone) 6015 zone_pcp_update(zone, 1); 6016 return 0; 6017 } 6018 6019 void __init page_alloc_init_cpuhp(void) 6020 { 6021 int ret; 6022 6023 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6024 "mm/page_alloc:pcp", 6025 page_alloc_cpu_online, 6026 page_alloc_cpu_dead); 6027 WARN_ON(ret < 0); 6028 } 6029 6030 /* 6031 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6032 * or min_free_kbytes changes. 6033 */ 6034 static void calculate_totalreserve_pages(void) 6035 { 6036 struct pglist_data *pgdat; 6037 unsigned long reserve_pages = 0; 6038 enum zone_type i, j; 6039 6040 for_each_online_pgdat(pgdat) { 6041 6042 pgdat->totalreserve_pages = 0; 6043 6044 for (i = 0; i < MAX_NR_ZONES; i++) { 6045 struct zone *zone = pgdat->node_zones + i; 6046 long max = 0; 6047 unsigned long managed_pages = zone_managed_pages(zone); 6048 6049 /* Find valid and maximum lowmem_reserve in the zone */ 6050 for (j = i; j < MAX_NR_ZONES; j++) { 6051 if (zone->lowmem_reserve[j] > max) 6052 max = zone->lowmem_reserve[j]; 6053 } 6054 6055 /* we treat the high watermark as reserved pages. */ 6056 max += high_wmark_pages(zone); 6057 6058 if (max > managed_pages) 6059 max = managed_pages; 6060 6061 pgdat->totalreserve_pages += max; 6062 6063 reserve_pages += max; 6064 } 6065 } 6066 totalreserve_pages = reserve_pages; 6067 trace_mm_calculate_totalreserve_pages(totalreserve_pages); 6068 } 6069 6070 /* 6071 * setup_per_zone_lowmem_reserve - called whenever 6072 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6073 * has a correct pages reserved value, so an adequate number of 6074 * pages are left in the zone after a successful __alloc_pages(). 6075 */ 6076 static void setup_per_zone_lowmem_reserve(void) 6077 { 6078 struct pglist_data *pgdat; 6079 enum zone_type i, j; 6080 6081 for_each_online_pgdat(pgdat) { 6082 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6083 struct zone *zone = &pgdat->node_zones[i]; 6084 int ratio = sysctl_lowmem_reserve_ratio[i]; 6085 bool clear = !ratio || !zone_managed_pages(zone); 6086 unsigned long managed_pages = 0; 6087 6088 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6089 struct zone *upper_zone = &pgdat->node_zones[j]; 6090 6091 managed_pages += zone_managed_pages(upper_zone); 6092 6093 if (clear) 6094 zone->lowmem_reserve[j] = 0; 6095 else 6096 zone->lowmem_reserve[j] = managed_pages / ratio; 6097 trace_mm_setup_per_zone_lowmem_reserve(zone, upper_zone, 6098 zone->lowmem_reserve[j]); 6099 } 6100 } 6101 } 6102 6103 /* update totalreserve_pages */ 6104 calculate_totalreserve_pages(); 6105 } 6106 6107 static void __setup_per_zone_wmarks(void) 6108 { 6109 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6110 unsigned long lowmem_pages = 0; 6111 struct zone *zone; 6112 unsigned long flags; 6113 6114 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */ 6115 for_each_zone(zone) { 6116 if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE) 6117 lowmem_pages += zone_managed_pages(zone); 6118 } 6119 6120 for_each_zone(zone) { 6121 u64 tmp; 6122 6123 spin_lock_irqsave(&zone->lock, flags); 6124 tmp = (u64)pages_min * zone_managed_pages(zone); 6125 tmp = div64_ul(tmp, lowmem_pages); 6126 if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) { 6127 /* 6128 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6129 * need highmem and movable zones pages, so cap pages_min 6130 * to a small value here. 6131 * 6132 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6133 * deltas control async page reclaim, and so should 6134 * not be capped for highmem and movable zones. 6135 */ 6136 unsigned long min_pages; 6137 6138 min_pages = zone_managed_pages(zone) / 1024; 6139 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6140 zone->_watermark[WMARK_MIN] = min_pages; 6141 } else { 6142 /* 6143 * If it's a lowmem zone, reserve a number of pages 6144 * proportionate to the zone's size. 6145 */ 6146 zone->_watermark[WMARK_MIN] = tmp; 6147 } 6148 6149 /* 6150 * Set the kswapd watermarks distance according to the 6151 * scale factor in proportion to available memory, but 6152 * ensure a minimum size on small systems. 6153 */ 6154 tmp = max_t(u64, tmp >> 2, 6155 mult_frac(zone_managed_pages(zone), 6156 watermark_scale_factor, 10000)); 6157 6158 zone->watermark_boost = 0; 6159 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6160 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6161 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6162 trace_mm_setup_per_zone_wmarks(zone); 6163 6164 spin_unlock_irqrestore(&zone->lock, flags); 6165 } 6166 6167 /* update totalreserve_pages */ 6168 calculate_totalreserve_pages(); 6169 } 6170 6171 /** 6172 * setup_per_zone_wmarks - called when min_free_kbytes changes 6173 * or when memory is hot-{added|removed} 6174 * 6175 * Ensures that the watermark[min,low,high] values for each zone are set 6176 * correctly with respect to min_free_kbytes. 6177 */ 6178 void setup_per_zone_wmarks(void) 6179 { 6180 struct zone *zone; 6181 static DEFINE_SPINLOCK(lock); 6182 6183 spin_lock(&lock); 6184 __setup_per_zone_wmarks(); 6185 spin_unlock(&lock); 6186 6187 /* 6188 * The watermark size have changed so update the pcpu batch 6189 * and high limits or the limits may be inappropriate. 6190 */ 6191 for_each_zone(zone) 6192 zone_pcp_update(zone, 0); 6193 } 6194 6195 /* 6196 * Initialise min_free_kbytes. 