xref: /linux/mm/page_alloc.c (revision f9aa1fb9f8c0542f5f6e6e620de320995d5622ad)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
94 
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
96 /*
97  * On SMP, spin_trylock is sufficient protection.
98  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
99  */
100 #define pcp_trylock_prepare(flags)	do { } while (0)
101 #define pcp_trylock_finish(flag)	do { } while (0)
102 #else
103 
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
106 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
107 #endif
108 
109 /*
110  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111  * a migration causing the wrong PCP to be locked and remote memory being
112  * potentially allocated, pin the task to the CPU for the lookup+lock.
113  * preempt_disable is used on !RT because it is faster than migrate_disable.
114  * migrate_disable is used on RT because otherwise RT spinlock usage is
115  * interfered with and a high priority task cannot preempt the allocator.
116  */
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin()		preempt_disable()
119 #define pcpu_task_unpin()	preempt_enable()
120 #else
121 #define pcpu_task_pin()		migrate_disable()
122 #define pcpu_task_unpin()	migrate_enable()
123 #endif
124 
125 /*
126  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127  * Return value should be used with equivalent unlock helper.
128  */
129 #define pcpu_spin_lock(type, member, ptr)				\
130 ({									\
131 	type *_ret;							\
132 	pcpu_task_pin();						\
133 	_ret = this_cpu_ptr(ptr);					\
134 	spin_lock(&_ret->member);					\
135 	_ret;								\
136 })
137 
138 #define pcpu_spin_trylock(type, member, ptr)				\
139 ({									\
140 	type *_ret;							\
141 	pcpu_task_pin();						\
142 	_ret = this_cpu_ptr(ptr);					\
143 	if (!spin_trylock(&_ret->member)) {				\
144 		pcpu_task_unpin();					\
145 		_ret = NULL;						\
146 	}								\
147 	_ret;								\
148 })
149 
150 #define pcpu_spin_unlock(member, ptr)					\
151 ({									\
152 	spin_unlock(&ptr->member);					\
153 	pcpu_task_unpin();						\
154 })
155 
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr)						\
158 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
159 
160 #define pcp_spin_trylock(ptr)						\
161 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_unlock(ptr)						\
164 	pcpu_spin_unlock(lock, ptr)
165 
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node);
168 EXPORT_PER_CPU_SYMBOL(numa_node);
169 #endif
170 
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
172 
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
174 /*
175  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178  * defined in <linux/topology.h>.
179  */
180 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
182 #endif
183 
184 static DEFINE_MUTEX(pcpu_drain_mutex);
185 
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy;
188 EXPORT_SYMBOL(latent_entropy);
189 #endif
190 
191 /*
192  * Array of node states.
193  */
194 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
195 	[N_POSSIBLE] = NODE_MASK_ALL,
196 	[N_ONLINE] = { { [0] = 1UL } },
197 #ifndef CONFIG_NUMA
198 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
201 #endif
202 	[N_MEMORY] = { { [0] = 1UL } },
203 	[N_CPU] = { { [0] = 1UL } },
204 #endif	/* NUMA */
205 };
206 EXPORT_SYMBOL(node_states);
207 
208 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
209 
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly;
212 #endif
213 
214 static void __free_pages_ok(struct page *page, unsigned int order,
215 			    fpi_t fpi_flags);
216 
217 /*
218  * results with 256, 32 in the lowmem_reserve sysctl:
219  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220  *	1G machine -> (16M dma, 784M normal, 224M high)
221  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
224  *
225  * TBD: should special case ZONE_DMA32 machines here - in those we normally
226  * don't need any ZONE_NORMAL reservation
227  */
228 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	[ZONE_DMA] = 256,
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	[ZONE_DMA32] = 256,
234 #endif
235 	[ZONE_NORMAL] = 32,
236 #ifdef CONFIG_HIGHMEM
237 	[ZONE_HIGHMEM] = 0,
238 #endif
239 	[ZONE_MOVABLE] = 0,
240 };
241 
242 char * const zone_names[MAX_NR_ZONES] = {
243 #ifdef CONFIG_ZONE_DMA
244 	 "DMA",
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 	 "DMA32",
248 #endif
249 	 "Normal",
250 #ifdef CONFIG_HIGHMEM
251 	 "HighMem",
252 #endif
253 	 "Movable",
254 #ifdef CONFIG_ZONE_DEVICE
255 	 "Device",
256 #endif
257 };
258 
259 const char * const migratetype_names[MIGRATE_TYPES] = {
260 	"Unmovable",
261 	"Movable",
262 	"Reclaimable",
263 	"HighAtomic",
264 #ifdef CONFIG_CMA
265 	"CMA",
266 #endif
267 #ifdef CONFIG_MEMORY_ISOLATION
268 	"Isolate",
269 #endif
270 };
271 
272 int min_free_kbytes = 1024;
273 int user_min_free_kbytes = -1;
274 static int watermark_boost_factor __read_mostly = 15000;
275 static int watermark_scale_factor = 10;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 
281 #if MAX_NUMNODES > 1
282 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
283 unsigned int nr_online_nodes __read_mostly = 1;
284 EXPORT_SYMBOL(nr_node_ids);
285 EXPORT_SYMBOL(nr_online_nodes);
286 #endif
287 
288 static bool page_contains_unaccepted(struct page *page, unsigned int order);
289 static bool cond_accept_memory(struct zone *zone, unsigned int order);
290 static bool __free_unaccepted(struct page *page);
291 
292 int page_group_by_mobility_disabled __read_mostly;
293 
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
295 /*
296  * During boot we initialize deferred pages on-demand, as needed, but once
297  * page_alloc_init_late() has finished, the deferred pages are all initialized,
298  * and we can permanently disable that path.
299  */
300 DEFINE_STATIC_KEY_TRUE(deferred_pages);
301 
302 static inline bool deferred_pages_enabled(void)
303 {
304 	return static_branch_unlikely(&deferred_pages);
305 }
306 
307 /*
308  * deferred_grow_zone() is __init, but it is called from
309  * get_page_from_freelist() during early boot until deferred_pages permanently
310  * disables this call. This is why we have refdata wrapper to avoid warning,
311  * and to ensure that the function body gets unloaded.
312  */
313 static bool __ref
314 _deferred_grow_zone(struct zone *zone, unsigned int order)
315 {
316 	return deferred_grow_zone(zone, order);
317 }
318 #else
319 static inline bool deferred_pages_enabled(void)
320 {
321 	return false;
322 }
323 
324 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
325 {
326 	return false;
327 }
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
329 
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
332 							unsigned long pfn)
333 {
334 #ifdef CONFIG_SPARSEMEM
335 	return section_to_usemap(__pfn_to_section(pfn));
336 #else
337 	return page_zone(page)->pageblock_flags;
338 #endif /* CONFIG_SPARSEMEM */
339 }
340 
341 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
342 {
343 #ifdef CONFIG_SPARSEMEM
344 	pfn &= (PAGES_PER_SECTION-1);
345 #else
346 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
347 #endif /* CONFIG_SPARSEMEM */
348 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
349 }
350 
351 /**
352  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353  * @page: The page within the block of interest
354  * @pfn: The target page frame number
355  * @mask: mask of bits that the caller is interested in
356  *
357  * Return: pageblock_bits flags
358  */
359 unsigned long get_pfnblock_flags_mask(const struct page *page,
360 					unsigned long pfn, unsigned long mask)
361 {
362 	unsigned long *bitmap;
363 	unsigned long bitidx, word_bitidx;
364 	unsigned long word;
365 
366 	bitmap = get_pageblock_bitmap(page, pfn);
367 	bitidx = pfn_to_bitidx(page, pfn);
368 	word_bitidx = bitidx / BITS_PER_LONG;
369 	bitidx &= (BITS_PER_LONG-1);
370 	/*
371 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 	 * a consistent read of the memory array, so that results, even though
373 	 * racy, are not corrupted.
374 	 */
375 	word = READ_ONCE(bitmap[word_bitidx]);
376 	return (word >> bitidx) & mask;
377 }
378 
379 static __always_inline int get_pfnblock_migratetype(const struct page *page,
380 					unsigned long pfn)
381 {
382 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
383 }
384 
385 /**
386  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387  * @page: The page within the block of interest
388  * @flags: The flags to set
389  * @pfn: The target page frame number
390  * @mask: mask of bits that the caller is interested in
391  */
392 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
393 					unsigned long pfn,
394 					unsigned long mask)
395 {
396 	unsigned long *bitmap;
397 	unsigned long bitidx, word_bitidx;
398 	unsigned long word;
399 
400 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
401 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
402 
403 	bitmap = get_pageblock_bitmap(page, pfn);
404 	bitidx = pfn_to_bitidx(page, pfn);
405 	word_bitidx = bitidx / BITS_PER_LONG;
406 	bitidx &= (BITS_PER_LONG-1);
407 
408 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
409 
410 	mask <<= bitidx;
411 	flags <<= bitidx;
412 
413 	word = READ_ONCE(bitmap[word_bitidx]);
414 	do {
415 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
416 }
417 
418 void set_pageblock_migratetype(struct page *page, int migratetype)
419 {
420 	if (unlikely(page_group_by_mobility_disabled &&
421 		     migratetype < MIGRATE_PCPTYPES))
422 		migratetype = MIGRATE_UNMOVABLE;
423 
424 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
425 				page_to_pfn(page), MIGRATETYPE_MASK);
426 }
427 
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
430 {
431 	int ret;
432 	unsigned seq;
433 	unsigned long pfn = page_to_pfn(page);
434 	unsigned long sp, start_pfn;
435 
436 	do {
437 		seq = zone_span_seqbegin(zone);
438 		start_pfn = zone->zone_start_pfn;
439 		sp = zone->spanned_pages;
440 		ret = !zone_spans_pfn(zone, pfn);
441 	} while (zone_span_seqretry(zone, seq));
442 
443 	if (ret)
444 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 			pfn, zone_to_nid(zone), zone->name,
446 			start_pfn, start_pfn + sp);
447 
448 	return ret;
449 }
450 
451 /*
452  * Temporary debugging check for pages not lying within a given zone.
453  */
454 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
455 {
456 	if (page_outside_zone_boundaries(zone, page))
457 		return true;
458 	if (zone != page_zone(page))
459 		return true;
460 
461 	return false;
462 }
463 #else
464 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
465 {
466 	return false;
467 }
468 #endif
469 
470 static void bad_page(struct page *page, const char *reason)
471 {
472 	static unsigned long resume;
473 	static unsigned long nr_shown;
474 	static unsigned long nr_unshown;
475 
476 	/*
477 	 * Allow a burst of 60 reports, then keep quiet for that minute;
478 	 * or allow a steady drip of one report per second.
479 	 */
480 	if (nr_shown == 60) {
481 		if (time_before(jiffies, resume)) {
482 			nr_unshown++;
483 			goto out;
484 		}
485 		if (nr_unshown) {
486 			pr_alert(
487 			      "BUG: Bad page state: %lu messages suppressed\n",
488 				nr_unshown);
489 			nr_unshown = 0;
490 		}
491 		nr_shown = 0;
492 	}
493 	if (nr_shown++ == 0)
494 		resume = jiffies + 60 * HZ;
495 
496 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
497 		current->comm, page_to_pfn(page));
498 	dump_page(page, reason);
499 
500 	print_modules();
501 	dump_stack();
502 out:
503 	/* Leave bad fields for debug, except PageBuddy could make trouble */
504 	if (PageBuddy(page))
505 		__ClearPageBuddy(page);
506 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
507 }
508 
509 static inline unsigned int order_to_pindex(int migratetype, int order)
510 {
511 	bool __maybe_unused movable;
512 
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
515 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
516 
517 		movable = migratetype == MIGRATE_MOVABLE;
518 
519 		return NR_LOWORDER_PCP_LISTS + movable;
520 	}
521 #else
522 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
523 #endif
524 
525 	return (MIGRATE_PCPTYPES * order) + migratetype;
526 }
527 
528 static inline int pindex_to_order(unsigned int pindex)
529 {
530 	int order = pindex / MIGRATE_PCPTYPES;
531 
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 	if (pindex >= NR_LOWORDER_PCP_LISTS)
534 		order = HPAGE_PMD_ORDER;
535 #else
536 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
537 #endif
538 
539 	return order;
540 }
541 
542 static inline bool pcp_allowed_order(unsigned int order)
543 {
544 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
545 		return true;
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 	if (order == HPAGE_PMD_ORDER)
548 		return true;
549 #endif
550 	return false;
551 }
552 
553 /*
554  * Higher-order pages are called "compound pages".  They are structured thusly:
555  *
556  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
557  *
558  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
560  *
561  * The first tail page's ->compound_order holds the order of allocation.
562  * This usage means that zero-order pages may not be compound.
563  */
564 
565 void prep_compound_page(struct page *page, unsigned int order)
566 {
567 	int i;
568 	int nr_pages = 1 << order;
569 
570 	__SetPageHead(page);
571 	for (i = 1; i < nr_pages; i++)
572 		prep_compound_tail(page, i);
573 
574 	prep_compound_head(page, order);
575 }
576 
577 static inline void set_buddy_order(struct page *page, unsigned int order)
578 {
579 	set_page_private(page, order);
580 	__SetPageBuddy(page);
581 }
582 
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control *task_capc(struct zone *zone)
585 {
586 	struct capture_control *capc = current->capture_control;
587 
588 	return unlikely(capc) &&
589 		!(current->flags & PF_KTHREAD) &&
590 		!capc->page &&
591 		capc->cc->zone == zone ? capc : NULL;
592 }
593 
594 static inline bool
595 compaction_capture(struct capture_control *capc, struct page *page,
596 		   int order, int migratetype)
597 {
598 	if (!capc || order != capc->cc->order)
599 		return false;
600 
601 	/* Do not accidentally pollute CMA or isolated regions*/
602 	if (is_migrate_cma(migratetype) ||
603 	    is_migrate_isolate(migratetype))
604 		return false;
605 
606 	/*
607 	 * Do not let lower order allocations pollute a movable pageblock
608 	 * unless compaction is also requesting movable pages.
609 	 * This might let an unmovable request use a reclaimable pageblock
610 	 * and vice-versa but no more than normal fallback logic which can
611 	 * have trouble finding a high-order free page.
612 	 */
613 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
614 	    capc->cc->migratetype != MIGRATE_MOVABLE)
615 		return false;
616 
617 	capc->page = page;
618 	return true;
619 }
620 
621 #else
622 static inline struct capture_control *task_capc(struct zone *zone)
623 {
624 	return NULL;
625 }
626 
627 static inline bool
628 compaction_capture(struct capture_control *capc, struct page *page,
629 		   int order, int migratetype)
630 {
631 	return false;
632 }
633 #endif /* CONFIG_COMPACTION */
634 
635 static inline void account_freepages(struct zone *zone, int nr_pages,
636 				     int migratetype)
637 {
638 	lockdep_assert_held(&zone->lock);
639 
640 	if (is_migrate_isolate(migratetype))
641 		return;
642 
643 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
644 
645 	if (is_migrate_cma(migratetype))
646 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
647 	else if (is_migrate_highatomic(migratetype))
648 		WRITE_ONCE(zone->nr_free_highatomic,
649 			   zone->nr_free_highatomic + nr_pages);
650 }
651 
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page *page, struct zone *zone,
654 				      unsigned int order, int migratetype,
655 				      bool tail)
656 {
657 	struct free_area *area = &zone->free_area[order];
658 
659 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
660 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 		     get_pageblock_migratetype(page), migratetype, 1 << order);
662 
663 	if (tail)
664 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
665 	else
666 		list_add(&page->buddy_list, &area->free_list[migratetype]);
667 	area->nr_free++;
668 }
669 
670 /*
671  * Used for pages which are on another list. Move the pages to the tail
672  * of the list - so the moved pages won't immediately be considered for
673  * allocation again (e.g., optimization for memory onlining).
674  */
675 static inline void move_to_free_list(struct page *page, struct zone *zone,
676 				     unsigned int order, int old_mt, int new_mt)
677 {
678 	struct free_area *area = &zone->free_area[order];
679 
680 	/* Free page moving can fail, so it happens before the type update */
681 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
682 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 		     get_pageblock_migratetype(page), old_mt, 1 << order);
684 
685 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
686 
687 	account_freepages(zone, -(1 << order), old_mt);
688 	account_freepages(zone, 1 << order, new_mt);
689 }
690 
691 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
692 					     unsigned int order, int migratetype)
693 {
694         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
695 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 		     get_pageblock_migratetype(page), migratetype, 1 << order);
697 
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
709 					   unsigned int order, int migratetype)
710 {
711 	__del_page_from_free_list(page, zone, order, migratetype);
712 	account_freepages(zone, -(1 << order), migratetype);
713 }
714 
715 static inline struct page *get_page_from_free_area(struct free_area *area,
716 					    int migratetype)
717 {
718 	return list_first_entry_or_null(&area->free_list[migratetype],
719 					struct page, buddy_list);
720 }
721 
722 /*
723  * If this is less than the 2nd largest possible page, check if the buddy
724  * of the next-higher order is free. If it is, it's possible
725  * that pages are being freed that will coalesce soon. In case,
726  * that is happening, add the free page to the tail of the list
727  * so it's less likely to be used soon and more likely to be merged
728  * as a 2-level higher order page
729  */
730 static inline bool
731 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
732 		   struct page *page, unsigned int order)
733 {
734 	unsigned long higher_page_pfn;
735 	struct page *higher_page;
736 
737 	if (order >= MAX_PAGE_ORDER - 1)
738 		return false;
739 
740 	higher_page_pfn = buddy_pfn & pfn;
741 	higher_page = page + (higher_page_pfn - pfn);
742 
743 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
744 			NULL) != NULL;
745 }
746 
747 /*
748  * Freeing function for a buddy system allocator.
749  *
750  * The concept of a buddy system is to maintain direct-mapped table
751  * (containing bit values) for memory blocks of various "orders".
752  * The bottom level table contains the map for the smallest allocatable
753  * units of memory (here, pages), and each level above it describes
754  * pairs of units from the levels below, hence, "buddies".
755  * At a high level, all that happens here is marking the table entry
756  * at the bottom level available, and propagating the changes upward
757  * as necessary, plus some accounting needed to play nicely with other
758  * parts of the VM system.
759  * At each level, we keep a list of pages, which are heads of continuous
760  * free pages of length of (1 << order) and marked with PageBuddy.
761  * Page's order is recorded in page_private(page) field.
762  * So when we are allocating or freeing one, we can derive the state of the
763  * other.  That is, if we allocate a small block, and both were
764  * free, the remainder of the region must be split into blocks.
765  * If a block is freed, and its buddy is also free, then this
766  * triggers coalescing into a block of larger size.
767  *
768  * -- nyc
769  */
770 
771 static inline void __free_one_page(struct page *page,
772 		unsigned long pfn,
773 		struct zone *zone, unsigned int order,
774 		int migratetype, fpi_t fpi_flags)
775 {
776 	struct capture_control *capc = task_capc(zone);
777 	unsigned long buddy_pfn = 0;
778 	unsigned long combined_pfn;
779 	struct page *buddy;
780 	bool to_tail;
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
787 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
788 
789 	account_freepages(zone, 1 << order, migratetype);
790 
791 	while (order < MAX_PAGE_ORDER) {
792 		int buddy_mt = migratetype;
793 
794 		if (compaction_capture(capc, page, order, migratetype)) {
795 			account_freepages(zone, -(1 << order), migratetype);
796 			return;
797 		}
798 
799 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
800 		if (!buddy)
801 			goto done_merging;
802 
803 		if (unlikely(order >= pageblock_order)) {
804 			/*
805 			 * We want to prevent merge between freepages on pageblock
806 			 * without fallbacks and normal pageblock. Without this,
807 			 * pageblock isolation could cause incorrect freepage or CMA
808 			 * accounting or HIGHATOMIC accounting.
809 			 */
810 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
811 
812 			if (migratetype != buddy_mt &&
813 			    (!migratetype_is_mergeable(migratetype) ||
814 			     !migratetype_is_mergeable(buddy_mt)))
815 				goto done_merging;
816 		}
817 
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy))
823 			clear_page_guard(zone, buddy, order);
824 		else
825 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
826 
827 		if (unlikely(buddy_mt != migratetype)) {
828 			/*
829 			 * Match buddy type. This ensures that an
830 			 * expand() down the line puts the sub-blocks
831 			 * on the right freelists.
832 			 */
833 			set_pageblock_migratetype(buddy, migratetype);
834 		}
835 
836 		combined_pfn = buddy_pfn & pfn;
837 		page = page + (combined_pfn - pfn);
838 		pfn = combined_pfn;
839 		order++;
840 	}
841 
842 done_merging:
843 	set_buddy_order(page, order);
844 
845 	if (fpi_flags & FPI_TO_TAIL)
846 		to_tail = true;
847 	else if (is_shuffle_order(order))
848 		to_tail = shuffle_pick_tail();
849 	else
850 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
851 
852 	__add_to_free_list(page, zone, order, migratetype, to_tail);
853 
854 	/* Notify page reporting subsystem of freed page */
855 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
856 		page_reporting_notify_free(order);
857 }
858 
859 /*
860  * A bad page could be due to a number of fields. Instead of multiple branches,
861  * try and check multiple fields with one check. The caller must do a detailed
862  * check if necessary.
863  */
864 static inline bool page_expected_state(struct page *page,
865 					unsigned long check_flags)
866 {
867 	if (unlikely(atomic_read(&page->_mapcount) != -1))
868 		return false;
869 
870 	if (unlikely((unsigned long)page->mapping |
871 			page_ref_count(page) |
872 #ifdef CONFIG_MEMCG
873 			page->memcg_data |
874 #endif
875 #ifdef CONFIG_PAGE_POOL
876 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
877 #endif
878 			(page->flags & check_flags)))
879 		return false;
880 
881 	return true;
882 }
883 
884 static const char *page_bad_reason(struct page *page, unsigned long flags)
885 {
886 	const char *bad_reason = NULL;
887 
888 	if (unlikely(atomic_read(&page->_mapcount) != -1))
889 		bad_reason = "nonzero mapcount";
890 	if (unlikely(page->mapping != NULL))
891 		bad_reason = "non-NULL mapping";
892 	if (unlikely(page_ref_count(page) != 0))
893 		bad_reason = "nonzero _refcount";
894 	if (unlikely(page->flags & flags)) {
895 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
896 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
897 		else
898 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
899 	}
900 #ifdef CONFIG_MEMCG
901 	if (unlikely(page->memcg_data))
902 		bad_reason = "page still charged to cgroup";
903 #endif
904 #ifdef CONFIG_PAGE_POOL
905 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
906 		bad_reason = "page_pool leak";
907 #endif
908 	return bad_reason;
909 }
910 
911 static void free_page_is_bad_report(struct page *page)
912 {
913 	bad_page(page,
914 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
915 }
916 
917 static inline bool free_page_is_bad(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return false;
921 
922 	/* Something has gone sideways, find it */
923 	free_page_is_bad_report(page);
924 	return true;
925 }
926 
927 static inline bool is_check_pages_enabled(void)
928 {
929 	return static_branch_unlikely(&check_pages_enabled);
930 }
931 
932 static int free_tail_page_prepare(struct page *head_page, struct page *page)
933 {
934 	struct folio *folio = (struct folio *)head_page;
935 	int ret = 1;
936 
937 	/*
938 	 * We rely page->lru.next never has bit 0 set, unless the page
939 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
940 	 */
941 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
942 
943 	if (!is_check_pages_enabled()) {
944 		ret = 0;
945 		goto out;
946 	}
947 	switch (page - head_page) {
948 	case 1:
949 		/* the first tail page: these may be in place of ->mapping */
950 		if (unlikely(folio_entire_mapcount(folio))) {
951 			bad_page(page, "nonzero entire_mapcount");
952 			goto out;
953 		}
954 		if (unlikely(folio_large_mapcount(folio))) {
955 			bad_page(page, "nonzero large_mapcount");
956 			goto out;
957 		}
958 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
959 			bad_page(page, "nonzero nr_pages_mapped");
960 			goto out;
961 		}
962 		if (unlikely(atomic_read(&folio->_pincount))) {
963 			bad_page(page, "nonzero pincount");
964 			goto out;
965 		}
966 		break;
967 	case 2:
968 		/* the second tail page: deferred_list overlaps ->mapping */
969 		if (unlikely(!list_empty(&folio->_deferred_list))) {
970 			bad_page(page, "on deferred list");
971 			goto out;
972 		}
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page");
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set");
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent");
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 /*
997  * Skip KASAN memory poisoning when either:
998  *
999  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1001  *    using page tags instead (see below).
1002  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003  *    that error detection is disabled for accesses via the page address.
1004  *
1005  * Pages will have match-all tags in the following circumstances:
1006  *
1007  * 1. Pages are being initialized for the first time, including during deferred
1008  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011  * 3. The allocation was excluded from being checked due to sampling,
1012  *    see the call to kasan_unpoison_pages.
1013  *
1014  * Poisoning pages during deferred memory init will greatly lengthen the
1015  * process and cause problem in large memory systems as the deferred pages
1016  * initialization is done with interrupt disabled.
1017  *
1018  * Assuming that there will be no reference to those newly initialized
1019  * pages before they are ever allocated, this should have no effect on
1020  * KASAN memory tracking as the poison will be properly inserted at page
1021  * allocation time. The only corner case is when pages are allocated by
1022  * on-demand allocation and then freed again before the deferred pages
1023  * initialization is done, but this is not likely to happen.
1024  */
1025 static inline bool should_skip_kasan_poison(struct page *page)
1026 {
1027 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1028 		return deferred_pages_enabled();
1029 
1030 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1031 }
1032 
1033 static void kernel_init_pages(struct page *page, int numpages)
1034 {
1035 	int i;
1036 
1037 	/* s390's use of memset() could override KASAN redzones. */
1038 	kasan_disable_current();
1039 	for (i = 0; i < numpages; i++)
1040 		clear_highpage_kasan_tagged(page + i);
1041 	kasan_enable_current();
1042 }
1043 
1044 __always_inline bool free_pages_prepare(struct page *page,
1045 			unsigned int order)
1046 {
1047 	int bad = 0;
1048 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1049 	bool init = want_init_on_free();
1050 	bool compound = PageCompound(page);
1051 	struct folio *folio = page_folio(page);
1052 
1053 	VM_BUG_ON_PAGE(PageTail(page), page);
1054 
1055 	trace_mm_page_free(page, order);
1056 	kmsan_free_page(page, order);
1057 
1058 	if (memcg_kmem_online() && PageMemcgKmem(page))
1059 		__memcg_kmem_uncharge_page(page, order);
1060 
1061 	/*
1062 	 * In rare cases, when truncation or holepunching raced with
1063 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064 	 * found set here.  This does not indicate a problem, unless
1065 	 * "unevictable_pgs_cleared" appears worryingly large.
