xref: /linux/mm/page_alloc.c (revision f7511d5f66f01fc451747b24e79f3ada7a3af9af)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/suspend.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/slab.h>
31 #include <linux/oom.h>
32 #include <linux/notifier.h>
33 #include <linux/topology.h>
34 #include <linux/sysctl.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/memory_hotplug.h>
38 #include <linux/nodemask.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mempolicy.h>
41 #include <linux/stop_machine.h>
42 #include <linux/sort.h>
43 #include <linux/pfn.h>
44 #include <linux/backing-dev.h>
45 #include <linux/fault-inject.h>
46 #include <linux/page-isolation.h>
47 #include <linux/memcontrol.h>
48 
49 #include <asm/tlbflush.h>
50 #include <asm/div64.h>
51 #include "internal.h"
52 
53 /*
54  * Array of node states.
55  */
56 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
57 	[N_POSSIBLE] = NODE_MASK_ALL,
58 	[N_ONLINE] = { { [0] = 1UL } },
59 #ifndef CONFIG_NUMA
60 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
61 #ifdef CONFIG_HIGHMEM
62 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
63 #endif
64 	[N_CPU] = { { [0] = 1UL } },
65 #endif	/* NUMA */
66 };
67 EXPORT_SYMBOL(node_states);
68 
69 unsigned long totalram_pages __read_mostly;
70 unsigned long totalreserve_pages __read_mostly;
71 long nr_swap_pages;
72 int percpu_pagelist_fraction;
73 
74 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
75 int pageblock_order __read_mostly;
76 #endif
77 
78 static void __free_pages_ok(struct page *page, unsigned int order);
79 
80 /*
81  * results with 256, 32 in the lowmem_reserve sysctl:
82  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
83  *	1G machine -> (16M dma, 784M normal, 224M high)
84  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
85  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
86  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
87  *
88  * TBD: should special case ZONE_DMA32 machines here - in those we normally
89  * don't need any ZONE_NORMAL reservation
90  */
91 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
92 #ifdef CONFIG_ZONE_DMA
93 	 256,
94 #endif
95 #ifdef CONFIG_ZONE_DMA32
96 	 256,
97 #endif
98 #ifdef CONFIG_HIGHMEM
99 	 32,
100 #endif
101 	 32,
102 };
103 
104 EXPORT_SYMBOL(totalram_pages);
105 
106 static char * const zone_names[MAX_NR_ZONES] = {
107 #ifdef CONFIG_ZONE_DMA
108 	 "DMA",
109 #endif
110 #ifdef CONFIG_ZONE_DMA32
111 	 "DMA32",
112 #endif
113 	 "Normal",
114 #ifdef CONFIG_HIGHMEM
115 	 "HighMem",
116 #endif
117 	 "Movable",
118 };
119 
120 int min_free_kbytes = 1024;
121 
122 unsigned long __meminitdata nr_kernel_pages;
123 unsigned long __meminitdata nr_all_pages;
124 static unsigned long __meminitdata dma_reserve;
125 
126 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
127   /*
128    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
129    * ranges of memory (RAM) that may be registered with add_active_range().
130    * Ranges passed to add_active_range() will be merged if possible
131    * so the number of times add_active_range() can be called is
132    * related to the number of nodes and the number of holes
133    */
134   #ifdef CONFIG_MAX_ACTIVE_REGIONS
135     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
136     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
137   #else
138     #if MAX_NUMNODES >= 32
139       /* If there can be many nodes, allow up to 50 holes per node */
140       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
141     #else
142       /* By default, allow up to 256 distinct regions */
143       #define MAX_ACTIVE_REGIONS 256
144     #endif
145   #endif
146 
147   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
148   static int __meminitdata nr_nodemap_entries;
149   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
150   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
151 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
152   static unsigned long __meminitdata node_boundary_start_pfn[MAX_NUMNODES];
153   static unsigned long __meminitdata node_boundary_end_pfn[MAX_NUMNODES];
154 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
155   unsigned long __initdata required_kernelcore;
156   static unsigned long __initdata required_movablecore;
157   unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
158 
159   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160   int movable_zone;
161   EXPORT_SYMBOL(movable_zone);
162 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163 
164 #if MAX_NUMNODES > 1
165 int nr_node_ids __read_mostly = MAX_NUMNODES;
166 EXPORT_SYMBOL(nr_node_ids);
167 #endif
168 
169 int page_group_by_mobility_disabled __read_mostly;
170 
171 static void set_pageblock_migratetype(struct page *page, int migratetype)
172 {
173 	set_pageblock_flags_group(page, (unsigned long)migratetype,
174 					PB_migrate, PB_migrate_end);
175 }
176 
177 #ifdef CONFIG_DEBUG_VM
178 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
179 {
180 	int ret = 0;
181 	unsigned seq;
182 	unsigned long pfn = page_to_pfn(page);
183 
184 	do {
185 		seq = zone_span_seqbegin(zone);
186 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
187 			ret = 1;
188 		else if (pfn < zone->zone_start_pfn)
189 			ret = 1;
190 	} while (zone_span_seqretry(zone, seq));
191 
192 	return ret;
193 }
194 
195 static int page_is_consistent(struct zone *zone, struct page *page)
196 {
197 	if (!pfn_valid_within(page_to_pfn(page)))
198 		return 0;
199 	if (zone != page_zone(page))
200 		return 0;
201 
202 	return 1;
203 }
204 /*
205  * Temporary debugging check for pages not lying within a given zone.
206  */
207 static int bad_range(struct zone *zone, struct page *page)
208 {
209 	if (page_outside_zone_boundaries(zone, page))
210 		return 1;
211 	if (!page_is_consistent(zone, page))
212 		return 1;
213 
214 	return 0;
215 }
216 #else
217 static inline int bad_range(struct zone *zone, struct page *page)
218 {
219 	return 0;
220 }
221 #endif
222 
223 static void bad_page(struct page *page)
224 {
225 	void *pc = page_get_page_cgroup(page);
226 
227 	printk(KERN_EMERG "Bad page state in process '%s'\n" KERN_EMERG
228 		"page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n",
229 		current->comm, page, (int)(2*sizeof(unsigned long)),
230 		(unsigned long)page->flags, page->mapping,
231 		page_mapcount(page), page_count(page));
232 	if (pc) {
233 		printk(KERN_EMERG "cgroup:%p\n", pc);
234 		page_reset_bad_cgroup(page);
235 	}
236 	printk(KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
237 		KERN_EMERG "Backtrace:\n");
238 	dump_stack();
239 	page->flags &= ~(1 << PG_lru	|
240 			1 << PG_private |
241 			1 << PG_locked	|
242 			1 << PG_active	|
243 			1 << PG_dirty	|
244 			1 << PG_reclaim |
245 			1 << PG_slab    |
246 			1 << PG_swapcache |
247 			1 << PG_writeback |
248 			1 << PG_buddy );
249 	set_page_count(page, 0);
250 	reset_page_mapcount(page);
251 	page->mapping = NULL;
252 	add_taint(TAINT_BAD_PAGE);
253 }
254 
255 /*
256  * Higher-order pages are called "compound pages".  They are structured thusly:
257  *
258  * The first PAGE_SIZE page is called the "head page".
259  *
260  * The remaining PAGE_SIZE pages are called "tail pages".
261  *
262  * All pages have PG_compound set.  All pages have their ->private pointing at
263  * the head page (even the head page has this).
264  *
265  * The first tail page's ->lru.next holds the address of the compound page's
266  * put_page() function.  Its ->lru.prev holds the order of allocation.
267  * This usage means that zero-order pages may not be compound.
268  */
269 
270 static void free_compound_page(struct page *page)
271 {
272 	__free_pages_ok(page, compound_order(page));
273 }
274 
275 static void prep_compound_page(struct page *page, unsigned long order)
276 {
277 	int i;
278 	int nr_pages = 1 << order;
279 
280 	set_compound_page_dtor(page, free_compound_page);
281 	set_compound_order(page, order);
282 	__SetPageHead(page);
283 	for (i = 1; i < nr_pages; i++) {
284 		struct page *p = page + i;
285 
286 		__SetPageTail(p);
287 		p->first_page = page;
288 	}
289 }
290 
291 static void destroy_compound_page(struct page *page, unsigned long order)
292 {
293 	int i;
294 	int nr_pages = 1 << order;
295 
296 	if (unlikely(compound_order(page) != order))
297 		bad_page(page);
298 
299 	if (unlikely(!PageHead(page)))
300 			bad_page(page);
301 	__ClearPageHead(page);
302 	for (i = 1; i < nr_pages; i++) {
303 		struct page *p = page + i;
304 
305 		if (unlikely(!PageTail(p) |
306 				(p->first_page != page)))
307 			bad_page(page);
308 		__ClearPageTail(p);
309 	}
310 }
311 
312 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
313 {
314 	int i;
315 
316 	/*
317 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
318 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
319 	 */
320 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
321 	for (i = 0; i < (1 << order); i++)
322 		clear_highpage(page + i);
323 }
324 
325 static inline void set_page_order(struct page *page, int order)
326 {
327 	set_page_private(page, order);
328 	__SetPageBuddy(page);
329 }
330 
331 static inline void rmv_page_order(struct page *page)
332 {
333 	__ClearPageBuddy(page);
334 	set_page_private(page, 0);
335 }
336 
337 /*
338  * Locate the struct page for both the matching buddy in our
339  * pair (buddy1) and the combined O(n+1) page they form (page).
340  *
341  * 1) Any buddy B1 will have an order O twin B2 which satisfies
342  * the following equation:
343  *     B2 = B1 ^ (1 << O)
344  * For example, if the starting buddy (buddy2) is #8 its order
345  * 1 buddy is #10:
346  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
347  *
348  * 2) Any buddy B will have an order O+1 parent P which
349  * satisfies the following equation:
350  *     P = B & ~(1 << O)
351  *
352  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
353  */
354 static inline struct page *
355 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
356 {
357 	unsigned long buddy_idx = page_idx ^ (1 << order);
358 
359 	return page + (buddy_idx - page_idx);
360 }
361 
362 static inline unsigned long
363 __find_combined_index(unsigned long page_idx, unsigned int order)
364 {
365 	return (page_idx & ~(1 << order));
366 }
367 
368 /*
369  * This function checks whether a page is free && is the buddy
370  * we can do coalesce a page and its buddy if
371  * (a) the buddy is not in a hole &&
372  * (b) the buddy is in the buddy system &&
373  * (c) a page and its buddy have the same order &&
374  * (d) a page and its buddy are in the same zone.
375  *
376  * For recording whether a page is in the buddy system, we use PG_buddy.
377  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
378  *
379  * For recording page's order, we use page_private(page).
380  */
381 static inline int page_is_buddy(struct page *page, struct page *buddy,
382 								int order)
383 {
384 	if (!pfn_valid_within(page_to_pfn(buddy)))
385 		return 0;
386 
387 	if (page_zone_id(page) != page_zone_id(buddy))
388 		return 0;
389 
390 	if (PageBuddy(buddy) && page_order(buddy) == order) {
391 		BUG_ON(page_count(buddy) != 0);
392 		return 1;
393 	}
394 	return 0;
395 }
396 
397 /*
398  * Freeing function for a buddy system allocator.
399  *
400  * The concept of a buddy system is to maintain direct-mapped table
401  * (containing bit values) for memory blocks of various "orders".
402  * The bottom level table contains the map for the smallest allocatable
403  * units of memory (here, pages), and each level above it describes
404  * pairs of units from the levels below, hence, "buddies".
405  * At a high level, all that happens here is marking the table entry
406  * at the bottom level available, and propagating the changes upward
407  * as necessary, plus some accounting needed to play nicely with other
408  * parts of the VM system.
409  * At each level, we keep a list of pages, which are heads of continuous
410  * free pages of length of (1 << order) and marked with PG_buddy. Page's
411  * order is recorded in page_private(page) field.
412  * So when we are allocating or freeing one, we can derive the state of the
413  * other.  That is, if we allocate a small block, and both were
414  * free, the remainder of the region must be split into blocks.
415  * If a block is freed, and its buddy is also free, then this
416  * triggers coalescing into a block of larger size.