6197 * 6198 * For small machines we want it small (128k min). For large machines 6199 * we want it large (256MB max). But it is not linear, because network 6200 * bandwidth does not increase linearly with machine size. We use 6201 * 6202 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6203 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6204 * 6205 * which yields 6206 * 6207 * 16MB: 512k 6208 * 32MB: 724k 6209 * 64MB: 1024k 6210 * 128MB: 1448k 6211 * 256MB: 2048k 6212 * 512MB: 2896k 6213 * 1024MB: 4096k 6214 * 2048MB: 5792k 6215 * 4096MB: 8192k 6216 * 8192MB: 11584k 6217 * 16384MB: 16384k 6218 */ 6219 void calculate_min_free_kbytes(void) 6220 { 6221 unsigned long lowmem_kbytes; 6222 int new_min_free_kbytes; 6223 6224 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6225 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6226 6227 if (new_min_free_kbytes > user_min_free_kbytes) 6228 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6229 else 6230 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6231 new_min_free_kbytes, user_min_free_kbytes); 6232 6233 } 6234 6235 int __meminit init_per_zone_wmark_min(void) 6236 { 6237 calculate_min_free_kbytes(); 6238 setup_per_zone_wmarks(); 6239 refresh_zone_stat_thresholds(); 6240 setup_per_zone_lowmem_reserve(); 6241 6242 #ifdef CONFIG_NUMA 6243 setup_min_unmapped_ratio(); 6244 setup_min_slab_ratio(); 6245 #endif 6246 6247 khugepaged_min_free_kbytes_update(); 6248 6249 return 0; 6250 } 6251 postcore_initcall(init_per_zone_wmark_min) 6252 6253 /* 6254 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6255 * that we can call two helper functions whenever min_free_kbytes 6256 * changes. 6257 */ 6258 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write, 6259 void *buffer, size_t *length, loff_t *ppos) 6260 { 6261 int rc; 6262 6263 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6264 if (rc) 6265 return rc; 6266 6267 if (write) { 6268 user_min_free_kbytes = min_free_kbytes; 6269 setup_per_zone_wmarks(); 6270 } 6271 return 0; 6272 } 6273 6274 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write, 6275 void *buffer, size_t *length, loff_t *ppos) 6276 { 6277 int rc; 6278 6279 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6280 if (rc) 6281 return rc; 6282 6283 if (write) 6284 setup_per_zone_wmarks(); 6285 6286 return 0; 6287 } 6288 6289 #ifdef CONFIG_NUMA 6290 static void setup_min_unmapped_ratio(void) 6291 { 6292 pg_data_t *pgdat; 6293 struct zone *zone; 6294 6295 for_each_online_pgdat(pgdat) 6296 pgdat->min_unmapped_pages = 0; 6297 6298 for_each_zone(zone) 6299 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6300 sysctl_min_unmapped_ratio) / 100; 6301 } 6302 6303 6304 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write, 6305 void *buffer, size_t *length, loff_t *ppos) 6306 { 6307 int rc; 6308 6309 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6310 if (rc) 6311 return rc; 6312 6313 setup_min_unmapped_ratio(); 6314 6315 return 0; 6316 } 6317 6318 static void setup_min_slab_ratio(void) 6319 { 6320 pg_data_t *pgdat; 6321 struct zone *zone; 6322 6323 for_each_online_pgdat(pgdat) 6324 pgdat->min_slab_pages = 0; 6325 6326 for_each_zone(zone) 6327 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6328 sysctl_min_slab_ratio) / 100; 6329 } 6330 6331 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write, 6332 void *buffer, size_t *length, loff_t *ppos) 6333 { 6334 int rc; 6335 6336 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6337 if (rc) 6338 return rc; 6339 6340 setup_min_slab_ratio(); 6341 6342 return 0; 6343 } 6344 #endif 6345 6346 /* 6347 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6348 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6349 * whenever sysctl_lowmem_reserve_ratio changes. 6350 * 6351 * The reserve ratio obviously has absolutely no relation with the 6352 * minimum watermarks. The lowmem reserve ratio can only make sense 6353 * if in function of the boot time zone sizes. 6354 */ 6355 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table, 6356 int write, void *buffer, size_t *length, loff_t *ppos) 6357 { 6358 int i; 6359 6360 proc_dointvec_minmax(table, write, buffer, length, ppos); 6361 6362 for (i = 0; i < MAX_NR_ZONES; i++) { 6363 if (sysctl_lowmem_reserve_ratio[i] < 1) 6364 sysctl_lowmem_reserve_ratio[i] = 0; 6365 } 6366 6367 setup_per_zone_lowmem_reserve(); 6368 return 0; 6369 } 6370 6371 /* 6372 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6373 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6374 * pagelist can have before it gets flushed back to buddy allocator. 