1066 	 */
1067 	if (unlikely(folio_test_mlocked(folio))) {
1068 		long nr_pages = folio_nr_pages(folio);
1069 
1070 		__folio_clear_mlocked(folio);
1071 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1072 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1073 	}
1074 
1075 	if (unlikely(PageHWPoison(page)) && !order) {
1076 		/* Do not let hwpoison pages hit pcplists/buddy */
1077 		reset_page_owner(page, order);
1078 		page_table_check_free(page, order);
1079 		pgalloc_tag_sub(page, 1 << order);
1080 
1081 		/*
1082 		 * The page is isolated and accounted for.
1083 		 * Mark the codetag as empty to avoid accounting error
1084 		 * when the page is freed by unpoison_memory().
1085 		 */
1086 		clear_page_tag_ref(page);
1087 		return false;
1088 	}
1089 
1090 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1091 
1092 	/*
1093 	 * Check tail pages before head page information is cleared to
1094 	 * avoid checking PageCompound for order-0 pages.
1095 	 */
1096 	if (unlikely(order)) {
1097 		int i;
1098 
1099 		if (compound)
1100 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1101 		for (i = 1; i < (1 << order); i++) {
1102 			if (compound)
1103 				bad += free_tail_page_prepare(page, page + i);
1104 			if (is_check_pages_enabled()) {
1105 				if (free_page_is_bad(page + i)) {
1106 					bad++;
1107 					continue;
1108 				}
1109 			}
1110 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1111 		}
1112 	}
1113 	if (PageMappingFlags(page)) {
1114 		if (PageAnon(page))
1115 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1116 		page->mapping = NULL;
1117 	}
1118 	if (is_check_pages_enabled()) {
1119 		if (free_page_is_bad(page))
1120 			bad++;
1121 		if (bad)
1122 			return false;
1123 	}
1124 
1125 	page_cpupid_reset_last(page);
1126 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127 	reset_page_owner(page, order);
1128 	page_table_check_free(page, order);
1129 	pgalloc_tag_sub(page, 1 << order);
1130 
1131 	if (!PageHighMem(page)) {
1132 		debug_check_no_locks_freed(page_address(page),
1133 					   PAGE_SIZE << order);
1134 		debug_check_no_obj_freed(page_address(page),
1135 					   PAGE_SIZE << order);
1136 	}
1137 
1138 	kernel_poison_pages(page, 1 << order);
1139 
1140 	/*
1141 	 * As memory initialization might be integrated into KASAN,
1142 	 * KASAN poisoning and memory initialization code must be
1143 	 * kept together to avoid discrepancies in behavior.
1144 	 *
1145 	 * With hardware tag-based KASAN, memory tags must be set before the
1146 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1147 	 */
1148 	if (!skip_kasan_poison) {
1149 		kasan_poison_pages(page, order, init);
1150 
1151 		/* Memory is already initialized if KASAN did it internally. */
1152 		if (kasan_has_integrated_init())
1153 			init = false;
1154 	}
1155 	if (init)
1156 		kernel_init_pages(page, 1 << order);
1157 
1158 	/*
1159 	 * arch_free_page() can make the page's contents inaccessible.  s390
1160 	 * does this.  So nothing which can access the page's contents should
1161 	 * happen after this.
1162 	 */
1163 	arch_free_page(page, order);
1164 
1165 	debug_pagealloc_unmap_pages(page, 1 << order);
1166 
1167 	return true;
1168 }
1169 
1170 /*
1171  * Frees a number of pages from the PCP lists
1172  * Assumes all pages on list are in same zone.
1173  * count is the number of pages to free.
1174  */
1175 static void free_pcppages_bulk(struct zone *zone, int count,
1176 					struct per_cpu_pages *pcp,
1177 					int pindex)
1178 {
1179 	unsigned long flags;
1180 	unsigned int order;
1181 	struct page *page;
1182 
1183 	/*
1184 	 * Ensure proper count is passed which otherwise would stuck in the
1185 	 * below while (list_empty(list)) loop.
1186 	 */
1187 	count = min(pcp->count, count);
1188 
1189 	/* Ensure requested pindex is drained first. */
1190 	pindex = pindex - 1;
1191 
1192 	spin_lock_irqsave(&zone->lock, flags);
1193 
1194 	while (count > 0) {
1195 		struct list_head *list;
1196 		int nr_pages;
1197 
1198 		/* Remove pages from lists in a round-robin fashion. */
1199 		do {
1200 			if (++pindex > NR_PCP_LISTS - 1)
1201 				pindex = 0;
1202 			list = &pcp->lists[pindex];
1203 		} while (list_empty(list));
1204 
1205 		order = pindex_to_order(pindex);
1206 		nr_pages = 1 << order;
1207 		do {
1208 			unsigned long pfn;
1209 			int mt;
1210 
1211 			page = list_last_entry(list, struct page, pcp_list);
1212 			pfn = page_to_pfn(page);
1213 			mt = get_pfnblock_migratetype(page, pfn);
1214 
1215 			/* must delete to avoid corrupting pcp list */
1216 			list_del(&page->pcp_list);
1217 			count -= nr_pages;
1218 			pcp->count -= nr_pages;
1219 
1220 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1221 			trace_mm_page_pcpu_drain(page, order, mt);
1222 		} while (count > 0 && !list_empty(list));
1223 	}
1224 
1225 	spin_unlock_irqrestore(&zone->lock, flags);
1226 }
1227 
1228 /* Split a multi-block free page into its individual pageblocks. */
1229 static void split_large_buddy(struct zone *zone, struct page *page,
1230 			      unsigned long pfn, int order, fpi_t fpi)
1231 {
1232 	unsigned long end = pfn + (1 << order);
1233 
1234 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1235 	/* Caller removed page from freelist, buddy info cleared! */
1236 	VM_WARN_ON_ONCE(PageBuddy(page));
1237 
1238 	if (order > pageblock_order)
1239 		order = pageblock_order;
1240 
1241 	do {
1242 		int mt = get_pfnblock_migratetype(page, pfn);
1243 
1244 		__free_one_page(page, pfn, zone, order, mt, fpi);
1245 		pfn += 1 << order;
1246 		if (pfn == end)
1247 			break;
1248 		page = pfn_to_page(pfn);
1249 	} while (1);
1250 }
1251 
1252 static void free_one_page(struct zone *zone, struct page *page,
1253 			  unsigned long pfn, unsigned int order,
1254 			  fpi_t fpi_flags)
1255 {
1256 	unsigned long flags;
1257 
1258 	spin_lock_irqsave(&zone->lock, flags);
1259 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1260 	spin_unlock_irqrestore(&zone->lock, flags);
1261 
1262 	__count_vm_events(PGFREE, 1 << order);
1263 }
1264 
1265 static void __free_pages_ok(struct page *page, unsigned int order,
1266 			    fpi_t fpi_flags)
1267 {
1268 	unsigned long pfn = page_to_pfn(page);
1269 	struct zone *zone = page_zone(page);
1270 
1271 	if (free_pages_prepare(page, order))
1272 		free_one_page(zone, page, pfn, order, fpi_flags);
1273 }
1274 
1275 void __meminit __free_pages_core(struct page *page, unsigned int order,
1276 		enum meminit_context context)
1277 {
1278 	unsigned int nr_pages = 1 << order;
1279 	struct page *p = page;
1280 	unsigned int loop;
1281 
1282 	/*
1283 	 * When initializing the memmap, __init_single_page() sets the refcount
1284 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1285 	 * refcount of all involved pages to 0.
1286 	 *
1287 	 * Note that hotplugged memory pages are initialized to PageOffline().
1288 	 * Pages freed from memblock might be marked as reserved.
1289 	 */
1290 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1291 	    unlikely(context == MEMINIT_HOTPLUG)) {
1292 		for (loop = 0; loop < nr_pages; loop++, p++) {
1293 			VM_WARN_ON_ONCE(PageReserved(p));
1294 			__ClearPageOffline(p);
1295 			set_page_count(p, 0);
1296 		}
1297 
1298 		/*
1299 		 * Freeing the page with debug_pagealloc enabled will try to
1300 		 * unmap it; some archs don't like double-unmappings, so
1301 		 * map it first.
1302 		 */
1303 		debug_pagealloc_map_pages(page, nr_pages);
1304 		adjust_managed_page_count(page, nr_pages);
1305 	} else {
1306 		for (loop = 0; loop < nr_pages; loop++, p++) {
1307 			__ClearPageReserved(p);
1308 			set_page_count(p, 0);
1309 		}
1310 
1311 		/* memblock adjusts totalram_pages() manually. */
1312 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1313 	}
1314 
1315 	if (page_contains_unaccepted(page, order)) {
1316 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1317 			return;
1318 
1319 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1320 	}
1321 
1322 	/*
1323 	 * Bypass PCP and place fresh pages right to the tail, primarily
1324 	 * relevant for memory onlining.
1325 	 */
1326 	__free_pages_ok(page, order, FPI_TO_TAIL);
1327 }
1328 
1329 /*
1330  * Check that the whole (or subset of) a pageblock given by the interval of
1331  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1332  * with the migration of free compaction scanner.
1333  *
1334  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1335  *
1336  * It's possible on some configurations to have a setup like node0 node1 node0
1337  * i.e. it's possible that all pages within a zones range of pages do not
1338  * belong to a single zone. We assume that a border between node0 and node1
1339  * can occur within a single pageblock, but not a node0 node1 node0
1340  * interleaving within a single pageblock. It is therefore sufficient to check
1341  * the first and last page of a pageblock and avoid checking each individual
1342  * page in a pageblock.
1343  *
1344  * Note: the function may return non-NULL struct page even for a page block
1345  * which contains a memory hole (i.e. there is no physical memory for a subset
1346  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1347  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1348  * even though the start pfn is online and valid. This should be safe most of
1349  * the time because struct pages are still initialized via init_unavailable_range()
1350  * and pfn walkers shouldn't touch any physical memory range for which they do
1351  * not recognize any specific metadata in struct pages.
1352  */
1353 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1354 				     unsigned long end_pfn, struct zone *zone)
1355 {
1356 	struct page *start_page;
1357 	struct page *end_page;
1358 
1359 	/* end_pfn is one past the range we are checking */
1360 	end_pfn--;
1361 
1362 	if (!pfn_valid(end_pfn))
1363 		return NULL;
1364 
1365 	start_page = pfn_to_online_page(start_pfn);
1366 	if (!start_page)
1367 		return NULL;
1368 
1369 	if (page_zone(start_page) != zone)
1370 		return NULL;
1371 
1372 	end_page = pfn_to_page(end_pfn);
1373 
1374 	/* This gives a shorter code than deriving page_zone(end_page) */
1375 	if (page_zone_id(start_page) != page_zone_id(end_page))
1376 		return NULL;
1377 
1378 	return start_page;
1379 }
1380 
1381 /*
1382  * The order of subdivision here is critical for the IO subsystem.
1383  * Please do not alter this order without good reasons and regression
1384  * testing. Specifically, as large blocks of memory are subdivided,
1385  * the order in which smaller blocks are delivered depends on the order
1386  * they're subdivided in this function. This is the primary factor
1387  * influencing the order in which pages are delivered to the IO
1388  * subsystem according to empirical testing, and this is also justified
1389  * by considering the behavior of a buddy system containing a single
1390  * large block of memory acted on by a series of small allocations.
1391  * This behavior is a critical factor in sglist merging's success.
1392  *
1393  * -- nyc
1394  */
1395 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1396 				  int high, int migratetype)
1397 {
1398 	unsigned int size = 1 << high;
1399 	unsigned int nr_added = 0;
1400 
1401 	while (high > low) {
1402 		high--;
1403 		size >>= 1;
1404 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1405 
1406 		/*
1407 		 * Mark as guard pages (or page), that will allow to
1408 		 * merge back to allocator when buddy will be freed.
1409 		 * Corresponding page table entries will not be touched,
1410 		 * pages will stay not present in virtual address space
1411 		 */
1412 		if (set_page_guard(zone, &page[size], high))
1413 			continue;
1414 
1415 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1416 		set_buddy_order(&page[size], high);
1417 		nr_added += size;
1418 	}
1419 
1420 	return nr_added;
1421 }
1422 
1423 static __always_inline void page_del_and_expand(struct zone *zone,
1424 						struct page *page, int low,
1425 						int high, int migratetype)
1426 {
1427 	int nr_pages = 1 << high;
1428 
1429 	__del_page_from_free_list(page, zone, high, migratetype);
1430 	nr_pages -= expand(zone, page, low, high, migratetype);
1431 	account_freepages(zone, -nr_pages, migratetype);
1432 }
1433 
1434 static void check_new_page_bad(struct page *page)
1435 {
1436 	if (unlikely(page->flags & __PG_HWPOISON)) {
1437 		/* Don't complain about hwpoisoned pages */
1438 		if (PageBuddy(page))
1439 			__ClearPageBuddy(page);
1440 		return;
1441 	}
1442 
1443 	bad_page(page,
1444 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1445 }
1446 
1447 /*
1448  * This page is about to be returned from the page allocator
1449  */
1450 static bool check_new_page(struct page *page)
1451 {
1452 	if (likely(page_expected_state(page,
1453 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1454 		return false;
1455 
1456 	check_new_page_bad(page);
1457 	return true;
1458 }
1459 
1460 static inline bool check_new_pages(struct page *page, unsigned int order)
1461 {
1462 	if (is_check_pages_enabled()) {
1463 		for (int i = 0; i < (1 << order); i++) {
1464 			struct page *p = page + i;
1465 
1466 			if (check_new_page(p))
1467 				return true;
1468 		}
1469 	}
1470 
1471 	return false;
1472 }
1473 
1474 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1475 {
1476 	/* Don't skip if a software KASAN mode is enabled. */
1477 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1478 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1479 		return false;
1480 
1481 	/* Skip, if hardware tag-based KASAN is not enabled. */
1482 	if (!kasan_hw_tags_enabled())
1483 		return true;
1484 
1485 	/*
1486 	 * With hardware tag-based KASAN enabled, skip if this has been
1487 	 * requested via __GFP_SKIP_KASAN.
1488 	 */
1489 	return flags & __GFP_SKIP_KASAN;
1490 }
1491 
1492 static inline bool should_skip_init(gfp_t flags)
1493 {
1494 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1495 	if (!kasan_hw_tags_enabled())
1496 		return false;
1497 
1498 	/* For hardware tag-based KASAN, skip if requested. */
1499 	return (flags & __GFP_SKIP_ZERO);
1500 }
1501 
1502 inline void post_alloc_hook(struct page *page, unsigned int order,
1503 				gfp_t gfp_flags)
1504 {
1505 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1506 			!should_skip_init(gfp_flags);
1507 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1508 	int i;
1509 
1510 	set_page_private(page, 0);
1511 	set_page_refcounted(page);
1512 
1513 	arch_alloc_page(page, order);
1514 	debug_pagealloc_map_pages(page, 1 << order);
1515 
1516 	/*
1517 	 * Page unpoisoning must happen before memory initialization.
1518 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1519 	 * allocations and the page unpoisoning code will complain.
1520 	 */
1521 	kernel_unpoison_pages(page, 1 << order);
1522 
1523 	/*
1524 	 * As memory initialization might be integrated into KASAN,
1525 	 * KASAN unpoisoning and memory initializion code must be
1526 	 * kept together to avoid discrepancies in behavior.
1527 	 */
1528 
1529 	/*
1530 	 * If memory tags should be zeroed
1531 	 * (which happens only when memory should be initialized as well).
1532 	 */
1533 	if (zero_tags) {
1534 		/* Initialize both memory and memory tags. */
1535 		for (i = 0; i != 1 << order; ++i)
1536 			tag_clear_highpage(page + i);
1537 
1538 		/* Take note that memory was initialized by the loop above. */
1539 		init = false;
1540 	}
1541 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1542 	    kasan_unpoison_pages(page, order, init)) {
1543 		/* Take note that memory was initialized by KASAN. */
1544 		if (kasan_has_integrated_init())
1545 			init = false;
1546 	} else {
1547 		/*
1548 		 * If memory tags have not been set by KASAN, reset the page
1549 		 * tags to ensure page_address() dereferencing does not fault.
1550 		 */
1551 		for (i = 0; i != 1 << order; ++i)
1552 			page_kasan_tag_reset(page + i);
1553 	}
1554 	/* If memory is still not initialized, initialize it now. */
1555 	if (init)
1556 		kernel_init_pages(page, 1 << order);
1557 
1558 	set_page_owner(page, order, gfp_flags);
1559 	page_table_check_alloc(page, order);
1560 	pgalloc_tag_add(page, current, 1 << order);
1561 }
1562 
1563 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1564 							unsigned int alloc_flags)
1565 {
1566 	post_alloc_hook(page, order, gfp_flags);
1567 
1568 	if (order && (gfp_flags & __GFP_COMP))
1569 		prep_compound_page(page, order);
1570 
1571 	/*
1572 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1573 	 * allocate the page. The expectation is that the caller is taking
1574 	 * steps that will free more memory. The caller should avoid the page
1575 	 * being used for !PFMEMALLOC purposes.
1576 	 */
1577 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1578 		set_page_pfmemalloc(page);
1579 	else
1580 		clear_page_pfmemalloc(page);
1581 }
1582 
1583 /*
1584  * Go through the free lists for the given migratetype and remove
1585  * the smallest available page from the freelists
1586  */
1587 static __always_inline
1588 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1589 						int migratetype)
1590 {
1591 	unsigned int current_order;
1592 	struct free_area *area;
1593 	struct page *page;
1594 
1595 	/* Find a page of the appropriate size in the preferred list */
1596 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1597 		area = &(zone->free_area[current_order]);
1598 		page = get_page_from_free_area(area, migratetype);
1599 		if (!page)
1600 			continue;
1601 
1602 		page_del_and_expand(zone, page, order, current_order,
1603 				    migratetype);
1604 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1605 				pcp_allowed_order(order) &&
1606 				migratetype < MIGRATE_PCPTYPES);
1607 		return page;
1608 	}
1609 
1610 	return NULL;
1611 }
1612 
1613 
1614 /*
1615  * This array describes the order lists are fallen back to when
1616  * the free lists for the desirable migrate type are depleted
1617  *
1618  * The other migratetypes do not have fallbacks.
1619  */
1620 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1621 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1622 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1623 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1624 };
1625 
1626 #ifdef CONFIG_CMA
1627 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1628 					unsigned int order)
1629 {
1630 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1631 }
1632 #else
1633 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1634 					unsigned int order) { return NULL; }
1635 #endif
1636 
1637 /*
1638  * Change the type of a block and move all its free pages to that
1639  * type's freelist.
1640  */
1641 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1642 				  int old_mt, int new_mt)
1643 {
1644 	struct page *page;
1645 	unsigned long pfn, end_pfn;
1646 	unsigned int order;
1647 	int pages_moved = 0;
1648 
1649 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1650 	end_pfn = pageblock_end_pfn(start_pfn);
1651 
1652 	for (pfn = start_pfn; pfn < end_pfn;) {
1653 		page = pfn_to_page(pfn);
1654 		if (!PageBuddy(page)) {
1655 			pfn++;
1656 			continue;
1657 		}
1658 
1659 		/* Make sure we are not inadvertently changing nodes */
1660 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1661 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1662 
1663 		order = buddy_order(page);
1664 
1665 		move_to_free_list(page, zone, order, old_mt, new_mt);
1666 
1667 		pfn += 1 << order;
1668 		pages_moved += 1 << order;
1669 	}
1670 
1671 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1672 
1673 	return pages_moved;
1674 }
1675 
1676 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1677 				      unsigned long *start_pfn,
1678 				      int *num_free, int *num_movable)
1679 {
1680 	unsigned long pfn, start, end;
1681 
1682 	pfn = page_to_pfn(page);
1683 	start = pageblock_start_pfn(pfn);
1684 	end = pageblock_end_pfn(pfn);
1685 
1686 	/*
1687 	 * The caller only has the lock for @zone, don't touch ranges
1688 	 * that straddle into other zones. While we could move part of
1689 	 * the range that's inside the zone, this call is usually
1690 	 * accompanied by other operations such as migratetype updates
1691 	 * which also should be locked.
1692 	 */
1693 	if (!zone_spans_pfn(zone, start))
1694 		return false;
1695 	if (!zone_spans_pfn(zone, end - 1))
1696 		return false;
1697 
1698 	*start_pfn = start;
1699 
1700 	if (num_free) {
1701 		*num_free = 0;
1702 		*num_movable = 0;
1703 		for (pfn = start; pfn < end;) {
1704 			page = pfn_to_page(pfn);
1705 			if (PageBuddy(page)) {
1706 				int nr = 1 << buddy_order(page);
1707 
1708 				*num_free += nr;
1709 				pfn += nr;
1710 				continue;
1711 			}
1712 			/*
1713 			 * We assume that pages that could be isolated for
1714 			 * migration are movable. But we don't actually try
1715 			 * isolating, as that would be expensive.
1716 			 */
1717 			if (PageLRU(page) || __PageMovable(page))
1718 				(*num_movable)++;
1719 			pfn++;
1720 		}
1721 	}
1722 
1723 	return true;
1724 }
1725 
1726 static int move_freepages_block(struct zone *zone, struct page *page,
1727 				int old_mt, int new_mt)
1728 {
1729 	unsigned long start_pfn;
1730 
1731 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1732 		return -1;
1733 
1734 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1735 }
1736 
1737 #ifdef CONFIG_MEMORY_ISOLATION
1738 /* Look for a buddy that straddles start_pfn */
1739 static unsigned long find_large_buddy(unsigned long start_pfn)
1740 {
1741 	int order = 0;
1742 	struct page *page;
1743 	unsigned long pfn = start_pfn;
1744 
1745 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1746 		/* Nothing found */
1747 		if (++order > MAX_PAGE_ORDER)
1748 			return start_pfn;
1749 		pfn &= ~0UL << order;
1750 	}
1751 
1752 	/*
1753 	 * Found a preceding buddy, but does it straddle?
1754 	 */
1755 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1756 		return pfn;
1757 
1758 	/* Nothing found */
1759 	return start_pfn;
1760 }
1761 
1762 /**
1763  * move_freepages_block_isolate - move free pages in block for page isolation
1764  * @zone: the zone
1765  * @page: the pageblock page
1766  * @migratetype: migratetype to set on the pageblock
1767  *
1768  * This is similar to move_freepages_block(), but handles the special
1769  * case encountered in page isolation, where the block of interest
1770  * might be part of a larger buddy spanning multiple pageblocks.
1771  *
1772  * Unlike the regular page allocator path, which moves pages while
1773  * stealing buddies off the freelist, page isolation is interested in
1774  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1775  *
1776  * This function handles that. Straddling buddies are split into
1777  * individual pageblocks. Only the block of interest is moved.
1778  *
1779  * Returns %true if pages could be moved, %false otherwise.
1780  */
1781 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1782 				  int migratetype)
1783 {
1784 	unsigned long start_pfn, pfn;
1785 
1786 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1787 		return false;
1788 
1789 	/* No splits needed if buddies can't span multiple blocks */
1790 	if (pageblock_order == MAX_PAGE_ORDER)
1791 		goto move;
1792 
1793 	/* We're a tail block in a larger buddy */
1794 	pfn = find_large_buddy(start_pfn);
1795 	if (pfn != start_pfn) {
1796 		struct page *buddy = pfn_to_page(pfn);
1797 		int order = buddy_order(buddy);
1798 
1799 		del_page_from_free_list(buddy, zone, order,
1800 					get_pfnblock_migratetype(buddy, pfn));
1801 		set_pageblock_migratetype(page, migratetype);
1802 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1803 		return true;
1804 	}
1805 
1806 	/* We're the starting block of a larger buddy */
1807 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1808 		int order = buddy_order(page);
1809 
1810 		del_page_from_free_list(page, zone, order,
1811 					get_pfnblock_migratetype(page, pfn));
1812 		set_pageblock_migratetype(page, migratetype);
1813 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1814 		return true;
1815 	}
1816 move:
1817 	__move_freepages_block(zone, start_pfn,
1818 			       get_pfnblock_migratetype(page, start_pfn),
1819 			       migratetype);
1820 	return true;
1821 }
1822 #endif /* CONFIG_MEMORY_ISOLATION */
1823 
1824 static void change_pageblock_range(struct page *pageblock_page,
1825 					int start_order, int migratetype)
1826 {
1827 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1828 
1829 	while (nr_pageblocks--) {
1830 		set_pageblock_migratetype(pageblock_page, migratetype);
1831 		pageblock_page += pageblock_nr_pages;
1832 	}
1833 }
1834 
1835 /*
1836  * When we are falling back to another migratetype during allocation, try to
1837  * steal extra free pages from the same pageblocks to satisfy further
1838  * allocations, instead of polluting multiple pageblocks.
1839  *
1840  * If we are stealing a relatively large buddy page, it is likely there will
1841  * be more free pages in the pageblock, so try to steal them all. For
1842  * reclaimable and unmovable allocations, we steal regardless of page size,
1843  * as fragmentation caused by those allocations polluting movable pageblocks
1844  * is worse than movable allocations stealing from unmovable and reclaimable
1845  * pageblocks.
1846  */
1847 static bool can_steal_fallback(unsigned int order, int start_mt)
1848 {
1849 	/*
1850 	 * Leaving this order check is intended, although there is
1851 	 * relaxed order check in next check. The reason is that
1852 	 * we can actually steal whole pageblock if this condition met,
1853 	 * but, below check doesn't guarantee it and that is just heuristic
1854 	 * so could be changed anytime.
1855 	 */
1856 	if (order >= pageblock_order)
1857 		return true;
1858 
1859 	if (order >= pageblock_order / 2 ||
1860 		start_mt == MIGRATE_RECLAIMABLE ||
1861 		start_mt == MIGRATE_UNMOVABLE ||
1862 		page_group_by_mobility_disabled)
1863 		return true;
1864 
1865 	return false;
1866 }
1867 
1868 static inline bool boost_watermark(struct zone *zone)
1869 {
1870 	unsigned long max_boost;
1871 
1872 	if (!watermark_boost_factor)
1873 		return false;
1874 	/*
1875 	 * Don't bother in zones that are unlikely to produce results.
1876 	 * On small machines, including kdump capture kernels running
1877 	 * in a small area, boosting the watermark can cause an out of
1878 	 * memory situation immediately.
1879 	 */
1880 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1881 		return false;
1882 
1883 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1884 			watermark_boost_factor, 10000);
1885 
1886 	/*
1887 	 * high watermark may be uninitialised if fragmentation occurs
1888 	 * very early in boot so do not boost. We do not fall
1889 	 * through and boost by pageblock_nr_pages as failing
1890 	 * allocations that early means that reclaim is not going
1891 	 * to help and it may even be impossible to reclaim the
1892 	 * boosted watermark resulting in a hang.