417  *
418  * -- wli
419  */
420 
421 static inline void __free_one_page(struct page *page,
422 		struct zone *zone, unsigned int order)
423 {
424 	unsigned long page_idx;
425 	int order_size = 1 << order;
426 	int migratetype = get_pageblock_migratetype(page);
427 
428 	if (unlikely(PageCompound(page)))
429 		destroy_compound_page(page, order);
430 
431 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
432 
433 	VM_BUG_ON(page_idx & (order_size - 1));
434 	VM_BUG_ON(bad_range(zone, page));
435 
436 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
437 	while (order < MAX_ORDER-1) {
438 		unsigned long combined_idx;
439 		struct page *buddy;
440 
441 		buddy = __page_find_buddy(page, page_idx, order);
442 		if (!page_is_buddy(page, buddy, order))
443 			break;		/* Move the buddy up one level. */
444 
445 		list_del(&buddy->lru);
446 		zone->free_area[order].nr_free--;
447 		rmv_page_order(buddy);
448 		combined_idx = __find_combined_index(page_idx, order);
449 		page = page + (combined_idx - page_idx);
450 		page_idx = combined_idx;
451 		order++;
452 	}
453 	set_page_order(page, order);
454 	list_add(&page->lru,
455 		&zone->free_area[order].free_list[migratetype]);
456 	zone->free_area[order].nr_free++;
457 }
458 
459 static inline int free_pages_check(struct page *page)
460 {
461 	if (unlikely(page_mapcount(page) |
462 		(page->mapping != NULL)  |
463 		(page_get_page_cgroup(page) != NULL) |
464 		(page_count(page) != 0)  |
465 		(page->flags & (
466 			1 << PG_lru	|
467 			1 << PG_private |
468 			1 << PG_locked	|
469 			1 << PG_active	|
470 			1 << PG_slab	|
471 			1 << PG_swapcache |
472 			1 << PG_writeback |
473 			1 << PG_reserved |
474 			1 << PG_buddy ))))
475 		bad_page(page);
476 	if (PageDirty(page))
477 		__ClearPageDirty(page);
478 	/*
479 	 * For now, we report if PG_reserved was found set, but do not
480 	 * clear it, and do not free the page.  But we shall soon need
481 	 * to do more, for when the ZERO_PAGE count wraps negative.
482 	 */
483 	return PageReserved(page);
484 }
485 
486 /*
487  * Frees a list of pages.
488  * Assumes all pages on list are in same zone, and of same order.
489  * count is the number of pages to free.
490  *
491  * If the zone was previously in an "all pages pinned" state then look to
492  * see if this freeing clears that state.
493  *
494  * And clear the zone's pages_scanned counter, to hold off the "all pages are
495  * pinned" detection logic.
496  */
497 static void free_pages_bulk(struct zone *zone, int count,
498 					struct list_head *list, int order)
499 {
500 	spin_lock(&zone->lock);
501 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
502 	zone->pages_scanned = 0;
503 	while (count--) {
504 		struct page *page;
505 
506 		VM_BUG_ON(list_empty(list));
507 		page = list_entry(list->prev, struct page, lru);
508 		/* have to delete it as __free_one_page list manipulates */
509 		list_del(&page->lru);
510 		__free_one_page(page, zone, order);
511 	}
512 	spin_unlock(&zone->lock);
513 }
514 
515 static void free_one_page(struct zone *zone, struct page *page, int order)
516 {
517 	spin_lock(&zone->lock);
518 	zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
519 	zone->pages_scanned = 0;
520 	__free_one_page(page, zone, order);
521 	spin_unlock(&zone->lock);
522 }
523 
524 static void __free_pages_ok(struct page *page, unsigned int order)
525 {
526 	unsigned long flags;
527 	int i;
528 	int reserved = 0;
529 
530 	for (i = 0 ; i < (1 << order) ; ++i)
531 		reserved += free_pages_check(page + i);
532 	if (reserved)
533 		return;
534 
535 	if (!PageHighMem(page))
536 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
537 	arch_free_page(page, order);
538 	kernel_map_pages(page, 1 << order, 0);
539 
540 	local_irq_save(flags);
541 	__count_vm_events(PGFREE, 1 << order);
542 	free_one_page(page_zone(page), page, order);
543 	local_irq_restore(flags);
544 }
545 
546 /*
547  * permit the bootmem allocator to evade page validation on high-order frees
548  */
549 void __free_pages_bootmem(struct page *page, unsigned int order)
550 {
551 	if (order == 0) {
552 		__ClearPageReserved(page);
553 		set_page_count(page, 0);
554 		set_page_refcounted(page);
555 		__free_page(page);
556 	} else {
557 		int loop;
558 
559 		prefetchw(page);
560 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
561 			struct page *p = &page[loop];
562 
563 			if (loop + 1 < BITS_PER_LONG)
564 				prefetchw(p + 1);
565 			__ClearPageReserved(p);
566 			set_page_count(p, 0);
567 		}
568 
569 		set_page_refcounted(page);
570 		__free_pages(page, order);
571 	}
572 }
573 
574 
575 /*
576  * The order of subdivision here is critical for the IO subsystem.
577  * Please do not alter this order without good reasons and regression
578  * testing. Specifically, as large blocks of memory are subdivided,
579  * the order in which smaller blocks are delivered depends on the order
580  * they're subdivided in this function. This is the primary factor
581  * influencing the order in which pages are delivered to the IO
582  * subsystem according to empirical testing, and this is also justified
583  * by considering the behavior of a buddy system containing a single
584  * large block of memory acted on by a series of small allocations.
585  * This behavior is a critical factor in sglist merging's success.
586  *
587  * -- wli
588  */
589 static inline void expand(struct zone *zone, struct page *page,
590 	int low, int high, struct free_area *area,
591 	int migratetype)
592 {
593 	unsigned long size = 1 << high;
594 
595 	while (high > low) {
596 		area--;
597 		high--;
598 		size >>= 1;
599 		VM_BUG_ON(bad_range(zone, &page[size]));
600 		list_add(&page[size].lru, &area->free_list[migratetype]);
601 		area->nr_free++;
602 		set_page_order(&page[size], high);
603 	}
604 }
605 
606 /*
607  * This page is about to be returned from the page allocator
608  */
609 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
610 {
611 	if (unlikely(page_mapcount(page) |
612 		(page->mapping != NULL)  |
613 		(page_get_page_cgroup(page) != NULL) |
614 		(page_count(page) != 0)  |
615 		(page->flags & (
616 			1 << PG_lru	|
617 			1 << PG_private	|
618 			1 << PG_locked	|
619 			1 << PG_active	|
620 			1 << PG_dirty	|
621 			1 << PG_slab    |
622 			1 << PG_swapcache |
623 			1 << PG_writeback |
624 			1 << PG_reserved |
625 			1 << PG_buddy ))))
626 		bad_page(page);
627 
628 	/*
629 	 * For now, we report if PG_reserved was found set, but do not
630 	 * clear it, and do not allocate the page: as a safety net.
631 	 */
632 	if (PageReserved(page))
633 		return 1;
634 
635 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 1 << PG_reclaim |
636 			1 << PG_referenced | 1 << PG_arch_1 |
637 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
638 	set_page_private(page, 0);
639 	set_page_refcounted(page);
640 
641 	arch_alloc_page(page, order);
642 	kernel_map_pages(page, 1 << order, 1);
643 
644 	if (gfp_flags & __GFP_ZERO)
645 		prep_zero_page(page, order, gfp_flags);
646 
647 	if (order && (gfp_flags & __GFP_COMP))
648 		prep_compound_page(page, order);
649 
650 	return 0;
651 }
652 
653 /*
654  * Go through the free lists for the given migratetype and remove
655  * the smallest available page from the freelists
656  */
657 static struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
658 						int migratetype)
659 {
660 	unsigned int current_order;
661 	struct free_area * area;
662 	struct page *page;
663 
664 	/* Find a page of the appropriate size in the preferred list */
665 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
666 		area = &(zone->free_area[current_order]);
667 		if (list_empty(&area->free_list[migratetype]))
668 			continue;
669 
670 		page = list_entry(area->free_list[migratetype].next,
671 							struct page, lru);
672 		list_del(&page->lru);
673 		rmv_page_order(page);
674 		area->nr_free--;
675 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
676 		expand(zone, page, order, current_order, area, migratetype);
677 		return page;
678 	}
679 
680 	return NULL;
681 }
682 
683 
684 /*
685  * This array describes the order lists are fallen back to when
686  * the free lists for the desirable migrate type are depleted
687  */
688 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
689 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
690 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
691 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
692 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
693 };
694 
695 /*
696  * Move the free pages in a range to the free lists of the requested type.
697  * Note that start_page and end_pages are not aligned on a pageblock
698  * boundary. If alignment is required, use move_freepages_block()
699  */
700 int move_freepages(struct zone *zone,
701 			struct page *start_page, struct page *end_page,
702 			int migratetype)
703 {
704 	struct page *page;
705 	unsigned long order;
706 	int pages_moved = 0;
707 
708 #ifndef CONFIG_HOLES_IN_ZONE
709 	/*
710 	 * page_zone is not safe to call in this context when
711 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
712 	 * anyway as we check zone boundaries in move_freepages_block().
713 	 * Remove at a later date when no bug reports exist related to
714 	 * grouping pages by mobility
715 	 */
716 	BUG_ON(page_zone(start_page) != page_zone(end_page));
717 #endif
718 
719 	for (page = start_page; page <= end_page;) {
720 		if (!pfn_valid_within(page_to_pfn(page))) {
721 			page++;
722 			continue;
723 		}
724 
725 		if (!PageBuddy(page)) {
726 			page++;
727 			continue;
728 		}
729 
730 		order = page_order(page);
731 		list_del(&page->lru);
732 		list_add(&page->lru,
733 			&zone->free_area[order].free_list[migratetype]);
734 		page += 1 << order;
735 		pages_moved += 1 << order;
736 	}
737 
738 	return pages_moved;
739 }
740 
741 int move_freepages_block(struct zone *zone, struct page *page, int migratetype)
742 {
743 	unsigned long start_pfn, end_pfn;
744 	struct page *start_page, *end_page;
745 
746 	start_pfn = page_to_pfn(page);
747 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
748 	start_page = pfn_to_page(start_pfn);
749 	end_page = start_page + pageblock_nr_pages - 1;
750 	end_pfn = start_pfn + pageblock_nr_pages - 1;
751 
752 	/* Do not cross zone boundaries */
753 	if (start_pfn < zone->zone_start_pfn)
754 		start_page = page;
755 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
756 		return 0;
757 
758 	return move_freepages(zone, start_page, end_page, migratetype);
759 }
760 
761 /* Remove an element from the buddy allocator from the fallback list */
762 static struct page *__rmqueue_fallback(struct zone *zone, int order,
763 						int start_migratetype)
764 {
765 	struct free_area * area;
766 	int current_order;
767 	struct page *page;
768 	int migratetype, i;
769 
770 	/* Find the largest possible block of pages in the other list */
771 	for (current_order = MAX_ORDER-1; current_order >= order;
772 						--current_order) {
773 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
774 			migratetype = fallbacks[start_migratetype][i];
775 
776 			/* MIGRATE_RESERVE handled later if necessary */
777 			if (migratetype == MIGRATE_RESERVE)
778 				continue;
779 
780 			area = &(zone->free_area[current_order]);
781 			if (list_empty(&area->free_list[migratetype]))
782 				continue;
783 
784 			page = list_entry(area->free_list[migratetype].next,
785 					struct page, lru);
786 			area->nr_free--;
787 
788 			/*
789 			 * If breaking a large block of pages, move all free
790 			 * pages to the preferred allocation list. If falling
791 			 * back for a reclaimable kernel allocation, be more
792 			 * agressive about taking ownership of free pages
793 			 */
794 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
795 					start_migratetype == MIGRATE_RECLAIMABLE) {
796 				unsigned long pages;
797 				pages = move_freepages_block(zone, page,
798 								start_migratetype);
799 
800 				/* Claim the whole block if over half of it is free */
801 				if (pages >= (1 << (pageblock_order-1)))
802 					set_pageblock_migratetype(page,
803 								start_migratetype);
804 
805 				migratetype = start_migratetype;
806 			}
807 
808 			/* Remove the page from the freelists */
809 			list_del(&page->lru);
810 			rmv_page_order(page);
811 			__mod_zone_page_state(zone, NR_FREE_PAGES,
812 							-(1UL << order));
813 
814 			if (current_order == pageblock_order)
815 				set_pageblock_migratetype(page,
816 							start_migratetype);
817 
818 			expand(zone, page, order, current_order, area, migratetype);
819 			return page;
820 		}
821 	}
822 
823 	/* Use MIGRATE_RESERVE rather than fail an allocation */
824 	return __rmqueue_smallest(zone, order, MIGRATE_RESERVE);
825 }
826 
827 /*
828  * Do the hard work of removing an element from the buddy allocator.