6375 */ 6376 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table, 6377 int write, void *buffer, size_t *length, loff_t *ppos) 6378 { 6379 struct zone *zone; 6380 int old_percpu_pagelist_high_fraction; 6381 int ret; 6382 6383 mutex_lock(&pcp_batch_high_lock); 6384 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6385 6386 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6387 if (!write || ret < 0) 6388 goto out; 6389 6390 /* Sanity checking to avoid pcp imbalance */ 6391 if (percpu_pagelist_high_fraction && 6392 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6393 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6394 ret = -EINVAL; 6395 goto out; 6396 } 6397 6398 /* No change? */ 6399 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6400 goto out; 6401 6402 for_each_populated_zone(zone) 6403 zone_set_pageset_high_and_batch(zone, 0); 6404 out: 6405 mutex_unlock(&pcp_batch_high_lock); 6406 return ret; 6407 } 6408 6409 static const struct ctl_table page_alloc_sysctl_table[] = { 6410 { 6411 .procname = "min_free_kbytes", 6412 .data = &min_free_kbytes, 6413 .maxlen = sizeof(min_free_kbytes), 6414 .mode = 0644, 6415 .proc_handler = min_free_kbytes_sysctl_handler, 6416 .extra1 = SYSCTL_ZERO, 6417 }, 6418 { 6419 .procname = "watermark_boost_factor", 6420 .data = &watermark_boost_factor, 6421 .maxlen = sizeof(watermark_boost_factor), 6422 .mode = 0644, 6423 .proc_handler = proc_dointvec_minmax, 6424 .extra1 = SYSCTL_ZERO, 6425 }, 6426 { 6427 .procname = "watermark_scale_factor", 6428 .data = &watermark_scale_factor, 6429 .maxlen = sizeof(watermark_scale_factor), 6430 .mode = 0644, 6431 .proc_handler = watermark_scale_factor_sysctl_handler, 6432 .extra1 = SYSCTL_ONE, 6433 .extra2 = SYSCTL_THREE_THOUSAND, 6434 }, 6435 { 6436 .procname = "defrag_mode", 6437 .data = &defrag_mode, 6438 .maxlen = sizeof(defrag_mode), 6439 .mode = 0644, 6440 .proc_handler = proc_dointvec_minmax, 6441 .extra1 = SYSCTL_ZERO, 6442 .extra2 = SYSCTL_ONE, 6443 }, 6444 { 6445 .procname = "percpu_pagelist_high_fraction", 6446 .data = &percpu_pagelist_high_fraction, 6447 .maxlen = sizeof(percpu_pagelist_high_fraction), 6448 .mode = 0644, 6449 .proc_handler = percpu_pagelist_high_fraction_sysctl_handler, 6450 .extra1 = SYSCTL_ZERO, 6451 }, 6452 { 6453 .procname = "lowmem_reserve_ratio", 6454 .data = &sysctl_lowmem_reserve_ratio, 6455 .maxlen = sizeof(sysctl_lowmem_reserve_ratio), 6456 .mode = 0644, 6457 .proc_handler = lowmem_reserve_ratio_sysctl_handler, 6458 }, 6459 #ifdef CONFIG_NUMA 6460 { 6461 .procname = "numa_zonelist_order", 6462 .data = &numa_zonelist_order, 6463 .maxlen = NUMA_ZONELIST_ORDER_LEN, 6464 .mode = 0644, 6465 .proc_handler = numa_zonelist_order_handler, 6466 }, 6467 { 6468 .procname = "min_unmapped_ratio", 6469 .data = &sysctl_min_unmapped_ratio, 6470 .maxlen = sizeof(sysctl_min_unmapped_ratio), 6471 .mode = 0644, 6472 .proc_handler = sysctl_min_unmapped_ratio_sysctl_handler, 6473 .extra1 = SYSCTL_ZERO, 6474 .extra2 = SYSCTL_ONE_HUNDRED, 6475 }, 6476 { 6477 .procname = "min_slab_ratio", 6478 .data = &sysctl_min_slab_ratio, 6479 .maxlen = sizeof(sysctl_min_slab_ratio), 6480 .mode = 0644, 6481 .proc_handler = sysctl_min_slab_ratio_sysctl_handler, 6482 .extra1 = SYSCTL_ZERO, 6483 .extra2 = SYSCTL_ONE_HUNDRED, 6484 }, 6485 #endif 6486 }; 6487 6488 void __init page_alloc_sysctl_init(void) 6489 { 6490 register_sysctl_init("vm", page_alloc_sysctl_table); 6491 } 6492 6493 #ifdef CONFIG_CONTIG_ALLOC 6494 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6495 static void alloc_contig_dump_pages(struct list_head *page_list) 6496 { 6497 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6498 6499 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6500 struct page *page; 6501 6502 dump_stack(); 6503 list_for_each_entry(page, page_list, lru) 6504 dump_page(page, "migration failure"); 6505 } 6506 } 6507 6508 /* 6509 * [start, end) must belong to a single zone. 6510 * @migratetype: using migratetype to filter the type of migration in 6511 * trace_mm_alloc_contig_migrate_range_info. 6512 */ 6513 static int __alloc_contig_migrate_range(struct compact_control *cc, 6514 unsigned long start, unsigned long end, int migratetype) 6515 { 6516 /* This function is based on compact_zone() from compaction.c. */ 6517 unsigned int nr_reclaimed; 6518 unsigned long pfn = start; 6519 unsigned int tries = 0; 6520 int ret = 0; 6521 struct migration_target_control mtc = { 6522 .nid = zone_to_nid(cc->zone), 6523 .gfp_mask = cc->gfp_mask, 6524 .reason = MR_CONTIG_RANGE, 6525 }; 6526 struct page *page; 6527 unsigned long total_mapped = 0; 6528 unsigned long total_migrated = 0; 6529 unsigned long total_reclaimed = 0; 6530 6531 lru_cache_disable(); 6532 6533 while (pfn < end || !list_empty(&cc->migratepages)) { 6534 if (fatal_signal_pending(current)) { 6535 ret = -EINTR; 6536 break; 6537 } 6538 6539 if (list_empty(&cc->migratepages)) { 6540 cc->nr_migratepages = 0; 6541 ret = isolate_migratepages_range(cc, pfn, end); 6542 if (ret && ret != -EAGAIN) 6543 break; 6544 pfn = cc->migrate_pfn; 6545 tries = 0; 6546 } else if (++tries == 5) { 6547 ret = -EBUSY; 6548 break; 6549 } 6550 6551 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6552 &cc->migratepages); 6553 cc->nr_migratepages -= nr_reclaimed; 6554 6555 if (trace_mm_alloc_contig_migrate_range_info_enabled()) { 6556 total_reclaimed += nr_reclaimed; 6557 list_for_each_entry(page, &cc->migratepages, lru) { 6558 struct folio *folio = page_folio(page); 6559 6560 total_mapped += folio_mapped(folio) * 6561 folio_nr_pages(folio); 6562 } 6563 } 6564 6565 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6566 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6567 6568 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret) 6569 total_migrated += cc->nr_migratepages; 6570 6571 /* 6572 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6573 * to retry again