xref: /linux/mm/page_alloc.c (revision f8324e20f8289dffc646d64366332e05eaacab25)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
55 
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
58 #include "internal.h"
59 
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node);
62 EXPORT_PER_CPU_SYMBOL(numa_node);
63 #endif
64 
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
66 /*
67  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70  * defined in <linux/topology.h>.
71  */
72 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
74 #endif
75 
76 /*
77  * Array of node states.
78  */
79 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
80 	[N_POSSIBLE] = NODE_MASK_ALL,
81 	[N_ONLINE] = { { [0] = 1UL } },
82 #ifndef CONFIG_NUMA
83 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
84 #ifdef CONFIG_HIGHMEM
85 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
86 #endif
87 	[N_CPU] = { { [0] = 1UL } },
88 #endif	/* NUMA */
89 };
90 EXPORT_SYMBOL(node_states);
91 
92 unsigned long totalram_pages __read_mostly;
93 unsigned long totalreserve_pages __read_mostly;
94 int percpu_pagelist_fraction;
95 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
96 
97 #ifdef CONFIG_PM_SLEEP
98 /*
99  * The following functions are used by the suspend/hibernate code to temporarily
100  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101  * while devices are suspended.  To avoid races with the suspend/hibernate code,
102  * they should always be called with pm_mutex held (gfp_allowed_mask also should
103  * only be modified with pm_mutex held, unless the suspend/hibernate code is
104  * guaranteed not to run in parallel with that modification).
105  */
106 void set_gfp_allowed_mask(gfp_t mask)
107 {
108 	WARN_ON(!mutex_is_locked(&pm_mutex));
109 	gfp_allowed_mask = mask;
110 }
111 
112 gfp_t clear_gfp_allowed_mask(gfp_t mask)
113 {
114 	gfp_t ret = gfp_allowed_mask;
115 
116 	WARN_ON(!mutex_is_locked(&pm_mutex));
117 	gfp_allowed_mask &= ~mask;
118 	return ret;
119 }
120 #endif /* CONFIG_PM_SLEEP */
121 
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly;
124 #endif
125 
126 static void __free_pages_ok(struct page *page, unsigned int order);
127 
128 /*
129  * results with 256, 32 in the lowmem_reserve sysctl:
130  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131  *	1G machine -> (16M dma, 784M normal, 224M high)
132  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
135  *
136  * TBD: should special case ZONE_DMA32 machines here - in those we normally
137  * don't need any ZONE_NORMAL reservation
138  */
139 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
140 #ifdef CONFIG_ZONE_DMA
141 	 256,
142 #endif
143 #ifdef CONFIG_ZONE_DMA32
144 	 256,
145 #endif
146 #ifdef CONFIG_HIGHMEM
147 	 32,
148 #endif
149 	 32,
150 };
151 
152 EXPORT_SYMBOL(totalram_pages);
153 
154 static char * const zone_names[MAX_NR_ZONES] = {
155 #ifdef CONFIG_ZONE_DMA
156 	 "DMA",
157 #endif
158 #ifdef CONFIG_ZONE_DMA32
159 	 "DMA32",
160 #endif
161 	 "Normal",
162 #ifdef CONFIG_HIGHMEM
163 	 "HighMem",
164 #endif
165 	 "Movable",
166 };
167 
168 int min_free_kbytes = 1024;
169 
170 static unsigned long __meminitdata nr_kernel_pages;
171 static unsigned long __meminitdata nr_all_pages;
172 static unsigned long __meminitdata dma_reserve;
173 
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
175   /*
176    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177    * ranges of memory (RAM) that may be registered with add_active_range().
178    * Ranges passed to add_active_range() will be merged if possible
179    * so the number of times add_active_range() can be called is
180    * related to the number of nodes and the number of holes
181    */
182   #ifdef CONFIG_MAX_ACTIVE_REGIONS
183     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
185   #else
186     #if MAX_NUMNODES >= 32
187       /* If there can be many nodes, allow up to 50 holes per node */
188       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
189     #else
190       /* By default, allow up to 256 distinct regions */
191       #define MAX_ACTIVE_REGIONS 256
192     #endif
193   #endif
194 
195   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
196   static int __meminitdata nr_nodemap_entries;
197   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
198   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
199   static unsigned long __initdata required_kernelcore;
200   static unsigned long __initdata required_movablecore;
201   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
202 
203   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
204   int movable_zone;
205   EXPORT_SYMBOL(movable_zone);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
207 
208 #if MAX_NUMNODES > 1
209 int nr_node_ids __read_mostly = MAX_NUMNODES;
210 int nr_online_nodes __read_mostly = 1;
211 EXPORT_SYMBOL(nr_node_ids);
212 EXPORT_SYMBOL(nr_online_nodes);
213 #endif
214 
215 int page_group_by_mobility_disabled __read_mostly;
216 
217 static void set_pageblock_migratetype(struct page *page, int migratetype)
218 {
219 
220 	if (unlikely(page_group_by_mobility_disabled))
221 		migratetype = MIGRATE_UNMOVABLE;
222 
223 	set_pageblock_flags_group(page, (unsigned long)migratetype,
224 					PB_migrate, PB_migrate_end);
225 }
226 
227 bool oom_killer_disabled __read_mostly;
228 
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
231 {
232 	int ret = 0;
233 	unsigned seq;
234 	unsigned long pfn = page_to_pfn(page);
235 
236 	do {
237 		seq = zone_span_seqbegin(zone);
238 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
239 			ret = 1;
240 		else if (pfn < zone->zone_start_pfn)
241 			ret = 1;
242 	} while (zone_span_seqretry(zone, seq));
243 
244 	return ret;
245 }
246 
247 static int page_is_consistent(struct zone *zone, struct page *page)
248 {
249 	if (!pfn_valid_within(page_to_pfn(page)))
250 		return 0;
251 	if (zone != page_zone(page))
252 		return 0;
253 
254 	return 1;
255 }
256 /*
257  * Temporary debugging check for pages not lying within a given zone.
258  */
259 static int bad_range(struct zone *zone, struct page *page)
260 {
261 	if (page_outside_zone_boundaries(zone, page))
262 		return 1;
263 	if (!page_is_consistent(zone, page))
264 		return 1;
265 
266 	return 0;
267 }
268 #else
269 static inline int bad_range(struct zone *zone, struct page *page)
270 {
271 	return 0;
272 }
273 #endif
274 
275 static void bad_page(struct page *page)
276 {
277 	static unsigned long resume;
278 	static unsigned long nr_shown;
279 	static unsigned long nr_unshown;
280 
281 	/* Don't complain about poisoned pages */
282 	if (PageHWPoison(page)) {
283 		__ClearPageBuddy(page);
284 		return;
285 	}
286 
287 	/*
288 	 * Allow a burst of 60 reports, then keep quiet for that minute;
289 	 * or allow a steady drip of one report per second.
290 	 */
291 	if (nr_shown == 60) {
292 		if (time_before(jiffies, resume)) {
293 			nr_unshown++;
294 			goto out;
295 		}
296 		if (nr_unshown) {
297 			printk(KERN_ALERT
298 			      "BUG: Bad page state: %lu messages suppressed\n",
299 				nr_unshown);
300 			nr_unshown = 0;
301 		}
302 		nr_shown = 0;
303 	}
304 	if (nr_shown++ == 0)
305 		resume = jiffies + 60 * HZ;
306 
307 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
308 		current->comm, page_to_pfn(page));
309 	dump_page(page);
310 
311 	dump_stack();
312 out:
313 	/* Leave bad fields for debug, except PageBuddy could make trouble */
314 	__ClearPageBuddy(page);
315 	add_taint(TAINT_BAD_PAGE);
316 }
317 
318 /*
319  * Higher-order pages are called "compound pages".  They are structured thusly:
320  *
321  * The first PAGE_SIZE page is called the "head page".
322  *
323  * The remaining PAGE_SIZE pages are called "tail pages".
324  *
325  * All pages have PG_compound set.  All pages have their ->private pointing at
326  * the head page (even the head page has this).
327  *
328  * The first tail page's ->lru.next holds the address of the compound page's
329  * put_page() function.  Its ->lru.prev holds the order of allocation.
330  * This usage means that zero-order pages may not be compound.
331  */
332 
333 static void free_compound_page(struct page *page)
334 {
335 	__free_pages_ok(page, compound_order(page));
336 }
337 
338 void prep_compound_page(struct page *page, unsigned long order)
339 {
340 	int i;
341 	int nr_pages = 1 << order;
342 
343 	set_compound_page_dtor(page, free_compound_page);
344 	set_compound_order(page, order);
345 	__SetPageHead(page);
346 	for (i = 1; i < nr_pages; i++) {
347 		struct page *p = page + i;
348 
349 		__SetPageTail(p);
350 		p->first_page = page;
351 	}
352 }
353 
354 static int destroy_compound_page(struct page *page, unsigned long order)
355 {
356 	int i;
357 	int nr_pages = 1 << order;
358 	int bad = 0;
359 
360 	if (unlikely(compound_order(page) != order) ||
361 	    unlikely(!PageHead(page))) {
362 		bad_page(page);
363 		bad++;
364 	}
365 
366 	__ClearPageHead(page);
367 
368 	for (i = 1; i < nr_pages; i++) {
369 		struct page *p = page + i;
370 
371 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
372 			bad_page(page);
373 			bad++;
374 		}
375 		__ClearPageTail(p);
376 	}
377 
378 	return bad;
379 }
380 
381 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
382 {
383 	int i;
384 
385 	/*
386 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
388 	 */
389 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
390 	for (i = 0; i < (1 << order); i++)
391 		clear_highpage(page + i);
392 }
393 
394 static inline void set_page_order(struct page *page, int order)
395 {
396 	set_page_private(page, order);
397 	__SetPageBuddy(page);
398 }
399 
400 static inline void rmv_page_order(struct page *page)
401 {
402 	__ClearPageBuddy(page);
403 	set_page_private(page, 0);
404 }
405 
406 /*
407  * Locate the struct page for both the matching buddy in our
408  * pair (buddy1) and the combined O(n+1) page they form (page).
409  *
410  * 1) Any buddy B1 will have an order O twin B2 which satisfies
411  * the following equation:
412  *     B2 = B1 ^ (1 << O)
413  * For example, if the starting buddy (buddy2) is #8 its order
414  * 1 buddy is #10:
415  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
416  *
417  * 2) Any buddy B will have an order O+1 parent P which
418  * satisfies the following equation:
419  *     P = B & ~(1 << O)
420  *
421  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
422  */
423 static inline struct page *
424 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
425 {
426 	unsigned long buddy_idx = page_idx ^ (1 << order);
427 
428 	return page + (buddy_idx - page_idx);
429 }
430 
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx, unsigned int order)
433 {
434 	return (page_idx & ~(1 << order));
435 }
436 
437 /*
438  * This function checks whether a page is free && is the buddy
439  * we can do coalesce a page and its buddy if
440  * (a) the buddy is not in a hole &&
441  * (b) the buddy is in the buddy system &&
442  * (c) a page and its buddy have the same order &&
443  * (d) a page and its buddy are in the same zone.
444  *
445  * For recording whether a page is in the buddy system, we use PG_buddy.
446  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
447  *
448  * For recording page's order, we use page_private(page).
449  */
450 static inline int page_is_buddy(struct page *page, struct page *buddy,
451 								int order)
452 {
453 	if (!pfn_valid_within(page_to_pfn(buddy)))
454 		return 0;
455 
456 	if (page_zone_id(page) != page_zone_id(buddy))
457 		return 0;
458 
459 	if (PageBuddy(buddy) && page_order(buddy) == order) {
460 		VM_BUG_ON(page_count(buddy) != 0);
461 		return 1;
462 	}
463 	return 0;
464 }
465 
466 /*
467  * Freeing function for a buddy system allocator.
468  *
469  * The concept of a buddy system is to maintain direct-mapped table
470  * (containing bit values) for memory blocks of various "orders".
471  * The bottom level table contains the map for the smallest allocatable
472  * units of memory (here, pages), and each level above it describes
473  * pairs of units from the levels below, hence, "buddies".
474  * At a high level, all that happens here is marking the table entry
475  * at the bottom level available, and propagating the changes upward
476  * as necessary, plus some accounting needed to play nicely with other
477  * parts of the VM system.
478  * At each level, we keep a list of pages, which are heads of continuous
479  * free pages of length of (1 << order) and marked with PG_buddy. Page's
480  * order is recorded in page_private(page) field.
481  * So when we are allocating or freeing one, we can derive the state of the
482  * other.  That is, if we allocate a small block, and both were
483  * free, the remainder of the region must be split into blocks.
484  * If a block is freed, and its buddy is also free, then this
485  * triggers coalescing into a block of larger size.
486  *
487  * -- wli
488  */
489 
490 static inline void __free_one_page(struct page *page,
491 		struct zone *zone, unsigned int order,
492 		int migratetype)
493 {
494 	unsigned long page_idx;
495 	unsigned long combined_idx;
496 	struct page *buddy;
497 
498 	if (unlikely(PageCompound(page)))
499 		if (unlikely(destroy_compound_page(page, order)))
500 			return;
501 
502 	VM_BUG_ON(migratetype == -1);
503 
504 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
505 
506 	VM_BUG_ON(page_idx & ((1 << order) - 1));
507 	VM_BUG_ON(bad_range(zone, page));
508 
509 	while (order < MAX_ORDER-1) {
510 		buddy = __page_find_buddy(page, page_idx, order);
511 		if (!page_is_buddy(page, buddy, order))
512 			break;
513 
514 		/* Our buddy is free, merge with it and move up one order. */
515 		list_del(&buddy->lru);
516 		zone->free_area[order].nr_free--;
517 		rmv_page_order(buddy);
518 		combined_idx = __find_combined_index(page_idx, order);
519 		page = page + (combined_idx - page_idx);
520 		page_idx = combined_idx;
521 		order++;
522 	}
523 	set_page_order(page, order);
524 
525 	/*
526 	 * If this is not the largest possible page, check if the buddy
527 	 * of the next-highest order is free. If it is, it's possible
528 	 * that pages are being freed that will coalesce soon. In case,
529 	 * that is happening, add the free page to the tail of the list
530 	 * so it's less likely to be used soon and more likely to be merged
531 	 * as a higher order page
532 	 */
533 	if ((order < MAX_ORDER-1) && pfn_valid_within(page_to_pfn(buddy))) {
534 		struct page *higher_page, *higher_buddy;
535 		combined_idx = __find_combined_index(page_idx, order);
536 		higher_page = page + combined_idx - page_idx;
537 		higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
538 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
539 			list_add_tail(&page->lru,
540 				&zone->free_area[order].free_list[migratetype]);
541 			goto out;
542 		}
543 	}
544 
545 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
546 out:
547 	zone->free_area[order].nr_free++;
548 }
549 
550 /*
551  * free_page_mlock() -- clean up attempts to free and mlocked() page.
552  * Page should not be on lru, so no need to fix that up.
553  * free_pages_check() will verify...
554  */
555 static inline void free_page_mlock(struct page *page)
556 {
557 	__dec_zone_page_state(page, NR_MLOCK);
558 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
559 }
560 
561 static inline int free_pages_check(struct page *page)
562 {
563 	if (unlikely(page_mapcount(page) |
564 		(page->mapping != NULL)  |
565 		(atomic_read(&page->_count) != 0) |
566 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
567 		bad_page(page);
568 		return 1;
569 	}
570 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
571 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
572 	return 0;
573 }
574 
575 /*
576  * Frees a number of pages from the PCP lists
577  * Assumes all pages on list are in same zone, and of same order.
578  * count is the number of pages to free.
579  *
580  * If the zone was previously in an "all pages pinned" state then look to
581  * see if this freeing clears that state.
582  *
583  * And clear the zone's pages_scanned counter, to hold off the "all pages are
584  * pinned" detection logic.
585  */
586 static void free_pcppages_bulk(struct zone *zone, int count,
587 					struct per_cpu_pages *pcp)
588 {
589 	int migratetype = 0;
590 	int batch_free = 0;
591 
592 	spin_lock(&zone->lock);
593 	zone->all_unreclaimable = 0;
594 	zone->pages_scanned = 0;
595 
596 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
597 	while (count) {
598 		struct page *page;
599 		struct list_head *list;
600 
601 		/*
602 		 * Remove pages from lists in a round-robin fashion. A
603 		 * batch_free count is maintained that is incremented when an
604 		 * empty list is encountered.  This is so more pages are freed
605 		 * off fuller lists instead of spinning excessively around empty
606 		 * lists
607 		 */
608 		do {
609 			batch_free++;
610 			if (++migratetype == MIGRATE_PCPTYPES)
611 				migratetype = 0;
612 			list = &pcp->lists[migratetype];
613 		} while (list_empty(list));
614 
615 		do {
616 			page = list_entry(list->prev, struct page, lru);
617 			/* must delete as __free_one_page list manipulates */
618 			list_del(&page->lru);
619 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 			__free_one_page(page, zone, 0, page_private(page));
621 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
622 		} while (--count && --batch_free && !list_empty(list));
623 	}
624 	spin_unlock(&zone->lock);
625 }
626 
627 static void free_one_page(struct zone *zone, struct page *page, int order,
628 				int migratetype)
629 {
630 	spin_lock(&zone->lock);
631 	zone->all_unreclaimable = 0;
632 	zone->pages_scanned = 0;
633 
634 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
635 	__free_one_page(page, zone, order, migratetype);
636 	spin_unlock(&zone->lock);
637 }
638 
639 static bool free_pages_prepare(struct page *page, unsigned int order)
640 {
641 	int i;
642 	int bad = 0;
643 
644 	trace_mm_page_free_direct(page, order);
645 	kmemcheck_free_shadow(page, order);
646 
647 	for (i = 0; i < (1 << order); i++) {
648 		struct page *pg = page + i;
649 
650 		if (PageAnon(pg))
651 			pg->mapping = NULL;
652 		bad += free_pages_check(pg);
653 	}
654 	if (bad)
655 		return false;
656 
657 	if (!PageHighMem(page)) {
658 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
659 		debug_check_no_obj_freed(page_address(page),
660 					   PAGE_SIZE << order);
661 	}
662 	arch_free_page(page, order);
663 	kernel_map_pages(page, 1 << order, 0);
664 
665 	return true;
666 }
667 
668 static void __free_pages_ok(struct page *page, unsigned int order)
669 {
670 	unsigned long flags;
671 	int wasMlocked = __TestClearPageMlocked(page);
672 
673 	if (!free_pages_prepare(page, order))
674 		return;
675 
676 	local_irq_save(flags);
677 	if (unlikely(wasMlocked))
678 		free_page_mlock(page);
679 	__count_vm_events(PGFREE, 1 << order);
680 	free_one_page(page_zone(page), page, order,
681 					get_pageblock_migratetype(page));
682 	local_irq_restore(flags);
683 }
684 
685 /*
686  * permit the bootmem allocator to evade page validation on high-order frees
687  */
688 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
689 {
690 	if (order == 0) {
691 		__ClearPageReserved(page);
692 		set_page_count(page, 0);
693 		set_page_refcounted(page);
694 		__free_page(page);
695 	} else {
696 		int loop;
697 
698 		prefetchw(page);
699 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
700 			struct page *p = &page[loop];
701 
702 			if (loop + 1 < BITS_PER_LONG)
703 				prefetchw(p + 1);
704 			__ClearPageReserved(p);
705 			set_page_count(p, 0);
706 		}
707 
708 		set_page_refcounted(page);
709 		__free_pages(page, order);
710 	}
711 }
712 
713 
714 /*
715  * The order of subdivision here is critical for the IO subsystem.
716  * Please do not alter this order without good reasons and regression
717  * testing. Specifically, as large blocks of memory are subdivided,
718  * the order in which smaller blocks are delivered depends on the order
719  * they're subdivided in this function. This is the primary factor
720  * influencing the order in which pages are delivered to the IO
721  * subsystem according to empirical testing, and this is also justified
722  * by considering the behavior of a buddy system containing a single
723  * large block of memory acted on by a series of small allocations.
724  * This behavior is a critical factor in sglist merging's success.
725  *
726  * -- wli
727  */
728 static inline void expand(struct zone *zone, struct page *page,
729 	int low, int high, struct free_area *area,
730 	int migratetype)
731 {
732 	unsigned long size = 1 << high;
733 
734 	while (high > low) {
735 		area--;
736 		high--;
737 		size >>= 1;
738 		VM_BUG_ON(bad_range(zone, &page[size]));
739 		list_add(&page[size].lru, &area->free_list[migratetype]);
740 		area->nr_free++;
741 		set_page_order(&page[size], high);
742 	}
743 }
744 
745 /*
746  * This page is about to be returned from the page allocator
747  */
748 static inline int check_new_page(struct page *page)
749 {
750 	if (unlikely(page_mapcount(page) |
751 		(page->mapping != NULL)  |
752 		(atomic_read(&page->_count) != 0)  |
753 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
754 		bad_page(page);
755 		return 1;
756 	}
757 	return 0;
758 }
759 
760 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
761 {
762 	int i;
763 
764 	for (i = 0; i < (1 << order); i++) {
765 		struct page *p = page + i;
766 		if (unlikely(check_new_page(p)))
767 			return 1;
768 	}
769 
770 	set_page_private(page, 0);
771 	set_page_refcounted(page);
772 
773 	arch_alloc_page(page, order);
774 	kernel_map_pages(page, 1 << order, 1);
775 
776 	if (gfp_flags & __GFP_ZERO)
777 		prep_zero_page(page, order, gfp_flags);
778 
779 	if (order && (gfp_flags & __GFP_COMP))
780 		prep_compound_page(page, order);
781 
782 	return 0;
783 }
784 
785 /*
786  * Go through the free lists for the given migratetype and remove
787  * the smallest available page from the freelists
788  */
789 static inline
790 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
791 						int migratetype)
792 {
793 	unsigned int current_order;
794 	struct free_area * area;
795 	struct page *page;
796 
797 	/* Find a page of the appropriate size in the preferred list */
798 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
799 		area = &(zone->free_area[current_order]);
800 		if (list_empty(&area->free_list[migratetype]))
801 			continue;
802 
803 		page = list_entry(area->free_list[migratetype].next,
804 							struct page, lru);
805 		list_del(&page->lru);
806 		rmv_page_order(page);
807 		area->nr_free--;
808 		expand(zone, page, order, current_order, area, migratetype);
809 		return page;
810 	}
811 
812 	return NULL;
813 }
814 
815 
816 /*
817  * This array describes the order lists are fallen back to when
818  * the free lists for the desirable migrate type are depleted
819  */
820 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
821 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
822 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
823 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
824 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
825 };
826 
827 /*
828  * Move the free pages in a range to the free lists of the requested type.