1893 	 */
1894 	if (!max_boost)
1895 		return false;
1896 
1897 	max_boost = max(pageblock_nr_pages, max_boost);
1898 
1899 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1900 		max_boost);
1901 
1902 	return true;
1903 }
1904 
1905 /*
1906  * This function implements actual steal behaviour. If order is large enough, we
1907  * can claim the whole pageblock for the requested migratetype. If not, we check
1908  * the pageblock for constituent pages; if at least half of the pages are free
1909  * or compatible, we can still claim the whole block, so pages freed in the
1910  * future will be put on the correct free list. Otherwise, we isolate exactly
1911  * the order we need from the fallback block and leave its migratetype alone.
1912  */
1913 static struct page *
1914 steal_suitable_fallback(struct zone *zone, struct page *page,
1915 			int current_order, int order, int start_type,
1916 			unsigned int alloc_flags, bool whole_block)
1917 {
1918 	int free_pages, movable_pages, alike_pages;
1919 	unsigned long start_pfn;
1920 	int block_type;
1921 
1922 	block_type = get_pageblock_migratetype(page);
1923 
1924 	/*
1925 	 * This can happen due to races and we want to prevent broken
1926 	 * highatomic accounting.
1927 	 */
1928 	if (is_migrate_highatomic(block_type))
1929 		goto single_page;
1930 
1931 	/* Take ownership for orders >= pageblock_order */
1932 	if (current_order >= pageblock_order) {
1933 		unsigned int nr_added;
1934 
1935 		del_page_from_free_list(page, zone, current_order, block_type);
1936 		change_pageblock_range(page, current_order, start_type);
1937 		nr_added = expand(zone, page, order, current_order, start_type);
1938 		account_freepages(zone, nr_added, start_type);
1939 		return page;
1940 	}
1941 
1942 	/*
1943 	 * Boost watermarks to increase reclaim pressure to reduce the
1944 	 * likelihood of future fallbacks. Wake kswapd now as the node
1945 	 * may be balanced overall and kswapd will not wake naturally.
1946 	 */
1947 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1948 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1949 
1950 	/* We are not allowed to try stealing from the whole block */
1951 	if (!whole_block)
1952 		goto single_page;
1953 
1954 	/* moving whole block can fail due to zone boundary conditions */
1955 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1956 				       &movable_pages))
1957 		goto single_page;
1958 
1959 	/*
1960 	 * Determine how many pages are compatible with our allocation.
1961 	 * For movable allocation, it's the number of movable pages which
1962 	 * we just obtained. For other types it's a bit more tricky.
1963 	 */
1964 	if (start_type == MIGRATE_MOVABLE) {
1965 		alike_pages = movable_pages;
1966 	} else {
1967 		/*
1968 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1969 		 * to MOVABLE pageblock, consider all non-movable pages as
1970 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1971 		 * vice versa, be conservative since we can't distinguish the
1972 		 * exact migratetype of non-movable pages.
1973 		 */
1974 		if (block_type == MIGRATE_MOVABLE)
1975 			alike_pages = pageblock_nr_pages
1976 						- (free_pages + movable_pages);
1977 		else
1978 			alike_pages = 0;
1979 	}
1980 	/*
1981 	 * If a sufficient number of pages in the block are either free or of
1982 	 * compatible migratability as our allocation, claim the whole block.
1983 	 */
1984 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1985 			page_group_by_mobility_disabled) {
1986 		__move_freepages_block(zone, start_pfn, block_type, start_type);
1987 		return __rmqueue_smallest(zone, order, start_type);
1988 	}
1989 
1990 single_page:
1991 	page_del_and_expand(zone, page, order, current_order, block_type);
1992 	return page;
1993 }
1994 
1995 /*
1996  * Check whether there is a suitable fallback freepage with requested order.
1997  * If only_stealable is true, this function returns fallback_mt only if
1998  * we can steal other freepages all together. This would help to reduce
1999  * fragmentation due to mixed migratetype pages in one pageblock.
2000  */
2001 int find_suitable_fallback(struct free_area *area, unsigned int order,
2002 			int migratetype, bool only_stealable, bool *can_steal)
2003 {
2004 	int i;
2005 	int fallback_mt;
2006 
2007 	if (area->nr_free == 0)
2008 		return -1;
2009 
2010 	*can_steal = false;
2011 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2012 		fallback_mt = fallbacks[migratetype][i];
2013 		if (free_area_empty(area, fallback_mt))
2014 			continue;
2015 
2016 		if (can_steal_fallback(order, migratetype))
2017 			*can_steal = true;
2018 
2019 		if (!only_stealable)
2020 			return fallback_mt;
2021 
2022 		if (*can_steal)
2023 			return fallback_mt;
2024 	}
2025 
2026 	return -1;
2027 }
2028 
2029 /*
2030  * Reserve the pageblock(s) surrounding an allocation request for
2031  * exclusive use of high-order atomic allocations if there are no
2032  * empty page blocks that contain a page with a suitable order
2033  */
2034 static void reserve_highatomic_pageblock(struct page *page, int order,
2035 					 struct zone *zone)
2036 {
2037 	int mt;
2038 	unsigned long max_managed, flags;
2039 
2040 	/*
2041 	 * The number reserved as: minimum is 1 pageblock, maximum is
2042 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2043 	 * pageblock size, then don't reserve any pageblocks.
2044 	 * Check is race-prone but harmless.
2045 	 */
2046 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2047 		return;
2048 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2049 	if (zone->nr_reserved_highatomic >= max_managed)
2050 		return;
2051 
2052 	spin_lock_irqsave(&zone->lock, flags);
2053 
2054 	/* Recheck the nr_reserved_highatomic limit under the lock */
2055 	if (zone->nr_reserved_highatomic >= max_managed)
2056 		goto out_unlock;
2057 
2058 	/* Yoink! */
2059 	mt = get_pageblock_migratetype(page);
2060 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2061 	if (!migratetype_is_mergeable(mt))
2062 		goto out_unlock;
2063 
2064 	if (order < pageblock_order) {
2065 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2066 			goto out_unlock;
2067 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2068 	} else {
2069 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2070 		zone->nr_reserved_highatomic += 1 << order;
2071 	}
2072 
2073 out_unlock:
2074 	spin_unlock_irqrestore(&zone->lock, flags);
2075 }
2076 
2077 /*
2078  * Used when an allocation is about to fail under memory pressure. This
2079  * potentially hurts the reliability of high-order allocations when under
2080  * intense memory pressure but failed atomic allocations should be easier
2081  * to recover from than an OOM.
2082  *
2083  * If @force is true, try to unreserve pageblocks even though highatomic
2084  * pageblock is exhausted.
2085  */
2086 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2087 						bool force)
2088 {
2089 	struct zonelist *zonelist = ac->zonelist;
2090 	unsigned long flags;
2091 	struct zoneref *z;
2092 	struct zone *zone;
2093 	struct page *page;
2094 	int order;
2095 	int ret;
2096 
2097 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2098 								ac->nodemask) {
2099 		/*
2100 		 * Preserve at least one pageblock unless memory pressure
2101 		 * is really high.
2102 		 */
2103 		if (!force && zone->nr_reserved_highatomic <=
2104 					pageblock_nr_pages)
2105 			continue;
2106 
2107 		spin_lock_irqsave(&zone->lock, flags);
2108 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2109 			struct free_area *area = &(zone->free_area[order]);
2110 			int mt;
2111 
2112 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2113 			if (!page)
2114 				continue;
2115 
2116 			mt = get_pageblock_migratetype(page);
2117 			/*
2118 			 * In page freeing path, migratetype change is racy so
2119 			 * we can counter several free pages in a pageblock
2120 			 * in this loop although we changed the pageblock type
2121 			 * from highatomic to ac->migratetype. So we should
2122 			 * adjust the count once.
2123 			 */
2124 			if (is_migrate_highatomic(mt)) {
2125 				unsigned long size;
2126 				/*
2127 				 * It should never happen but changes to
2128 				 * locking could inadvertently allow a per-cpu
2129 				 * drain to add pages to MIGRATE_HIGHATOMIC
2130 				 * while unreserving so be safe and watch for
2131 				 * underflows.
2132 				 */
2133 				size = max(pageblock_nr_pages, 1UL << order);
2134 				size = min(size, zone->nr_reserved_highatomic);
2135 				zone->nr_reserved_highatomic -= size;
2136 			}
2137 
2138 			/*
2139 			 * Convert to ac->migratetype and avoid the normal
2140 			 * pageblock stealing heuristics. Minimally, the caller
2141 			 * is doing the work and needs the pages. More
2142 			 * importantly, if the block was always converted to
2143 			 * MIGRATE_UNMOVABLE or another type then the number
2144 			 * of pageblocks that cannot be completely freed
2145 			 * may increase.
2146 			 */
2147 			if (order < pageblock_order)
2148 				ret = move_freepages_block(zone, page, mt,
2149 							   ac->migratetype);
2150 			else {
2151 				move_to_free_list(page, zone, order, mt,
2152 						  ac->migratetype);
2153 				change_pageblock_range(page, order,
2154 						       ac->migratetype);
2155 				ret = 1;
2156 			}
2157 			/*
2158 			 * Reserving the block(s) already succeeded,
2159 			 * so this should not fail on zone boundaries.
2160 			 */
2161 			WARN_ON_ONCE(ret == -1);
2162 			if (ret > 0) {
2163 				spin_unlock_irqrestore(&zone->lock, flags);
2164 				return ret;
2165 			}
2166 		}
2167 		spin_unlock_irqrestore(&zone->lock, flags);
2168 	}
2169 
2170 	return false;
2171 }
2172 
2173 /*
2174  * Try finding a free buddy page on the fallback list and put it on the free
2175  * list of requested migratetype, possibly along with other pages from the same
2176  * block, depending on fragmentation avoidance heuristics. Returns true if
2177  * fallback was found so that __rmqueue_smallest() can grab it.
2178  *
2179  * The use of signed ints for order and current_order is a deliberate
2180  * deviation from the rest of this file, to make the for loop
2181  * condition simpler.
2182  */
2183 static __always_inline struct page *
2184 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2185 						unsigned int alloc_flags)
2186 {
2187 	struct free_area *area;
2188 	int current_order;
2189 	int min_order = order;
2190 	struct page *page;
2191 	int fallback_mt;
2192 	bool can_steal;
2193 
2194 	/*
2195 	 * Do not steal pages from freelists belonging to other pageblocks
2196 	 * i.e. orders < pageblock_order. If there are no local zones free,
2197 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2198 	 */
2199 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2200 		min_order = pageblock_order;
2201 
2202 	/*
2203 	 * Find the largest available free page in the other list. This roughly
2204 	 * approximates finding the pageblock with the most free pages, which
2205 	 * would be too costly to do exactly.
2206 	 */
2207 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2208 				--current_order) {
2209 		area = &(zone->free_area[current_order]);
2210 		fallback_mt = find_suitable_fallback(area, current_order,
2211 				start_migratetype, false, &can_steal);
2212 		if (fallback_mt == -1)
2213 			continue;
2214 
2215 		/*
2216 		 * We cannot steal all free pages from the pageblock and the
2217 		 * requested migratetype is movable. In that case it's better to
2218 		 * steal and split the smallest available page instead of the
2219 		 * largest available page, because even if the next movable
2220 		 * allocation falls back into a different pageblock than this
2221 		 * one, it won't cause permanent fragmentation.
2222 		 */
2223 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2224 					&& current_order > order)
2225 			goto find_smallest;
2226 
2227 		goto do_steal;
2228 	}
2229 
2230 	return NULL;
2231 
2232 find_smallest:
2233 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2234 		area = &(zone->free_area[current_order]);
2235 		fallback_mt = find_suitable_fallback(area, current_order,
2236 				start_migratetype, false, &can_steal);
2237 		if (fallback_mt != -1)
2238 			break;
2239 	}
2240 
2241 	/*
2242 	 * This should not happen - we already found a suitable fallback
2243 	 * when looking for the largest page.
2244 	 */
2245 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2246 
2247 do_steal:
2248 	page = get_page_from_free_area(area, fallback_mt);
2249 
2250 	/* take off list, maybe claim block, expand remainder */
2251 	page = steal_suitable_fallback(zone, page, current_order, order,
2252 				       start_migratetype, alloc_flags, can_steal);
2253 
2254 	trace_mm_page_alloc_extfrag(page, order, current_order,
2255 		start_migratetype, fallback_mt);
2256 
2257 	return page;
2258 }
2259 
2260 /*
2261  * Do the hard work of removing an element from the buddy allocator.
2262  * Call me with the zone->lock already held.
2263  */
2264 static __always_inline struct page *
2265 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2266 						unsigned int alloc_flags)
2267 {
2268 	struct page *page;
2269 
2270 	if (IS_ENABLED(CONFIG_CMA)) {
2271 		/*
2272 		 * Balance movable allocations between regular and CMA areas by
2273 		 * allocating from CMA when over half of the zone's free memory
2274 		 * is in the CMA area.
2275 		 */
2276 		if (alloc_flags & ALLOC_CMA &&
2277 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2278 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2279 			page = __rmqueue_cma_fallback(zone, order);
2280 			if (page)
2281 				return page;
2282 		}
2283 	}
2284 
2285 	page = __rmqueue_smallest(zone, order, migratetype);
2286 	if (unlikely(!page)) {
2287 		if (alloc_flags & ALLOC_CMA)
2288 			page = __rmqueue_cma_fallback(zone, order);
2289 
2290 		if (!page)
2291 			page = __rmqueue_fallback(zone, order, migratetype,
2292 						  alloc_flags);
2293 	}
2294 	return page;
2295 }
2296 
2297 /*
2298  * Obtain a specified number of elements from the buddy allocator, all under
2299  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2300  * Returns the number of new pages which were placed at *list.
2301  */
2302 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2303 			unsigned long count, struct list_head *list,
2304 			int migratetype, unsigned int alloc_flags)
2305 {
2306 	unsigned long flags;
2307 	int i;
2308 
2309 	spin_lock_irqsave(&zone->lock, flags);
2310 	for (i = 0; i < count; ++i) {
2311 		struct page *page = __rmqueue(zone, order, migratetype,
2312 								alloc_flags);
2313 		if (unlikely(page == NULL))
2314 			break;
2315 
2316 		/*
2317 		 * Split buddy pages returned by expand() are received here in
2318 		 * physical page order. The page is added to the tail of
2319 		 * caller's list. From the callers perspective, the linked list
2320 		 * is ordered by page number under some conditions. This is
2321 		 * useful for IO devices that can forward direction from the
2322 		 * head, thus also in the physical page order. This is useful
2323 		 * for IO devices that can merge IO requests if the physical
2324 		 * pages are ordered properly.
2325 		 */
2326 		list_add_tail(&page->pcp_list, list);
2327 	}
2328 	spin_unlock_irqrestore(&zone->lock, flags);
2329 
2330 	return i;
2331 }
2332 
2333 /*
2334  * Called from the vmstat counter updater to decay the PCP high.
2335  * Return whether there are addition works to do.
2336  */
2337 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2338 {
2339 	int high_min, to_drain, batch;
2340 	int todo = 0;
2341 
2342 	high_min = READ_ONCE(pcp->high_min);
2343 	batch = READ_ONCE(pcp->batch);
2344 	/*
2345 	 * Decrease pcp->high periodically to try to free possible
2346 	 * idle PCP pages.  And, avoid to free too many pages to
2347 	 * control latency.  This caps pcp->high decrement too.
2348 	 */
2349 	if (pcp->high > high_min) {
2350 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2351 				 pcp->high - (pcp->high >> 3), high_min);
2352 		if (pcp->high > high_min)
2353 			todo++;
2354 	}
2355 
2356 	to_drain = pcp->count - pcp->high;
2357 	if (to_drain > 0) {
2358 		spin_lock(&pcp->lock);
2359 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2360 		spin_unlock(&pcp->lock);
2361 		todo++;
2362 	}
2363 
2364 	return todo;
2365 }
2366 
2367 #ifdef CONFIG_NUMA
2368 /*
2369  * Called from the vmstat counter updater to drain pagesets of this
2370  * currently executing processor on remote nodes after they have
2371  * expired.
2372  */
2373 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2374 {
2375 	int to_drain, batch;
2376 
2377 	batch = READ_ONCE(pcp->batch);
2378 	to_drain = min(pcp->count, batch);
2379 	if (to_drain > 0) {
2380 		spin_lock(&pcp->lock);
2381 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2382 		spin_unlock(&pcp->lock);
2383 	}
2384 }
2385 #endif
2386 
2387 /*
2388  * Drain pcplists of the indicated processor and zone.
2389  */
2390 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2391 {
2392 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2393 	int count;
2394 
2395 	do {
2396 		spin_lock(&pcp->lock);
2397 		count = pcp->count;
2398 		if (count) {
2399 			int to_drain = min(count,
2400 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2401 
2402 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2403 			count -= to_drain;
2404 		}
2405 		spin_unlock(&pcp->lock);
2406 	} while (count);
2407 }
2408 
2409 /*
2410  * Drain pcplists of all zones on the indicated processor.
2411  */
2412 static void drain_pages(unsigned int cpu)
2413 {
2414 	struct zone *zone;
2415 
2416 	for_each_populated_zone(zone) {
2417 		drain_pages_zone(cpu, zone);
2418 	}
2419 }
2420 
2421 /*
2422  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2423  */
2424 void drain_local_pages(struct zone *zone)
2425 {
2426 	int cpu = smp_processor_id();
2427 
2428 	if (zone)
2429 		drain_pages_zone(cpu, zone);
2430 	else
2431 		drain_pages(cpu);
2432 }
2433 
2434 /*
2435  * The implementation of drain_all_pages(), exposing an extra parameter to
2436  * drain on all cpus.
2437  *
2438  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2439  * not empty. The check for non-emptiness can however race with a free to
2440  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2441  * that need the guarantee that every CPU has drained can disable the
2442  * optimizing racy check.
2443  */
2444 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2445 {
2446 	int cpu;
2447 
2448 	/*
2449 	 * Allocate in the BSS so we won't require allocation in
2450 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2451 	 */
2452 	static cpumask_t cpus_with_pcps;
2453 
2454 	/*
2455 	 * Do not drain if one is already in progress unless it's specific to
2456 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2457 	 * the drain to be complete when the call returns.
2458 	 */
2459 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2460 		if (!zone)
2461 			return;
2462 		mutex_lock(&pcpu_drain_mutex);
2463 	}
2464 
2465 	/*
2466 	 * We don't care about racing with CPU hotplug event
2467 	 * as offline notification will cause the notified
2468 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2469 	 * disables preemption as part of its processing
2470 	 */
2471 	for_each_online_cpu(cpu) {
2472 		struct per_cpu_pages *pcp;
2473 		struct zone *z;
2474 		bool has_pcps = false;
2475 
2476 		if (force_all_cpus) {
2477 			/*
2478 			 * The pcp.count check is racy, some callers need a
2479 			 * guarantee that no cpu is missed.
2480 			 */
2481 			has_pcps = true;
2482 		} else if (zone) {
2483 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2484 			if (pcp->count)
2485 				has_pcps = true;
2486 		} else {
2487 			for_each_populated_zone(z) {
2488 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2489 				if (pcp->count) {
2490 					has_pcps = true;
2491 					break;
2492 				}
2493 			}
2494 		}
2495 
2496 		if (has_pcps)
2497 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2498 		else
2499 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2500 	}
2501 
2502 	for_each_cpu(cpu, &cpus_with_pcps) {
2503 		if (zone)
2504 			drain_pages_zone(cpu, zone);
2505 		else
2506 			drain_pages(cpu);
2507 	}
2508 
2509 	mutex_unlock(&pcpu_drain_mutex);
2510 }
2511 
2512 /*
2513  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2514  *
2515  * When zone parameter is non-NULL, spill just the single zone's pages.
2516  */
2517 void drain_all_pages(struct zone *zone)
2518 {
2519 	__drain_all_pages(zone, false);
2520 }
2521 
2522 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2523 {
2524 	int min_nr_free, max_nr_free;
2525 
2526 	/* Free as much as possible if batch freeing high-order pages. */
2527 	if (unlikely(free_high))
2528 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2529 
2530 	/* Check for PCP disabled or boot pageset */
2531 	if (unlikely(high < batch))
2532 		return 1;
2533 
2534 	/* Leave at least pcp->batch pages on the list */
2535 	min_nr_free = batch;
2536 	max_nr_free = high - batch;
2537 
2538 	/*
2539 	 * Increase the batch number to the number of the consecutive
2540 	 * freed pages to reduce zone lock contention.
2541 	 */
2542 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2543 
2544 	return batch;
2545 }
2546 
2547 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2548 		       int batch, bool free_high)
2549 {
2550 	int high, high_min, high_max;
2551 
2552 	high_min = READ_ONCE(pcp->high_min);
2553 	high_max = READ_ONCE(pcp->high_max);
2554 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2555 
2556 	if (unlikely(!high))
2557 		return 0;
2558 
2559 	if (unlikely(free_high)) {
2560 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2561 				high_min);
2562 		return 0;
2563 	}
2564 
2565 	/*
2566 	 * If reclaim is active, limit the number of pages that can be
2567 	 * stored on pcp lists
2568 	 */
2569 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2570 		int free_count = max_t(int, pcp->free_count, batch);
2571 
2572 		pcp->high = max(high - free_count, high_min);
2573 		return min(batch << 2, pcp->high);
2574 	}
2575 
2576 	if (high_min == high_max)
2577 		return high;
2578 
2579 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2580 		int free_count = max_t(int, pcp->free_count, batch);
2581 
2582 		pcp->high = max(high - free_count, high_min);
2583 		high = max(pcp->count, high_min);
2584 	} else if (pcp->count >= high) {
2585 		int need_high = pcp->free_count + batch;
2586 
2587 		/* pcp->high should be large enough to hold batch freed pages */
2588 		if (pcp->high < need_high)
2589 			pcp->high = clamp(need_high, high_min, high_max);
2590 	}
2591 
2592 	return high;
2593 }
2594 
2595 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2596 				   struct page *page, int migratetype,
2597 				   unsigned int order)
2598 {
2599 	int high, batch;
2600 	int pindex;
2601 	bool free_high = false;
2602 
2603 	/*
2604 	 * On freeing, reduce the number of pages that are batch allocated.
2605 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2606 	 * allocations.
2607 	 */
2608 	pcp->alloc_factor >>= 1;
2609 	__count_vm_events(PGFREE, 1 << order);
2610 	pindex = order_to_pindex(migratetype, order);
2611 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2612 	pcp->count += 1 << order;
2613 
2614 	batch = READ_ONCE(pcp->batch);
2615 	/*
2616 	 * As high-order pages other than THP's stored on PCP can contribute
2617 	 * to fragmentation, limit the number stored when PCP is heavily
2618 	 * freeing without allocation. The remainder after bulk freeing
2619 	 * stops will be drained from vmstat refresh context.
2620 	 */
2621 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2622 		free_high = (pcp->free_count >= batch &&
2623 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2624 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2625 			      pcp->count >= READ_ONCE(batch)));
2626 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2627 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2628 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2629 	}
2630 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2631 		pcp->free_count += (1 << order);
2632 	high = nr_pcp_high(pcp, zone, batch, free_high);
2633 	if (pcp->count >= high) {
2634 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2635 				   pcp, pindex);
2636 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2637 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2638 				      ZONE_MOVABLE, 0))
2639 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2640 	}
2641 }
2642 
2643 /*
2644  * Free a pcp page
2645  */
2646 void free_unref_page(struct page *page, unsigned int order)
2647 {
2648 	unsigned long __maybe_unused UP_flags;
2649 	struct per_cpu_pages *pcp;
2650 	struct zone *zone;
2651 	unsigned long pfn = page_to_pfn(page);
2652 	int migratetype;
2653 
2654 	if (!pcp_allowed_order(order)) {
2655 		__free_pages_ok(page, order, FPI_NONE);
2656 		return;
2657 	}
2658 
2659 	if (!free_pages_prepare(page, order))
2660 		return;
2661 
2662 	/*
2663 	 * We only track unmovable, reclaimable and movable on pcp lists.
2664 	 * Place ISOLATE pages on the isolated list because they are being
2665 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2666 	 * get those areas back if necessary. Otherwise, we may have to free
2667 	 * excessively into the page allocator
2668 	 */
2669 	migratetype = get_pfnblock_migratetype(page, pfn);
2670 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2671 		if (unlikely(is_migrate_isolate(migratetype))) {
2672 			free_one_page(page_zone(page), page, pfn, order, FPI_NONE);
2673 			return;
2674 		}
2675 		migratetype = MIGRATE_MOVABLE;
2676 	}
2677 
2678 	zone = page_zone(page);
2679 	pcp_trylock_prepare(UP_flags);
2680 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2681 	if (pcp) {
2682 		free_unref_page_commit(zone, pcp, page, migratetype, order);
2683 		pcp_spin_unlock(pcp);
2684 	} else {
2685 		free_one_page(zone, page, pfn, order, FPI_NONE);
2686 	}
2687 	pcp_trylock_finish(UP_flags);
2688 }
2689 
2690 /*
2691  * Free a batch of folios
2692  */
2693 void free_unref_folios(struct folio_batch *folios)
2694 {
2695 	unsigned long __maybe_unused UP_flags;
2696 	struct per_cpu_pages *pcp = NULL;
2697 	struct zone *locked_zone = NULL;
2698 	int i, j;
2699 
2700 	/* Prepare folios for freeing */
2701 	for (i = 0, j = 0; i < folios->nr; i++) {
2702 		struct folio *folio = folios->folios[i];
2703 		unsigned long pfn = folio_pfn(folio);
2704 		unsigned int order = folio_order(folio);
2705 
2706 		if (!free_pages_prepare(&folio->page, order))
2707 			continue;
2708 		/*
2709 		 * Free orders not handled on the PCP directly to the
2710 		 * allocator.
2711 		 */
2712 		if (!pcp_allowed_order(order)) {
2713 			free_one_page(folio_zone(folio), &folio->page,
2714 				      pfn, order, FPI_NONE);
2715 			continue;
2716 		}
2717 		folio->private = (void *)(unsigned long)order;
2718 		if (j != i)
2719 			folios->folios[j] = folio;
2720 		j++;
2721 	}
2722 	folios->nr = j;
2723 
2724 	for (i = 0; i < folios->nr; i++) {
2725 		struct folio *folio = folios->folios[i];
2726 		struct zone *zone = folio_zone(folio);
2727 		unsigned long pfn = folio_pfn(folio);
2728 		unsigned int order = (unsigned long)folio->private;
2729 		int migratetype;
2730 
2731 		folio->private = NULL;
2732 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2733 
2734 		/* Different zone requires a different pcp lock */
2735 		if (zone != locked_zone ||
2736 		    is_migrate_isolate(migratetype)) {
2737 			if (pcp) {
2738 				pcp_spin_unlock(pcp);
2739 				pcp_trylock_finish(UP_flags);
2740 				locked_zone = NULL;
2741 				pcp = NULL;
2742 			}
2743 
2744 			/*
2745 			 * Free isolated pages directly to the
2746 			 * allocator, see comment in free_unref_page.