829  * Call me with the zone->lock already held.
830  */
831 static struct page *__rmqueue(struct zone *zone, unsigned int order,
832 						int migratetype)
833 {
834 	struct page *page;
835 
836 	page = __rmqueue_smallest(zone, order, migratetype);
837 
838 	if (unlikely(!page))
839 		page = __rmqueue_fallback(zone, order, migratetype);
840 
841 	return page;
842 }
843 
844 /*
845  * Obtain a specified number of elements from the buddy allocator, all under
846  * a single hold of the lock, for efficiency.  Add them to the supplied list.
847  * Returns the number of new pages which were placed at *list.
848  */
849 static int rmqueue_bulk(struct zone *zone, unsigned int order,
850 			unsigned long count, struct list_head *list,
851 			int migratetype)
852 {
853 	int i;
854 
855 	spin_lock(&zone->lock);
856 	for (i = 0; i < count; ++i) {
857 		struct page *page = __rmqueue(zone, order, migratetype);
858 		if (unlikely(page == NULL))
859 			break;
860 
861 		/*
862 		 * Split buddy pages returned by expand() are received here
863 		 * in physical page order. The page is added to the callers and
864 		 * list and the list head then moves forward. From the callers
865 		 * perspective, the linked list is ordered by page number in
866 		 * some conditions. This is useful for IO devices that can
867 		 * merge IO requests if the physical pages are ordered
868 		 * properly.
869 		 */
870 		list_add(&page->lru, list);
871 		set_page_private(page, migratetype);
872 		list = &page->lru;
873 	}
874 	spin_unlock(&zone->lock);
875 	return i;
876 }
877 
878 #ifdef CONFIG_NUMA
879 /*
880  * Called from the vmstat counter updater to drain pagesets of this
881  * currently executing processor on remote nodes after they have
882  * expired.
883  *
884  * Note that this function must be called with the thread pinned to
885  * a single processor.
886  */
887 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
888 {
889 	unsigned long flags;
890 	int to_drain;
891 
892 	local_irq_save(flags);
893 	if (pcp->count >= pcp->batch)
894 		to_drain = pcp->batch;
895 	else
896 		to_drain = pcp->count;
897 	free_pages_bulk(zone, to_drain, &pcp->list, 0);
898 	pcp->count -= to_drain;
899 	local_irq_restore(flags);
900 }
901 #endif
902 
903 /*
904  * Drain pages of the indicated processor.
905  *
906  * The processor must either be the current processor and the
907  * thread pinned to the current processor or a processor that
908  * is not online.
909  */
910 static void drain_pages(unsigned int cpu)
911 {
912 	unsigned long flags;
913 	struct zone *zone;
914 
915 	for_each_zone(zone) {
916 		struct per_cpu_pageset *pset;
917 		struct per_cpu_pages *pcp;
918 
919 		if (!populated_zone(zone))
920 			continue;
921 
922 		pset = zone_pcp(zone, cpu);
923 
924 		pcp = &pset->pcp;
925 		local_irq_save(flags);
926 		free_pages_bulk(zone, pcp->count, &pcp->list, 0);
927 		pcp->count = 0;
928 		local_irq_restore(flags);
929 	}
930 }
931 
932 /*
933  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
934  */
935 void drain_local_pages(void *arg)
936 {
937 	drain_pages(smp_processor_id());
938 }
939 
940 /*
941  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
942  */
943 void drain_all_pages(void)
944 {
945 	on_each_cpu(drain_local_pages, NULL, 0, 1);
946 }
947 
948 #ifdef CONFIG_HIBERNATION
949 
950 void mark_free_pages(struct zone *zone)
951 {
952 	unsigned long pfn, max_zone_pfn;
953 	unsigned long flags;
954 	int order, t;
955 	struct list_head *curr;
956 
957 	if (!zone->spanned_pages)
958 		return;
959 
960 	spin_lock_irqsave(&zone->lock, flags);
961 
962 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
963 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
964 		if (pfn_valid(pfn)) {
965 			struct page *page = pfn_to_page(pfn);
966 
967 			if (!swsusp_page_is_forbidden(page))
968 				swsusp_unset_page_free(page);
969 		}
970 
971 	for_each_migratetype_order(order, t) {
972 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
973 			unsigned long i;
974 
975 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
976 			for (i = 0; i < (1UL << order); i++)
977 				swsusp_set_page_free(pfn_to_page(pfn + i));
978 		}
979 	}
980 	spin_unlock_irqrestore(&zone->lock, flags);
981 }
982 #endif /* CONFIG_PM */
983 
984 /*
985  * Free a 0-order page
986  */
987 static void free_hot_cold_page(struct page *page, int cold)
988 {
989 	struct zone *zone = page_zone(page);
990 	struct per_cpu_pages *pcp;
991 	unsigned long flags;
992 
993 	if (PageAnon(page))
994 		page->mapping = NULL;
995 	if (free_pages_check(page))
996 		return;
997 
998 	if (!PageHighMem(page))
999 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
1000 	arch_free_page(page, 0);
1001 	kernel_map_pages(page, 1, 0);
1002 
1003 	pcp = &zone_pcp(zone, get_cpu())->pcp;
1004 	local_irq_save(flags);
1005 	__count_vm_event(PGFREE);
1006 	if (cold)
1007 		list_add_tail(&page->lru, &pcp->list);
1008 	else
1009 		list_add(&page->lru, &pcp->list);
1010 	set_page_private(page, get_pageblock_migratetype(page));
1011 	pcp->count++;
1012 	if (pcp->count >= pcp->high) {
1013 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1014 		pcp->count -= pcp->batch;
1015 	}
1016 	local_irq_restore(flags);
1017 	put_cpu();
1018 }
1019 
1020 void free_hot_page(struct page *page)
1021 {
1022 	free_hot_cold_page(page, 0);
1023 }
1024 
1025 void free_cold_page(struct page *page)
1026 {
1027 	free_hot_cold_page(page, 1);
1028 }
1029 
1030 /*
1031  * split_page takes a non-compound higher-order page, and splits it into
1032  * n (1<<order) sub-pages: page[0..n]
1033  * Each sub-page must be freed individually.
1034  *
1035  * Note: this is probably too low level an operation for use in drivers.
1036  * Please consult with lkml before using this in your driver.
1037  */
1038 void split_page(struct page *page, unsigned int order)
1039 {
1040 	int i;
1041 
1042 	VM_BUG_ON(PageCompound(page));
1043 	VM_BUG_ON(!page_count(page));
1044 	for (i = 1; i < (1 << order); i++)
1045 		set_page_refcounted(page + i);
1046 }
1047 
1048 /*
1049  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1050  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1051  * or two.
1052  */
1053 static struct page *buffered_rmqueue(struct zone *preferred_zone,
1054 			struct zone *zone, int order, gfp_t gfp_flags)
1055 {
1056 	unsigned long flags;
1057 	struct page *page;
1058 	int cold = !!(gfp_flags & __GFP_COLD);
1059 	int cpu;
1060 	int migratetype = allocflags_to_migratetype(gfp_flags);
1061 
1062 again:
1063 	cpu  = get_cpu();
1064 	if (likely(order == 0)) {
1065 		struct per_cpu_pages *pcp;
1066 
1067 		pcp = &zone_pcp(zone, cpu)->pcp;
1068 		local_irq_save(flags);
1069 		if (!pcp->count) {
1070 			pcp->count = rmqueue_bulk(zone, 0,
1071 					pcp->batch, &pcp->list, migratetype);
1072 			if (unlikely(!pcp->count))
1073 				goto failed;
1074 		}
1075 
1076 		/* Find a page of the appropriate migrate type */
1077 		if (cold) {
1078 			list_for_each_entry_reverse(page, &pcp->list, lru)
1079 				if (page_private(page) == migratetype)
1080 					break;
1081 		} else {
1082 			list_for_each_entry(page, &pcp->list, lru)
1083 				if (page_private(page) == migratetype)
1084 					break;
1085 		}
1086 
1087 		/* Allocate more to the pcp list if necessary */
1088 		if (unlikely(&page->lru == &pcp->list)) {
1089 			pcp->count += rmqueue_bulk(zone, 0,
1090 					pcp->batch, &pcp->list, migratetype);
1091 			page = list_entry(pcp->list.next, struct page, lru);
1092 		}
1093 
1094 		list_del(&page->lru);
1095 		pcp->count--;
1096 	} else {
1097 		spin_lock_irqsave(&zone->lock, flags);
1098 		page = __rmqueue(zone, order, migratetype);
1099 		spin_unlock(&zone->lock);
1100 		if (!page)
1101 			goto failed;
1102 	}
1103 
1104 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1105 	zone_statistics(preferred_zone, zone);
1106 	local_irq_restore(flags);
1107 	put_cpu();
1108 
1109 	VM_BUG_ON(bad_range(zone, page));
1110 	if (prep_new_page(page, order, gfp_flags))
1111 		goto again;
1112 	return page;
1113 
1114 failed:
1115 	local_irq_restore(flags);
1116 	put_cpu();
1117 	return NULL;
1118 }
1119 
1120 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
1121 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
1122 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
1123 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
1124 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1125 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1126 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1127 
1128 #ifdef CONFIG_FAIL_PAGE_ALLOC
1129 
1130 static struct fail_page_alloc_attr {
1131 	struct fault_attr attr;
1132 
1133 	u32 ignore_gfp_highmem;
1134 	u32 ignore_gfp_wait;
1135 	u32 min_order;
1136 
1137 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1138 
1139 	struct dentry *ignore_gfp_highmem_file;
1140 	struct dentry *ignore_gfp_wait_file;
1141 	struct dentry *min_order_file;
1142 
1143 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1144 
1145 } fail_page_alloc = {
1146 	.attr = FAULT_ATTR_INITIALIZER,
1147 	.ignore_gfp_wait = 1,
1148 	.ignore_gfp_highmem = 1,
1149 	.min_order = 1,
1150 };
1151 
1152 static int __init setup_fail_page_alloc(char *str)
1153 {
1154 	return setup_fault_attr(&fail_page_alloc.attr, str);
1155 }
1156 __setup("fail_page_alloc=", setup_fail_page_alloc);
1157 
1158 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1159 {
1160 	if (order < fail_page_alloc.min_order)
1161 		return 0;
1162 	if (gfp_mask & __GFP_NOFAIL)
1163 		return 0;
1164 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1165 		return 0;
1166 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1167 		return 0;
1168 
1169 	return should_fail(&fail_page_alloc.attr, 1 << order);
1170 }
1171 
1172 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1173 
1174 static int __init fail_page_alloc_debugfs(void)
1175 {
1176 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1177 	struct dentry *dir;
1178 	int err;
1179 
1180 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
1181 				       "fail_page_alloc");
1182 	if (err)
1183 		return err;
1184 	dir = fail_page_alloc.attr.dentries.dir;
1185 
1186 	fail_page_alloc.ignore_gfp_wait_file =
1187 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
1188 				      &fail_page_alloc.ignore_gfp_wait);
1189 
1190 	fail_page_alloc.ignore_gfp_highmem_file =
1191 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1192 				      &fail_page_alloc.ignore_gfp_highmem);
1193 	fail_page_alloc.min_order_file =
1194 		debugfs_create_u32("min-order", mode, dir,
1195 				   &fail_page_alloc.min_order);
1196 
1197 	if (!fail_page_alloc.ignore_gfp_wait_file ||
1198             !fail_page_alloc.ignore_gfp_highmem_file ||
1199             !fail_page_alloc.min_order_file) {
1200 		err = -ENOMEM;
1201 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1202 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
1203 		debugfs_remove(fail_page_alloc.min_order_file);
1204 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1205 	}
1206 
1207 	return err;
1208 }
1209 
1210 late_initcall(fail_page_alloc_debugfs);
1211 
1212 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1213 
1214 #else /* CONFIG_FAIL_PAGE_ALLOC */
1215 
1216 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1217 {
1218 	return 0;
1219 }
1220 
1221 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1222 
1223 /*
1224  * Return 1 if free pages are above 'mark'. This takes into account the order
1225  * of the allocation.