829  * Note that start_page and end_pages are not aligned on a pageblock
830  * boundary. If alignment is required, use move_freepages_block()
831  */
832 static int move_freepages(struct zone *zone,
833 			  struct page *start_page, struct page *end_page,
834 			  int migratetype)
835 {
836 	struct page *page;
837 	unsigned long order;
838 	int pages_moved = 0;
839 
840 #ifndef CONFIG_HOLES_IN_ZONE
841 	/*
842 	 * page_zone is not safe to call in this context when
843 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
844 	 * anyway as we check zone boundaries in move_freepages_block().
845 	 * Remove at a later date when no bug reports exist related to
846 	 * grouping pages by mobility
847 	 */
848 	BUG_ON(page_zone(start_page) != page_zone(end_page));
849 #endif
850 
851 	for (page = start_page; page <= end_page;) {
852 		/* Make sure we are not inadvertently changing nodes */
853 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
854 
855 		if (!pfn_valid_within(page_to_pfn(page))) {
856 			page++;
857 			continue;
858 		}
859 
860 		if (!PageBuddy(page)) {
861 			page++;
862 			continue;
863 		}
864 
865 		order = page_order(page);
866 		list_del(&page->lru);
867 		list_add(&page->lru,
868 			&zone->free_area[order].free_list[migratetype]);
869 		page += 1 << order;
870 		pages_moved += 1 << order;
871 	}
872 
873 	return pages_moved;
874 }
875 
876 static int move_freepages_block(struct zone *zone, struct page *page,
877 				int migratetype)
878 {
879 	unsigned long start_pfn, end_pfn;
880 	struct page *start_page, *end_page;
881 
882 	start_pfn = page_to_pfn(page);
883 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
884 	start_page = pfn_to_page(start_pfn);
885 	end_page = start_page + pageblock_nr_pages - 1;
886 	end_pfn = start_pfn + pageblock_nr_pages - 1;
887 
888 	/* Do not cross zone boundaries */
889 	if (start_pfn < zone->zone_start_pfn)
890 		start_page = page;
891 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
892 		return 0;
893 
894 	return move_freepages(zone, start_page, end_page, migratetype);
895 }
896 
897 static void change_pageblock_range(struct page *pageblock_page,
898 					int start_order, int migratetype)
899 {
900 	int nr_pageblocks = 1 << (start_order - pageblock_order);
901 
902 	while (nr_pageblocks--) {
903 		set_pageblock_migratetype(pageblock_page, migratetype);
904 		pageblock_page += pageblock_nr_pages;
905 	}
906 }
907 
908 /* Remove an element from the buddy allocator from the fallback list */
909 static inline struct page *
910 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
911 {
912 	struct free_area * area;
913 	int current_order;
914 	struct page *page;
915 	int migratetype, i;
916 
917 	/* Find the largest possible block of pages in the other list */
918 	for (current_order = MAX_ORDER-1; current_order >= order;
919 						--current_order) {
920 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
921 			migratetype = fallbacks[start_migratetype][i];
922 
923 			/* MIGRATE_RESERVE handled later if necessary */
924 			if (migratetype == MIGRATE_RESERVE)
925 				continue;
926 
927 			area = &(zone->free_area[current_order]);
928 			if (list_empty(&area->free_list[migratetype]))
929 				continue;
930 
931 			page = list_entry(area->free_list[migratetype].next,
932 					struct page, lru);
933 			area->nr_free--;
934 
935 			/*
936 			 * If breaking a large block of pages, move all free
937 			 * pages to the preferred allocation list. If falling
938 			 * back for a reclaimable kernel allocation, be more
939 			 * agressive about taking ownership of free pages
940 			 */
941 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
942 					start_migratetype == MIGRATE_RECLAIMABLE ||
943 					page_group_by_mobility_disabled) {
944 				unsigned long pages;
945 				pages = move_freepages_block(zone, page,
946 								start_migratetype);
947 
948 				/* Claim the whole block if over half of it is free */
949 				if (pages >= (1 << (pageblock_order-1)) ||
950 						page_group_by_mobility_disabled)
951 					set_pageblock_migratetype(page,
952 								start_migratetype);
953 
954 				migratetype = start_migratetype;
955 			}
956 
957 			/* Remove the page from the freelists */
958 			list_del(&page->lru);
959 			rmv_page_order(page);
960 
961 			/* Take ownership for orders >= pageblock_order */
962 			if (current_order >= pageblock_order)
963 				change_pageblock_range(page, current_order,
964 							start_migratetype);
965 
966 			expand(zone, page, order, current_order, area, migratetype);
967 
968 			trace_mm_page_alloc_extfrag(page, order, current_order,
969 				start_migratetype, migratetype);
970 
971 			return page;
972 		}
973 	}
974 
975 	return NULL;
976 }
977 
978 /*
979  * Do the hard work of removing an element from the buddy allocator.
980  * Call me with the zone->lock already held.
981  */
982 static struct page *__rmqueue(struct zone *zone, unsigned int order,
983 						int migratetype)
984 {
985 	struct page *page;
986 
987 retry_reserve:
988 	page = __rmqueue_smallest(zone, order, migratetype);
989 
990 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
991 		page = __rmqueue_fallback(zone, order, migratetype);
992 
993 		/*
994 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
995 		 * is used because __rmqueue_smallest is an inline function
996 		 * and we want just one call site
997 		 */
998 		if (!page) {
999 			migratetype = MIGRATE_RESERVE;
1000 			goto retry_reserve;
1001 		}
1002 	}
1003 
1004 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1005 	return page;
1006 }
1007 
1008 /*
1009  * Obtain a specified number of elements from the buddy allocator, all under
1010  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1011  * Returns the number of new pages which were placed at *list.
1012  */
1013 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1014 			unsigned long count, struct list_head *list,
1015 			int migratetype, int cold)
1016 {
1017 	int i;
1018 
1019 	spin_lock(&zone->lock);
1020 	for (i = 0; i < count; ++i) {
1021 		struct page *page = __rmqueue(zone, order, migratetype);
1022 		if (unlikely(page == NULL))
1023 			break;
1024 
1025 		/*
1026 		 * Split buddy pages returned by expand() are received here
1027 		 * in physical page order. The page is added to the callers and
1028 		 * list and the list head then moves forward. From the callers
1029 		 * perspective, the linked list is ordered by page number in
1030 		 * some conditions. This is useful for IO devices that can
1031 		 * merge IO requests if the physical pages are ordered
1032 		 * properly.
1033 		 */
1034 		if (likely(cold == 0))
1035 			list_add(&page->lru, list);
1036 		else
1037 			list_add_tail(&page->lru, list);
1038 		set_page_private(page, migratetype);
1039 		list = &page->lru;
1040 	}
1041 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1042 	spin_unlock(&zone->lock);
1043 	return i;
1044 }
1045 
1046 #ifdef CONFIG_NUMA
1047 /*
1048  * Called from the vmstat counter updater to drain pagesets of this
1049  * currently executing processor on remote nodes after they have
1050  * expired.
1051  *
1052  * Note that this function must be called with the thread pinned to
1053  * a single processor.
1054  */
1055 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1056 {
1057 	unsigned long flags;
1058 	int to_drain;
1059 
1060 	local_irq_save(flags);
1061 	if (pcp->count >= pcp->batch)
1062 		to_drain = pcp->batch;
1063 	else
1064 		to_drain = pcp->count;
1065 	free_pcppages_bulk(zone, to_drain, pcp);
1066 	pcp->count -= to_drain;
1067 	local_irq_restore(flags);
1068 }
1069 #endif
1070 
1071 /*
1072  * Drain pages of the indicated processor.
1073  *
1074  * The processor must either be the current processor and the
1075  * thread pinned to the current processor or a processor that
1076  * is not online.
1077  */
1078 static void drain_pages(unsigned int cpu)
1079 {
1080 	unsigned long flags;
1081 	struct zone *zone;
1082 
1083 	for_each_populated_zone(zone) {
1084 		struct per_cpu_pageset *pset;
1085 		struct per_cpu_pages *pcp;
1086 
1087 		local_irq_save(flags);
1088 		pset = per_cpu_ptr(zone->pageset, cpu);
1089 
1090 		pcp = &pset->pcp;
1091 		free_pcppages_bulk(zone, pcp->count, pcp);
1092 		pcp->count = 0;
1093 		local_irq_restore(flags);
1094 	}
1095 }
1096 
1097 /*
1098  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1099  */
1100 void drain_local_pages(void *arg)
1101 {
1102 	drain_pages(smp_processor_id());
1103 }
1104 
1105 /*
1106  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1107  */
1108 void drain_all_pages(void)
1109 {
1110 	on_each_cpu(drain_local_pages, NULL, 1);
1111 }
1112 
1113 #ifdef CONFIG_HIBERNATION
1114 
1115 void mark_free_pages(struct zone *zone)
1116 {
1117 	unsigned long pfn, max_zone_pfn;
1118 	unsigned long flags;
1119 	int order, t;
1120 	struct list_head *curr;
1121 
1122 	if (!zone->spanned_pages)
1123 		return;
1124 
1125 	spin_lock_irqsave(&zone->lock, flags);
1126 
1127 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1128 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1129 		if (pfn_valid(pfn)) {
1130 			struct page *page = pfn_to_page(pfn);
1131 
1132 			if (!swsusp_page_is_forbidden(page))
1133 				swsusp_unset_page_free(page);
1134 		}
1135 
1136 	for_each_migratetype_order(order, t) {
1137 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1138 			unsigned long i;
1139 
1140 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1141 			for (i = 0; i < (1UL << order); i++)
1142 				swsusp_set_page_free(pfn_to_page(pfn + i));
1143 		}
1144 	}
1145 	spin_unlock_irqrestore(&zone->lock, flags);
1146 }
1147 #endif /* CONFIG_PM */
1148 
1149 /*
1150  * Free a 0-order page
1151  * cold == 1 ? free a cold page : free a hot page
1152  */
1153 void free_hot_cold_page(struct page *page, int cold)
1154 {
1155 	struct zone *zone = page_zone(page);
1156 	struct per_cpu_pages *pcp;
1157 	unsigned long flags;
1158 	int migratetype;
1159 	int wasMlocked = __TestClearPageMlocked(page);
1160 
1161 	if (!free_pages_prepare(page, 0))
1162 		return;
1163 
1164 	migratetype = get_pageblock_migratetype(page);
1165 	set_page_private(page, migratetype);
1166 	local_irq_save(flags);
1167 	if (unlikely(wasMlocked))
1168 		free_page_mlock(page);
1169 	__count_vm_event(PGFREE);
1170 
1171 	/*
1172 	 * We only track unmovable, reclaimable and movable on pcp lists.
1173 	 * Free ISOLATE pages back to the allocator because they are being
1174 	 * offlined but treat RESERVE as movable pages so we can get those
1175 	 * areas back if necessary. Otherwise, we may have to free
1176 	 * excessively into the page allocator
1177 	 */
1178 	if (migratetype >= MIGRATE_PCPTYPES) {
1179 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1180 			free_one_page(zone, page, 0, migratetype);
1181 			goto out;
1182 		}
1183 		migratetype = MIGRATE_MOVABLE;
1184 	}
1185 
1186 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1187 	if (cold)
1188 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1189 	else
1190 		list_add(&page->lru, &pcp->lists[migratetype]);
1191 	pcp->count++;
1192 	if (pcp->count >= pcp->high) {
1193 		free_pcppages_bulk(zone, pcp->batch, pcp);
1194 		pcp->count -= pcp->batch;
1195 	}
1196 
1197 out:
1198 	local_irq_restore(flags);
1199 }
1200 
1201 /*
1202  * split_page takes a non-compound higher-order page, and splits it into
1203  * n (1<<order) sub-pages: page[0..n]
1204  * Each sub-page must be freed individually.
1205  *
1206  * Note: this is probably too low level an operation for use in drivers.
1207  * Please consult with lkml before using this in your driver.
1208  */
1209 void split_page(struct page *page, unsigned int order)
1210 {
1211 	int i;
1212 
1213 	VM_BUG_ON(PageCompound(page));
1214 	VM_BUG_ON(!page_count(page));
1215 
1216 #ifdef CONFIG_KMEMCHECK
1217 	/*
1218 	 * Split shadow pages too, because free(page[0]) would
1219 	 * otherwise free the whole shadow.
1220 	 */
1221 	if (kmemcheck_page_is_tracked(page))
1222 		split_page(virt_to_page(page[0].shadow), order);
1223 #endif
1224 
1225 	for (i = 1; i < (1 << order); i++)
1226 		set_page_refcounted(page + i);
1227 }
1228 
1229 /*
1230  * Similar to split_page except the page is already free. As this is only
1231  * being used for migration, the migratetype of the block also changes.
1232  * As this is called with interrupts disabled, the caller is responsible
1233  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1234  * are enabled.
1235  *
1236  * Note: this is probably too low level an operation for use in drivers.
1237  * Please consult with lkml before using this in your driver.
1238  */
1239 int split_free_page(struct page *page)
1240 {
1241 	unsigned int order;
1242 	unsigned long watermark;
1243 	struct zone *zone;
1244 
1245 	BUG_ON(!PageBuddy(page));
1246 
1247 	zone = page_zone(page);
1248 	order = page_order(page);
1249 
1250 	/* Obey watermarks as if the page was being allocated */
1251 	watermark = low_wmark_pages(zone) + (1 << order);
1252 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1253 		return 0;
1254 
1255 	/* Remove page from free list */
1256 	list_del(&page->lru);
1257 	zone->free_area[order].nr_free--;
1258 	rmv_page_order(page);
1259 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1260 
1261 	/* Split into individual pages */
1262 	set_page_refcounted(page);
1263 	split_page(page, order);
1264 
1265 	if (order >= pageblock_order - 1) {
1266 		struct page *endpage = page + (1 << order) - 1;
1267 		for (; page < endpage; page += pageblock_nr_pages)
1268 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1269 	}
1270 
1271 	return 1 << order;
1272 }
1273 
1274 /*
1275  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1276  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1277  * or two.
1278  */
1279 static inline
1280 struct page *buffered_rmqueue(struct zone *preferred_zone,
1281 			struct zone *zone, int order, gfp_t gfp_flags,
1282 			int migratetype)
1283 {
1284 	unsigned long flags;
1285 	struct page *page;
1286 	int cold = !!(gfp_flags & __GFP_COLD);
1287 
1288 again:
1289 	if (likely(order == 0)) {
1290 		struct per_cpu_pages *pcp;
1291 		struct list_head *list;
1292 
1293 		local_irq_save(flags);
1294 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1295 		list = &pcp->lists[migratetype];
1296 		if (list_empty(list)) {
1297 			pcp->count += rmqueue_bulk(zone, 0,
1298 					pcp->batch, list,
1299 					migratetype, cold);
1300 			if (unlikely(list_empty(list)))
1301 				goto failed;
1302 		}
1303 
1304 		if (cold)
1305 			page = list_entry(list->prev, struct page, lru);
1306 		else
1307 			page = list_entry(list->next, struct page, lru);
1308 
1309 		list_del(&page->lru);
1310 		pcp->count--;
1311 	} else {
1312 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1313 			/*
1314 			 * __GFP_NOFAIL is not to be used in new code.
1315 			 *
1316 			 * All __GFP_NOFAIL callers should be fixed so that they
1317 			 * properly detect and handle allocation failures.
1318 			 *
1319 			 * We most definitely don't want callers attempting to
1320 			 * allocate greater than order-1 page units with
1321 			 * __GFP_NOFAIL.
1322 			 */
1323 			WARN_ON_ONCE(order > 1);
1324 		}
1325 		spin_lock_irqsave(&zone->lock, flags);
1326 		page = __rmqueue(zone, order, migratetype);
1327 		spin_unlock(&zone->lock);
1328 		if (!page)
1329 			goto failed;
1330 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1331 	}
1332 
1333 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1334 	zone_statistics(preferred_zone, zone);
1335 	local_irq_restore(flags);
1336 
1337 	VM_BUG_ON(bad_range(zone, page));
1338 	if (prep_new_page(page, order, gfp_flags))
1339 		goto again;
1340 	return page;
1341 
1342 failed:
1343 	local_irq_restore(flags);
1344 	return NULL;
1345 }
1346 
1347 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1348 #define ALLOC_WMARK_MIN		WMARK_MIN
1349 #define ALLOC_WMARK_LOW		WMARK_LOW
1350 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1351 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1352 
1353 /* Mask to get the watermark bits */
1354 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1355 
1356 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1357 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1358 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1359 
1360 #ifdef CONFIG_FAIL_PAGE_ALLOC
1361 
1362 static struct fail_page_alloc_attr {
1363 	struct fault_attr attr;
1364 
1365 	u32 ignore_gfp_highmem;
1366 	u32 ignore_gfp_wait;
1367 	u32 min_order;
1368 
1369 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1370 
1371 	struct dentry *ignore_gfp_highmem_file;
1372 	struct dentry *ignore_gfp_wait_file;
1373 	struct dentry *min_order_file;
1374 
1375 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1376 
1377 } fail_page_alloc = {
1378 	.attr = FAULT_ATTR_INITIALIZER,
1379 	.ignore_gfp_wait = 1,
1380 	.ignore_gfp_highmem = 1,
1381 	.min_order = 1,
1382 };
1383 
1384 static int __init setup_fail_page_alloc(char *str)
1385 {
1386 	return setup_fault_attr(&fail_page_alloc.attr, str);
1387 }
1388 __setup("fail_page_alloc=", setup_fail_page_alloc);
1389 
1390 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1391 {
1392 	if (order < fail_page_alloc.min_order)
1393 		return 0;
1394 	if (gfp_mask & __GFP_NOFAIL)
1395 		return 0;
1396 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1397 		return 0;
1398 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1399 		return 0;
1400 
1401 	return should_fail(&fail_page_alloc.attr, 1 << order);
1402 }
1403 
1404 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1405 
1406 static int __init fail_page_alloc_debugfs(void)
1407 {
1408 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1409 	struct dentry *dir;
1410 	int err;
1411 
1412 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1413 				       "fail_page_alloc");
1414 	if (err)
1415 		return err;
1416 	dir = fail_page_alloc.attr.dentries.dir;
1417 
1418 	fail_page_alloc.ignore_gfp_wait_file =
1419 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 				      &fail_page_alloc.ignore_gfp_wait);
1421 
1422 	fail_page_alloc.ignore_gfp_highmem_file =
1423 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1424 				      &fail_page_alloc.ignore_gfp_highmem);
1425 	fail_page_alloc.min_order_file =
1426 		debugfs_create_u32("min-order", mode, dir,
1427 				   &fail_page_alloc.min_order);
1428 
1429 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1430             !fail_page_alloc.ignore_gfp_highmem_file ||
1431             !fail_page_alloc.min_order_file) {
1432 		err = -ENOMEM;
1433 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1434 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1435 		debugfs_remove(fail_page_alloc.min_order_file);
1436 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1437 	}
1438 
1439 	return err;
1440 }
1441 
1442 late_initcall(fail_page_alloc_debugfs);
1443 
1444 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1445 
1446 #else /* CONFIG_FAIL_PAGE_ALLOC */
1447 
1448 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1449 {
1450 	return 0;
1451 }
1452 
1453 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1454 
1455 /*
1456  * Return 1 if free pages are above 'mark'. This takes into account the order
1457  * of the allocation.
1458  */
1459 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1460 		      int classzone_idx, int alloc_flags)
1461 {
1462 	/* free_pages my go negative - that's OK */
1463 	long min = mark;
1464 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1465 	int o;
1466 
1467 	if (alloc_flags & ALLOC_HIGH)
1468 		min -= min / 2;
1469 	if (alloc_flags & ALLOC_HARDER)
1470 		min -= min / 4;
1471 
1472 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1473 		return 0;
1474 	for (o = 0; o < order; o++) {
1475 		/* At the next order, this order's pages become unavailable */
1476 		free_pages -= z->free_area[o].nr_free << o;
1477 
1478 		/* Require fewer higher order pages to be free */
1479 		min >>= 1;
1480 
1481 		if (free_pages <= min)
1482 			return 0;
1483 	}
1484 	return 1;
1485 }
1486 
1487 #ifdef CONFIG_NUMA
1488 /*
1489  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1490  * skip over zones that are not allowed by the cpuset, or that have
1491  * been recently (in last second) found to be nearly full.  See further
1492  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1493  * that have to skip over a lot of full or unallowed zones.
1494  *
1495  * If the zonelist cache is present in the passed in zonelist, then
1496  * returns a pointer to the allowed node mask (either the current
1497  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1498  *
1499  * If the zonelist cache is not available for this zonelist, does
1500  * nothing and returns NULL.