2747 			 */
2748 			if (is_migrate_isolate(migratetype)) {
2749 				free_one_page(zone, &folio->page, pfn,
2750 					      order, FPI_NONE);
2751 				continue;
2752 			}
2753 
2754 			/*
2755 			 * trylock is necessary as folios may be getting freed
2756 			 * from IRQ or SoftIRQ context after an IO completion.
2757 			 */
2758 			pcp_trylock_prepare(UP_flags);
2759 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2760 			if (unlikely(!pcp)) {
2761 				pcp_trylock_finish(UP_flags);
2762 				free_one_page(zone, &folio->page, pfn,
2763 					      order, FPI_NONE);
2764 				continue;
2765 			}
2766 			locked_zone = zone;
2767 		}
2768 
2769 		/*
2770 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2771 		 * to the MIGRATE_MOVABLE pcp list.
2772 		 */
2773 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2774 			migratetype = MIGRATE_MOVABLE;
2775 
2776 		trace_mm_page_free_batched(&folio->page);
2777 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2778 				order);
2779 	}
2780 
2781 	if (pcp) {
2782 		pcp_spin_unlock(pcp);
2783 		pcp_trylock_finish(UP_flags);
2784 	}
2785 	folio_batch_reinit(folios);
2786 }
2787 
2788 /*
2789  * split_page takes a non-compound higher-order page, and splits it into
2790  * n (1<<order) sub-pages: page[0..n]
2791  * Each sub-page must be freed individually.
2792  *
2793  * Note: this is probably too low level an operation for use in drivers.
2794  * Please consult with lkml before using this in your driver.
2795  */
2796 void split_page(struct page *page, unsigned int order)
2797 {
2798 	int i;
2799 
2800 	VM_BUG_ON_PAGE(PageCompound(page), page);
2801 	VM_BUG_ON_PAGE(!page_count(page), page);
2802 
2803 	for (i = 1; i < (1 << order); i++)
2804 		set_page_refcounted(page + i);
2805 	split_page_owner(page, order, 0);
2806 	pgalloc_tag_split(page_folio(page), order, 0);
2807 	split_page_memcg(page, order, 0);
2808 }
2809 EXPORT_SYMBOL_GPL(split_page);
2810 
2811 int __isolate_free_page(struct page *page, unsigned int order)
2812 {
2813 	struct zone *zone = page_zone(page);
2814 	int mt = get_pageblock_migratetype(page);
2815 
2816 	if (!is_migrate_isolate(mt)) {
2817 		unsigned long watermark;
2818 		/*
2819 		 * Obey watermarks as if the page was being allocated. We can
2820 		 * emulate a high-order watermark check with a raised order-0
2821 		 * watermark, because we already know our high-order page
2822 		 * exists.
2823 		 */
2824 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2825 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2826 			return 0;
2827 	}
2828 
2829 	del_page_from_free_list(page, zone, order, mt);
2830 
2831 	/*
2832 	 * Set the pageblock if the isolated page is at least half of a
2833 	 * pageblock
2834 	 */
2835 	if (order >= pageblock_order - 1) {
2836 		struct page *endpage = page + (1 << order) - 1;
2837 		for (; page < endpage; page += pageblock_nr_pages) {
2838 			int mt = get_pageblock_migratetype(page);
2839 			/*
2840 			 * Only change normal pageblocks (i.e., they can merge
2841 			 * with others)
2842 			 */
2843 			if (migratetype_is_mergeable(mt))
2844 				move_freepages_block(zone, page, mt,
2845 						     MIGRATE_MOVABLE);
2846 		}
2847 	}
2848 
2849 	return 1UL << order;
2850 }
2851 
2852 /**
2853  * __putback_isolated_page - Return a now-isolated page back where we got it
2854  * @page: Page that was isolated
2855  * @order: Order of the isolated page
2856  * @mt: The page's pageblock's migratetype
2857  *
2858  * This function is meant to return a page pulled from the free lists via
2859  * __isolate_free_page back to the free lists they were pulled from.
2860  */
2861 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2862 {
2863 	struct zone *zone = page_zone(page);
2864 
2865 	/* zone lock should be held when this function is called */
2866 	lockdep_assert_held(&zone->lock);
2867 
2868 	/* Return isolated page to tail of freelist. */
2869 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2870 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2871 }
2872 
2873 /*
2874  * Update NUMA hit/miss statistics
2875  */
2876 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2877 				   long nr_account)
2878 {
2879 #ifdef CONFIG_NUMA
2880 	enum numa_stat_item local_stat = NUMA_LOCAL;
2881 
2882 	/* skip numa counters update if numa stats is disabled */
2883 	if (!static_branch_likely(&vm_numa_stat_key))
2884 		return;
2885 
2886 	if (zone_to_nid(z) != numa_node_id())
2887 		local_stat = NUMA_OTHER;
2888 
2889 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2890 		__count_numa_events(z, NUMA_HIT, nr_account);
2891 	else {
2892 		__count_numa_events(z, NUMA_MISS, nr_account);
2893 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2894 	}
2895 	__count_numa_events(z, local_stat, nr_account);
2896 #endif
2897 }
2898 
2899 static __always_inline
2900 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2901 			   unsigned int order, unsigned int alloc_flags,
2902 			   int migratetype)
2903 {
2904 	struct page *page;
2905 	unsigned long flags;
2906 
2907 	do {
2908 		page = NULL;
2909 		spin_lock_irqsave(&zone->lock, flags);
2910 		if (alloc_flags & ALLOC_HIGHATOMIC)
2911 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2912 		if (!page) {
2913 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2914 
2915 			/*
2916 			 * If the allocation fails, allow OOM handling and
2917 			 * order-0 (atomic) allocs access to HIGHATOMIC
2918 			 * reserves as failing now is worse than failing a
2919 			 * high-order atomic allocation in the future.
2920 			 */
2921 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2922 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2923 
2924 			if (!page) {
2925 				spin_unlock_irqrestore(&zone->lock, flags);
2926 				return NULL;
2927 			}
2928 		}
2929 		spin_unlock_irqrestore(&zone->lock, flags);
2930 	} while (check_new_pages(page, order));
2931 
2932 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2933 	zone_statistics(preferred_zone, zone, 1);
2934 
2935 	return page;
2936 }
2937 
2938 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2939 {
2940 	int high, base_batch, batch, max_nr_alloc;
2941 	int high_max, high_min;
2942 
2943 	base_batch = READ_ONCE(pcp->batch);
2944 	high_min = READ_ONCE(pcp->high_min);
2945 	high_max = READ_ONCE(pcp->high_max);
2946 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2947 
2948 	/* Check for PCP disabled or boot pageset */
2949 	if (unlikely(high < base_batch))
2950 		return 1;
2951 
2952 	if (order)
2953 		batch = base_batch;
2954 	else
2955 		batch = (base_batch << pcp->alloc_factor);
2956 
2957 	/*
2958 	 * If we had larger pcp->high, we could avoid to allocate from
2959 	 * zone.
2960 	 */
2961 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2962 		high = pcp->high = min(high + batch, high_max);
2963 
2964 	if (!order) {
2965 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2966 		/*
2967 		 * Double the number of pages allocated each time there is
2968 		 * subsequent allocation of order-0 pages without any freeing.
2969 		 */
2970 		if (batch <= max_nr_alloc &&
2971 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2972 			pcp->alloc_factor++;
2973 		batch = min(batch, max_nr_alloc);
2974 	}
2975 
2976 	/*
2977 	 * Scale batch relative to order if batch implies free pages
2978 	 * can be stored on the PCP. Batch can be 1 for small zones or
2979 	 * for boot pagesets which should never store free pages as
2980 	 * the pages may belong to arbitrary zones.
2981 	 */
2982 	if (batch > 1)
2983 		batch = max(batch >> order, 2);
2984 
2985 	return batch;
2986 }
2987 
2988 /* Remove page from the per-cpu list, caller must protect the list */
2989 static inline
2990 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2991 			int migratetype,
2992 			unsigned int alloc_flags,
2993 			struct per_cpu_pages *pcp,
2994 			struct list_head *list)
2995 {
2996 	struct page *page;
2997 
2998 	do {
2999 		if (list_empty(list)) {
3000 			int batch = nr_pcp_alloc(pcp, zone, order);
3001 			int alloced;
3002 
3003 			alloced = rmqueue_bulk(zone, order,
3004 					batch, list,
3005 					migratetype, alloc_flags);
3006 
3007 			pcp->count += alloced << order;
3008 			if (unlikely(list_empty(list)))
3009 				return NULL;
3010 		}
3011 
3012 		page = list_first_entry(list, struct page, pcp_list);
3013 		list_del(&page->pcp_list);
3014 		pcp->count -= 1 << order;
3015 	} while (check_new_pages(page, order));
3016 
3017 	return page;
3018 }
3019 
3020 /* Lock and remove page from the per-cpu list */
3021 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3022 			struct zone *zone, unsigned int order,
3023 			int migratetype, unsigned int alloc_flags)
3024 {
3025 	struct per_cpu_pages *pcp;
3026 	struct list_head *list;
3027 	struct page *page;
3028 	unsigned long __maybe_unused UP_flags;
3029 
3030 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3031 	pcp_trylock_prepare(UP_flags);
3032 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3033 	if (!pcp) {
3034 		pcp_trylock_finish(UP_flags);
3035 		return NULL;
3036 	}
3037 
3038 	/*
3039 	 * On allocation, reduce the number of pages that are batch freed.
3040 	 * See nr_pcp_free() where free_factor is increased for subsequent
3041 	 * frees.
3042 	 */
3043 	pcp->free_count >>= 1;
3044 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3045 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3046 	pcp_spin_unlock(pcp);
3047 	pcp_trylock_finish(UP_flags);
3048 	if (page) {
3049 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3050 		zone_statistics(preferred_zone, zone, 1);
3051 	}
3052 	return page;
3053 }
3054 
3055 /*
3056  * Allocate a page from the given zone.
3057  * Use pcplists for THP or "cheap" high-order allocations.
3058  */
3059 
3060 /*
3061  * Do not instrument rmqueue() with KMSAN. This function may call
3062  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3063  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3064  * may call rmqueue() again, which will result in a deadlock.
3065  */
3066 __no_sanitize_memory
3067 static inline
3068 struct page *rmqueue(struct zone *preferred_zone,
3069 			struct zone *zone, unsigned int order,
3070 			gfp_t gfp_flags, unsigned int alloc_flags,
3071 			int migratetype)
3072 {
3073 	struct page *page;
3074 
3075 	if (likely(pcp_allowed_order(order))) {
3076 		page = rmqueue_pcplist(preferred_zone, zone, order,
3077 				       migratetype, alloc_flags);
3078 		if (likely(page))
3079 			goto out;
3080 	}
3081 
3082 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3083 							migratetype);
3084 
3085 out:
3086 	/* Separate test+clear to avoid unnecessary atomics */
3087 	if ((alloc_flags & ALLOC_KSWAPD) &&
3088 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3089 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3090 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3091 	}
3092 
3093 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3094 	return page;
3095 }
3096 
3097 static inline long __zone_watermark_unusable_free(struct zone *z,
3098 				unsigned int order, unsigned int alloc_flags)
3099 {
3100 	long unusable_free = (1 << order) - 1;
3101 
3102 	/*
3103 	 * If the caller does not have rights to reserves below the min
3104 	 * watermark then subtract the free pages reserved for highatomic.
3105 	 */
3106 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3107 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3108 
3109 #ifdef CONFIG_CMA
3110 	/* If allocation can't use CMA areas don't use free CMA pages */
3111 	if (!(alloc_flags & ALLOC_CMA))
3112 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3113 #endif
3114 
3115 	return unusable_free;
3116 }
3117 
3118 /*
3119  * Return true if free base pages are above 'mark'. For high-order checks it
3120  * will return true of the order-0 watermark is reached and there is at least
3121  * one free page of a suitable size. Checking now avoids taking the zone lock
3122  * to check in the allocation paths if no pages are free.
3123  */
3124 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3125 			 int highest_zoneidx, unsigned int alloc_flags,
3126 			 long free_pages)
3127 {
3128 	long min = mark;
3129 	int o;
3130 
3131 	/* free_pages may go negative - that's OK */
3132 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3133 
3134 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3135 		/*
3136 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3137 		 * as OOM.
3138 		 */
3139 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3140 			min -= min / 2;
3141 
3142 			/*
3143 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3144 			 * access more reserves than just __GFP_HIGH. Other
3145 			 * non-blocking allocations requests such as GFP_NOWAIT
3146 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3147 			 * access to the min reserve.
3148 			 */
3149 			if (alloc_flags & ALLOC_NON_BLOCK)
3150 				min -= min / 4;
3151 		}
3152 
3153 		/*
3154 		 * OOM victims can try even harder than the normal reserve
3155 		 * users on the grounds that it's definitely going to be in
3156 		 * the exit path shortly and free memory. Any allocation it
3157 		 * makes during the free path will be small and short-lived.
3158 		 */
3159 		if (alloc_flags & ALLOC_OOM)
3160 			min -= min / 2;
3161 	}
3162 
3163 	/*
3164 	 * Check watermarks for an order-0 allocation request. If these
3165 	 * are not met, then a high-order request also cannot go ahead
3166 	 * even if a suitable page happened to be free.
3167 	 */
3168 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3169 		return false;
3170 
3171 	/* If this is an order-0 request then the watermark is fine */
3172 	if (!order)
3173 		return true;
3174 
3175 	/* For a high-order request, check at least one suitable page is free */
3176 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3177 		struct free_area *area = &z->free_area[o];
3178 		int mt;
3179 
3180 		if (!area->nr_free)
3181 			continue;
3182 
3183 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3184 			if (!free_area_empty(area, mt))
3185 				return true;
3186 		}
3187 
3188 #ifdef CONFIG_CMA
3189 		if ((alloc_flags & ALLOC_CMA) &&
3190 		    !free_area_empty(area, MIGRATE_CMA)) {
3191 			return true;
3192 		}
3193 #endif
3194 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3195 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3196 			return true;
3197 		}
3198 	}
3199 	return false;
3200 }
3201 
3202 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3203 		      int highest_zoneidx, unsigned int alloc_flags)
3204 {
3205 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3206 					zone_page_state(z, NR_FREE_PAGES));
3207 }
3208 
3209 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3210 				unsigned long mark, int highest_zoneidx,
3211 				unsigned int alloc_flags, gfp_t gfp_mask)
3212 {
3213 	long free_pages;
3214 
3215 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3216 
3217 	/*
3218 	 * Fast check for order-0 only. If this fails then the reserves
3219 	 * need to be calculated.
3220 	 */
3221 	if (!order) {
3222 		long usable_free;
3223 		long reserved;
3224 
3225 		usable_free = free_pages;
3226 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3227 
3228 		/* reserved may over estimate high-atomic reserves. */
3229 		usable_free -= min(usable_free, reserved);
3230 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3231 			return true;
3232 	}
3233 
3234 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3235 					free_pages))
3236 		return true;
3237 
3238 	/*
3239 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3240 	 * when checking the min watermark. The min watermark is the
3241 	 * point where boosting is ignored so that kswapd is woken up
3242 	 * when below the low watermark.
3243 	 */
3244 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3245 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3246 		mark = z->_watermark[WMARK_MIN];
3247 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3248 					alloc_flags, free_pages);
3249 	}
3250 
3251 	return false;
3252 }
3253 
3254 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3255 			unsigned long mark, int highest_zoneidx)
3256 {
3257 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3258 
3259 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3260 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3261 
3262 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3263 								free_pages);
3264 }
3265 
3266 #ifdef CONFIG_NUMA
3267 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3268 
3269 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3270 {
3271 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3272 				node_reclaim_distance;
3273 }
3274 #else	/* CONFIG_NUMA */
3275 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3276 {
3277 	return true;
3278 }
3279 #endif	/* CONFIG_NUMA */
3280 
3281 /*
3282  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3283  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3284  * premature use of a lower zone may cause lowmem pressure problems that
3285  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3286  * probably too small. It only makes sense to spread allocations to avoid
3287  * fragmentation between the Normal and DMA32 zones.
3288  */
3289 static inline unsigned int
3290 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3291 {
3292 	unsigned int alloc_flags;
3293 
3294 	/*
3295 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3296 	 * to save a branch.
3297 	 */
3298 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3299 
3300 #ifdef CONFIG_ZONE_DMA32
3301 	if (!zone)
3302 		return alloc_flags;
3303 
3304 	if (zone_idx(zone) != ZONE_NORMAL)
3305 		return alloc_flags;
3306 
3307 	/*
3308 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3309 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3310 	 * on UMA that if Normal is populated then so is DMA32.
3311 	 */
3312 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3313 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3314 		return alloc_flags;
3315 
3316 	alloc_flags |= ALLOC_NOFRAGMENT;
3317 #endif /* CONFIG_ZONE_DMA32 */
3318 	return alloc_flags;
3319 }
3320 
3321 /* Must be called after current_gfp_context() which can change gfp_mask */
3322 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3323 						  unsigned int alloc_flags)
3324 {
3325 #ifdef CONFIG_CMA
3326 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3327 		alloc_flags |= ALLOC_CMA;
3328 #endif
3329 	return alloc_flags;
3330 }
3331 
3332 /*
3333  * get_page_from_freelist goes through the zonelist trying to allocate
3334  * a page.
3335  */
3336 static struct page *
3337 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3338 						const struct alloc_context *ac)
3339 {
3340 	struct zoneref *z;
3341 	struct zone *zone;
3342 	struct pglist_data *last_pgdat = NULL;
3343 	bool last_pgdat_dirty_ok = false;
3344 	bool no_fallback;
3345 
3346 retry:
3347 	/*
3348 	 * Scan zonelist, looking for a zone with enough free.
3349 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3350 	 */
3351 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3352 	z = ac->preferred_zoneref;
3353 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3354 					ac->nodemask) {
3355 		struct page *page;
3356 		unsigned long mark;
3357 
3358 		if (cpusets_enabled() &&
3359 			(alloc_flags & ALLOC_CPUSET) &&
3360 			!__cpuset_zone_allowed(zone, gfp_mask))
3361 				continue;
3362 		/*
3363 		 * When allocating a page cache page for writing, we
3364 		 * want to get it from a node that is within its dirty
3365 		 * limit, such that no single node holds more than its
3366 		 * proportional share of globally allowed dirty pages.
3367 		 * The dirty limits take into account the node's
3368 		 * lowmem reserves and high watermark so that kswapd
3369 		 * should be able to balance it without having to
3370 		 * write pages from its LRU list.
3371 		 *
3372 		 * XXX: For now, allow allocations to potentially
3373 		 * exceed the per-node dirty limit in the slowpath
3374 		 * (spread_dirty_pages unset) before going into reclaim,
3375 		 * which is important when on a NUMA setup the allowed
3376 		 * nodes are together not big enough to reach the
3377 		 * global limit.  The proper fix for these situations
3378 		 * will require awareness of nodes in the
3379 		 * dirty-throttling and the flusher threads.
3380 		 */
3381 		if (ac->spread_dirty_pages) {
3382 			if (last_pgdat != zone->zone_pgdat) {
3383 				last_pgdat = zone->zone_pgdat;
3384 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3385 			}
3386 
3387 			if (!last_pgdat_dirty_ok)
3388 				continue;
3389 		}
3390 
3391 		if (no_fallback && nr_online_nodes > 1 &&
3392 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3393 			int local_nid;
3394 
3395 			/*
3396 			 * If moving to a remote node, retry but allow
3397 			 * fragmenting fallbacks. Locality is more important
3398 			 * than fragmentation avoidance.
3399 			 */
3400 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3401 			if (zone_to_nid(zone) != local_nid) {
3402 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3403 				goto retry;
3404 			}
3405 		}
3406 
3407 		cond_accept_memory(zone, order);
3408 
3409 		/*
3410 		 * Detect whether the number of free pages is below high
3411 		 * watermark.  If so, we will decrease pcp->high and free
3412 		 * PCP pages in free path to reduce the possibility of
3413 		 * premature page reclaiming.  Detection is done here to
3414 		 * avoid to do that in hotter free path.
3415 		 */
3416 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3417 			goto check_alloc_wmark;
3418 
3419 		mark = high_wmark_pages(zone);
3420 		if (zone_watermark_fast(zone, order, mark,
3421 					ac->highest_zoneidx, alloc_flags,
3422 					gfp_mask))
3423 			goto try_this_zone;
3424 		else
3425 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3426 
3427 check_alloc_wmark:
3428 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3429 		if (!zone_watermark_fast(zone, order, mark,
3430 				       ac->highest_zoneidx, alloc_flags,
3431 				       gfp_mask)) {
3432 			int ret;
3433 
3434 			if (cond_accept_memory(zone, order))
3435 				goto try_this_zone;
3436 
3437 			/*
3438 			 * Watermark failed for this zone, but see if we can
3439 			 * grow this zone if it contains deferred pages.
3440 			 */
3441 			if (deferred_pages_enabled()) {
3442 				if (_deferred_grow_zone(zone, order))
3443 					goto try_this_zone;
3444 			}
3445 			/* Checked here to keep the fast path fast */
3446 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3447 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3448 				goto try_this_zone;
3449 
3450 			if (!node_reclaim_enabled() ||
3451 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3452 				continue;
3453 
3454 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3455 			switch (ret) {
3456 			case NODE_RECLAIM_NOSCAN:
3457 				/* did not scan */
3458 				continue;
3459 			case NODE_RECLAIM_FULL:
3460 				/* scanned but unreclaimable */
3461 				continue;
3462 			default:
3463 				/* did we reclaim enough */
3464 				if (zone_watermark_ok(zone, order, mark,
3465 					ac->highest_zoneidx, alloc_flags))
3466 					goto try_this_zone;
3467 
3468 				continue;
3469 			}
3470 		}
3471 
3472 try_this_zone:
3473 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3474 				gfp_mask, alloc_flags, ac->migratetype);
3475 		if (page) {
3476 			prep_new_page(page, order, gfp_mask, alloc_flags);
3477 
3478 			/*
3479 			 * If this is a high-order atomic allocation then check
3480 			 * if the pageblock should be reserved for the future
3481 			 */
3482 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3483 				reserve_highatomic_pageblock(page, order, zone);
3484 
3485 			return page;
3486 		} else {
3487 			if (cond_accept_memory(zone, order))
3488 				goto try_this_zone;
3489 
3490 			/* Try again if zone has deferred pages */
3491 			if (deferred_pages_enabled()) {
3492 				if (_deferred_grow_zone(zone, order))
3493 					goto try_this_zone;
3494 			}
3495 		}
3496 	}
3497 
3498 	/*
3499 	 * It's possible on a UMA machine to get through all zones that are
3500 	 * fragmented. If avoiding fragmentation, reset and try again.
3501 	 */
3502 	if (no_fallback) {
3503 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3504 		goto retry;
3505 	}
3506 
3507 	return NULL;
3508 }
3509 
3510 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3511 {
3512 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3513 
3514 	/*
3515 	 * This documents exceptions given to allocations in certain
3516 	 * contexts that are allowed to allocate outside current's set
3517 	 * of allowed nodes.
3518 	 */
3519 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3520 		if (tsk_is_oom_victim(current) ||
3521 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3522 			filter &= ~SHOW_MEM_FILTER_NODES;
3523 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3524 		filter &= ~SHOW_MEM_FILTER_NODES;
3525 
3526 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3527 }
3528 
3529 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3530 {
3531 	struct va_format vaf;
3532 	va_list args;
3533 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3534 
3535 	if ((gfp_mask & __GFP_NOWARN) ||
3536 	     !__ratelimit(&nopage_rs) ||
3537 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3538 		return;
3539 
3540 	va_start(args, fmt);
3541 	vaf.fmt = fmt;
3542 	vaf.va = &args;
3543 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3544 			current->comm, &vaf, gfp_mask, &gfp_mask,
3545 			nodemask_pr_args(nodemask));
3546 	va_end(args);
3547 
3548 	cpuset_print_current_mems_allowed();
3549 	pr_cont("\n");
3550 	dump_stack();
3551 	warn_alloc_show_mem(gfp_mask, nodemask);
3552 }
3553 
3554 static inline struct page *
3555 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3556 			      unsigned int alloc_flags,
3557 			      const struct alloc_context *ac)
3558 {
3559 	struct page *page;
3560 
3561 	page = get_page_from_freelist(gfp_mask, order,
3562 			alloc_flags|ALLOC_CPUSET, ac);
3563 	/*
3564 	 * fallback to ignore cpuset restriction if our nodes
3565 	 * are depleted
3566 	 */
3567 	if (!page)
3568 		page = get_page_from_freelist(gfp_mask, order,
3569 				alloc_flags, ac);
3570 
3571 	return page;
3572 }
3573 
3574 static inline struct page *
3575 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3576 	const struct alloc_context *ac, unsigned long *did_some_progress)
3577 {
3578 	struct oom_control oc = {
3579 		.zonelist = ac->zonelist,
3580 		.nodemask = ac->nodemask,
3581 		.memcg = NULL,
3582 		.gfp_mask = gfp_mask,
3583 		.order = order,
3584 	};
3585 	struct page *page;
3586 
3587 	*did_some_progress = 0;
3588 
3589 	/*
3590 	 * Acquire the oom lock.  If that fails, somebody else is
3591 	 * making progress for us.
3592 	 */
3593 	if (!mutex_trylock(&oom_lock)) {
3594 		*did_some_progress = 1;
3595 		schedule_timeout_uninterruptible(1);
3596 		return NULL;
3597 	}
3598 
3599 	/*
3600 	 * Go through the zonelist yet one more time, keep very high watermark
3601 	 * here, this is only to catch a parallel oom killing, we must fail if
3602 	 * we're still under heavy pressure. But make sure that this reclaim
3603 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3604 	 * allocation which will never fail due to oom_lock already held.
3605 	 */
3606 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3607 				      ~__GFP_DIRECT_RECLAIM, order,
3608 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3609 	if (page)
3610 		goto out;
3611 
3612 	/* Coredumps can quickly deplete all memory reserves */
3613 	if (current->flags & PF_DUMPCORE)
3614 		goto out;
3615 	/* The OOM killer will not help higher order allocs */
3616 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3617 		goto out;
3618 	/*
3619 	 * We have already exhausted all our reclaim opportunities without any
3620 	 * success so it is time to admit defeat. We will skip the OOM killer
3621 	 * because it is very likely that the caller has a more reasonable
3622 	 * fallback than shooting a random task.