1226  */
1227 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1228 		      int classzone_idx, int alloc_flags)
1229 {
1230 	/* free_pages my go negative - that's OK */
1231 	long min = mark;
1232 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1233 	int o;
1234 
1235 	if (alloc_flags & ALLOC_HIGH)
1236 		min -= min / 2;
1237 	if (alloc_flags & ALLOC_HARDER)
1238 		min -= min / 4;
1239 
1240 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1241 		return 0;
1242 	for (o = 0; o < order; o++) {
1243 		/* At the next order, this order's pages become unavailable */
1244 		free_pages -= z->free_area[o].nr_free << o;
1245 
1246 		/* Require fewer higher order pages to be free */
1247 		min >>= 1;
1248 
1249 		if (free_pages <= min)
1250 			return 0;
1251 	}
1252 	return 1;
1253 }
1254 
1255 #ifdef CONFIG_NUMA
1256 /*
1257  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1258  * skip over zones that are not allowed by the cpuset, or that have
1259  * been recently (in last second) found to be nearly full.  See further
1260  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1261  * that have to skip over a lot of full or unallowed zones.
1262  *
1263  * If the zonelist cache is present in the passed in zonelist, then
1264  * returns a pointer to the allowed node mask (either the current
1265  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1266  *
1267  * If the zonelist cache is not available for this zonelist, does
1268  * nothing and returns NULL.
1269  *
1270  * If the fullzones BITMAP in the zonelist cache is stale (more than
1271  * a second since last zap'd) then we zap it out (clear its bits.)
1272  *
1273  * We hold off even calling zlc_setup, until after we've checked the
1274  * first zone in the zonelist, on the theory that most allocations will
1275  * be satisfied from that first zone, so best to examine that zone as
1276  * quickly as we can.
1277  */
1278 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1279 {
1280 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1281 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1282 
1283 	zlc = zonelist->zlcache_ptr;
1284 	if (!zlc)
1285 		return NULL;
1286 
1287 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1288 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1289 		zlc->last_full_zap = jiffies;
1290 	}
1291 
1292 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1293 					&cpuset_current_mems_allowed :
1294 					&node_states[N_HIGH_MEMORY];
1295 	return allowednodes;
1296 }
1297 
1298 /*
1299  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1300  * if it is worth looking at further for free memory:
1301  *  1) Check that the zone isn't thought to be full (doesn't have its
1302  *     bit set in the zonelist_cache fullzones BITMAP).
1303  *  2) Check that the zones node (obtained from the zonelist_cache
1304  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1305  * Return true (non-zero) if zone is worth looking at further, or
1306  * else return false (zero) if it is not.
1307  *
1308  * This check -ignores- the distinction between various watermarks,
1309  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1310  * found to be full for any variation of these watermarks, it will
1311  * be considered full for up to one second by all requests, unless
1312  * we are so low on memory on all allowed nodes that we are forced
1313  * into the second scan of the zonelist.
1314  *
1315  * In the second scan we ignore this zonelist cache and exactly
1316  * apply the watermarks to all zones, even it is slower to do so.
1317  * We are low on memory in the second scan, and should leave no stone
1318  * unturned looking for a free page.
1319  */
1320 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1321 						nodemask_t *allowednodes)
1322 {
1323 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1324 	int i;				/* index of *z in zonelist zones */
1325 	int n;				/* node that zone *z is on */
1326 
1327 	zlc = zonelist->zlcache_ptr;
1328 	if (!zlc)
1329 		return 1;
1330 
1331 	i = z - zonelist->_zonerefs;
1332 	n = zlc->z_to_n[i];
1333 
1334 	/* This zone is worth trying if it is allowed but not full */
1335 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1336 }
1337 
1338 /*
1339  * Given 'z' scanning a zonelist, set the corresponding bit in
1340  * zlc->fullzones, so that subsequent attempts to allocate a page
1341  * from that zone don't waste time re-examining it.
1342  */
1343 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1344 {
1345 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1346 	int i;				/* index of *z in zonelist zones */
1347 
1348 	zlc = zonelist->zlcache_ptr;
1349 	if (!zlc)
1350 		return;
1351 
1352 	i = z - zonelist->_zonerefs;
1353 
1354 	set_bit(i, zlc->fullzones);
1355 }
1356 
1357 #else	/* CONFIG_NUMA */
1358 
1359 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1360 {
1361 	return NULL;
1362 }
1363 
1364 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1365 				nodemask_t *allowednodes)
1366 {
1367 	return 1;
1368 }
1369 
1370 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1371 {
1372 }
1373 #endif	/* CONFIG_NUMA */
1374 
1375 /*
1376  * get_page_from_freelist goes through the zonelist trying to allocate
1377  * a page.
1378  */
1379 static struct page *
1380 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1381 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags)
1382 {
1383 	struct zoneref *z;
1384 	struct page *page = NULL;
1385 	int classzone_idx;
1386 	struct zone *zone, *preferred_zone;
1387 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1388 	int zlc_active = 0;		/* set if using zonelist_cache */
1389 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1390 
1391 	(void)first_zones_zonelist(zonelist, high_zoneidx, nodemask,
1392 							&preferred_zone);
1393 	classzone_idx = zone_idx(preferred_zone);
1394 
1395 zonelist_scan:
1396 	/*
1397 	 * Scan zonelist, looking for a zone with enough free.
1398 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1399 	 */
1400 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1401 						high_zoneidx, nodemask) {
1402 		if (NUMA_BUILD && zlc_active &&
1403 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1404 				continue;
1405 		if ((alloc_flags & ALLOC_CPUSET) &&
1406 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1407 				goto try_next_zone;
1408 
1409 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1410 			unsigned long mark;
1411 			if (alloc_flags & ALLOC_WMARK_MIN)
1412 				mark = zone->pages_min;
1413 			else if (alloc_flags & ALLOC_WMARK_LOW)
1414 				mark = zone->pages_low;
1415 			else
1416 				mark = zone->pages_high;
1417 			if (!zone_watermark_ok(zone, order, mark,
1418 				    classzone_idx, alloc_flags)) {
1419 				if (!zone_reclaim_mode ||
1420 				    !zone_reclaim(zone, gfp_mask, order))
1421 					goto this_zone_full;
1422 			}
1423 		}
1424 
1425 		page = buffered_rmqueue(preferred_zone, zone, order, gfp_mask);
1426 		if (page)
1427 			break;
1428 this_zone_full:
1429 		if (NUMA_BUILD)
1430 			zlc_mark_zone_full(zonelist, z);
1431 try_next_zone:
1432 		if (NUMA_BUILD && !did_zlc_setup) {
1433 			/* we do zlc_setup after the first zone is tried */
1434 			allowednodes = zlc_setup(zonelist, alloc_flags);
1435 			zlc_active = 1;
1436 			did_zlc_setup = 1;
1437 		}
1438 	}
1439 
1440 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1441 		/* Disable zlc cache for second zonelist scan */
1442 		zlc_active = 0;
1443 		goto zonelist_scan;
1444 	}
1445 	return page;
1446 }
1447 
1448 /*
1449  * This is the 'heart' of the zoned buddy allocator.
1450  */
1451 static struct page *
1452 __alloc_pages_internal(gfp_t gfp_mask, unsigned int order,
1453 			struct zonelist *zonelist, nodemask_t *nodemask)
1454 {
1455 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1456 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1457 	struct zoneref *z;
1458 	struct zone *zone;
1459 	struct page *page;
1460 	struct reclaim_state reclaim_state;
1461 	struct task_struct *p = current;
1462 	int do_retry;
1463 	int alloc_flags;
1464 	unsigned long did_some_progress;
1465 	unsigned long pages_reclaimed = 0;
1466 
1467 	might_sleep_if(wait);
1468 
1469 	if (should_fail_alloc_page(gfp_mask, order))
1470 		return NULL;
1471 
1472 restart:
1473 	z = zonelist->_zonerefs;  /* the list of zones suitable for gfp_mask */
1474 
1475 	if (unlikely(!z->zone)) {
1476 		/*
1477 		 * Happens if we have an empty zonelist as a result of
1478 		 * GFP_THISNODE being used on a memoryless node
1479 		 */
1480 		return NULL;
1481 	}
1482 
1483 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
1484 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1485 	if (page)
1486 		goto got_pg;
1487 
1488 	/*
1489 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1490 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1491 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1492 	 * using a larger set of nodes after it has established that the
1493 	 * allowed per node queues are empty and that nodes are
1494 	 * over allocated.
1495 	 */
1496 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1497 		goto nopage;
1498 
1499 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1500 		wakeup_kswapd(zone, order);
1501 
1502 	/*
1503 	 * OK, we're below the kswapd watermark and have kicked background
1504 	 * reclaim. Now things get more complex, so set up alloc_flags according
1505 	 * to how we want to proceed.
1506 	 *
1507 	 * The caller may dip into page reserves a bit more if the caller
1508 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1509 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1510 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1511 	 */
1512 	alloc_flags = ALLOC_WMARK_MIN;
1513 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1514 		alloc_flags |= ALLOC_HARDER;
1515 	if (gfp_mask & __GFP_HIGH)
1516 		alloc_flags |= ALLOC_HIGH;
1517 	if (wait)
1518 		alloc_flags |= ALLOC_CPUSET;
1519 
1520 	/*
1521 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1522 	 * coming from realtime tasks go deeper into reserves.
1523 	 *
1524 	 * This is the last chance, in general, before the goto nopage.
1525 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1526 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1527 	 */
1528 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
1529 						high_zoneidx, alloc_flags);
1530 	if (page)
1531 		goto got_pg;
1532 
1533 	/* This allocation should allow future memory freeing. */
1534 
1535 rebalance:
1536 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1537 			&& !in_interrupt()) {
1538 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1539 nofail_alloc:
1540 			/* go through the zonelist yet again, ignoring mins */
1541 			page = get_page_from_freelist(gfp_mask, nodemask, order,
1542 				zonelist, high_zoneidx, ALLOC_NO_WATERMARKS);
1543 			if (page)
1544 				goto got_pg;
1545 			if (gfp_mask & __GFP_NOFAIL) {
1546 				congestion_wait(WRITE, HZ/50);
1547 				goto nofail_alloc;
1548 			}
1549 		}
1550 		goto nopage;
1551 	}
1552 
1553 	/* Atomic allocations - we can't balance anything */
1554 	if (!wait)
1555 		goto nopage;
1556 
1557 	cond_resched();
1558 
1559 	/* We now go into synchronous reclaim */
1560 	cpuset_memory_pressure_bump();
1561 	p->flags |= PF_MEMALLOC;
1562 	reclaim_state.reclaimed_slab = 0;
1563 	p->reclaim_state = &reclaim_state;
1564 
1565 	did_some_progress = try_to_free_pages(zonelist, order, gfp_mask);
1566 
1567 	p->reclaim_state = NULL;
1568 	p->flags &= ~PF_MEMALLOC;
1569 
1570 	cond_resched();
1571 
1572 	if (order != 0)
1573 		drain_all_pages();
1574 
1575 	if (likely(did_some_progress)) {
1576 		page = get_page_from_freelist(gfp_mask, nodemask, order,
1577 					zonelist, high_zoneidx, alloc_flags);
1578 		if (page)
1579 			goto got_pg;
1580 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1581 		if (!try_set_zone_oom(zonelist, gfp_mask)) {
1582 			schedule_timeout_uninterruptible(1);
1583 			goto restart;
1584 		}
1585 
1586 		/*
1587 		 * Go through the zonelist yet one more time, keep
1588 		 * very high watermark here, this is only to catch
1589 		 * a parallel oom killing, we must fail if we're still
1590 		 * under heavy pressure.
1591 		 */
1592 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1593 			order, zonelist, high_zoneidx,
1594 			ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1595 		if (page) {
1596 			clear_zonelist_oom(zonelist, gfp_mask);
1597 			goto got_pg;
1598 		}
1599 
1600 		/* The OOM killer will not help higher order allocs so fail */
1601 		if (order > PAGE_ALLOC_COSTLY_ORDER) {
1602 			clear_zonelist_oom(zonelist, gfp_mask);
1603 			goto nopage;
1604 		}
1605 
1606 		out_of_memory(zonelist, gfp_mask, order);
1607 		clear_zonelist_oom(zonelist, gfp_mask);
1608 		goto restart;
1609 	}
1610 
1611 	/*
1612 	 * Don't let big-order allocations loop unless the caller explicitly
1613 	 * requests that.  Wait for some write requests to complete then retry.
1614 	 *
1615 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1616 	 * means __GFP_NOFAIL, but that may not be true in other
1617 	 * implementations.
