1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/kmemcheck.h> 27 #include <linux/module.h> 28 #include <linux/suspend.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/slab.h> 32 #include <linux/oom.h> 33 #include <linux/notifier.h> 34 #include <linux/topology.h> 35 #include <linux/sysctl.h> 36 #include <linux/cpu.h> 37 #include <linux/cpuset.h> 38 #include <linux/memory_hotplug.h> 39 #include <linux/nodemask.h> 40 #include <linux/vmalloc.h> 41 #include <linux/mempolicy.h> 42 #include <linux/stop_machine.h> 43 #include <linux/sort.h> 44 #include <linux/pfn.h> 45 #include <linux/backing-dev.h> 46 #include <linux/fault-inject.h> 47 #include <linux/page-isolation.h> 48 #include <linux/page_cgroup.h> 49 #include <linux/debugobjects.h> 50 #include <linux/kmemleak.h> 51 #include <linux/memory.h> 52 #include <linux/compaction.h> 53 #include <trace/events/kmem.h> 54 #include <linux/ftrace_event.h> 55 56 #include <asm/tlbflush.h> 57 #include <asm/div64.h> 58 #include "internal.h" 59 60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 61 DEFINE_PER_CPU(int, numa_node); 62 EXPORT_PER_CPU_SYMBOL(numa_node); 63 #endif 64 65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 66 /* 67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 70 * defined in <linux/topology.h>. 71 */ 72 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 73 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 74 #endif 75 76 /* 77 * Array of node states. 78 */ 79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 80 [N_POSSIBLE] = NODE_MASK_ALL, 81 [N_ONLINE] = { { [0] = 1UL } }, 82 #ifndef CONFIG_NUMA 83 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 84 #ifdef CONFIG_HIGHMEM 85 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 86 #endif 87 [N_CPU] = { { [0] = 1UL } }, 88 #endif /* NUMA */ 89 }; 90 EXPORT_SYMBOL(node_states); 91 92 unsigned long totalram_pages __read_mostly; 93 unsigned long totalreserve_pages __read_mostly; 94 int percpu_pagelist_fraction; 95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 96 97 #ifdef CONFIG_PM_SLEEP 98 /* 99 * The following functions are used by the suspend/hibernate code to temporarily 100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 101 * while devices are suspended. To avoid races with the suspend/hibernate code, 102 * they should always be called with pm_mutex held (gfp_allowed_mask also should 103 * only be modified with pm_mutex held, unless the suspend/hibernate code is 104 * guaranteed not to run in parallel with that modification). 105 */ 106 void set_gfp_allowed_mask(gfp_t mask) 107 { 108 WARN_ON(!mutex_is_locked(&pm_mutex)); 109 gfp_allowed_mask = mask; 110 } 111 112 gfp_t clear_gfp_allowed_mask(gfp_t mask) 113 { 114 gfp_t ret = gfp_allowed_mask; 115 116 WARN_ON(!mutex_is_locked(&pm_mutex)); 117 gfp_allowed_mask &= ~mask; 118 return ret; 119 } 120 #endif /* CONFIG_PM_SLEEP */ 121 122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 123 int pageblock_order __read_mostly; 124 #endif 125 126 static void __free_pages_ok(struct page *page, unsigned int order); 127 128 /* 129 * results with 256, 32 in the lowmem_reserve sysctl: 130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 131 * 1G machine -> (16M dma, 784M normal, 224M high) 132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 135 * 136 * TBD: should special case ZONE_DMA32 machines here - in those we normally 137 * don't need any ZONE_NORMAL reservation 138 */ 139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 140 #ifdef CONFIG_ZONE_DMA 141 256, 142 #endif 143 #ifdef CONFIG_ZONE_DMA32 144 256, 145 #endif 146 #ifdef CONFIG_HIGHMEM 147 32, 148 #endif 149 32, 150 }; 151 152 EXPORT_SYMBOL(totalram_pages); 153 154 static char * const zone_names[MAX_NR_ZONES] = { 155 #ifdef CONFIG_ZONE_DMA 156 "DMA", 157 #endif 158 #ifdef CONFIG_ZONE_DMA32 159 "DMA32", 160 #endif 161 "Normal", 162 #ifdef CONFIG_HIGHMEM 163 "HighMem", 164 #endif 165 "Movable", 166 }; 167 168 int min_free_kbytes = 1024; 169 170 static unsigned long __meminitdata nr_kernel_pages; 171 static unsigned long __meminitdata nr_all_pages; 172 static unsigned long __meminitdata dma_reserve; 173 174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 175 /* 176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct 177 * ranges of memory (RAM) that may be registered with add_active_range(). 178 * Ranges passed to add_active_range() will be merged if possible 179 * so the number of times add_active_range() can be called is 180 * related to the number of nodes and the number of holes 181 */ 182 #ifdef CONFIG_MAX_ACTIVE_REGIONS 183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */ 184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS 185 #else 186 #if MAX_NUMNODES >= 32 187 /* If there can be many nodes, allow up to 50 holes per node */ 188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50) 189 #else 190 /* By default, allow up to 256 distinct regions */ 191 #define MAX_ACTIVE_REGIONS 256 192 #endif 193 #endif 194 195 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS]; 196 static int __meminitdata nr_nodemap_entries; 197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 198 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 199 static unsigned long __initdata required_kernelcore; 200 static unsigned long __initdata required_movablecore; 201 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 202 203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 204 int movable_zone; 205 EXPORT_SYMBOL(movable_zone); 206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 207 208 #if MAX_NUMNODES > 1 209 int nr_node_ids __read_mostly = MAX_NUMNODES; 210 int nr_online_nodes __read_mostly = 1; 211 EXPORT_SYMBOL(nr_node_ids); 212 EXPORT_SYMBOL(nr_online_nodes); 213 #endif 214 215 int page_group_by_mobility_disabled __read_mostly; 216 217 static void set_pageblock_migratetype(struct page *page, int migratetype) 218 { 219 220 if (unlikely(page_group_by_mobility_disabled)) 221 migratetype = MIGRATE_UNMOVABLE; 222 223 set_pageblock_flags_group(page, (unsigned long)migratetype, 224 PB_migrate, PB_migrate_end); 225 } 226 227 bool oom_killer_disabled __read_mostly; 228 229 #ifdef CONFIG_DEBUG_VM 230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 231 { 232 int ret = 0; 233 unsigned seq; 234 unsigned long pfn = page_to_pfn(page); 235 236 do { 237 seq = zone_span_seqbegin(zone); 238 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 239 ret = 1; 240 else if (pfn < zone->zone_start_pfn) 241 ret = 1; 242 } while (zone_span_seqretry(zone, seq)); 243 244 return ret; 245 } 246 247 static int page_is_consistent(struct zone *zone, struct page *page) 248 { 249 if (!pfn_valid_within(page_to_pfn(page))) 250 return 0; 251 if (zone != page_zone(page)) 252 return 0; 253 254 return 1; 255 } 256 /* 257 * Temporary debugging check for pages not lying within a given zone. 258 */ 259 static int bad_range(struct zone *zone, struct page *page) 260 { 261 if (page_outside_zone_boundaries(zone, page)) 262 return 1; 263 if (!page_is_consistent(zone, page)) 264 return 1; 265 266 return 0; 267 } 268 #else 269 static inline int bad_range(struct zone *zone, struct page *page) 270 { 271 return 0; 272 } 273 #endif 274 275 static void bad_page(struct page *page) 276 { 277 static unsigned long resume; 278 static unsigned long nr_shown; 279 static unsigned long nr_unshown; 280 281 /* Don't complain about poisoned pages */ 282 if (PageHWPoison(page)) { 283 __ClearPageBuddy(page); 284 return; 285 } 286 287 /* 288 * Allow a burst of 60 reports, then keep quiet for that minute; 289 * or allow a steady drip of one report per second. 290 */ 291 if (nr_shown == 60) { 292 if (time_before(jiffies, resume)) { 293 nr_unshown++; 294 goto out; 295 } 296 if (nr_unshown) { 297 printk(KERN_ALERT 298 "BUG: Bad page state: %lu messages suppressed\n", 299 nr_unshown); 300 nr_unshown = 0; 301 } 302 nr_shown = 0; 303 } 304 if (nr_shown++ == 0) 305 resume = jiffies + 60 * HZ; 306 307 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 308 current->comm, page_to_pfn(page)); 309 dump_page(page); 310 311 dump_stack(); 312 out: 313 /* Leave bad fields for debug, except PageBuddy could make trouble */ 314 __ClearPageBuddy(page); 315 add_taint(TAINT_BAD_PAGE); 316 } 317 318 /* 319 * Higher-order pages are called "compound pages". They are structured thusly: 320 * 321 * The first PAGE_SIZE page is called the "head page". 322 * 323 * The remaining PAGE_SIZE pages are called "tail pages". 324 * 325 * All pages have PG_compound set. All pages have their ->private pointing at 326 * the head page (even the head page has this). 327 * 328 * The first tail page's ->lru.next holds the address of the compound page's 329 * put_page() function. Its ->lru.prev holds the order of allocation. 330 * This usage means that zero-order pages may not be compound. 331 */ 332 333 static void free_compound_page(struct page *page) 334 { 335 __free_pages_ok(page, compound_order(page)); 336 } 337 338 void prep_compound_page(struct page *page, unsigned long order) 339 { 340 int i; 341 int nr_pages = 1 << order; 342 343 set_compound_page_dtor(page, free_compound_page); 344 set_compound_order(page, order); 345 __SetPageHead(page); 346 for (i = 1; i < nr_pages; i++) { 347 struct page *p = page + i; 348 349 __SetPageTail(p); 350 p->first_page = page; 351 } 352 } 353 354 static int destroy_compound_page(struct page *page, unsigned long order) 355 { 356 int i; 357 int nr_pages = 1 << order; 358 int bad = 0; 359 360 if (unlikely(compound_order(page) != order) || 361 unlikely(!PageHead(page))) { 362 bad_page(page); 363 bad++; 364 } 365 366 __ClearPageHead(page); 367 368 for (i = 1; i < nr_pages; i++) { 369 struct page *p = page + i; 370 371 if (unlikely(!PageTail(p) || (p->first_page != page))) { 372 bad_page(page); 373 bad++; 374 } 375 __ClearPageTail(p); 376 } 377 378 return bad; 379 } 380 381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 382 { 383 int i; 384 385 /* 386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 387 * and __GFP_HIGHMEM from hard or soft interrupt context. 388 */ 389 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 390 for (i = 0; i < (1 << order); i++) 391 clear_highpage(page + i); 392 } 393 394 static inline void set_page_order(struct page *page, int order) 395 { 396 set_page_private(page, order); 397 __SetPageBuddy(page); 398 } 399 400 static inline void rmv_page_order(struct page *page) 401 { 402 __ClearPageBuddy(page); 403 set_page_private(page, 0); 404 } 405 406 /* 407 * Locate the struct page for both the matching buddy in our 408 * pair (buddy1) and the combined O(n+1) page they form (page). 409 * 410 * 1) Any buddy B1 will have an order O twin B2 which satisfies 411 * the following equation: 412 * B2 = B1 ^ (1 << O) 413 * For example, if the starting buddy (buddy2) is #8 its order 414 * 1 buddy is #10: 415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 416 * 417 * 2) Any buddy B will have an order O+1 parent P which 418 * satisfies the following equation: 419 * P = B & ~(1 << O) 420 * 421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 422 */ 423 static inline struct page * 424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 425 { 426 unsigned long buddy_idx = page_idx ^ (1 << order); 427 428 return page + (buddy_idx - page_idx); 429 } 430 431 static inline unsigned long 432 __find_combined_index(unsigned long page_idx, unsigned int order) 433 { 434 return (page_idx & ~(1 << order)); 435 } 436 437 /* 438 * This function checks whether a page is free && is the buddy 439 * we can do coalesce a page and its buddy if 440 * (a) the buddy is not in a hole && 441 * (b) the buddy is in the buddy system && 442 * (c) a page and its buddy have the same order && 443 * (d) a page and its buddy are in the same zone. 444 * 445 * For recording whether a page is in the buddy system, we use PG_buddy. 446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 447 * 448 * For recording page's order, we use page_private(page). 449 */ 450 static inline int page_is_buddy(struct page *page, struct page *buddy, 451 int order) 452 { 453 if (!pfn_valid_within(page_to_pfn(buddy))) 454 return 0; 455 456 if (page_zone_id(page) != page_zone_id(buddy)) 457 return 0; 458 459 if (PageBuddy(buddy) && page_order(buddy) == order) { 460 VM_BUG_ON(page_count(buddy) != 0); 461 return 1; 462 } 463 return 0; 464 } 465 466 /* 467 * Freeing function for a buddy system allocator. 468 * 469 * The concept of a buddy system is to maintain direct-mapped table 470 * (containing bit values) for memory blocks of various "orders". 471 * The bottom level table contains the map for the smallest allocatable 472 * units of memory (here, pages), and each level above it describes 473 * pairs of units from the levels below, hence, "buddies". 474 * At a high level, all that happens here is marking the table entry 475 * at the bottom level available, and propagating the changes upward 476 * as necessary, plus some accounting needed to play nicely with other 477 * parts of the VM system. 478 * At each level, we keep a list of pages, which are heads of continuous 479 * free pages of length of (1 << order) and marked with PG_buddy. Page's 480 * order is recorded in page_private(page) field. 481 * So when we are allocating or freeing one, we can derive the state of the 482 * other. That is, if we allocate a small block, and both were 483 * free, the remainder of the region must be split into blocks. 484 * If a block is freed, and its buddy is also free, then this 485 * triggers coalescing into a block of larger size. 486 * 487 * -- wli 488 */ 489 490 static inline void __free_one_page(struct page *page, 491 struct zone *zone, unsigned int order, 492 int migratetype) 493 { 494 unsigned long page_idx; 495 unsigned long combined_idx; 496 struct page *buddy; 497 498 if (unlikely(PageCompound(page))) 499 if (unlikely(destroy_compound_page(page, order))) 500 return; 501 502 VM_BUG_ON(migratetype == -1); 503 504 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 505 506 VM_BUG_ON(page_idx & ((1 << order) - 1)); 507 VM_BUG_ON(bad_range(zone, page)); 508 509 while (order < MAX_ORDER-1) { 510 buddy = __page_find_buddy(page, page_idx, order); 511 if (!page_is_buddy(page, buddy, order)) 512 break; 513 514 /* Our buddy is free, merge with it and move up one order. */ 515 list_del(&buddy->lru); 516 zone->free_area[order].nr_free--; 517 rmv_page_order(buddy); 518 combined_idx = __find_combined_index(page_idx, order); 519 page = page + (combined_idx - page_idx); 520 page_idx = combined_idx; 521 order++; 522 } 523 set_page_order(page, order); 524 525 /* 526 * If this is not the largest possible page, check if the buddy 527 * of the next-highest order is free. If it is, it's possible 528 * that pages are being freed that will coalesce soon. In case, 529 * that is happening, add the free page to the tail of the list 530 * so it's less likely to be used soon and more likely to be merged 531 * as a higher order page 532 */ 533 if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) { 534 struct page *higher_page, *higher_buddy; 535 combined_idx = __find_combined_index(page_idx, order); 536 higher_page = page + combined_idx - page_idx; 537 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1); 538 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 539 list_add_tail(&page->lru, 540 &zone->free_area[order].free_list[migratetype]); 541 goto out; 542 } 543 } 544 545 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 546 out: 547 zone->free_area[order].nr_free++; 548 } 549 550 /* 551 * free_page_mlock() -- clean up attempts to free and mlocked() page. 552 * Page should not be on lru, so no need to fix that up. 553 * free_pages_check() will verify... 554 */ 555 static inline void free_page_mlock(struct page *page) 556 { 557 __dec_zone_page_state(page, NR_MLOCK); 558 __count_vm_event(UNEVICTABLE_MLOCKFREED); 559 } 560 561 static inline int free_pages_check(struct page *page) 562 { 563 if (unlikely(page_mapcount(page) | 564 (page->mapping != NULL) | 565 (atomic_read(&page->_count) != 0) | 566 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) { 567 bad_page(page); 568 return 1; 569 } 570 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 571 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 572 return 0; 573 } 574 575 /* 576 * Frees a number of pages from the PCP lists 577 * Assumes all pages on list are in same zone, and of same order. 578 * count is the number of pages to free. 579 * 580 * If the zone was previously in an "all pages pinned" state then look to 581 * see if this freeing clears that state. 582 * 583 * And clear the zone's pages_scanned counter, to hold off the "all pages are 584 * pinned" detection logic. 585 */ 586 static void free_pcppages_bulk(struct zone *zone, int count, 587 struct per_cpu_pages *pcp) 588 { 589 int migratetype = 0; 590 int batch_free = 0; 591 592 spin_lock(&zone->lock); 593 zone->all_unreclaimable = 0; 594 zone->pages_scanned = 0; 595 596 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 597 while (count) { 598 struct page *page; 599 struct list_head *list; 600 601 /* 602 * Remove pages from lists in a round-robin fashion. A 603 * batch_free count is maintained that is incremented when an 604 * empty list is encountered. This is so more pages are freed 605 * off fuller lists instead of spinning excessively around empty 606 * lists 607 */ 608 do { 609 batch_free++; 610 if (++migratetype == MIGRATE_PCPTYPES) 611 migratetype = 0; 612 list = &pcp->lists[migratetype]; 613 } while (list_empty(list)); 614 615 do { 616 page = list_entry(list->prev, struct page, lru); 617 /* must delete as __free_one_page list manipulates */ 618 list_del(&page->lru); 619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 620 __free_one_page(page, zone, 0, page_private(page)); 621 trace_mm_page_pcpu_drain(page, 0, page_private(page)); 622 } while (--count && --batch_free && !list_empty(list)); 623 } 624 spin_unlock(&zone->lock); 625 } 626 627 static void free_one_page(struct zone *zone, struct page *page, int order, 628 int migratetype) 629 { 630 spin_lock(&zone->lock); 631 zone->all_unreclaimable = 0; 632 zone->pages_scanned = 0; 633 634 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order); 635 __free_one_page(page, zone, order, migratetype); 636 spin_unlock(&zone->lock); 637 } 638 639 static bool free_pages_prepare(struct page *page, unsigned int order) 640 { 641 int i; 642 int bad = 0; 643 644 trace_mm_page_free_direct(page, order); 645 kmemcheck_free_shadow(page, order); 646 647 for (i = 0; i < (1 << order); i++) { 648 struct page *pg = page + i; 649 650 if (PageAnon(pg)) 651 pg->mapping = NULL; 652 bad += free_pages_check(pg); 653 } 654 if (bad) 655 return false; 656 657 if (!PageHighMem(page)) { 658 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 659 debug_check_no_obj_freed(page_address(page), 660 PAGE_SIZE << order); 661 } 662 arch_free_page(page, order); 663 kernel_map_pages(page, 1 << order, 0); 664 665 return true; 666 } 667 668 static void __free_pages_ok(struct page *page, unsigned int order) 669 { 670 unsigned long flags; 671 int wasMlocked = __TestClearPageMlocked(page); 672 673 if (!free_pages_prepare(page, order)) 674 return; 675 676 local_irq_save(flags); 677 if (unlikely(wasMlocked)) 678 free_page_mlock(page); 679 __count_vm_events(PGFREE, 1 << order); 680 free_one_page(page_zone(page), page, order, 681 get_pageblock_migratetype(page)); 682 local_irq_restore(flags); 683 } 684 685 /* 686 * permit the bootmem allocator to evade page validation on high-order frees 687 */ 688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 689 { 690 if (order == 0) { 691 __ClearPageReserved(page); 692 set_page_count(page, 0); 693 set_page_refcounted(page); 694 __free_page(page); 695 } else { 696 int loop; 697 698 prefetchw(page); 699 for (loop = 0; loop < BITS_PER_LONG; loop++) { 700 struct page *p = &page[loop]; 701 702 if (loop + 1 < BITS_PER_LONG) 703 prefetchw(p + 1); 704 __ClearPageReserved(p); 705 set_page_count(p, 0); 706 } 707 708 set_page_refcounted(page); 709 __free_pages(page, order); 710 } 711 } 712 713 714 /* 715 * The order of subdivision here is critical for the IO subsystem. 716 * Please do not alter this order without good reasons and regression 717 * testing. Specifically, as large blocks of memory are subdivided, 718 * the order in which smaller blocks are delivered depends on the order 719 * they're subdivided in this function. This is the primary factor 720 * influencing the order in which pages are delivered to the IO 721 * subsystem according to empirical testing, and this is also justified 722 * by considering the behavior of a buddy system containing a single 723 * large block of memory acted on by a series of small allocations. 724 * This behavior is a critical factor in sglist merging's success. 