3623 	 *
3624 	 * The OOM killer may not free memory on a specific node.
3625 	 */
3626 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3627 		goto out;
3628 	/* The OOM killer does not needlessly kill tasks for lowmem */
3629 	if (ac->highest_zoneidx < ZONE_NORMAL)
3630 		goto out;
3631 	if (pm_suspended_storage())
3632 		goto out;
3633 	/*
3634 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3635 	 * other request to make a forward progress.
3636 	 * We are in an unfortunate situation where out_of_memory cannot
3637 	 * do much for this context but let's try it to at least get
3638 	 * access to memory reserved if the current task is killed (see
3639 	 * out_of_memory). Once filesystems are ready to handle allocation
3640 	 * failures more gracefully we should just bail out here.
3641 	 */
3642 
3643 	/* Exhausted what can be done so it's blame time */
3644 	if (out_of_memory(&oc) ||
3645 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3646 		*did_some_progress = 1;
3647 
3648 		/*
3649 		 * Help non-failing allocations by giving them access to memory
3650 		 * reserves
3651 		 */
3652 		if (gfp_mask & __GFP_NOFAIL)
3653 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3654 					ALLOC_NO_WATERMARKS, ac);
3655 	}
3656 out:
3657 	mutex_unlock(&oom_lock);
3658 	return page;
3659 }
3660 
3661 /*
3662  * Maximum number of compaction retries with a progress before OOM
3663  * killer is consider as the only way to move forward.
3664  */
3665 #define MAX_COMPACT_RETRIES 16
3666 
3667 #ifdef CONFIG_COMPACTION
3668 /* Try memory compaction for high-order allocations before reclaim */
3669 static struct page *
3670 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3671 		unsigned int alloc_flags, const struct alloc_context *ac,
3672 		enum compact_priority prio, enum compact_result *compact_result)
3673 {
3674 	struct page *page = NULL;
3675 	unsigned long pflags;
3676 	unsigned int noreclaim_flag;
3677 
3678 	if (!order)
3679 		return NULL;
3680 
3681 	psi_memstall_enter(&pflags);
3682 	delayacct_compact_start();
3683 	noreclaim_flag = memalloc_noreclaim_save();
3684 
3685 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3686 								prio, &page);
3687 
3688 	memalloc_noreclaim_restore(noreclaim_flag);
3689 	psi_memstall_leave(&pflags);
3690 	delayacct_compact_end();
3691 
3692 	if (*compact_result == COMPACT_SKIPPED)
3693 		return NULL;
3694 	/*
3695 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3696 	 * count a compaction stall
3697 	 */
3698 	count_vm_event(COMPACTSTALL);
3699 
3700 	/* Prep a captured page if available */
3701 	if (page)
3702 		prep_new_page(page, order, gfp_mask, alloc_flags);
3703 
3704 	/* Try get a page from the freelist if available */
3705 	if (!page)
3706 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3707 
3708 	if (page) {
3709 		struct zone *zone = page_zone(page);
3710 
3711 		zone->compact_blockskip_flush = false;
3712 		compaction_defer_reset(zone, order, true);
3713 		count_vm_event(COMPACTSUCCESS);
3714 		return page;
3715 	}
3716 
3717 	/*
3718 	 * It's bad if compaction run occurs and fails. The most likely reason
3719 	 * is that pages exist, but not enough to satisfy watermarks.
3720 	 */
3721 	count_vm_event(COMPACTFAIL);
3722 
3723 	cond_resched();
3724 
3725 	return NULL;
3726 }
3727 
3728 static inline bool
3729 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3730 		     enum compact_result compact_result,
3731 		     enum compact_priority *compact_priority,
3732 		     int *compaction_retries)
3733 {
3734 	int max_retries = MAX_COMPACT_RETRIES;
3735 	int min_priority;
3736 	bool ret = false;
3737 	int retries = *compaction_retries;
3738 	enum compact_priority priority = *compact_priority;
3739 
3740 	if (!order)
3741 		return false;
3742 
3743 	if (fatal_signal_pending(current))
3744 		return false;
3745 
3746 	/*
3747 	 * Compaction was skipped due to a lack of free order-0
3748 	 * migration targets. Continue if reclaim can help.
3749 	 */
3750 	if (compact_result == COMPACT_SKIPPED) {
3751 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3752 		goto out;
3753 	}
3754 
3755 	/*
3756 	 * Compaction managed to coalesce some page blocks, but the
3757 	 * allocation failed presumably due to a race. Retry some.
3758 	 */
3759 	if (compact_result == COMPACT_SUCCESS) {
3760 		/*
3761 		 * !costly requests are much more important than
3762 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3763 		 * facto nofail and invoke OOM killer to move on while
3764 		 * costly can fail and users are ready to cope with
3765 		 * that. 1/4 retries is rather arbitrary but we would
3766 		 * need much more detailed feedback from compaction to
3767 		 * make a better decision.
3768 		 */
3769 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3770 			max_retries /= 4;
3771 
3772 		if (++(*compaction_retries) <= max_retries) {
3773 			ret = true;
3774 			goto out;
3775 		}
3776 	}
3777 
3778 	/*
3779 	 * Compaction failed. Retry with increasing priority.
3780 	 */
3781 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3782 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3783 
3784 	if (*compact_priority > min_priority) {
3785 		(*compact_priority)--;
3786 		*compaction_retries = 0;
3787 		ret = true;
3788 	}
3789 out:
3790 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3791 	return ret;
3792 }
3793 #else
3794 static inline struct page *
3795 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3796 		unsigned int alloc_flags, const struct alloc_context *ac,
3797 		enum compact_priority prio, enum compact_result *compact_result)
3798 {
3799 	*compact_result = COMPACT_SKIPPED;
3800 	return NULL;
3801 }
3802 
3803 static inline bool
3804 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3805 		     enum compact_result compact_result,
3806 		     enum compact_priority *compact_priority,
3807 		     int *compaction_retries)
3808 {
3809 	struct zone *zone;
3810 	struct zoneref *z;
3811 
3812 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3813 		return false;
3814 
3815 	/*
3816 	 * There are setups with compaction disabled which would prefer to loop
3817 	 * inside the allocator rather than hit the oom killer prematurely.
3818 	 * Let's give them a good hope and keep retrying while the order-0
3819 	 * watermarks are OK.
3820 	 */
3821 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3822 				ac->highest_zoneidx, ac->nodemask) {
3823 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3824 					ac->highest_zoneidx, alloc_flags))
3825 			return true;
3826 	}
3827 	return false;
3828 }
3829 #endif /* CONFIG_COMPACTION */
3830 
3831 #ifdef CONFIG_LOCKDEP
3832 static struct lockdep_map __fs_reclaim_map =
3833 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3834 
3835 static bool __need_reclaim(gfp_t gfp_mask)
3836 {
3837 	/* no reclaim without waiting on it */
3838 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3839 		return false;
3840 
3841 	/* this guy won't enter reclaim */
3842 	if (current->flags & PF_MEMALLOC)
3843 		return false;
3844 
3845 	if (gfp_mask & __GFP_NOLOCKDEP)
3846 		return false;
3847 
3848 	return true;
3849 }
3850 
3851 void __fs_reclaim_acquire(unsigned long ip)
3852 {
3853 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3854 }
3855 
3856 void __fs_reclaim_release(unsigned long ip)
3857 {
3858 	lock_release(&__fs_reclaim_map, ip);
3859 }
3860 
3861 void fs_reclaim_acquire(gfp_t gfp_mask)
3862 {
3863 	gfp_mask = current_gfp_context(gfp_mask);
3864 
3865 	if (__need_reclaim(gfp_mask)) {
3866 		if (gfp_mask & __GFP_FS)
3867 			__fs_reclaim_acquire(_RET_IP_);
3868 
3869 #ifdef CONFIG_MMU_NOTIFIER
3870 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3871 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3872 #endif
3873 
3874 	}
3875 }
3876 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3877 
3878 void fs_reclaim_release(gfp_t gfp_mask)
3879 {
3880 	gfp_mask = current_gfp_context(gfp_mask);
3881 
3882 	if (__need_reclaim(gfp_mask)) {
3883 		if (gfp_mask & __GFP_FS)
3884 			__fs_reclaim_release(_RET_IP_);
3885 	}
3886 }
3887 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3888 #endif
3889 
3890 /*
3891  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3892  * have been rebuilt so allocation retries. Reader side does not lock and
3893  * retries the allocation if zonelist changes. Writer side is protected by the
3894  * embedded spin_lock.
3895  */
3896 static DEFINE_SEQLOCK(zonelist_update_seq);
3897 
3898 static unsigned int zonelist_iter_begin(void)
3899 {
3900 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3901 		return read_seqbegin(&zonelist_update_seq);
3902 
3903 	return 0;
3904 }
3905 
3906 static unsigned int check_retry_zonelist(unsigned int seq)
3907 {
3908 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3909 		return read_seqretry(&zonelist_update_seq, seq);
3910 
3911 	return seq;
3912 }
3913 
3914 /* Perform direct synchronous page reclaim */
3915 static unsigned long
3916 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3917 					const struct alloc_context *ac)
3918 {
3919 	unsigned int noreclaim_flag;
3920 	unsigned long progress;
3921 
3922 	cond_resched();
3923 
3924 	/* We now go into synchronous reclaim */
3925 	cpuset_memory_pressure_bump();
3926 	fs_reclaim_acquire(gfp_mask);
3927 	noreclaim_flag = memalloc_noreclaim_save();
3928 
3929 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3930 								ac->nodemask);
3931 
3932 	memalloc_noreclaim_restore(noreclaim_flag);
3933 	fs_reclaim_release(gfp_mask);
3934 
3935 	cond_resched();
3936 
3937 	return progress;
3938 }
3939 
3940 /* The really slow allocator path where we enter direct reclaim */
3941 static inline struct page *
3942 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3943 		unsigned int alloc_flags, const struct alloc_context *ac,
3944 		unsigned long *did_some_progress)
3945 {
3946 	struct page *page = NULL;
3947 	unsigned long pflags;
3948 	bool drained = false;
3949 
3950 	psi_memstall_enter(&pflags);
3951 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3952 	if (unlikely(!(*did_some_progress)))
3953 		goto out;
3954 
3955 retry:
3956 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3957 
3958 	/*
3959 	 * If an allocation failed after direct reclaim, it could be because
3960 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3961 	 * Shrink them and try again
3962 	 */
3963 	if (!page && !drained) {
3964 		unreserve_highatomic_pageblock(ac, false);
3965 		drain_all_pages(NULL);
3966 		drained = true;
3967 		goto retry;
3968 	}
3969 out:
3970 	psi_memstall_leave(&pflags);
3971 
3972 	return page;
3973 }
3974 
3975 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3976 			     const struct alloc_context *ac)
3977 {
3978 	struct zoneref *z;
3979 	struct zone *zone;
3980 	pg_data_t *last_pgdat = NULL;
3981 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3982 
3983 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3984 					ac->nodemask) {
3985 		if (!managed_zone(zone))
3986 			continue;
3987 		if (last_pgdat != zone->zone_pgdat) {
3988 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3989 			last_pgdat = zone->zone_pgdat;
3990 		}
3991 	}
3992 }
3993 
3994 static inline unsigned int
3995 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3996 {
3997 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3998 
3999 	/*
4000 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4001 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4002 	 * to save two branches.
4003 	 */
4004 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4005 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4006 
4007 	/*
4008 	 * The caller may dip into page reserves a bit more if the caller
4009 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4010 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4011 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4012 	 */
4013 	alloc_flags |= (__force int)
4014 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4015 
4016 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4017 		/*
4018 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4019 		 * if it can't schedule.
4020 		 */
4021 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4022 			alloc_flags |= ALLOC_NON_BLOCK;
4023 
4024 			if (order > 0)
4025 				alloc_flags |= ALLOC_HIGHATOMIC;
4026 		}
4027 
4028 		/*
4029 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4030 		 * GFP_ATOMIC) rather than fail, see the comment for
4031 		 * cpuset_node_allowed().
4032 		 */
4033 		if (alloc_flags & ALLOC_MIN_RESERVE)
4034 			alloc_flags &= ~ALLOC_CPUSET;
4035 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4036 		alloc_flags |= ALLOC_MIN_RESERVE;
4037 
4038 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4039 
4040 	return alloc_flags;
4041 }
4042 
4043 static bool oom_reserves_allowed(struct task_struct *tsk)
4044 {
4045 	if (!tsk_is_oom_victim(tsk))
4046 		return false;
4047 
4048 	/*
4049 	 * !MMU doesn't have oom reaper so give access to memory reserves
4050 	 * only to the thread with TIF_MEMDIE set
4051 	 */
4052 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4053 		return false;
4054 
4055 	return true;
4056 }
4057 
4058 /*
4059  * Distinguish requests which really need access to full memory
4060  * reserves from oom victims which can live with a portion of it
4061  */
4062 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4063 {
4064 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4065 		return 0;
4066 	if (gfp_mask & __GFP_MEMALLOC)
4067 		return ALLOC_NO_WATERMARKS;
4068 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4069 		return ALLOC_NO_WATERMARKS;
4070 	if (!in_interrupt()) {
4071 		if (current->flags & PF_MEMALLOC)
4072 			return ALLOC_NO_WATERMARKS;
4073 		else if (oom_reserves_allowed(current))
4074 			return ALLOC_OOM;
4075 	}
4076 
4077 	return 0;
4078 }
4079 
4080 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4081 {
4082 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4083 }
4084 
4085 /*
4086  * Checks whether it makes sense to retry the reclaim to make a forward progress
4087  * for the given allocation request.
4088  *
4089  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4090  * without success, or when we couldn't even meet the watermark if we
4091  * reclaimed all remaining pages on the LRU lists.
4092  *
4093  * Returns true if a retry is viable or false to enter the oom path.
4094  */
4095 static inline bool
4096 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4097 		     struct alloc_context *ac, int alloc_flags,
4098 		     bool did_some_progress, int *no_progress_loops)
4099 {
4100 	struct zone *zone;
4101 	struct zoneref *z;
4102 	bool ret = false;
4103 
4104 	/*
4105 	 * Costly allocations might have made a progress but this doesn't mean
4106 	 * their order will become available due to high fragmentation so
4107 	 * always increment the no progress counter for them
4108 	 */
4109 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4110 		*no_progress_loops = 0;
4111 	else
4112 		(*no_progress_loops)++;
4113 
4114 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4115 		goto out;
4116 
4117 
4118 	/*
4119 	 * Keep reclaiming pages while there is a chance this will lead
4120 	 * somewhere.  If none of the target zones can satisfy our allocation
4121 	 * request even if all reclaimable pages are considered then we are
4122 	 * screwed and have to go OOM.
4123 	 */
4124 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4125 				ac->highest_zoneidx, ac->nodemask) {
4126 		unsigned long available;
4127 		unsigned long reclaimable;
4128 		unsigned long min_wmark = min_wmark_pages(zone);
4129 		bool wmark;
4130 
4131 		if (cpusets_enabled() &&
4132 			(alloc_flags & ALLOC_CPUSET) &&
4133 			!__cpuset_zone_allowed(zone, gfp_mask))
4134 				continue;
4135 
4136 		available = reclaimable = zone_reclaimable_pages(zone);
4137 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4138 
4139 		/*
4140 		 * Would the allocation succeed if we reclaimed all
4141 		 * reclaimable pages?
4142 		 */
4143 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4144 				ac->highest_zoneidx, alloc_flags, available);
4145 		trace_reclaim_retry_zone(z, order, reclaimable,
4146 				available, min_wmark, *no_progress_loops, wmark);
4147 		if (wmark) {
4148 			ret = true;
4149 			break;
4150 		}
4151 	}
4152 
4153 	/*
4154 	 * Memory allocation/reclaim might be called from a WQ context and the
4155 	 * current implementation of the WQ concurrency control doesn't
4156 	 * recognize that a particular WQ is congested if the worker thread is
4157 	 * looping without ever sleeping. Therefore we have to do a short sleep
4158 	 * here rather than calling cond_resched().
4159 	 */
4160 	if (current->flags & PF_WQ_WORKER)
4161 		schedule_timeout_uninterruptible(1);
4162 	else
4163 		cond_resched();
4164 out:
4165 	/* Before OOM, exhaust highatomic_reserve */
4166 	if (!ret)
4167 		return unreserve_highatomic_pageblock(ac, true);
4168 
4169 	return ret;
4170 }
4171 
4172 static inline bool
4173 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4174 {
4175 	/*
4176 	 * It's possible that cpuset's mems_allowed and the nodemask from
4177 	 * mempolicy don't intersect. This should be normally dealt with by
4178 	 * policy_nodemask(), but it's possible to race with cpuset update in
4179 	 * such a way the check therein was true, and then it became false
4180 	 * before we got our cpuset_mems_cookie here.
4181 	 * This assumes that for all allocations, ac->nodemask can come only
4182 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4183 	 * when it does not intersect with the cpuset restrictions) or the
4184 	 * caller can deal with a violated nodemask.
4185 	 */
4186 	if (cpusets_enabled() && ac->nodemask &&
4187 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4188 		ac->nodemask = NULL;
4189 		return true;
4190 	}
4191 
4192 	/*
4193 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4194 	 * possible to race with parallel threads in such a way that our
4195 	 * allocation can fail while the mask is being updated. If we are about
4196 	 * to fail, check if the cpuset changed during allocation and if so,
4197 	 * retry.
4198 	 */
4199 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4200 		return true;
4201 
4202 	return false;
4203 }
4204 
4205 static inline struct page *
4206 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4207 						struct alloc_context *ac)
4208 {
4209 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4210 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4211 	bool nofail = gfp_mask & __GFP_NOFAIL;
4212 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4213 	struct page *page = NULL;
4214 	unsigned int alloc_flags;
4215 	unsigned long did_some_progress;
4216 	enum compact_priority compact_priority;
4217 	enum compact_result compact_result;
4218 	int compaction_retries;
4219 	int no_progress_loops;
4220 	unsigned int cpuset_mems_cookie;
4221 	unsigned int zonelist_iter_cookie;
4222 	int reserve_flags;
4223 
4224 	if (unlikely(nofail)) {
4225 		/*
4226 		 * We most definitely don't want callers attempting to
4227 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4228 		 */
4229 		WARN_ON_ONCE(order > 1);
4230 		/*
4231 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4232 		 * otherwise, we may result in lockup.
4233 		 */
4234 		WARN_ON_ONCE(!can_direct_reclaim);
4235 		/*
4236 		 * PF_MEMALLOC request from this context is rather bizarre
4237 		 * because we cannot reclaim anything and only can loop waiting
4238 		 * for somebody to do a work for us.
4239 		 */
4240 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4241 	}
4242 
4243 restart:
4244 	compaction_retries = 0;
4245 	no_progress_loops = 0;
4246 	compact_priority = DEF_COMPACT_PRIORITY;
4247 	cpuset_mems_cookie = read_mems_allowed_begin();
4248 	zonelist_iter_cookie = zonelist_iter_begin();
4249 
4250 	/*
4251 	 * The fast path uses conservative alloc_flags to succeed only until
4252 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4253 	 * alloc_flags precisely. So we do that now.
4254 	 */
4255 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4256 
4257 	/*
4258 	 * We need to recalculate the starting point for the zonelist iterator
4259 	 * because we might have used different nodemask in the fast path, or
4260 	 * there was a cpuset modification and we are retrying - otherwise we
4261 	 * could end up iterating over non-eligible zones endlessly.
4262 	 */
4263 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4264 					ac->highest_zoneidx, ac->nodemask);
4265 	if (!zonelist_zone(ac->preferred_zoneref))
4266 		goto nopage;
4267 
4268 	/*
4269 	 * Check for insane configurations where the cpuset doesn't contain
4270 	 * any suitable zone to satisfy the request - e.g. non-movable
4271 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4272 	 */
4273 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4274 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4275 					ac->highest_zoneidx,
4276 					&cpuset_current_mems_allowed);
4277 		if (!zonelist_zone(z))
4278 			goto nopage;
4279 	}
4280 
4281 	if (alloc_flags & ALLOC_KSWAPD)
4282 		wake_all_kswapds(order, gfp_mask, ac);
4283 
4284 	/*
4285 	 * The adjusted alloc_flags might result in immediate success, so try
4286 	 * that first
4287 	 */
4288 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4289 	if (page)
4290 		goto got_pg;
4291 
4292 	/*
4293 	 * For costly allocations, try direct compaction first, as it's likely
4294 	 * that we have enough base pages and don't need to reclaim. For non-
4295 	 * movable high-order allocations, do that as well, as compaction will
4296 	 * try prevent permanent fragmentation by migrating from blocks of the
4297 	 * same migratetype.
4298 	 * Don't try this for allocations that are allowed to ignore
4299 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4300 	 */
4301 	if (can_direct_reclaim && can_compact &&
4302 			(costly_order ||
4303 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4304 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4305 		page = __alloc_pages_direct_compact(gfp_mask, order,
4306 						alloc_flags, ac,
4307 						INIT_COMPACT_PRIORITY,
4308 						&compact_result);
4309 		if (page)
4310 			goto got_pg;
4311 
4312 		/*
4313 		 * Checks for costly allocations with __GFP_NORETRY, which
4314 		 * includes some THP page fault allocations
4315 		 */
4316 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4317 			/*
4318 			 * If allocating entire pageblock(s) and compaction
4319 			 * failed because all zones are below low watermarks
4320 			 * or is prohibited because it recently failed at this
4321 			 * order, fail immediately unless the allocator has
4322 			 * requested compaction and reclaim retry.
4323 			 *
4324 			 * Reclaim is
4325 			 *  - potentially very expensive because zones are far
4326 			 *    below their low watermarks or this is part of very
4327 			 *    bursty high order allocations,
4328 			 *  - not guaranteed to help because isolate_freepages()
4329 			 *    may not iterate over freed pages as part of its
4330 			 *    linear scan, and
4331 			 *  - unlikely to make entire pageblocks free on its
4332 			 *    own.
4333 			 */
4334 			if (compact_result == COMPACT_SKIPPED ||
4335 			    compact_result == COMPACT_DEFERRED)
4336 				goto nopage;
4337 
4338 			/*
4339 			 * Looks like reclaim/compaction is worth trying, but
4340 			 * sync compaction could be very expensive, so keep
4341 			 * using async compaction.
4342 			 */
4343 			compact_priority = INIT_COMPACT_PRIORITY;
4344 		}
4345 	}
4346 
4347 retry:
4348 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4349 	if (alloc_flags & ALLOC_KSWAPD)
4350 		wake_all_kswapds(order, gfp_mask, ac);
4351 
4352 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4353 	if (reserve_flags)
4354 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4355 					  (alloc_flags & ALLOC_KSWAPD);
4356 
4357 	/*
4358 	 * Reset the nodemask and zonelist iterators if memory policies can be
4359 	 * ignored. These allocations are high priority and system rather than
4360 	 * user oriented.
4361 	 */
4362 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4363 		ac->nodemask = NULL;
4364 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4365 					ac->highest_zoneidx, ac->nodemask);
4366 	}
4367 
4368 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4369 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4370 	if (page)
4371 		goto got_pg;
4372 
4373 	/* Caller is not willing to reclaim, we can't balance anything */
4374 	if (!can_direct_reclaim)
4375 		goto nopage;
4376 
4377 	/* Avoid recursion of direct reclaim */
4378 	if (current->flags & PF_MEMALLOC)
4379 		goto nopage;
4380 
4381 	/* Try direct reclaim and then allocating */
4382 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4383 							&did_some_progress);
4384 	if (page)
4385 		goto got_pg;
4386 
4387 	/* Try direct compaction and then allocating */
4388 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4389 					compact_priority, &compact_result);
4390 	if (page)
4391 		goto got_pg;
4392 
4393 	/* Do not loop if specifically requested */
4394 	if (gfp_mask & __GFP_NORETRY)
4395 		goto nopage;
4396 
4397 	/*
4398 	 * Do not retry costly high order allocations unless they are
4399 	 * __GFP_RETRY_MAYFAIL and we can compact
4400 	 */
4401 	if (costly_order && (!can_compact ||
4402 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4403 		goto nopage;
4404 
4405 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4406 				 did_some_progress > 0, &no_progress_loops))
4407 		goto retry;
4408 
4409 	/*
4410 	 * It doesn't make any sense to retry for the compaction if the order-0
4411 	 * reclaim is not able to make any progress because the current
4412 	 * implementation of the compaction depends on the sufficient amount
4413 	 * of free memory (see __compaction_suitable)
4414 	 */
4415 	if (did_some_progress > 0 && can_compact &&
4416 			should_compact_retry(ac, order, alloc_flags,
4417 				compact_result, &compact_priority,
4418 				&compaction_retries))
4419 		goto retry;
4420 
4421 
4422 	/*
4423 	 * Deal with possible cpuset update races or zonelist updates to avoid
4424 	 * a unnecessary OOM kill.
4425 	 */
4426 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4427 	    check_retry_zonelist(zonelist_iter_cookie))
4428 		goto restart;
4429 
4430 	/* Reclaim has failed us, start killing things */
4431 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4432 	if (page)
4433 		goto got_pg;
4434 
4435 	/* Avoid allocations with no watermarks from looping endlessly */
4436 	if (tsk_is_oom_victim(current) &&
4437 	    (alloc_flags & ALLOC_OOM ||
4438 	     (gfp_mask & __GFP_NOMEMALLOC)))
4439 		goto nopage;
4440 
4441 	/* Retry as long as the OOM killer is making progress */
4442 	if (did_some_progress) {
4443 		no_progress_loops = 0;
4444 		goto retry;
4445 	}
4446 
4447 nopage:
4448 	/*
4449 	 * Deal with possible cpuset update races or zonelist updates to avoid
4450 	 * a unnecessary OOM kill.
4451 	 */
4452 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4453 	    check_retry_zonelist(zonelist_iter_cookie))
4454 		goto restart;
4455 
4456 	/*
4457 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4458 	 * we always retry
4459 	 */
4460 	if (unlikely(nofail)) {
4461 		/*
4462 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4463 		 * we disregard these unreasonable nofail requests and still
4464 		 * return NULL
4465 		 */
4466 		if (!can_direct_reclaim)
4467 			goto fail;
4468 
4469 		/*
4470 		 * Help non-failing allocations by giving some access to memory
4471 		 * reserves normally used for high priority non-blocking
4472 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4473 		 * could deplete whole memory reserves which would just make
4474 		 * the situation worse.