1618 	 *
1619 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1620 	 * specified, then we retry until we no longer reclaim any pages
1621 	 * (above), or we've reclaimed an order of pages at least as
1622 	 * large as the allocation's order. In both cases, if the
1623 	 * allocation still fails, we stop retrying.
1624 	 */
1625 	pages_reclaimed += did_some_progress;
1626 	do_retry = 0;
1627 	if (!(gfp_mask & __GFP_NORETRY)) {
1628 		if (order <= PAGE_ALLOC_COSTLY_ORDER) {
1629 			do_retry = 1;
1630 		} else {
1631 			if (gfp_mask & __GFP_REPEAT &&
1632 				pages_reclaimed < (1 << order))
1633 					do_retry = 1;
1634 		}
1635 		if (gfp_mask & __GFP_NOFAIL)
1636 			do_retry = 1;
1637 	}
1638 	if (do_retry) {
1639 		congestion_wait(WRITE, HZ/50);
1640 		goto rebalance;
1641 	}
1642 
1643 nopage:
1644 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1645 		printk(KERN_WARNING "%s: page allocation failure."
1646 			" order:%d, mode:0x%x\n",
1647 			p->comm, order, gfp_mask);
1648 		dump_stack();
1649 		show_mem();
1650 	}
1651 got_pg:
1652 	return page;
1653 }
1654 
1655 struct page *
1656 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1657 		struct zonelist *zonelist)
1658 {
1659 	return __alloc_pages_internal(gfp_mask, order, zonelist, NULL);
1660 }
1661 
1662 struct page *
1663 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1664 		struct zonelist *zonelist, nodemask_t *nodemask)
1665 {
1666 	return __alloc_pages_internal(gfp_mask, order, zonelist, nodemask);
1667 }
1668 
1669 EXPORT_SYMBOL(__alloc_pages);
1670 
1671 /*
1672  * Common helper functions.
1673  */
1674 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1675 {
1676 	struct page * page;
1677 	page = alloc_pages(gfp_mask, order);
1678 	if (!page)
1679 		return 0;
1680 	return (unsigned long) page_address(page);
1681 }
1682 
1683 EXPORT_SYMBOL(__get_free_pages);
1684 
1685 unsigned long get_zeroed_page(gfp_t gfp_mask)
1686 {
1687 	struct page * page;
1688 
1689 	/*
1690 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1691 	 * a highmem page
1692 	 */
1693 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1694 
1695 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1696 	if (page)
1697 		return (unsigned long) page_address(page);
1698 	return 0;
1699 }
1700 
1701 EXPORT_SYMBOL(get_zeroed_page);
1702 
1703 void __pagevec_free(struct pagevec *pvec)
1704 {
1705 	int i = pagevec_count(pvec);
1706 
1707 	while (--i >= 0)
1708 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1709 }
1710 
1711 void __free_pages(struct page *page, unsigned int order)
1712 {
1713 	if (put_page_testzero(page)) {
1714 		if (order == 0)
1715 			free_hot_page(page);
1716 		else
1717 			__free_pages_ok(page, order);
1718 	}
1719 }
1720 
1721 EXPORT_SYMBOL(__free_pages);
1722 
1723 void free_pages(unsigned long addr, unsigned int order)
1724 {
1725 	if (addr != 0) {
1726 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1727 		__free_pages(virt_to_page((void *)addr), order);
1728 	}
1729 }
1730 
1731 EXPORT_SYMBOL(free_pages);
1732 
1733 static unsigned int nr_free_zone_pages(int offset)
1734 {
1735 	struct zoneref *z;
1736 	struct zone *zone;
1737 
1738 	/* Just pick one node, since fallback list is circular */
1739 	unsigned int sum = 0;
1740 
1741 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1742 
1743 	for_each_zone_zonelist(zone, z, zonelist, offset) {
1744 		unsigned long size = zone->present_pages;
1745 		unsigned long high = zone->pages_high;
1746 		if (size > high)
1747 			sum += size - high;
1748 	}
1749 
1750 	return sum;
1751 }
1752 
1753 /*
1754  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1755  */
1756 unsigned int nr_free_buffer_pages(void)
1757 {
1758 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1759 }
1760 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1761 
1762 /*
1763  * Amount of free RAM allocatable within all zones
1764  */
1765 unsigned int nr_free_pagecache_pages(void)
1766 {
1767 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1768 }
1769 
1770 static inline void show_node(struct zone *zone)
1771 {
1772 	if (NUMA_BUILD)
1773 		printk("Node %d ", zone_to_nid(zone));
1774 }
1775 
1776 void si_meminfo(struct sysinfo *val)
1777 {
1778 	val->totalram = totalram_pages;
1779 	val->sharedram = 0;
1780 	val->freeram = global_page_state(NR_FREE_PAGES);
1781 	val->bufferram = nr_blockdev_pages();
1782 	val->totalhigh = totalhigh_pages;
1783 	val->freehigh = nr_free_highpages();
1784 	val->mem_unit = PAGE_SIZE;
1785 }
1786 
1787 EXPORT_SYMBOL(si_meminfo);
1788 
1789 #ifdef CONFIG_NUMA
1790 void si_meminfo_node(struct sysinfo *val, int nid)
1791 {
1792 	pg_data_t *pgdat = NODE_DATA(nid);
1793 
1794 	val->totalram = pgdat->node_present_pages;
1795 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1796 #ifdef CONFIG_HIGHMEM
1797 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1798 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1799 			NR_FREE_PAGES);
1800 #else
1801 	val->totalhigh = 0;
1802 	val->freehigh = 0;
1803 #endif
1804 	val->mem_unit = PAGE_SIZE;
1805 }
1806 #endif
1807 
1808 #define K(x) ((x) << (PAGE_SHIFT-10))
1809 
1810 /*
1811  * Show free area list (used inside shift_scroll-lock stuff)
1812  * We also calculate the percentage fragmentation. We do this by counting the
1813  * memory on each free list with the exception of the first item on the list.
1814  */
1815 void show_free_areas(void)
1816 {
1817 	int cpu;
1818 	struct zone *zone;
1819 
1820 	for_each_zone(zone) {
1821 		if (!populated_zone(zone))
1822 			continue;
1823 
1824 		show_node(zone);
1825 		printk("%s per-cpu:\n", zone->name);
1826 
1827 		for_each_online_cpu(cpu) {
1828 			struct per_cpu_pageset *pageset;
1829 
1830 			pageset = zone_pcp(zone, cpu);
1831 
1832 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
1833 			       cpu, pageset->pcp.high,
1834 			       pageset->pcp.batch, pageset->pcp.count);
1835 		}
1836 	}
1837 
1838 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1839 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1840 		global_page_state(NR_ACTIVE),
1841 		global_page_state(NR_INACTIVE),
1842 		global_page_state(NR_FILE_DIRTY),
1843 		global_page_state(NR_WRITEBACK),
1844 		global_page_state(NR_UNSTABLE_NFS),
1845 		global_page_state(NR_FREE_PAGES),
1846 		global_page_state(NR_SLAB_RECLAIMABLE) +
1847 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1848 		global_page_state(NR_FILE_MAPPED),
1849 		global_page_state(NR_PAGETABLE),
1850 		global_page_state(NR_BOUNCE));
1851 
1852 	for_each_zone(zone) {
1853 		int i;
1854 
1855 		if (!populated_zone(zone))
1856 			continue;
1857 
1858 		show_node(zone);
1859 		printk("%s"
1860 			" free:%lukB"
1861 			" min:%lukB"
1862 			" low:%lukB"
1863 			" high:%lukB"
1864 			" active:%lukB"
1865 			" inactive:%lukB"
1866 			" present:%lukB"
1867 			" pages_scanned:%lu"
1868 			" all_unreclaimable? %s"
1869 			"\n",
1870 			zone->name,
1871 			K(zone_page_state(zone, NR_FREE_PAGES)),
1872 			K(zone->pages_min),
1873 			K(zone->pages_low),
1874 			K(zone->pages_high),
1875 			K(zone_page_state(zone, NR_ACTIVE)),
1876 			K(zone_page_state(zone, NR_INACTIVE)),
1877 			K(zone->present_pages),
1878 			zone->pages_scanned,
1879 			(zone_is_all_unreclaimable(zone) ? "yes" : "no")
1880 			);
1881 		printk("lowmem_reserve[]:");
1882 		for (i = 0; i < MAX_NR_ZONES; i++)
1883 			printk(" %lu", zone->lowmem_reserve[i]);
1884 		printk("\n");
1885 	}
1886 
1887 	for_each_zone(zone) {
1888  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1889 
1890 		if (!populated_zone(zone))
1891 			continue;
1892 
1893 		show_node(zone);
1894 		printk("%s: ", zone->name);
1895 
1896 		spin_lock_irqsave(&zone->lock, flags);
1897 		for (order = 0; order < MAX_ORDER; order++) {
1898 			nr[order] = zone->free_area[order].nr_free;
1899 			total += nr[order] << order;
1900 		}
1901 		spin_unlock_irqrestore(&zone->lock, flags);
1902 		for (order = 0; order < MAX_ORDER; order++)
1903 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1904 		printk("= %lukB\n", K(total));
1905 	}
1906 
1907 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
1908 
1909 	show_swap_cache_info();
1910 }
1911 
1912 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
1913 {
1914 	zoneref->zone = zone;
1915 	zoneref->zone_idx = zone_idx(zone);
1916 }
1917 
1918 /*
1919  * Builds allocation fallback zone lists.
1920  *
1921  * Add all populated zones of a node to the zonelist.
1922  */
1923 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
1924 				int nr_zones, enum zone_type zone_type)
1925 {
1926 	struct zone *zone;
1927 
1928 	BUG_ON(zone_type >= MAX_NR_ZONES);
1929 	zone_type++;
1930 
1931 	do {
1932 		zone_type--;
1933 		zone = pgdat->node_zones + zone_type;
1934 		if (populated_zone(zone)) {
1935 			zoneref_set_zone(zone,
1936 				&zonelist->_zonerefs[nr_zones++]);
1937 			check_highest_zone(zone_type);
1938 		}
1939 
1940 	} while (zone_type);
1941 	return nr_zones;
1942 }
1943 
1944 
1945 /*
1946  *  zonelist_order:
1947  *  0 = automatic detection of better ordering.
1948  *  1 = order by ([node] distance, -zonetype)
1949  *  2 = order by (-zonetype, [node] distance)
1950  *
1951  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
1952  *  the same zonelist. So only NUMA can configure this param.
1953  */
1954 #define ZONELIST_ORDER_DEFAULT  0
1955 #define ZONELIST_ORDER_NODE     1
1956 #define ZONELIST_ORDER_ZONE     2
1957 
1958 /* zonelist order in the kernel.
1959  * set_zonelist_order() will set this to NODE or ZONE.
1960  */
1961 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
1962 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
1963 
1964 
1965 #ifdef CONFIG_NUMA
1966 /* The value user specified ....changed by config */
1967 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1968 /* string for sysctl */
1969 #define NUMA_ZONELIST_ORDER_LEN	16
1970 char numa_zonelist_order[16] = "default";
1971 
1972 /*
1973  * interface for configure zonelist ordering.
1974  * command line option "numa_zonelist_order"
1975  *	= "[dD]efault	- default, automatic configuration.