1501  *
1502  * If the fullzones BITMAP in the zonelist cache is stale (more than
1503  * a second since last zap'd) then we zap it out (clear its bits.)
1504  *
1505  * We hold off even calling zlc_setup, until after we've checked the
1506  * first zone in the zonelist, on the theory that most allocations will
1507  * be satisfied from that first zone, so best to examine that zone as
1508  * quickly as we can.
1509  */
1510 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1511 {
1512 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1513 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1514 
1515 	zlc = zonelist->zlcache_ptr;
1516 	if (!zlc)
1517 		return NULL;
1518 
1519 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1520 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1521 		zlc->last_full_zap = jiffies;
1522 	}
1523 
1524 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1525 					&cpuset_current_mems_allowed :
1526 					&node_states[N_HIGH_MEMORY];
1527 	return allowednodes;
1528 }
1529 
1530 /*
1531  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1532  * if it is worth looking at further for free memory:
1533  *  1) Check that the zone isn't thought to be full (doesn't have its
1534  *     bit set in the zonelist_cache fullzones BITMAP).
1535  *  2) Check that the zones node (obtained from the zonelist_cache
1536  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1537  * Return true (non-zero) if zone is worth looking at further, or
1538  * else return false (zero) if it is not.
1539  *
1540  * This check -ignores- the distinction between various watermarks,
1541  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1542  * found to be full for any variation of these watermarks, it will
1543  * be considered full for up to one second by all requests, unless
1544  * we are so low on memory on all allowed nodes that we are forced
1545  * into the second scan of the zonelist.
1546  *
1547  * In the second scan we ignore this zonelist cache and exactly
1548  * apply the watermarks to all zones, even it is slower to do so.
1549  * We are low on memory in the second scan, and should leave no stone
1550  * unturned looking for a free page.
1551  */
1552 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1553 						nodemask_t *allowednodes)
1554 {
1555 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1556 	int i;				/* index of *z in zonelist zones */
1557 	int n;				/* node that zone *z is on */
1558 
1559 	zlc = zonelist->zlcache_ptr;
1560 	if (!zlc)
1561 		return 1;
1562 
1563 	i = z - zonelist->_zonerefs;
1564 	n = zlc->z_to_n[i];
1565 
1566 	/* This zone is worth trying if it is allowed but not full */
1567 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1568 }
1569 
1570 /*
1571  * Given 'z' scanning a zonelist, set the corresponding bit in
1572  * zlc->fullzones, so that subsequent attempts to allocate a page
1573  * from that zone don't waste time re-examining it.
1574  */
1575 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1576 {
1577 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1578 	int i;				/* index of *z in zonelist zones */
1579 
1580 	zlc = zonelist->zlcache_ptr;
1581 	if (!zlc)
1582 		return;
1583 
1584 	i = z - zonelist->_zonerefs;
1585 
1586 	set_bit(i, zlc->fullzones);
1587 }
1588 
1589 #else	/* CONFIG_NUMA */
1590 
1591 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1592 {
1593 	return NULL;
1594 }
1595 
1596 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1597 				nodemask_t *allowednodes)
1598 {
1599 	return 1;
1600 }
1601 
1602 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1603 {
1604 }
1605 #endif	/* CONFIG_NUMA */
1606 
1607 /*
1608  * get_page_from_freelist goes through the zonelist trying to allocate
1609  * a page.
1610  */
1611 static struct page *
1612 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1613 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1614 		struct zone *preferred_zone, int migratetype)
1615 {
1616 	struct zoneref *z;
1617 	struct page *page = NULL;
1618 	int classzone_idx;
1619 	struct zone *zone;
1620 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1621 	int zlc_active = 0;		/* set if using zonelist_cache */
1622 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1623 
1624 	classzone_idx = zone_idx(preferred_zone);
1625 zonelist_scan:
1626 	/*
1627 	 * Scan zonelist, looking for a zone with enough free.
1628 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1629 	 */
1630 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1631 						high_zoneidx, nodemask) {
1632 		if (NUMA_BUILD && zlc_active &&
1633 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1634 				continue;
1635 		if ((alloc_flags & ALLOC_CPUSET) &&
1636 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1637 				goto try_next_zone;
1638 
1639 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1640 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1641 			unsigned long mark;
1642 			int ret;
1643 
1644 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1645 			if (zone_watermark_ok(zone, order, mark,
1646 				    classzone_idx, alloc_flags))
1647 				goto try_this_zone;
1648 
1649 			if (zone_reclaim_mode == 0)
1650 				goto this_zone_full;
1651 
1652 			ret = zone_reclaim(zone, gfp_mask, order);
1653 			switch (ret) {
1654 			case ZONE_RECLAIM_NOSCAN:
1655 				/* did not scan */
1656 				goto try_next_zone;
1657 			case ZONE_RECLAIM_FULL:
1658 				/* scanned but unreclaimable */
1659 				goto this_zone_full;
1660 			default:
1661 				/* did we reclaim enough */
1662 				if (!zone_watermark_ok(zone, order, mark,
1663 						classzone_idx, alloc_flags))
1664 					goto this_zone_full;
1665 			}
1666 		}
1667 
1668 try_this_zone:
1669 		page = buffered_rmqueue(preferred_zone, zone, order,
1670 						gfp_mask, migratetype);
1671 		if (page)
1672 			break;
1673 this_zone_full:
1674 		if (NUMA_BUILD)
1675 			zlc_mark_zone_full(zonelist, z);
1676 try_next_zone:
1677 		if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1678 			/*
1679 			 * we do zlc_setup after the first zone is tried but only
1680 			 * if there are multiple nodes make it worthwhile
1681 			 */
1682 			allowednodes = zlc_setup(zonelist, alloc_flags);
1683 			zlc_active = 1;
1684 			did_zlc_setup = 1;
1685 		}
1686 	}
1687 
1688 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1689 		/* Disable zlc cache for second zonelist scan */
1690 		zlc_active = 0;
1691 		goto zonelist_scan;
1692 	}
1693 	return page;
1694 }
1695 
1696 static inline int
1697 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1698 				unsigned long pages_reclaimed)
1699 {
1700 	/* Do not loop if specifically requested */
1701 	if (gfp_mask & __GFP_NORETRY)
1702 		return 0;
1703 
1704 	/*
1705 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1706 	 * means __GFP_NOFAIL, but that may not be true in other
1707 	 * implementations.
1708 	 */
1709 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1710 		return 1;
1711 
1712 	/*
1713 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1714 	 * specified, then we retry until we no longer reclaim any pages
1715 	 * (above), or we've reclaimed an order of pages at least as
1716 	 * large as the allocation's order. In both cases, if the
1717 	 * allocation still fails, we stop retrying.
1718 	 */
1719 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1720 		return 1;
1721 
1722 	/*
1723 	 * Don't let big-order allocations loop unless the caller
1724 	 * explicitly requests that.
1725 	 */
1726 	if (gfp_mask & __GFP_NOFAIL)
1727 		return 1;
1728 
1729 	return 0;
1730 }
1731 
1732 static inline struct page *
1733 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1734 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1735 	nodemask_t *nodemask, struct zone *preferred_zone,
1736 	int migratetype)
1737 {
1738 	struct page *page;
1739 
1740 	/* Acquire the OOM killer lock for the zones in zonelist */
1741 	if (!try_set_zone_oom(zonelist, gfp_mask)) {
1742 		schedule_timeout_uninterruptible(1);
1743 		return NULL;
1744 	}
1745 
1746 	/*
1747 	 * Go through the zonelist yet one more time, keep very high watermark
1748 	 * here, this is only to catch a parallel oom killing, we must fail if
1749 	 * we're still under heavy pressure.
1750 	 */
1751 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1752 		order, zonelist, high_zoneidx,
1753 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1754 		preferred_zone, migratetype);
1755 	if (page)
1756 		goto out;
1757 
1758 	if (!(gfp_mask & __GFP_NOFAIL)) {
1759 		/* The OOM killer will not help higher order allocs */
1760 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1761 			goto out;
1762 		/*
1763 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1764 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1765 		 * The caller should handle page allocation failure by itself if
1766 		 * it specifies __GFP_THISNODE.
1767 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1768 		 */
1769 		if (gfp_mask & __GFP_THISNODE)
1770 			goto out;
1771 	}
1772 	/* Exhausted what can be done so it's blamo time */
1773 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1774 
1775 out:
1776 	clear_zonelist_oom(zonelist, gfp_mask);
1777 	return page;
1778 }
1779 
1780 #ifdef CONFIG_COMPACTION
1781 /* Try memory compaction for high-order allocations before reclaim */
1782 static struct page *
1783 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1784 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1785 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1786 	int migratetype, unsigned long *did_some_progress)
1787 {
1788 	struct page *page;
1789 
1790 	if (!order || compaction_deferred(preferred_zone))
1791 		return NULL;
1792 
1793 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1794 								nodemask);
1795 	if (*did_some_progress != COMPACT_SKIPPED) {
1796 
1797 		/* Page migration frees to the PCP lists but we want merging */
1798 		drain_pages(get_cpu());
1799 		put_cpu();
1800 
1801 		page = get_page_from_freelist(gfp_mask, nodemask,
1802 				order, zonelist, high_zoneidx,
1803 				alloc_flags, preferred_zone,
1804 				migratetype);
1805 		if (page) {
1806 			preferred_zone->compact_considered = 0;
1807 			preferred_zone->compact_defer_shift = 0;
1808 			count_vm_event(COMPACTSUCCESS);
1809 			return page;
1810 		}
1811 
1812 		/*
1813 		 * It's bad if compaction run occurs and fails.
1814 		 * The most likely reason is that pages exist,
1815 		 * but not enough to satisfy watermarks.
1816 		 */
1817 		count_vm_event(COMPACTFAIL);
1818 		defer_compaction(preferred_zone);
1819 
1820 		cond_resched();
1821 	}
1822 
1823 	return NULL;
1824 }
1825 #else
1826 static inline struct page *
1827 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1828 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1829 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1830 	int migratetype, unsigned long *did_some_progress)
1831 {
1832 	return NULL;
1833 }
1834 #endif /* CONFIG_COMPACTION */
1835 
1836 /* The really slow allocator path where we enter direct reclaim */
1837 static inline struct page *
1838 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1839 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1840 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1841 	int migratetype, unsigned long *did_some_progress)
1842 {
1843 	struct page *page = NULL;
1844 	struct reclaim_state reclaim_state;
1845 	struct task_struct *p = current;
1846 
1847 	cond_resched();
1848 
1849 	/* We now go into synchronous reclaim */
1850 	cpuset_memory_pressure_bump();
1851 	p->flags |= PF_MEMALLOC;
1852 	lockdep_set_current_reclaim_state(gfp_mask);
1853 	reclaim_state.reclaimed_slab = 0;
1854 	p->reclaim_state = &reclaim_state;
1855 
1856 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1857 
1858 	p->reclaim_state = NULL;
1859 	lockdep_clear_current_reclaim_state();
1860 	p->flags &= ~PF_MEMALLOC;
1861 
1862 	cond_resched();
1863 
1864 	if (order != 0)
1865 		drain_all_pages();
1866 
1867 	if (likely(*did_some_progress))
1868 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1869 					zonelist, high_zoneidx,
1870 					alloc_flags, preferred_zone,
1871 					migratetype);
1872 	return page;
1873 }
1874 
1875 /*
1876  * This is called in the allocator slow-path if the allocation request is of
1877  * sufficient urgency to ignore watermarks and take other desperate measures
1878  */
1879 static inline struct page *
1880 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1881 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1882 	nodemask_t *nodemask, struct zone *preferred_zone,
1883 	int migratetype)
1884 {
1885 	struct page *page;
1886 
1887 	do {
1888 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1889 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
1890 			preferred_zone, migratetype);
1891 
1892 		if (!page && gfp_mask & __GFP_NOFAIL)
1893 			congestion_wait(BLK_RW_ASYNC, HZ/50);
1894 	} while (!page && (gfp_mask & __GFP_NOFAIL));
1895 
1896 	return page;
1897 }
1898 
1899 static inline
1900 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1901 						enum zone_type high_zoneidx)
1902 {
1903 	struct zoneref *z;
1904 	struct zone *zone;
1905 
1906 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1907 		wakeup_kswapd(zone, order);
1908 }
1909 
1910 static inline int
1911 gfp_to_alloc_flags(gfp_t gfp_mask)
1912 {
1913 	struct task_struct *p = current;
1914 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1915 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1916 
1917 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1918 	BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1919 
1920 	/*
1921 	 * The caller may dip into page reserves a bit more if the caller
1922 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1923 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1924 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1925 	 */
1926 	alloc_flags |= (gfp_mask & __GFP_HIGH);
1927 
1928 	if (!wait) {
1929 		alloc_flags |= ALLOC_HARDER;
1930 		/*
1931 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1932 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1933 		 */
1934 		alloc_flags &= ~ALLOC_CPUSET;
1935 	} else if (unlikely(rt_task(p)) && !in_interrupt())
1936 		alloc_flags |= ALLOC_HARDER;
1937 
1938 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1939 		if (!in_interrupt() &&
1940 		    ((p->flags & PF_MEMALLOC) ||
1941 		     unlikely(test_thread_flag(TIF_MEMDIE))))
1942 			alloc_flags |= ALLOC_NO_WATERMARKS;
1943 	}
1944 
1945 	return alloc_flags;
1946 }
1947 
1948 static inline struct page *
1949 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1950 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1951 	nodemask_t *nodemask, struct zone *preferred_zone,
1952 	int migratetype)
1953 {
1954 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1955 	struct page *page = NULL;
1956 	int alloc_flags;
1957 	unsigned long pages_reclaimed = 0;
1958 	unsigned long did_some_progress;
1959 	struct task_struct *p = current;
1960 
1961 	/*
1962 	 * In the slowpath, we sanity check order to avoid ever trying to
1963 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1964 	 * be using allocators in order of preference for an area that is
1965 	 * too large.
1966 	 */
1967 	if (order >= MAX_ORDER) {
1968 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
1969 		return NULL;
1970 	}
1971 
1972 	/*
1973 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1974 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1975 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1976 	 * using a larger set of nodes after it has established that the
1977 	 * allowed per node queues are empty and that nodes are
1978 	 * over allocated.
1979 	 */
1980 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1981 		goto nopage;
1982 
1983 restart:
1984 	wake_all_kswapd(order, zonelist, high_zoneidx);
1985 
1986 	/*
1987 	 * OK, we're below the kswapd watermark and have kicked background
1988 	 * reclaim. Now things get more complex, so set up alloc_flags according
1989 	 * to how we want to proceed.
1990 	 */
1991 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
1992 
1993 	/* This is the last chance, in general, before the goto nopage. */
1994 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1995 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1996 			preferred_zone, migratetype);
1997 	if (page)
1998 		goto got_pg;
1999 
2000 rebalance:
2001 	/* Allocate without watermarks if the context allows */
2002 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2003 		page = __alloc_pages_high_priority(gfp_mask, order,
2004 				zonelist, high_zoneidx, nodemask,
2005 				preferred_zone, migratetype);
2006 		if (page)
2007 			goto got_pg;
2008 	}
2009 
2010 	/* Atomic allocations - we can't balance anything */
2011 	if (!wait)
2012 		goto nopage;
2013 
2014 	/* Avoid recursion of direct reclaim */
2015 	if (p->flags & PF_MEMALLOC)
2016 		goto nopage;
2017 
2018 	/* Avoid allocations with no watermarks from looping endlessly */
2019 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2020 		goto nopage;
2021 
2022 	/* Try direct compaction */
2023 	page = __alloc_pages_direct_compact(gfp_mask, order,
2024 					zonelist, high_zoneidx,
2025 					nodemask,
2026 					alloc_flags, preferred_zone,
2027 					migratetype, &did_some_progress);
2028 	if (page)
2029 		goto got_pg;
2030 
2031 	/* Try direct reclaim and then allocating */
2032 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2033 					zonelist, high_zoneidx,
2034 					nodemask,
2035 					alloc_flags, preferred_zone,
2036 					migratetype, &did_some_progress);
2037 	if (page)
2038 		goto got_pg;
2039 
2040 	/*
2041 	 * If we failed to make any progress reclaiming, then we are
2042 	 * running out of options and have to consider going OOM
2043 	 */
2044 	if (!did_some_progress) {
2045 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2046 			if (oom_killer_disabled)
2047 				goto nopage;
2048 			page = __alloc_pages_may_oom(gfp_mask, order,
2049 					zonelist, high_zoneidx,
2050 					nodemask, preferred_zone,
2051 					migratetype);
2052 			if (page)
2053 				goto got_pg;
2054 
2055 			/*
2056 			 * The OOM killer does not trigger for high-order
2057 			 * ~__GFP_NOFAIL allocations so if no progress is being
2058 			 * made, there are no other options and retrying is
2059 			 * unlikely to help.
2060 			 */
2061 			if (order > PAGE_ALLOC_COSTLY_ORDER &&
2062 						!(gfp_mask & __GFP_NOFAIL))
2063 				goto nopage;
2064 
2065 			goto restart;
2066 		}
2067 	}
2068 
2069 	/* Check if we should retry the allocation */
2070 	pages_reclaimed += did_some_progress;
2071 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2072 		/* Wait for some write requests to complete then retry */
2073 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2074 		goto rebalance;
2075 	}
2076 
2077 nopage:
2078 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2079 		printk(KERN_WARNING "%s: page allocation failure."
2080 			" order:%d, mode:0x%x\n",
2081 			p->comm, order, gfp_mask);
2082 		dump_stack();
2083 		show_mem();
2084 	}
2085 	return page;
2086 got_pg:
2087 	if (kmemcheck_enabled)
2088 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2089 	return page;
2090 
2091 }
2092 
2093 /*
2094  * This is the 'heart' of the zoned buddy allocator.
2095  */
2096 struct page *
2097 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2098 			struct zonelist *zonelist, nodemask_t *nodemask)
2099 {
2100 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2101 	struct zone *preferred_zone;
2102 	struct page *page;
2103 	int migratetype = allocflags_to_migratetype(gfp_mask);
2104 
2105 	gfp_mask &= gfp_allowed_mask;
2106 
2107 	lockdep_trace_alloc(gfp_mask);
2108 
2109 	might_sleep_if(gfp_mask & __GFP_WAIT);
2110 
2111 	if (should_fail_alloc_page(gfp_mask, order))
2112 		return NULL;
2113 
2114 	/*
2115 	 * Check the zones suitable for the gfp_mask contain at least one
2116 	 * valid zone. It's possible to have an empty zonelist as a result
2117 	 * of GFP_THISNODE and a memoryless node
2118 	 */
2119 	if (unlikely(!zonelist->_zonerefs->zone))
2120 		return NULL;
2121 
2122 	get_mems_allowed();
2123 	/* The preferred zone is used for statistics later */
2124 	first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
2125 	if (!preferred_zone) {
2126 		put_mems_allowed();
2127 		return NULL;
2128 	}
2129 
2130 	/* First allocation attempt */
2131 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2132 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2133 			preferred_zone, migratetype);
2134 	if (unlikely(!page))
2135 		page = __alloc_pages_slowpath(gfp_mask, order,
2136 				zonelist, high_zoneidx, nodemask,
2137 				preferred_zone, migratetype);
2138 	put_mems_allowed();
2139 
2140 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2141 	return page;
2142 }
2143 EXPORT_SYMBOL(__alloc_pages_nodemask);
2144 
2145 /*
2146  * Common helper functions.
2147  */
2148 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2149 {
2150 	struct page *page;
2151 
2152 	/*
2153 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2154 	 * a highmem page
2155 	 */
2156 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2157 
2158 	page = alloc_pages(gfp_mask, order);
2159 	if (!page)
2160 		return 0;
2161 	return (unsigned long) page_address(page);
2162 }
2163 EXPORT_SYMBOL(__get_free_pages);
2164 
2165 unsigned long get_zeroed_page(gfp_t gfp_mask)
2166 {
2167 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2168 }
2169 EXPORT_SYMBOL(get_zeroed_page);
2170 
2171 void __pagevec_free(struct pagevec *pvec)
2172 {
2173 	int i = pagevec_count(pvec);
2174 
2175 	while (--i >= 0) {
2176 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2177 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2178 	}
2179 }
2180 
2181 void __free_pages(struct page *page, unsigned int order)
2182 {
2183 	if (put_page_testzero(page)) {
2184 		if (order == 0)
2185 			free_hot_cold_page(page, 0);
2186 		else
2187 			__free_pages_ok(page, order);
2188 	}
2189 }
2190 
2191 EXPORT_SYMBOL(__free_pages);
2192 
2193 void free_pages(unsigned long addr, unsigned int order)
2194 {
2195 	if (addr != 0) {
2196 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2197 		__free_pages(virt_to_page((void *)addr), order);
2198 	}
2199 }
2200 
2201 EXPORT_SYMBOL(free_pages);
2202 
2203 /**
2204  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2205  * @size: the number of bytes to allocate
2206  * @gfp_mask: GFP flags for the allocation
2207  *
2208  * This function is similar to alloc_pages(), except that it allocates the
2209  * minimum number of pages to satisfy the request.  alloc_pages() can only
2210  * allocate memory in power-of-two pages.
2211  *
2212  * This function is also limited by MAX_ORDER.
2213  *
2214  * Memory allocated by this function must be released by free_pages_exact().