725 * 726 * -- wli 727 */ 728 static inline void expand(struct zone *zone, struct page *page, 729 int low, int high, struct free_area *area, 730 int migratetype) 731 { 732 unsigned long size = 1 << high; 733 734 while (high > low) { 735 area--; 736 high--; 737 size >>= 1; 738 VM_BUG_ON(bad_range(zone, &page[size])); 739 list_add(&page[size].lru, &area->free_list[migratetype]); 740 area->nr_free++; 741 set_page_order(&page[size], high); 742 } 743 } 744 745 /* 746 * This page is about to be returned from the page allocator 747 */ 748 static inline int check_new_page(struct page *page) 749 { 750 if (unlikely(page_mapcount(page) | 751 (page->mapping != NULL) | 752 (atomic_read(&page->_count) != 0) | 753 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) { 754 bad_page(page); 755 return 1; 756 } 757 return 0; 758 } 759 760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 761 { 762 int i; 763 764 for (i = 0; i < (1 << order); i++) { 765 struct page *p = page + i; 766 if (unlikely(check_new_page(p))) 767 return 1; 768 } 769 770 set_page_private(page, 0); 771 set_page_refcounted(page); 772 773 arch_alloc_page(page, order); 774 kernel_map_pages(page, 1 << order, 1); 775 776 if (gfp_flags & __GFP_ZERO) 777 prep_zero_page(page, order, gfp_flags); 778 779 if (order && (gfp_flags & __GFP_COMP)) 780 prep_compound_page(page, order); 781 782 return 0; 783 } 784 785 /* 786 * Go through the free lists for the given migratetype and remove 787 * the smallest available page from the freelists 788 */ 789 static inline 790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 791 int migratetype) 792 { 793 unsigned int current_order; 794 struct free_area * area; 795 struct page *page; 796 797 /* Find a page of the appropriate size in the preferred list */ 798 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 799 area = &(zone->free_area[current_order]); 800 if (list_empty(&area->free_list[migratetype])) 801 continue; 802 803 page = list_entry(area->free_list[migratetype].next, 804 struct page, lru); 805 list_del(&page->lru); 806 rmv_page_order(page); 807 area->nr_free--; 808 expand(zone, page, order, current_order, area, migratetype); 809 return page; 810 } 811 812 return NULL; 813 } 814 815 816 /* 817 * This array describes the order lists are fallen back to when 818 * the free lists for the desirable migrate type are depleted 819 */ 820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = { 821 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 822 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 823 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 824 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */ 825 }; 826 827 /* 828 * Move the free pages in a range to the free lists of the requested type. 829 * Note that start_page and end_pages are not aligned on a pageblock 830 * boundary. If alignment is required, use move_freepages_block() 831 */ 832 static int move_freepages(struct zone *zone, 833 struct page *start_page, struct page *end_page, 834 int migratetype) 835 { 836 struct page *page; 837 unsigned long order; 838 int pages_moved = 0; 839 840 #ifndef CONFIG_HOLES_IN_ZONE 841 /* 842 * page_zone is not safe to call in this context when 843 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 844 * anyway as we check zone boundaries in move_freepages_block(). 845 * Remove at a later date when no bug reports exist related to 846 * grouping pages by mobility 847 */ 848 BUG_ON(page_zone(start_page) != page_zone(end_page)); 849 #endif 850 851 for (page = start_page; page <= end_page;) { 852 /* Make sure we are not inadvertently changing nodes */ 853 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 854 855 if (!pfn_valid_within(page_to_pfn(page))) { 856 page++; 857 continue; 858 } 859 860 if (!PageBuddy(page)) { 861 page++; 862 continue; 863 } 864 865 order = page_order(page); 866 list_del(&page->lru); 867 list_add(&page->lru, 868 &zone->free_area[order].free_list[migratetype]); 869 page += 1 << order; 870 pages_moved += 1 << order; 871 } 872 873 return pages_moved; 874 } 875 876 static int move_freepages_block(struct zone *zone, struct page *page, 877 int migratetype) 878 { 879 unsigned long start_pfn, end_pfn; 880 struct page *start_page, *end_page; 881 882 start_pfn = page_to_pfn(page); 883 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 884 start_page = pfn_to_page(start_pfn); 885 end_page = start_page + pageblock_nr_pages - 1; 886 end_pfn = start_pfn + pageblock_nr_pages - 1; 887 888 /* Do not cross zone boundaries */ 889 if (start_pfn < zone->zone_start_pfn) 890 start_page = page; 891 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 892 return 0; 893 894 return move_freepages(zone, start_page, end_page, migratetype); 895 } 896 897 static void change_pageblock_range(struct page *pageblock_page, 898 int start_order, int migratetype) 899 { 900 int nr_pageblocks = 1 << (start_order - pageblock_order); 901 902 while (nr_pageblocks--) { 903 set_pageblock_migratetype(pageblock_page, migratetype); 904 pageblock_page += pageblock_nr_pages; 905 } 906 } 907 908 /* Remove an element from the buddy allocator from the fallback list */ 909 static inline struct page * 910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 911 { 912 struct free_area * area; 913 int current_order; 914 struct page *page; 915 int migratetype, i; 916 917 /* Find the largest possible block of pages in the other list */ 918 for (current_order = MAX_ORDER-1; current_order >= order; 919 --current_order) { 920 for (i = 0; i < MIGRATE_TYPES - 1; i++) { 921 migratetype = fallbacks[start_migratetype][i]; 922 923 /* MIGRATE_RESERVE handled later if necessary */ 924 if (migratetype == MIGRATE_RESERVE) 925 continue; 926 927 area = &(zone->free_area[current_order]); 928 if (list_empty(&area->free_list[migratetype])) 929 continue; 930 931 page = list_entry(area->free_list[migratetype].next, 932 struct page, lru); 933 area->nr_free--; 934 935 /* 936 * If breaking a large block of pages, move all free 937 * pages to the preferred allocation list. If falling 938 * back for a reclaimable kernel allocation, be more 939 * agressive about taking ownership of free pages 940 */ 941 if (unlikely(current_order >= (pageblock_order >> 1)) || 942 start_migratetype == MIGRATE_RECLAIMABLE || 943 page_group_by_mobility_disabled) { 944 unsigned long pages; 945 pages = move_freepages_block(zone, page, 946 start_migratetype); 947 948 /* Claim the whole block if over half of it is free */ 949 if (pages >= (1 << (pageblock_order-1)) || 950 page_group_by_mobility_disabled) 951 set_pageblock_migratetype(page, 952 start_migratetype); 953 954 migratetype = start_migratetype; 955 } 956 957 /* Remove the page from the freelists */ 958 list_del(&page->lru); 959 rmv_page_order(page); 960 961 /* Take ownership for orders >= pageblock_order */ 962 if (current_order >= pageblock_order) 963 change_pageblock_range(page, current_order, 964 start_migratetype); 965 966 expand(zone, page, order, current_order, area, migratetype); 967 968 trace_mm_page_alloc_extfrag(page, order, current_order, 969 start_migratetype, migratetype); 970 971 return page; 972 } 973 } 974 975 return NULL; 976 } 977 978 /* 979 * Do the hard work of removing an element from the buddy allocator. 980 * Call me with the zone->lock already held. 981 */ 982 static struct page *__rmqueue(struct zone *zone, unsigned int order, 983 int migratetype) 984 { 985 struct page *page; 986 987 retry_reserve: 988 page = __rmqueue_smallest(zone, order, migratetype); 989 990 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 991 page = __rmqueue_fallback(zone, order, migratetype); 992 993 /* 994 * Use MIGRATE_RESERVE rather than fail an allocation. goto 995 * is used because __rmqueue_smallest is an inline function 996 * and we want just one call site 997 */ 998 if (!page) { 999 migratetype = MIGRATE_RESERVE; 1000 goto retry_reserve; 1001 } 1002 } 1003 1004 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1005 return page; 1006 } 1007 1008 /* 1009 * Obtain a specified number of elements from the buddy allocator, all under 1010 * a single hold of the lock, for efficiency. Add them to the supplied list. 1011 * Returns the number of new pages which were placed at *list. 1012 */ 1013 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1014 unsigned long count, struct list_head *list, 1015 int migratetype, int cold) 1016 { 1017 int i; 1018 1019 spin_lock(&zone->lock); 1020 for (i = 0; i < count; ++i) { 1021 struct page *page = __rmqueue(zone, order, migratetype); 1022 if (unlikely(page == NULL)) 1023 break; 1024 1025 /* 1026 * Split buddy pages returned by expand() are received here 1027 * in physical page order. The page is added to the callers and 1028 * list and the list head then moves forward. From the callers 1029 * perspective, the linked list is ordered by page number in 1030 * some conditions. This is useful for IO devices that can 1031 * merge IO requests if the physical pages are ordered 1032 * properly. 1033 */ 1034 if (likely(cold == 0)) 1035 list_add(&page->lru, list); 1036 else 1037 list_add_tail(&page->lru, list); 1038 set_page_private(page, migratetype); 1039 list = &page->lru; 1040 } 1041 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1042 spin_unlock(&zone->lock); 1043 return i; 1044 } 1045 1046 #ifdef CONFIG_NUMA 1047 /* 1048 * Called from the vmstat counter updater to drain pagesets of this 1049 * currently executing processor on remote nodes after they have 1050 * expired. 1051 * 1052 * Note that this function must be called with the thread pinned to 1053 * a single processor. 1054 */ 1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1056 { 1057 unsigned long flags; 1058 int to_drain; 1059 1060 local_irq_save(flags); 1061 if (pcp->count >= pcp->batch) 1062 to_drain = pcp->batch; 1063 else 1064 to_drain = pcp->count; 1065 free_pcppages_bulk(zone, to_drain, pcp); 1066 pcp->count -= to_drain; 1067 local_irq_restore(flags); 1068 } 1069 #endif 1070 1071 /* 1072 * Drain pages of the indicated processor. 1073 * 1074 * The processor must either be the current processor and the 1075 * thread pinned to the current processor or a processor that 1076 * is not online. 1077 */ 1078 static void drain_pages(unsigned int cpu) 1079 { 1080 unsigned long flags; 1081 struct zone *zone; 1082 1083 for_each_populated_zone(zone) { 1084 struct per_cpu_pageset *pset; 1085 struct per_cpu_pages *pcp; 1086 1087 local_irq_save(flags); 1088 pset = per_cpu_ptr(zone->pageset, cpu); 1089 1090 pcp = &pset->pcp; 1091 free_pcppages_bulk(zone, pcp->count, pcp); 1092 pcp->count = 0; 1093 local_irq_restore(flags); 1094 } 1095 } 1096 1097 /* 1098 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1099 */ 1100 void drain_local_pages(void *arg) 1101 { 1102 drain_pages(smp_processor_id()); 1103 } 1104 1105 /* 1106 * Spill all the per-cpu pages from all CPUs back into the buddy allocator 1107 */ 1108 void drain_all_pages(void) 1109 { 1110 on_each_cpu(drain_local_pages, NULL, 1); 1111 } 1112 1113 #ifdef CONFIG_HIBERNATION 1114 1115 void mark_free_pages(struct zone *zone) 1116 { 1117 unsigned long pfn, max_zone_pfn; 1118 unsigned long flags; 1119 int order, t; 1120 struct list_head *curr; 1121 1122 if (!zone->spanned_pages) 1123 return; 1124 1125 spin_lock_irqsave(&zone->lock, flags); 1126 1127 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1128 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1129 if (pfn_valid(pfn)) { 1130 struct page *page = pfn_to_page(pfn); 1131 1132 if (!swsusp_page_is_forbidden(page)) 1133 swsusp_unset_page_free(page); 1134 } 1135 1136 for_each_migratetype_order(order, t) { 1137 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1138 unsigned long i; 1139 1140 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1141 for (i = 0; i < (1UL << order); i++) 1142 swsusp_set_page_free(pfn_to_page(pfn + i)); 1143 } 1144 } 1145 spin_unlock_irqrestore(&zone->lock, flags); 1146 } 1147 #endif /* CONFIG_PM */ 1148 1149 /* 1150 * Free a 0-order page 1151 * cold == 1 ? free a cold page : free a hot page 1152 */ 1153 void free_hot_cold_page(struct page *page, int cold) 1154 { 1155 struct zone *zone = page_zone(page); 1156 struct per_cpu_pages *pcp; 1157 unsigned long flags; 1158 int migratetype; 1159 int wasMlocked = __TestClearPageMlocked(page); 1160 1161 if (!free_pages_prepare(page, 0)) 1162 return; 1163 1164 migratetype = get_pageblock_migratetype(page); 1165 set_page_private(page, migratetype); 1166 local_irq_save(flags); 1167 if (unlikely(wasMlocked)) 1168 free_page_mlock(page); 1169 __count_vm_event(PGFREE); 1170 1171 /* 1172 * We only track unmovable, reclaimable and movable on pcp lists. 1173 * Free ISOLATE pages back to the allocator because they are being 1174 * offlined but treat RESERVE as movable pages so we can get those 1175 * areas back if necessary. Otherwise, we may have to free 1176 * excessively into the page allocator 1177 */ 1178 if (migratetype >= MIGRATE_PCPTYPES) { 1179 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1180 free_one_page(zone, page, 0, migratetype); 1181 goto out; 1182 } 1183 migratetype = MIGRATE_MOVABLE; 1184 } 1185 1186 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1187 if (cold) 1188 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1189 else 1190 list_add(&page->lru, &pcp->lists[migratetype]); 1191 pcp->count++; 1192 if (pcp->count >= pcp->high) { 1193 free_pcppages_bulk(zone, pcp->batch, pcp); 1194 pcp->count -= pcp->batch; 1195 } 1196 1197 out: 1198 local_irq_restore(flags); 1199 } 1200 1201 /* 1202 * split_page takes a non-compound higher-order page, and splits it into 1203 * n (1<<order) sub-pages: page[0..n] 1204 * Each sub-page must be freed individually. 1205 * 1206 * Note: this is probably too low level an operation for use in drivers. 1207 * Please consult with lkml before using this in your driver. 1208 */ 1209 void split_page(struct page *page, unsigned int order) 1210 { 1211 int i; 1212 1213 VM_BUG_ON(PageCompound(page)); 1214 VM_BUG_ON(!page_count(page)); 1215 1216 #ifdef CONFIG_KMEMCHECK 1217 /* 1218 * Split shadow pages too, because free(page[0]) would 1219 * otherwise free the whole shadow. 1220 */ 1221 if (kmemcheck_page_is_tracked(page)) 1222 split_page(virt_to_page(page[0].shadow), order); 1223 #endif 1224 1225 for (i = 1; i < (1 << order); i++) 1226 set_page_refcounted(page + i); 1227 } 1228 1229 /* 1230 * Similar to split_page except the page is already free. As this is only 1231 * being used for migration, the migratetype of the block also changes. 1232 * As this is called with interrupts disabled, the caller is responsible 1233 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1234 * are enabled. 1235 * 1236 * Note: this is probably too low level an operation for use in drivers. 1237 * Please consult with lkml before using this in your driver. 1238 */ 1239 int split_free_page(struct page *page) 1240 { 1241 unsigned int order; 1242 unsigned long watermark; 1243 struct zone *zone; 1244 1245 BUG_ON(!PageBuddy(page)); 1246 1247 zone = page_zone(page); 1248 order = page_order(page); 1249 1250 /* Obey watermarks as if the page was being allocated */ 1251 watermark = low_wmark_pages(zone) + (1 << order); 1252 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1253 return 0; 1254 1255 /* Remove page from free list */ 1256 list_del(&page->lru); 1257 zone->free_area[order].nr_free--; 1258 rmv_page_order(page); 1259 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order)); 1260 1261 /* Split into individual pages */ 1262 set_page_refcounted(page); 1263 split_page(page, order); 1264 1265 if (order >= pageblock_order - 1) { 1266 struct page *endpage = page + (1 << order) - 1; 1267 for (; page < endpage; page += pageblock_nr_pages) 1268 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1269 } 1270 1271 return 1 << order; 1272 } 1273 1274 /* 1275 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1276 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1277 * or two. 1278 */ 1279 static inline 1280 struct page *buffered_rmqueue(struct zone *preferred_zone, 1281 struct zone *zone, int order, gfp_t gfp_flags, 1282 int migratetype) 1283 { 1284 unsigned long flags; 1285 struct page *page; 1286 int cold = !!(gfp_flags & __GFP_COLD); 1287 1288 again: 1289 if (likely(order == 0)) { 1290 struct per_cpu_pages *pcp; 1291 struct list_head *list; 1292 1293 local_irq_save(flags); 1294 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1295 list = &pcp->lists[migratetype]; 1296 if (list_empty(list)) { 1297 pcp->count += rmqueue_bulk(zone, 0, 1298 pcp->batch, list, 1299 migratetype, cold); 1300 if (unlikely(list_empty(list))) 1301 goto failed; 1302 } 1303 1304 if (cold) 1305 page = list_entry(list->prev, struct page, lru); 1306 else 1307 page = list_entry(list->next, struct page, lru); 1308 1309 list_del(&page->lru); 1310 pcp->count--; 1311 } else { 1312 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1313 /* 1314 * __GFP_NOFAIL is not to be used in new code. 1315 * 1316 * All __GFP_NOFAIL callers should be fixed so that they 1317 * properly detect and handle allocation failures. 1318 * 1319 * We most definitely don't want callers attempting to 1320 * allocate greater than order-1 page units with 1321 * __GFP_NOFAIL. 1322 */ 1323 WARN_ON_ONCE(order > 1); 1324 } 1325 spin_lock_irqsave(&zone->lock, flags); 1326 page = __rmqueue(zone, order, migratetype); 1327 spin_unlock(&zone->lock); 1328 if (!page) 1329 goto failed; 1330 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order)); 1331 } 1332 1333 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1334 zone_statistics(preferred_zone, zone); 1335 local_irq_restore(flags); 1336 1337 VM_BUG_ON(bad_range(zone, page)); 1338 if (prep_new_page(page, order, gfp_flags)) 1339 goto again; 1340 return page; 1341 1342 failed: 1343 local_irq_restore(flags); 1344 return NULL; 1345 } 1346 1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 1348 #define ALLOC_WMARK_MIN WMARK_MIN 1349 #define ALLOC_WMARK_LOW WMARK_LOW 1350 #define ALLOC_WMARK_HIGH WMARK_HIGH 1351 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 1352 1353 /* Mask to get the watermark bits */ 1354 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 1355 1356 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 1357 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 1358 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 1359 1360 #ifdef CONFIG_FAIL_PAGE_ALLOC 1361 1362 static struct fail_page_alloc_attr { 1363 struct fault_attr attr; 1364 1365 u32 ignore_gfp_highmem; 1366 u32 ignore_gfp_wait; 1367 u32 min_order; 1368 1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1370 1371 struct dentry *ignore_gfp_highmem_file; 1372 struct dentry *ignore_gfp_wait_file; 1373 struct dentry *min_order_file; 1374 1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1376 1377 } fail_page_alloc = { 1378 .attr = FAULT_ATTR_INITIALIZER, 1379 .ignore_gfp_wait = 1, 1380 .ignore_gfp_highmem = 1, 1381 .min_order = 1, 1382 }; 1383 1384 static int __init setup_fail_page_alloc(char *str) 1385 { 1386 return setup_fault_attr(&fail_page_alloc.attr, str); 1387 } 1388 __setup("fail_page_alloc=", setup_fail_page_alloc); 1389 1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1391 { 1392 if (order < fail_page_alloc.min_order) 1393 return 0; 1394 if (gfp_mask & __GFP_NOFAIL) 1395 return 0; 1396 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1397 return 0; 1398 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1399 return 0; 1400 1401 return should_fail(&fail_page_alloc.attr, 1 << order); 1402 } 1403 1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1405 1406 static int __init fail_page_alloc_debugfs(void) 1407 { 1408 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1409 struct dentry *dir; 1410 int err; 1411 1412 err = init_fault_attr_dentries(&fail_page_alloc.attr, 1413 "fail_page_alloc"); 1414 if (err) 1415 return err; 1416 dir = fail_page_alloc.attr.dentries.dir; 1417 1418 fail_page_alloc.ignore_gfp_wait_file = 1419 debugfs_create_bool("ignore-gfp-wait", mode, dir, 1420 &fail_page_alloc.ignore_gfp_wait); 1421 1422 fail_page_alloc.ignore_gfp_highmem_file = 1423 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1424 &fail_page_alloc.ignore_gfp_highmem); 1425 fail_page_alloc.min_order_file = 1426 debugfs_create_u32("min-order", mode, dir, 1427 &fail_page_alloc.min_order); 1428 1429 if (!fail_page_alloc.ignore_gfp_wait_file || 1430 !fail_page_alloc.ignore_gfp_highmem_file || 1431 !fail_page_alloc.min_order_file) { 1432 err = -ENOMEM; 1433 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file); 1434 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file); 1435 debugfs_remove(fail_page_alloc.min_order_file); 1436 cleanup_fault_attr_dentries(&fail_page_alloc.attr); 1437 } 1438 1439 return err; 1440 } 1441 1442 late_initcall(fail_page_alloc_debugfs); 1443 1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1445 1446 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1447 1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1449 { 1450 return 0; 1451 } 1452 1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1454 1455 /* 1456 * Return 1 if free pages are above 'mark'. This takes into account the order 1457 * of the allocation. 