1976  *	= "[nN]ode 	- order by node locality, then by zone within node
1977  *	= "[zZ]one      - order by zone, then by locality within zone
1978  */
1979 
1980 static int __parse_numa_zonelist_order(char *s)
1981 {
1982 	if (*s == 'd' || *s == 'D') {
1983 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
1984 	} else if (*s == 'n' || *s == 'N') {
1985 		user_zonelist_order = ZONELIST_ORDER_NODE;
1986 	} else if (*s == 'z' || *s == 'Z') {
1987 		user_zonelist_order = ZONELIST_ORDER_ZONE;
1988 	} else {
1989 		printk(KERN_WARNING
1990 			"Ignoring invalid numa_zonelist_order value:  "
1991 			"%s\n", s);
1992 		return -EINVAL;
1993 	}
1994 	return 0;
1995 }
1996 
1997 static __init int setup_numa_zonelist_order(char *s)
1998 {
1999 	if (s)
2000 		return __parse_numa_zonelist_order(s);
2001 	return 0;
2002 }
2003 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2004 
2005 /*
2006  * sysctl handler for numa_zonelist_order
2007  */
2008 int numa_zonelist_order_handler(ctl_table *table, int write,
2009 		struct file *file, void __user *buffer, size_t *length,
2010 		loff_t *ppos)
2011 {
2012 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2013 	int ret;
2014 
2015 	if (write)
2016 		strncpy(saved_string, (char*)table->data,
2017 			NUMA_ZONELIST_ORDER_LEN);
2018 	ret = proc_dostring(table, write, file, buffer, length, ppos);
2019 	if (ret)
2020 		return ret;
2021 	if (write) {
2022 		int oldval = user_zonelist_order;
2023 		if (__parse_numa_zonelist_order((char*)table->data)) {
2024 			/*
2025 			 * bogus value.  restore saved string
2026 			 */
2027 			strncpy((char*)table->data, saved_string,
2028 				NUMA_ZONELIST_ORDER_LEN);
2029 			user_zonelist_order = oldval;
2030 		} else if (oldval != user_zonelist_order)
2031 			build_all_zonelists();
2032 	}
2033 	return 0;
2034 }
2035 
2036 
2037 #define MAX_NODE_LOAD (num_online_nodes())
2038 static int node_load[MAX_NUMNODES];
2039 
2040 /**
2041  * find_next_best_node - find the next node that should appear in a given node's fallback list
2042  * @node: node whose fallback list we're appending
2043  * @used_node_mask: nodemask_t of already used nodes
2044  *
2045  * We use a number of factors to determine which is the next node that should
2046  * appear on a given node's fallback list.  The node should not have appeared
2047  * already in @node's fallback list, and it should be the next closest node
2048  * according to the distance array (which contains arbitrary distance values
2049  * from each node to each node in the system), and should also prefer nodes
2050  * with no CPUs, since presumably they'll have very little allocation pressure
2051  * on them otherwise.
2052  * It returns -1 if no node is found.
2053  */
2054 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2055 {
2056 	int n, val;
2057 	int min_val = INT_MAX;
2058 	int best_node = -1;
2059 	node_to_cpumask_ptr(tmp, 0);
2060 
2061 	/* Use the local node if we haven't already */
2062 	if (!node_isset(node, *used_node_mask)) {
2063 		node_set(node, *used_node_mask);
2064 		return node;
2065 	}
2066 
2067 	for_each_node_state(n, N_HIGH_MEMORY) {
2068 
2069 		/* Don't want a node to appear more than once */
2070 		if (node_isset(n, *used_node_mask))
2071 			continue;
2072 
2073 		/* Use the distance array to find the distance */
2074 		val = node_distance(node, n);
2075 
2076 		/* Penalize nodes under us ("prefer the next node") */
2077 		val += (n < node);
2078 
2079 		/* Give preference to headless and unused nodes */
2080 		node_to_cpumask_ptr_next(tmp, n);
2081 		if (!cpus_empty(*tmp))
2082 			val += PENALTY_FOR_NODE_WITH_CPUS;
2083 
2084 		/* Slight preference for less loaded node */
2085 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2086 		val += node_load[n];
2087 
2088 		if (val < min_val) {
2089 			min_val = val;
2090 			best_node = n;
2091 		}
2092 	}
2093 
2094 	if (best_node >= 0)
2095 		node_set(best_node, *used_node_mask);
2096 
2097 	return best_node;
2098 }
2099 
2100 
2101 /*
2102  * Build zonelists ordered by node and zones within node.
2103  * This results in maximum locality--normal zone overflows into local
2104  * DMA zone, if any--but risks exhausting DMA zone.
2105  */
2106 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2107 {
2108 	int j;
2109 	struct zonelist *zonelist;
2110 
2111 	zonelist = &pgdat->node_zonelists[0];
2112 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2113 		;
2114 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2115 							MAX_NR_ZONES - 1);
2116 	zonelist->_zonerefs[j].zone = NULL;
2117 	zonelist->_zonerefs[j].zone_idx = 0;
2118 }
2119 
2120 /*
2121  * Build gfp_thisnode zonelists
2122  */
2123 static void build_thisnode_zonelists(pg_data_t *pgdat)
2124 {
2125 	int j;
2126 	struct zonelist *zonelist;
2127 
2128 	zonelist = &pgdat->node_zonelists[1];
2129 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2130 	zonelist->_zonerefs[j].zone = NULL;
2131 	zonelist->_zonerefs[j].zone_idx = 0;
2132 }
2133 
2134 /*
2135  * Build zonelists ordered by zone and nodes within zones.
2136  * This results in conserving DMA zone[s] until all Normal memory is
2137  * exhausted, but results in overflowing to remote node while memory
2138  * may still exist in local DMA zone.
2139  */
2140 static int node_order[MAX_NUMNODES];
2141 
2142 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2143 {
2144 	int pos, j, node;
2145 	int zone_type;		/* needs to be signed */
2146 	struct zone *z;
2147 	struct zonelist *zonelist;
2148 
2149 	zonelist = &pgdat->node_zonelists[0];
2150 	pos = 0;
2151 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2152 		for (j = 0; j < nr_nodes; j++) {
2153 			node = node_order[j];
2154 			z = &NODE_DATA(node)->node_zones[zone_type];
2155 			if (populated_zone(z)) {
2156 				zoneref_set_zone(z,
2157 					&zonelist->_zonerefs[pos++]);
2158 				check_highest_zone(zone_type);
2159 			}
2160 		}
2161 	}
2162 	zonelist->_zonerefs[pos].zone = NULL;
2163 	zonelist->_zonerefs[pos].zone_idx = 0;
2164 }
2165 
2166 static int default_zonelist_order(void)
2167 {
2168 	int nid, zone_type;
2169 	unsigned long low_kmem_size,total_size;
2170 	struct zone *z;
2171 	int average_size;
2172 	/*
2173          * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2174 	 * If they are really small and used heavily, the system can fall
2175 	 * into OOM very easily.
2176 	 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2177 	 */
2178 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2179 	low_kmem_size = 0;
2180 	total_size = 0;
2181 	for_each_online_node(nid) {
2182 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2183 			z = &NODE_DATA(nid)->node_zones[zone_type];
2184 			if (populated_zone(z)) {
2185 				if (zone_type < ZONE_NORMAL)
2186 					low_kmem_size += z->present_pages;
2187 				total_size += z->present_pages;
2188 			}
2189 		}
2190 	}
2191 	if (!low_kmem_size ||  /* there are no DMA area. */
2192 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2193 		return ZONELIST_ORDER_NODE;
2194 	/*
2195 	 * look into each node's config.
2196   	 * If there is a node whose DMA/DMA32 memory is very big area on
2197  	 * local memory, NODE_ORDER may be suitable.
2198          */
2199 	average_size = total_size /
2200 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2201 	for_each_online_node(nid) {
2202 		low_kmem_size = 0;
2203 		total_size = 0;
2204 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2205 			z = &NODE_DATA(nid)->node_zones[zone_type];
2206 			if (populated_zone(z)) {
2207 				if (zone_type < ZONE_NORMAL)
2208 					low_kmem_size += z->present_pages;
2209 				total_size += z->present_pages;
2210 			}
2211 		}
2212 		if (low_kmem_size &&
2213 		    total_size > average_size && /* ignore small node */
2214 		    low_kmem_size > total_size * 70/100)
2215 			return ZONELIST_ORDER_NODE;
2216 	}
2217 	return ZONELIST_ORDER_ZONE;
2218 }
2219 
2220 static void set_zonelist_order(void)
2221 {
2222 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2223 		current_zonelist_order = default_zonelist_order();
2224 	else
2225 		current_zonelist_order = user_zonelist_order;
2226 }
2227 
2228 static void build_zonelists(pg_data_t *pgdat)
2229 {
2230 	int j, node, load;
2231 	enum zone_type i;
2232 	nodemask_t used_mask;
2233 	int local_node, prev_node;
2234 	struct zonelist *zonelist;
2235 	int order = current_zonelist_order;
2236 
2237 	/* initialize zonelists */
2238 	for (i = 0; i < MAX_ZONELISTS; i++) {
2239 		zonelist = pgdat->node_zonelists + i;
2240 		zonelist->_zonerefs[0].zone = NULL;
2241 		zonelist->_zonerefs[0].zone_idx = 0;
2242 	}
2243 
2244 	/* NUMA-aware ordering of nodes */
2245 	local_node = pgdat->node_id;
2246 	load = num_online_nodes();
2247 	prev_node = local_node;
2248 	nodes_clear(used_mask);
2249 
2250 	memset(node_load, 0, sizeof(node_load));
2251 	memset(node_order, 0, sizeof(node_order));
2252 	j = 0;
2253 
2254 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
2255 		int distance = node_distance(local_node, node);
2256 
2257 		/*
2258 		 * If another node is sufficiently far away then it is better
2259 		 * to reclaim pages in a zone before going off node.
2260 		 */
2261 		if (distance > RECLAIM_DISTANCE)
2262 			zone_reclaim_mode = 1;
2263 
2264 		/*
2265 		 * We don't want to pressure a particular node.
2266 		 * So adding penalty to the first node in same
2267 		 * distance group to make it round-robin.
2268 		 */
2269 		if (distance != node_distance(local_node, prev_node))
2270 			node_load[node] = load;
2271 
2272 		prev_node = node;
2273 		load--;
2274 		if (order == ZONELIST_ORDER_NODE)
2275 			build_zonelists_in_node_order(pgdat, node);
2276 		else
2277 			node_order[j++] = node;	/* remember order */
2278 	}
2279 
2280 	if (order == ZONELIST_ORDER_ZONE) {
2281 		/* calculate node order -- i.e., DMA last! */
2282 		build_zonelists_in_zone_order(pgdat, j);
2283 	}
2284 
2285 	build_thisnode_zonelists(pgdat);
2286 }
2287 
2288 /* Construct the zonelist performance cache - see further mmzone.h */
2289 static void build_zonelist_cache(pg_data_t *pgdat)
2290 {
2291 	struct zonelist *zonelist;
2292 	struct zonelist_cache *zlc;
2293 	struct zoneref *z;
2294 
2295 	zonelist = &pgdat->node_zonelists[0];
2296 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2297 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2298 	for (z = zonelist->_zonerefs; z->zone; z++)
2299 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
2300 }
2301 
2302 
2303 #else	/* CONFIG_NUMA */
2304 
2305 static void set_zonelist_order(void)
2306 {
2307 	current_zonelist_order = ZONELIST_ORDER_ZONE;
2308 }
2309 
2310 static void build_zonelists(pg_data_t *pgdat)
2311 {
2312 	int node, local_node;
2313 	enum zone_type j;
2314 	struct zonelist *zonelist;
2315 
2316 	local_node = pgdat->node_id;
2317 
2318 	zonelist = &pgdat->node_zonelists[0];
2319 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2320 
2321 	/*
2322 	 * Now we build the zonelist so that it contains the zones
2323 	 * of all the other nodes.
2324 	 * We don't want to pressure a particular node, so when
2325 	 * building the zones for node N, we make sure that the
2326 	 * zones coming right after the local ones are those from
2327 	 * node N+1 (modulo N)
2328 	 */
2329 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2330 		if (!node_online(node))
2331 			continue;
2332 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2333 							MAX_NR_ZONES - 1);
2334 	}
2335 	for (node = 0; node < local_node; node++) {
2336 		if (!node_online(node))
2337 			continue;
2338 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2339 							MAX_NR_ZONES - 1);
2340 	}
2341 
2342 	zonelist->_zonerefs[j].zone = NULL;
2343 	zonelist->_zonerefs[j].zone_idx = 0;
2344 }
2345 
2346 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2347 static void build_zonelist_cache(pg_data_t *pgdat)
2348 {
2349 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
2350 	pgdat->node_zonelists[1].zlcache_ptr = NULL;
2351 }
2352 
2353 #endif	/* CONFIG_NUMA */
2354 
2355 /* return values int ....just for stop_machine_run() */
2356 static int __build_all_zonelists(void *dummy)
2357 {
2358 	int nid;
2359 
2360 	for_each_online_node(nid) {
2361 		pg_data_t *pgdat = NODE_DATA(nid);
2362 
2363 		build_zonelists(pgdat);
2364 		build_zonelist_cache(pgdat);
2365 	}
2366 	return 0;
2367 }
2368 
2369 void build_all_zonelists(void)
2370 {
2371 	set_zonelist_order();
2372 
2373 	if (system_state == SYSTEM_BOOTING) {
2374 		__build_all_zonelists(NULL);
2375 		cpuset_init_current_mems_allowed();
2376 	} else {
2377 		/* we have to stop all cpus to guarantee there is no user
2378 		   of zonelist */
2379 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
2380 		/* cpuset refresh routine should be here */
2381 	}
2382 	vm_total_pages = nr_free_pagecache_pages();
2383 	/*
2384 	 * Disable grouping by mobility if the number of pages in the
2385 	 * system is too low to allow the mechanism to work. It would be
2386 	 * more accurate, but expensive to check per-zone. This check is
2387 	 * made on memory-hotadd so a system can start with mobility
2388 	 * disabled and enable it later
2389 	 */
2390 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
2391 		page_group_by_mobility_disabled = 1;
2392 	else
2393 		page_group_by_mobility_disabled = 0;
2394 
2395 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
2396 		"Total pages: %ld\n",
2397 			num_online_nodes(),
2398 			zonelist_order_name[current_zonelist_order],
2399 			page_group_by_mobility_disabled ? "off" : "on",
2400 			vm_total_pages);
2401 #ifdef CONFIG_NUMA
2402 	printk("Policy zone: %s\n", zone_names[policy_zone]);
2403 #endif
2404 }
2405 
2406 /*
2407  * Helper functions to size the waitqueue hash table.