4475 		 */
4476 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4477 		if (page)
4478 			goto got_pg;
4479 
4480 		cond_resched();
4481 		goto retry;
4482 	}
4483 fail:
4484 	warn_alloc(gfp_mask, ac->nodemask,
4485 			"page allocation failure: order:%u", order);
4486 got_pg:
4487 	return page;
4488 }
4489 
4490 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4491 		int preferred_nid, nodemask_t *nodemask,
4492 		struct alloc_context *ac, gfp_t *alloc_gfp,
4493 		unsigned int *alloc_flags)
4494 {
4495 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4496 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4497 	ac->nodemask = nodemask;
4498 	ac->migratetype = gfp_migratetype(gfp_mask);
4499 
4500 	if (cpusets_enabled()) {
4501 		*alloc_gfp |= __GFP_HARDWALL;
4502 		/*
4503 		 * When we are in the interrupt context, it is irrelevant
4504 		 * to the current task context. It means that any node ok.
4505 		 */
4506 		if (in_task() && !ac->nodemask)
4507 			ac->nodemask = &cpuset_current_mems_allowed;
4508 		else
4509 			*alloc_flags |= ALLOC_CPUSET;
4510 	}
4511 
4512 	might_alloc(gfp_mask);
4513 
4514 	if (should_fail_alloc_page(gfp_mask, order))
4515 		return false;
4516 
4517 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4518 
4519 	/* Dirty zone balancing only done in the fast path */
4520 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4521 
4522 	/*
4523 	 * The preferred zone is used for statistics but crucially it is
4524 	 * also used as the starting point for the zonelist iterator. It
4525 	 * may get reset for allocations that ignore memory policies.
4526 	 */
4527 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4528 					ac->highest_zoneidx, ac->nodemask);
4529 
4530 	return true;
4531 }
4532 
4533 /*
4534  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4535  * @gfp: GFP flags for the allocation
4536  * @preferred_nid: The preferred NUMA node ID to allocate from
4537  * @nodemask: Set of nodes to allocate from, may be NULL
4538  * @nr_pages: The number of pages desired on the list or array
4539  * @page_list: Optional list to store the allocated pages
4540  * @page_array: Optional array to store the pages
4541  *
4542  * This is a batched version of the page allocator that attempts to
4543  * allocate nr_pages quickly. Pages are added to page_list if page_list
4544  * is not NULL, otherwise it is assumed that the page_array is valid.
4545  *
4546  * For lists, nr_pages is the number of pages that should be allocated.
4547  *
4548  * For arrays, only NULL elements are populated with pages and nr_pages
4549  * is the maximum number of pages that will be stored in the array.
4550  *
4551  * Returns the number of pages on the list or array.
4552  */
4553 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4554 			nodemask_t *nodemask, int nr_pages,
4555 			struct list_head *page_list,
4556 			struct page **page_array)
4557 {
4558 	struct page *page;
4559 	unsigned long __maybe_unused UP_flags;
4560 	struct zone *zone;
4561 	struct zoneref *z;
4562 	struct per_cpu_pages *pcp;
4563 	struct list_head *pcp_list;
4564 	struct alloc_context ac;
4565 	gfp_t alloc_gfp;
4566 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4567 	int nr_populated = 0, nr_account = 0;
4568 
4569 	/*
4570 	 * Skip populated array elements to determine if any pages need
4571 	 * to be allocated before disabling IRQs.
4572 	 */
4573 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4574 		nr_populated++;
4575 
4576 	/* No pages requested? */
4577 	if (unlikely(nr_pages <= 0))
4578 		goto out;
4579 
4580 	/* Already populated array? */
4581 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4582 		goto out;
4583 
4584 	/* Bulk allocator does not support memcg accounting. */
4585 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4586 		goto failed;
4587 
4588 	/* Use the single page allocator for one page. */
4589 	if (nr_pages - nr_populated == 1)
4590 		goto failed;
4591 
4592 #ifdef CONFIG_PAGE_OWNER
4593 	/*
4594 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4595 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4596 	 * removes much of the performance benefit of bulk allocation so
4597 	 * force the caller to allocate one page at a time as it'll have
4598 	 * similar performance to added complexity to the bulk allocator.
4599 	 */
4600 	if (static_branch_unlikely(&page_owner_inited))
4601 		goto failed;
4602 #endif
4603 
4604 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4605 	gfp &= gfp_allowed_mask;
4606 	alloc_gfp = gfp;
4607 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4608 		goto out;
4609 	gfp = alloc_gfp;
4610 
4611 	/* Find an allowed local zone that meets the low watermark. */
4612 	z = ac.preferred_zoneref;
4613 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4614 		unsigned long mark;
4615 
4616 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4617 		    !__cpuset_zone_allowed(zone, gfp)) {
4618 			continue;
4619 		}
4620 
4621 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4622 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4623 			goto failed;
4624 		}
4625 
4626 		cond_accept_memory(zone, 0);
4627 retry_this_zone:
4628 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4629 		if (zone_watermark_fast(zone, 0,  mark,
4630 				zonelist_zone_idx(ac.preferred_zoneref),
4631 				alloc_flags, gfp)) {
4632 			break;
4633 		}
4634 
4635 		if (cond_accept_memory(zone, 0))
4636 			goto retry_this_zone;
4637 
4638 		/* Try again if zone has deferred pages */
4639 		if (deferred_pages_enabled()) {
4640 			if (_deferred_grow_zone(zone, 0))
4641 				goto retry_this_zone;
4642 		}
4643 	}
4644 
4645 	/*
4646 	 * If there are no allowed local zones that meets the watermarks then
4647 	 * try to allocate a single page and reclaim if necessary.
4648 	 */
4649 	if (unlikely(!zone))
4650 		goto failed;
4651 
4652 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4653 	pcp_trylock_prepare(UP_flags);
4654 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4655 	if (!pcp)
4656 		goto failed_irq;
4657 
4658 	/* Attempt the batch allocation */
4659 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4660 	while (nr_populated < nr_pages) {
4661 
4662 		/* Skip existing pages */
4663 		if (page_array && page_array[nr_populated]) {
4664 			nr_populated++;
4665 			continue;
4666 		}
4667 
4668 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4669 								pcp, pcp_list);
4670 		if (unlikely(!page)) {
4671 			/* Try and allocate at least one page */
4672 			if (!nr_account) {
4673 				pcp_spin_unlock(pcp);
4674 				goto failed_irq;
4675 			}
4676 			break;
4677 		}
4678 		nr_account++;
4679 
4680 		prep_new_page(page, 0, gfp, 0);
4681 		if (page_list)
4682 			list_add(&page->lru, page_list);
4683 		else
4684 			page_array[nr_populated] = page;
4685 		nr_populated++;
4686 	}
4687 
4688 	pcp_spin_unlock(pcp);
4689 	pcp_trylock_finish(UP_flags);
4690 
4691 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4692 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4693 
4694 out:
4695 	return nr_populated;
4696 
4697 failed_irq:
4698 	pcp_trylock_finish(UP_flags);
4699 
4700 failed:
4701 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4702 	if (page) {
4703 		if (page_list)
4704 			list_add(&page->lru, page_list);
4705 		else
4706 			page_array[nr_populated] = page;
4707 		nr_populated++;
4708 	}
4709 
4710 	goto out;
4711 }
4712 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4713 
4714 /*
4715  * This is the 'heart' of the zoned buddy allocator.
4716  */
4717 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4718 				      int preferred_nid, nodemask_t *nodemask)
4719 {
4720 	struct page *page;
4721 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4722 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4723 	struct alloc_context ac = { };
4724 
4725 	/*
4726 	 * There are several places where we assume that the order value is sane
4727 	 * so bail out early if the request is out of bound.
4728 	 */
4729 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4730 		return NULL;
4731 
4732 	gfp &= gfp_allowed_mask;
4733 	/*
4734 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4735 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4736 	 * from a particular context which has been marked by
4737 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4738 	 * movable zones are not used during allocation.
4739 	 */
4740 	gfp = current_gfp_context(gfp);
4741 	alloc_gfp = gfp;
4742 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4743 			&alloc_gfp, &alloc_flags))
4744 		return NULL;
4745 
4746 	/*
4747 	 * Forbid the first pass from falling back to types that fragment
4748 	 * memory until all local zones are considered.
4749 	 */
4750 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4751 
4752 	/* First allocation attempt */
4753 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4754 	if (likely(page))
4755 		goto out;
4756 
4757 	alloc_gfp = gfp;
4758 	ac.spread_dirty_pages = false;
4759 
4760 	/*
4761 	 * Restore the original nodemask if it was potentially replaced with
4762 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4763 	 */
4764 	ac.nodemask = nodemask;
4765 
4766 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4767 
4768 out:
4769 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4770 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4771 		__free_pages(page, order);
4772 		page = NULL;
4773 	}
4774 
4775 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4776 	kmsan_alloc_page(page, order, alloc_gfp);
4777 
4778 	return page;
4779 }
4780 EXPORT_SYMBOL(__alloc_pages_noprof);
4781 
4782 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4783 		nodemask_t *nodemask)
4784 {
4785 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4786 					preferred_nid, nodemask);
4787 	return page_rmappable_folio(page);
4788 }
4789 EXPORT_SYMBOL(__folio_alloc_noprof);
4790 
4791 /*
4792  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4793  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4794  * you need to access high mem.
4795  */
4796 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4797 {
4798 	struct page *page;
4799 
4800 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4801 	if (!page)
4802 		return 0;
4803 	return (unsigned long) page_address(page);
4804 }
4805 EXPORT_SYMBOL(get_free_pages_noprof);
4806 
4807 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4808 {
4809 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4810 }
4811 EXPORT_SYMBOL(get_zeroed_page_noprof);
4812 
4813 /**
4814  * __free_pages - Free pages allocated with alloc_pages().
4815  * @page: The page pointer returned from alloc_pages().
4816  * @order: The order of the allocation.
4817  *
4818  * This function can free multi-page allocations that are not compound
4819  * pages.  It does not check that the @order passed in matches that of
4820  * the allocation, so it is easy to leak memory.  Freeing more memory
4821  * than was allocated will probably emit a warning.
4822  *
4823  * If the last reference to this page is speculative, it will be released
4824  * by put_page() which only frees the first page of a non-compound
4825  * allocation.  To prevent the remaining pages from being leaked, we free
4826  * the subsequent pages here.  If you want to use the page's reference
4827  * count to decide when to free the allocation, you should allocate a
4828  * compound page, and use put_page() instead of __free_pages().
4829  *
4830  * Context: May be called in interrupt context or while holding a normal
4831  * spinlock, but not in NMI context or while holding a raw spinlock.
4832  */
4833 void __free_pages(struct page *page, unsigned int order)
4834 {
4835 	/* get PageHead before we drop reference */
4836 	int head = PageHead(page);
4837 	struct alloc_tag *tag = pgalloc_tag_get(page);
4838 
4839 	if (put_page_testzero(page))
4840 		free_unref_page(page, order);
4841 	else if (!head) {
4842 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4843 		while (order-- > 0)
4844 			free_unref_page(page + (1 << order), order);
4845 	}
4846 }
4847 EXPORT_SYMBOL(__free_pages);
4848 
4849 void free_pages(unsigned long addr, unsigned int order)
4850 {
4851 	if (addr != 0) {
4852 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4853 		__free_pages(virt_to_page((void *)addr), order);
4854 	}
4855 }
4856 
4857 EXPORT_SYMBOL(free_pages);
4858 
4859 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4860 		size_t size)
4861 {
4862 	if (addr) {
4863 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4864 		struct page *page = virt_to_page((void *)addr);
4865 		struct page *last = page + nr;
4866 
4867 		split_page_owner(page, order, 0);
4868 		pgalloc_tag_split(page_folio(page), order, 0);
4869 		split_page_memcg(page, order, 0);
4870 		while (page < --last)
4871 			set_page_refcounted(last);
4872 
4873 		last = page + (1UL << order);
4874 		for (page += nr; page < last; page++)
4875 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4876 	}
4877 	return (void *)addr;
4878 }
4879 
4880 /**
4881  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4882  * @size: the number of bytes to allocate
4883  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4884  *
4885  * This function is similar to alloc_pages(), except that it allocates the
4886  * minimum number of pages to satisfy the request.  alloc_pages() can only
4887  * allocate memory in power-of-two pages.
4888  *
4889  * This function is also limited by MAX_PAGE_ORDER.
4890  *
4891  * Memory allocated by this function must be released by free_pages_exact().
4892  *
4893  * Return: pointer to the allocated area or %NULL in case of error.
4894  */
4895 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4896 {
4897 	unsigned int order = get_order(size);
4898 	unsigned long addr;
4899 
4900 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4901 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4902 
4903 	addr = get_free_pages_noprof(gfp_mask, order);
4904 	return make_alloc_exact(addr, order, size);
4905 }
4906 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4907 
4908 /**
4909  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4910  *			   pages on a node.
4911  * @nid: the preferred node ID where memory should be allocated
4912  * @size: the number of bytes to allocate
4913  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4914  *
4915  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4916  * back.
4917  *
4918  * Return: pointer to the allocated area or %NULL in case of error.
4919  */
4920 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
4921 {
4922 	unsigned int order = get_order(size);
4923 	struct page *p;
4924 
4925 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4926 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4927 
4928 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
4929 	if (!p)
4930 		return NULL;
4931 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4932 }
4933 
4934 /**
4935  * free_pages_exact - release memory allocated via alloc_pages_exact()
4936  * @virt: the value returned by alloc_pages_exact.
4937  * @size: size of allocation, same value as passed to alloc_pages_exact().
4938  *
4939  * Release the memory allocated by a previous call to alloc_pages_exact.
4940  */
4941 void free_pages_exact(void *virt, size_t size)
4942 {
4943 	unsigned long addr = (unsigned long)virt;
4944 	unsigned long end = addr + PAGE_ALIGN(size);
4945 
4946 	while (addr < end) {
4947 		free_page(addr);
4948 		addr += PAGE_SIZE;
4949 	}
4950 }
4951 EXPORT_SYMBOL(free_pages_exact);
4952 
4953 /**
4954  * nr_free_zone_pages - count number of pages beyond high watermark
4955  * @offset: The zone index of the highest zone
4956  *
4957  * nr_free_zone_pages() counts the number of pages which are beyond the
4958  * high watermark within all zones at or below a given zone index.  For each
4959  * zone, the number of pages is calculated as:
4960  *
4961  *     nr_free_zone_pages = managed_pages - high_pages
4962  *
4963  * Return: number of pages beyond high watermark.
4964  */
4965 static unsigned long nr_free_zone_pages(int offset)
4966 {
4967 	struct zoneref *z;
4968 	struct zone *zone;
4969 
4970 	/* Just pick one node, since fallback list is circular */
4971 	unsigned long sum = 0;
4972 
4973 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4974 
4975 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4976 		unsigned long size = zone_managed_pages(zone);
4977 		unsigned long high = high_wmark_pages(zone);
4978 		if (size > high)
4979 			sum += size - high;
4980 	}
4981 
4982 	return sum;
4983 }
4984 
4985 /**
4986  * nr_free_buffer_pages - count number of pages beyond high watermark
4987  *
4988  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4989  * watermark within ZONE_DMA and ZONE_NORMAL.
4990  *
4991  * Return: number of pages beyond high watermark within ZONE_DMA and
4992  * ZONE_NORMAL.
4993  */
4994 unsigned long nr_free_buffer_pages(void)
4995 {
4996 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4997 }
4998 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4999 
5000 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5001 {
5002 	zoneref->zone = zone;
5003 	zoneref->zone_idx = zone_idx(zone);
5004 }
5005 
5006 /*
5007  * Builds allocation fallback zone lists.
5008  *
5009  * Add all populated zones of a node to the zonelist.
5010  */
5011 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5012 {
5013 	struct zone *zone;
5014 	enum zone_type zone_type = MAX_NR_ZONES;
5015 	int nr_zones = 0;
5016 
5017 	do {
5018 		zone_type--;
5019 		zone = pgdat->node_zones + zone_type;
5020 		if (populated_zone(zone)) {
5021 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5022 			check_highest_zone(zone_type);
5023 		}
5024 	} while (zone_type);
5025 
5026 	return nr_zones;
5027 }
5028 
5029 #ifdef CONFIG_NUMA
5030 
5031 static int __parse_numa_zonelist_order(char *s)
5032 {
5033 	/*
5034 	 * We used to support different zonelists modes but they turned
5035 	 * out to be just not useful. Let's keep the warning in place
5036 	 * if somebody still use the cmd line parameter so that we do
5037 	 * not fail it silently
5038 	 */
5039 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5040 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5041 		return -EINVAL;
5042 	}
5043 	return 0;
5044 }
5045 
5046 static char numa_zonelist_order[] = "Node";
5047 #define NUMA_ZONELIST_ORDER_LEN	16
5048 /*
5049  * sysctl handler for numa_zonelist_order
5050  */
5051 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5052 		void *buffer, size_t *length, loff_t *ppos)
5053 {
5054 	if (write)
5055 		return __parse_numa_zonelist_order(buffer);
5056 	return proc_dostring(table, write, buffer, length, ppos);
5057 }
5058 
5059 static int node_load[MAX_NUMNODES];
5060 
5061 /**
5062  * find_next_best_node - find the next node that should appear in a given node's fallback list
5063  * @node: node whose fallback list we're appending
5064  * @used_node_mask: nodemask_t of already used nodes
5065  *
5066  * We use a number of factors to determine which is the next node that should
5067  * appear on a given node's fallback list.  The node should not have appeared
5068  * already in @node's fallback list, and it should be the next closest node
5069  * according to the distance array (which contains arbitrary distance values
5070  * from each node to each node in the system), and should also prefer nodes
5071  * with no CPUs, since presumably they'll have very little allocation pressure
5072  * on them otherwise.
5073  *
5074  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5075  */
5076 int find_next_best_node(int node, nodemask_t *used_node_mask)
5077 {
5078 	int n, val;
5079 	int min_val = INT_MAX;
5080 	int best_node = NUMA_NO_NODE;
5081 
5082 	/*
5083 	 * Use the local node if we haven't already, but for memoryless local
5084 	 * node, we should skip it and fall back to other nodes.
5085 	 */
5086 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5087 		node_set(node, *used_node_mask);
5088 		return node;
5089 	}
5090 
5091 	for_each_node_state(n, N_MEMORY) {
5092 
5093 		/* Don't want a node to appear more than once */
5094 		if (node_isset(n, *used_node_mask))
5095 			continue;
5096 
5097 		/* Use the distance array to find the distance */
5098 		val = node_distance(node, n);
5099 
5100 		/* Penalize nodes under us ("prefer the next node") */
5101 		val += (n < node);
5102 
5103 		/* Give preference to headless and unused nodes */
5104 		if (!cpumask_empty(cpumask_of_node(n)))
5105 			val += PENALTY_FOR_NODE_WITH_CPUS;
5106 
5107 		/* Slight preference for less loaded node */
5108 		val *= MAX_NUMNODES;
5109 		val += node_load[n];
5110 
5111 		if (val < min_val) {
5112 			min_val = val;
5113 			best_node = n;
5114 		}
5115 	}
5116 
5117 	if (best_node >= 0)
5118 		node_set(best_node, *used_node_mask);
5119 
5120 	return best_node;
5121 }
5122 
5123 
5124 /*
5125  * Build zonelists ordered by node and zones within node.
5126  * This results in maximum locality--normal zone overflows into local
5127  * DMA zone, if any--but risks exhausting DMA zone.
5128  */
5129 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5130 		unsigned nr_nodes)
5131 {
5132 	struct zoneref *zonerefs;
5133 	int i;
5134 
5135 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5136 
5137 	for (i = 0; i < nr_nodes; i++) {
5138 		int nr_zones;
5139 
5140 		pg_data_t *node = NODE_DATA(node_order[i]);
5141 
5142 		nr_zones = build_zonerefs_node(node, zonerefs);
5143 		zonerefs += nr_zones;
5144 	}
5145 	zonerefs->zone = NULL;
5146 	zonerefs->zone_idx = 0;
5147 }
5148 
5149 /*
5150  * Build __GFP_THISNODE zonelists
5151  */
5152 static void build_thisnode_zonelists(pg_data_t *pgdat)
5153 {
5154 	struct zoneref *zonerefs;
5155 	int nr_zones;
5156 
5157 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5158 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5159 	zonerefs += nr_zones;
5160 	zonerefs->zone = NULL;
5161 	zonerefs->zone_idx = 0;
5162 }
5163 
5164 /*
5165  * Build zonelists ordered by zone and nodes within zones.
5166  * This results in conserving DMA zone[s] until all Normal memory is
5167  * exhausted, but results in overflowing to remote node while memory
5168  * may still exist in local DMA zone.
5169  */
5170 
5171 static void build_zonelists(pg_data_t *pgdat)
5172 {
5173 	static int node_order[MAX_NUMNODES];
5174 	int node, nr_nodes = 0;
5175 	nodemask_t used_mask = NODE_MASK_NONE;
5176 	int local_node, prev_node;
5177 
5178 	/* NUMA-aware ordering of nodes */
5179 	local_node = pgdat->node_id;
5180 	prev_node = local_node;
5181 
5182 	memset(node_order, 0, sizeof(node_order));
5183 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5184 		/*
5185 		 * We don't want to pressure a particular node.
5186 		 * So adding penalty to the first node in same
5187 		 * distance group to make it round-robin.
5188 		 */
5189 		if (node_distance(local_node, node) !=
5190 		    node_distance(local_node, prev_node))
5191 			node_load[node] += 1;
5192 
5193 		node_order[nr_nodes++] = node;
5194 		prev_node = node;
5195 	}
5196 
5197 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5198 	build_thisnode_zonelists(pgdat);
5199 	pr_info("Fallback order for Node %d: ", local_node);
5200 	for (node = 0; node < nr_nodes; node++)
5201 		pr_cont("%d ", node_order[node]);
5202 	pr_cont("\n");
5203 }
5204 
5205 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5206 /*
5207  * Return node id of node used for "local" allocations.
5208  * I.e., first node id of first zone in arg node's generic zonelist.
5209  * Used for initializing percpu 'numa_mem', which is used primarily
5210  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5211  */
5212 int local_memory_node(int node)
5213 {
5214 	struct zoneref *z;
5215 
5216 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5217 				   gfp_zone(GFP_KERNEL),
5218 				   NULL);
5219 	return zonelist_node_idx(z);
5220 }
5221 #endif
5222 
5223 static void setup_min_unmapped_ratio(void);
5224 static void setup_min_slab_ratio(void);
5225 #else	/* CONFIG_NUMA */
5226 
5227 static void build_zonelists(pg_data_t *pgdat)
5228 {
5229 	struct zoneref *zonerefs;
5230 	int nr_zones;
5231 
5232 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5233 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5234 	zonerefs += nr_zones;
5235 
5236 	zonerefs->zone = NULL;
5237 	zonerefs->zone_idx = 0;
5238 }
5239 
5240 #endif	/* CONFIG_NUMA */
5241 
5242 /*
5243  * Boot pageset table. One per cpu which is going to be used for all
5244  * zones and all nodes. The parameters will be set in such a way
5245  * that an item put on a list will immediately be handed over to
5246  * the buddy list. This is safe since pageset manipulation is done
5247  * with interrupts disabled.
5248  *
5249  * The boot_pagesets must be kept even after bootup is complete for
5250  * unused processors and/or zones. They do play a role for bootstrapping
5251  * hotplugged processors.
5252  *
5253  * zoneinfo_show() and maybe other functions do
5254  * not check if the processor is online before following the pageset pointer.
5255  * Other parts of the kernel may not check if the zone is available.
5256  */
5257 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5258 /* These effectively disable the pcplists in the boot pageset completely */
5259 #define BOOT_PAGESET_HIGH	0
5260 #define BOOT_PAGESET_BATCH	1
5261 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5262 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5263 
5264 static void __build_all_zonelists(void *data)
5265 {
5266 	int nid;
5267 	int __maybe_unused cpu;
5268 	pg_data_t *self = data;
5269 	unsigned long flags;
5270 
5271 	/*
5272 	 * The zonelist_update_seq must be acquired with irqsave because the
5273 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5274 	 */
5275 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5276 	/*
5277 	 * Also disable synchronous printk() to prevent any printk() from
5278 	 * trying to hold port->lock, for
5279 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5280 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5281 	 */
5282 	printk_deferred_enter();
5283 
5284 #ifdef CONFIG_NUMA
5285 	memset(node_load, 0, sizeof(node_load));
5286 #endif
5287 
5288 	/*
5289 	 * This node is hotadded and no memory is yet present.   So just
5290 	 * building zonelists is fine - no need to touch other nodes.
5291 	 */
5292 	if (self && !node_online(self->node_id)) {
5293 		build_zonelists(self);
5294 	} else {
5295 		/*
5296 		 * All possible nodes have pgdat preallocated
5297 		 * in free_area_init
5298 		 */
5299 		for_each_node(nid) {
5300 			pg_data_t *pgdat = NODE_DATA(nid);
5301 
5302 			build_zonelists(pgdat);
5303 		}
5304 
5305 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5306 		/*
5307 		 * We now know the "local memory node" for each node--
5308 		 * i.e., the node of the first zone in the generic zonelist.
5309 		 * Set up numa_mem percpu variable for on-line cpus.  During
5310 		 * boot, only the boot cpu should be on-line;  we'll init the
5311 		 * secondary cpus' numa_mem as they come on-line.  During
5312 		 * node/memory hotplug, we'll fixup all on-line cpus.
5313 		 */
5314 		for_each_online_cpu(cpu)
5315 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5316 #endif
5317 	}
5318 
5319 	printk_deferred_exit();
5320 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5321 }
5322 
5323 static noinline void __init
5324 build_all_zonelists_init(void)
5325 {
5326 	int cpu;
5327 
5328 	__build_all_zonelists(NULL);
5329 
5330 	/*
5331 	 * Initialize the boot_pagesets that are going to be used
5332 	 * for bootstrapping processors. The real pagesets for
5333 	 * each zone will be allocated later when the per cpu
5334 	 * allocator is available.
5335 	 *
5336 	 * boot_pagesets are used also for bootstrapping offline
5337 	 * cpus if the system is already booted because the pagesets
5338 	 * are needed to initialize allocators on a specific cpu too.
5339 	 * F.e. the percpu allocator needs the page allocator which
5340 	 * needs the percpu allocator in order to allocate its pagesets
5341 	 * (a chicken-egg dilemma).
5342 	 */
5343 	for_each_possible_cpu(cpu)
5344 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5345 
5346 	mminit_verify_zonelist();
5347 	cpuset_init_current_mems_allowed();
5348 }
5349 
5350 /*
5351  * unless system_state == SYSTEM_BOOTING.