1458 */ 1459 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1460 int classzone_idx, int alloc_flags) 1461 { 1462 /* free_pages my go negative - that's OK */ 1463 long min = mark; 1464 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1; 1465 int o; 1466 1467 if (alloc_flags & ALLOC_HIGH) 1468 min -= min / 2; 1469 if (alloc_flags & ALLOC_HARDER) 1470 min -= min / 4; 1471 1472 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 1473 return 0; 1474 for (o = 0; o < order; o++) { 1475 /* At the next order, this order's pages become unavailable */ 1476 free_pages -= z->free_area[o].nr_free << o; 1477 1478 /* Require fewer higher order pages to be free */ 1479 min >>= 1; 1480 1481 if (free_pages <= min) 1482 return 0; 1483 } 1484 return 1; 1485 } 1486 1487 #ifdef CONFIG_NUMA 1488 /* 1489 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1490 * skip over zones that are not allowed by the cpuset, or that have 1491 * been recently (in last second) found to be nearly full. See further 1492 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1493 * that have to skip over a lot of full or unallowed zones. 1494 * 1495 * If the zonelist cache is present in the passed in zonelist, then 1496 * returns a pointer to the allowed node mask (either the current 1497 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1498 * 1499 * If the zonelist cache is not available for this zonelist, does 1500 * nothing and returns NULL. 1501 * 1502 * If the fullzones BITMAP in the zonelist cache is stale (more than 1503 * a second since last zap'd) then we zap it out (clear its bits.) 1504 * 1505 * We hold off even calling zlc_setup, until after we've checked the 1506 * first zone in the zonelist, on the theory that most allocations will 1507 * be satisfied from that first zone, so best to examine that zone as 1508 * quickly as we can. 1509 */ 1510 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1511 { 1512 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1513 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1514 1515 zlc = zonelist->zlcache_ptr; 1516 if (!zlc) 1517 return NULL; 1518 1519 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1520 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1521 zlc->last_full_zap = jiffies; 1522 } 1523 1524 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1525 &cpuset_current_mems_allowed : 1526 &node_states[N_HIGH_MEMORY]; 1527 return allowednodes; 1528 } 1529 1530 /* 1531 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1532 * if it is worth looking at further for free memory: 1533 * 1) Check that the zone isn't thought to be full (doesn't have its 1534 * bit set in the zonelist_cache fullzones BITMAP). 1535 * 2) Check that the zones node (obtained from the zonelist_cache 1536 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1537 * Return true (non-zero) if zone is worth looking at further, or 1538 * else return false (zero) if it is not. 1539 * 1540 * This check -ignores- the distinction between various watermarks, 1541 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1542 * found to be full for any variation of these watermarks, it will 1543 * be considered full for up to one second by all requests, unless 1544 * we are so low on memory on all allowed nodes that we are forced 1545 * into the second scan of the zonelist. 1546 * 1547 * In the second scan we ignore this zonelist cache and exactly 1548 * apply the watermarks to all zones, even it is slower to do so. 1549 * We are low on memory in the second scan, and should leave no stone 1550 * unturned looking for a free page. 1551 */ 1552 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1553 nodemask_t *allowednodes) 1554 { 1555 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1556 int i; /* index of *z in zonelist zones */ 1557 int n; /* node that zone *z is on */ 1558 1559 zlc = zonelist->zlcache_ptr; 1560 if (!zlc) 1561 return 1; 1562 1563 i = z - zonelist->_zonerefs; 1564 n = zlc->z_to_n[i]; 1565 1566 /* This zone is worth trying if it is allowed but not full */ 1567 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1568 } 1569 1570 /* 1571 * Given 'z' scanning a zonelist, set the corresponding bit in 1572 * zlc->fullzones, so that subsequent attempts to allocate a page 1573 * from that zone don't waste time re-examining it. 1574 */ 1575 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1576 { 1577 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1578 int i; /* index of *z in zonelist zones */ 1579 1580 zlc = zonelist->zlcache_ptr; 1581 if (!zlc) 1582 return; 1583 1584 i = z - zonelist->_zonerefs; 1585 1586 set_bit(i, zlc->fullzones); 1587 } 1588 1589 #else /* CONFIG_NUMA */ 1590 1591 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1592 { 1593 return NULL; 1594 } 1595 1596 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1597 nodemask_t *allowednodes) 1598 { 1599 return 1; 1600 } 1601 1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1603 { 1604 } 1605 #endif /* CONFIG_NUMA */ 1606 1607 /* 1608 * get_page_from_freelist goes through the zonelist trying to allocate 1609 * a page. 1610 */ 1611 static struct page * 1612 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1613 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1614 struct zone *preferred_zone, int migratetype) 1615 { 1616 struct zoneref *z; 1617 struct page *page = NULL; 1618 int classzone_idx; 1619 struct zone *zone; 1620 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1621 int zlc_active = 0; /* set if using zonelist_cache */ 1622 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1623 1624 classzone_idx = zone_idx(preferred_zone); 1625 zonelist_scan: 1626 /* 1627 * Scan zonelist, looking for a zone with enough free. 1628 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1629 */ 1630 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1631 high_zoneidx, nodemask) { 1632 if (NUMA_BUILD && zlc_active && 1633 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1634 continue; 1635 if ((alloc_flags & ALLOC_CPUSET) && 1636 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1637 goto try_next_zone; 1638 1639 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1640 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1641 unsigned long mark; 1642 int ret; 1643 1644 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1645 if (zone_watermark_ok(zone, order, mark, 1646 classzone_idx, alloc_flags)) 1647 goto try_this_zone; 1648 1649 if (zone_reclaim_mode == 0) 1650 goto this_zone_full; 1651 1652 ret = zone_reclaim(zone, gfp_mask, order); 1653 switch (ret) { 1654 case ZONE_RECLAIM_NOSCAN: 1655 /* did not scan */ 1656 goto try_next_zone; 1657 case ZONE_RECLAIM_FULL: 1658 /* scanned but unreclaimable */ 1659 goto this_zone_full; 1660 default: 1661 /* did we reclaim enough */ 1662 if (!zone_watermark_ok(zone, order, mark, 1663 classzone_idx, alloc_flags)) 1664 goto this_zone_full; 1665 } 1666 } 1667 1668 try_this_zone: 1669 page = buffered_rmqueue(preferred_zone, zone, order, 1670 gfp_mask, migratetype); 1671 if (page) 1672 break; 1673 this_zone_full: 1674 if (NUMA_BUILD) 1675 zlc_mark_zone_full(zonelist, z); 1676 try_next_zone: 1677 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1678 /* 1679 * we do zlc_setup after the first zone is tried but only 1680 * if there are multiple nodes make it worthwhile 1681 */ 1682 allowednodes = zlc_setup(zonelist, alloc_flags); 1683 zlc_active = 1; 1684 did_zlc_setup = 1; 1685 } 1686 } 1687 1688 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1689 /* Disable zlc cache for second zonelist scan */ 1690 zlc_active = 0; 1691 goto zonelist_scan; 1692 } 1693 return page; 1694 } 1695 1696 static inline int 1697 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 1698 unsigned long pages_reclaimed) 1699 { 1700 /* Do not loop if specifically requested */ 1701 if (gfp_mask & __GFP_NORETRY) 1702 return 0; 1703 1704 /* 1705 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 1706 * means __GFP_NOFAIL, but that may not be true in other 1707 * implementations. 1708 */ 1709 if (order <= PAGE_ALLOC_COSTLY_ORDER) 1710 return 1; 1711 1712 /* 1713 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 1714 * specified, then we retry until we no longer reclaim any pages 1715 * (above), or we've reclaimed an order of pages at least as 1716 * large as the allocation's order. In both cases, if the 1717 * allocation still fails, we stop retrying. 1718 */ 1719 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 1720 return 1; 1721 1722 /* 1723 * Don't let big-order allocations loop unless the caller 1724 * explicitly requests that. 1725 */ 1726 if (gfp_mask & __GFP_NOFAIL) 1727 return 1; 1728 1729 return 0; 1730 } 1731 1732 static inline struct page * 1733 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 1734 struct zonelist *zonelist, enum zone_type high_zoneidx, 1735 nodemask_t *nodemask, struct zone *preferred_zone, 1736 int migratetype) 1737 { 1738 struct page *page; 1739 1740 /* Acquire the OOM killer lock for the zones in zonelist */ 1741 if (!try_set_zone_oom(zonelist, gfp_mask)) { 1742 schedule_timeout_uninterruptible(1); 1743 return NULL; 1744 } 1745 1746 /* 1747 * Go through the zonelist yet one more time, keep very high watermark 1748 * here, this is only to catch a parallel oom killing, we must fail if 1749 * we're still under heavy pressure. 1750 */ 1751 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 1752 order, zonelist, high_zoneidx, 1753 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 1754 preferred_zone, migratetype); 1755 if (page) 1756 goto out; 1757 1758 if (!(gfp_mask & __GFP_NOFAIL)) { 1759 /* The OOM killer will not help higher order allocs */ 1760 if (order > PAGE_ALLOC_COSTLY_ORDER) 1761 goto out; 1762 /* 1763 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 1764 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 1765 * The caller should handle page allocation failure by itself if 1766 * it specifies __GFP_THISNODE. 1767 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 1768 */ 1769 if (gfp_mask & __GFP_THISNODE) 1770 goto out; 1771 } 1772 /* Exhausted what can be done so it's blamo time */ 1773 out_of_memory(zonelist, gfp_mask, order, nodemask); 1774 1775 out: 1776 clear_zonelist_oom(zonelist, gfp_mask); 1777 return page; 1778 } 1779 1780 #ifdef CONFIG_COMPACTION 1781 /* Try memory compaction for high-order allocations before reclaim */ 1782 static struct page * 1783 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1784 struct zonelist *zonelist, enum zone_type high_zoneidx, 1785 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1786 int migratetype, unsigned long *did_some_progress) 1787 { 1788 struct page *page; 1789 1790 if (!order || compaction_deferred(preferred_zone)) 1791 return NULL; 1792 1793 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 1794 nodemask); 1795 if (*did_some_progress != COMPACT_SKIPPED) { 1796 1797 /* Page migration frees to the PCP lists but we want merging */ 1798 drain_pages(get_cpu()); 1799 put_cpu(); 1800 1801 page = get_page_from_freelist(gfp_mask, nodemask, 1802 order, zonelist, high_zoneidx, 1803 alloc_flags, preferred_zone, 1804 migratetype); 1805 if (page) { 1806 preferred_zone->compact_considered = 0; 1807 preferred_zone->compact_defer_shift = 0; 1808 count_vm_event(COMPACTSUCCESS); 1809 return page; 1810 } 1811 1812 /* 1813 * It's bad if compaction run occurs and fails. 1814 * The most likely reason is that pages exist, 1815 * but not enough to satisfy watermarks. 1816 */ 1817 count_vm_event(COMPACTFAIL); 1818 defer_compaction(preferred_zone); 1819 1820 cond_resched(); 1821 } 1822 1823 return NULL; 1824 } 1825 #else 1826 static inline struct page * 1827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 1828 struct zonelist *zonelist, enum zone_type high_zoneidx, 1829 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1830 int migratetype, unsigned long *did_some_progress) 1831 { 1832 return NULL; 1833 } 1834 #endif /* CONFIG_COMPACTION */ 1835 1836 /* The really slow allocator path where we enter direct reclaim */ 1837 static inline struct page * 1838 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 1839 struct zonelist *zonelist, enum zone_type high_zoneidx, 1840 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 1841 int migratetype, unsigned long *did_some_progress) 1842 { 1843 struct page *page = NULL; 1844 struct reclaim_state reclaim_state; 1845 struct task_struct *p = current; 1846 1847 cond_resched(); 1848 1849 /* We now go into synchronous reclaim */ 1850 cpuset_memory_pressure_bump(); 1851 p->flags |= PF_MEMALLOC; 1852 lockdep_set_current_reclaim_state(gfp_mask); 1853 reclaim_state.reclaimed_slab = 0; 1854 p->reclaim_state = &reclaim_state; 1855 1856 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 1857 1858 p->reclaim_state = NULL; 1859 lockdep_clear_current_reclaim_state(); 1860 p->flags &= ~PF_MEMALLOC; 1861 1862 cond_resched(); 1863 1864 if (order != 0) 1865 drain_all_pages(); 1866 1867 if (likely(*did_some_progress)) 1868 page = get_page_from_freelist(gfp_mask, nodemask, order, 1869 zonelist, high_zoneidx, 1870 alloc_flags, preferred_zone, 1871 migratetype); 1872 return page; 1873 } 1874 1875 /* 1876 * This is called in the allocator slow-path if the allocation request is of 1877 * sufficient urgency to ignore watermarks and take other desperate measures 1878 */ 1879 static inline struct page * 1880 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 1881 struct zonelist *zonelist, enum zone_type high_zoneidx, 1882 nodemask_t *nodemask, struct zone *preferred_zone, 1883 int migratetype) 1884 { 1885 struct page *page; 1886 1887 do { 1888 page = get_page_from_freelist(gfp_mask, nodemask, order, 1889 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 1890 preferred_zone, migratetype); 1891 1892 if (!page && gfp_mask & __GFP_NOFAIL) 1893 congestion_wait(BLK_RW_ASYNC, HZ/50); 1894 } while (!page && (gfp_mask & __GFP_NOFAIL)); 1895 1896 return page; 1897 } 1898 1899 static inline 1900 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 1901 enum zone_type high_zoneidx) 1902 { 1903 struct zoneref *z; 1904 struct zone *zone; 1905 1906 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 1907 wakeup_kswapd(zone, order); 1908 } 1909 1910 static inline int 1911 gfp_to_alloc_flags(gfp_t gfp_mask) 1912 { 1913 struct task_struct *p = current; 1914 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 1915 const gfp_t wait = gfp_mask & __GFP_WAIT; 1916 1917 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 1918 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH); 1919 1920 /* 1921 * The caller may dip into page reserves a bit more if the caller 1922 * cannot run direct reclaim, or if the caller has realtime scheduling 1923 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 1924 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 1925 */ 1926 alloc_flags |= (gfp_mask & __GFP_HIGH); 1927 1928 if (!wait) { 1929 alloc_flags |= ALLOC_HARDER; 1930 /* 1931 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 1932 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1933 */ 1934 alloc_flags &= ~ALLOC_CPUSET; 1935 } else if (unlikely(rt_task(p)) && !in_interrupt()) 1936 alloc_flags |= ALLOC_HARDER; 1937 1938 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 1939 if (!in_interrupt() && 1940 ((p->flags & PF_MEMALLOC) || 1941 unlikely(test_thread_flag(TIF_MEMDIE)))) 1942 alloc_flags |= ALLOC_NO_WATERMARKS; 1943 } 1944 1945 return alloc_flags; 1946 } 1947 1948 static inline struct page * 1949 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 1950 struct zonelist *zonelist, enum zone_type high_zoneidx, 1951 nodemask_t *nodemask, struct zone *preferred_zone, 1952 int migratetype) 1953 { 1954 const gfp_t wait = gfp_mask & __GFP_WAIT; 1955 struct page *page = NULL; 1956 int alloc_flags; 1957 unsigned long pages_reclaimed = 0; 1958 unsigned long did_some_progress; 1959 struct task_struct *p = current; 1960 1961 /* 1962 * In the slowpath, we sanity check order to avoid ever trying to 1963 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 1964 * be using allocators in order of preference for an area that is 1965 * too large. 1966 */ 1967 if (order >= MAX_ORDER) { 1968 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 1969 return NULL; 1970 } 1971 1972 /* 1973 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 1974 * __GFP_NOWARN set) should not cause reclaim since the subsystem 1975 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 1976 * using a larger set of nodes after it has established that the 1977 * allowed per node queues are empty and that nodes are 1978 * over allocated. 1979 */ 1980 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 1981 goto nopage; 1982 1983 restart: 1984 wake_all_kswapd(order, zonelist, high_zoneidx); 1985 1986 /* 1987 * OK, we're below the kswapd watermark and have kicked background 1988 * reclaim. Now things get more complex, so set up alloc_flags according 1989 * to how we want to proceed. 1990 */ 1991 alloc_flags = gfp_to_alloc_flags(gfp_mask); 1992 1993 /* This is the last chance, in general, before the goto nopage. */ 1994 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 1995 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 1996 preferred_zone, migratetype); 1997 if (page) 1998 goto got_pg; 1999 2000 rebalance: 2001 /* Allocate without watermarks if the context allows */ 2002 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2003 page = __alloc_pages_high_priority(gfp_mask, order, 2004 zonelist, high_zoneidx, nodemask, 2005 preferred_zone, migratetype); 2006 if (page) 2007 goto got_pg; 2008 } 2009 2010 /* Atomic allocations - we can't balance anything */ 2011 if (!wait) 2012 goto nopage; 2013 2014 /* Avoid recursion of direct reclaim */ 2015 if (p->flags & PF_MEMALLOC) 2016 goto nopage; 2017 2018 /* Avoid allocations with no watermarks from looping endlessly */ 2019 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2020 goto nopage; 2021 2022 /* Try direct compaction */ 2023 page = __alloc_pages_direct_compact(gfp_mask, order, 2024 zonelist, high_zoneidx, 2025 nodemask, 2026 alloc_flags, preferred_zone, 2027 migratetype, &did_some_progress); 2028 if (page) 2029 goto got_pg; 2030 2031 /* Try direct reclaim and then allocating */ 2032 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2033 zonelist, high_zoneidx, 2034 nodemask, 2035 alloc_flags, preferred_zone, 2036 migratetype, &did_some_progress); 2037 if (page) 2038 goto got_pg; 2039 2040 /* 2041 * If we failed to make any progress reclaiming, then we are 2042 * running out of options and have to consider going OOM 2043 */ 2044 if (!did_some_progress) { 2045 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2046 if (oom_killer_disabled) 2047 goto nopage; 2048 page = __alloc_pages_may_oom(gfp_mask, order, 2049 zonelist, high_zoneidx, 2050 nodemask, preferred_zone, 2051 migratetype); 2052 if (page) 2053 goto got_pg; 2054 2055 /* 2056 * The OOM killer does not trigger for high-order 2057 * ~__GFP_NOFAIL allocations so if no progress is being 2058 * made, there are no other options and retrying is 2059 * unlikely to help. 2060 */ 2061 if (order > PAGE_ALLOC_COSTLY_ORDER && 2062 !(gfp_mask & __GFP_NOFAIL)) 2063 goto nopage; 2064 2065 goto restart; 2066 } 2067 } 2068 2069 /* Check if we should retry the allocation */ 2070 pages_reclaimed += did_some_progress; 2071 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) { 2072 /* Wait for some write requests to complete then retry */ 2073 congestion_wait(BLK_RW_ASYNC, HZ/50); 2074 goto rebalance; 2075 } 2076 2077 nopage: 2078 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 2079 printk(KERN_WARNING "%s: page allocation failure." 2080 " order:%d, mode:0x%x\n", 2081 p->comm, order, gfp_mask); 2082 dump_stack(); 2083 show_mem(); 2084 } 2085 return page; 2086 got_pg: 2087 if (kmemcheck_enabled) 2088 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2089 return page; 2090 2091 } 2092 2093 /* 2094 * This is the 'heart' of the zoned buddy allocator. 