over this error, so do the same here. 6574 */ 6575 if (ret == -ENOMEM) 6576 break; 6577 } 6578 6579 lru_cache_enable(); 6580 if (ret < 0) { 6581 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6582 alloc_contig_dump_pages(&cc->migratepages); 6583 putback_movable_pages(&cc->migratepages); 6584 } 6585 6586 trace_mm_alloc_contig_migrate_range_info(start, end, migratetype, 6587 total_migrated, 6588 total_reclaimed, 6589 total_mapped); 6590 return (ret < 0) ? ret : 0; 6591 } 6592 6593 static void split_free_pages(struct list_head *list, gfp_t gfp_mask) 6594 { 6595 int order; 6596 6597 for (order = 0; order < NR_PAGE_ORDERS; order++) { 6598 struct page *page, *next; 6599 int nr_pages = 1 << order; 6600 6601 list_for_each_entry_safe(page, next, &list[order], lru) { 6602 int i; 6603 6604 post_alloc_hook(page, order, gfp_mask); 6605 set_page_refcounted(page); 6606 if (!order) 6607 continue; 6608 6609 split_page(page, order); 6610 6611 /* Add all subpages to the order-0 head, in sequence. */ 6612 list_del(&page->lru); 6613 for (i = 0; i < nr_pages; i++) 6614 list_add_tail(&page[i].lru, &list[0]); 6615 } 6616 } 6617 } 6618 6619 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask) 6620 { 6621 const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM; 6622 const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN | 6623 __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO; 6624 const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN; 6625 6626 /* 6627 * We are given the range to allocate; node, mobility and placement 6628 * hints are irrelevant at this point. We'll simply ignore them. 6629 */ 6630 gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE | 6631 __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE); 6632 6633 /* 6634 * We only support most reclaim flags (but not NOFAIL/NORETRY), and 6635 * selected action flags. 6636 */ 6637 if (gfp_mask & ~(reclaim_mask | action_mask)) 6638 return -EINVAL; 6639 6640 /* 6641 * Flags to control page compaction/migration/reclaim, to free up our 6642 * page range. Migratable pages are movable, __GFP_MOVABLE is implied 6643 * for them. 6644 * 6645 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that 6646 * to not degrade callers. 6647 */ 6648 *gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) | 6649 __GFP_MOVABLE | __GFP_RETRY_MAYFAIL; 6650 return 0; 6651 } 6652 6653 /** 6654 * alloc_contig_range() -- tries to allocate given range of pages 6655 * @start: start PFN to allocate 6656 * @end: one-past-the-last PFN to allocate 6657 * @migratetype: migratetype of the underlying pageblocks (either 6658 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6659 * in range must have the same migratetype and it must 6660 * be either of the two. 6661 * @gfp_mask: GFP mask. Node/zone/placement hints are ignored; only some 6662 * action and reclaim modifiers are supported. Reclaim modifiers 6663 * control allocation behavior during compaction/migration/reclaim. 6664 * 6665 * The PFN range does not have to be pageblock aligned. The PFN range must 6666 * belong to a single zone. 6667 * 6668 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6669 * pageblocks in the range. Once isolated, the pageblocks should not 6670 * be modified by others. 6671 * 6672 * Return: zero on success or negative error code. On success all 6673 * pages which PFN is in [start, end) are allocated for the caller and 6674 * need to be freed with free_contig_range(). 6675 */ 6676 int alloc_contig_range_noprof(unsigned long start, unsigned long end, 6677 unsigned migratetype, gfp_t gfp_mask) 6678 { 6679 unsigned long outer_start, outer_end; 6680 int ret = 0; 6681 6682 struct compact_control cc = { 6683 .nr_migratepages = 0, 6684 .order = -1, 6685 .zone = page_zone(pfn_to_page(start)), 6686 .mode = MIGRATE_SYNC, 6687 .ignore_skip_hint = true, 6688 .no_set_skip_hint = true, 6689 .alloc_contig = true, 6690 }; 6691 INIT_LIST_HEAD(&cc.migratepages); 6692 6693 gfp_mask = current_gfp_context(gfp_mask); 6694 if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask)) 6695 return -EINVAL; 6696 6697 /* 6698 * What we do here is we mark all pageblocks in range as 6699 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6700 * have different sizes, and due to the way page allocator 6701 * work, start_isolate_page_range() has special handlings for this. 6702 * 6703 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6704 * migrate the pages from an unaligned range (ie. pages that 6705 * we are interested in). This will put all the pages in 6706 * range back to page allocator as MIGRATE_ISOLATE. 6707 * 6708 * When this is done, we take the pages in range from page 6709 * allocator removing them from the buddy system. This way 6710 * page allocator will never consider using them. 6711 * 6712 * This lets us mark the pageblocks back as 6713 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6714 * aligned range but not in the unaligned, original range are 6715 * put back to page allocator so that buddy can use them. 6716 */ 6717 6718 ret = start_isolate_page_range(start, end, migratetype, 0); 6719 if (ret) 6720 goto done; 6721 6722 drain_all_pages(cc.zone); 6723 6724 /* 6725 * In case of -EBUSY, we'd like to know which page causes problem. 