5352  *
5353  * __ref due to call of __init annotated helper build_all_zonelists_init
5354  * [protected by SYSTEM_BOOTING].
5355  */
5356 void __ref build_all_zonelists(pg_data_t *pgdat)
5357 {
5358 	unsigned long vm_total_pages;
5359 
5360 	if (system_state == SYSTEM_BOOTING) {
5361 		build_all_zonelists_init();
5362 	} else {
5363 		__build_all_zonelists(pgdat);
5364 		/* cpuset refresh routine should be here */
5365 	}
5366 	/* Get the number of free pages beyond high watermark in all zones. */
5367 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5368 	/*
5369 	 * Disable grouping by mobility if the number of pages in the
5370 	 * system is too low to allow the mechanism to work. It would be
5371 	 * more accurate, but expensive to check per-zone. This check is
5372 	 * made on memory-hotadd so a system can start with mobility
5373 	 * disabled and enable it later
5374 	 */
5375 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5376 		page_group_by_mobility_disabled = 1;
5377 	else
5378 		page_group_by_mobility_disabled = 0;
5379 
5380 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5381 		nr_online_nodes,
5382 		str_off_on(page_group_by_mobility_disabled),
5383 		vm_total_pages);
5384 #ifdef CONFIG_NUMA
5385 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5386 #endif
5387 }
5388 
5389 static int zone_batchsize(struct zone *zone)
5390 {
5391 #ifdef CONFIG_MMU
5392 	int batch;
5393 
5394 	/*
5395 	 * The number of pages to batch allocate is either ~0.1%
5396 	 * of the zone or 1MB, whichever is smaller. The batch
5397 	 * size is striking a balance between allocation latency
5398 	 * and zone lock contention.
5399 	 */
5400 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5401 	batch /= 4;		/* We effectively *= 4 below */
5402 	if (batch < 1)
5403 		batch = 1;
5404 
5405 	/*
5406 	 * Clamp the batch to a 2^n - 1 value. Having a power
5407 	 * of 2 value was found to be more likely to have
5408 	 * suboptimal cache aliasing properties in some cases.
5409 	 *
5410 	 * For example if 2 tasks are alternately allocating
5411 	 * batches of pages, one task can end up with a lot
5412 	 * of pages of one half of the possible page colors
5413 	 * and the other with pages of the other colors.
5414 	 */
5415 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5416 
5417 	return batch;
5418 
5419 #else
5420 	/* The deferral and batching of frees should be suppressed under NOMMU
5421 	 * conditions.
5422 	 *
5423 	 * The problem is that NOMMU needs to be able to allocate large chunks
5424 	 * of contiguous memory as there's no hardware page translation to
5425 	 * assemble apparent contiguous memory from discontiguous pages.
5426 	 *
5427 	 * Queueing large contiguous runs of pages for batching, however,
5428 	 * causes the pages to actually be freed in smaller chunks.  As there
5429 	 * can be a significant delay between the individual batches being
5430 	 * recycled, this leads to the once large chunks of space being
5431 	 * fragmented and becoming unavailable for high-order allocations.
5432 	 */
5433 	return 0;
5434 #endif
5435 }
5436 
5437 static int percpu_pagelist_high_fraction;
5438 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5439 			 int high_fraction)
5440 {
5441 #ifdef CONFIG_MMU
5442 	int high;
5443 	int nr_split_cpus;
5444 	unsigned long total_pages;
5445 
5446 	if (!high_fraction) {
5447 		/*
5448 		 * By default, the high value of the pcp is based on the zone
5449 		 * low watermark so that if they are full then background
5450 		 * reclaim will not be started prematurely.
5451 		 */
5452 		total_pages = low_wmark_pages(zone);
5453 	} else {
5454 		/*
5455 		 * If percpu_pagelist_high_fraction is configured, the high
5456 		 * value is based on a fraction of the managed pages in the
5457 		 * zone.
5458 		 */
5459 		total_pages = zone_managed_pages(zone) / high_fraction;
5460 	}
5461 
5462 	/*
5463 	 * Split the high value across all online CPUs local to the zone. Note
5464 	 * that early in boot that CPUs may not be online yet and that during
5465 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5466 	 * onlined. For memory nodes that have no CPUs, split the high value
5467 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5468 	 * prematurely due to pages stored on pcp lists.
5469 	 */
5470 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5471 	if (!nr_split_cpus)
5472 		nr_split_cpus = num_online_cpus();
5473 	high = total_pages / nr_split_cpus;
5474 
5475 	/*
5476 	 * Ensure high is at least batch*4. The multiple is based on the
5477 	 * historical relationship between high and batch.
5478 	 */
5479 	high = max(high, batch << 2);
5480 
5481 	return high;
5482 #else
5483 	return 0;
5484 #endif
5485 }
5486 
5487 /*
5488  * pcp->high and pcp->batch values are related and generally batch is lower
5489  * than high. They are also related to pcp->count such that count is lower
5490  * than high, and as soon as it reaches high, the pcplist is flushed.
5491  *
5492  * However, guaranteeing these relations at all times would require e.g. write
5493  * barriers here but also careful usage of read barriers at the read side, and
5494  * thus be prone to error and bad for performance. Thus the update only prevents
5495  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5496  * should ensure they can cope with those fields changing asynchronously, and
5497  * fully trust only the pcp->count field on the local CPU with interrupts
5498  * disabled.
5499  *
5500  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5501  * outside of boot time (or some other assurance that no concurrent updaters
5502  * exist).
5503  */
5504 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5505 			   unsigned long high_max, unsigned long batch)
5506 {
5507 	WRITE_ONCE(pcp->batch, batch);
5508 	WRITE_ONCE(pcp->high_min, high_min);
5509 	WRITE_ONCE(pcp->high_max, high_max);
5510 }
5511 
5512 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5513 {
5514 	int pindex;
5515 
5516 	memset(pcp, 0, sizeof(*pcp));
5517 	memset(pzstats, 0, sizeof(*pzstats));
5518 
5519 	spin_lock_init(&pcp->lock);
5520 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5521 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5522 
5523 	/*
5524 	 * Set batch and high values safe for a boot pageset. A true percpu
5525 	 * pageset's initialization will update them subsequently. Here we don't
5526 	 * need to be as careful as pageset_update() as nobody can access the
5527 	 * pageset yet.
5528 	 */
5529 	pcp->high_min = BOOT_PAGESET_HIGH;
5530 	pcp->high_max = BOOT_PAGESET_HIGH;
5531 	pcp->batch = BOOT_PAGESET_BATCH;
5532 	pcp->free_count = 0;
5533 }
5534 
5535 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5536 					      unsigned long high_max, unsigned long batch)
5537 {
5538 	struct per_cpu_pages *pcp;
5539 	int cpu;
5540 
5541 	for_each_possible_cpu(cpu) {
5542 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5543 		pageset_update(pcp, high_min, high_max, batch);
5544 	}
5545 }
5546 
5547 /*
5548  * Calculate and set new high and batch values for all per-cpu pagesets of a
5549  * zone based on the zone's size.
5550  */
5551 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5552 {
5553 	int new_high_min, new_high_max, new_batch;
5554 
5555 	new_batch = max(1, zone_batchsize(zone));
5556 	if (percpu_pagelist_high_fraction) {
5557 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5558 					     percpu_pagelist_high_fraction);
5559 		/*
5560 		 * PCP high is tuned manually, disable auto-tuning via
5561 		 * setting high_min and high_max to the manual value.
5562 		 */
5563 		new_high_max = new_high_min;
5564 	} else {
5565 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5566 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5567 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5568 	}
5569 
5570 	if (zone->pageset_high_min == new_high_min &&
5571 	    zone->pageset_high_max == new_high_max &&
5572 	    zone->pageset_batch == new_batch)
5573 		return;
5574 
5575 	zone->pageset_high_min = new_high_min;
5576 	zone->pageset_high_max = new_high_max;
5577 	zone->pageset_batch = new_batch;
5578 
5579 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5580 					  new_batch);
5581 }
5582 
5583 void __meminit setup_zone_pageset(struct zone *zone)
5584 {
5585 	int cpu;
5586 
5587 	/* Size may be 0 on !SMP && !NUMA */
5588 	if (sizeof(struct per_cpu_zonestat) > 0)
5589 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5590 
5591 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5592 	for_each_possible_cpu(cpu) {
5593 		struct per_cpu_pages *pcp;
5594 		struct per_cpu_zonestat *pzstats;
5595 
5596 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5597 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5598 		per_cpu_pages_init(pcp, pzstats);
5599 	}
5600 
5601 	zone_set_pageset_high_and_batch(zone, 0);
5602 }
5603 
5604 /*
5605  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5606  * page high values need to be recalculated.
5607  */
5608 static void zone_pcp_update(struct zone *zone, int cpu_online)
5609 {
5610 	mutex_lock(&pcp_batch_high_lock);
5611 	zone_set_pageset_high_and_batch(zone, cpu_online);
5612 	mutex_unlock(&pcp_batch_high_lock);
5613 }
5614 
5615 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5616 {
5617 	struct per_cpu_pages *pcp;
5618 	struct cpu_cacheinfo *cci;
5619 
5620 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5621 	cci = get_cpu_cacheinfo(cpu);
5622 	/*
5623 	 * If data cache slice of CPU is large enough, "pcp->batch"
5624 	 * pages can be preserved in PCP before draining PCP for
5625 	 * consecutive high-order pages freeing without allocation.
5626 	 * This can reduce zone lock contention without hurting
5627 	 * cache-hot pages sharing.
5628 	 */
5629 	spin_lock(&pcp->lock);
5630 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5631 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5632 	else
5633 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5634 	spin_unlock(&pcp->lock);
5635 }
5636 
5637 void setup_pcp_cacheinfo(unsigned int cpu)
5638 {
5639 	struct zone *zone;
5640 
5641 	for_each_populated_zone(zone)
5642 		zone_pcp_update_cacheinfo(zone, cpu);
5643 }
5644 
5645 /*
5646  * Allocate per cpu pagesets and initialize them.
5647  * Before this call only boot pagesets were available.
5648  */
5649 void __init setup_per_cpu_pageset(void)
5650 {
5651 	struct pglist_data *pgdat;
5652 	struct zone *zone;
5653 	int __maybe_unused cpu;
5654 
5655 	for_each_populated_zone(zone)
5656 		setup_zone_pageset(zone);
5657 
5658 #ifdef CONFIG_NUMA
5659 	/*
5660 	 * Unpopulated zones continue using the boot pagesets.
5661 	 * The numa stats for these pagesets need to be reset.
5662 	 * Otherwise, they will end up skewing the stats of
5663 	 * the nodes these zones are associated with.
5664 	 */
5665 	for_each_possible_cpu(cpu) {
5666 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5667 		memset(pzstats->vm_numa_event, 0,
5668 		       sizeof(pzstats->vm_numa_event));
5669 	}
5670 #endif
5671 
5672 	for_each_online_pgdat(pgdat)
5673 		pgdat->per_cpu_nodestats =
5674 			alloc_percpu(struct per_cpu_nodestat);
5675 }
5676 
5677 __meminit void zone_pcp_init(struct zone *zone)
5678 {
5679 	/*
5680 	 * per cpu subsystem is not up at this point. The following code
5681 	 * relies on the ability of the linker to provide the
5682 	 * offset of a (static) per cpu variable into the per cpu area.
5683 	 */
5684 	zone->per_cpu_pageset = &boot_pageset;
5685 	zone->per_cpu_zonestats = &boot_zonestats;
5686 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5687 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5688 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5689 
5690 	if (populated_zone(zone))
5691 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5692 			 zone->present_pages, zone_batchsize(zone));
5693 }
5694 
5695 void adjust_managed_page_count(struct page *page, long count)
5696 {
5697 	atomic_long_add(count, &page_zone(page)->managed_pages);
5698 	totalram_pages_add(count);
5699 }
5700 EXPORT_SYMBOL(adjust_managed_page_count);
5701 
5702 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5703 {
5704 	void *pos;
5705 	unsigned long pages = 0;
5706 
5707 	start = (void *)PAGE_ALIGN((unsigned long)start);
5708 	end = (void *)((unsigned long)end & PAGE_MASK);
5709 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5710 		struct page *page = virt_to_page(pos);
5711 		void *direct_map_addr;
5712 
5713 		/*
5714 		 * 'direct_map_addr' might be different from 'pos'
5715 		 * because some architectures' virt_to_page()
5716 		 * work with aliases.  Getting the direct map
5717 		 * address ensures that we get a _writeable_
5718 		 * alias for the memset().
5719 		 */
5720 		direct_map_addr = page_address(page);
5721 		/*
5722 		 * Perform a kasan-unchecked memset() since this memory
5723 		 * has not been initialized.
5724 		 */
5725 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5726 		if ((unsigned int)poison <= 0xFF)
5727 			memset(direct_map_addr, poison, PAGE_SIZE);
5728 
5729 		free_reserved_page(page);
5730 	}
5731 
5732 	if (pages && s)
5733 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5734 
5735 	return pages;
5736 }
5737 
5738 void free_reserved_page(struct page *page)
5739 {
5740 	clear_page_tag_ref(page);
5741 	ClearPageReserved(page);
5742 	init_page_count(page);
5743 	__free_page(page);
5744 	adjust_managed_page_count(page, 1);
5745 }
5746 EXPORT_SYMBOL(free_reserved_page);
5747 
5748 static int page_alloc_cpu_dead(unsigned int cpu)
5749 {
5750 	struct zone *zone;
5751 
5752 	lru_add_drain_cpu(cpu);
5753 	mlock_drain_remote(cpu);
5754 	drain_pages(cpu);
5755 
5756 	/*
5757 	 * Spill the event counters of the dead processor
5758 	 * into the current processors event counters.
5759 	 * This artificially elevates the count of the current
5760 	 * processor.
5761 	 */
5762 	vm_events_fold_cpu(cpu);
5763 
5764 	/*
5765 	 * Zero the differential counters of the dead processor
5766 	 * so that the vm statistics are consistent.
5767 	 *
5768 	 * This is only okay since the processor is dead and cannot
5769 	 * race with what we are doing.
5770 	 */
5771 	cpu_vm_stats_fold(cpu);
5772 
5773 	for_each_populated_zone(zone)
5774 		zone_pcp_update(zone, 0);
5775 
5776 	return 0;
5777 }
5778 
5779 static int page_alloc_cpu_online(unsigned int cpu)
5780 {
5781 	struct zone *zone;
5782 
5783 	for_each_populated_zone(zone)
5784 		zone_pcp_update(zone, 1);
5785 	return 0;
5786 }
5787 
5788 void __init page_alloc_init_cpuhp(void)
5789 {
5790 	int ret;
5791 
5792 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5793 					"mm/page_alloc:pcp",
5794 					page_alloc_cpu_online,
5795 					page_alloc_cpu_dead);
5796 	WARN_ON(ret < 0);
5797 }
5798 
5799 /*
5800  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5801  *	or min_free_kbytes changes.
5802  */
5803 static void calculate_totalreserve_pages(void)
5804 {
5805 	struct pglist_data *pgdat;
5806 	unsigned long reserve_pages = 0;
5807 	enum zone_type i, j;
5808 
5809 	for_each_online_pgdat(pgdat) {
5810 
5811 		pgdat->totalreserve_pages = 0;
5812 
5813 		for (i = 0; i < MAX_NR_ZONES; i++) {
5814 			struct zone *zone = pgdat->node_zones + i;
5815 			long max = 0;
5816 			unsigned long managed_pages = zone_managed_pages(zone);
5817 
5818 			/* Find valid and maximum lowmem_reserve in the zone */
5819 			for (j = i; j < MAX_NR_ZONES; j++) {
5820 				if (zone->lowmem_reserve[j] > max)
5821 					max = zone->lowmem_reserve[j];
5822 			}
5823 
5824 			/* we treat the high watermark as reserved pages. */
5825 			max += high_wmark_pages(zone);
5826 
5827 			if (max > managed_pages)
5828 				max = managed_pages;
5829 
5830 			pgdat->totalreserve_pages += max;
5831 
5832 			reserve_pages += max;
5833 		}
5834 	}
5835 	totalreserve_pages = reserve_pages;
5836 }
5837 
5838 /*
5839  * setup_per_zone_lowmem_reserve - called whenever
5840  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5841  *	has a correct pages reserved value, so an adequate number of
5842  *	pages are left in the zone after a successful __alloc_pages().
5843  */
5844 static void setup_per_zone_lowmem_reserve(void)
5845 {
5846 	struct pglist_data *pgdat;
5847 	enum zone_type i, j;
5848 
5849 	for_each_online_pgdat(pgdat) {
5850 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5851 			struct zone *zone = &pgdat->node_zones[i];
5852 			int ratio = sysctl_lowmem_reserve_ratio[i];
5853 			bool clear = !ratio || !zone_managed_pages(zone);
5854 			unsigned long managed_pages = 0;
5855 
5856 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5857 				struct zone *upper_zone = &pgdat->node_zones[j];
5858 				bool empty = !zone_managed_pages(upper_zone);
5859 
5860 				managed_pages += zone_managed_pages(upper_zone);
5861 
5862 				if (clear || empty)
5863 					zone->lowmem_reserve[j] = 0;
5864 				else
5865 					zone->lowmem_reserve[j] = managed_pages / ratio;
5866 			}
5867 		}
5868 	}
5869 
5870 	/* update totalreserve_pages */
5871 	calculate_totalreserve_pages();
5872 }
5873 
5874 static void __setup_per_zone_wmarks(void)
5875 {
5876 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5877 	unsigned long lowmem_pages = 0;
5878 	struct zone *zone;
5879 	unsigned long flags;
5880 
5881 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5882 	for_each_zone(zone) {
5883 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5884 			lowmem_pages += zone_managed_pages(zone);
5885 	}
5886 
5887 	for_each_zone(zone) {
5888 		u64 tmp;
5889 
5890 		spin_lock_irqsave(&zone->lock, flags);
5891 		tmp = (u64)pages_min * zone_managed_pages(zone);
5892 		tmp = div64_ul(tmp, lowmem_pages);
5893 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5894 			/*
5895 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5896 			 * need highmem and movable zones pages, so cap pages_min
5897 			 * to a small  value here.
5898 			 *
5899 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5900 			 * deltas control async page reclaim, and so should
5901 			 * not be capped for highmem and movable zones.
5902 			 */
5903 			unsigned long min_pages;
5904 
5905 			min_pages = zone_managed_pages(zone) / 1024;
5906 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5907 			zone->_watermark[WMARK_MIN] = min_pages;
5908 		} else {
5909 			/*
5910 			 * If it's a lowmem zone, reserve a number of pages
5911 			 * proportionate to the zone's size.
5912 			 */
5913 			zone->_watermark[WMARK_MIN] = tmp;
5914 		}
5915 
5916 		/*
5917 		 * Set the kswapd watermarks distance according to the
5918 		 * scale factor in proportion to available memory, but
5919 		 * ensure a minimum size on small systems.
5920 		 */
5921 		tmp = max_t(u64, tmp >> 2,
5922 			    mult_frac(zone_managed_pages(zone),
5923 				      watermark_scale_factor, 10000));
5924 
5925 		zone->watermark_boost = 0;
5926 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5927 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5928 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5929 
5930 		spin_unlock_irqrestore(&zone->lock, flags);
5931 	}
5932 
5933 	/* update totalreserve_pages */
5934 	calculate_totalreserve_pages();
5935 }
5936 
5937 /**
5938  * setup_per_zone_wmarks - called when min_free_kbytes changes
5939  * or when memory is hot-{added|removed}
5940  *
5941  * Ensures that the watermark[min,low,high] values for each zone are set
5942  * correctly with respect to min_free_kbytes.
5943  */
5944 void setup_per_zone_wmarks(void)
5945 {
5946 	struct zone *zone;
5947 	static DEFINE_SPINLOCK(lock);
5948 
5949 	spin_lock(&lock);
5950 	__setup_per_zone_wmarks();
5951 	spin_unlock(&lock);
5952 
5953 	/*
5954 	 * The watermark size have changed so update the pcpu batch
5955 	 * and high limits or the limits may be inappropriate.
5956 	 */
5957 	for_each_zone(zone)
5958 		zone_pcp_update(zone, 0);
5959 }
5960 
5961 /*
5962  * Initialise min_free_kbytes.
5963  *
5964  * For small machines we want it small (128k min).  For large machines
5965  * we want it large (256MB max).  But it is not linear, because network
5966  * bandwidth does not increase linearly with machine size.  We use
5967  *
5968  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5969  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5970  *
5971  * which yields
5972  *
5973  * 16MB:	512k
5974  * 32MB:	724k
5975  * 64MB:	1024k
5976  * 128MB:	1448k
5977  * 256MB:	2048k
5978  * 512MB:	2896k
5979  * 1024MB:	4096k
5980  * 2048MB:	5792k
5981  * 4096MB:	8192k
5982  * 8192MB:	11584k
5983  * 16384MB:	16384k
5984  */
5985 void calculate_min_free_kbytes(void)
5986 {
5987 	unsigned long lowmem_kbytes;
5988 	int new_min_free_kbytes;
5989 
5990 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5991 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5992 
5993 	if (new_min_free_kbytes > user_min_free_kbytes)
5994 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5995 	else
5996 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5997 				new_min_free_kbytes, user_min_free_kbytes);
5998 
5999 }
6000 
6001 int __meminit init_per_zone_wmark_min(void)
6002 {
6003 	calculate_min_free_kbytes();
6004 	setup_per_zone_wmarks();
6005 	refresh_zone_stat_thresholds();
6006 	setup_per_zone_lowmem_reserve();
6007 
6008 #ifdef CONFIG_NUMA
6009 	setup_min_unmapped_ratio();
6010 	setup_min_slab_ratio();
6011 #endif
6012 
6013 	khugepaged_min_free_kbytes_update();
6014 
6015 	return 0;
6016 }
6017 postcore_initcall(init_per_zone_wmark_min)
6018 
6019 /*
6020  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6021  *	that we can call two helper functions whenever min_free_kbytes
6022  *	changes.
6023  */
6024 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6025 		void *buffer, size_t *length, loff_t *ppos)
6026 {
6027 	int rc;
6028 
6029 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6030 	if (rc)
6031 		return rc;
6032 
6033 	if (write) {
6034 		user_min_free_kbytes = min_free_kbytes;
6035 		setup_per_zone_wmarks();
6036 	}
6037 	return 0;
6038 }
6039 
6040 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6041 		void *buffer, size_t *length, loff_t *ppos)
6042 {
6043 	int rc;
6044 
6045 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6046 	if (rc)
6047 		return rc;
6048 
6049 	if (write)
6050 		setup_per_zone_wmarks();
6051 
6052 	return 0;
6053 }
6054 
6055 #ifdef CONFIG_NUMA
6056 static void setup_min_unmapped_ratio(void)
6057 {
6058 	pg_data_t *pgdat;
6059 	struct zone *zone;
6060 
6061 	for_each_online_pgdat(pgdat)
6062 		pgdat->min_unmapped_pages = 0;
6063 
6064 	for_each_zone(zone)
6065 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6066 						         sysctl_min_unmapped_ratio) / 100;
6067 }
6068 
6069 
6070 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6071 		void *buffer, size_t *length, loff_t *ppos)
6072 {
6073 	int rc;
6074 
6075 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6076 	if (rc)
6077 		return rc;
6078 
6079 	setup_min_unmapped_ratio();
6080 
6081 	return 0;
6082 }
6083 
6084 static void setup_min_slab_ratio(void)
6085 {
6086 	pg_data_t *pgdat;
6087 	struct zone *zone;
6088 
6089 	for_each_online_pgdat(pgdat)
6090 		pgdat->min_slab_pages = 0;
6091 
6092 	for_each_zone(zone)
6093 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6094 						     sysctl_min_slab_ratio) / 100;
6095 }
6096 
6097 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6098 		void *buffer, size_t *length, loff_t *ppos)
6099 {
6100 	int rc;
6101 
6102 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6103 	if (rc)
6104 		return rc;
6105 
6106 	setup_min_slab_ratio();
6107 
6108 	return 0;
6109 }
6110 #endif
6111 
6112 /*
6113  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6114  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6115  *	whenever sysctl_lowmem_reserve_ratio changes.
6116  *
6117  * The reserve ratio obviously has absolutely no relation with the
6118  * minimum watermarks. The lowmem reserve ratio can only make sense
6119  * if in function of the boot time zone sizes.
6120  */
6121 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6122 		int write, void *buffer, size_t *length, loff_t *ppos)
6123 {
6124 	int i;
6125 
6126 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6127 
6128 	for (i = 0; i < MAX_NR_ZONES; i++) {
6129 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6130 			sysctl_lowmem_reserve_ratio[i] = 0;
6131 	}
6132 
6133 	setup_per_zone_lowmem_reserve();
6134 	return 0;
6135 }
6136 
6137 /*
6138  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6139  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6140  * pagelist can have before it gets flushed back to buddy allocator.