2095 */ 2096 struct page * 2097 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2098 struct zonelist *zonelist, nodemask_t *nodemask) 2099 { 2100 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2101 struct zone *preferred_zone; 2102 struct page *page; 2103 int migratetype = allocflags_to_migratetype(gfp_mask); 2104 2105 gfp_mask &= gfp_allowed_mask; 2106 2107 lockdep_trace_alloc(gfp_mask); 2108 2109 might_sleep_if(gfp_mask & __GFP_WAIT); 2110 2111 if (should_fail_alloc_page(gfp_mask, order)) 2112 return NULL; 2113 2114 /* 2115 * Check the zones suitable for the gfp_mask contain at least one 2116 * valid zone. It's possible to have an empty zonelist as a result 2117 * of GFP_THISNODE and a memoryless node 2118 */ 2119 if (unlikely(!zonelist->_zonerefs->zone)) 2120 return NULL; 2121 2122 get_mems_allowed(); 2123 /* The preferred zone is used for statistics later */ 2124 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone); 2125 if (!preferred_zone) { 2126 put_mems_allowed(); 2127 return NULL; 2128 } 2129 2130 /* First allocation attempt */ 2131 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2132 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET, 2133 preferred_zone, migratetype); 2134 if (unlikely(!page)) 2135 page = __alloc_pages_slowpath(gfp_mask, order, 2136 zonelist, high_zoneidx, nodemask, 2137 preferred_zone, migratetype); 2138 put_mems_allowed(); 2139 2140 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2141 return page; 2142 } 2143 EXPORT_SYMBOL(__alloc_pages_nodemask); 2144 2145 /* 2146 * Common helper functions. 2147 */ 2148 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2149 { 2150 struct page *page; 2151 2152 /* 2153 * __get_free_pages() returns a 32-bit address, which cannot represent 2154 * a highmem page 2155 */ 2156 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2157 2158 page = alloc_pages(gfp_mask, order); 2159 if (!page) 2160 return 0; 2161 return (unsigned long) page_address(page); 2162 } 2163 EXPORT_SYMBOL(__get_free_pages); 2164 2165 unsigned long get_zeroed_page(gfp_t gfp_mask) 2166 { 2167 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2168 } 2169 EXPORT_SYMBOL(get_zeroed_page); 2170 2171 void __pagevec_free(struct pagevec *pvec) 2172 { 2173 int i = pagevec_count(pvec); 2174 2175 while (--i >= 0) { 2176 trace_mm_pagevec_free(pvec->pages[i], pvec->cold); 2177 free_hot_cold_page(pvec->pages[i], pvec->cold); 2178 } 2179 } 2180 2181 void __free_pages(struct page *page, unsigned int order) 2182 { 2183 if (put_page_testzero(page)) { 2184 if (order == 0) 2185 free_hot_cold_page(page, 0); 2186 else 2187 __free_pages_ok(page, order); 2188 } 2189 } 2190 2191 EXPORT_SYMBOL(__free_pages); 2192 2193 void free_pages(unsigned long addr, unsigned int order) 2194 { 2195 if (addr != 0) { 2196 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2197 __free_pages(virt_to_page((void *)addr), order); 2198 } 2199 } 2200 2201 EXPORT_SYMBOL(free_pages); 2202 2203 /** 2204 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2205 * @size: the number of bytes to allocate 2206 * @gfp_mask: GFP flags for the allocation 2207 * 2208 * This function is similar to alloc_pages(), except that it allocates the 2209 * minimum number of pages to satisfy the request. alloc_pages() can only 2210 * allocate memory in power-of-two pages. 2211 * 2212 * This function is also limited by MAX_ORDER. 2213 * 2214 * Memory allocated by this function must be released by free_pages_exact(). 2215 */ 2216 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2217 { 2218 unsigned int order = get_order(size); 2219 unsigned long addr; 2220 2221 addr = __get_free_pages(gfp_mask, order); 2222 if (addr) { 2223 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2224 unsigned long used = addr + PAGE_ALIGN(size); 2225 2226 split_page(virt_to_page((void *)addr), order); 2227 while (used < alloc_end) { 2228 free_page(used); 2229 used += PAGE_SIZE; 2230 } 2231 } 2232 2233 return (void *)addr; 2234 } 2235 EXPORT_SYMBOL(alloc_pages_exact); 2236 2237 /** 2238 * free_pages_exact - release memory allocated via alloc_pages_exact() 2239 * @virt: the value returned by alloc_pages_exact. 2240 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2241 * 2242 * Release the memory allocated by a previous call to alloc_pages_exact. 2243 */ 2244 void free_pages_exact(void *virt, size_t size) 2245 { 2246 unsigned long addr = (unsigned long)virt; 2247 unsigned long end = addr + PAGE_ALIGN(size); 2248 2249 while (addr < end) { 2250 free_page(addr); 2251 addr += PAGE_SIZE; 2252 } 2253 } 2254 EXPORT_SYMBOL(free_pages_exact); 2255 2256 static unsigned int nr_free_zone_pages(int offset) 2257 { 2258 struct zoneref *z; 2259 struct zone *zone; 2260 2261 /* Just pick one node, since fallback list is circular */ 2262 unsigned int sum = 0; 2263 2264 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2265 2266 for_each_zone_zonelist(zone, z, zonelist, offset) { 2267 unsigned long size = zone->present_pages; 2268 unsigned long high = high_wmark_pages(zone); 2269 if (size > high) 2270 sum += size - high; 2271 } 2272 2273 return sum; 2274 } 2275 2276 /* 2277 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2278 */ 2279 unsigned int nr_free_buffer_pages(void) 2280 { 2281 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2282 } 2283 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2284 2285 /* 2286 * Amount of free RAM allocatable within all zones 2287 */ 2288 unsigned int nr_free_pagecache_pages(void) 2289 { 2290 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2291 } 2292 2293 static inline void show_node(struct zone *zone) 2294 { 2295 if (NUMA_BUILD) 2296 printk("Node %d ", zone_to_nid(zone)); 2297 } 2298 2299 void si_meminfo(struct sysinfo *val) 2300 { 2301 val->totalram = totalram_pages; 2302 val->sharedram = 0; 2303 val->freeram = global_page_state(NR_FREE_PAGES); 2304 val->bufferram = nr_blockdev_pages(); 2305 val->totalhigh = totalhigh_pages; 2306 val->freehigh = nr_free_highpages(); 2307 val->mem_unit = PAGE_SIZE; 2308 } 2309 2310 EXPORT_SYMBOL(si_meminfo); 2311 2312 #ifdef CONFIG_NUMA 2313 void si_meminfo_node(struct sysinfo *val, int nid) 2314 { 2315 pg_data_t *pgdat = NODE_DATA(nid); 2316 2317 val->totalram = pgdat->node_present_pages; 2318 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2319 #ifdef CONFIG_HIGHMEM 2320 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2321 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2322 NR_FREE_PAGES); 2323 #else 2324 val->totalhigh = 0; 2325 val->freehigh = 0; 2326 #endif 2327 val->mem_unit = PAGE_SIZE; 2328 } 2329 #endif 2330 2331 #define K(x) ((x) << (PAGE_SHIFT-10)) 2332 2333 /* 2334 * Show free area list (used inside shift_scroll-lock stuff) 2335 * We also calculate the percentage fragmentation. We do this by counting the 2336 * memory on each free list with the exception of the first item on the list. 2337 */ 2338 void show_free_areas(void) 2339 { 2340 int cpu; 2341 struct zone *zone; 2342 2343 for_each_populated_zone(zone) { 2344 show_node(zone); 2345 printk("%s per-cpu:\n", zone->name); 2346 2347 for_each_online_cpu(cpu) { 2348 struct per_cpu_pageset *pageset; 2349 2350 pageset = per_cpu_ptr(zone->pageset, cpu); 2351 2352 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2353 cpu, pageset->pcp.high, 2354 pageset->pcp.batch, pageset->pcp.count); 2355 } 2356 } 2357 2358 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2359 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2360 " unevictable:%lu" 2361 " dirty:%lu writeback:%lu unstable:%lu\n" 2362 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2363 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n", 2364 global_page_state(NR_ACTIVE_ANON), 2365 global_page_state(NR_INACTIVE_ANON), 2366 global_page_state(NR_ISOLATED_ANON), 2367 global_page_state(NR_ACTIVE_FILE), 2368 global_page_state(NR_INACTIVE_FILE), 2369 global_page_state(NR_ISOLATED_FILE), 2370 global_page_state(NR_UNEVICTABLE), 2371 global_page_state(NR_FILE_DIRTY), 2372 global_page_state(NR_WRITEBACK), 2373 global_page_state(NR_UNSTABLE_NFS), 2374 global_page_state(NR_FREE_PAGES), 2375 global_page_state(NR_SLAB_RECLAIMABLE), 2376 global_page_state(NR_SLAB_UNRECLAIMABLE), 2377 global_page_state(NR_FILE_MAPPED), 2378 global_page_state(NR_SHMEM), 2379 global_page_state(NR_PAGETABLE), 2380 global_page_state(NR_BOUNCE)); 2381 2382 for_each_populated_zone(zone) { 2383 int i; 2384 2385 show_node(zone); 2386 printk("%s" 2387 " free:%lukB" 2388 " min:%lukB" 2389 " low:%lukB" 2390 " high:%lukB" 2391 " active_anon:%lukB" 2392 " inactive_anon:%lukB" 2393 " active_file:%lukB" 2394 " inactive_file:%lukB" 2395 " unevictable:%lukB" 2396 " isolated(anon):%lukB" 2397 " isolated(file):%lukB" 2398 " present:%lukB" 2399 " mlocked:%lukB" 2400 " dirty:%lukB" 2401 " writeback:%lukB" 2402 " mapped:%lukB" 2403 " shmem:%lukB" 2404 " slab_reclaimable:%lukB" 2405 " slab_unreclaimable:%lukB" 2406 " kernel_stack:%lukB" 2407 " pagetables:%lukB" 2408 " unstable:%lukB" 2409 " bounce:%lukB" 2410 " writeback_tmp:%lukB" 2411 " pages_scanned:%lu" 2412 " all_unreclaimable? %s" 2413 "\n", 2414 zone->name, 2415 K(zone_page_state(zone, NR_FREE_PAGES)), 2416 K(min_wmark_pages(zone)), 2417 K(low_wmark_pages(zone)), 2418 K(high_wmark_pages(zone)), 2419 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2420 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2421 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2422 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2423 K(zone_page_state(zone, NR_UNEVICTABLE)), 2424 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2425 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2426 K(zone->present_pages), 2427 K(zone_page_state(zone, NR_MLOCK)), 2428 K(zone_page_state(zone, NR_FILE_DIRTY)), 2429 K(zone_page_state(zone, NR_WRITEBACK)), 2430 K(zone_page_state(zone, NR_FILE_MAPPED)), 2431 K(zone_page_state(zone, NR_SHMEM)), 2432 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2433 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2434 zone_page_state(zone, NR_KERNEL_STACK) * 2435 THREAD_SIZE / 1024, 2436 K(zone_page_state(zone, NR_PAGETABLE)), 2437 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2438 K(zone_page_state(zone, NR_BOUNCE)), 2439 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2440 zone->pages_scanned, 2441 (zone->all_unreclaimable ? "yes" : "no") 2442 ); 2443 printk("lowmem_reserve[]:"); 2444 for (i = 0; i < MAX_NR_ZONES; i++) 2445 printk(" %lu", zone->lowmem_reserve[i]); 2446 printk("\n"); 2447 } 2448 2449 for_each_populated_zone(zone) { 2450 unsigned long nr[MAX_ORDER], flags, order, total = 0; 2451 2452 show_node(zone); 2453 printk("%s: ", zone->name); 2454 2455 spin_lock_irqsave(&zone->lock, flags); 2456 for (order = 0; order < MAX_ORDER; order++) { 2457 nr[order] = zone->free_area[order].nr_free; 2458 total += nr[order] << order; 2459 } 2460 spin_unlock_irqrestore(&zone->lock, flags); 2461 for (order = 0; order < MAX_ORDER; order++) 2462 printk("%lu*%lukB ", nr[order], K(1UL) << order); 2463 printk("= %lukB\n", K(total)); 2464 } 2465 2466 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 2467 2468 show_swap_cache_info(); 2469 } 2470 2471 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 2472 { 2473 zoneref->zone = zone; 2474 zoneref->zone_idx = zone_idx(zone); 2475 } 2476 2477 /* 2478 * Builds allocation fallback zone lists. 2479 * 2480 * Add all populated zones of a node to the zonelist. 2481 */ 2482 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 2483 int nr_zones, enum zone_type zone_type) 2484 { 2485 struct zone *zone; 2486 2487 BUG_ON(zone_type >= MAX_NR_ZONES); 2488 zone_type++; 2489 2490 do { 2491 zone_type--; 2492 zone = pgdat->node_zones + zone_type; 2493 if (populated_zone(zone)) { 2494 zoneref_set_zone(zone, 2495 &zonelist->_zonerefs[nr_zones++]); 2496 check_highest_zone(zone_type); 2497 } 2498 2499 } while (zone_type); 2500 return nr_zones; 2501 } 2502 2503 2504 /* 2505 * zonelist_order: 2506 * 0 = automatic detection of better ordering. 2507 * 1 = order by ([node] distance, -zonetype) 2508 * 2 = order by (-zonetype, [node] distance) 2509 * 2510 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 2511 * the same zonelist. So only NUMA can configure this param. 2512 */ 2513 #define ZONELIST_ORDER_DEFAULT 0 2514 #define ZONELIST_ORDER_NODE 1 2515 #define ZONELIST_ORDER_ZONE 2 2516 2517 /* zonelist order in the kernel. 2518 * set_zonelist_order() will set this to NODE or ZONE. 2519 */ 2520 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 2521 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 2522 2523 2524 #ifdef CONFIG_NUMA 2525 /* The value user specified ....changed by config */ 2526 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2527 /* string for sysctl */ 2528 #define NUMA_ZONELIST_ORDER_LEN 16 2529 char numa_zonelist_order[16] = "default"; 2530 2531 /* 2532 * interface for configure zonelist ordering. 2533 * command line option "numa_zonelist_order" 2534 * = "[dD]efault - default, automatic configuration. 2535 * = "[nN]ode - order by node locality, then by zone within node 2536 * = "[zZ]one - order by zone, then by locality within zone 2537 */ 2538 2539 static int __parse_numa_zonelist_order(char *s) 2540 { 2541 if (*s == 'd' || *s == 'D') { 2542 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 2543 } else if (*s == 'n' || *s == 'N') { 2544 user_zonelist_order = ZONELIST_ORDER_NODE; 2545 } else if (*s == 'z' || *s == 'Z') { 2546 user_zonelist_order = ZONELIST_ORDER_ZONE; 2547 } else { 2548 printk(KERN_WARNING 2549 "Ignoring invalid numa_zonelist_order value: " 2550 "%s\n", s); 2551 return -EINVAL; 2552 } 2553 return 0; 2554 } 2555 2556 static __init int setup_numa_zonelist_order(char *s) 2557 { 2558 if (s) 2559 return __parse_numa_zonelist_order(s); 2560 return 0; 2561 } 2562 early_param("numa_zonelist_order", setup_numa_zonelist_order); 2563 2564 /* 2565 * sysctl handler for numa_zonelist_order 2566 */ 2567 int numa_zonelist_order_handler(ctl_table *table, int write, 2568 void __user *buffer, size_t *length, 2569 loff_t *ppos) 2570 { 2571 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 2572 int ret; 2573 static DEFINE_MUTEX(zl_order_mutex); 2574 2575 mutex_lock(&zl_order_mutex); 2576 if (write) 2577 strcpy(saved_string, (char*)table->data); 2578 ret = proc_dostring(table, write, buffer, length, ppos); 2579 if (ret) 2580 goto out; 2581 if (write) { 2582 int oldval = user_zonelist_order; 2583 if (__parse_numa_zonelist_order((char*)table->data)) { 2584 /* 2585 * bogus value. restore saved string 2586 */ 2587 strncpy((char*)table->data, saved_string, 2588 NUMA_ZONELIST_ORDER_LEN); 2589 user_zonelist_order = oldval; 2590 } else if (oldval != user_zonelist_order) { 2591 mutex_lock(&zonelists_mutex); 2592 build_all_zonelists(NULL); 2593 mutex_unlock(&zonelists_mutex); 2594 } 2595 } 2596 out: 2597 mutex_unlock(&zl_order_mutex); 2598 return ret; 2599 } 2600 2601 2602 #define MAX_NODE_LOAD (nr_online_nodes) 2603 static int node_load[MAX_NUMNODES]; 2604 2605 /** 2606 * find_next_best_node - find the next node that should appear in a given node's fallback list 2607 * @node: node whose fallback list we're appending 2608 * @used_node_mask: nodemask_t of already used nodes 2609 * 2610 * We use a number of factors to determine which is the next node that should 2611 * appear on a given node's fallback list. The node should not have appeared 2612 * already in @node's fallback list, and it should be the next closest node 2613 * according to the distance array (which contains arbitrary distance values 2614 * from each node to each node in the system), and should also prefer nodes 2615 * with no CPUs, since presumably they'll have very little allocation pressure 2616 * on them otherwise. 2617 * It returns -1 if no node is found. 2618 */ 2619 static int find_next_best_node(int node, nodemask_t *used_node_mask) 2620 { 2621 int n, val; 2622 int min_val = INT_MAX; 2623 int best_node = -1; 2624 const struct cpumask *tmp = cpumask_of_node(0); 2625 2626 /* Use the local node if we haven't already */ 2627 if (!node_isset(node, *used_node_mask)) { 2628 node_set(node, *used_node_mask); 2629 return node; 2630 } 2631 2632 for_each_node_state(n, N_HIGH_MEMORY) { 2633 2634 /* Don't want a node to appear more than once */ 2635 if (node_isset(n, *used_node_mask)) 2636 continue; 2637 2638 /* Use the distance array to find the distance */ 2639 val = node_distance(node, n); 2640 2641 /* Penalize nodes under us ("prefer the next node") */ 2642 val += (n < node); 2643 2644 /* Give preference to headless and unused nodes */ 2645 tmp = cpumask_of_node(n); 2646 if (!cpumask_empty(tmp)) 2647 val += PENALTY_FOR_NODE_WITH_CPUS; 2648 2649 /* Slight preference for less loaded node */ 2650 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 2651 val += node_load[n]; 2652 2653 if (val < min_val) { 2654 min_val = val; 2655 best_node = n; 2656 } 2657 } 2658 2659 if (best_node >= 0) 2660 node_set(best_node, *used_node_mask); 2661 2662 return best_node; 2663 } 2664 2665 2666 /* 2667 * Build zonelists ordered by node and zones within node. 2668 * This results in maximum locality--normal zone overflows into local 2669 * DMA zone, if any--but risks exhausting DMA zone. 2670 */ 2671 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 2672 { 2673 int j; 2674 struct zonelist *zonelist; 2675 2676 zonelist = &pgdat->node_zonelists[0]; 2677 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 2678 ; 2679 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2680 MAX_NR_ZONES - 1); 2681 zonelist->_zonerefs[j].zone = NULL; 2682 zonelist->_zonerefs[j].zone_idx = 0; 2683 } 2684 2685 /* 2686 * Build gfp_thisnode zonelists 2687 */ 2688 static void build_thisnode_zonelists(pg_data_t *pgdat) 2689 { 2690 int j; 2691 struct zonelist *zonelist; 2692 2693 zonelist = &pgdat->node_zonelists[1]; 2694 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2695 zonelist->_zonerefs[j].zone = NULL; 2696 zonelist->_zonerefs[j].zone_idx = 0; 2697 } 2698 2699 /* 2700 * Build zonelists ordered by zone and nodes within zones. 2701 * This results in conserving DMA zone[s] until all Normal memory is 2702 * exhausted, but results in overflowing to remote node while memory 2703 * may still exist in local DMA zone. 2704 */ 2705 static int node_order[MAX_NUMNODES]; 2706 2707 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 2708 { 2709 int pos, j, node; 2710 int zone_type; /* needs to be signed */ 2711 struct zone *z; 2712 struct zonelist *zonelist; 2713 2714 zonelist = &pgdat->node_zonelists[0]; 2715 pos = 0; 2716 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 2717 for (j = 0; j < nr_nodes; j++) { 2718 node = node_order[j]; 2719 z = &NODE_DATA(node)->node_zones[zone_type]; 2720 if (populated_zone(z)) { 2721 zoneref_set_zone(z, 2722 &zonelist->_zonerefs[pos++]); 2723 check_highest_zone(zone_type); 2724 } 2725 } 2726 } 2727 zonelist->_zonerefs[pos].zone = NULL; 2728 zonelist->_zonerefs[pos].zone_idx = 0; 2729 } 2730 2731 static int default_zonelist_order(void) 2732 { 2733 int nid, zone_type; 2734 unsigned long low_kmem_size,total_size; 2735 struct zone *z; 2736 int average_size; 2737 /* 2738 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 2739 * If they are really small and used heavily, the system can fall 2740 * into OOM very easily. 2741 * This function detect ZONE_DMA/DMA32 size and configures zone order. 2742 */ 2743 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 2744 low_kmem_size = 0; 2745 total_size = 0; 2746 for_each_online_node(nid) { 2747 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2748 z = &NODE_DATA(nid)->node_zones[zone_type]; 2749 if (populated_zone(z)) { 2750 if (zone_type < ZONE_NORMAL) 2751 low_kmem_size += z->present_pages; 2752 total_size += z->present_pages; 2753 } else if (zone_type == ZONE_NORMAL) { 2754 /* 2755 * If any node has only lowmem, then node order 2756 * is preferred to allow kernel allocations 2757 * locally; otherwise, they can easily infringe 2758 * on other nodes when there is an abundance of 2759 * lowmem available to allocate from. 2760 */ 2761 return ZONELIST_ORDER_NODE; 2762 } 2763 } 2764 } 2765 if (!low_kmem_size || /* there are no DMA area. */ 2766 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 2767 return ZONELIST_ORDER_NODE; 2768 /* 2769 * look into each node's config. 2770 * If there is a node whose DMA/DMA32 memory is very big area on 2771 * local memory, NODE_ORDER may be suitable. 2772 */ 2773 average_size = total_size / 2774 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 2775 for_each_online_node(nid) { 2776 low_kmem_size = 0; 2777 total_size = 0; 2778 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 2779 z = &NODE_DATA(nid)->node_zones[zone_type]; 2780 if (populated_zone(z)) { 2781 if (zone_type < ZONE_NORMAL) 2782 low_kmem_size += z->present_pages; 2783 total_size += z->present_pages; 2784 } 2785 } 2786 if (low_kmem_size && 2787 total_size > average_size && /* ignore small node */ 2788 low_kmem_size > total_size * 70/100) 2789 return ZONELIST_ORDER_NODE; 2790 } 2791 return ZONELIST_ORDER_ZONE; 2792 } 2793 2794 static void set_zonelist_order(void) 2795 { 2796 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 2797 current_zonelist_order = default_zonelist_order(); 2798 else 2799 current_zonelist_order = user_zonelist_order; 2800 } 2801 2802 static void build_zonelists(pg_data_t *pgdat) 2803 { 2804 int j, node, load; 2805 enum zone_type i; 2806 nodemask_t used_mask; 2807 int local_node, prev_node; 2808 struct zonelist *zonelist; 2809 int order = current_zonelist_order; 2810 2811 /* initialize zonelists */ 2812 for (i = 0; i < MAX_ZONELISTS; i++) { 2813 zonelist = pgdat->node_zonelists + i; 2814 zonelist->_zonerefs[0].zone = NULL; 2815 zonelist->_zonerefs[0].zone_idx = 0; 2816 } 2817 2818 /* NUMA-aware ordering of nodes */ 2819 local_node = pgdat->node_id; 2820 load = nr_online_nodes; 2821 prev_node = local_node; 2822 nodes_clear(used_mask); 2823 2824 memset(node_order, 0, sizeof(node_order)); 2825 j = 0; 2826 2827 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 2828 int distance = node_distance(local_node, node); 2829 2830 /* 2831 * If another node is sufficiently far away then it is better 2832 * to reclaim pages in a zone before going off node. 2833 */ 2834 if (distance > RECLAIM_DISTANCE) 2835 zone_reclaim_mode = 1; 2836 2837 /* 2838 * We don't want to pressure a particular node. 2839 * So adding penalty to the first node in same 2840 * distance group to make it round-robin. 