6726 * So, just fall through. test_pages_isolated() has a tracepoint 6727 * which will report the busy page. 6728 * 6729 * It is possible that busy pages could become available before 6730 * the call to test_pages_isolated, and the range will actually be 6731 * allocated. So, if we fall through be sure to clear ret so that 6732 * -EBUSY is not accidentally used or returned to caller. 6733 */ 6734 ret = __alloc_contig_migrate_range(&cc, start, end, migratetype); 6735 if (ret && ret != -EBUSY) 6736 goto done; 6737 6738 /* 6739 * When in-use hugetlb pages are migrated, they may simply be released 6740 * back into the free hugepage pool instead of being returned to the 6741 * buddy system. After the migration of in-use huge pages is completed, 6742 * we will invoke replace_free_hugepage_folios() to ensure that these 6743 * hugepages are properly released to the buddy system. 6744 */ 6745 ret = replace_free_hugepage_folios(start, end); 6746 if (ret) 6747 goto done; 6748 6749 /* 6750 * Pages from [start, end) are within a pageblock_nr_pages 6751 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6752 * more, all pages in [start, end) are free in page allocator. 6753 * What we are going to do is to allocate all pages from 6754 * [start, end) (that is remove them from page allocator). 6755 * 6756 * The only problem is that pages at the beginning and at the 6757 * end of interesting range may be not aligned with pages that 6758 * page allocator holds, ie. they can be part of higher order 6759 * pages. Because of this, we reserve the bigger range and 6760 * once this is done free the pages we are not interested in. 6761 * 6762 * We don't have to hold zone->lock here because the pages are 6763 * isolated thus they won't get removed from buddy. 6764 */ 6765 outer_start = find_large_buddy(start); 6766 6767 /* Make sure the range is really isolated. */ 6768 if (test_pages_isolated(outer_start, end, 0)) { 6769 ret = -EBUSY; 6770 goto done; 6771 } 6772 6773 /* Grab isolated pages from freelists. */ 6774 outer_end = isolate_freepages_range(&cc, outer_start, end); 6775 if (!outer_end) { 6776 ret = -EBUSY; 6777 goto done; 6778 } 6779 6780 if (!(gfp_mask & __GFP_COMP)) { 6781 split_free_pages(cc.freepages, gfp_mask); 6782 6783 /* Free head and tail (if any) */ 6784 if (start != outer_start) 6785 free_contig_range(outer_start, start - outer_start); 6786 if (end != outer_end) 6787 free_contig_range(end, outer_end - end); 6788 } else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) { 6789 struct page *head = pfn_to_page(start); 6790 int order = ilog2(end - start); 6791 6792 check_new_pages(head, order); 6793 prep_new_page(head, order, gfp_mask, 0); 6794 set_page_refcounted(head); 6795 } else { 6796 ret = -EINVAL; 6797 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n", 6798 start, end, outer_start, outer_end); 6799 } 6800 done: 6801 undo_isolate_page_range(start, end, migratetype); 6802 return ret; 6803 } 6804 EXPORT_SYMBOL(alloc_contig_range_noprof); 6805 6806 static int __alloc_contig_pages(unsigned long start_pfn, 6807 unsigned long nr_pages, gfp_t gfp_mask) 6808 { 6809 unsigned long end_pfn = start_pfn + nr_pages; 6810 6811 return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE, 6812 gfp_mask); 6813 } 6814 6815 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6816 unsigned long nr_pages) 6817 { 6818 unsigned long i, end_pfn = start_pfn + nr_pages; 6819 struct page *page; 6820 6821 for (i = start_pfn; i < end_pfn; i++) { 6822 page = pfn_to_online_page(i); 6823 if (!page) 6824 return false; 6825 6826 if (page_zone(page) != z) 6827 return false; 6828 6829 if (PageReserved(page)) 6830 return false; 6831 6832 if (PageHuge(page)) 6833 return false; 6834 } 6835 return true; 6836 } 6837 6838 static bool zone_spans_last_pfn(const struct zone *zone, 6839 unsigned long start_pfn, unsigned long nr_pages) 6840 { 6841 unsigned long last_pfn = start_pfn + nr_pages - 1; 6842 6843 return zone_spans_pfn(zone, last_pfn); 6844 } 6845 6846 /** 6847 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6848 * @nr_pages: Number of contiguous pages to allocate 6849 * @gfp_mask: GFP mask. Node/zone/placement hints limit the search; only some 6850 * action and reclaim modifiers are supported. Reclaim modifiers 6851 * control allocation behavior during compaction/migration/reclaim. 6852 * @nid: Target node 6853 * @nodemask: Mask for other possible nodes 6854 * 6855 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6856 * on an applicable zonelist to find a contiguous pfn range which can then be 6857 * tried for allocation with alloc_contig_range(). This routine is intended 6858 * for allocation requests which can not be fulfilled with the buddy allocator. 6859 * 6860 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6861 * power of two, then allocated range is also guaranteed to be aligned to same 6862 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6863 * 6864 * Allocated pages can be freed with free_contig_range() or by manually calling 6865 * __free_page() on each allocated page. 6866 * 6867 * Return: pointer to contiguous pages on success, or NULL if not successful. 