2215  */
2216 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2217 {
2218 	unsigned int order = get_order(size);
2219 	unsigned long addr;
2220 
2221 	addr = __get_free_pages(gfp_mask, order);
2222 	if (addr) {
2223 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2224 		unsigned long used = addr + PAGE_ALIGN(size);
2225 
2226 		split_page(virt_to_page((void *)addr), order);
2227 		while (used < alloc_end) {
2228 			free_page(used);
2229 			used += PAGE_SIZE;
2230 		}
2231 	}
2232 
2233 	return (void *)addr;
2234 }
2235 EXPORT_SYMBOL(alloc_pages_exact);
2236 
2237 /**
2238  * free_pages_exact - release memory allocated via alloc_pages_exact()
2239  * @virt: the value returned by alloc_pages_exact.
2240  * @size: size of allocation, same value as passed to alloc_pages_exact().
2241  *
2242  * Release the memory allocated by a previous call to alloc_pages_exact.
2243  */
2244 void free_pages_exact(void *virt, size_t size)
2245 {
2246 	unsigned long addr = (unsigned long)virt;
2247 	unsigned long end = addr + PAGE_ALIGN(size);
2248 
2249 	while (addr < end) {
2250 		free_page(addr);
2251 		addr += PAGE_SIZE;
2252 	}
2253 }
2254 EXPORT_SYMBOL(free_pages_exact);
2255 
2256 static unsigned int nr_free_zone_pages(int offset)
2257 {
2258 	struct zoneref *z;
2259 	struct zone *zone;
2260 
2261 	/* Just pick one node, since fallback list is circular */
2262 	unsigned int sum = 0;
2263 
2264 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2265 
2266 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2267 		unsigned long size = zone->present_pages;
2268 		unsigned long high = high_wmark_pages(zone);
2269 		if (size > high)
2270 			sum += size - high;
2271 	}
2272 
2273 	return sum;
2274 }
2275 
2276 /*
2277  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2278  */
2279 unsigned int nr_free_buffer_pages(void)
2280 {
2281 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2282 }
2283 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2284 
2285 /*
2286  * Amount of free RAM allocatable within all zones
2287  */
2288 unsigned int nr_free_pagecache_pages(void)
2289 {
2290 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2291 }
2292 
2293 static inline void show_node(struct zone *zone)
2294 {
2295 	if (NUMA_BUILD)
2296 		printk("Node %d ", zone_to_nid(zone));
2297 }
2298 
2299 void si_meminfo(struct sysinfo *val)
2300 {
2301 	val->totalram = totalram_pages;
2302 	val->sharedram = 0;
2303 	val->freeram = global_page_state(NR_FREE_PAGES);
2304 	val->bufferram = nr_blockdev_pages();
2305 	val->totalhigh = totalhigh_pages;
2306 	val->freehigh = nr_free_highpages();
2307 	val->mem_unit = PAGE_SIZE;
2308 }
2309 
2310 EXPORT_SYMBOL(si_meminfo);
2311 
2312 #ifdef CONFIG_NUMA
2313 void si_meminfo_node(struct sysinfo *val, int nid)
2314 {
2315 	pg_data_t *pgdat = NODE_DATA(nid);
2316 
2317 	val->totalram = pgdat->node_present_pages;
2318 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2319 #ifdef CONFIG_HIGHMEM
2320 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2321 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2322 			NR_FREE_PAGES);
2323 #else
2324 	val->totalhigh = 0;
2325 	val->freehigh = 0;
2326 #endif
2327 	val->mem_unit = PAGE_SIZE;
2328 }
2329 #endif
2330 
2331 #define K(x) ((x) << (PAGE_SHIFT-10))
2332 
2333 /*
2334  * Show free area list (used inside shift_scroll-lock stuff)
2335  * We also calculate the percentage fragmentation. We do this by counting the
2336  * memory on each free list with the exception of the first item on the list.
2337  */
2338 void show_free_areas(void)
2339 {
2340 	int cpu;
2341 	struct zone *zone;
2342 
2343 	for_each_populated_zone(zone) {
2344 		show_node(zone);
2345 		printk("%s per-cpu:\n", zone->name);
2346 
2347 		for_each_online_cpu(cpu) {
2348 			struct per_cpu_pageset *pageset;
2349 
2350 			pageset = per_cpu_ptr(zone->pageset, cpu);
2351 
2352 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2353 			       cpu, pageset->pcp.high,
2354 			       pageset->pcp.batch, pageset->pcp.count);
2355 		}
2356 	}
2357 
2358 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2359 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2360 		" unevictable:%lu"
2361 		" dirty:%lu writeback:%lu unstable:%lu\n"
2362 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2363 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2364 		global_page_state(NR_ACTIVE_ANON),
2365 		global_page_state(NR_INACTIVE_ANON),
2366 		global_page_state(NR_ISOLATED_ANON),
2367 		global_page_state(NR_ACTIVE_FILE),
2368 		global_page_state(NR_INACTIVE_FILE),
2369 		global_page_state(NR_ISOLATED_FILE),
2370 		global_page_state(NR_UNEVICTABLE),
2371 		global_page_state(NR_FILE_DIRTY),
2372 		global_page_state(NR_WRITEBACK),
2373 		global_page_state(NR_UNSTABLE_NFS),
2374 		global_page_state(NR_FREE_PAGES),
2375 		global_page_state(NR_SLAB_RECLAIMABLE),
2376 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2377 		global_page_state(NR_FILE_MAPPED),
2378 		global_page_state(NR_SHMEM),
2379 		global_page_state(NR_PAGETABLE),
2380 		global_page_state(NR_BOUNCE));
2381 
2382 	for_each_populated_zone(zone) {
2383 		int i;
2384 
2385 		show_node(zone);
2386 		printk("%s"
2387 			" free:%lukB"
2388 			" min:%lukB"
2389 			" low:%lukB"
2390 			" high:%lukB"
2391 			" active_anon:%lukB"
2392 			" inactive_anon:%lukB"
2393 			" active_file:%lukB"
2394 			" inactive_file:%lukB"
2395 			" unevictable:%lukB"
2396 			" isolated(anon):%lukB"
2397 			" isolated(file):%lukB"
2398 			" present:%lukB"
2399 			" mlocked:%lukB"
2400 			" dirty:%lukB"
2401 			" writeback:%lukB"
2402 			" mapped:%lukB"
2403 			" shmem:%lukB"
2404 			" slab_reclaimable:%lukB"
2405 			" slab_unreclaimable:%lukB"
2406 			" kernel_stack:%lukB"
2407 			" pagetables:%lukB"
2408 			" unstable:%lukB"
2409 			" bounce:%lukB"
2410 			" writeback_tmp:%lukB"
2411 			" pages_scanned:%lu"
2412 			" all_unreclaimable? %s"
2413 			"\n",
2414 			zone->name,
2415 			K(zone_page_state(zone, NR_FREE_PAGES)),
2416 			K(min_wmark_pages(zone)),
2417 			K(low_wmark_pages(zone)),
2418 			K(high_wmark_pages(zone)),
2419 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2420 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2421 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2422 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2423 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2424 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2425 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2426 			K(zone->present_pages),
2427 			K(zone_page_state(zone, NR_MLOCK)),
2428 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2429 			K(zone_page_state(zone, NR_WRITEBACK)),
2430 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2431 			K(zone_page_state(zone, NR_SHMEM)),
2432 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2433 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2434 			zone_page_state(zone, NR_KERNEL_STACK) *
2435 				THREAD_SIZE / 1024,
2436 			K(zone_page_state(zone, NR_PAGETABLE)),
2437 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2438 			K(zone_page_state(zone, NR_BOUNCE)),
2439 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2440 			zone->pages_scanned,
2441 			(zone->all_unreclaimable ? "yes" : "no")
2442 			);
2443 		printk("lowmem_reserve[]:");
2444 		for (i = 0; i < MAX_NR_ZONES; i++)
2445 			printk(" %lu", zone->lowmem_reserve[i]);
2446 		printk("\n");
2447 	}
2448 
2449 	for_each_populated_zone(zone) {
2450  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2451 
2452 		show_node(zone);
2453 		printk("%s: ", zone->name);
2454 
2455 		spin_lock_irqsave(&zone->lock, flags);
2456 		for (order = 0; order < MAX_ORDER; order++) {
2457 			nr[order] = zone->free_area[order].nr_free;
2458 			total += nr[order] << order;
2459 		}
2460 		spin_unlock_irqrestore(&zone->lock, flags);
2461 		for (order = 0; order < MAX_ORDER; order++)
2462 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2463 		printk("= %lukB\n", K(total));
2464 	}
2465 
2466 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2467 
2468 	show_swap_cache_info();
2469 }
2470 
2471 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2472 {
2473 	zoneref->zone = zone;
2474 	zoneref->zone_idx = zone_idx(zone);
2475 }
2476 
2477 /*
2478  * Builds allocation fallback zone lists.
2479  *
2480  * Add all populated zones of a node to the zonelist.
2481  */
2482 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2483 				int nr_zones, enum zone_type zone_type)
2484 {
2485 	struct zone *zone;
2486 
2487 	BUG_ON(zone_type >= MAX_NR_ZONES);
2488 	zone_type++;
2489 
2490 	do {
2491 		zone_type--;
2492 		zone = pgdat->node_zones + zone_type;
2493 		if (populated_zone(zone)) {
2494 			zoneref_set_zone(zone,
2495 				&zonelist->_zonerefs[nr_zones++]);
2496 			check_highest_zone(zone_type);
2497 		}
2498 
2499 	} while (zone_type);
2500 	return nr_zones;
2501 }
2502 
2503 
2504 /*
2505  *  zonelist_order:
2506  *  0 = automatic detection of better ordering.
2507  *  1 = order by ([node] distance, -zonetype)
2508  *  2 = order by (-zonetype, [node] distance)
2509  *
2510  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2511  *  the same zonelist. So only NUMA can configure this param.
2512  */
2513 #define ZONELIST_ORDER_DEFAULT  0
2514 #define ZONELIST_ORDER_NODE     1
2515 #define ZONELIST_ORDER_ZONE     2
2516 
2517 /* zonelist order in the kernel.
2518  * set_zonelist_order() will set this to NODE or ZONE.
2519  */
2520 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2521 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2522 
2523 
2524 #ifdef CONFIG_NUMA
2525 /* The value user specified ....changed by config */
2526 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2527 /* string for sysctl */
2528 #define NUMA_ZONELIST_ORDER_LEN	16
2529 char numa_zonelist_order[16] = "default";
2530 
2531 /*
2532  * interface for configure zonelist ordering.
2533  * command line option "numa_zonelist_order"
2534  *	= "[dD]efault	- default, automatic configuration.
2535  *	= "[nN]ode 	- order by node locality, then by zone within node
2536  *	= "[zZ]one      - order by zone, then by locality within zone
2537  */
2538 
2539 static int __parse_numa_zonelist_order(char *s)
2540 {
2541 	if (*s == 'd' || *s == 'D') {
2542 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2543 	} else if (*s == 'n' || *s == 'N') {
2544 		user_zonelist_order = ZONELIST_ORDER_NODE;
2545 	} else if (*s == 'z' || *s == 'Z') {
2546 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2547 	} else {
2548 		printk(KERN_WARNING
2549 			"Ignoring invalid numa_zonelist_order value:  "
2550 			"%s\n", s);
2551 		return -EINVAL;
2552 	}
2553 	return 0;
2554 }
2555 
2556 static __init int setup_numa_zonelist_order(char *s)
2557 {
2558 	if (s)
2559 		return __parse_numa_zonelist_order(s);
2560 	return 0;
2561 }
2562 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2563 
2564 /*
2565  * sysctl handler for numa_zonelist_order
2566  */
2567 int numa_zonelist_order_handler(ctl_table *table, int write,
2568 		void __user *buffer, size_t *length,
2569 		loff_t *ppos)
2570 {
2571 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2572 	int ret;
2573 	static DEFINE_MUTEX(zl_order_mutex);
2574 
2575 	mutex_lock(&zl_order_mutex);
2576 	if (write)
2577 		strcpy(saved_string, (char*)table->data);
2578 	ret = proc_dostring(table, write, buffer, length, ppos);
2579 	if (ret)
2580 		goto out;
2581 	if (write) {
2582 		int oldval = user_zonelist_order;
2583 		if (__parse_numa_zonelist_order((char*)table->data)) {
2584 			/*
2585 			 * bogus value.  restore saved string
2586 			 */
2587 			strncpy((char*)table->data, saved_string,
2588 				NUMA_ZONELIST_ORDER_LEN);
2589 			user_zonelist_order = oldval;
2590 		} else if (oldval != user_zonelist_order) {
2591 			mutex_lock(&zonelists_mutex);
2592 			build_all_zonelists(NULL);
2593 			mutex_unlock(&zonelists_mutex);
2594 		}
2595 	}
2596 out:
2597 	mutex_unlock(&zl_order_mutex);
2598 	return ret;
2599 }
2600 
2601 
2602 #define MAX_NODE_LOAD (nr_online_nodes)
2603 static int node_load[MAX_NUMNODES];
2604 
2605 /**
2606  * find_next_best_node - find the next node that should appear in a given node's fallback list
2607  * @node: node whose fallback list we're appending
2608  * @used_node_mask: nodemask_t of already used nodes
2609  *
2610  * We use a number of factors to determine which is the next node that should
2611  * appear on a given node's fallback list.  The node should not have appeared
2612  * already in @node's fallback list, and it should be the next closest node
2613  * according to the distance array (which contains arbitrary distance values
2614  * from each node to each node in the system), and should also prefer nodes
2615  * with no CPUs, since presumably they'll have very little allocation pressure
2616  * on them otherwise.
2617  * It returns -1 if no node is found.
2618  */
2619 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2620 {
2621 	int n, val;
2622 	int min_val = INT_MAX;
2623 	int best_node = -1;
2624 	const struct cpumask *tmp = cpumask_of_node(0);
2625 
2626 	/* Use the local node if we haven't already */
2627 	if (!node_isset(node, *used_node_mask)) {
2628 		node_set(node, *used_node_mask);
2629 		return node;
2630 	}
2631 
2632 	for_each_node_state(n, N_HIGH_MEMORY) {
2633 
2634 		/* Don't want a node to appear more than once */
2635 		if (node_isset(n, *used_node_mask))
2636 			continue;
2637 
2638 		/* Use the distance array to find the distance */
2639 		val = node_distance(node, n);
2640 
2641 		/* Penalize nodes under us ("prefer the next node") */
2642 		val += (n < node);
2643 
2644 		/* Give preference to headless and unused nodes */
2645 		tmp = cpumask_of_node(n);
2646 		if (!cpumask_empty(tmp))
2647 			val += PENALTY_FOR_NODE_WITH_CPUS;
2648 
2649 		/* Slight preference for less loaded node */
2650 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2651 		val += node_load[n];
2652 
2653 		if (val < min_val) {
2654 			min_val = val;
2655 			best_node = n;
2656 		}
2657 	}
2658 
2659 	if (best_node >= 0)
2660 		node_set(best_node, *used_node_mask);
2661 
2662 	return best_node;
2663 }
2664 
2665 
2666 /*
2667  * Build zonelists ordered by node and zones within node.
2668  * This results in maximum locality--normal zone overflows into local
2669  * DMA zone, if any--but risks exhausting DMA zone.
2670  */
2671 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2672 {
2673 	int j;
2674 	struct zonelist *zonelist;
2675 
2676 	zonelist = &pgdat->node_zonelists[0];
2677 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2678 		;
2679 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2680 							MAX_NR_ZONES - 1);
2681 	zonelist->_zonerefs[j].zone = NULL;
2682 	zonelist->_zonerefs[j].zone_idx = 0;
2683 }
2684 
2685 /*
2686  * Build gfp_thisnode zonelists
2687  */
2688 static void build_thisnode_zonelists(pg_data_t *pgdat)
2689 {
2690 	int j;
2691 	struct zonelist *zonelist;
2692 
2693 	zonelist = &pgdat->node_zonelists[1];
2694 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2695 	zonelist->_zonerefs[j].zone = NULL;
2696 	zonelist->_zonerefs[j].zone_idx = 0;
2697 }
2698 
2699 /*
2700  * Build zonelists ordered by zone and nodes within zones.
2701  * This results in conserving DMA zone[s] until all Normal memory is
2702  * exhausted, but results in overflowing to remote node while memory
2703  * may still exist in local DMA zone.
2704  */
2705 static int node_order[MAX_NUMNODES];
2706 
2707 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2708 {
2709 	int pos, j, node;
2710 	int zone_type;		/* needs to be signed */
2711 	struct zone *z;
2712 	struct zonelist *zonelist;
2713 
2714 	zonelist = &pgdat->node_zonelists[0];
2715 	pos = 0;
2716 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2717 		for (j = 0; j < nr_nodes; j++) {
2718 			node = node_order[j];
2719 			z = &NODE_DATA(node)->node_zones[zone_type];
2720 			if (populated_zone(z)) {
2721 				zoneref_set_zone(z,
2722 					&zonelist->_zonerefs[pos++]);
2723 				check_highest_zone(zone_type);
2724 			}
2725 		}
2726 	}
2727 	zonelist->_zonerefs[pos].zone = NULL;
2728 	zonelist->_zonerefs[pos].zone_idx = 0;
2729 }
2730 
2731 static int default_zonelist_order(void)
2732 {
2733 	int nid, zone_type;
2734 	unsigned long low_kmem_size,total_size;
2735 	struct zone *z;
2736 	int average_size;
2737 	/*
2738          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2739 	 * If they are really small and used heavily, the system can fall
2740 	 * into OOM very easily.
2741 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2742 	 */
2743 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2744 	low_kmem_size = 0;
2745 	total_size = 0;
2746 	for_each_online_node(nid) {
2747 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2748 			z = &NODE_DATA(nid)->node_zones[zone_type];
2749 			if (populated_zone(z)) {
2750 				if (zone_type < ZONE_NORMAL)
2751 					low_kmem_size += z->present_pages;
2752 				total_size += z->present_pages;
2753 			} else if (zone_type == ZONE_NORMAL) {
2754 				/*
2755 				 * If any node has only lowmem, then node order
2756 				 * is preferred to allow kernel allocations
2757 				 * locally; otherwise, they can easily infringe
2758 				 * on other nodes when there is an abundance of
2759 				 * lowmem available to allocate from.
2760 				 */
2761 				return ZONELIST_ORDER_NODE;
2762 			}
2763 		}
2764 	}
2765 	if (!low_kmem_size ||  /* there are no DMA area. */
2766 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2767 		return ZONELIST_ORDER_NODE;
2768 	/*
2769 	 * look into each node's config.
2770   	 * If there is a node whose DMA/DMA32 memory is very big area on
2771  	 * local memory, NODE_ORDER may be suitable.
2772          */
2773 	average_size = total_size /
2774 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2775 	for_each_online_node(nid) {
2776 		low_kmem_size = 0;
2777 		total_size = 0;
2778 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2779 			z = &NODE_DATA(nid)->node_zones[zone_type];
2780 			if (populated_zone(z)) {
2781 				if (zone_type < ZONE_NORMAL)
2782 					low_kmem_size += z->present_pages;
2783 				total_size += z->present_pages;
2784 			}
2785 		}
2786 		if (low_kmem_size &&
2787 		    total_size > average_size && /* ignore small node */
2788 		    low_kmem_size > total_size * 70/100)
2789 			return ZONELIST_ORDER_NODE;
2790 	}
2791 	return ZONELIST_ORDER_ZONE;
2792 }
2793 
2794 static void set_zonelist_order(void)
2795 {
2796 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2797 		current_zonelist_order = default_zonelist_order();
2798 	else
2799 		current_zonelist_order = user_zonelist_order;
2800 }
2801 
2802 static void build_zonelists(pg_data_t *pgdat)
2803 {
2804 	int j, node, load;
2805 	enum zone_type i;
2806 	nodemask_t used_mask;
2807 	int local_node, prev_node;
2808 	struct zonelist *zonelist;
2809 	int order = current_zonelist_order;
2810 
2811 	/* initialize zonelists */
2812 	for (i = 0; i < MAX_ZONELISTS; i++) {
2813 		zonelist = pgdat->node_zonelists + i;
2814 		zonelist->_zonerefs[0].zone = NULL;
2815 		zonelist->_zonerefs[0].zone_idx = 0;
2816 	}
2817 
2818 	/* NUMA-aware ordering of nodes */
2819 	local_node = pgdat->node_id;
2820 	load = nr_online_nodes;
2821 	prev_node = local_node;
2822 	nodes_clear(used_mask);
2823 
2824 	memset(node_order, 0, sizeof(node_order));
2825 	j = 0;
2826 
2827 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2828 		int distance = node_distance(local_node, node);
2829 
2830 		/*
2831 		 * If another node is sufficiently far away then it is better
2832 		 * to reclaim pages in a zone before going off node.
2833 		 */
2834 		if (distance > RECLAIM_DISTANCE)
2835 			zone_reclaim_mode = 1;
2836 
2837 		/*
2838 		 * We don't want to pressure a particular node.
2839 		 * So adding penalty to the first node in same
2840 		 * distance group to make it round-robin.
2841 		 */
2842 		if (distance != node_distance(local_node, prev_node))
2843 			node_load[node] = load;
2844 
2845 		prev_node = node;
2846 		load--;
2847 		if (order == ZONELIST_ORDER_NODE)
2848 			build_zonelists_in_node_order(pgdat, node);
2849 		else
2850 			node_order[j++] = node;	/* remember order */
2851 	}
2852 
2853 	if (order == ZONELIST_ORDER_ZONE) {
2854 		/* calculate node order -- i.e., DMA last! */
2855 		build_zonelists_in_zone_order(pgdat, j);
2856 	}
2857 
2858 	build_thisnode_zonelists(pgdat);
2859 }
2860 
2861 /* Construct the zonelist performance cache - see further mmzone.h */
2862 static void build_zonelist_cache(pg_data_t *pgdat)
2863 {
2864 	struct zonelist *zonelist;
2865 	struct zonelist_cache *zlc;
2866 	struct zoneref *z;
2867 
2868 	zonelist = &pgdat->node_zonelists[0];
2869 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2870 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2871 	for (z = zonelist->_zonerefs; z->zone; z++)
2872 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2873 }
2874 
2875 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2876 /*
2877  * Return node id of node used for "local" allocations.