2841 */ 2842 if (distance != node_distance(local_node, prev_node)) 2843 node_load[node] = load; 2844 2845 prev_node = node; 2846 load--; 2847 if (order == ZONELIST_ORDER_NODE) 2848 build_zonelists_in_node_order(pgdat, node); 2849 else 2850 node_order[j++] = node; /* remember order */ 2851 } 2852 2853 if (order == ZONELIST_ORDER_ZONE) { 2854 /* calculate node order -- i.e., DMA last! */ 2855 build_zonelists_in_zone_order(pgdat, j); 2856 } 2857 2858 build_thisnode_zonelists(pgdat); 2859 } 2860 2861 /* Construct the zonelist performance cache - see further mmzone.h */ 2862 static void build_zonelist_cache(pg_data_t *pgdat) 2863 { 2864 struct zonelist *zonelist; 2865 struct zonelist_cache *zlc; 2866 struct zoneref *z; 2867 2868 zonelist = &pgdat->node_zonelists[0]; 2869 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 2870 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2871 for (z = zonelist->_zonerefs; z->zone; z++) 2872 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 2873 } 2874 2875 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 2876 /* 2877 * Return node id of node used for "local" allocations. 2878 * I.e., first node id of first zone in arg node's generic zonelist. 2879 * Used for initializing percpu 'numa_mem', which is used primarily 2880 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 2881 */ 2882 int local_memory_node(int node) 2883 { 2884 struct zone *zone; 2885 2886 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 2887 gfp_zone(GFP_KERNEL), 2888 NULL, 2889 &zone); 2890 return zone->node; 2891 } 2892 #endif 2893 2894 #else /* CONFIG_NUMA */ 2895 2896 static void set_zonelist_order(void) 2897 { 2898 current_zonelist_order = ZONELIST_ORDER_ZONE; 2899 } 2900 2901 static void build_zonelists(pg_data_t *pgdat) 2902 { 2903 int node, local_node; 2904 enum zone_type j; 2905 struct zonelist *zonelist; 2906 2907 local_node = pgdat->node_id; 2908 2909 zonelist = &pgdat->node_zonelists[0]; 2910 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 2911 2912 /* 2913 * Now we build the zonelist so that it contains the zones 2914 * of all the other nodes. 2915 * We don't want to pressure a particular node, so when 2916 * building the zones for node N, we make sure that the 2917 * zones coming right after the local ones are those from 2918 * node N+1 (modulo N) 2919 */ 2920 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 2921 if (!node_online(node)) 2922 continue; 2923 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2924 MAX_NR_ZONES - 1); 2925 } 2926 for (node = 0; node < local_node; node++) { 2927 if (!node_online(node)) 2928 continue; 2929 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 2930 MAX_NR_ZONES - 1); 2931 } 2932 2933 zonelist->_zonerefs[j].zone = NULL; 2934 zonelist->_zonerefs[j].zone_idx = 0; 2935 } 2936 2937 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 2938 static void build_zonelist_cache(pg_data_t *pgdat) 2939 { 2940 pgdat->node_zonelists[0].zlcache_ptr = NULL; 2941 } 2942 2943 #endif /* CONFIG_NUMA */ 2944 2945 /* 2946 * Boot pageset table. One per cpu which is going to be used for all 2947 * zones and all nodes. The parameters will be set in such a way 2948 * that an item put on a list will immediately be handed over to 2949 * the buddy list. This is safe since pageset manipulation is done 2950 * with interrupts disabled. 2951 * 2952 * The boot_pagesets must be kept even after bootup is complete for 2953 * unused processors and/or zones. They do play a role for bootstrapping 2954 * hotplugged processors. 2955 * 2956 * zoneinfo_show() and maybe other functions do 2957 * not check if the processor is online before following the pageset pointer. 2958 * Other parts of the kernel may not check if the zone is available. 2959 */ 2960 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 2961 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 2962 static void setup_zone_pageset(struct zone *zone); 2963 2964 /* 2965 * Global mutex to protect against size modification of zonelists 2966 * as well as to serialize pageset setup for the new populated zone. 2967 */ 2968 DEFINE_MUTEX(zonelists_mutex); 2969 2970 /* return values int ....just for stop_machine() */ 2971 static __init_refok int __build_all_zonelists(void *data) 2972 { 2973 int nid; 2974 int cpu; 2975 2976 #ifdef CONFIG_NUMA 2977 memset(node_load, 0, sizeof(node_load)); 2978 #endif 2979 for_each_online_node(nid) { 2980 pg_data_t *pgdat = NODE_DATA(nid); 2981 2982 build_zonelists(pgdat); 2983 build_zonelist_cache(pgdat); 2984 } 2985 2986 #ifdef CONFIG_MEMORY_HOTPLUG 2987 /* Setup real pagesets for the new zone */ 2988 if (data) { 2989 struct zone *zone = data; 2990 setup_zone_pageset(zone); 2991 } 2992 #endif 2993 2994 /* 2995 * Initialize the boot_pagesets that are going to be used 2996 * for bootstrapping processors. The real pagesets for 2997 * each zone will be allocated later when the per cpu 2998 * allocator is available. 2999 * 3000 * boot_pagesets are used also for bootstrapping offline 3001 * cpus if the system is already booted because the pagesets 3002 * are needed to initialize allocators on a specific cpu too. 3003 * F.e. the percpu allocator needs the page allocator which 3004 * needs the percpu allocator in order to allocate its pagesets 3005 * (a chicken-egg dilemma). 3006 */ 3007 for_each_possible_cpu(cpu) { 3008 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3009 3010 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3011 /* 3012 * We now know the "local memory node" for each node-- 3013 * i.e., the node of the first zone in the generic zonelist. 3014 * Set up numa_mem percpu variable for on-line cpus. During 3015 * boot, only the boot cpu should be on-line; we'll init the 3016 * secondary cpus' numa_mem as they come on-line. During 3017 * node/memory hotplug, we'll fixup all on-line cpus. 3018 */ 3019 if (cpu_online(cpu)) 3020 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3021 #endif 3022 } 3023 3024 return 0; 3025 } 3026 3027 /* 3028 * Called with zonelists_mutex held always 3029 * unless system_state == SYSTEM_BOOTING. 3030 */ 3031 void build_all_zonelists(void *data) 3032 { 3033 set_zonelist_order(); 3034 3035 if (system_state == SYSTEM_BOOTING) { 3036 __build_all_zonelists(NULL); 3037 mminit_verify_zonelist(); 3038 cpuset_init_current_mems_allowed(); 3039 } else { 3040 /* we have to stop all cpus to guarantee there is no user 3041 of zonelist */ 3042 stop_machine(__build_all_zonelists, data, NULL); 3043 /* cpuset refresh routine should be here */ 3044 } 3045 vm_total_pages = nr_free_pagecache_pages(); 3046 /* 3047 * Disable grouping by mobility if the number of pages in the 3048 * system is too low to allow the mechanism to work. It would be 3049 * more accurate, but expensive to check per-zone. This check is 3050 * made on memory-hotadd so a system can start with mobility 3051 * disabled and enable it later 3052 */ 3053 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3054 page_group_by_mobility_disabled = 1; 3055 else 3056 page_group_by_mobility_disabled = 0; 3057 3058 printk("Built %i zonelists in %s order, mobility grouping %s. " 3059 "Total pages: %ld\n", 3060 nr_online_nodes, 3061 zonelist_order_name[current_zonelist_order], 3062 page_group_by_mobility_disabled ? "off" : "on", 3063 vm_total_pages); 3064 #ifdef CONFIG_NUMA 3065 printk("Policy zone: %s\n", zone_names[policy_zone]); 3066 #endif 3067 } 3068 3069 /* 3070 * Helper functions to size the waitqueue hash table. 3071 * Essentially these want to choose hash table sizes sufficiently 3072 * large so that collisions trying to wait on pages are rare. 3073 * But in fact, the number of active page waitqueues on typical 3074 * systems is ridiculously low, less than 200. So this is even 3075 * conservative, even though it seems large. 3076 * 3077 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3078 * waitqueues, i.e. the size of the waitq table given the number of pages. 3079 */ 3080 #define PAGES_PER_WAITQUEUE 256 3081 3082 #ifndef CONFIG_MEMORY_HOTPLUG 3083 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3084 { 3085 unsigned long size = 1; 3086 3087 pages /= PAGES_PER_WAITQUEUE; 3088 3089 while (size < pages) 3090 size <<= 1; 3091 3092 /* 3093 * Once we have dozens or even hundreds of threads sleeping 3094 * on IO we've got bigger problems than wait queue collision. 3095 * Limit the size of the wait table to a reasonable size. 3096 */ 3097 size = min(size, 4096UL); 3098 3099 return max(size, 4UL); 3100 } 3101 #else 3102 /* 3103 * A zone's size might be changed by hot-add, so it is not possible to determine 3104 * a suitable size for its wait_table. So we use the maximum size now. 3105 * 3106 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3107 * 3108 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3109 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3110 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3111 * 3112 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3113 * or more by the traditional way. (See above). It equals: 3114 * 3115 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3116 * ia64(16K page size) : = ( 8G + 4M)byte. 3117 * powerpc (64K page size) : = (32G +16M)byte. 3118 */ 3119 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3120 { 3121 return 4096UL; 3122 } 3123 #endif 3124 3125 /* 3126 * This is an integer logarithm so that shifts can be used later 3127 * to extract the more random high bits from the multiplicative 3128 * hash function before the remainder is taken. 3129 */ 3130 static inline unsigned long wait_table_bits(unsigned long size) 3131 { 3132 return ffz(~size); 3133 } 3134 3135 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3136 3137 /* 3138 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3139 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3140 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3141 * higher will lead to a bigger reserve which will get freed as contiguous 3142 * blocks as reclaim kicks in 3143 */ 3144 static void setup_zone_migrate_reserve(struct zone *zone) 3145 { 3146 unsigned long start_pfn, pfn, end_pfn; 3147 struct page *page; 3148 unsigned long block_migratetype; 3149 int reserve; 3150 3151 /* Get the start pfn, end pfn and the number of blocks to reserve */ 3152 start_pfn = zone->zone_start_pfn; 3153 end_pfn = start_pfn + zone->spanned_pages; 3154 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3155 pageblock_order; 3156 3157 /* 3158 * Reserve blocks are generally in place to help high-order atomic 3159 * allocations that are short-lived. A min_free_kbytes value that 3160 * would result in more than 2 reserve blocks for atomic allocations 3161 * is assumed to be in place to help anti-fragmentation for the 3162 * future allocation of hugepages at runtime. 3163 */ 3164 reserve = min(2, reserve); 3165 3166 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3167 if (!pfn_valid(pfn)) 3168 continue; 3169 page = pfn_to_page(pfn); 3170 3171 /* Watch out for overlapping nodes */ 3172 if (page_to_nid(page) != zone_to_nid(zone)) 3173 continue; 3174 3175 /* Blocks with reserved pages will never free, skip them. */ 3176 if (PageReserved(page)) 3177 continue; 3178 3179 block_migratetype = get_pageblock_migratetype(page); 3180 3181 /* If this block is reserved, account for it */ 3182 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) { 3183 reserve--; 3184 continue; 3185 } 3186 3187 /* Suitable for reserving if this block is movable */ 3188 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) { 3189 set_pageblock_migratetype(page, MIGRATE_RESERVE); 3190 move_freepages_block(zone, page, MIGRATE_RESERVE); 3191 reserve--; 3192 continue; 3193 } 3194 3195 /* 3196 * If the reserve is met and this is a previous reserved block, 3197 * take it back 3198 */ 3199 if (block_migratetype == MIGRATE_RESERVE) { 3200 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3201 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3202 } 3203 } 3204 } 3205 3206 /* 3207 * Initially all pages are reserved - free ones are freed 3208 * up by free_all_bootmem() once the early boot process is 3209 * done. Non-atomic initialization, single-pass. 3210 */ 3211 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3212 unsigned long start_pfn, enum memmap_context context) 3213 { 3214 struct page *page; 3215 unsigned long end_pfn = start_pfn + size; 3216 unsigned long pfn; 3217 struct zone *z; 3218 3219 if (highest_memmap_pfn < end_pfn - 1) 3220 highest_memmap_pfn = end_pfn - 1; 3221 3222 z = &NODE_DATA(nid)->node_zones[zone]; 3223 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3224 /* 3225 * There can be holes in boot-time mem_map[]s 3226 * handed to this function. They do not 3227 * exist on hotplugged memory. 3228 */ 3229 if (context == MEMMAP_EARLY) { 3230 if (!early_pfn_valid(pfn)) 3231 continue; 3232 if (!early_pfn_in_nid(pfn, nid)) 3233 continue; 3234 } 3235 page = pfn_to_page(pfn); 3236 set_page_links(page, zone, nid, pfn); 3237 mminit_verify_page_links(page, zone, nid, pfn); 3238 init_page_count(page); 3239 reset_page_mapcount(page); 3240 SetPageReserved(page); 3241 /* 3242 * Mark the block movable so that blocks are reserved for 3243 * movable at startup. This will force kernel allocations 3244 * to reserve their blocks rather than leaking throughout 3245 * the address space during boot when many long-lived 3246 * kernel allocations are made. Later some blocks near 3247 * the start are marked MIGRATE_RESERVE by 3248 * setup_zone_migrate_reserve() 3249 * 3250 * bitmap is created for zone's valid pfn range. but memmap 3251 * can be created for invalid pages (for alignment) 3252 * check here not to call set_pageblock_migratetype() against 3253 * pfn out of zone. 3254 */ 3255 if ((z->zone_start_pfn <= pfn) 3256 && (pfn < z->zone_start_pfn + z->spanned_pages) 3257 && !(pfn & (pageblock_nr_pages - 1))) 3258 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3259 3260 INIT_LIST_HEAD(&page->lru); 3261 #ifdef WANT_PAGE_VIRTUAL 3262 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3263 if (!is_highmem_idx(zone)) 3264 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3265 #endif 3266 } 3267 } 3268 3269 static void __meminit zone_init_free_lists(struct zone *zone) 3270 { 3271 int order, t; 3272 for_each_migratetype_order(order, t) { 3273 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3274 zone->free_area[order].nr_free = 0; 3275 } 3276 } 3277 3278 #ifndef __HAVE_ARCH_MEMMAP_INIT 3279 #define memmap_init(size, nid, zone, start_pfn) \ 3280 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3281 #endif 3282 3283 static int zone_batchsize(struct zone *zone) 3284 { 3285 #ifdef CONFIG_MMU 3286 int batch; 3287 3288 /* 3289 * The per-cpu-pages pools are set to around 1000th of the 3290 * size of the zone. But no more than 1/2 of a meg. 3291 * 3292 * OK, so we don't know how big the cache is. So guess. 3293 */ 3294 batch = zone->present_pages / 1024; 3295 if (batch * PAGE_SIZE > 512 * 1024) 3296 batch = (512 * 1024) / PAGE_SIZE; 3297 batch /= 4; /* We effectively *= 4 below */ 3298 if (batch < 1) 3299 batch = 1; 3300 3301 /* 3302 * Clamp the batch to a 2^n - 1 value. Having a power 3303 * of 2 value was found to be more likely to have 3304 * suboptimal cache aliasing properties in some cases. 3305 * 3306 * For example if 2 tasks are alternately allocating 3307 * batches of pages, one task can end up with a lot 3308 * of pages of one half of the possible page colors 3309 * and the other with pages of the other colors. 3310 */ 3311 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3312 3313 return batch; 3314 3315 #else 3316 /* The deferral and batching of frees should be suppressed under NOMMU 3317 * conditions. 3318 * 3319 * The problem is that NOMMU needs to be able to allocate large chunks 3320 * of contiguous memory as there's no hardware page translation to 3321 * assemble apparent contiguous memory from discontiguous pages. 3322 * 3323 * Queueing large contiguous runs of pages for batching, however, 3324 * causes the pages to actually be freed in smaller chunks. As there 3325 * can be a significant delay between the individual batches being 3326 * recycled, this leads to the once large chunks of space being 3327 * fragmented and becoming unavailable for high-order allocations. 3328 */ 3329 return 0; 3330 #endif 3331 } 3332 3333 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3334 { 3335 struct per_cpu_pages *pcp; 3336 int migratetype; 3337 3338 memset(p, 0, sizeof(*p)); 3339 3340 pcp = &p->pcp; 3341 pcp->count = 0; 3342 pcp->high = 6 * batch; 3343 pcp->batch = max(1UL, 1 * batch); 3344 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3345 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3346 } 3347 3348 /* 3349 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3350 * to the value high for the pageset p. 3351 */ 3352 3353 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3354 unsigned long high) 3355 { 3356 struct per_cpu_pages *pcp; 3357 3358 pcp = &p->pcp; 3359 pcp->high = high; 3360 pcp->batch = max(1UL, high/4); 3361 if ((high/4) > (PAGE_SHIFT * 8)) 3362 pcp->batch = PAGE_SHIFT * 8; 3363 } 3364 3365 static __meminit void setup_zone_pageset(struct zone *zone) 3366 { 3367 int cpu; 3368 3369 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3370 3371 for_each_possible_cpu(cpu) { 3372 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3373 3374 setup_pageset(pcp, zone_batchsize(zone)); 3375 3376 if (percpu_pagelist_fraction) 3377 setup_pagelist_highmark(pcp, 3378 (zone->present_pages / 3379 percpu_pagelist_fraction)); 3380 } 3381 } 3382 3383 /* 3384 * Allocate per cpu pagesets and initialize them. 3385 * Before this call only boot pagesets were available. 3386 */ 3387 void __init setup_per_cpu_pageset(void) 3388 { 3389 struct zone *zone; 3390 3391 for_each_populated_zone(zone) 3392 setup_zone_pageset(zone); 3393 } 3394 3395 static noinline __init_refok 3396 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3397 { 3398 int i; 3399 struct pglist_data *pgdat = zone->zone_pgdat; 3400 size_t alloc_size; 3401 3402 /* 3403 * The per-page waitqueue mechanism uses hashed waitqueues 3404 * per zone. 3405 */ 3406 zone->wait_table_hash_nr_entries = 3407 wait_table_hash_nr_entries(zone_size_pages); 3408 zone->wait_table_bits = 3409 wait_table_bits(zone->wait_table_hash_nr_entries); 3410 alloc_size = zone->wait_table_hash_nr_entries 3411 * sizeof(wait_queue_head_t); 3412 3413 if (!slab_is_available()) { 3414 zone->wait_table = (wait_queue_head_t *) 3415 alloc_bootmem_node(pgdat, alloc_size); 3416 } else { 3417 /* 3418 * This case means that a zone whose size was 0 gets new memory 3419 * via memory hot-add. 3420 * But it may be the case that a new node was hot-added. In 3421 * this case vmalloc() will not be able to use this new node's 3422 * memory - this wait_table must be initialized to use this new 3423 * node itself as well. 3424 * To use this new node's memory, further consideration will be 3425 * necessary. 