6868 */ 6869 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask, 6870 int nid, nodemask_t *nodemask) 6871 { 6872 unsigned long ret, pfn, flags; 6873 struct zonelist *zonelist; 6874 struct zone *zone; 6875 struct zoneref *z; 6876 6877 zonelist = node_zonelist(nid, gfp_mask); 6878 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6879 gfp_zone(gfp_mask), nodemask) { 6880 spin_lock_irqsave(&zone->lock, flags); 6881 6882 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6883 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6884 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6885 /* 6886 * We release the zone lock here because 6887 * alloc_contig_range() will also lock the zone 6888 * at some point. If there's an allocation 6889 * spinning on this lock, it may win the race 6890 * and cause alloc_contig_range() to fail... 6891 */ 6892 spin_unlock_irqrestore(&zone->lock, flags); 6893 ret = __alloc_contig_pages(pfn, nr_pages, 6894 gfp_mask); 6895 if (!ret) 6896 return pfn_to_page(pfn); 6897 spin_lock_irqsave(&zone->lock, flags); 6898 } 6899 pfn += nr_pages; 6900 } 6901 spin_unlock_irqrestore(&zone->lock, flags); 6902 } 6903 return NULL; 6904 } 6905 #endif /* CONFIG_CONTIG_ALLOC */ 6906 6907 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6908 { 6909 unsigned long count = 0; 6910 struct folio *folio = pfn_folio(pfn); 6911 6912 if (folio_test_large(folio)) { 6913 int expected = folio_nr_pages(folio); 6914 6915 if (nr_pages == expected) 6916 folio_put(folio); 6917 else 6918 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n", 6919 pfn, nr_pages, expected); 6920 return; 6921 } 6922 6923 for (; nr_pages--; pfn++) { 6924 struct page *page = pfn_to_page(pfn); 6925 6926 count += page_count(page) != 1; 6927 __free_page(page); 6928 } 6929 WARN(count != 0, "%lu pages are still in use!\n", count); 6930 } 6931 EXPORT_SYMBOL(free_contig_range); 6932 6933 /* 6934 * Effectively disable pcplists for the zone by setting the high limit to 0 6935 * and draining all cpus. A concurrent page freeing on another CPU that's about 6936 * to put the page on pcplist will either finish before the drain and the page 6937 * will be drained, or observe the new high limit and skip the pcplist. 6938 * 6939 * Must be paired with a call to zone_pcp_enable(). 6940 */ 6941 void zone_pcp_disable(struct zone *zone) 6942 { 6943 mutex_lock(&pcp_batch_high_lock); 6944 __zone_set_pageset_high_and_batch(zone, 0, 0, 1); 6945 __drain_all_pages(zone, true); 6946 } 6947 6948 void zone_pcp_enable(struct zone *zone) 6949 { 6950 __zone_set_pageset_high_and_batch(zone, zone->pageset_high_min, 6951 zone->pageset_high_max, zone->pageset_batch); 6952 mutex_unlock(&pcp_batch_high_lock); 6953 } 6954 6955 void zone_pcp_reset(struct zone *zone) 6956 { 6957 int cpu; 6958 struct per_cpu_zonestat *pzstats; 6959 6960 if (zone->per_cpu_pageset != &boot_pageset) { 6961 for_each_online_cpu(cpu) { 6962 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6963 drain_zonestat(zone, pzstats); 6964 } 6965 free_percpu(zone->per_cpu_pageset); 6966 zone->per_cpu_pageset = &boot_pageset; 6967 if (zone->per_cpu_zonestats != &boot_zonestats) { 6968 free_percpu(zone->per_cpu_zonestats); 6969 zone->per_cpu_zonestats = &boot_zonestats; 6970 } 6971 } 6972 } 6973 6974 #ifdef CONFIG_MEMORY_HOTREMOVE 6975 /* 6976 * All pages in the range must be in a single zone, must not contain holes, 6977 * must span full sections, and must be isolated before calling this function. 6978 * 6979 * Returns the number of managed (non-PageOffline()) pages in the range: the 6980 * number of pages for which memory offlining code must adjust managed page 6981 * counters using adjust_managed_page_count(). 6982 */ 6983 unsigned long __offline_isolated_pages(unsigned long start_pfn, 6984 unsigned long end_pfn) 6985 { 6986 unsigned long already_offline = 0, flags; 6987 unsigned long pfn = start_pfn; 6988 struct page *page; 6989 struct zone *zone; 6990 unsigned int order; 6991 6992 offline_mem_sections(pfn, end_pfn); 6993 zone = page_zone(pfn_to_page(pfn)); 6994 spin_lock_irqsave(&zone->lock, flags); 6995 while (pfn < end_pfn) { 6996 page = pfn_to_page(pfn); 6997 /* 6998 * The HWPoisoned page may be not in buddy system, and 6999 * page_count() is not 0. 7000 */ 7001 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7002 pfn++; 7003 continue; 7004 } 7005 /* 7006 * At this point all remaining PageOffline() pages have a 7007 * reference count of 0 and can simply be skipped. 7008 */ 7009 if (PageOffline(page)) { 7010 BUG_ON(page_count(page)); 7011 BUG_ON(PageBuddy(page)); 7012 already_offline++; 7013 pfn++; 7014 continue; 7015 } 7016 7017 BUG_ON(page_count(page)); 7018 BUG_ON(!PageBuddy(page)); 7019 VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE); 7020 order = buddy_order(page); 7021 del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE); 7022 pfn += (1 << order); 7023 } 7024 spin_unlock_irqrestore(&zone->lock, flags); 7025 7026 return end_pfn - start_pfn - already_offline; 7027 } 7028 #endif 7029 7030 /* 7031 * This function returns a stable result only if called under zone lock. 7032 */ 7033 bool is_free_buddy_page(const struct page *page) 7034 { 7035 unsigned long pfn = page_to_pfn(page); 7036 unsigned int order; 7037 7038 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7039 const struct page *head = page - (pfn & ((1 << order) - 1)); 7040 7041 if (PageBuddy(head) && 7042 buddy_order_unsafe(head) >= order) 7043 break; 7044 } 7045 7046 return order <= MAX_PAGE_ORDER; 7047 } 7048 EXPORT_SYMBOL(is_free_buddy_page); 7049 7050 #ifdef CONFIG_MEMORY_FAILURE 7051 static inline void add_to_free_list(struct page *page, struct zone *zone, 7052 unsigned int order, int migratetype, 7053 bool tail) 7054 { 7055 __add_to_free_list(page, zone, order, migratetype, tail); 7056 account_freepages(zone, 1 << order, migratetype); 7057 } 7058 7059 /* 7060 * Break down a higher-order page in sub-pages, and keep our target out of 7061 * buddy allocator. 