6141  */
6142 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6143 		int write, void *buffer, size_t *length, loff_t *ppos)
6144 {
6145 	struct zone *zone;
6146 	int old_percpu_pagelist_high_fraction;
6147 	int ret;
6148 
6149 	mutex_lock(&pcp_batch_high_lock);
6150 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6151 
6152 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6153 	if (!write || ret < 0)
6154 		goto out;
6155 
6156 	/* Sanity checking to avoid pcp imbalance */
6157 	if (percpu_pagelist_high_fraction &&
6158 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6159 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6160 		ret = -EINVAL;
6161 		goto out;
6162 	}
6163 
6164 	/* No change? */
6165 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6166 		goto out;
6167 
6168 	for_each_populated_zone(zone)
6169 		zone_set_pageset_high_and_batch(zone, 0);
6170 out:
6171 	mutex_unlock(&pcp_batch_high_lock);
6172 	return ret;
6173 }
6174 
6175 static struct ctl_table page_alloc_sysctl_table[] = {
6176 	{
6177 		.procname	= "min_free_kbytes",
6178 		.data		= &min_free_kbytes,
6179 		.maxlen		= sizeof(min_free_kbytes),
6180 		.mode		= 0644,
6181 		.proc_handler	= min_free_kbytes_sysctl_handler,
6182 		.extra1		= SYSCTL_ZERO,
6183 	},
6184 	{
6185 		.procname	= "watermark_boost_factor",
6186 		.data		= &watermark_boost_factor,
6187 		.maxlen		= sizeof(watermark_boost_factor),
6188 		.mode		= 0644,
6189 		.proc_handler	= proc_dointvec_minmax,
6190 		.extra1		= SYSCTL_ZERO,
6191 	},
6192 	{
6193 		.procname	= "watermark_scale_factor",
6194 		.data		= &watermark_scale_factor,
6195 		.maxlen		= sizeof(watermark_scale_factor),
6196 		.mode		= 0644,
6197 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6198 		.extra1		= SYSCTL_ONE,
6199 		.extra2		= SYSCTL_THREE_THOUSAND,
6200 	},
6201 	{
6202 		.procname	= "percpu_pagelist_high_fraction",
6203 		.data		= &percpu_pagelist_high_fraction,
6204 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6205 		.mode		= 0644,
6206 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6207 		.extra1		= SYSCTL_ZERO,
6208 	},
6209 	{
6210 		.procname	= "lowmem_reserve_ratio",
6211 		.data		= &sysctl_lowmem_reserve_ratio,
6212 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6213 		.mode		= 0644,
6214 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6215 	},
6216 #ifdef CONFIG_NUMA
6217 	{
6218 		.procname	= "numa_zonelist_order",
6219 		.data		= &numa_zonelist_order,
6220 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6221 		.mode		= 0644,
6222 		.proc_handler	= numa_zonelist_order_handler,
6223 	},
6224 	{
6225 		.procname	= "min_unmapped_ratio",
6226 		.data		= &sysctl_min_unmapped_ratio,
6227 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6228 		.mode		= 0644,
6229 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6230 		.extra1		= SYSCTL_ZERO,
6231 		.extra2		= SYSCTL_ONE_HUNDRED,
6232 	},
6233 	{
6234 		.procname	= "min_slab_ratio",
6235 		.data		= &sysctl_min_slab_ratio,
6236 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6237 		.mode		= 0644,
6238 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6239 		.extra1		= SYSCTL_ZERO,
6240 		.extra2		= SYSCTL_ONE_HUNDRED,
6241 	},
6242 #endif
6243 };
6244 
6245 void __init page_alloc_sysctl_init(void)
6246 {
6247 	register_sysctl_init("vm", page_alloc_sysctl_table);
6248 }
6249 
6250 #ifdef CONFIG_CONTIG_ALLOC
6251 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6252 static void alloc_contig_dump_pages(struct list_head *page_list)
6253 {
6254 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6255 
6256 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6257 		struct page *page;
6258 
6259 		dump_stack();
6260 		list_for_each_entry(page, page_list, lru)
6261 			dump_page(page, "migration failure");
6262 	}
6263 }
6264 
6265 /*
6266  * [start, end) must belong to a single zone.
6267  * @migratetype: using migratetype to filter the type of migration in
6268  *		trace_mm_alloc_contig_migrate_range_info.
6269  */
6270 int __alloc_contig_migrate_range(struct compact_control *cc,
6271 					unsigned long start, unsigned long end,
6272 					int migratetype)
6273 {
6274 	/* This function is based on compact_zone() from compaction.c. */
6275 	unsigned int nr_reclaimed;
6276 	unsigned long pfn = start;
6277 	unsigned int tries = 0;
6278 	int ret = 0;
6279 	struct migration_target_control mtc = {
6280 		.nid = zone_to_nid(cc->zone),
6281 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6282 		.reason = MR_CONTIG_RANGE,
6283 	};
6284 	struct page *page;
6285 	unsigned long total_mapped = 0;
6286 	unsigned long total_migrated = 0;
6287 	unsigned long total_reclaimed = 0;
6288 
6289 	lru_cache_disable();
6290 
6291 	while (pfn < end || !list_empty(&cc->migratepages)) {
6292 		if (fatal_signal_pending(current)) {
6293 			ret = -EINTR;
6294 			break;
6295 		}
6296 
6297 		if (list_empty(&cc->migratepages)) {
6298 			cc->nr_migratepages = 0;
6299 			ret = isolate_migratepages_range(cc, pfn, end);
6300 			if (ret && ret != -EAGAIN)
6301 				break;
6302 			pfn = cc->migrate_pfn;
6303 			tries = 0;
6304 		} else if (++tries == 5) {
6305 			ret = -EBUSY;
6306 			break;
6307 		}
6308 
6309 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6310 							&cc->migratepages);
6311 		cc->nr_migratepages -= nr_reclaimed;
6312 
6313 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6314 			total_reclaimed += nr_reclaimed;
6315 			list_for_each_entry(page, &cc->migratepages, lru) {
6316 				struct folio *folio = page_folio(page);
6317 
6318 				total_mapped += folio_mapped(folio) *
6319 						folio_nr_pages(folio);
6320 			}
6321 		}
6322 
6323 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6324 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6325 
6326 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6327 			total_migrated += cc->nr_migratepages;
6328 
6329 		/*
6330 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6331 		 * to retry again over this error, so do the same here.
6332 		 */
6333 		if (ret == -ENOMEM)
6334 			break;
6335 	}
6336 
6337 	lru_cache_enable();
6338 	if (ret < 0) {
6339 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6340 			alloc_contig_dump_pages(&cc->migratepages);
6341 		putback_movable_pages(&cc->migratepages);
6342 	}
6343 
6344 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6345 						 total_migrated,
6346 						 total_reclaimed,
6347 						 total_mapped);
6348 	return (ret < 0) ? ret : 0;
6349 }
6350 
6351 static void split_free_pages(struct list_head *list)
6352 {
6353 	int order;
6354 
6355 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6356 		struct page *page, *next;
6357 		int nr_pages = 1 << order;
6358 
6359 		list_for_each_entry_safe(page, next, &list[order], lru) {
6360 			int i;
6361 
6362 			post_alloc_hook(page, order, __GFP_MOVABLE);
6363 			if (!order)
6364 				continue;
6365 
6366 			split_page(page, order);
6367 
6368 			/* Add all subpages to the order-0 head, in sequence. */
6369 			list_del(&page->lru);
6370 			for (i = 0; i < nr_pages; i++)
6371 				list_add_tail(&page[i].lru, &list[0]);
6372 		}
6373 	}
6374 }
6375 
6376 /**
6377  * alloc_contig_range() -- tries to allocate given range of pages
6378  * @start:	start PFN to allocate
6379  * @end:	one-past-the-last PFN to allocate
6380  * @migratetype:	migratetype of the underlying pageblocks (either
6381  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6382  *			in range must have the same migratetype and it must
6383  *			be either of the two.
6384  * @gfp_mask:	GFP mask to use during compaction
6385  *
6386  * The PFN range does not have to be pageblock aligned. The PFN range must
6387  * belong to a single zone.
6388  *
6389  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6390  * pageblocks in the range.  Once isolated, the pageblocks should not
6391  * be modified by others.
6392  *
6393  * Return: zero on success or negative error code.  On success all
6394  * pages which PFN is in [start, end) are allocated for the caller and
6395  * need to be freed with free_contig_range().
6396  */
6397 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6398 		       unsigned migratetype, gfp_t gfp_mask)
6399 {
6400 	unsigned long outer_start, outer_end;
6401 	int ret = 0;
6402 
6403 	struct compact_control cc = {
6404 		.nr_migratepages = 0,
6405 		.order = -1,
6406 		.zone = page_zone(pfn_to_page(start)),
6407 		.mode = MIGRATE_SYNC,
6408 		.ignore_skip_hint = true,
6409 		.no_set_skip_hint = true,
6410 		.gfp_mask = current_gfp_context(gfp_mask),
6411 		.alloc_contig = true,
6412 	};
6413 	INIT_LIST_HEAD(&cc.migratepages);
6414 
6415 	/*
6416 	 * What we do here is we mark all pageblocks in range as
6417 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6418 	 * have different sizes, and due to the way page allocator
6419 	 * work, start_isolate_page_range() has special handlings for this.
6420 	 *
6421 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6422 	 * migrate the pages from an unaligned range (ie. pages that
6423 	 * we are interested in). This will put all the pages in
6424 	 * range back to page allocator as MIGRATE_ISOLATE.
6425 	 *
6426 	 * When this is done, we take the pages in range from page
6427 	 * allocator removing them from the buddy system.  This way
6428 	 * page allocator will never consider using them.
6429 	 *
6430 	 * This lets us mark the pageblocks back as
6431 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6432 	 * aligned range but not in the unaligned, original range are
6433 	 * put back to page allocator so that buddy can use them.
6434 	 */
6435 
6436 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6437 	if (ret)
6438 		goto done;
6439 
6440 	drain_all_pages(cc.zone);
6441 
6442 	/*
6443 	 * In case of -EBUSY, we'd like to know which page causes problem.
6444 	 * So, just fall through. test_pages_isolated() has a tracepoint
6445 	 * which will report the busy page.
6446 	 *
6447 	 * It is possible that busy pages could become available before
6448 	 * the call to test_pages_isolated, and the range will actually be
6449 	 * allocated.  So, if we fall through be sure to clear ret so that
6450 	 * -EBUSY is not accidentally used or returned to caller.
6451 	 */
6452 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6453 	if (ret && ret != -EBUSY)
6454 		goto done;
6455 	ret = 0;
6456 
6457 	/*
6458 	 * Pages from [start, end) are within a pageblock_nr_pages
6459 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6460 	 * more, all pages in [start, end) are free in page allocator.
6461 	 * What we are going to do is to allocate all pages from
6462 	 * [start, end) (that is remove them from page allocator).
6463 	 *
6464 	 * The only problem is that pages at the beginning and at the
6465 	 * end of interesting range may be not aligned with pages that
6466 	 * page allocator holds, ie. they can be part of higher order
6467 	 * pages.  Because of this, we reserve the bigger range and
6468 	 * once this is done free the pages we are not interested in.
6469 	 *
6470 	 * We don't have to hold zone->lock here because the pages are
6471 	 * isolated thus they won't get removed from buddy.
6472 	 */
6473 	outer_start = find_large_buddy(start);
6474 
6475 	/* Make sure the range is really isolated. */
6476 	if (test_pages_isolated(outer_start, end, 0)) {
6477 		ret = -EBUSY;
6478 		goto done;
6479 	}
6480 
6481 	/* Grab isolated pages from freelists. */
6482 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6483 	if (!outer_end) {
6484 		ret = -EBUSY;
6485 		goto done;
6486 	}
6487 
6488 	if (!(gfp_mask & __GFP_COMP)) {
6489 		split_free_pages(cc.freepages);
6490 
6491 		/* Free head and tail (if any) */
6492 		if (start != outer_start)
6493 			free_contig_range(outer_start, start - outer_start);
6494 		if (end != outer_end)
6495 			free_contig_range(end, outer_end - end);
6496 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6497 		struct page *head = pfn_to_page(start);
6498 		int order = ilog2(end - start);
6499 
6500 		check_new_pages(head, order);
6501 		prep_new_page(head, order, gfp_mask, 0);
6502 	} else {
6503 		ret = -EINVAL;
6504 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6505 		     start, end, outer_start, outer_end);
6506 	}
6507 done:
6508 	undo_isolate_page_range(start, end, migratetype);
6509 	return ret;
6510 }
6511 EXPORT_SYMBOL(alloc_contig_range_noprof);
6512 
6513 static int __alloc_contig_pages(unsigned long start_pfn,
6514 				unsigned long nr_pages, gfp_t gfp_mask)
6515 {
6516 	unsigned long end_pfn = start_pfn + nr_pages;
6517 
6518 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6519 				   gfp_mask);
6520 }
6521 
6522 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6523 				   unsigned long nr_pages)
6524 {
6525 	unsigned long i, end_pfn = start_pfn + nr_pages;
6526 	struct page *page;
6527 
6528 	for (i = start_pfn; i < end_pfn; i++) {
6529 		page = pfn_to_online_page(i);
6530 		if (!page)
6531 			return false;
6532 
6533 		if (page_zone(page) != z)
6534 			return false;
6535 
6536 		if (PageReserved(page))
6537 			return false;
6538 
6539 		if (PageHuge(page))
6540 			return false;
6541 	}
6542 	return true;
6543 }
6544 
6545 static bool zone_spans_last_pfn(const struct zone *zone,
6546 				unsigned long start_pfn, unsigned long nr_pages)
6547 {
6548 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6549 
6550 	return zone_spans_pfn(zone, last_pfn);
6551 }
6552 
6553 /**
6554  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6555  * @nr_pages:	Number of contiguous pages to allocate
6556  * @gfp_mask:	GFP mask to limit search and used during compaction
6557  * @nid:	Target node
6558  * @nodemask:	Mask for other possible nodes
6559  *
6560  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6561  * on an applicable zonelist to find a contiguous pfn range which can then be
6562  * tried for allocation with alloc_contig_range(). This routine is intended
6563  * for allocation requests which can not be fulfilled with the buddy allocator.
6564  *
6565  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6566  * power of two, then allocated range is also guaranteed to be aligned to same
6567  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6568  *
6569  * Allocated pages can be freed with free_contig_range() or by manually calling
6570  * __free_page() on each allocated page.
6571  *
6572  * Return: pointer to contiguous pages on success, or NULL if not successful.
6573  */
6574 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6575 				 int nid, nodemask_t *nodemask)
6576 {
6577 	unsigned long ret, pfn, flags;
6578 	struct zonelist *zonelist;
6579 	struct zone *zone;
6580 	struct zoneref *z;
6581 
6582 	zonelist = node_zonelist(nid, gfp_mask);
6583 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6584 					gfp_zone(gfp_mask), nodemask) {
6585 		spin_lock_irqsave(&zone->lock, flags);
6586 
6587 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6588 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6589 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6590 				/*
6591 				 * We release the zone lock here because
6592 				 * alloc_contig_range() will also lock the zone
6593 				 * at some point. If there's an allocation
6594 				 * spinning on this lock, it may win the race
6595 				 * and cause alloc_contig_range() to fail...
6596 				 */
6597 				spin_unlock_irqrestore(&zone->lock, flags);
6598 				ret = __alloc_contig_pages(pfn, nr_pages,
6599 							gfp_mask);
6600 				if (!ret)
6601 					return pfn_to_page(pfn);
6602 				spin_lock_irqsave(&zone->lock, flags);
6603 			}
6604 			pfn += nr_pages;
6605 		}
6606 		spin_unlock_irqrestore(&zone->lock, flags);
6607 	}
6608 	return NULL;
6609 }
6610 #endif /* CONFIG_CONTIG_ALLOC */
6611 
6612 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6613 {
6614 	unsigned long count = 0;
6615 	struct folio *folio = pfn_folio(pfn);
6616 
6617 	if (folio_test_large(folio)) {
6618 		int expected = folio_nr_pages(folio);
6619 
6620 		if (nr_pages == expected)
6621 			folio_put(folio);
6622 		else
6623 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6624 			     pfn, nr_pages, expected);
6625 		return;
6626 	}
6627 
6628 	for (; nr_pages--; pfn++) {
6629 		struct page *page = pfn_to_page(pfn);
6630 
6631 		count += page_count(page) != 1;
6632 		__free_page(page);
6633 	}
6634 	WARN(count != 0, "%lu pages are still in use!\n", count);
6635 }
6636 EXPORT_SYMBOL(free_contig_range);
6637 
6638 /*
6639  * Effectively disable pcplists for the zone by setting the high limit to 0
6640  * and draining all cpus. A concurrent page freeing on another CPU that's about
6641  * to put the page on pcplist will either finish before the drain and the page
6642  * will be drained, or observe the new high limit and skip the pcplist.
6643  *
6644  * Must be paired with a call to zone_pcp_enable().
6645  */
6646 void zone_pcp_disable(struct zone *zone)
6647 {
6648 	mutex_lock(&pcp_batch_high_lock);
6649 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6650 	__drain_all_pages(zone, true);
6651 }
6652 
6653 void zone_pcp_enable(struct zone *zone)
6654 {
6655 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6656 		zone->pageset_high_max, zone->pageset_batch);
6657 	mutex_unlock(&pcp_batch_high_lock);
6658 }
6659 
6660 void zone_pcp_reset(struct zone *zone)
6661 {
6662 	int cpu;
6663 	struct per_cpu_zonestat *pzstats;
6664 
6665 	if (zone->per_cpu_pageset != &boot_pageset) {
6666 		for_each_online_cpu(cpu) {
6667 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6668 			drain_zonestat(zone, pzstats);
6669 		}
6670 		free_percpu(zone->per_cpu_pageset);
6671 		zone->per_cpu_pageset = &boot_pageset;
6672 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6673 			free_percpu(zone->per_cpu_zonestats);
6674 			zone->per_cpu_zonestats = &boot_zonestats;
6675 		}
6676 	}
6677 }
6678 
6679 #ifdef CONFIG_MEMORY_HOTREMOVE
6680 /*
6681  * All pages in the range must be in a single zone, must not contain holes,
6682  * must span full sections, and must be isolated before calling this function.
6683  *
6684  * Returns the number of managed (non-PageOffline()) pages in the range: the
6685  * number of pages for which memory offlining code must adjust managed page
6686  * counters using adjust_managed_page_count().
6687  */
6688 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6689 		unsigned long end_pfn)
6690 {
6691 	unsigned long already_offline = 0, flags;
6692 	unsigned long pfn = start_pfn;
6693 	struct page *page;
6694 	struct zone *zone;
6695 	unsigned int order;
6696 
6697 	offline_mem_sections(pfn, end_pfn);
6698 	zone = page_zone(pfn_to_page(pfn));
6699 	spin_lock_irqsave(&zone->lock, flags);
6700 	while (pfn < end_pfn) {
6701 		page = pfn_to_page(pfn);
6702 		/*
6703 		 * The HWPoisoned page may be not in buddy system, and
6704 		 * page_count() is not 0.
6705 		 */
6706 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6707 			pfn++;
6708 			continue;
6709 		}
6710 		/*
6711 		 * At this point all remaining PageOffline() pages have a
6712 		 * reference count of 0 and can simply be skipped.
6713 		 */
6714 		if (PageOffline(page)) {
6715 			BUG_ON(page_count(page));
6716 			BUG_ON(PageBuddy(page));
6717 			already_offline++;
6718 			pfn++;
6719 			continue;
6720 		}
6721 
6722 		BUG_ON(page_count(page));
6723 		BUG_ON(!PageBuddy(page));
6724 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6725 		order = buddy_order(page);
6726 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6727 		pfn += (1 << order);
6728 	}
6729 	spin_unlock_irqrestore(&zone->lock, flags);
6730 
6731 	return end_pfn - start_pfn - already_offline;
6732 }
6733 #endif
6734 
6735 /*
6736  * This function returns a stable result only if called under zone lock.
6737  */
6738 bool is_free_buddy_page(const struct page *page)
6739 {
6740 	unsigned long pfn = page_to_pfn(page);
6741 	unsigned int order;
6742 
6743 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6744 		const struct page *head = page - (pfn & ((1 << order) - 1));
6745 
6746 		if (PageBuddy(head) &&
6747 		    buddy_order_unsafe(head) >= order)
6748 			break;
6749 	}
6750 
6751 	return order <= MAX_PAGE_ORDER;
6752 }
6753 EXPORT_SYMBOL(is_free_buddy_page);
6754 
6755 #ifdef CONFIG_MEMORY_FAILURE
6756 static inline void add_to_free_list(struct page *page, struct zone *zone,
6757 				    unsigned int order, int migratetype,
6758 				    bool tail)
6759 {
6760 	__add_to_free_list(page, zone, order, migratetype, tail);
6761 	account_freepages(zone, 1 << order, migratetype);
6762 }
6763 
6764 /*
6765  * Break down a higher-order page in sub-pages, and keep our target out of
6766  * buddy allocator.
6767  */
6768 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6769 				   struct page *target, int low, int high,
6770 				   int migratetype)
6771 {
6772 	unsigned long size = 1 << high;
6773 	struct page *current_buddy;
6774 
6775 	while (high > low) {
6776 		high--;
6777 		size >>= 1;
6778 
6779 		if (target >= &page[size]) {
6780 			current_buddy = page;
6781 			page = page + size;
6782 		} else {
6783 			current_buddy = page + size;
6784 		}
6785 
6786 		if (set_page_guard(zone, current_buddy, high))
6787 			continue;
6788 
6789 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6790 		set_buddy_order(current_buddy, high);
6791 	}
6792 }
6793 
6794 /*
6795  * Take a page that will be marked as poisoned off the buddy allocator.
6796  */
6797 bool take_page_off_buddy(struct page *page)
6798 {
6799 	struct zone *zone = page_zone(page);
6800 	unsigned long pfn = page_to_pfn(page);
6801 	unsigned long flags;
6802 	unsigned int order;
6803 	bool ret = false;
6804 
6805 	spin_lock_irqsave(&zone->lock, flags);
6806 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6807 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6808 		int page_order = buddy_order(page_head);
6809 
6810 		if (PageBuddy(page_head) && page_order >= order) {
6811 			unsigned long pfn_head = page_to_pfn(page_head);
6812 			int migratetype = get_pfnblock_migratetype(page_head,
6813 								   pfn_head);
6814 
6815 			del_page_from_free_list(page_head, zone, page_order,
6816 						migratetype);
6817 			break_down_buddy_pages(zone, page_head, page, 0,
6818 						page_order, migratetype);
6819 			SetPageHWPoisonTakenOff(page);
6820 			ret = true;
6821 			break;
6822 		}
6823 		if (page_count(page_head) > 0)
6824 			break;
6825 	}
6826 	spin_unlock_irqrestore(&zone->lock, flags);
6827 	return ret;
6828 }
6829 
6830 /*
6831  * Cancel takeoff done by take_page_off_buddy().
6832  */
6833 bool put_page_back_buddy(struct page *page)
6834 {
6835 	struct zone *zone = page_zone(page);
6836 	unsigned long flags;
6837 	bool ret = false;
6838 
6839 	spin_lock_irqsave(&zone->lock, flags);
6840 	if (put_page_testzero(page)) {
6841 		unsigned long pfn = page_to_pfn(page);
6842 		int migratetype = get_pfnblock_migratetype(page, pfn);
6843 
6844 		ClearPageHWPoisonTakenOff(page);
6845 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6846 		if (TestClearPageHWPoison(page)) {
6847 			ret = true;
6848 		}
6849 	}
6850 	spin_unlock_irqrestore(&zone->lock, flags);
6851 
6852 	return ret;
6853 }
6854 #endif
6855 
6856 #ifdef CONFIG_ZONE_DMA
6857 bool has_managed_dma(void)
6858 {
6859 	struct pglist_data *pgdat;
6860 
6861 	for_each_online_pgdat(pgdat) {
6862 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6863 
6864 		if (managed_zone(zone))
6865 			return true;
6866 	}
6867 	return false;
6868 }
6869 #endif /* CONFIG_ZONE_DMA */
6870 
6871 #ifdef CONFIG_UNACCEPTED_MEMORY
6872 
6873 /* Counts number of zones with unaccepted pages. */
6874 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6875 
6876 static bool lazy_accept = true;
6877 
6878 static int __init accept_memory_parse(char *p)
6879 {
6880 	if (!strcmp(p, "lazy")) {
6881 		lazy_accept = true;
6882 		return 0;
6883 	} else if (!strcmp(p, "eager")) {
6884 		lazy_accept = false;
6885 		return 0;
6886 	} else {
6887 		return -EINVAL;
6888 	}
6889 }
6890 early_param("accept_memory", accept_memory_parse);
6891 
6892 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6893 {
6894 	phys_addr_t start = page_to_phys(page);
6895 
6896 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
6897 }
6898 
6899 static void __accept_page(struct zone *zone, unsigned long *flags,
6900 			  struct page *page)
6901 {
6902 	bool last;
6903 
6904 	list_del(&page->lru);
6905 	last = list_empty(&zone->unaccepted_pages);
6906 
6907 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6908 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6909 	__ClearPageUnaccepted(page);
6910 	spin_unlock_irqrestore(&zone->lock, *flags);
6911 
6912 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
6913 
6914 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6915 
6916 	if (last)
6917 		static_branch_dec(&zones_with_unaccepted_pages);
6918 }
6919 
6920 void accept_page(struct page *page)
6921 {
6922 	struct zone *zone = page_zone(page);
6923 	unsigned long flags;
6924 
6925 	spin_lock_irqsave(&zone->lock, flags);
6926 	if (!PageUnaccepted(page)) {
6927 		spin_unlock_irqrestore(&zone->lock, flags);
6928 		return;
6929 	}
6930 
6931 	/* Unlocks zone->lock */
6932 	__accept_page(zone, &flags, page);
6933 }
6934 
6935 static bool try_to_accept_memory_one(struct zone *zone)
6936 {
6937 	unsigned long flags;
6938 	struct page *page;
6939 
6940 	spin_lock_irqsave(&zone->lock, flags);
6941 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6942 					struct page, lru);
6943 	if (!page) {
6944 		spin_unlock_irqrestore(&zone->lock, flags);
6945 		return false;
6946 	}
6947 
6948 	/* Unlocks zone->lock */
6949 	__accept_page(zone, &flags, page);
6950 
6951 	return true;
6952 }
6953 
6954 static inline bool has_unaccepted_memory(void)
6955 {
6956 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6957 }
6958 
6959 static bool cond_accept_memory(struct zone *zone, unsigned int order)
6960 {
6961 	long to_accept;
6962 	bool ret = false;
6963 
6964 	if (!has_unaccepted_memory())
6965 		return false;
6966 
6967 	if (list_empty(&zone->unaccepted_pages))
6968 		return false;
6969 
6970 	/* How much to accept to get to promo watermark? */
6971 	to_accept = promo_wmark_pages(zone) -
6972 		    (zone_page_state(zone, NR_FREE_PAGES) -
6973 		    __zone_watermark_unusable_free(zone, order, 0) -
6974 		    zone_page_state(zone, NR_UNACCEPTED));
6975 
6976 	while (to_accept > 0) {
6977 		if (!try_to_accept_memory_one(zone))
6978 			break;
6979 		ret = true;
6980 		to_accept -= MAX_ORDER_NR_PAGES;
6981 	}
6982 
6983 	return ret;
6984 }
6985 
6986 static bool __free_unaccepted(struct page *page)
6987 {
6988 	struct zone *zone = page_zone(page);
6989 	unsigned long flags;
6990 	bool first = false;
6991 
6992 	if (!lazy_accept)
6993 		return false;
6994 
6995 	spin_lock_irqsave(&zone->lock, flags);
6996 	first = list_empty(&zone->unaccepted_pages);
6997 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6998 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6999 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7000 	__SetPageUnaccepted(page);
7001 	spin_unlock_irqrestore(&zone->lock, flags);
7002 
7003 	if (first)
7004 		static_branch_inc(&zones_with_unaccepted_pages);
7005 
7006 	return true;
7007 }
7008 
7009 #else
7010 
7011 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7012 {
7013 	return false;
7014 }
7015 
7016 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7017 {
7018 	return false;
7019 }
7020 
7021 static bool __free_unaccepted(struct page *page)
7022 {
7023 	BUILD_BUG();
7024 	return false;
7025 }
7026 
7027 #endif /* CONFIG_UNACCEPTED_MEMORY */
7028