2878  * I.e., first node id of first zone in arg node's generic zonelist.
2879  * Used for initializing percpu 'numa_mem', which is used primarily
2880  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2881  */
2882 int local_memory_node(int node)
2883 {
2884 	struct zone *zone;
2885 
2886 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2887 				   gfp_zone(GFP_KERNEL),
2888 				   NULL,
2889 				   &zone);
2890 	return zone->node;
2891 }
2892 #endif
2893 
2894 #else	/* CONFIG_NUMA */
2895 
2896 static void set_zonelist_order(void)
2897 {
2898 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2899 }
2900 
2901 static void build_zonelists(pg_data_t *pgdat)
2902 {
2903 	int node, local_node;
2904 	enum zone_type j;
2905 	struct zonelist *zonelist;
2906 
2907 	local_node = pgdat->node_id;
2908 
2909 	zonelist = &pgdat->node_zonelists[0];
2910 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2911 
2912 	/*
2913 	 * Now we build the zonelist so that it contains the zones
2914 	 * of all the other nodes.
2915 	 * We don't want to pressure a particular node, so when
2916 	 * building the zones for node N, we make sure that the
2917 	 * zones coming right after the local ones are those from
2918 	 * node N+1 (modulo N)
2919 	 */
2920 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2921 		if (!node_online(node))
2922 			continue;
2923 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2924 							MAX_NR_ZONES - 1);
2925 	}
2926 	for (node = 0; node < local_node; node++) {
2927 		if (!node_online(node))
2928 			continue;
2929 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2930 							MAX_NR_ZONES - 1);
2931 	}
2932 
2933 	zonelist->_zonerefs[j].zone = NULL;
2934 	zonelist->_zonerefs[j].zone_idx = 0;
2935 }
2936 
2937 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2938 static void build_zonelist_cache(pg_data_t *pgdat)
2939 {
2940 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2941 }
2942 
2943 #endif	/* CONFIG_NUMA */
2944 
2945 /*
2946  * Boot pageset table. One per cpu which is going to be used for all
2947  * zones and all nodes. The parameters will be set in such a way
2948  * that an item put on a list will immediately be handed over to
2949  * the buddy list. This is safe since pageset manipulation is done
2950  * with interrupts disabled.
2951  *
2952  * The boot_pagesets must be kept even after bootup is complete for
2953  * unused processors and/or zones. They do play a role for bootstrapping
2954  * hotplugged processors.
2955  *
2956  * zoneinfo_show() and maybe other functions do
2957  * not check if the processor is online before following the pageset pointer.
2958  * Other parts of the kernel may not check if the zone is available.
2959  */
2960 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
2961 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
2962 static void setup_zone_pageset(struct zone *zone);
2963 
2964 /*
2965  * Global mutex to protect against size modification of zonelists
2966  * as well as to serialize pageset setup for the new populated zone.
2967  */
2968 DEFINE_MUTEX(zonelists_mutex);
2969 
2970 /* return values int ....just for stop_machine() */
2971 static __init_refok int __build_all_zonelists(void *data)
2972 {
2973 	int nid;
2974 	int cpu;
2975 
2976 #ifdef CONFIG_NUMA
2977 	memset(node_load, 0, sizeof(node_load));
2978 #endif
2979 	for_each_online_node(nid) {
2980 		pg_data_t *pgdat = NODE_DATA(nid);
2981 
2982 		build_zonelists(pgdat);
2983 		build_zonelist_cache(pgdat);
2984 	}
2985 
2986 #ifdef CONFIG_MEMORY_HOTPLUG
2987 	/* Setup real pagesets for the new zone */
2988 	if (data) {
2989 		struct zone *zone = data;
2990 		setup_zone_pageset(zone);
2991 	}
2992 #endif
2993 
2994 	/*
2995 	 * Initialize the boot_pagesets that are going to be used
2996 	 * for bootstrapping processors. The real pagesets for
2997 	 * each zone will be allocated later when the per cpu
2998 	 * allocator is available.
2999 	 *
3000 	 * boot_pagesets are used also for bootstrapping offline
3001 	 * cpus if the system is already booted because the pagesets
3002 	 * are needed to initialize allocators on a specific cpu too.
3003 	 * F.e. the percpu allocator needs the page allocator which
3004 	 * needs the percpu allocator in order to allocate its pagesets
3005 	 * (a chicken-egg dilemma).
3006 	 */
3007 	for_each_possible_cpu(cpu) {
3008 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3009 
3010 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3011 		/*
3012 		 * We now know the "local memory node" for each node--
3013 		 * i.e., the node of the first zone in the generic zonelist.
3014 		 * Set up numa_mem percpu variable for on-line cpus.  During
3015 		 * boot, only the boot cpu should be on-line;  we'll init the
3016 		 * secondary cpus' numa_mem as they come on-line.  During
3017 		 * node/memory hotplug, we'll fixup all on-line cpus.
3018 		 */
3019 		if (cpu_online(cpu))
3020 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3021 #endif
3022 	}
3023 
3024 	return 0;
3025 }
3026 
3027 /*
3028  * Called with zonelists_mutex held always
3029  * unless system_state == SYSTEM_BOOTING.
3030  */
3031 void build_all_zonelists(void *data)
3032 {
3033 	set_zonelist_order();
3034 
3035 	if (system_state == SYSTEM_BOOTING) {
3036 		__build_all_zonelists(NULL);
3037 		mminit_verify_zonelist();
3038 		cpuset_init_current_mems_allowed();
3039 	} else {
3040 		/* we have to stop all cpus to guarantee there is no user
3041 		   of zonelist */
3042 		stop_machine(__build_all_zonelists, data, NULL);
3043 		/* cpuset refresh routine should be here */
3044 	}
3045 	vm_total_pages = nr_free_pagecache_pages();
3046 	/*
3047 	 * Disable grouping by mobility if the number of pages in the
3048 	 * system is too low to allow the mechanism to work. It would be
3049 	 * more accurate, but expensive to check per-zone. This check is
3050 	 * made on memory-hotadd so a system can start with mobility
3051 	 * disabled and enable it later
3052 	 */
3053 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3054 		page_group_by_mobility_disabled = 1;
3055 	else
3056 		page_group_by_mobility_disabled = 0;
3057 
3058 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3059 		"Total pages: %ld\n",
3060 			nr_online_nodes,
3061 			zonelist_order_name[current_zonelist_order],
3062 			page_group_by_mobility_disabled ? "off" : "on",
3063 			vm_total_pages);
3064 #ifdef CONFIG_NUMA
3065 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3066 #endif
3067 }
3068 
3069 /*
3070  * Helper functions to size the waitqueue hash table.
3071  * Essentially these want to choose hash table sizes sufficiently
3072  * large so that collisions trying to wait on pages are rare.
3073  * But in fact, the number of active page waitqueues on typical
3074  * systems is ridiculously low, less than 200. So this is even
3075  * conservative, even though it seems large.
3076  *
3077  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3078  * waitqueues, i.e. the size of the waitq table given the number of pages.
3079  */
3080 #define PAGES_PER_WAITQUEUE	256
3081 
3082 #ifndef CONFIG_MEMORY_HOTPLUG
3083 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3084 {
3085 	unsigned long size = 1;
3086 
3087 	pages /= PAGES_PER_WAITQUEUE;
3088 
3089 	while (size < pages)
3090 		size <<= 1;
3091 
3092 	/*
3093 	 * Once we have dozens or even hundreds of threads sleeping
3094 	 * on IO we've got bigger problems than wait queue collision.
3095 	 * Limit the size of the wait table to a reasonable size.
3096 	 */
3097 	size = min(size, 4096UL);
3098 
3099 	return max(size, 4UL);
3100 }
3101 #else
3102 /*
3103  * A zone's size might be changed by hot-add, so it is not possible to determine
3104  * a suitable size for its wait_table.  So we use the maximum size now.
3105  *
3106  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3107  *
3108  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3109  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3110  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3111  *
3112  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3113  * or more by the traditional way. (See above).  It equals:
3114  *
3115  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3116  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3117  *    powerpc (64K page size)             : =  (32G +16M)byte.
3118  */
3119 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3120 {
3121 	return 4096UL;
3122 }
3123 #endif
3124 
3125 /*
3126  * This is an integer logarithm so that shifts can be used later
3127  * to extract the more random high bits from the multiplicative
3128  * hash function before the remainder is taken.
3129  */
3130 static inline unsigned long wait_table_bits(unsigned long size)
3131 {
3132 	return ffz(~size);
3133 }
3134 
3135 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3136 
3137 /*
3138  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3139  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3140  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3141  * higher will lead to a bigger reserve which will get freed as contiguous
3142  * blocks as reclaim kicks in
3143  */
3144 static void setup_zone_migrate_reserve(struct zone *zone)
3145 {
3146 	unsigned long start_pfn, pfn, end_pfn;
3147 	struct page *page;
3148 	unsigned long block_migratetype;
3149 	int reserve;
3150 
3151 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3152 	start_pfn = zone->zone_start_pfn;
3153 	end_pfn = start_pfn + zone->spanned_pages;
3154 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3155 							pageblock_order;
3156 
3157 	/*
3158 	 * Reserve blocks are generally in place to help high-order atomic
3159 	 * allocations that are short-lived. A min_free_kbytes value that
3160 	 * would result in more than 2 reserve blocks for atomic allocations
3161 	 * is assumed to be in place to help anti-fragmentation for the
3162 	 * future allocation of hugepages at runtime.
3163 	 */
3164 	reserve = min(2, reserve);
3165 
3166 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3167 		if (!pfn_valid(pfn))
3168 			continue;
3169 		page = pfn_to_page(pfn);
3170 
3171 		/* Watch out for overlapping nodes */
3172 		if (page_to_nid(page) != zone_to_nid(zone))
3173 			continue;
3174 
3175 		/* Blocks with reserved pages will never free, skip them. */
3176 		if (PageReserved(page))
3177 			continue;
3178 
3179 		block_migratetype = get_pageblock_migratetype(page);
3180 
3181 		/* If this block is reserved, account for it */
3182 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3183 			reserve--;
3184 			continue;
3185 		}
3186 
3187 		/* Suitable for reserving if this block is movable */
3188 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3189 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3190 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3191 			reserve--;
3192 			continue;
3193 		}
3194 
3195 		/*
3196 		 * If the reserve is met and this is a previous reserved block,
3197 		 * take it back
3198 		 */
3199 		if (block_migratetype == MIGRATE_RESERVE) {
3200 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3201 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3202 		}
3203 	}
3204 }
3205 
3206 /*
3207  * Initially all pages are reserved - free ones are freed
3208  * up by free_all_bootmem() once the early boot process is
3209  * done. Non-atomic initialization, single-pass.
3210  */
3211 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3212 		unsigned long start_pfn, enum memmap_context context)
3213 {
3214 	struct page *page;
3215 	unsigned long end_pfn = start_pfn + size;
3216 	unsigned long pfn;
3217 	struct zone *z;
3218 
3219 	if (highest_memmap_pfn < end_pfn - 1)
3220 		highest_memmap_pfn = end_pfn - 1;
3221 
3222 	z = &NODE_DATA(nid)->node_zones[zone];
3223 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3224 		/*
3225 		 * There can be holes in boot-time mem_map[]s
3226 		 * handed to this function.  They do not
3227 		 * exist on hotplugged memory.
3228 		 */
3229 		if (context == MEMMAP_EARLY) {
3230 			if (!early_pfn_valid(pfn))
3231 				continue;
3232 			if (!early_pfn_in_nid(pfn, nid))
3233 				continue;
3234 		}
3235 		page = pfn_to_page(pfn);
3236 		set_page_links(page, zone, nid, pfn);
3237 		mminit_verify_page_links(page, zone, nid, pfn);
3238 		init_page_count(page);
3239 		reset_page_mapcount(page);
3240 		SetPageReserved(page);
3241 		/*
3242 		 * Mark the block movable so that blocks are reserved for
3243 		 * movable at startup. This will force kernel allocations
3244 		 * to reserve their blocks rather than leaking throughout
3245 		 * the address space during boot when many long-lived
3246 		 * kernel allocations are made. Later some blocks near
3247 		 * the start are marked MIGRATE_RESERVE by
3248 		 * setup_zone_migrate_reserve()
3249 		 *
3250 		 * bitmap is created for zone's valid pfn range. but memmap
3251 		 * can be created for invalid pages (for alignment)
3252 		 * check here not to call set_pageblock_migratetype() against
3253 		 * pfn out of zone.
3254 		 */
3255 		if ((z->zone_start_pfn <= pfn)
3256 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3257 		    && !(pfn & (pageblock_nr_pages - 1)))
3258 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3259 
3260 		INIT_LIST_HEAD(&page->lru);
3261 #ifdef WANT_PAGE_VIRTUAL
3262 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3263 		if (!is_highmem_idx(zone))
3264 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3265 #endif
3266 	}
3267 }
3268 
3269 static void __meminit zone_init_free_lists(struct zone *zone)
3270 {
3271 	int order, t;
3272 	for_each_migratetype_order(order, t) {
3273 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3274 		zone->free_area[order].nr_free = 0;
3275 	}
3276 }
3277 
3278 #ifndef __HAVE_ARCH_MEMMAP_INIT
3279 #define memmap_init(size, nid, zone, start_pfn) \
3280 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3281 #endif
3282 
3283 static int zone_batchsize(struct zone *zone)
3284 {
3285 #ifdef CONFIG_MMU
3286 	int batch;
3287 
3288 	/*
3289 	 * The per-cpu-pages pools are set to around 1000th of the
3290 	 * size of the zone.  But no more than 1/2 of a meg.
3291 	 *
3292 	 * OK, so we don't know how big the cache is.  So guess.
3293 	 */
3294 	batch = zone->present_pages / 1024;
3295 	if (batch * PAGE_SIZE > 512 * 1024)
3296 		batch = (512 * 1024) / PAGE_SIZE;
3297 	batch /= 4;		/* We effectively *= 4 below */
3298 	if (batch < 1)
3299 		batch = 1;
3300 
3301 	/*
3302 	 * Clamp the batch to a 2^n - 1 value. Having a power
3303 	 * of 2 value was found to be more likely to have
3304 	 * suboptimal cache aliasing properties in some cases.
3305 	 *
3306 	 * For example if 2 tasks are alternately allocating
3307 	 * batches of pages, one task can end up with a lot
3308 	 * of pages of one half of the possible page colors
3309 	 * and the other with pages of the other colors.
3310 	 */
3311 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3312 
3313 	return batch;
3314 
3315 #else
3316 	/* The deferral and batching of frees should be suppressed under NOMMU
3317 	 * conditions.
3318 	 *
3319 	 * The problem is that NOMMU needs to be able to allocate large chunks
3320 	 * of contiguous memory as there's no hardware page translation to
3321 	 * assemble apparent contiguous memory from discontiguous pages.
3322 	 *
3323 	 * Queueing large contiguous runs of pages for batching, however,
3324 	 * causes the pages to actually be freed in smaller chunks.  As there
3325 	 * can be a significant delay between the individual batches being
3326 	 * recycled, this leads to the once large chunks of space being
3327 	 * fragmented and becoming unavailable for high-order allocations.
3328 	 */
3329 	return 0;
3330 #endif
3331 }
3332 
3333 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3334 {
3335 	struct per_cpu_pages *pcp;
3336 	int migratetype;
3337 
3338 	memset(p, 0, sizeof(*p));
3339 
3340 	pcp = &p->pcp;
3341 	pcp->count = 0;
3342 	pcp->high = 6 * batch;
3343 	pcp->batch = max(1UL, 1 * batch);
3344 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3345 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3346 }
3347 
3348 /*
3349  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3350  * to the value high for the pageset p.
3351  */
3352 
3353 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3354 				unsigned long high)
3355 {
3356 	struct per_cpu_pages *pcp;
3357 
3358 	pcp = &p->pcp;
3359 	pcp->high = high;
3360 	pcp->batch = max(1UL, high/4);
3361 	if ((high/4) > (PAGE_SHIFT * 8))
3362 		pcp->batch = PAGE_SHIFT * 8;
3363 }
3364 
3365 static __meminit void setup_zone_pageset(struct zone *zone)
3366 {
3367 	int cpu;
3368 
3369 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3370 
3371 	for_each_possible_cpu(cpu) {
3372 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3373 
3374 		setup_pageset(pcp, zone_batchsize(zone));
3375 
3376 		if (percpu_pagelist_fraction)
3377 			setup_pagelist_highmark(pcp,
3378 				(zone->present_pages /
3379 					percpu_pagelist_fraction));
3380 	}
3381 }
3382 
3383 /*
3384  * Allocate per cpu pagesets and initialize them.
3385  * Before this call only boot pagesets were available.
3386  */
3387 void __init setup_per_cpu_pageset(void)
3388 {
3389 	struct zone *zone;
3390 
3391 	for_each_populated_zone(zone)
3392 		setup_zone_pageset(zone);
3393 }
3394 
3395 static noinline __init_refok
3396 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3397 {
3398 	int i;
3399 	struct pglist_data *pgdat = zone->zone_pgdat;
3400 	size_t alloc_size;
3401 
3402 	/*
3403 	 * The per-page waitqueue mechanism uses hashed waitqueues
3404 	 * per zone.
3405 	 */
3406 	zone->wait_table_hash_nr_entries =
3407 		 wait_table_hash_nr_entries(zone_size_pages);
3408 	zone->wait_table_bits =
3409 		wait_table_bits(zone->wait_table_hash_nr_entries);
3410 	alloc_size = zone->wait_table_hash_nr_entries
3411 					* sizeof(wait_queue_head_t);
3412 
3413 	if (!slab_is_available()) {
3414 		zone->wait_table = (wait_queue_head_t *)
3415 			alloc_bootmem_node(pgdat, alloc_size);
3416 	} else {
3417 		/*
3418 		 * This case means that a zone whose size was 0 gets new memory
3419 		 * via memory hot-add.
3420 		 * But it may be the case that a new node was hot-added.  In
3421 		 * this case vmalloc() will not be able to use this new node's
3422 		 * memory - this wait_table must be initialized to use this new
3423 		 * node itself as well.
3424 		 * To use this new node's memory, further consideration will be
3425 		 * necessary.
3426 		 */
3427 		zone->wait_table = vmalloc(alloc_size);
3428 	}
3429 	if (!zone->wait_table)
3430 		return -ENOMEM;
3431 
3432 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3433 		init_waitqueue_head(zone->wait_table + i);
3434 
3435 	return 0;
3436 }
3437 
3438 static int __zone_pcp_update(void *data)
3439 {
3440 	struct zone *zone = data;
3441 	int cpu;
3442 	unsigned long batch = zone_batchsize(zone), flags;
3443 
3444 	for_each_possible_cpu(cpu) {
3445 		struct per_cpu_pageset *pset;
3446 		struct per_cpu_pages *pcp;
3447 
3448 		pset = per_cpu_ptr(zone->pageset, cpu);
3449 		pcp = &pset->pcp;
3450 
3451 		local_irq_save(flags);
3452 		free_pcppages_bulk(zone, pcp->count, pcp);
3453 		setup_pageset(pset, batch);
3454 		local_irq_restore(flags);
3455 	}
3456 	return 0;
3457 }
3458 
3459 void zone_pcp_update(struct zone *zone)
3460 {
3461 	stop_machine(__zone_pcp_update, zone, NULL);
3462 }
3463 
3464 static __meminit void zone_pcp_init(struct zone *zone)
3465 {
3466 	/*
3467 	 * per cpu subsystem is not up at this point. The following code
3468 	 * relies on the ability of the linker to provide the
3469 	 * offset of a (static) per cpu variable into the per cpu area.