7062 */ 7063 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7064 struct page *target, int low, int high, 7065 int migratetype) 7066 { 7067 unsigned long size = 1 << high; 7068 struct page *current_buddy; 7069 7070 while (high > low) { 7071 high--; 7072 size >>= 1; 7073 7074 if (target >= &page[size]) { 7075 current_buddy = page; 7076 page = page + size; 7077 } else { 7078 current_buddy = page + size; 7079 } 7080 7081 if (set_page_guard(zone, current_buddy, high)) 7082 continue; 7083 7084 add_to_free_list(current_buddy, zone, high, migratetype, false); 7085 set_buddy_order(current_buddy, high); 7086 } 7087 } 7088 7089 /* 7090 * Take a page that will be marked as poisoned off the buddy allocator. 7091 */ 7092 bool take_page_off_buddy(struct page *page) 7093 { 7094 struct zone *zone = page_zone(page); 7095 unsigned long pfn = page_to_pfn(page); 7096 unsigned long flags; 7097 unsigned int order; 7098 bool ret = false; 7099 7100 spin_lock_irqsave(&zone->lock, flags); 7101 for (order = 0; order < NR_PAGE_ORDERS; order++) { 7102 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7103 int page_order = buddy_order(page_head); 7104 7105 if (PageBuddy(page_head) && page_order >= order) { 7106 unsigned long pfn_head = page_to_pfn(page_head); 7107 int migratetype = get_pfnblock_migratetype(page_head, 7108 pfn_head); 7109 7110 del_page_from_free_list(page_head, zone, page_order, 7111 migratetype); 7112 break_down_buddy_pages(zone, page_head, page, 0, 7113 page_order, migratetype); 7114 SetPageHWPoisonTakenOff(page); 7115 ret = true; 7116 break; 7117 } 7118 if (page_count(page_head) > 0) 7119 break; 7120 } 7121 spin_unlock_irqrestore(&zone->lock, flags); 7122 return ret; 7123 } 7124 7125 /* 7126 * Cancel takeoff done by take_page_off_buddy(). 7127 */ 7128 bool put_page_back_buddy(struct page *page) 7129 { 7130 struct zone *zone = page_zone(page); 7131 unsigned long flags; 7132 bool ret = false; 7133 7134 spin_lock_irqsave(&zone->lock, flags); 7135 if (put_page_testzero(page)) { 7136 unsigned long pfn = page_to_pfn(page); 7137 int migratetype = get_pfnblock_migratetype(page, pfn); 7138 7139 ClearPageHWPoisonTakenOff(page); 7140 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7141 if (TestClearPageHWPoison(page)) { 7142 ret = true; 7143 } 7144 } 7145 spin_unlock_irqrestore(&zone->lock, flags); 7146 7147 return ret; 7148 } 7149 #endif 7150 7151 #ifdef CONFIG_ZONE_DMA 7152 bool has_managed_dma(void) 7153 { 7154 struct pglist_data *pgdat; 7155 7156 for_each_online_pgdat(pgdat) { 7157 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7158 7159 if (managed_zone(zone)) 7160 return true; 7161 } 7162 return false; 7163 } 7164 #endif /* CONFIG_ZONE_DMA */ 7165 7166 #ifdef CONFIG_UNACCEPTED_MEMORY 7167 7168 static bool lazy_accept = true; 7169 7170 static int __init accept_memory_parse(char *p) 7171 { 7172 if (!strcmp(p, "lazy")) { 7173 lazy_accept = true; 7174 return 0; 7175 } else if (!strcmp(p, "eager")) { 7176 lazy_accept = false; 7177 return 0; 7178 } else { 7179 return -EINVAL; 7180 } 7181 } 7182 early_param("accept_memory", accept_memory_parse); 7183 7184 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7185 { 7186 phys_addr_t start = page_to_phys(page); 7187 7188 return range_contains_unaccepted_memory(start, PAGE_SIZE << order); 7189 } 7190 7191 static void __accept_page(struct zone *zone, unsigned long *flags, 7192 struct page *page) 7193 { 7194 list_del(&page->lru); 7195 account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7196 __mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES); 7197 __ClearPageUnaccepted(page); 7198 spin_unlock_irqrestore(&zone->lock, *flags); 7199 7200 accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER); 7201 7202 __free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL); 7203 } 7204 7205 void accept_page(struct page *page) 7206 { 7207 struct zone *zone = page_zone(page); 7208 unsigned long flags; 7209 7210 spin_lock_irqsave(&zone->lock, flags); 7211 if (!PageUnaccepted(page)) { 7212 spin_unlock_irqrestore(&zone->lock, flags); 7213 return; 7214 } 7215 7216 /* Unlocks zone->lock */ 7217 __accept_page(zone, &flags, page); 7218 } 7219 7220 static bool try_to_accept_memory_one(struct zone *zone) 7221 { 7222 unsigned long flags; 7223 struct page *page; 7224 7225 spin_lock_irqsave(&zone->lock, flags); 7226 page = list_first_entry_or_null(&zone->unaccepted_pages, 7227 struct page, lru); 7228 if (!page) { 7229 spin_unlock_irqrestore(&zone->lock, flags); 7230 return false; 7231 } 7232 7233 /* Unlocks zone->lock */ 7234 __accept_page(zone, &flags, page); 7235 7236 return true; 7237 } 7238 7239 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7240 int alloc_flags) 7241 { 7242 long to_accept, wmark; 7243 bool ret = false; 7244 7245 if (list_empty(&zone->unaccepted_pages)) 7246 return false; 7247 7248 /* Bailout, since try_to_accept_memory_one() needs to take a lock */ 7249 if (alloc_flags & ALLOC_TRYLOCK) 7250 return false; 7251 7252 wmark = promo_wmark_pages(zone); 7253 7254 /* 7255 * Watermarks have not been initialized yet. 7256 * 7257 * Accepting one MAX_ORDER page to ensure progress. 