3426 */ 3427 zone->wait_table = vmalloc(alloc_size); 3428 } 3429 if (!zone->wait_table) 3430 return -ENOMEM; 3431 3432 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 3433 init_waitqueue_head(zone->wait_table + i); 3434 3435 return 0; 3436 } 3437 3438 static int __zone_pcp_update(void *data) 3439 { 3440 struct zone *zone = data; 3441 int cpu; 3442 unsigned long batch = zone_batchsize(zone), flags; 3443 3444 for_each_possible_cpu(cpu) { 3445 struct per_cpu_pageset *pset; 3446 struct per_cpu_pages *pcp; 3447 3448 pset = per_cpu_ptr(zone->pageset, cpu); 3449 pcp = &pset->pcp; 3450 3451 local_irq_save(flags); 3452 free_pcppages_bulk(zone, pcp->count, pcp); 3453 setup_pageset(pset, batch); 3454 local_irq_restore(flags); 3455 } 3456 return 0; 3457 } 3458 3459 void zone_pcp_update(struct zone *zone) 3460 { 3461 stop_machine(__zone_pcp_update, zone, NULL); 3462 } 3463 3464 static __meminit void zone_pcp_init(struct zone *zone) 3465 { 3466 /* 3467 * per cpu subsystem is not up at this point. The following code 3468 * relies on the ability of the linker to provide the 3469 * offset of a (static) per cpu variable into the per cpu area. 3470 */ 3471 zone->pageset = &boot_pageset; 3472 3473 if (zone->present_pages) 3474 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 3475 zone->name, zone->present_pages, 3476 zone_batchsize(zone)); 3477 } 3478 3479 __meminit int init_currently_empty_zone(struct zone *zone, 3480 unsigned long zone_start_pfn, 3481 unsigned long size, 3482 enum memmap_context context) 3483 { 3484 struct pglist_data *pgdat = zone->zone_pgdat; 3485 int ret; 3486 ret = zone_wait_table_init(zone, size); 3487 if (ret) 3488 return ret; 3489 pgdat->nr_zones = zone_idx(zone) + 1; 3490 3491 zone->zone_start_pfn = zone_start_pfn; 3492 3493 mminit_dprintk(MMINIT_TRACE, "memmap_init", 3494 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 3495 pgdat->node_id, 3496 (unsigned long)zone_idx(zone), 3497 zone_start_pfn, (zone_start_pfn + size)); 3498 3499 zone_init_free_lists(zone); 3500 3501 return 0; 3502 } 3503 3504 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 3505 /* 3506 * Basic iterator support. Return the first range of PFNs for a node 3507 * Note: nid == MAX_NUMNODES returns first region regardless of node 3508 */ 3509 static int __meminit first_active_region_index_in_nid(int nid) 3510 { 3511 int i; 3512 3513 for (i = 0; i < nr_nodemap_entries; i++) 3514 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid) 3515 return i; 3516 3517 return -1; 3518 } 3519 3520 /* 3521 * Basic iterator support. Return the next active range of PFNs for a node 3522 * Note: nid == MAX_NUMNODES returns next region regardless of node 3523 */ 3524 static int __meminit next_active_region_index_in_nid(int index, int nid) 3525 { 3526 for (index = index + 1; index < nr_nodemap_entries; index++) 3527 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid) 3528 return index; 3529 3530 return -1; 3531 } 3532 3533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 3534 /* 3535 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 3536 * Architectures may implement their own version but if add_active_range() 3537 * was used and there are no special requirements, this is a convenient 3538 * alternative 3539 */ 3540 int __meminit __early_pfn_to_nid(unsigned long pfn) 3541 { 3542 int i; 3543 3544 for (i = 0; i < nr_nodemap_entries; i++) { 3545 unsigned long start_pfn = early_node_map[i].start_pfn; 3546 unsigned long end_pfn = early_node_map[i].end_pfn; 3547 3548 if (start_pfn <= pfn && pfn < end_pfn) 3549 return early_node_map[i].nid; 3550 } 3551 /* This is a memory hole */ 3552 return -1; 3553 } 3554 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 3555 3556 int __meminit early_pfn_to_nid(unsigned long pfn) 3557 { 3558 int nid; 3559 3560 nid = __early_pfn_to_nid(pfn); 3561 if (nid >= 0) 3562 return nid; 3563 /* just returns 0 */ 3564 return 0; 3565 } 3566 3567 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 3568 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 3569 { 3570 int nid; 3571 3572 nid = __early_pfn_to_nid(pfn); 3573 if (nid >= 0 && nid != node) 3574 return false; 3575 return true; 3576 } 3577 #endif 3578 3579 /* Basic iterator support to walk early_node_map[] */ 3580 #define for_each_active_range_index_in_nid(i, nid) \ 3581 for (i = first_active_region_index_in_nid(nid); i != -1; \ 3582 i = next_active_region_index_in_nid(i, nid)) 3583 3584 /** 3585 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 3586 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 3587 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 3588 * 3589 * If an architecture guarantees that all ranges registered with 3590 * add_active_ranges() contain no holes and may be freed, this 3591 * this function may be used instead of calling free_bootmem() manually. 3592 */ 3593 void __init free_bootmem_with_active_regions(int nid, 3594 unsigned long max_low_pfn) 3595 { 3596 int i; 3597 3598 for_each_active_range_index_in_nid(i, nid) { 3599 unsigned long size_pages = 0; 3600 unsigned long end_pfn = early_node_map[i].end_pfn; 3601 3602 if (early_node_map[i].start_pfn >= max_low_pfn) 3603 continue; 3604 3605 if (end_pfn > max_low_pfn) 3606 end_pfn = max_low_pfn; 3607 3608 size_pages = end_pfn - early_node_map[i].start_pfn; 3609 free_bootmem_node(NODE_DATA(early_node_map[i].nid), 3610 PFN_PHYS(early_node_map[i].start_pfn), 3611 size_pages << PAGE_SHIFT); 3612 } 3613 } 3614 3615 int __init add_from_early_node_map(struct range *range, int az, 3616 int nr_range, int nid) 3617 { 3618 int i; 3619 u64 start, end; 3620 3621 /* need to go over early_node_map to find out good range for node */ 3622 for_each_active_range_index_in_nid(i, nid) { 3623 start = early_node_map[i].start_pfn; 3624 end = early_node_map[i].end_pfn; 3625 nr_range = add_range(range, az, nr_range, start, end); 3626 } 3627 return nr_range; 3628 } 3629 3630 #ifdef CONFIG_NO_BOOTMEM 3631 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align, 3632 u64 goal, u64 limit) 3633 { 3634 int i; 3635 void *ptr; 3636 3637 /* need to go over early_node_map to find out good range for node */ 3638 for_each_active_range_index_in_nid(i, nid) { 3639 u64 addr; 3640 u64 ei_start, ei_last; 3641 3642 ei_last = early_node_map[i].end_pfn; 3643 ei_last <<= PAGE_SHIFT; 3644 ei_start = early_node_map[i].start_pfn; 3645 ei_start <<= PAGE_SHIFT; 3646 addr = find_early_area(ei_start, ei_last, 3647 goal, limit, size, align); 3648 3649 if (addr == -1ULL) 3650 continue; 3651 3652 #if 0 3653 printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n", 3654 nid, 3655 ei_start, ei_last, goal, limit, size, 3656 align, addr); 3657 #endif 3658 3659 ptr = phys_to_virt(addr); 3660 memset(ptr, 0, size); 3661 reserve_early_without_check(addr, addr + size, "BOOTMEM"); 3662 return ptr; 3663 } 3664 3665 return NULL; 3666 } 3667 #endif 3668 3669 3670 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data) 3671 { 3672 int i; 3673 int ret; 3674 3675 for_each_active_range_index_in_nid(i, nid) { 3676 ret = work_fn(early_node_map[i].start_pfn, 3677 early_node_map[i].end_pfn, data); 3678 if (ret) 3679 break; 3680 } 3681 } 3682 /** 3683 * sparse_memory_present_with_active_regions - Call memory_present for each active range 3684 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 3685 * 3686 * If an architecture guarantees that all ranges registered with 3687 * add_active_ranges() contain no holes and may be freed, this 3688 * function may be used instead of calling memory_present() manually. 3689 */ 3690 void __init sparse_memory_present_with_active_regions(int nid) 3691 { 3692 int i; 3693 3694 for_each_active_range_index_in_nid(i, nid) 3695 memory_present(early_node_map[i].nid, 3696 early_node_map[i].start_pfn, 3697 early_node_map[i].end_pfn); 3698 } 3699 3700 /** 3701 * get_pfn_range_for_nid - Return the start and end page frames for a node 3702 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 3703 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 3704 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 3705 * 3706 * It returns the start and end page frame of a node based on information 3707 * provided by an arch calling add_active_range(). If called for a node 3708 * with no available memory, a warning is printed and the start and end 3709 * PFNs will be 0. 3710 */ 3711 void __meminit get_pfn_range_for_nid(unsigned int nid, 3712 unsigned long *start_pfn, unsigned long *end_pfn) 3713 { 3714 int i; 3715 *start_pfn = -1UL; 3716 *end_pfn = 0; 3717 3718 for_each_active_range_index_in_nid(i, nid) { 3719 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn); 3720 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn); 3721 } 3722 3723 if (*start_pfn == -1UL) 3724 *start_pfn = 0; 3725 } 3726 3727 /* 3728 * This finds a zone that can be used for ZONE_MOVABLE pages. The 3729 * assumption is made that zones within a node are ordered in monotonic 3730 * increasing memory addresses so that the "highest" populated zone is used 3731 */ 3732 static void __init find_usable_zone_for_movable(void) 3733 { 3734 int zone_index; 3735 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 3736 if (zone_index == ZONE_MOVABLE) 3737 continue; 3738 3739 if (arch_zone_highest_possible_pfn[zone_index] > 3740 arch_zone_lowest_possible_pfn[zone_index]) 3741 break; 3742 } 3743 3744 VM_BUG_ON(zone_index == -1); 3745 movable_zone = zone_index; 3746 } 3747 3748 /* 3749 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 3750 * because it is sized independant of architecture. Unlike the other zones, 3751 * the starting point for ZONE_MOVABLE is not fixed. It may be different 3752 * in each node depending on the size of each node and how evenly kernelcore 3753 * is distributed. This helper function adjusts the zone ranges 3754 * provided by the architecture for a given node by using the end of the 3755 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 3756 * zones within a node are in order of monotonic increases memory addresses 3757 */ 3758 static void __meminit adjust_zone_range_for_zone_movable(int nid, 3759 unsigned long zone_type, 3760 unsigned long node_start_pfn, 3761 unsigned long node_end_pfn, 3762 unsigned long *zone_start_pfn, 3763 unsigned long *zone_end_pfn) 3764 { 3765 /* Only adjust if ZONE_MOVABLE is on this node */ 3766 if (zone_movable_pfn[nid]) { 3767 /* Size ZONE_MOVABLE */ 3768 if (zone_type == ZONE_MOVABLE) { 3769 *zone_start_pfn = zone_movable_pfn[nid]; 3770 *zone_end_pfn = min(node_end_pfn, 3771 arch_zone_highest_possible_pfn[movable_zone]); 3772 3773 /* Adjust for ZONE_MOVABLE starting within this range */ 3774 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 3775 *zone_end_pfn > zone_movable_pfn[nid]) { 3776 *zone_end_pfn = zone_movable_pfn[nid]; 3777 3778 /* Check if this whole range is within ZONE_MOVABLE */ 3779 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 3780 *zone_start_pfn = *zone_end_pfn; 3781 } 3782 } 3783 3784 /* 3785 * Return the number of pages a zone spans in a node, including holes 3786 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 3787 */ 3788 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 3789 unsigned long zone_type, 3790 unsigned long *ignored) 3791 { 3792 unsigned long node_start_pfn, node_end_pfn; 3793 unsigned long zone_start_pfn, zone_end_pfn; 3794 3795 /* Get the start and end of the node and zone */ 3796 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3797 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 3798 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 3799 adjust_zone_range_for_zone_movable(nid, zone_type, 3800 node_start_pfn, node_end_pfn, 3801 &zone_start_pfn, &zone_end_pfn); 3802 3803 /* Check that this node has pages within the zone's required range */ 3804 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 3805 return 0; 3806 3807 /* Move the zone boundaries inside the node if necessary */ 3808 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 3809 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 3810 3811 /* Return the spanned pages */ 3812 return zone_end_pfn - zone_start_pfn; 3813 } 3814 3815 /* 3816 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 3817 * then all holes in the requested range will be accounted for. 3818 */ 3819 unsigned long __meminit __absent_pages_in_range(int nid, 3820 unsigned long range_start_pfn, 3821 unsigned long range_end_pfn) 3822 { 3823 int i = 0; 3824 unsigned long prev_end_pfn = 0, hole_pages = 0; 3825 unsigned long start_pfn; 3826 3827 /* Find the end_pfn of the first active range of pfns in the node */ 3828 i = first_active_region_index_in_nid(nid); 3829 if (i == -1) 3830 return 0; 3831 3832 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3833 3834 /* Account for ranges before physical memory on this node */ 3835 if (early_node_map[i].start_pfn > range_start_pfn) 3836 hole_pages = prev_end_pfn - range_start_pfn; 3837 3838 /* Find all holes for the zone within the node */ 3839 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) { 3840 3841 /* No need to continue if prev_end_pfn is outside the zone */ 3842 if (prev_end_pfn >= range_end_pfn) 3843 break; 3844 3845 /* Make sure the end of the zone is not within the hole */ 3846 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn); 3847 prev_end_pfn = max(prev_end_pfn, range_start_pfn); 3848 3849 /* Update the hole size cound and move on */ 3850 if (start_pfn > range_start_pfn) { 3851 BUG_ON(prev_end_pfn > start_pfn); 3852 hole_pages += start_pfn - prev_end_pfn; 3853 } 3854 prev_end_pfn = early_node_map[i].end_pfn; 3855 } 3856 3857 /* Account for ranges past physical memory on this node */ 3858 if (range_end_pfn > prev_end_pfn) 3859 hole_pages += range_end_pfn - 3860 max(range_start_pfn, prev_end_pfn); 3861 3862 return hole_pages; 3863 } 3864 3865 /** 3866 * absent_pages_in_range - Return number of page frames in holes within a range 3867 * @start_pfn: The start PFN to start searching for holes 3868 * @end_pfn: The end PFN to stop searching for holes 3869 * 3870 * It returns the number of pages frames in memory holes within a range. 3871 */ 3872 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 3873 unsigned long end_pfn) 3874 { 3875 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 3876 } 3877 3878 /* Return the number of page frames in holes in a zone on a node */ 3879 static unsigned long __meminit zone_absent_pages_in_node(int nid, 3880 unsigned long zone_type, 3881 unsigned long *ignored) 3882 { 3883 unsigned long node_start_pfn, node_end_pfn; 3884 unsigned long zone_start_pfn, zone_end_pfn; 3885 3886 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 3887 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type], 3888 node_start_pfn); 3889 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type], 3890 node_end_pfn); 3891 3892 adjust_zone_range_for_zone_movable(nid, zone_type, 3893 node_start_pfn, node_end_pfn, 3894 &zone_start_pfn, &zone_end_pfn); 3895 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 3896 } 3897 3898 #else 3899 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 3900 unsigned long zone_type, 3901 unsigned long *zones_size) 3902 { 3903 return zones_size[zone_type]; 3904 } 3905 3906 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 3907 unsigned long zone_type, 3908 unsigned long *zholes_size) 3909 { 3910 if (!zholes_size) 3911 return 0; 3912 3913 return zholes_size[zone_type]; 3914 } 3915 3916 #endif 3917 3918 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 3919 unsigned long *zones_size, unsigned long *zholes_size) 3920 { 3921 unsigned long realtotalpages, totalpages = 0; 3922 enum zone_type i; 3923 3924 for (i = 0; i < MAX_NR_ZONES; i++) 3925 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 3926 zones_size); 3927 pgdat->node_spanned_pages = totalpages; 3928 3929 realtotalpages = totalpages; 3930 for (i = 0; i < MAX_NR_ZONES; i++) 3931 realtotalpages -= 3932 zone_absent_pages_in_node(pgdat->node_id, i, 3933 zholes_size); 3934 pgdat->node_present_pages = realtotalpages; 3935 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 3936 realtotalpages); 3937 } 3938 3939 #ifndef CONFIG_SPARSEMEM 3940 /* 3941 * Calculate the size of the zone->blockflags rounded to an unsigned long 3942 * Start by making sure zonesize is a multiple of pageblock_order by rounding 3943 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 3944 * round what is now in bits to nearest long in bits, then return it in 3945 * bytes. 3946 */ 3947 static unsigned long __init usemap_size(unsigned long zonesize) 3948 { 3949 unsigned long usemapsize; 3950 3951 usemapsize = roundup(zonesize, pageblock_nr_pages); 3952 usemapsize = usemapsize >> pageblock_order; 3953 usemapsize *= NR_PAGEBLOCK_BITS; 3954 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 3955 3956 return usemapsize / 8; 3957 } 3958 3959 static void __init setup_usemap(struct pglist_data *pgdat, 3960 struct zone *zone, unsigned long zonesize) 3961 { 3962 unsigned long usemapsize = usemap_size(zonesize); 3963 zone->pageblock_flags = NULL; 3964 if (usemapsize) 3965 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize); 3966 } 3967 #else 3968 static void inline setup_usemap(struct pglist_data *pgdat, 3969 struct zone *zone, unsigned long zonesize) {} 3970 #endif /* CONFIG_SPARSEMEM */ 3971 3972 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 3973 3974 /* Return a sensible default order for the pageblock size. */ 3975 static inline int pageblock_default_order(void) 3976 { 3977 if (HPAGE_SHIFT > PAGE_SHIFT) 3978 return HUGETLB_PAGE_ORDER; 3979 3980 return MAX_ORDER-1; 3981 } 3982 3983 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 3984 static inline void __init set_pageblock_order(unsigned int order) 3985 { 3986 /* Check that pageblock_nr_pages has not already been setup */ 3987 if (pageblock_order) 3988 return; 3989 3990 /* 3991 * Assume the largest contiguous order of interest is a huge page. 3992 * This value may be variable depending on boot parameters on IA64 3993 */ 3994 pageblock_order = order; 3995 } 3996 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 3997 3998 /* 3999 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4000 * and pageblock_default_order() are unused as pageblock_order is set 4001 * at compile-time. See include/linux/pageblock-flags.h for the values of 4002 * pageblock_order based on the kernel config 4003 */ 4004 static inline int pageblock_default_order(unsigned int order) 4005 { 4006 return MAX_ORDER-1; 4007 } 4008 #define set_pageblock_order(x) do {} while (0) 4009 4010 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4011 4012 /* 4013 * Set up the zone data structures: 4014 * - mark all pages reserved 4015 * - mark all memory queues empty 4016 * - clear the memory bitmaps 4017 */ 4018 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4019 unsigned long *zones_size, unsigned long *zholes_size) 4020 { 4021 enum zone_type j; 4022 int nid = pgdat->node_id; 4023 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4024 int ret; 4025 4026 pgdat_resize_init(pgdat); 4027 pgdat->nr_zones = 0; 4028 init_waitqueue_head(&pgdat->kswapd_wait); 4029 pgdat->kswapd_max_order = 0; 4030 pgdat_page_cgroup_init(pgdat); 4031 4032 for (j = 0; j < MAX_NR_ZONES; j++) { 4033 struct zone *zone = pgdat->node_zones + j; 4034 unsigned long size, realsize, memmap_pages; 4035 enum lru_list l; 4036 4037 size = zone_spanned_pages_in_node(nid, j, zones_size); 4038 realsize = size - zone_absent_pages_in_node(nid, j, 4039 zholes_size); 4040 4041 /* 4042 * Adjust realsize so that it accounts for how much memory 4043 * is used by this zone for memmap. This affects the watermark 4044 * and per-cpu initialisations 4045 */ 4046 memmap_pages = 4047 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4048 if (realsize >= memmap_pages) { 4049 realsize -= memmap_pages; 4050 if (memmap_pages) 4051 printk(KERN_DEBUG 4052 " %s zone: %lu pages used for memmap\n", 4053 zone_names[j], memmap_pages); 4054 } else 4055 printk(KERN_WARNING 4056 " %s zone: %lu pages exceeds realsize %lu\n", 4057 zone_names[j], memmap_pages, realsize); 4058 4059 /* Account for reserved pages */ 4060 if (j == 0 && realsize > dma_reserve) { 4061 realsize -= dma_reserve; 4062 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4063 zone_names[0], dma_reserve); 4064 } 4065 4066 if (!is_highmem_idx(j)) 4067 nr_kernel_pages += realsize; 4068 nr_all_pages += realsize; 4069 4070 zone->spanned_pages = size; 4071 zone->present_pages = realsize; 4072 #ifdef CONFIG_NUMA 4073 zone->node = nid; 4074 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4075 / 100; 4076 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4077 #endif 4078 zone->name = zone_names[j]; 4079 spin_lock_init(&zone->lock); 4080 spin_lock_init(&zone->lru_lock); 4081 zone_seqlock_init(zone); 4082 zone->zone_pgdat = pgdat; 4083 4084 zone->prev_priority = DEF_PRIORITY; 4085 4086 zone_pcp_init(zone); 4087 for_each_lru(l) { 4088 INIT_LIST_HEAD(&zone->lru[l].list); 4089 zone->reclaim_stat.nr_saved_scan[l] = 0; 4090 } 4091 zone->reclaim_stat.recent_rotated[0] = 0; 4092 zone->reclaim_stat.recent_rotated[1] = 0; 4093 zone->reclaim_stat.recent_scanned[0] = 0; 4094 zone->reclaim_stat.recent_scanned[1] = 0; 4095 zap_zone_vm_stats(zone); 4096 zone->flags = 0; 4097 if (!size) 4098 continue; 4099 4100 set_pageblock_order(pageblock_default_order()); 4101 setup_usemap(pgdat, zone, size); 4102 ret = init_currently_empty_zone(zone, zone_start_pfn, 4103 size, MEMMAP_EARLY); 4104 BUG_ON(ret); 4105 memmap_init(size, nid, j, zone_start_pfn); 4106 zone_start_pfn += size; 4107 } 4108 } 4109 4110 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4111 { 4112 /* Skip empty nodes */ 4113 if (!pgdat->node_spanned_pages) 4114 return; 4115 4116 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4117 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4118 if (!pgdat->node_mem_map) { 4119 unsigned long size, start, end; 4120 struct page *map; 4121 4122 /* 4123 * The zone's endpoints aren't required to be MAX_ORDER 4124 * aligned but the node_mem_map endpoints must be in order 4125 * for the buddy allocator to function correctly. 