3470 	 */
3471 	zone->pageset = &boot_pageset;
3472 
3473 	if (zone->present_pages)
3474 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3475 			zone->name, zone->present_pages,
3476 					 zone_batchsize(zone));
3477 }
3478 
3479 __meminit int init_currently_empty_zone(struct zone *zone,
3480 					unsigned long zone_start_pfn,
3481 					unsigned long size,
3482 					enum memmap_context context)
3483 {
3484 	struct pglist_data *pgdat = zone->zone_pgdat;
3485 	int ret;
3486 	ret = zone_wait_table_init(zone, size);
3487 	if (ret)
3488 		return ret;
3489 	pgdat->nr_zones = zone_idx(zone) + 1;
3490 
3491 	zone->zone_start_pfn = zone_start_pfn;
3492 
3493 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3494 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3495 			pgdat->node_id,
3496 			(unsigned long)zone_idx(zone),
3497 			zone_start_pfn, (zone_start_pfn + size));
3498 
3499 	zone_init_free_lists(zone);
3500 
3501 	return 0;
3502 }
3503 
3504 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3505 /*
3506  * Basic iterator support. Return the first range of PFNs for a node
3507  * Note: nid == MAX_NUMNODES returns first region regardless of node
3508  */
3509 static int __meminit first_active_region_index_in_nid(int nid)
3510 {
3511 	int i;
3512 
3513 	for (i = 0; i < nr_nodemap_entries; i++)
3514 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3515 			return i;
3516 
3517 	return -1;
3518 }
3519 
3520 /*
3521  * Basic iterator support. Return the next active range of PFNs for a node
3522  * Note: nid == MAX_NUMNODES returns next region regardless of node
3523  */
3524 static int __meminit next_active_region_index_in_nid(int index, int nid)
3525 {
3526 	for (index = index + 1; index < nr_nodemap_entries; index++)
3527 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3528 			return index;
3529 
3530 	return -1;
3531 }
3532 
3533 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3534 /*
3535  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3536  * Architectures may implement their own version but if add_active_range()
3537  * was used and there are no special requirements, this is a convenient
3538  * alternative
3539  */
3540 int __meminit __early_pfn_to_nid(unsigned long pfn)
3541 {
3542 	int i;
3543 
3544 	for (i = 0; i < nr_nodemap_entries; i++) {
3545 		unsigned long start_pfn = early_node_map[i].start_pfn;
3546 		unsigned long end_pfn = early_node_map[i].end_pfn;
3547 
3548 		if (start_pfn <= pfn && pfn < end_pfn)
3549 			return early_node_map[i].nid;
3550 	}
3551 	/* This is a memory hole */
3552 	return -1;
3553 }
3554 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3555 
3556 int __meminit early_pfn_to_nid(unsigned long pfn)
3557 {
3558 	int nid;
3559 
3560 	nid = __early_pfn_to_nid(pfn);
3561 	if (nid >= 0)
3562 		return nid;
3563 	/* just returns 0 */
3564 	return 0;
3565 }
3566 
3567 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3568 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3569 {
3570 	int nid;
3571 
3572 	nid = __early_pfn_to_nid(pfn);
3573 	if (nid >= 0 && nid != node)
3574 		return false;
3575 	return true;
3576 }
3577 #endif
3578 
3579 /* Basic iterator support to walk early_node_map[] */
3580 #define for_each_active_range_index_in_nid(i, nid) \
3581 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3582 				i = next_active_region_index_in_nid(i, nid))
3583 
3584 /**
3585  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3586  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3587  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3588  *
3589  * If an architecture guarantees that all ranges registered with
3590  * add_active_ranges() contain no holes and may be freed, this
3591  * this function may be used instead of calling free_bootmem() manually.
3592  */
3593 void __init free_bootmem_with_active_regions(int nid,
3594 						unsigned long max_low_pfn)
3595 {
3596 	int i;
3597 
3598 	for_each_active_range_index_in_nid(i, nid) {
3599 		unsigned long size_pages = 0;
3600 		unsigned long end_pfn = early_node_map[i].end_pfn;
3601 
3602 		if (early_node_map[i].start_pfn >= max_low_pfn)
3603 			continue;
3604 
3605 		if (end_pfn > max_low_pfn)
3606 			end_pfn = max_low_pfn;
3607 
3608 		size_pages = end_pfn - early_node_map[i].start_pfn;
3609 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3610 				PFN_PHYS(early_node_map[i].start_pfn),
3611 				size_pages << PAGE_SHIFT);
3612 	}
3613 }
3614 
3615 int __init add_from_early_node_map(struct range *range, int az,
3616 				   int nr_range, int nid)
3617 {
3618 	int i;
3619 	u64 start, end;
3620 
3621 	/* need to go over early_node_map to find out good range for node */
3622 	for_each_active_range_index_in_nid(i, nid) {
3623 		start = early_node_map[i].start_pfn;
3624 		end = early_node_map[i].end_pfn;
3625 		nr_range = add_range(range, az, nr_range, start, end);
3626 	}
3627 	return nr_range;
3628 }
3629 
3630 #ifdef CONFIG_NO_BOOTMEM
3631 void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3632 					u64 goal, u64 limit)
3633 {
3634 	int i;
3635 	void *ptr;
3636 
3637 	/* need to go over early_node_map to find out good range for node */
3638 	for_each_active_range_index_in_nid(i, nid) {
3639 		u64 addr;
3640 		u64 ei_start, ei_last;
3641 
3642 		ei_last = early_node_map[i].end_pfn;
3643 		ei_last <<= PAGE_SHIFT;
3644 		ei_start = early_node_map[i].start_pfn;
3645 		ei_start <<= PAGE_SHIFT;
3646 		addr = find_early_area(ei_start, ei_last,
3647 					 goal, limit, size, align);
3648 
3649 		if (addr == -1ULL)
3650 			continue;
3651 
3652 #if 0
3653 		printk(KERN_DEBUG "alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3654 				nid,
3655 				ei_start, ei_last, goal, limit, size,
3656 				align, addr);
3657 #endif
3658 
3659 		ptr = phys_to_virt(addr);
3660 		memset(ptr, 0, size);
3661 		reserve_early_without_check(addr, addr + size, "BOOTMEM");
3662 		return ptr;
3663 	}
3664 
3665 	return NULL;
3666 }
3667 #endif
3668 
3669 
3670 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3671 {
3672 	int i;
3673 	int ret;
3674 
3675 	for_each_active_range_index_in_nid(i, nid) {
3676 		ret = work_fn(early_node_map[i].start_pfn,
3677 			      early_node_map[i].end_pfn, data);
3678 		if (ret)
3679 			break;
3680 	}
3681 }
3682 /**
3683  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3684  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3685  *
3686  * If an architecture guarantees that all ranges registered with
3687  * add_active_ranges() contain no holes and may be freed, this
3688  * function may be used instead of calling memory_present() manually.
3689  */
3690 void __init sparse_memory_present_with_active_regions(int nid)
3691 {
3692 	int i;
3693 
3694 	for_each_active_range_index_in_nid(i, nid)
3695 		memory_present(early_node_map[i].nid,
3696 				early_node_map[i].start_pfn,
3697 				early_node_map[i].end_pfn);
3698 }
3699 
3700 /**
3701  * get_pfn_range_for_nid - Return the start and end page frames for a node
3702  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3703  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3704  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3705  *
3706  * It returns the start and end page frame of a node based on information
3707  * provided by an arch calling add_active_range(). If called for a node
3708  * with no available memory, a warning is printed and the start and end
3709  * PFNs will be 0.
3710  */
3711 void __meminit get_pfn_range_for_nid(unsigned int nid,
3712 			unsigned long *start_pfn, unsigned long *end_pfn)
3713 {
3714 	int i;
3715 	*start_pfn = -1UL;
3716 	*end_pfn = 0;
3717 
3718 	for_each_active_range_index_in_nid(i, nid) {
3719 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3720 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3721 	}
3722 
3723 	if (*start_pfn == -1UL)
3724 		*start_pfn = 0;
3725 }
3726 
3727 /*
3728  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3729  * assumption is made that zones within a node are ordered in monotonic
3730  * increasing memory addresses so that the "highest" populated zone is used
3731  */
3732 static void __init find_usable_zone_for_movable(void)
3733 {
3734 	int zone_index;
3735 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3736 		if (zone_index == ZONE_MOVABLE)
3737 			continue;
3738 
3739 		if (arch_zone_highest_possible_pfn[zone_index] >
3740 				arch_zone_lowest_possible_pfn[zone_index])
3741 			break;
3742 	}
3743 
3744 	VM_BUG_ON(zone_index == -1);
3745 	movable_zone = zone_index;
3746 }
3747 
3748 /*
3749  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3750  * because it is sized independant of architecture. Unlike the other zones,
3751  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3752  * in each node depending on the size of each node and how evenly kernelcore
3753  * is distributed. This helper function adjusts the zone ranges
3754  * provided by the architecture for a given node by using the end of the
3755  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3756  * zones within a node are in order of monotonic increases memory addresses
3757  */
3758 static void __meminit adjust_zone_range_for_zone_movable(int nid,
3759 					unsigned long zone_type,
3760 					unsigned long node_start_pfn,
3761 					unsigned long node_end_pfn,
3762 					unsigned long *zone_start_pfn,
3763 					unsigned long *zone_end_pfn)
3764 {
3765 	/* Only adjust if ZONE_MOVABLE is on this node */
3766 	if (zone_movable_pfn[nid]) {
3767 		/* Size ZONE_MOVABLE */
3768 		if (zone_type == ZONE_MOVABLE) {
3769 			*zone_start_pfn = zone_movable_pfn[nid];
3770 			*zone_end_pfn = min(node_end_pfn,
3771 				arch_zone_highest_possible_pfn[movable_zone]);
3772 
3773 		/* Adjust for ZONE_MOVABLE starting within this range */
3774 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3775 				*zone_end_pfn > zone_movable_pfn[nid]) {
3776 			*zone_end_pfn = zone_movable_pfn[nid];
3777 
3778 		/* Check if this whole range is within ZONE_MOVABLE */
3779 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3780 			*zone_start_pfn = *zone_end_pfn;
3781 	}
3782 }
3783 
3784 /*
3785  * Return the number of pages a zone spans in a node, including holes
3786  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3787  */
3788 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3789 					unsigned long zone_type,
3790 					unsigned long *ignored)
3791 {
3792 	unsigned long node_start_pfn, node_end_pfn;
3793 	unsigned long zone_start_pfn, zone_end_pfn;
3794 
3795 	/* Get the start and end of the node and zone */
3796 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3797 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3798 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3799 	adjust_zone_range_for_zone_movable(nid, zone_type,
3800 				node_start_pfn, node_end_pfn,
3801 				&zone_start_pfn, &zone_end_pfn);
3802 
3803 	/* Check that this node has pages within the zone's required range */
3804 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3805 		return 0;
3806 
3807 	/* Move the zone boundaries inside the node if necessary */
3808 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3809 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3810 
3811 	/* Return the spanned pages */
3812 	return zone_end_pfn - zone_start_pfn;
3813 }
3814 
3815 /*
3816  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3817  * then all holes in the requested range will be accounted for.
3818  */
3819 unsigned long __meminit __absent_pages_in_range(int nid,
3820 				unsigned long range_start_pfn,
3821 				unsigned long range_end_pfn)
3822 {
3823 	int i = 0;
3824 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3825 	unsigned long start_pfn;
3826 
3827 	/* Find the end_pfn of the first active range of pfns in the node */
3828 	i = first_active_region_index_in_nid(nid);
3829 	if (i == -1)
3830 		return 0;
3831 
3832 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3833 
3834 	/* Account for ranges before physical memory on this node */
3835 	if (early_node_map[i].start_pfn > range_start_pfn)
3836 		hole_pages = prev_end_pfn - range_start_pfn;
3837 
3838 	/* Find all holes for the zone within the node */
3839 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3840 
3841 		/* No need to continue if prev_end_pfn is outside the zone */
3842 		if (prev_end_pfn >= range_end_pfn)
3843 			break;
3844 
3845 		/* Make sure the end of the zone is not within the hole */
3846 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3847 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3848 
3849 		/* Update the hole size cound and move on */
3850 		if (start_pfn > range_start_pfn) {
3851 			BUG_ON(prev_end_pfn > start_pfn);
3852 			hole_pages += start_pfn - prev_end_pfn;
3853 		}
3854 		prev_end_pfn = early_node_map[i].end_pfn;
3855 	}
3856 
3857 	/* Account for ranges past physical memory on this node */
3858 	if (range_end_pfn > prev_end_pfn)
3859 		hole_pages += range_end_pfn -
3860 				max(range_start_pfn, prev_end_pfn);
3861 
3862 	return hole_pages;
3863 }
3864 
3865 /**
3866  * absent_pages_in_range - Return number of page frames in holes within a range
3867  * @start_pfn: The start PFN to start searching for holes
3868  * @end_pfn: The end PFN to stop searching for holes
3869  *
3870  * It returns the number of pages frames in memory holes within a range.
3871  */
3872 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3873 							unsigned long end_pfn)
3874 {
3875 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3876 }
3877 
3878 /* Return the number of page frames in holes in a zone on a node */
3879 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3880 					unsigned long zone_type,
3881 					unsigned long *ignored)
3882 {
3883 	unsigned long node_start_pfn, node_end_pfn;
3884 	unsigned long zone_start_pfn, zone_end_pfn;
3885 
3886 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3887 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3888 							node_start_pfn);
3889 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3890 							node_end_pfn);
3891 
3892 	adjust_zone_range_for_zone_movable(nid, zone_type,
3893 			node_start_pfn, node_end_pfn,
3894 			&zone_start_pfn, &zone_end_pfn);
3895 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3896 }
3897 
3898 #else
3899 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3900 					unsigned long zone_type,
3901 					unsigned long *zones_size)
3902 {
3903 	return zones_size[zone_type];
3904 }
3905 
3906 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3907 						unsigned long zone_type,
3908 						unsigned long *zholes_size)
3909 {
3910 	if (!zholes_size)
3911 		return 0;
3912 
3913 	return zholes_size[zone_type];
3914 }
3915 
3916 #endif
3917 
3918 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3919 		unsigned long *zones_size, unsigned long *zholes_size)
3920 {
3921 	unsigned long realtotalpages, totalpages = 0;
3922 	enum zone_type i;
3923 
3924 	for (i = 0; i < MAX_NR_ZONES; i++)
3925 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3926 								zones_size);
3927 	pgdat->node_spanned_pages = totalpages;
3928 
3929 	realtotalpages = totalpages;
3930 	for (i = 0; i < MAX_NR_ZONES; i++)
3931 		realtotalpages -=
3932 			zone_absent_pages_in_node(pgdat->node_id, i,
3933 								zholes_size);
3934 	pgdat->node_present_pages = realtotalpages;
3935 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3936 							realtotalpages);
3937 }
3938 
3939 #ifndef CONFIG_SPARSEMEM
3940 /*
3941  * Calculate the size of the zone->blockflags rounded to an unsigned long
3942  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3943  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3944  * round what is now in bits to nearest long in bits, then return it in
3945  * bytes.
3946  */
3947 static unsigned long __init usemap_size(unsigned long zonesize)
3948 {
3949 	unsigned long usemapsize;
3950 
3951 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3952 	usemapsize = usemapsize >> pageblock_order;
3953 	usemapsize *= NR_PAGEBLOCK_BITS;
3954 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3955 
3956 	return usemapsize / 8;
3957 }
3958 
3959 static void __init setup_usemap(struct pglist_data *pgdat,
3960 				struct zone *zone, unsigned long zonesize)
3961 {
3962 	unsigned long usemapsize = usemap_size(zonesize);
3963 	zone->pageblock_flags = NULL;
3964 	if (usemapsize)
3965 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3966 }
3967 #else
3968 static void inline setup_usemap(struct pglist_data *pgdat,
3969 				struct zone *zone, unsigned long zonesize) {}
3970 #endif /* CONFIG_SPARSEMEM */
3971 
3972 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3973 
3974 /* Return a sensible default order for the pageblock size. */
3975 static inline int pageblock_default_order(void)
3976 {
3977 	if (HPAGE_SHIFT > PAGE_SHIFT)
3978 		return HUGETLB_PAGE_ORDER;
3979 
3980 	return MAX_ORDER-1;
3981 }
3982 
3983 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3984 static inline void __init set_pageblock_order(unsigned int order)
3985 {
3986 	/* Check that pageblock_nr_pages has not already been setup */
3987 	if (pageblock_order)
3988 		return;
3989 
3990 	/*
3991 	 * Assume the largest contiguous order of interest is a huge page.
3992 	 * This value may be variable depending on boot parameters on IA64
3993 	 */
3994 	pageblock_order = order;
3995 }
3996 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3997 
3998 /*
3999  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4000  * and pageblock_default_order() are unused as pageblock_order is set
4001  * at compile-time. See include/linux/pageblock-flags.h for the values of
4002  * pageblock_order based on the kernel config
4003  */
4004 static inline int pageblock_default_order(unsigned int order)
4005 {
4006 	return MAX_ORDER-1;
4007 }
4008 #define set_pageblock_order(x)	do {} while (0)
4009 
4010 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4011 
4012 /*
4013  * Set up the zone data structures:
4014  *   - mark all pages reserved
4015  *   - mark all memory queues empty
4016  *   - clear the memory bitmaps
4017  */
4018 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4019 		unsigned long *zones_size, unsigned long *zholes_size)
4020 {
4021 	enum zone_type j;
4022 	int nid = pgdat->node_id;
4023 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4024 	int ret;
4025 
4026 	pgdat_resize_init(pgdat);
4027 	pgdat->nr_zones = 0;
4028 	init_waitqueue_head(&pgdat->kswapd_wait);
4029 	pgdat->kswapd_max_order = 0;
4030 	pgdat_page_cgroup_init(pgdat);
4031 
4032 	for (j = 0; j < MAX_NR_ZONES; j++) {
4033 		struct zone *zone = pgdat->node_zones + j;
4034 		unsigned long size, realsize, memmap_pages;
4035 		enum lru_list l;
4036 
4037 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4038 		realsize = size - zone_absent_pages_in_node(nid, j,
4039 								zholes_size);
4040 
4041 		/*
4042 		 * Adjust realsize so that it accounts for how much memory
4043 		 * is used by this zone for memmap. This affects the watermark
4044 		 * and per-cpu initialisations
4045 		 */
4046 		memmap_pages =
4047 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4048 		if (realsize >= memmap_pages) {
4049 			realsize -= memmap_pages;
4050 			if (memmap_pages)
4051 				printk(KERN_DEBUG
4052 				       "  %s zone: %lu pages used for memmap\n",
4053 				       zone_names[j], memmap_pages);
4054 		} else
4055 			printk(KERN_WARNING
4056 				"  %s zone: %lu pages exceeds realsize %lu\n",
4057 				zone_names[j], memmap_pages, realsize);
4058 
4059 		/* Account for reserved pages */
4060 		if (j == 0 && realsize > dma_reserve) {
4061 			realsize -= dma_reserve;
4062 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4063 					zone_names[0], dma_reserve);
4064 		}
4065 
4066 		if (!is_highmem_idx(j))
4067 			nr_kernel_pages += realsize;
4068 		nr_all_pages += realsize;
4069 
4070 		zone->spanned_pages = size;
4071 		zone->present_pages = realsize;
4072 #ifdef CONFIG_NUMA
4073 		zone->node = nid;
4074 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4075 						/ 100;
4076 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4077 #endif
4078 		zone->name = zone_names[j];
4079 		spin_lock_init(&zone->lock);
4080 		spin_lock_init(&zone->lru_lock);
4081 		zone_seqlock_init(zone);
4082 		zone->zone_pgdat = pgdat;
4083 
4084 		zone->prev_priority = DEF_PRIORITY;
4085 
4086 		zone_pcp_init(zone);
4087 		for_each_lru(l) {
4088 			INIT_LIST_HEAD(&zone->lru[l].list);
4089 			zone->reclaim_stat.nr_saved_scan[l] = 0;
4090 		}
4091 		zone->reclaim_stat.recent_rotated[0] = 0;
4092 		zone->reclaim_stat.recent_rotated[1] = 0;
4093 		zone->reclaim_stat.recent_scanned[0] = 0;
4094 		zone->reclaim_stat.recent_scanned[1] = 0;
4095 		zap_zone_vm_stats(zone);
4096 		zone->flags = 0;
4097 		if (!size)
4098 			continue;
4099 
4100 		set_pageblock_order(pageblock_default_order());
4101 		setup_usemap(pgdat, zone, size);
4102 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4103 						size, MEMMAP_EARLY);
4104 		BUG_ON(ret);
4105 		memmap_init(size, nid, j, zone_start_pfn);
4106 		zone_start_pfn += size;
4107 	}
4108 }
4109 
4110 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4111 {
4112 	/* Skip empty nodes */
4113 	if (!pgdat->node_spanned_pages)
4114 		return;
4115 
4116 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4117 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4118 	if (!pgdat->node_mem_map) {
4119 		unsigned long size, start, end;
4120 		struct page *map;
4121 
4122 		/*
4123 		 * The zone's endpoints aren't required to be MAX_ORDER
4124 		 * aligned but the node_mem_map endpoints must be in order
4125 		 * for the buddy allocator to function correctly.
4126 		 */
4127 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4128 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4129 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4130 		size =  (end - start) * sizeof(struct page);
4131 		map = alloc_remap(pgdat->node_id, size);
4132 		if (!map)
4133 			map = alloc_bootmem_node(pgdat, size);
4134 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4135 	}
4136 #ifndef CONFIG_NEED_MULTIPLE_NODES
4137 	/*
4138 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4139 	 */
4140 	if (pgdat == NODE_DATA(0)) {
4141 		mem_map = NODE_DATA(0)->node_mem_map;
4142 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4143 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4144 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4145 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4146 	}
4147 #endif
4148 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4149 }
4150 
4151 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4152 		unsigned long node_start_pfn, unsigned long *zholes_size)
4153 {
4154 	pg_data_t *pgdat = NODE_DATA(nid);
4155 
4156 	pgdat->node_id = nid;
4157 	pgdat->node_start_pfn = node_start_pfn;
4158 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4159 
4160 	alloc_node_mem_map(pgdat);
4161 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4162 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4163 		nid, (unsigned long)pgdat,
4164 		(unsigned long)pgdat->node_mem_map);
4165 #endif
4166 
4167 	free_area_init_core(pgdat, zones_size, zholes_size);
4168 }
4169 
4170 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4171 
4172 #if MAX_NUMNODES > 1
4173 /*
4174  * Figure out the number of possible node ids.