7258 */ 7259 if (!wmark) 7260 return try_to_accept_memory_one(zone); 7261 7262 /* How much to accept to get to promo watermark? */ 7263 to_accept = wmark - 7264 (zone_page_state(zone, NR_FREE_PAGES) - 7265 __zone_watermark_unusable_free(zone, order, 0) - 7266 zone_page_state(zone, NR_UNACCEPTED)); 7267 7268 while (to_accept > 0) { 7269 if (!try_to_accept_memory_one(zone)) 7270 break; 7271 ret = true; 7272 to_accept -= MAX_ORDER_NR_PAGES; 7273 } 7274 7275 return ret; 7276 } 7277 7278 static bool __free_unaccepted(struct page *page) 7279 { 7280 struct zone *zone = page_zone(page); 7281 unsigned long flags; 7282 7283 if (!lazy_accept) 7284 return false; 7285 7286 spin_lock_irqsave(&zone->lock, flags); 7287 list_add_tail(&page->lru, &zone->unaccepted_pages); 7288 account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE); 7289 __mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES); 7290 __SetPageUnaccepted(page); 7291 spin_unlock_irqrestore(&zone->lock, flags); 7292 7293 return true; 7294 } 7295 7296 #else 7297 7298 static bool page_contains_unaccepted(struct page *page, unsigned int order) 7299 { 7300 return false; 7301 } 7302 7303 static bool cond_accept_memory(struct zone *zone, unsigned int order, 7304 int alloc_flags) 7305 { 7306 return false; 7307 } 7308 7309 static bool __free_unaccepted(struct page *page) 7310 { 7311 BUILD_BUG(); 7312 return false; 7313 } 7314 7315 #endif /* CONFIG_UNACCEPTED_MEMORY */ 7316 7317 /** 7318 * alloc_pages_nolock - opportunistic reentrant allocation from any context 7319 * @nid: node to allocate from 7320 * @order: allocation order size 7321 * 7322 * Allocates pages of a given order from the given node. This is safe to 7323 * call from any context (from atomic, NMI, and also reentrant 7324 * allocator -> tracepoint -> alloc_pages_nolock_noprof). 7325 * Allocation is best effort and to be expected to fail easily so nobody should 7326 * rely on the success. Failures are not reported via warn_alloc(). 7327 * See always fail conditions below. 7328 * 7329 * Return: allocated page or NULL on failure. NULL does not mean EBUSY or EAGAIN. 7330 * It means ENOMEM. There is no reason to call it again and expect !NULL. 7331 */ 7332 struct page *alloc_pages_nolock_noprof(int nid, unsigned int order) 7333 { 7334 /* 7335 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed. 7336 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd 7337 * is not safe in arbitrary context. 7338 * 7339 * These two are the conditions for gfpflags_allow_spinning() being true. 7340 * 7341 * Specify __GFP_NOWARN since failing alloc_pages_nolock() is not a reason 7342 * to warn. Also warn would trigger printk() which is unsafe from 7343 * various contexts. We cannot use printk_deferred_enter() to mitigate, 7344 * since the running context is unknown. 7345 * 7346 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below 7347 * is safe in any context. Also zeroing the page is mandatory for 7348 * BPF use cases. 7349 * 7350 * Though __GFP_NOMEMALLOC is not checked in the code path below, 7351 * specify it here to highlight that alloc_pages_nolock() 7352 * doesn't want to deplete reserves. 7353 */ 7354 gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC 7355 | __GFP_ACCOUNT; 7356 unsigned int alloc_flags = ALLOC_TRYLOCK; 7357 struct alloc_context ac = { }; 7358 struct page *page; 7359 7360 /* 7361 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is 7362 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current 7363 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will 7364 * mark the task as the owner of another rt_spin_lock which will 7365 * confuse PI logic, so return immediately if called form hard IRQ or 7366 * NMI. 7367 * 7368 * Note, irqs_disabled() case is ok. This function can be called 7369 * from raw_spin_lock_irqsave region. 7370 */ 7371 if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq())) 7372 return NULL; 7373 if (!pcp_allowed_order(order)) 7374 return NULL; 7375 7376 /* Bailout, since _deferred_grow_zone() needs to take a lock */ 7377 if (deferred_pages_enabled()) 7378 return NULL; 7379 7380 if (nid == NUMA_NO_NODE) 7381 nid = numa_node_id(); 7382 7383 prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac, 7384 &alloc_gfp, &alloc_flags); 7385 7386 /* 7387 * Best effort allocation from percpu free list. 7388 * If it's empty attempt to spin_trylock zone->lock. 7389 */ 7390 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 7391 7392 /* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */ 7393 7394 if (page) 7395 set_page_refcounted(page); 7396 7397 if (memcg_kmem_online() && page && 7398 unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) { 7399 free_pages_nolock(page, order); 7400 page = NULL; 7401 } 7402 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 7403 kmsan_alloc_page(page, order, alloc_gfp); 7404 return page; 7405 } 7406