2408  * Essentially these want to choose hash table sizes sufficiently
2409  * large so that collisions trying to wait on pages are rare.
2410  * But in fact, the number of active page waitqueues on typical
2411  * systems is ridiculously low, less than 200. So this is even
2412  * conservative, even though it seems large.
2413  *
2414  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2415  * waitqueues, i.e. the size of the waitq table given the number of pages.
2416  */
2417 #define PAGES_PER_WAITQUEUE	256
2418 
2419 #ifndef CONFIG_MEMORY_HOTPLUG
2420 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2421 {
2422 	unsigned long size = 1;
2423 
2424 	pages /= PAGES_PER_WAITQUEUE;
2425 
2426 	while (size < pages)
2427 		size <<= 1;
2428 
2429 	/*
2430 	 * Once we have dozens or even hundreds of threads sleeping
2431 	 * on IO we've got bigger problems than wait queue collision.
2432 	 * Limit the size of the wait table to a reasonable size.
2433 	 */
2434 	size = min(size, 4096UL);
2435 
2436 	return max(size, 4UL);
2437 }
2438 #else
2439 /*
2440  * A zone's size might be changed by hot-add, so it is not possible to determine
2441  * a suitable size for its wait_table.  So we use the maximum size now.
2442  *
2443  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
2444  *
2445  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
2446  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2447  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
2448  *
2449  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2450  * or more by the traditional way. (See above).  It equals:
2451  *
2452  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
2453  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
2454  *    powerpc (64K page size)             : =  (32G +16M)byte.
2455  */
2456 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2457 {
2458 	return 4096UL;
2459 }
2460 #endif
2461 
2462 /*
2463  * This is an integer logarithm so that shifts can be used later
2464  * to extract the more random high bits from the multiplicative
2465  * hash function before the remainder is taken.
2466  */
2467 static inline unsigned long wait_table_bits(unsigned long size)
2468 {
2469 	return ffz(~size);
2470 }
2471 
2472 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2473 
2474 /*
2475  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
2476  * of blocks reserved is based on zone->pages_min. The memory within the
2477  * reserve will tend to store contiguous free pages. Setting min_free_kbytes
2478  * higher will lead to a bigger reserve which will get freed as contiguous
2479  * blocks as reclaim kicks in
2480  */
2481 static void setup_zone_migrate_reserve(struct zone *zone)
2482 {
2483 	unsigned long start_pfn, pfn, end_pfn;
2484 	struct page *page;
2485 	unsigned long reserve, block_migratetype;
2486 
2487 	/* Get the start pfn, end pfn and the number of blocks to reserve */
2488 	start_pfn = zone->zone_start_pfn;
2489 	end_pfn = start_pfn + zone->spanned_pages;
2490 	reserve = roundup(zone->pages_min, pageblock_nr_pages) >>
2491 							pageblock_order;
2492 
2493 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
2494 		if (!pfn_valid(pfn))
2495 			continue;
2496 		page = pfn_to_page(pfn);
2497 
2498 		/* Blocks with reserved pages will never free, skip them. */
2499 		if (PageReserved(page))
2500 			continue;
2501 
2502 		block_migratetype = get_pageblock_migratetype(page);
2503 
2504 		/* If this block is reserved, account for it */
2505 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2506 			reserve--;
2507 			continue;
2508 		}
2509 
2510 		/* Suitable for reserving if this block is movable */
2511 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2512 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
2513 			move_freepages_block(zone, page, MIGRATE_RESERVE);
2514 			reserve--;
2515 			continue;
2516 		}
2517 
2518 		/*
2519 		 * If the reserve is met and this is a previous reserved block,
2520 		 * take it back
2521 		 */
2522 		if (block_migratetype == MIGRATE_RESERVE) {
2523 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2524 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
2525 		}
2526 	}
2527 }
2528 
2529 /*
2530  * Initially all pages are reserved - free ones are freed
2531  * up by free_all_bootmem() once the early boot process is
2532  * done. Non-atomic initialization, single-pass.
2533  */
2534 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
2535 		unsigned long start_pfn, enum memmap_context context)
2536 {
2537 	struct page *page;
2538 	unsigned long end_pfn = start_pfn + size;
2539 	unsigned long pfn;
2540 	struct zone *z;
2541 
2542 	z = &NODE_DATA(nid)->node_zones[zone];
2543 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
2544 		/*
2545 		 * There can be holes in boot-time mem_map[]s
2546 		 * handed to this function.  They do not
2547 		 * exist on hotplugged memory.
2548 		 */
2549 		if (context == MEMMAP_EARLY) {
2550 			if (!early_pfn_valid(pfn))
2551 				continue;
2552 			if (!early_pfn_in_nid(pfn, nid))
2553 				continue;
2554 		}
2555 		page = pfn_to_page(pfn);
2556 		set_page_links(page, zone, nid, pfn);
2557 		init_page_count(page);
2558 		reset_page_mapcount(page);
2559 		SetPageReserved(page);
2560 		/*
2561 		 * Mark the block movable so that blocks are reserved for
2562 		 * movable at startup. This will force kernel allocations
2563 		 * to reserve their blocks rather than leaking throughout
2564 		 * the address space during boot when many long-lived
2565 		 * kernel allocations are made. Later some blocks near
2566 		 * the start are marked MIGRATE_RESERVE by
2567 		 * setup_zone_migrate_reserve()
2568 		 *
2569 		 * bitmap is created for zone's valid pfn range. but memmap
2570 		 * can be created for invalid pages (for alignment)
2571 		 * check here not to call set_pageblock_migratetype() against
2572 		 * pfn out of zone.
2573 		 */
2574 		if ((z->zone_start_pfn <= pfn)
2575 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
2576 		    && !(pfn & (pageblock_nr_pages - 1)))
2577 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2578 
2579 		INIT_LIST_HEAD(&page->lru);
2580 #ifdef WANT_PAGE_VIRTUAL
2581 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
2582 		if (!is_highmem_idx(zone))
2583 			set_page_address(page, __va(pfn << PAGE_SHIFT));
2584 #endif
2585 	}
2586 }
2587 
2588 static void __meminit zone_init_free_lists(struct zone *zone)
2589 {
2590 	int order, t;
2591 	for_each_migratetype_order(order, t) {
2592 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
2593 		zone->free_area[order].nr_free = 0;
2594 	}
2595 }
2596 
2597 #ifndef __HAVE_ARCH_MEMMAP_INIT
2598 #define memmap_init(size, nid, zone, start_pfn) \
2599 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2600 #endif
2601 
2602 static int zone_batchsize(struct zone *zone)
2603 {
2604 	int batch;
2605 
2606 	/*
2607 	 * The per-cpu-pages pools are set to around 1000th of the
2608 	 * size of the zone.  But no more than 1/2 of a meg.
2609 	 *
2610 	 * OK, so we don't know how big the cache is.  So guess.
2611 	 */
2612 	batch = zone->present_pages / 1024;
2613 	if (batch * PAGE_SIZE > 512 * 1024)
2614 		batch = (512 * 1024) / PAGE_SIZE;
2615 	batch /= 4;		/* We effectively *= 4 below */
2616 	if (batch < 1)
2617 		batch = 1;
2618 
2619 	/*
2620 	 * Clamp the batch to a 2^n - 1 value. Having a power
2621 	 * of 2 value was found to be more likely to have
2622 	 * suboptimal cache aliasing properties in some cases.
2623 	 *
2624 	 * For example if 2 tasks are alternately allocating
2625 	 * batches of pages, one task can end up with a lot
2626 	 * of pages of one half of the possible page colors
2627 	 * and the other with pages of the other colors.
2628 	 */
2629 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2630 
2631 	return batch;
2632 }
2633 
2634 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2635 {
2636 	struct per_cpu_pages *pcp;
2637 
2638 	memset(p, 0, sizeof(*p));
2639 
2640 	pcp = &p->pcp;
2641 	pcp->count = 0;
2642 	pcp->high = 6 * batch;
2643 	pcp->batch = max(1UL, 1 * batch);
2644 	INIT_LIST_HEAD(&pcp->list);
2645 }
2646 
2647 /*
2648  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2649  * to the value high for the pageset p.
2650  */
2651 
2652 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2653 				unsigned long high)
2654 {
2655 	struct per_cpu_pages *pcp;
2656 
2657 	pcp = &p->pcp;
2658 	pcp->high = high;
2659 	pcp->batch = max(1UL, high/4);
2660 	if ((high/4) > (PAGE_SHIFT * 8))
2661 		pcp->batch = PAGE_SHIFT * 8;
2662 }
2663 
2664 
2665 #ifdef CONFIG_NUMA
2666 /*
2667  * Boot pageset table. One per cpu which is going to be used for all
2668  * zones and all nodes. The parameters will be set in such a way
2669  * that an item put on a list will immediately be handed over to
2670  * the buddy list. This is safe since pageset manipulation is done
2671  * with interrupts disabled.
2672  *
2673  * Some NUMA counter updates may also be caught by the boot pagesets.
2674  *
2675  * The boot_pagesets must be kept even after bootup is complete for
2676  * unused processors and/or zones. They do play a role for bootstrapping
2677  * hotplugged processors.
2678  *
2679  * zoneinfo_show() and maybe other functions do
2680  * not check if the processor is online before following the pageset pointer.
2681  * Other parts of the kernel may not check if the zone is available.
2682  */
2683 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2684 
2685 /*
2686  * Dynamically allocate memory for the
2687  * per cpu pageset array in struct zone.
2688  */
2689 static int __cpuinit process_zones(int cpu)
2690 {
2691 	struct zone *zone, *dzone;
2692 	int node = cpu_to_node(cpu);
2693 
2694 	node_set_state(node, N_CPU);	/* this node has a cpu */
2695 
2696 	for_each_zone(zone) {
2697 
2698 		if (!populated_zone(zone))
2699 			continue;
2700 
2701 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2702 					 GFP_KERNEL, node);
2703 		if (!zone_pcp(zone, cpu))
2704 			goto bad;
2705 
2706 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2707 
2708 		if (percpu_pagelist_fraction)
2709 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2710 			 	(zone->present_pages / percpu_pagelist_fraction));
2711 	}
2712 
2713 	return 0;
2714 bad:
2715 	for_each_zone(dzone) {
2716 		if (!populated_zone(dzone))
2717 			continue;
2718 		if (dzone == zone)
2719 			break;
2720 		kfree(zone_pcp(dzone, cpu));
2721 		zone_pcp(dzone, cpu) = NULL;
2722 	}
2723 	return -ENOMEM;
2724 }
2725 
2726 static inline void free_zone_pagesets(int cpu)
2727 {
2728 	struct zone *zone;
2729 
2730 	for_each_zone(zone) {
2731 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2732 
2733 		/* Free per_cpu_pageset if it is slab allocated */
2734 		if (pset != &boot_pageset[cpu])
2735 			kfree(pset);
2736 		zone_pcp(zone, cpu) = NULL;
2737 	}
2738 }
2739 
2740 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2741 		unsigned long action,
2742 		void *hcpu)
2743 {
2744 	int cpu = (long)hcpu;
2745 	int ret = NOTIFY_OK;
2746 
2747 	switch (action) {
2748 	case CPU_UP_PREPARE:
2749 	case CPU_UP_PREPARE_FROZEN:
2750 		if (process_zones(cpu))
2751 			ret = NOTIFY_BAD;
2752 		break;
2753 	case CPU_UP_CANCELED:
2754 	case CPU_UP_CANCELED_FROZEN:
2755 	case CPU_DEAD:
2756 	case CPU_DEAD_FROZEN:
2757 		free_zone_pagesets(cpu);
2758 		break;
2759 	default:
2760 		break;
2761 	}
2762 	return ret;
2763 }
2764 
2765 static struct notifier_block __cpuinitdata pageset_notifier =
2766 	{ &pageset_cpuup_callback, NULL, 0 };
2767 
2768 void __init setup_per_cpu_pageset(void)
2769 {
2770 	int err;
2771 
2772 	/* Initialize per_cpu_pageset for cpu 0.