4175  */
4176 static void __init setup_nr_node_ids(void)
4177 {
4178 	unsigned int node;
4179 	unsigned int highest = 0;
4180 
4181 	for_each_node_mask(node, node_possible_map)
4182 		highest = node;
4183 	nr_node_ids = highest + 1;
4184 }
4185 #else
4186 static inline void setup_nr_node_ids(void)
4187 {
4188 }
4189 #endif
4190 
4191 /**
4192  * add_active_range - Register a range of PFNs backed by physical memory
4193  * @nid: The node ID the range resides on
4194  * @start_pfn: The start PFN of the available physical memory
4195  * @end_pfn: The end PFN of the available physical memory
4196  *
4197  * These ranges are stored in an early_node_map[] and later used by
4198  * free_area_init_nodes() to calculate zone sizes and holes. If the
4199  * range spans a memory hole, it is up to the architecture to ensure
4200  * the memory is not freed by the bootmem allocator. If possible
4201  * the range being registered will be merged with existing ranges.
4202  */
4203 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4204 						unsigned long end_pfn)
4205 {
4206 	int i;
4207 
4208 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4209 			"Entering add_active_range(%d, %#lx, %#lx) "
4210 			"%d entries of %d used\n",
4211 			nid, start_pfn, end_pfn,
4212 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4213 
4214 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4215 
4216 	/* Merge with existing active regions if possible */
4217 	for (i = 0; i < nr_nodemap_entries; i++) {
4218 		if (early_node_map[i].nid != nid)
4219 			continue;
4220 
4221 		/* Skip if an existing region covers this new one */
4222 		if (start_pfn >= early_node_map[i].start_pfn &&
4223 				end_pfn <= early_node_map[i].end_pfn)
4224 			return;
4225 
4226 		/* Merge forward if suitable */
4227 		if (start_pfn <= early_node_map[i].end_pfn &&
4228 				end_pfn > early_node_map[i].end_pfn) {
4229 			early_node_map[i].end_pfn = end_pfn;
4230 			return;
4231 		}
4232 
4233 		/* Merge backward if suitable */
4234 		if (start_pfn < early_node_map[i].start_pfn &&
4235 				end_pfn >= early_node_map[i].start_pfn) {
4236 			early_node_map[i].start_pfn = start_pfn;
4237 			return;
4238 		}
4239 	}
4240 
4241 	/* Check that early_node_map is large enough */
4242 	if (i >= MAX_ACTIVE_REGIONS) {
4243 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4244 							MAX_ACTIVE_REGIONS);
4245 		return;
4246 	}
4247 
4248 	early_node_map[i].nid = nid;
4249 	early_node_map[i].start_pfn = start_pfn;
4250 	early_node_map[i].end_pfn = end_pfn;
4251 	nr_nodemap_entries = i + 1;
4252 }
4253 
4254 /**
4255  * remove_active_range - Shrink an existing registered range of PFNs
4256  * @nid: The node id the range is on that should be shrunk
4257  * @start_pfn: The new PFN of the range
4258  * @end_pfn: The new PFN of the range
4259  *
4260  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4261  * The map is kept near the end physical page range that has already been
4262  * registered. This function allows an arch to shrink an existing registered
4263  * range.
4264  */
4265 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4266 				unsigned long end_pfn)
4267 {
4268 	int i, j;
4269 	int removed = 0;
4270 
4271 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4272 			  nid, start_pfn, end_pfn);
4273 
4274 	/* Find the old active region end and shrink */
4275 	for_each_active_range_index_in_nid(i, nid) {
4276 		if (early_node_map[i].start_pfn >= start_pfn &&
4277 		    early_node_map[i].end_pfn <= end_pfn) {
4278 			/* clear it */
4279 			early_node_map[i].start_pfn = 0;
4280 			early_node_map[i].end_pfn = 0;
4281 			removed = 1;
4282 			continue;
4283 		}
4284 		if (early_node_map[i].start_pfn < start_pfn &&
4285 		    early_node_map[i].end_pfn > start_pfn) {
4286 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4287 			early_node_map[i].end_pfn = start_pfn;
4288 			if (temp_end_pfn > end_pfn)
4289 				add_active_range(nid, end_pfn, temp_end_pfn);
4290 			continue;
4291 		}
4292 		if (early_node_map[i].start_pfn >= start_pfn &&
4293 		    early_node_map[i].end_pfn > end_pfn &&
4294 		    early_node_map[i].start_pfn < end_pfn) {
4295 			early_node_map[i].start_pfn = end_pfn;
4296 			continue;
4297 		}
4298 	}
4299 
4300 	if (!removed)
4301 		return;
4302 
4303 	/* remove the blank ones */
4304 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4305 		if (early_node_map[i].nid != nid)
4306 			continue;
4307 		if (early_node_map[i].end_pfn)
4308 			continue;
4309 		/* we found it, get rid of it */
4310 		for (j = i; j < nr_nodemap_entries - 1; j++)
4311 			memcpy(&early_node_map[j], &early_node_map[j+1],
4312 				sizeof(early_node_map[j]));
4313 		j = nr_nodemap_entries - 1;
4314 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4315 		nr_nodemap_entries--;
4316 	}
4317 }
4318 
4319 /**
4320  * remove_all_active_ranges - Remove all currently registered regions
4321  *
4322  * During discovery, it may be found that a table like SRAT is invalid
4323  * and an alternative discovery method must be used. This function removes
4324  * all currently registered regions.
4325  */
4326 void __init remove_all_active_ranges(void)
4327 {
4328 	memset(early_node_map, 0, sizeof(early_node_map));
4329 	nr_nodemap_entries = 0;
4330 }
4331 
4332 /* Compare two active node_active_regions */
4333 static int __init cmp_node_active_region(const void *a, const void *b)
4334 {
4335 	struct node_active_region *arange = (struct node_active_region *)a;
4336 	struct node_active_region *brange = (struct node_active_region *)b;
4337 
4338 	/* Done this way to avoid overflows */
4339 	if (arange->start_pfn > brange->start_pfn)
4340 		return 1;
4341 	if (arange->start_pfn < brange->start_pfn)
4342 		return -1;
4343 
4344 	return 0;
4345 }
4346 
4347 /* sort the node_map by start_pfn */
4348 void __init sort_node_map(void)
4349 {
4350 	sort(early_node_map, (size_t)nr_nodemap_entries,
4351 			sizeof(struct node_active_region),
4352 			cmp_node_active_region, NULL);
4353 }
4354 
4355 /* Find the lowest pfn for a node */
4356 static unsigned long __init find_min_pfn_for_node(int nid)
4357 {
4358 	int i;
4359 	unsigned long min_pfn = ULONG_MAX;
4360 
4361 	/* Assuming a sorted map, the first range found has the starting pfn */
4362 	for_each_active_range_index_in_nid(i, nid)
4363 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4364 
4365 	if (min_pfn == ULONG_MAX) {
4366 		printk(KERN_WARNING
4367 			"Could not find start_pfn for node %d\n", nid);
4368 		return 0;
4369 	}
4370 
4371 	return min_pfn;
4372 }
4373 
4374 /**
4375  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4376  *
4377  * It returns the minimum PFN based on information provided via
4378  * add_active_range().
4379  */
4380 unsigned long __init find_min_pfn_with_active_regions(void)
4381 {
4382 	return find_min_pfn_for_node(MAX_NUMNODES);
4383 }
4384 
4385 /*
4386  * early_calculate_totalpages()
4387  * Sum pages in active regions for movable zone.
4388  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4389  */
4390 static unsigned long __init early_calculate_totalpages(void)
4391 {
4392 	int i;
4393 	unsigned long totalpages = 0;
4394 
4395 	for (i = 0; i < nr_nodemap_entries; i++) {
4396 		unsigned long pages = early_node_map[i].end_pfn -
4397 						early_node_map[i].start_pfn;
4398 		totalpages += pages;
4399 		if (pages)
4400 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4401 	}
4402   	return totalpages;
4403 }
4404 
4405 /*
4406  * Find the PFN the Movable zone begins in each node. Kernel memory
4407  * is spread evenly between nodes as long as the nodes have enough
4408  * memory. When they don't, some nodes will have more kernelcore than
4409  * others
4410  */
4411 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4412 {
4413 	int i, nid;
4414 	unsigned long usable_startpfn;
4415 	unsigned long kernelcore_node, kernelcore_remaining;
4416 	/* save the state before borrow the nodemask */
4417 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4418 	unsigned long totalpages = early_calculate_totalpages();
4419 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4420 
4421 	/*
4422 	 * If movablecore was specified, calculate what size of
4423 	 * kernelcore that corresponds so that memory usable for
4424 	 * any allocation type is evenly spread. If both kernelcore
4425 	 * and movablecore are specified, then the value of kernelcore
4426 	 * will be used for required_kernelcore if it's greater than
4427 	 * what movablecore would have allowed.
4428 	 */
4429 	if (required_movablecore) {
4430 		unsigned long corepages;
4431 
4432 		/*
4433 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4434 		 * was requested by the user
4435 		 */
4436 		required_movablecore =
4437 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4438 		corepages = totalpages - required_movablecore;
4439 
4440 		required_kernelcore = max(required_kernelcore, corepages);
4441 	}
4442 
4443 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4444 	if (!required_kernelcore)
4445 		goto out;
4446 
4447 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4448 	find_usable_zone_for_movable();
4449 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4450 
4451 restart:
4452 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4453 	kernelcore_node = required_kernelcore / usable_nodes;
4454 	for_each_node_state(nid, N_HIGH_MEMORY) {
4455 		/*
4456 		 * Recalculate kernelcore_node if the division per node
4457 		 * now exceeds what is necessary to satisfy the requested
4458 		 * amount of memory for the kernel
4459 		 */
4460 		if (required_kernelcore < kernelcore_node)
4461 			kernelcore_node = required_kernelcore / usable_nodes;
4462 
4463 		/*
4464 		 * As the map is walked, we track how much memory is usable
4465 		 * by the kernel using kernelcore_remaining. When it is
4466 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4467 		 */
4468 		kernelcore_remaining = kernelcore_node;
4469 
4470 		/* Go through each range of PFNs within this node */
4471 		for_each_active_range_index_in_nid(i, nid) {
4472 			unsigned long start_pfn, end_pfn;
4473 			unsigned long size_pages;
4474 
4475 			start_pfn = max(early_node_map[i].start_pfn,
4476 						zone_movable_pfn[nid]);
4477 			end_pfn = early_node_map[i].end_pfn;
4478 			if (start_pfn >= end_pfn)
4479 				continue;
4480 
4481 			/* Account for what is only usable for kernelcore */
4482 			if (start_pfn < usable_startpfn) {
4483 				unsigned long kernel_pages;
4484 				kernel_pages = min(end_pfn, usable_startpfn)
4485 								- start_pfn;
4486 
4487 				kernelcore_remaining -= min(kernel_pages,
4488 							kernelcore_remaining);
4489 				required_kernelcore -= min(kernel_pages,
4490 							required_kernelcore);
4491 
4492 				/* Continue if range is now fully accounted */
4493 				if (end_pfn <= usable_startpfn) {
4494 
4495 					/*
4496 					 * Push zone_movable_pfn to the end so
4497 					 * that if we have to rebalance
4498 					 * kernelcore across nodes, we will
4499 					 * not double account here
4500 					 */
4501 					zone_movable_pfn[nid] = end_pfn;
4502 					continue;
4503 				}
4504 				start_pfn = usable_startpfn;
4505 			}
4506 
4507 			/*
4508 			 * The usable PFN range for ZONE_MOVABLE is from
4509 			 * start_pfn->end_pfn. Calculate size_pages as the
4510 			 * number of pages used as kernelcore
4511 			 */
4512 			size_pages = end_pfn - start_pfn;
4513 			if (size_pages > kernelcore_remaining)
4514 				size_pages = kernelcore_remaining;
4515 			zone_movable_pfn[nid] = start_pfn + size_pages;
4516 
4517 			/*
4518 			 * Some kernelcore has been met, update counts and
4519 			 * break if the kernelcore for this node has been
4520 			 * satisified
4521 			 */
4522 			required_kernelcore -= min(required_kernelcore,
4523 								size_pages);
4524 			kernelcore_remaining -= size_pages;
4525 			if (!kernelcore_remaining)
4526 				break;
4527 		}
4528 	}
4529 
4530 	/*
4531 	 * If there is still required_kernelcore, we do another pass with one
4532 	 * less node in the count. This will push zone_movable_pfn[nid] further
4533 	 * along on the nodes that still have memory until kernelcore is
4534 	 * satisified
4535 	 */
4536 	usable_nodes--;
4537 	if (usable_nodes && required_kernelcore > usable_nodes)
4538 		goto restart;
4539 
4540 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4541 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4542 		zone_movable_pfn[nid] =
4543 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4544 
4545 out:
4546 	/* restore the node_state */
4547 	node_states[N_HIGH_MEMORY] = saved_node_state;
4548 }
4549 
4550 /* Any regular memory on that node ? */
4551 static void check_for_regular_memory(pg_data_t *pgdat)
4552 {
4553 #ifdef CONFIG_HIGHMEM
4554 	enum zone_type zone_type;
4555 
4556 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4557 		struct zone *zone = &pgdat->node_zones[zone_type];
4558 		if (zone->present_pages)
4559 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4560 	}
4561 #endif
4562 }
4563 
4564 /**
4565  * free_area_init_nodes - Initialise all pg_data_t and zone data
4566  * @max_zone_pfn: an array of max PFNs for each zone
4567  *
4568  * This will call free_area_init_node() for each active node in the system.
4569  * Using the page ranges provided by add_active_range(), the size of each
4570  * zone in each node and their holes is calculated. If the maximum PFN
4571  * between two adjacent zones match, it is assumed that the zone is empty.
4572  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4573  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4574  * starts where the previous one ended. For example, ZONE_DMA32 starts
4575  * at arch_max_dma_pfn.
4576  */
4577 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4578 {
4579 	unsigned long nid;
4580 	int i;
4581 
4582 	/* Sort early_node_map as initialisation assumes it is sorted */
4583 	sort_node_map();
4584 
4585 	/* Record where the zone boundaries are */
4586 	memset(arch_zone_lowest_possible_pfn, 0,
4587 				sizeof(arch_zone_lowest_possible_pfn));
4588 	memset(arch_zone_highest_possible_pfn, 0,
4589 				sizeof(arch_zone_highest_possible_pfn));
4590 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4591 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4592 	for (i = 1; i < MAX_NR_ZONES; i++) {
4593 		if (i == ZONE_MOVABLE)
4594 			continue;
4595 		arch_zone_lowest_possible_pfn[i] =
4596 			arch_zone_highest_possible_pfn[i-1];
4597 		arch_zone_highest_possible_pfn[i] =
4598 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4599 	}
4600 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4601 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4602 
4603 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4604 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4605 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4606 
4607 	/* Print out the zone ranges */
4608 	printk("Zone PFN ranges:\n");
4609 	for (i = 0; i < MAX_NR_ZONES; i++) {
4610 		if (i == ZONE_MOVABLE)
4611 			continue;
4612 		printk("  %-8s ", zone_names[i]);
4613 		if (arch_zone_lowest_possible_pfn[i] ==
4614 				arch_zone_highest_possible_pfn[i])
4615 			printk("empty\n");
4616 		else
4617 			printk("%0#10lx -> %0#10lx\n",
4618 				arch_zone_lowest_possible_pfn[i],
4619 				arch_zone_highest_possible_pfn[i]);
4620 	}
4621 
4622 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4623 	printk("Movable zone start PFN for each node\n");
4624 	for (i = 0; i < MAX_NUMNODES; i++) {
4625 		if (zone_movable_pfn[i])
4626 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4627 	}
4628 
4629 	/* Print out the early_node_map[] */
4630 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4631 	for (i = 0; i < nr_nodemap_entries; i++)
4632 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4633 						early_node_map[i].start_pfn,
4634 						early_node_map[i].end_pfn);
4635 
4636 	/* Initialise every node */
4637 	mminit_verify_pageflags_layout();
4638 	setup_nr_node_ids();
4639 	for_each_online_node(nid) {
4640 		pg_data_t *pgdat = NODE_DATA(nid);
4641 		free_area_init_node(nid, NULL,
4642 				find_min_pfn_for_node(nid), NULL);
4643 
4644 		/* Any memory on that node */
4645 		if (pgdat->node_present_pages)
4646 			node_set_state(nid, N_HIGH_MEMORY);
4647 		check_for_regular_memory(pgdat);
4648 	}
4649 }
4650 
4651 static int __init cmdline_parse_core(char *p, unsigned long *core)
4652 {
4653 	unsigned long long coremem;
4654 	if (!p)
4655 		return -EINVAL;
4656 
4657 	coremem = memparse(p, &p);
4658 	*core = coremem >> PAGE_SHIFT;
4659 
4660 	/* Paranoid check that UL is enough for the coremem value */
4661 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4662 
4663 	return 0;
4664 }
4665 
4666 /*
4667  * kernelcore=size sets the amount of memory for use for allocations that
4668  * cannot be reclaimed or migrated.
4669  */
4670 static int __init cmdline_parse_kernelcore(char *p)
4671 {
4672 	return cmdline_parse_core(p, &required_kernelcore);
4673 }
4674 
4675 /*
4676  * movablecore=size sets the amount of memory for use for allocations that
4677  * can be reclaimed or migrated.
4678  */
4679 static int __init cmdline_parse_movablecore(char *p)
4680 {
4681 	return cmdline_parse_core(p, &required_movablecore);
4682 }
4683 
4684 early_param("kernelcore", cmdline_parse_kernelcore);
4685 early_param("movablecore", cmdline_parse_movablecore);
4686 
4687 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4688 
4689 /**
4690  * set_dma_reserve - set the specified number of pages reserved in the first zone
4691  * @new_dma_reserve: The number of pages to mark reserved
4692  *
4693  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4694  * In the DMA zone, a significant percentage may be consumed by kernel image
4695  * and other unfreeable allocations which can skew the watermarks badly. This
4696  * function may optionally be used to account for unfreeable pages in the
4697  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4698  * smaller per-cpu batchsize.
4699  */
4700 void __init set_dma_reserve(unsigned long new_dma_reserve)
4701 {
4702 	dma_reserve = new_dma_reserve;
4703 }
4704 
4705 #ifndef CONFIG_NEED_MULTIPLE_NODES
4706 struct pglist_data __refdata contig_page_data = {
4707 #ifndef CONFIG_NO_BOOTMEM
4708  .bdata = &bootmem_node_data[0]
4709 #endif
4710  };
4711 EXPORT_SYMBOL(contig_page_data);
4712 #endif
4713 
4714 void __init free_area_init(unsigned long *zones_size)
4715 {
4716 	free_area_init_node(0, zones_size,
4717 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4718 }
4719 
4720 static int page_alloc_cpu_notify(struct notifier_block *self,
4721 				 unsigned long action, void *hcpu)
4722 {
4723 	int cpu = (unsigned long)hcpu;
4724 
4725 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4726 		drain_pages(cpu);
4727 
4728 		/*
4729 		 * Spill the event counters of the dead processor
4730 		 * into the current processors event counters.
4731 		 * This artificially elevates the count of the current
4732 		 * processor.
4733 		 */
4734 		vm_events_fold_cpu(cpu);
4735 
4736 		/*
4737 		 * Zero the differential counters of the dead processor
4738 		 * so that the vm statistics are consistent.
4739 		 *
4740 		 * This is only okay since the processor is dead and cannot
4741 		 * race with what we are doing.
4742 		 */
4743 		refresh_cpu_vm_stats(cpu);
4744 	}
4745 	return NOTIFY_OK;
4746 }
4747 
4748 void __init page_alloc_init(void)
4749 {
4750 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4751 }
4752 
4753 /*
4754  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4755  *	or min_free_kbytes changes.
4756  */
4757 static void calculate_totalreserve_pages(void)
4758 {
4759 	struct pglist_data *pgdat;
4760 	unsigned long reserve_pages = 0;
4761 	enum zone_type i, j;
4762 
4763 	for_each_online_pgdat(pgdat) {
4764 		for (i = 0; i < MAX_NR_ZONES; i++) {
4765 			struct zone *zone = pgdat->node_zones + i;
4766 			unsigned long max = 0;
4767 
4768 			/* Find valid and maximum lowmem_reserve in the zone */
4769 			for (j = i; j < MAX_NR_ZONES; j++) {
4770 				if (zone->lowmem_reserve[j] > max)
4771 					max = zone->lowmem_reserve[j];
4772 			}
4773 
4774 			/* we treat the high watermark as reserved pages. */
4775 			max += high_wmark_pages(zone);
4776 
4777 			if (max > zone->present_pages)
4778 				max = zone->present_pages;
4779 			reserve_pages += max;
4780 		}
4781 	}
4782 	totalreserve_pages = reserve_pages;
4783 }
4784 
4785 /*
4786  * setup_per_zone_lowmem_reserve - called whenever
4787  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4788  *	has a correct pages reserved value, so an adequate number of
4789  *	pages are left in the zone after a successful __alloc_pages().
4790  */
4791 static void setup_per_zone_lowmem_reserve(void)
4792 {
4793 	struct pglist_data *pgdat;
4794 	enum zone_type j, idx;
4795 
4796 	for_each_online_pgdat(pgdat) {
4797 		for (j = 0; j < MAX_NR_ZONES; j++) {
4798 			struct zone *zone = pgdat->node_zones + j;
4799 			unsigned long present_pages = zone->present_pages;
4800 
4801 			zone->lowmem_reserve[j] = 0;
4802 
4803 			idx = j;
4804 			while (idx) {
4805 				struct zone *lower_zone;
4806 
4807 				idx--;
4808 
4809 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4810 					sysctl_lowmem_reserve_ratio[idx] = 1;
4811 
4812 				lower_zone = pgdat->node_zones + idx;
4813 				lower_zone->lowmem_reserve[j] = present_pages /
4814 					sysctl_lowmem_reserve_ratio[idx];
4815 				present_pages += lower_zone->present_pages;
4816 			}
4817 		}
4818 	}
4819 
4820 	/* update totalreserve_pages */
4821 	calculate_totalreserve_pages();
4822 }
4823 
4824 /**
4825  * setup_per_zone_wmarks - called when min_free_kbytes changes
4826  * or when memory is hot-{added|removed}
4827  *
4828  * Ensures that the watermark[min,low,high] values for each zone are set
4829  * correctly with respect to min_free_kbytes.