4126 */ 4127 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4128 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4129 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4130 size = (end - start) * sizeof(struct page); 4131 map = alloc_remap(pgdat->node_id, size); 4132 if (!map) 4133 map = alloc_bootmem_node(pgdat, size); 4134 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4135 } 4136 #ifndef CONFIG_NEED_MULTIPLE_NODES 4137 /* 4138 * With no DISCONTIG, the global mem_map is just set as node 0's 4139 */ 4140 if (pgdat == NODE_DATA(0)) { 4141 mem_map = NODE_DATA(0)->node_mem_map; 4142 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4143 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4144 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4145 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4146 } 4147 #endif 4148 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4149 } 4150 4151 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4152 unsigned long node_start_pfn, unsigned long *zholes_size) 4153 { 4154 pg_data_t *pgdat = NODE_DATA(nid); 4155 4156 pgdat->node_id = nid; 4157 pgdat->node_start_pfn = node_start_pfn; 4158 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4159 4160 alloc_node_mem_map(pgdat); 4161 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4162 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4163 nid, (unsigned long)pgdat, 4164 (unsigned long)pgdat->node_mem_map); 4165 #endif 4166 4167 free_area_init_core(pgdat, zones_size, zholes_size); 4168 } 4169 4170 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 4171 4172 #if MAX_NUMNODES > 1 4173 /* 4174 * Figure out the number of possible node ids. 4175 */ 4176 static void __init setup_nr_node_ids(void) 4177 { 4178 unsigned int node; 4179 unsigned int highest = 0; 4180 4181 for_each_node_mask(node, node_possible_map) 4182 highest = node; 4183 nr_node_ids = highest + 1; 4184 } 4185 #else 4186 static inline void setup_nr_node_ids(void) 4187 { 4188 } 4189 #endif 4190 4191 /** 4192 * add_active_range - Register a range of PFNs backed by physical memory 4193 * @nid: The node ID the range resides on 4194 * @start_pfn: The start PFN of the available physical memory 4195 * @end_pfn: The end PFN of the available physical memory 4196 * 4197 * These ranges are stored in an early_node_map[] and later used by 4198 * free_area_init_nodes() to calculate zone sizes and holes. If the 4199 * range spans a memory hole, it is up to the architecture to ensure 4200 * the memory is not freed by the bootmem allocator. If possible 4201 * the range being registered will be merged with existing ranges. 4202 */ 4203 void __init add_active_range(unsigned int nid, unsigned long start_pfn, 4204 unsigned long end_pfn) 4205 { 4206 int i; 4207 4208 mminit_dprintk(MMINIT_TRACE, "memory_register", 4209 "Entering add_active_range(%d, %#lx, %#lx) " 4210 "%d entries of %d used\n", 4211 nid, start_pfn, end_pfn, 4212 nr_nodemap_entries, MAX_ACTIVE_REGIONS); 4213 4214 mminit_validate_memmodel_limits(&start_pfn, &end_pfn); 4215 4216 /* Merge with existing active regions if possible */ 4217 for (i = 0; i < nr_nodemap_entries; i++) { 4218 if (early_node_map[i].nid != nid) 4219 continue; 4220 4221 /* Skip if an existing region covers this new one */ 4222 if (start_pfn >= early_node_map[i].start_pfn && 4223 end_pfn <= early_node_map[i].end_pfn) 4224 return; 4225 4226 /* Merge forward if suitable */ 4227 if (start_pfn <= early_node_map[i].end_pfn && 4228 end_pfn > early_node_map[i].end_pfn) { 4229 early_node_map[i].end_pfn = end_pfn; 4230 return; 4231 } 4232 4233 /* Merge backward if suitable */ 4234 if (start_pfn < early_node_map[i].start_pfn && 4235 end_pfn >= early_node_map[i].start_pfn) { 4236 early_node_map[i].start_pfn = start_pfn; 4237 return; 4238 } 4239 } 4240 4241 /* Check that early_node_map is large enough */ 4242 if (i >= MAX_ACTIVE_REGIONS) { 4243 printk(KERN_CRIT "More than %d memory regions, truncating\n", 4244 MAX_ACTIVE_REGIONS); 4245 return; 4246 } 4247 4248 early_node_map[i].nid = nid; 4249 early_node_map[i].start_pfn = start_pfn; 4250 early_node_map[i].end_pfn = end_pfn; 4251 nr_nodemap_entries = i + 1; 4252 } 4253 4254 /** 4255 * remove_active_range - Shrink an existing registered range of PFNs 4256 * @nid: The node id the range is on that should be shrunk 4257 * @start_pfn: The new PFN of the range 4258 * @end_pfn: The new PFN of the range 4259 * 4260 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node. 4261 * The map is kept near the end physical page range that has already been 4262 * registered. This function allows an arch to shrink an existing registered 4263 * range. 4264 */ 4265 void __init remove_active_range(unsigned int nid, unsigned long start_pfn, 4266 unsigned long end_pfn) 4267 { 4268 int i, j; 4269 int removed = 0; 4270 4271 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n", 4272 nid, start_pfn, end_pfn); 4273 4274 /* Find the old active region end and shrink */ 4275 for_each_active_range_index_in_nid(i, nid) { 4276 if (early_node_map[i].start_pfn >= start_pfn && 4277 early_node_map[i].end_pfn <= end_pfn) { 4278 /* clear it */ 4279 early_node_map[i].start_pfn = 0; 4280 early_node_map[i].end_pfn = 0; 4281 removed = 1; 4282 continue; 4283 } 4284 if (early_node_map[i].start_pfn < start_pfn && 4285 early_node_map[i].end_pfn > start_pfn) { 4286 unsigned long temp_end_pfn = early_node_map[i].end_pfn; 4287 early_node_map[i].end_pfn = start_pfn; 4288 if (temp_end_pfn > end_pfn) 4289 add_active_range(nid, end_pfn, temp_end_pfn); 4290 continue; 4291 } 4292 if (early_node_map[i].start_pfn >= start_pfn && 4293 early_node_map[i].end_pfn > end_pfn && 4294 early_node_map[i].start_pfn < end_pfn) { 4295 early_node_map[i].start_pfn = end_pfn; 4296 continue; 4297 } 4298 } 4299 4300 if (!removed) 4301 return; 4302 4303 /* remove the blank ones */ 4304 for (i = nr_nodemap_entries - 1; i > 0; i--) { 4305 if (early_node_map[i].nid != nid) 4306 continue; 4307 if (early_node_map[i].end_pfn) 4308 continue; 4309 /* we found it, get rid of it */ 4310 for (j = i; j < nr_nodemap_entries - 1; j++) 4311 memcpy(&early_node_map[j], &early_node_map[j+1], 4312 sizeof(early_node_map[j])); 4313 j = nr_nodemap_entries - 1; 4314 memset(&early_node_map[j], 0, sizeof(early_node_map[j])); 4315 nr_nodemap_entries--; 4316 } 4317 } 4318 4319 /** 4320 * remove_all_active_ranges - Remove all currently registered regions 4321 * 4322 * During discovery, it may be found that a table like SRAT is invalid 4323 * and an alternative discovery method must be used. This function removes 4324 * all currently registered regions. 4325 */ 4326 void __init remove_all_active_ranges(void) 4327 { 4328 memset(early_node_map, 0, sizeof(early_node_map)); 4329 nr_nodemap_entries = 0; 4330 } 4331 4332 /* Compare two active node_active_regions */ 4333 static int __init cmp_node_active_region(const void *a, const void *b) 4334 { 4335 struct node_active_region *arange = (struct node_active_region *)a; 4336 struct node_active_region *brange = (struct node_active_region *)b; 4337 4338 /* Done this way to avoid overflows */ 4339 if (arange->start_pfn > brange->start_pfn) 4340 return 1; 4341 if (arange->start_pfn < brange->start_pfn) 4342 return -1; 4343 4344 return 0; 4345 } 4346 4347 /* sort the node_map by start_pfn */ 4348 void __init sort_node_map(void) 4349 { 4350 sort(early_node_map, (size_t)nr_nodemap_entries, 4351 sizeof(struct node_active_region), 4352 cmp_node_active_region, NULL); 4353 } 4354 4355 /* Find the lowest pfn for a node */ 4356 static unsigned long __init find_min_pfn_for_node(int nid) 4357 { 4358 int i; 4359 unsigned long min_pfn = ULONG_MAX; 4360 4361 /* Assuming a sorted map, the first range found has the starting pfn */ 4362 for_each_active_range_index_in_nid(i, nid) 4363 min_pfn = min(min_pfn, early_node_map[i].start_pfn); 4364 4365 if (min_pfn == ULONG_MAX) { 4366 printk(KERN_WARNING 4367 "Could not find start_pfn for node %d\n", nid); 4368 return 0; 4369 } 4370 4371 return min_pfn; 4372 } 4373 4374 /** 4375 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4376 * 4377 * It returns the minimum PFN based on information provided via 4378 * add_active_range(). 4379 */ 4380 unsigned long __init find_min_pfn_with_active_regions(void) 4381 { 4382 return find_min_pfn_for_node(MAX_NUMNODES); 4383 } 4384 4385 /* 4386 * early_calculate_totalpages() 4387 * Sum pages in active regions for movable zone. 4388 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4389 */ 4390 static unsigned long __init early_calculate_totalpages(void) 4391 { 4392 int i; 4393 unsigned long totalpages = 0; 4394 4395 for (i = 0; i < nr_nodemap_entries; i++) { 4396 unsigned long pages = early_node_map[i].end_pfn - 4397 early_node_map[i].start_pfn; 4398 totalpages += pages; 4399 if (pages) 4400 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY); 4401 } 4402 return totalpages; 4403 } 4404 4405 /* 4406 * Find the PFN the Movable zone begins in each node. Kernel memory 4407 * is spread evenly between nodes as long as the nodes have enough 4408 * memory. When they don't, some nodes will have more kernelcore than 4409 * others 4410 */ 4411 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn) 4412 { 4413 int i, nid; 4414 unsigned long usable_startpfn; 4415 unsigned long kernelcore_node, kernelcore_remaining; 4416 /* save the state before borrow the nodemask */ 4417 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4418 unsigned long totalpages = early_calculate_totalpages(); 4419 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4420 4421 /* 4422 * If movablecore was specified, calculate what size of 4423 * kernelcore that corresponds so that memory usable for 4424 * any allocation type is evenly spread. If both kernelcore 4425 * and movablecore are specified, then the value of kernelcore 4426 * will be used for required_kernelcore if it's greater than 4427 * what movablecore would have allowed. 4428 */ 4429 if (required_movablecore) { 4430 unsigned long corepages; 4431 4432 /* 4433 * Round-up so that ZONE_MOVABLE is at least as large as what 4434 * was requested by the user 4435 */ 4436 required_movablecore = 4437 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4438 corepages = totalpages - required_movablecore; 4439 4440 required_kernelcore = max(required_kernelcore, corepages); 4441 } 4442 4443 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4444 if (!required_kernelcore) 4445 goto out; 4446 4447 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4448 find_usable_zone_for_movable(); 4449 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4450 4451 restart: 4452 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4453 kernelcore_node = required_kernelcore / usable_nodes; 4454 for_each_node_state(nid, N_HIGH_MEMORY) { 4455 /* 4456 * Recalculate kernelcore_node if the division per node 4457 * now exceeds what is necessary to satisfy the requested 4458 * amount of memory for the kernel 4459 */ 4460 if (required_kernelcore < kernelcore_node) 4461 kernelcore_node = required_kernelcore / usable_nodes; 4462 4463 /* 4464 * As the map is walked, we track how much memory is usable 4465 * by the kernel using kernelcore_remaining. When it is 4466 * 0, the rest of the node is usable by ZONE_MOVABLE 4467 */ 4468 kernelcore_remaining = kernelcore_node; 4469 4470 /* Go through each range of PFNs within this node */ 4471 for_each_active_range_index_in_nid(i, nid) { 4472 unsigned long start_pfn, end_pfn; 4473 unsigned long size_pages; 4474 4475 start_pfn = max(early_node_map[i].start_pfn, 4476 zone_movable_pfn[nid]); 4477 end_pfn = early_node_map[i].end_pfn; 4478 if (start_pfn >= end_pfn) 4479 continue; 4480 4481 /* Account for what is only usable for kernelcore */ 4482 if (start_pfn < usable_startpfn) { 4483 unsigned long kernel_pages; 4484 kernel_pages = min(end_pfn, usable_startpfn) 4485 - start_pfn; 4486 4487 kernelcore_remaining -= min(kernel_pages, 4488 kernelcore_remaining); 4489 required_kernelcore -= min(kernel_pages, 4490 required_kernelcore); 4491 4492 /* Continue if range is now fully accounted */ 4493 if (end_pfn <= usable_startpfn) { 4494 4495 /* 4496 * Push zone_movable_pfn to the end so 4497 * that if we have to rebalance 4498 * kernelcore across nodes, we will 4499 * not double account here 4500 */ 4501 zone_movable_pfn[nid] = end_pfn; 4502 continue; 4503 } 4504 start_pfn = usable_startpfn; 4505 } 4506 4507 /* 4508 * The usable PFN range for ZONE_MOVABLE is from 4509 * start_pfn->end_pfn. Calculate size_pages as the 4510 * number of pages used as kernelcore 4511 */ 4512 size_pages = end_pfn - start_pfn; 4513 if (size_pages > kernelcore_remaining) 4514 size_pages = kernelcore_remaining; 4515 zone_movable_pfn[nid] = start_pfn + size_pages; 4516 4517 /* 4518 * Some kernelcore has been met, update counts and 4519 * break if the kernelcore for this node has been 4520 * satisified 4521 */ 4522 required_kernelcore -= min(required_kernelcore, 4523 size_pages); 4524 kernelcore_remaining -= size_pages; 4525 if (!kernelcore_remaining) 4526 break; 4527 } 4528 } 4529 4530 /* 4531 * If there is still required_kernelcore, we do another pass with one 4532 * less node in the count. This will push zone_movable_pfn[nid] further 4533 * along on the nodes that still have memory until kernelcore is 4534 * satisified 4535 */ 4536 usable_nodes--; 4537 if (usable_nodes && required_kernelcore > usable_nodes) 4538 goto restart; 4539 4540 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4541 for (nid = 0; nid < MAX_NUMNODES; nid++) 4542 zone_movable_pfn[nid] = 4543 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4544 4545 out: 4546 /* restore the node_state */ 4547 node_states[N_HIGH_MEMORY] = saved_node_state; 4548 } 4549 4550 /* Any regular memory on that node ? */ 4551 static void check_for_regular_memory(pg_data_t *pgdat) 4552 { 4553 #ifdef CONFIG_HIGHMEM 4554 enum zone_type zone_type; 4555 4556 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4557 struct zone *zone = &pgdat->node_zones[zone_type]; 4558 if (zone->present_pages) 4559 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4560 } 4561 #endif 4562 } 4563 4564 /** 4565 * free_area_init_nodes - Initialise all pg_data_t and zone data 4566 * @max_zone_pfn: an array of max PFNs for each zone 4567 * 4568 * This will call free_area_init_node() for each active node in the system. 4569 * Using the page ranges provided by add_active_range(), the size of each 4570 * zone in each node and their holes is calculated. If the maximum PFN 4571 * between two adjacent zones match, it is assumed that the zone is empty. 4572 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4573 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4574 * starts where the previous one ended. For example, ZONE_DMA32 starts 4575 * at arch_max_dma_pfn. 4576 */ 4577 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4578 { 4579 unsigned long nid; 4580 int i; 4581 4582 /* Sort early_node_map as initialisation assumes it is sorted */ 4583 sort_node_map(); 4584 4585 /* Record where the zone boundaries are */ 4586 memset(arch_zone_lowest_possible_pfn, 0, 4587 sizeof(arch_zone_lowest_possible_pfn)); 4588 memset(arch_zone_highest_possible_pfn, 0, 4589 sizeof(arch_zone_highest_possible_pfn)); 4590 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4591 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4592 for (i = 1; i < MAX_NR_ZONES; i++) { 4593 if (i == ZONE_MOVABLE) 4594 continue; 4595 arch_zone_lowest_possible_pfn[i] = 4596 arch_zone_highest_possible_pfn[i-1]; 4597 arch_zone_highest_possible_pfn[i] = 4598 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4599 } 4600 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4601 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4602 4603 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4604 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4605 find_zone_movable_pfns_for_nodes(zone_movable_pfn); 4606 4607 /* Print out the zone ranges */ 4608 printk("Zone PFN ranges:\n"); 4609 for (i = 0; i < MAX_NR_ZONES; i++) { 4610 if (i == ZONE_MOVABLE) 4611 continue; 4612 printk(" %-8s ", zone_names[i]); 4613 if (arch_zone_lowest_possible_pfn[i] == 4614 arch_zone_highest_possible_pfn[i]) 4615 printk("empty\n"); 4616 else 4617 printk("%0#10lx -> %0#10lx\n", 4618 arch_zone_lowest_possible_pfn[i], 4619 arch_zone_highest_possible_pfn[i]); 4620 } 4621 4622 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4623 printk("Movable zone start PFN for each node\n"); 4624 for (i = 0; i < MAX_NUMNODES; i++) { 4625 if (zone_movable_pfn[i]) 4626 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]); 4627 } 4628 4629 /* Print out the early_node_map[] */ 4630 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries); 4631 for (i = 0; i < nr_nodemap_entries; i++) 4632 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid, 4633 early_node_map[i].start_pfn, 4634 early_node_map[i].end_pfn); 4635 4636 /* Initialise every node */ 4637 mminit_verify_pageflags_layout(); 4638 setup_nr_node_ids(); 4639 for_each_online_node(nid) { 4640 pg_data_t *pgdat = NODE_DATA(nid); 4641 free_area_init_node(nid, NULL, 4642 find_min_pfn_for_node(nid), NULL); 4643 4644 /* Any memory on that node */ 4645 if (pgdat->node_present_pages) 4646 node_set_state(nid, N_HIGH_MEMORY); 4647 check_for_regular_memory(pgdat); 4648 } 4649 } 4650 4651 static int __init cmdline_parse_core(char *p, unsigned long *core) 4652 { 4653 unsigned long long coremem; 4654 if (!p) 4655 return -EINVAL; 4656 4657 coremem = memparse(p, &p); 4658 *core = coremem >> PAGE_SHIFT; 4659 4660 /* Paranoid check that UL is enough for the coremem value */ 4661 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4662 4663 return 0; 4664 } 4665 4666 /* 4667 * kernelcore=size sets the amount of memory for use for allocations that 4668 * cannot be reclaimed or migrated. 4669 */ 4670 static int __init cmdline_parse_kernelcore(char *p) 4671 { 4672 return cmdline_parse_core(p, &required_kernelcore); 4673 } 4674 4675 /* 4676 * movablecore=size sets the amount of memory for use for allocations that 4677 * can be reclaimed or migrated. 4678 */ 4679 static int __init cmdline_parse_movablecore(char *p) 4680 { 4681 return cmdline_parse_core(p, &required_movablecore); 4682 } 4683 4684 early_param("kernelcore", cmdline_parse_kernelcore); 4685 early_param("movablecore", cmdline_parse_movablecore); 4686 4687 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 4688 4689 /** 4690 * set_dma_reserve - set the specified number of pages reserved in the first zone 4691 * @new_dma_reserve: The number of pages to mark reserved 4692 * 4693 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4694 * In the DMA zone, a significant percentage may be consumed by kernel image 4695 * and other unfreeable allocations which can skew the watermarks badly. This 4696 * function may optionally be used to account for unfreeable pages in the 4697 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 4698 * smaller per-cpu batchsize. 4699 */ 4700 void __init set_dma_reserve(unsigned long new_dma_reserve) 4701 { 4702 dma_reserve = new_dma_reserve; 4703 } 4704 4705 #ifndef CONFIG_NEED_MULTIPLE_NODES 4706 struct pglist_data __refdata contig_page_data = { 4707 #ifndef CONFIG_NO_BOOTMEM 4708 .bdata = &bootmem_node_data[0] 4709 #endif 4710 }; 4711 EXPORT_SYMBOL(contig_page_data); 4712 #endif 4713 4714 void __init free_area_init(unsigned long *zones_size) 4715 { 4716 free_area_init_node(0, zones_size, 4717 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 4718 } 4719 4720 static int page_alloc_cpu_notify(struct notifier_block *self, 4721 unsigned long action, void *hcpu) 4722 { 4723 int cpu = (unsigned long)hcpu; 4724 4725 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 4726 drain_pages(cpu); 4727 4728 /* 4729 * Spill the event counters of the dead processor 4730 * into the current processors event counters. 4731 * This artificially elevates the count of the current 4732 * processor. 4733 */ 4734 vm_events_fold_cpu(cpu); 4735 4736 /* 4737 * Zero the differential counters of the dead processor 4738 * so that the vm statistics are consistent. 4739 * 4740 * This is only okay since the processor is dead and cannot 4741 * race with what we are doing. 4742 */ 4743 refresh_cpu_vm_stats(cpu); 4744 } 4745 return NOTIFY_OK; 4746 } 4747 4748 void __init page_alloc_init(void) 4749 { 4750 hotcpu_notifier(page_alloc_cpu_notify, 0); 4751 } 4752 4753 /* 4754 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 4755 * or min_free_kbytes changes. 