4830  */
4831 void setup_per_zone_wmarks(void)
4832 {
4833 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4834 	unsigned long lowmem_pages = 0;
4835 	struct zone *zone;
4836 	unsigned long flags;
4837 
4838 	/* Calculate total number of !ZONE_HIGHMEM pages */
4839 	for_each_zone(zone) {
4840 		if (!is_highmem(zone))
4841 			lowmem_pages += zone->present_pages;
4842 	}
4843 
4844 	for_each_zone(zone) {
4845 		u64 tmp;
4846 
4847 		spin_lock_irqsave(&zone->lock, flags);
4848 		tmp = (u64)pages_min * zone->present_pages;
4849 		do_div(tmp, lowmem_pages);
4850 		if (is_highmem(zone)) {
4851 			/*
4852 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4853 			 * need highmem pages, so cap pages_min to a small
4854 			 * value here.
4855 			 *
4856 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4857 			 * deltas controls asynch page reclaim, and so should
4858 			 * not be capped for highmem.
4859 			 */
4860 			int min_pages;
4861 
4862 			min_pages = zone->present_pages / 1024;
4863 			if (min_pages < SWAP_CLUSTER_MAX)
4864 				min_pages = SWAP_CLUSTER_MAX;
4865 			if (min_pages > 128)
4866 				min_pages = 128;
4867 			zone->watermark[WMARK_MIN] = min_pages;
4868 		} else {
4869 			/*
4870 			 * If it's a lowmem zone, reserve a number of pages
4871 			 * proportionate to the zone's size.
4872 			 */
4873 			zone->watermark[WMARK_MIN] = tmp;
4874 		}
4875 
4876 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
4877 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
4878 		setup_zone_migrate_reserve(zone);
4879 		spin_unlock_irqrestore(&zone->lock, flags);
4880 	}
4881 
4882 	/* update totalreserve_pages */
4883 	calculate_totalreserve_pages();
4884 }
4885 
4886 /*
4887  * The inactive anon list should be small enough that the VM never has to
4888  * do too much work, but large enough that each inactive page has a chance
4889  * to be referenced again before it is swapped out.
4890  *
4891  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4892  * INACTIVE_ANON pages on this zone's LRU, maintained by the
4893  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4894  * the anonymous pages are kept on the inactive list.
4895  *
4896  * total     target    max
4897  * memory    ratio     inactive anon
4898  * -------------------------------------
4899  *   10MB       1         5MB
4900  *  100MB       1        50MB
4901  *    1GB       3       250MB
4902  *   10GB      10       0.9GB
4903  *  100GB      31         3GB
4904  *    1TB     101        10GB
4905  *   10TB     320        32GB
4906  */
4907 void calculate_zone_inactive_ratio(struct zone *zone)
4908 {
4909 	unsigned int gb, ratio;
4910 
4911 	/* Zone size in gigabytes */
4912 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
4913 	if (gb)
4914 		ratio = int_sqrt(10 * gb);
4915 	else
4916 		ratio = 1;
4917 
4918 	zone->inactive_ratio = ratio;
4919 }
4920 
4921 static void __init setup_per_zone_inactive_ratio(void)
4922 {
4923 	struct zone *zone;
4924 
4925 	for_each_zone(zone)
4926 		calculate_zone_inactive_ratio(zone);
4927 }
4928 
4929 /*
4930  * Initialise min_free_kbytes.
4931  *
4932  * For small machines we want it small (128k min).  For large machines
4933  * we want it large (64MB max).  But it is not linear, because network
4934  * bandwidth does not increase linearly with machine size.  We use
4935  *
4936  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4937  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4938  *
4939  * which yields
4940  *
4941  * 16MB:	512k
4942  * 32MB:	724k
4943  * 64MB:	1024k
4944  * 128MB:	1448k
4945  * 256MB:	2048k
4946  * 512MB:	2896k
4947  * 1024MB:	4096k
4948  * 2048MB:	5792k
4949  * 4096MB:	8192k
4950  * 8192MB:	11584k
4951  * 16384MB:	16384k
4952  */
4953 static int __init init_per_zone_wmark_min(void)
4954 {
4955 	unsigned long lowmem_kbytes;
4956 
4957 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4958 
4959 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4960 	if (min_free_kbytes < 128)
4961 		min_free_kbytes = 128;
4962 	if (min_free_kbytes > 65536)
4963 		min_free_kbytes = 65536;
4964 	setup_per_zone_wmarks();
4965 	setup_per_zone_lowmem_reserve();
4966 	setup_per_zone_inactive_ratio();
4967 	return 0;
4968 }
4969 module_init(init_per_zone_wmark_min)
4970 
4971 /*
4972  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4973  *	that we can call two helper functions whenever min_free_kbytes
4974  *	changes.
4975  */
4976 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4977 	void __user *buffer, size_t *length, loff_t *ppos)
4978 {
4979 	proc_dointvec(table, write, buffer, length, ppos);
4980 	if (write)
4981 		setup_per_zone_wmarks();
4982 	return 0;
4983 }
4984 
4985 #ifdef CONFIG_NUMA
4986 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4987 	void __user *buffer, size_t *length, loff_t *ppos)
4988 {
4989 	struct zone *zone;
4990 	int rc;
4991 
4992 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
4993 	if (rc)
4994 		return rc;
4995 
4996 	for_each_zone(zone)
4997 		zone->min_unmapped_pages = (zone->present_pages *
4998 				sysctl_min_unmapped_ratio) / 100;
4999 	return 0;
5000 }
5001 
5002 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5003 	void __user *buffer, size_t *length, loff_t *ppos)
5004 {
5005 	struct zone *zone;
5006 	int rc;
5007 
5008 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5009 	if (rc)
5010 		return rc;
5011 
5012 	for_each_zone(zone)
5013 		zone->min_slab_pages = (zone->present_pages *
5014 				sysctl_min_slab_ratio) / 100;
5015 	return 0;
5016 }
5017 #endif
5018 
5019 /*
5020  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5021  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5022  *	whenever sysctl_lowmem_reserve_ratio changes.
5023  *
5024  * The reserve ratio obviously has absolutely no relation with the
5025  * minimum watermarks. The lowmem reserve ratio can only make sense
5026  * if in function of the boot time zone sizes.
5027  */
5028 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5029 	void __user *buffer, size_t *length, loff_t *ppos)
5030 {
5031 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5032 	setup_per_zone_lowmem_reserve();
5033 	return 0;
5034 }
5035 
5036 /*
5037  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5038  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5039  * can have before it gets flushed back to buddy allocator.
5040  */
5041 
5042 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5043 	void __user *buffer, size_t *length, loff_t *ppos)
5044 {
5045 	struct zone *zone;
5046 	unsigned int cpu;
5047 	int ret;
5048 
5049 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5050 	if (!write || (ret == -EINVAL))
5051 		return ret;
5052 	for_each_populated_zone(zone) {
5053 		for_each_possible_cpu(cpu) {
5054 			unsigned long  high;
5055 			high = zone->present_pages / percpu_pagelist_fraction;
5056 			setup_pagelist_highmark(
5057 				per_cpu_ptr(zone->pageset, cpu), high);
5058 		}
5059 	}
5060 	return 0;
5061 }
5062 
5063 int hashdist = HASHDIST_DEFAULT;
5064 
5065 #ifdef CONFIG_NUMA
5066 static int __init set_hashdist(char *str)
5067 {
5068 	if (!str)
5069 		return 0;
5070 	hashdist = simple_strtoul(str, &str, 0);
5071 	return 1;
5072 }
5073 __setup("hashdist=", set_hashdist);
5074 #endif
5075 
5076 /*
5077  * allocate a large system hash table from bootmem
5078  * - it is assumed that the hash table must contain an exact power-of-2
5079  *   quantity of entries
5080  * - limit is the number of hash buckets, not the total allocation size
5081  */
5082 void *__init alloc_large_system_hash(const char *tablename,
5083 				     unsigned long bucketsize,
5084 				     unsigned long numentries,
5085 				     int scale,
5086 				     int flags,
5087 				     unsigned int *_hash_shift,
5088 				     unsigned int *_hash_mask,
5089 				     unsigned long limit)
5090 {
5091 	unsigned long long max = limit;
5092 	unsigned long log2qty, size;
5093 	void *table = NULL;
5094 
5095 	/* allow the kernel cmdline to have a say */
5096 	if (!numentries) {
5097 		/* round applicable memory size up to nearest megabyte */
5098 		numentries = nr_kernel_pages;
5099 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5100 		numentries >>= 20 - PAGE_SHIFT;
5101 		numentries <<= 20 - PAGE_SHIFT;
5102 
5103 		/* limit to 1 bucket per 2^scale bytes of low memory */
5104 		if (scale > PAGE_SHIFT)
5105 			numentries >>= (scale - PAGE_SHIFT);
5106 		else
5107 			numentries <<= (PAGE_SHIFT - scale);
5108 
5109 		/* Make sure we've got at least a 0-order allocation.. */
5110 		if (unlikely(flags & HASH_SMALL)) {
5111 			/* Makes no sense without HASH_EARLY */
5112 			WARN_ON(!(flags & HASH_EARLY));
5113 			if (!(numentries >> *_hash_shift)) {
5114 				numentries = 1UL << *_hash_shift;
5115 				BUG_ON(!numentries);
5116 			}
5117 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5118 			numentries = PAGE_SIZE / bucketsize;
5119 	}
5120 	numentries = roundup_pow_of_two(numentries);
5121 
5122 	/* limit allocation size to 1/16 total memory by default */
5123 	if (max == 0) {
5124 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5125 		do_div(max, bucketsize);
5126 	}
5127 
5128 	if (numentries > max)
5129 		numentries = max;
5130 
5131 	log2qty = ilog2(numentries);
5132 
5133 	do {
5134 		size = bucketsize << log2qty;
5135 		if (flags & HASH_EARLY)
5136 			table = alloc_bootmem_nopanic(size);
5137 		else if (hashdist)
5138 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5139 		else {
5140 			/*
5141 			 * If bucketsize is not a power-of-two, we may free
5142 			 * some pages at the end of hash table which
5143 			 * alloc_pages_exact() automatically does
5144 			 */
5145 			if (get_order(size) < MAX_ORDER) {
5146 				table = alloc_pages_exact(size, GFP_ATOMIC);
5147 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5148 			}
5149 		}
5150 	} while (!table && size > PAGE_SIZE && --log2qty);
5151 
5152 	if (!table)
5153 		panic("Failed to allocate %s hash table\n", tablename);
5154 
5155 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
5156 	       tablename,
5157 	       (1U << log2qty),
5158 	       ilog2(size) - PAGE_SHIFT,
5159 	       size);
5160 
5161 	if (_hash_shift)
5162 		*_hash_shift = log2qty;
5163 	if (_hash_mask)
5164 		*_hash_mask = (1 << log2qty) - 1;
5165 
5166 	return table;
5167 }
5168 
5169 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5170 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5171 							unsigned long pfn)
5172 {
5173 #ifdef CONFIG_SPARSEMEM
5174 	return __pfn_to_section(pfn)->pageblock_flags;
5175 #else
5176 	return zone->pageblock_flags;
5177 #endif /* CONFIG_SPARSEMEM */
5178 }
5179 
5180 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5181 {
5182 #ifdef CONFIG_SPARSEMEM
5183 	pfn &= (PAGES_PER_SECTION-1);
5184 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5185 #else
5186 	pfn = pfn - zone->zone_start_pfn;
5187 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5188 #endif /* CONFIG_SPARSEMEM */
5189 }
5190 
5191 /**
5192  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5193  * @page: The page within the block of interest
5194  * @start_bitidx: The first bit of interest to retrieve
5195  * @end_bitidx: The last bit of interest
5196  * returns pageblock_bits flags
5197  */
5198 unsigned long get_pageblock_flags_group(struct page *page,
5199 					int start_bitidx, int end_bitidx)
5200 {
5201 	struct zone *zone;
5202 	unsigned long *bitmap;
5203 	unsigned long pfn, bitidx;
5204 	unsigned long flags = 0;
5205 	unsigned long value = 1;
5206 
5207 	zone = page_zone(page);
5208 	pfn = page_to_pfn(page);
5209 	bitmap = get_pageblock_bitmap(zone, pfn);
5210 	bitidx = pfn_to_bitidx(zone, pfn);
5211 
5212 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5213 		if (test_bit(bitidx + start_bitidx, bitmap))
5214 			flags |= value;
5215 
5216 	return flags;
5217 }
5218 
5219 /**
5220  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5221  * @page: The page within the block of interest
5222  * @start_bitidx: The first bit of interest
5223  * @end_bitidx: The last bit of interest
5224  * @flags: The flags to set
5225  */
5226 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5227 					int start_bitidx, int end_bitidx)
5228 {
5229 	struct zone *zone;
5230 	unsigned long *bitmap;
5231 	unsigned long pfn, bitidx;
5232 	unsigned long value = 1;
5233 
5234 	zone = page_zone(page);
5235 	pfn = page_to_pfn(page);
5236 	bitmap = get_pageblock_bitmap(zone, pfn);
5237 	bitidx = pfn_to_bitidx(zone, pfn);
5238 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5239 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5240 
5241 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5242 		if (flags & value)
5243 			__set_bit(bitidx + start_bitidx, bitmap);
5244 		else
5245 			__clear_bit(bitidx + start_bitidx, bitmap);
5246 }
5247 
5248 /*
5249  * This is designed as sub function...plz see page_isolation.c also.
5250  * set/clear page block's type to be ISOLATE.
5251  * page allocater never alloc memory from ISOLATE block.
5252  */
5253 
5254 int set_migratetype_isolate(struct page *page)
5255 {
5256 	struct zone *zone;
5257 	struct page *curr_page;
5258 	unsigned long flags, pfn, iter;
5259 	unsigned long immobile = 0;
5260 	struct memory_isolate_notify arg;
5261 	int notifier_ret;
5262 	int ret = -EBUSY;
5263 	int zone_idx;
5264 
5265 	zone = page_zone(page);
5266 	zone_idx = zone_idx(zone);
5267 
5268 	spin_lock_irqsave(&zone->lock, flags);
5269 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE ||
5270 	    zone_idx == ZONE_MOVABLE) {
5271 		ret = 0;
5272 		goto out;
5273 	}
5274 
5275 	pfn = page_to_pfn(page);
5276 	arg.start_pfn = pfn;
5277 	arg.nr_pages = pageblock_nr_pages;
5278 	arg.pages_found = 0;
5279 
5280 	/*
5281 	 * It may be possible to isolate a pageblock even if the
5282 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5283 	 * notifier chain is used by balloon drivers to return the
5284 	 * number of pages in a range that are held by the balloon
5285 	 * driver to shrink memory. If all the pages are accounted for
5286 	 * by balloons, are free, or on the LRU, isolation can continue.
5287 	 * Later, for example, when memory hotplug notifier runs, these
5288 	 * pages reported as "can be isolated" should be isolated(freed)
5289 	 * by the balloon driver through the memory notifier chain.
5290 	 */
5291 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5292 	notifier_ret = notifier_to_errno(notifier_ret);
5293 	if (notifier_ret || !arg.pages_found)
5294 		goto out;
5295 
5296 	for (iter = pfn; iter < (pfn + pageblock_nr_pages); iter++) {
5297 		if (!pfn_valid_within(pfn))
5298 			continue;
5299 
5300 		curr_page = pfn_to_page(iter);
5301 		if (!page_count(curr_page) || PageLRU(curr_page))
5302 			continue;
5303 
5304 		immobile++;
5305 	}
5306 
5307 	if (arg.pages_found == immobile)
5308 		ret = 0;
5309 
5310 out:
5311 	if (!ret) {
5312 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5313 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5314 	}
5315 
5316 	spin_unlock_irqrestore(&zone->lock, flags);
5317 	if (!ret)
5318 		drain_all_pages();
5319 	return ret;
5320 }
5321 
5322 void unset_migratetype_isolate(struct page *page)
5323 {
5324 	struct zone *zone;
5325 	unsigned long flags;
5326 	zone = page_zone(page);
5327 	spin_lock_irqsave(&zone->lock, flags);
5328 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5329 		goto out;
5330 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5331 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5332 out:
5333 	spin_unlock_irqrestore(&zone->lock, flags);
5334 }
5335 
5336 #ifdef CONFIG_MEMORY_HOTREMOVE
5337 /*
5338  * All pages in the range must be isolated before calling this.
5339  */
5340 void
5341 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5342 {
5343 	struct page *page;
5344 	struct zone *zone;
5345 	int order, i;
5346 	unsigned long pfn;
5347 	unsigned long flags;
5348 	/* find the first valid pfn */
5349 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5350 		if (pfn_valid(pfn))
5351 			break;
5352 	if (pfn == end_pfn)
5353 		return;
5354 	zone = page_zone(pfn_to_page(pfn));
5355 	spin_lock_irqsave(&zone->lock, flags);
5356 	pfn = start_pfn;
5357 	while (pfn < end_pfn) {
5358 		if (!pfn_valid(pfn)) {
5359 			pfn++;
5360 			continue;
5361 		}
5362 		page = pfn_to_page(pfn);
5363 		BUG_ON(page_count(page));
5364 		BUG_ON(!PageBuddy(page));
5365 		order = page_order(page);
5366 #ifdef CONFIG_DEBUG_VM
5367 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5368 		       pfn, 1 << order, end_pfn);
5369 #endif
5370 		list_del(&page->lru);
5371 		rmv_page_order(page);
5372 		zone->free_area[order].nr_free--;
5373 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5374 				      - (1UL << order));
5375 		for (i = 0; i < (1 << order); i++)
5376 			SetPageReserved((page+i));
5377 		pfn += (1 << order);
5378 	}
5379 	spin_unlock_irqrestore(&zone->lock, flags);
5380 }
5381 #endif
5382 
5383 #ifdef CONFIG_MEMORY_FAILURE
5384 bool is_free_buddy_page(struct page *page)
5385 {
5386 	struct zone *zone = page_zone(page);
5387 	unsigned long pfn = page_to_pfn(page);
5388 	unsigned long flags;
5389 	int order;
5390 
5391 	spin_lock_irqsave(&zone->lock, flags);
5392 	for (order = 0; order < MAX_ORDER; order++) {
5393 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5394 
5395 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5396 			break;
5397 	}
5398 	spin_unlock_irqrestore(&zone->lock, flags);
5399 
5400 	return order < MAX_ORDER;
5401 }
5402 #endif
5403 
5404 static struct trace_print_flags pageflag_names[] = {
5405 	{1UL << PG_locked,		"locked"	},
5406 	{1UL << PG_error,		"error"		},
5407 	{1UL << PG_referenced,		"referenced"	},
5408 	{1UL << PG_uptodate,		"uptodate"	},
5409 	{1UL << PG_dirty,		"dirty"		},
5410 	{1UL << PG_lru,			"lru"		},
5411 	{1UL << PG_active,		"active"	},
5412 	{1UL << PG_slab,		"slab"		},
5413 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5414 	{1UL << PG_arch_1,		"arch_1"	},
5415 	{1UL << PG_reserved,		"reserved"	},
5416 	{1UL << PG_private,		"private"	},
5417 	{1UL << PG_private_2,		"private_2"	},
5418 	{1UL << PG_writeback,		"writeback"	},
5419 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5420 	{1UL << PG_head,		"head"		},
5421 	{1UL << PG_tail,		"tail"		},
5422 #else
5423 	{1UL << PG_compound,		"compound"	},
5424 #endif
5425 	{1UL << PG_swapcache,		"swapcache"	},
5426 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5427 	{1UL << PG_reclaim,		"reclaim"	},
5428 	{1UL << PG_buddy,		"buddy"		},
5429 	{1UL << PG_swapbacked,		"swapbacked"	},
5430 	{1UL << PG_unevictable,		"unevictable"	},
5431 #ifdef CONFIG_MMU
5432 	{1UL << PG_mlocked,		"mlocked"	},
5433 #endif
5434 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5435 	{1UL << PG_uncached,		"uncached"	},
5436 #endif
5437 #ifdef CONFIG_MEMORY_FAILURE
5438 	{1UL << PG_hwpoison,		"hwpoison"	},
5439 #endif
5440 	{-1UL,				NULL		},
5441 };
5442 
5443 static void dump_page_flags(unsigned long flags)
5444 {
5445 	const char *delim = "";
5446 	unsigned long mask;
5447 	int i;
5448 
5449 	printk(KERN_ALERT "page flags: %#lx(", flags);
5450 
5451 	/* remove zone id */
5452 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5453 
5454 	for (i = 0; pageflag_names[i].name && flags; i++) {
5455 
5456 		mask = pageflag_names[i].mask;
5457 		if ((flags & mask) != mask)
5458 			continue;
5459 
5460 		flags &= ~mask;
5461 		printk("%s%s", delim, pageflag_names[i].name);
5462 		delim = "|";
5463 	}
5464 
5465 	/* check for left over flags */
5466 	if (flags)
5467 		printk("%s%#lx", delim, flags);
5468 
5469 	printk(")\n");
5470 }
5471 
5472 void dump_page(struct page *page)
5473 {
5474 	printk(KERN_ALERT
5475 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5476 		page, page_count(page), page_mapcount(page),
5477 		page->mapping, page->index);
5478 	dump_page_flags(page->flags);
5479 }
5480