4756 */ 4757 static void calculate_totalreserve_pages(void) 4758 { 4759 struct pglist_data *pgdat; 4760 unsigned long reserve_pages = 0; 4761 enum zone_type i, j; 4762 4763 for_each_online_pgdat(pgdat) { 4764 for (i = 0; i < MAX_NR_ZONES; i++) { 4765 struct zone *zone = pgdat->node_zones + i; 4766 unsigned long max = 0; 4767 4768 /* Find valid and maximum lowmem_reserve in the zone */ 4769 for (j = i; j < MAX_NR_ZONES; j++) { 4770 if (zone->lowmem_reserve[j] > max) 4771 max = zone->lowmem_reserve[j]; 4772 } 4773 4774 /* we treat the high watermark as reserved pages. */ 4775 max += high_wmark_pages(zone); 4776 4777 if (max > zone->present_pages) 4778 max = zone->present_pages; 4779 reserve_pages += max; 4780 } 4781 } 4782 totalreserve_pages = reserve_pages; 4783 } 4784 4785 /* 4786 * setup_per_zone_lowmem_reserve - called whenever 4787 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 4788 * has a correct pages reserved value, so an adequate number of 4789 * pages are left in the zone after a successful __alloc_pages(). 4790 */ 4791 static void setup_per_zone_lowmem_reserve(void) 4792 { 4793 struct pglist_data *pgdat; 4794 enum zone_type j, idx; 4795 4796 for_each_online_pgdat(pgdat) { 4797 for (j = 0; j < MAX_NR_ZONES; j++) { 4798 struct zone *zone = pgdat->node_zones + j; 4799 unsigned long present_pages = zone->present_pages; 4800 4801 zone->lowmem_reserve[j] = 0; 4802 4803 idx = j; 4804 while (idx) { 4805 struct zone *lower_zone; 4806 4807 idx--; 4808 4809 if (sysctl_lowmem_reserve_ratio[idx] < 1) 4810 sysctl_lowmem_reserve_ratio[idx] = 1; 4811 4812 lower_zone = pgdat->node_zones + idx; 4813 lower_zone->lowmem_reserve[j] = present_pages / 4814 sysctl_lowmem_reserve_ratio[idx]; 4815 present_pages += lower_zone->present_pages; 4816 } 4817 } 4818 } 4819 4820 /* update totalreserve_pages */ 4821 calculate_totalreserve_pages(); 4822 } 4823 4824 /** 4825 * setup_per_zone_wmarks - called when min_free_kbytes changes 4826 * or when memory is hot-{added|removed} 4827 * 4828 * Ensures that the watermark[min,low,high] values for each zone are set 4829 * correctly with respect to min_free_kbytes. 4830 */ 4831 void setup_per_zone_wmarks(void) 4832 { 4833 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 4834 unsigned long lowmem_pages = 0; 4835 struct zone *zone; 4836 unsigned long flags; 4837 4838 /* Calculate total number of !ZONE_HIGHMEM pages */ 4839 for_each_zone(zone) { 4840 if (!is_highmem(zone)) 4841 lowmem_pages += zone->present_pages; 4842 } 4843 4844 for_each_zone(zone) { 4845 u64 tmp; 4846 4847 spin_lock_irqsave(&zone->lock, flags); 4848 tmp = (u64)pages_min * zone->present_pages; 4849 do_div(tmp, lowmem_pages); 4850 if (is_highmem(zone)) { 4851 /* 4852 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 4853 * need highmem pages, so cap pages_min to a small 4854 * value here. 4855 * 4856 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 4857 * deltas controls asynch page reclaim, and so should 4858 * not be capped for highmem. 4859 */ 4860 int min_pages; 4861 4862 min_pages = zone->present_pages / 1024; 4863 if (min_pages < SWAP_CLUSTER_MAX) 4864 min_pages = SWAP_CLUSTER_MAX; 4865 if (min_pages > 128) 4866 min_pages = 128; 4867 zone->watermark[WMARK_MIN] = min_pages; 4868 } else { 4869 /* 4870 * If it's a lowmem zone, reserve a number of pages 4871 * proportionate to the zone's size. 4872 */ 4873 zone->watermark[WMARK_MIN] = tmp; 4874 } 4875 4876 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 4877 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 4878 setup_zone_migrate_reserve(zone); 4879 spin_unlock_irqrestore(&zone->lock, flags); 4880 } 4881 4882 /* update totalreserve_pages */ 4883 calculate_totalreserve_pages(); 4884 } 4885 4886 /* 4887 * The inactive anon list should be small enough that the VM never has to 4888 * do too much work, but large enough that each inactive page has a chance 4889 * to be referenced again before it is swapped out. 4890 * 4891 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 4892 * INACTIVE_ANON pages on this zone's LRU, maintained by the 4893 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 4894 * the anonymous pages are kept on the inactive list. 4895 * 4896 * total target max 4897 * memory ratio inactive anon 4898 * ------------------------------------- 4899 * 10MB 1 5MB 4900 * 100MB 1 50MB 4901 * 1GB 3 250MB 4902 * 10GB 10 0.9GB 4903 * 100GB 31 3GB 4904 * 1TB 101 10GB 4905 * 10TB 320 32GB 4906 */ 4907 void calculate_zone_inactive_ratio(struct zone *zone) 4908 { 4909 unsigned int gb, ratio; 4910 4911 /* Zone size in gigabytes */ 4912 gb = zone->present_pages >> (30 - PAGE_SHIFT); 4913 if (gb) 4914 ratio = int_sqrt(10 * gb); 4915 else 4916 ratio = 1; 4917 4918 zone->inactive_ratio = ratio; 4919 } 4920 4921 static void __init setup_per_zone_inactive_ratio(void) 4922 { 4923 struct zone *zone; 4924 4925 for_each_zone(zone) 4926 calculate_zone_inactive_ratio(zone); 4927 } 4928 4929 /* 4930 * Initialise min_free_kbytes. 4931 * 4932 * For small machines we want it small (128k min). For large machines 4933 * we want it large (64MB max). But it is not linear, because network 4934 * bandwidth does not increase linearly with machine size. We use 4935 * 4936 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 4937 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 4938 * 4939 * which yields 4940 * 4941 * 16MB: 512k 4942 * 32MB: 724k 4943 * 64MB: 1024k 4944 * 128MB: 1448k 4945 * 256MB: 2048k 4946 * 512MB: 2896k 4947 * 1024MB: 4096k 4948 * 2048MB: 5792k 4949 * 4096MB: 8192k 4950 * 8192MB: 11584k 4951 * 16384MB: 16384k 4952 */ 4953 static int __init init_per_zone_wmark_min(void) 4954 { 4955 unsigned long lowmem_kbytes; 4956 4957 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 4958 4959 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 4960 if (min_free_kbytes < 128) 4961 min_free_kbytes = 128; 4962 if (min_free_kbytes > 65536) 4963 min_free_kbytes = 65536; 4964 setup_per_zone_wmarks(); 4965 setup_per_zone_lowmem_reserve(); 4966 setup_per_zone_inactive_ratio(); 4967 return 0; 4968 } 4969 module_init(init_per_zone_wmark_min) 4970 4971 /* 4972 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 4973 * that we can call two helper functions whenever min_free_kbytes 4974 * changes. 4975 */ 4976 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 4977 void __user *buffer, size_t *length, loff_t *ppos) 4978 { 4979 proc_dointvec(table, write, buffer, length, ppos); 4980 if (write) 4981 setup_per_zone_wmarks(); 4982 return 0; 4983 } 4984 4985 #ifdef CONFIG_NUMA 4986 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 4987 void __user *buffer, size_t *length, loff_t *ppos) 4988 { 4989 struct zone *zone; 4990 int rc; 4991 4992 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 4993 if (rc) 4994 return rc; 4995 4996 for_each_zone(zone) 4997 zone->min_unmapped_pages = (zone->present_pages * 4998 sysctl_min_unmapped_ratio) / 100; 4999 return 0; 5000 } 5001 5002 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5003 void __user *buffer, size_t *length, loff_t *ppos) 5004 { 5005 struct zone *zone; 5006 int rc; 5007 5008 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5009 if (rc) 5010 return rc; 5011 5012 for_each_zone(zone) 5013 zone->min_slab_pages = (zone->present_pages * 5014 sysctl_min_slab_ratio) / 100; 5015 return 0; 5016 } 5017 #endif 5018 5019 /* 5020 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5021 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5022 * whenever sysctl_lowmem_reserve_ratio changes. 5023 * 5024 * The reserve ratio obviously has absolutely no relation with the 5025 * minimum watermarks. The lowmem reserve ratio can only make sense 5026 * if in function of the boot time zone sizes. 5027 */ 5028 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5029 void __user *buffer, size_t *length, loff_t *ppos) 5030 { 5031 proc_dointvec_minmax(table, write, buffer, length, ppos); 5032 setup_per_zone_lowmem_reserve(); 5033 return 0; 5034 } 5035 5036 /* 5037 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5038 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5039 * can have before it gets flushed back to buddy allocator. 5040 */ 5041 5042 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5043 void __user *buffer, size_t *length, loff_t *ppos) 5044 { 5045 struct zone *zone; 5046 unsigned int cpu; 5047 int ret; 5048 5049 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5050 if (!write || (ret == -EINVAL)) 5051 return ret; 5052 for_each_populated_zone(zone) { 5053 for_each_possible_cpu(cpu) { 5054 unsigned long high; 5055 high = zone->present_pages / percpu_pagelist_fraction; 5056 setup_pagelist_highmark( 5057 per_cpu_ptr(zone->pageset, cpu), high); 5058 } 5059 } 5060 return 0; 5061 } 5062 5063 int hashdist = HASHDIST_DEFAULT; 5064 5065 #ifdef CONFIG_NUMA 5066 static int __init set_hashdist(char *str) 5067 { 5068 if (!str) 5069 return 0; 5070 hashdist = simple_strtoul(str, &str, 0); 5071 return 1; 5072 } 5073 __setup("hashdist=", set_hashdist); 5074 #endif 5075 5076 /* 5077 * allocate a large system hash table from bootmem 5078 * - it is assumed that the hash table must contain an exact power-of-2 5079 * quantity of entries 5080 * - limit is the number of hash buckets, not the total allocation size 5081 */ 5082 void *__init alloc_large_system_hash(const char *tablename, 5083 unsigned long bucketsize, 5084 unsigned long numentries, 5085 int scale, 5086 int flags, 5087 unsigned int *_hash_shift, 5088 unsigned int *_hash_mask, 5089 unsigned long limit) 5090 { 5091 unsigned long long max = limit; 5092 unsigned long log2qty, size; 5093 void *table = NULL; 5094 5095 /* allow the kernel cmdline to have a say */ 5096 if (!numentries) { 5097 /* round applicable memory size up to nearest megabyte */ 5098 numentries = nr_kernel_pages; 5099 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5100 numentries >>= 20 - PAGE_SHIFT; 5101 numentries <<= 20 - PAGE_SHIFT; 5102 5103 /* limit to 1 bucket per 2^scale bytes of low memory */ 5104 if (scale > PAGE_SHIFT) 5105 numentries >>= (scale - PAGE_SHIFT); 5106 else 5107 numentries <<= (PAGE_SHIFT - scale); 5108 5109 /* Make sure we've got at least a 0-order allocation.. */ 5110 if (unlikely(flags & HASH_SMALL)) { 5111 /* Makes no sense without HASH_EARLY */ 5112 WARN_ON(!(flags & HASH_EARLY)); 5113 if (!(numentries >> *_hash_shift)) { 5114 numentries = 1UL << *_hash_shift; 5115 BUG_ON(!numentries); 5116 } 5117 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5118 numentries = PAGE_SIZE / bucketsize; 5119 } 5120 numentries = roundup_pow_of_two(numentries); 5121 5122 /* limit allocation size to 1/16 total memory by default */ 5123 if (max == 0) { 5124 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5125 do_div(max, bucketsize); 5126 } 5127 5128 if (numentries > max) 5129 numentries = max; 5130 5131 log2qty = ilog2(numentries); 5132 5133 do { 5134 size = bucketsize << log2qty; 5135 if (flags & HASH_EARLY) 5136 table = alloc_bootmem_nopanic(size); 5137 else if (hashdist) 5138 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5139 else { 5140 /* 5141 * If bucketsize is not a power-of-two, we may free 5142 * some pages at the end of hash table which 5143 * alloc_pages_exact() automatically does 5144 */ 5145 if (get_order(size) < MAX_ORDER) { 5146 table = alloc_pages_exact(size, GFP_ATOMIC); 5147 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5148 } 5149 } 5150 } while (!table && size > PAGE_SIZE && --log2qty); 5151 5152 if (!table) 5153 panic("Failed to allocate %s hash table\n", tablename); 5154 5155 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n", 5156 tablename, 5157 (1U << log2qty), 5158 ilog2(size) - PAGE_SHIFT, 5159 size); 5160 5161 if (_hash_shift) 5162 *_hash_shift = log2qty; 5163 if (_hash_mask) 5164 *_hash_mask = (1 << log2qty) - 1; 5165 5166 return table; 5167 } 5168 5169 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5170 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5171 unsigned long pfn) 5172 { 5173 #ifdef CONFIG_SPARSEMEM 5174 return __pfn_to_section(pfn)->pageblock_flags; 5175 #else 5176 return zone->pageblock_flags; 5177 #endif /* CONFIG_SPARSEMEM */ 5178 } 5179 5180 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5181 { 5182 #ifdef CONFIG_SPARSEMEM 5183 pfn &= (PAGES_PER_SECTION-1); 5184 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5185 #else 5186 pfn = pfn - zone->zone_start_pfn; 5187 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5188 #endif /* CONFIG_SPARSEMEM */ 5189 } 5190 5191 /** 5192 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5193 * @page: The page within the block of interest 5194 * @start_bitidx: The first bit of interest to retrieve 5195 * @end_bitidx: The last bit of interest 5196 * returns pageblock_bits flags 5197 */ 5198 unsigned long get_pageblock_flags_group(struct page *page, 5199 int start_bitidx, int end_bitidx) 5200 { 5201 struct zone *zone; 5202 unsigned long *bitmap; 5203 unsigned long pfn, bitidx; 5204 unsigned long flags = 0; 5205 unsigned long value = 1; 5206 5207 zone = page_zone(page); 5208 pfn = page_to_pfn(page); 5209 bitmap = get_pageblock_bitmap(zone, pfn); 5210 bitidx = pfn_to_bitidx(zone, pfn); 5211 5212 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5213 if (test_bit(bitidx + start_bitidx, bitmap)) 5214 flags |= value; 5215 5216 return flags; 5217 } 5218 5219 /** 5220 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5221 * @page: The page within the block of interest 5222 * @start_bitidx: The first bit of interest 5223 * @end_bitidx: The last bit of interest 5224 * @flags: The flags to set 5225 */ 5226 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5227 int start_bitidx, int end_bitidx) 5228 { 5229 struct zone *zone; 5230 unsigned long *bitmap; 5231 unsigned long pfn, bitidx; 5232 unsigned long value = 1; 5233 5234 zone = page_zone(page); 5235 pfn = page_to_pfn(page); 5236 bitmap = get_pageblock_bitmap(zone, pfn); 5237 bitidx = pfn_to_bitidx(zone, pfn); 5238 VM_BUG_ON(pfn < zone->zone_start_pfn); 5239 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5240 5241 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5242 if (flags & value) 5243 __set_bit(bitidx + start_bitidx, bitmap); 5244 else 5245 __clear_bit(bitidx + start_bitidx, bitmap); 5246 } 5247 5248 /* 5249 * This is designed as sub function...plz see page_isolation.c also. 5250 * set/clear page block's type to be ISOLATE. 5251 * page allocater never alloc memory from ISOLATE block. 5252 */ 5253 5254 int set_migratetype_isolate(struct page *page) 5255 { 5256 struct zone *zone; 5257 struct page *curr_page; 5258 unsigned long flags, pfn, iter; 5259 unsigned long immobile = 0; 5260 struct memory_isolate_notify arg; 5261 int notifier_ret; 5262 int ret = -EBUSY; 5263 int zone_idx; 5264 5265 zone = page_zone(page); 5266 zone_idx = zone_idx(zone); 5267 5268 spin_lock_irqsave(&zone->lock, flags); 5269 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE || 5270 zone_idx == ZONE_MOVABLE) { 5271 ret = 0; 5272 goto out; 5273 } 5274 5275 pfn = page_to_pfn(page); 5276 arg.start_pfn = pfn; 5277 arg.nr_pages = pageblock_nr_pages; 5278 arg.pages_found = 0; 5279 5280 /* 5281 * It may be possible to isolate a pageblock even if the 5282 * migratetype is not MIGRATE_MOVABLE. The memory isolation 5283 * notifier chain is used by balloon drivers to return the 5284 * number of pages in a range that are held by the balloon 5285 * driver to shrink memory. If all the pages are accounted for 5286 * by balloons, are free, or on the LRU, isolation can continue. 5287 * Later, for example, when memory hotplug notifier runs, these 5288 * pages reported as "can be isolated" should be isolated(freed) 5289 * by the balloon driver through the memory notifier chain. 5290 */ 5291 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg); 5292 notifier_ret = notifier_to_errno(notifier_ret); 5293 if (notifier_ret || !arg.pages_found) 5294 goto out; 5295 5296 for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) { 5297 if (!pfn_valid_within(pfn)) 5298 continue; 5299 5300 curr_page = pfn_to_page(iter); 5301 if (!page_count(curr_page) || PageLRU(curr_page)) 5302 continue; 5303 5304 immobile++; 5305 } 5306 5307 if (arg.pages_found == immobile) 5308 ret = 0; 5309 5310 out: 5311 if (!ret) { 5312 set_pageblock_migratetype(page, MIGRATE_ISOLATE); 5313 move_freepages_block(zone, page, MIGRATE_ISOLATE); 5314 } 5315 5316 spin_unlock_irqrestore(&zone->lock, flags); 5317 if (!ret) 5318 drain_all_pages(); 5319 return ret; 5320 } 5321 5322 void unset_migratetype_isolate(struct page *page) 5323 { 5324 struct zone *zone; 5325 unsigned long flags; 5326 zone = page_zone(page); 5327 spin_lock_irqsave(&zone->lock, flags); 5328 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE) 5329 goto out; 5330 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5331 move_freepages_block(zone, page, MIGRATE_MOVABLE); 5332 out: 5333 spin_unlock_irqrestore(&zone->lock, flags); 5334 } 5335 5336 #ifdef CONFIG_MEMORY_HOTREMOVE 5337 /* 5338 * All pages in the range must be isolated before calling this. 5339 */ 5340 void 5341 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5342 { 5343 struct page *page; 5344 struct zone *zone; 5345 int order, i; 5346 unsigned long pfn; 5347 unsigned long flags; 5348 /* find the first valid pfn */ 5349 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5350 if (pfn_valid(pfn)) 5351 break; 5352 if (pfn == end_pfn) 5353 return; 5354 zone = page_zone(pfn_to_page(pfn)); 5355 spin_lock_irqsave(&zone->lock, flags); 5356 pfn = start_pfn; 5357 while (pfn < end_pfn) { 5358 if (!pfn_valid(pfn)) { 5359 pfn++; 5360 continue; 5361 } 5362 page = pfn_to_page(pfn); 5363 BUG_ON(page_count(page)); 5364 BUG_ON(!PageBuddy(page)); 5365 order = page_order(page); 5366 #ifdef CONFIG_DEBUG_VM 5367 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5368 pfn, 1 << order, end_pfn); 5369 #endif 5370 list_del(&page->lru); 5371 rmv_page_order(page); 5372 zone->free_area[order].nr_free--; 5373 __mod_zone_page_state(zone, NR_FREE_PAGES, 5374 - (1UL << order)); 5375 for (i = 0; i < (1 << order); i++) 5376 SetPageReserved((page+i)); 5377 pfn += (1 << order); 5378 } 5379 spin_unlock_irqrestore(&zone->lock, flags); 5380 } 5381 #endif 5382 5383 #ifdef CONFIG_MEMORY_FAILURE 5384 bool is_free_buddy_page(struct page *page) 5385 { 5386 struct zone *zone = page_zone(page); 5387 unsigned long pfn = page_to_pfn(page); 5388 unsigned long flags; 5389 int order; 5390 5391 spin_lock_irqsave(&zone->lock, flags); 5392 for (order = 0; order < MAX_ORDER; order++) { 5393 struct page *page_head = page - (pfn & ((1 << order) - 1)); 5394 5395 if (PageBuddy(page_head) && page_order(page_head) >= order) 5396 break; 5397 } 5398 spin_unlock_irqrestore(&zone->lock, flags); 5399 5400 return order < MAX_ORDER; 5401 } 5402 #endif 5403 5404 static struct trace_print_flags pageflag_names[] = { 5405 {1UL << PG_locked, "locked" }, 5406 {1UL << PG_error, "error" }, 5407 {1UL << PG_referenced, "referenced" }, 5408 {1UL << PG_uptodate, "uptodate" }, 5409 {1UL << PG_dirty, "dirty" }, 5410 {1UL << PG_lru, "lru" }, 5411 {1UL << PG_active, "active" }, 5412 {1UL << PG_slab, "slab" }, 5413 {1UL << PG_owner_priv_1, "owner_priv_1" }, 5414 {1UL << PG_arch_1, "arch_1" }, 5415 {1UL << PG_reserved, "reserved" }, 5416 {1UL << PG_private, "private" }, 5417 {1UL << PG_private_2, "private_2" }, 5418 {1UL << PG_writeback, "writeback" }, 5419 #ifdef CONFIG_PAGEFLAGS_EXTENDED 5420 {1UL << PG_head, "head" }, 5421 {1UL << PG_tail, "tail" }, 5422 #else 5423 {1UL << PG_compound, "compound" }, 5424 #endif 5425 {1UL << PG_swapcache, "swapcache" }, 5426 {1UL << PG_mappedtodisk, "mappedtodisk" }, 5427 {1UL << PG_reclaim, "reclaim" }, 5428 {1UL << PG_buddy, "buddy" }, 5429 {1UL << PG_swapbacked, "swapbacked" }, 5430 {1UL << PG_unevictable, "unevictable" }, 5431 #ifdef CONFIG_MMU 5432 {1UL << PG_mlocked, "mlocked" }, 5433 #endif 5434 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 5435 {1UL << PG_uncached, "uncached" }, 5436 #endif 5437 #ifdef CONFIG_MEMORY_FAILURE 5438 {1UL << PG_hwpoison, "hwpoison" }, 5439 #endif 5440 {-1UL, NULL }, 5441 }; 5442 5443 static void dump_page_flags(unsigned long flags) 5444 { 5445 const char *delim = ""; 5446 unsigned long mask; 5447 int i; 5448 5449 printk(KERN_ALERT "page flags: %#lx(", flags); 5450 5451 /* remove zone id */ 5452 flags &= (1UL << NR_PAGEFLAGS) - 1; 5453 5454 for (i = 0; pageflag_names[i].name && flags; i++) { 5455 5456 mask = pageflag_names[i].mask; 5457 if ((flags & mask) != mask) 5458 continue; 5459 5460 flags &= ~mask; 5461 printk("%s%s", delim, pageflag_names[i].name); 5462 delim = "|"; 5463 } 5464 5465 /* check for left over flags */ 5466 if (flags) 5467 printk("%s%#lx", delim, flags); 5468 5469 printk(")\n"); 5470 } 5471 5472 void dump_page(struct page *page) 5473 { 5474 printk(KERN_ALERT 5475 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 5476 page, page_count(page), page_mapcount(page), 5477 page->mapping, page->index); 5478 dump_page_flags(page->flags); 5479 } 5480