2773 	 * A cpuup callback will do this for every cpu
2774 	 * as it comes online
2775 	 */
2776 	err = process_zones(smp_processor_id());
2777 	BUG_ON(err);
2778 	register_cpu_notifier(&pageset_notifier);
2779 }
2780 
2781 #endif
2782 
2783 static noinline __init_refok
2784 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2785 {
2786 	int i;
2787 	struct pglist_data *pgdat = zone->zone_pgdat;
2788 	size_t alloc_size;
2789 
2790 	/*
2791 	 * The per-page waitqueue mechanism uses hashed waitqueues
2792 	 * per zone.
2793 	 */
2794 	zone->wait_table_hash_nr_entries =
2795 		 wait_table_hash_nr_entries(zone_size_pages);
2796 	zone->wait_table_bits =
2797 		wait_table_bits(zone->wait_table_hash_nr_entries);
2798 	alloc_size = zone->wait_table_hash_nr_entries
2799 					* sizeof(wait_queue_head_t);
2800 
2801  	if (system_state == SYSTEM_BOOTING) {
2802 		zone->wait_table = (wait_queue_head_t *)
2803 			alloc_bootmem_node(pgdat, alloc_size);
2804 	} else {
2805 		/*
2806 		 * This case means that a zone whose size was 0 gets new memory
2807 		 * via memory hot-add.
2808 		 * But it may be the case that a new node was hot-added.  In
2809 		 * this case vmalloc() will not be able to use this new node's
2810 		 * memory - this wait_table must be initialized to use this new
2811 		 * node itself as well.
2812 		 * To use this new node's memory, further consideration will be
2813 		 * necessary.
2814 		 */
2815 		zone->wait_table = vmalloc(alloc_size);
2816 	}
2817 	if (!zone->wait_table)
2818 		return -ENOMEM;
2819 
2820 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2821 		init_waitqueue_head(zone->wait_table + i);
2822 
2823 	return 0;
2824 }
2825 
2826 static __meminit void zone_pcp_init(struct zone *zone)
2827 {
2828 	int cpu;
2829 	unsigned long batch = zone_batchsize(zone);
2830 
2831 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2832 #ifdef CONFIG_NUMA
2833 		/* Early boot. Slab allocator not functional yet */
2834 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2835 		setup_pageset(&boot_pageset[cpu],0);
2836 #else
2837 		setup_pageset(zone_pcp(zone,cpu), batch);
2838 #endif
2839 	}
2840 	if (zone->present_pages)
2841 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2842 			zone->name, zone->present_pages, batch);
2843 }
2844 
2845 __meminit int init_currently_empty_zone(struct zone *zone,
2846 					unsigned long zone_start_pfn,
2847 					unsigned long size,
2848 					enum memmap_context context)
2849 {
2850 	struct pglist_data *pgdat = zone->zone_pgdat;
2851 	int ret;
2852 	ret = zone_wait_table_init(zone, size);
2853 	if (ret)
2854 		return ret;
2855 	pgdat->nr_zones = zone_idx(zone) + 1;
2856 
2857 	zone->zone_start_pfn = zone_start_pfn;
2858 
2859 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2860 
2861 	zone_init_free_lists(zone);
2862 
2863 	return 0;
2864 }
2865 
2866 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2867 /*
2868  * Basic iterator support. Return the first range of PFNs for a node
2869  * Note: nid == MAX_NUMNODES returns first region regardless of node
2870  */
2871 static int __meminit first_active_region_index_in_nid(int nid)
2872 {
2873 	int i;
2874 
2875 	for (i = 0; i < nr_nodemap_entries; i++)
2876 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2877 			return i;
2878 
2879 	return -1;
2880 }
2881 
2882 /*
2883  * Basic iterator support. Return the next active range of PFNs for a node
2884  * Note: nid == MAX_NUMNODES returns next region regardless of node
2885  */
2886 static int __meminit next_active_region_index_in_nid(int index, int nid)
2887 {
2888 	for (index = index + 1; index < nr_nodemap_entries; index++)
2889 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2890 			return index;
2891 
2892 	return -1;
2893 }
2894 
2895 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2896 /*
2897  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2898  * Architectures may implement their own version but if add_active_range()
2899  * was used and there are no special requirements, this is a convenient
2900  * alternative
2901  */
2902 int __meminit early_pfn_to_nid(unsigned long pfn)
2903 {
2904 	int i;
2905 
2906 	for (i = 0; i < nr_nodemap_entries; i++) {
2907 		unsigned long start_pfn = early_node_map[i].start_pfn;
2908 		unsigned long end_pfn = early_node_map[i].end_pfn;
2909 
2910 		if (start_pfn <= pfn && pfn < end_pfn)
2911 			return early_node_map[i].nid;
2912 	}
2913 
2914 	return 0;
2915 }
2916 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2917 
2918 /* Basic iterator support to walk early_node_map[] */
2919 #define for_each_active_range_index_in_nid(i, nid) \
2920 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2921 				i = next_active_region_index_in_nid(i, nid))
2922 
2923 /**
2924  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2925  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2926  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2927  *
2928  * If an architecture guarantees that all ranges registered with
2929  * add_active_ranges() contain no holes and may be freed, this
2930  * this function may be used instead of calling free_bootmem() manually.
2931  */
2932 void __init free_bootmem_with_active_regions(int nid,
2933 						unsigned long max_low_pfn)
2934 {
2935 	int i;
2936 
2937 	for_each_active_range_index_in_nid(i, nid) {
2938 		unsigned long size_pages = 0;
2939 		unsigned long end_pfn = early_node_map[i].end_pfn;
2940 
2941 		if (early_node_map[i].start_pfn >= max_low_pfn)
2942 			continue;
2943 
2944 		if (end_pfn > max_low_pfn)
2945 			end_pfn = max_low_pfn;
2946 
2947 		size_pages = end_pfn - early_node_map[i].start_pfn;
2948 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2949 				PFN_PHYS(early_node_map[i].start_pfn),
2950 				size_pages << PAGE_SHIFT);
2951 	}
2952 }
2953 
2954 /**
2955  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2956  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2957  *
2958  * If an architecture guarantees that all ranges registered with
2959  * add_active_ranges() contain no holes and may be freed, this
2960  * function may be used instead of calling memory_present() manually.
2961  */
2962 void __init sparse_memory_present_with_active_regions(int nid)
2963 {
2964 	int i;
2965 
2966 	for_each_active_range_index_in_nid(i, nid)
2967 		memory_present(early_node_map[i].nid,
2968 				early_node_map[i].start_pfn,
2969 				early_node_map[i].end_pfn);
2970 }
2971 
2972 /**
2973  * push_node_boundaries - Push node boundaries to at least the requested boundary
2974  * @nid: The nid of the node to push the boundary for
2975  * @start_pfn: The start pfn of the node
2976  * @end_pfn: The end pfn of the node
2977  *
2978  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2979  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2980  * be hotplugged even though no physical memory exists. This function allows
2981  * an arch to push out the node boundaries so mem_map is allocated that can
2982  * be used later.
2983  */
2984 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2985 void __init push_node_boundaries(unsigned int nid,
2986 		unsigned long start_pfn, unsigned long end_pfn)
2987 {
2988 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2989 			nid, start_pfn, end_pfn);
2990 
2991 	/* Initialise the boundary for this node if necessary */
2992 	if (node_boundary_end_pfn[nid] == 0)
2993 		node_boundary_start_pfn[nid] = -1UL;
2994 
2995 	/* Update the boundaries */
2996 	if (node_boundary_start_pfn[nid] > start_pfn)
2997 		node_boundary_start_pfn[nid] = start_pfn;
2998 	if (node_boundary_end_pfn[nid] < end_pfn)
2999 		node_boundary_end_pfn[nid] = end_pfn;
3000 }
3001 
3002 /* If necessary, push the node boundary out for reserve hotadd */
3003 static void __meminit account_node_boundary(unsigned int nid,
3004 		unsigned long *start_pfn, unsigned long *end_pfn)
3005 {
3006 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
3007 			nid, *start_pfn, *end_pfn);
3008 
3009 	/* Return if boundary information has not been provided */
3010 	if (node_boundary_end_pfn[nid] == 0)
3011 		return;
3012 
3013 	/* Check the boundaries and update if necessary */
3014 	if (node_boundary_start_pfn[nid] < *start_pfn)
3015 		*start_pfn = node_boundary_start_pfn[nid];
3016 	if (node_boundary_end_pfn[nid] > *end_pfn)
3017 		*end_pfn = node_boundary_end_pfn[nid];
3018 }
3019 #else
3020 void __init push_node_boundaries(unsigned int nid,
3021 		unsigned long start_pfn, unsigned long end_pfn) {}
3022 
3023 static void __meminit account_node_boundary(unsigned int nid,
3024 		unsigned long *start_pfn, unsigned long *end_pfn) {}
3025 #endif
3026 
3027 
3028 /**
3029  * get_pfn_range_for_nid - Return the start and end page frames for a node
3030  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3031  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3032  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3033  *
3034  * It returns the start and end page frame of a node based on information
3035  * provided by an arch calling add_active_range(). If called for a node
3036  * with no available memory, a warning is printed and the start and end
3037  * PFNs will be 0.
3038  */
3039 void __meminit get_pfn_range_for_nid(unsigned int nid,
3040 			unsigned long *start_pfn, unsigned long *end_pfn)
3041 {
3042 	int i;
3043 	*start_pfn = -1UL;
3044 	*end_pfn = 0;
3045 
3046 	for_each_active_range_index_in_nid(i, nid) {
3047 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3048 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3049 	}
3050 
3051 	if (*start_pfn == -1UL)
3052 		*start_pfn = 0;
3053 
3054 	/* Push the node boundaries out if requested */
3055 	account_node_boundary(nid, start_pfn, end_pfn);
3056 }
3057 
3058 /*
3059  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3060  * assumption is made that zones within a node are ordered in monotonic
3061  * increasing memory addresses so that the "highest" populated zone is used
3062  */
3063 void __init find_usable_zone_for_movable(void)
3064 {
3065 	int zone_index;
3066 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3067 		if (zone_index == ZONE_MOVABLE)
3068 			continue;
3069 
3070 		if (arch_zone_highest_possible_pfn[zone_index] >
3071 				arch_zone_lowest_possible_pfn[zone_index])
3072 			break;
3073 	}
3074 
3075 	VM_BUG_ON(zone_index == -1);
3076 	movable_zone = zone_index;
3077 }
3078 
3079 /*
3080  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3081  * because it is sized independant of architecture. Unlike the other zones,
3082  * the starting point for ZONE_MOVABLE is not fixed. It may be different
3083  * in each node depending on the size of each node and how evenly kernelcore
3084  * is distributed. This helper function adjusts the zone ranges
3085  * provided by the architecture for a given node by using the end of the
3086  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3087  * zones within a node are in order of monotonic increases memory addresses
3088  */
3089 void __meminit adjust_zone_range_for_zone_movable(int nid,
3090 					unsigned long zone_type,
3091 					unsigned long node_start_pfn,
3092 					unsigned long node_end_pfn,
3093 					unsigned long *zone_start_pfn,
3094 					unsigned long *zone_end_pfn)
3095 {
3096 	/* Only adjust if ZONE_MOVABLE is on this node */
3097 	if (zone_movable_pfn[nid]) {
3098 		/* Size ZONE_MOVABLE */
3099 		if (zone_type == ZONE_MOVABLE) {
3100 			*zone_start_pfn = zone_movable_pfn[nid];
3101 			*zone_end_pfn = min(node_end_pfn,
3102 				arch_zone_highest_possible_pfn[movable_zone]);
3103 
3104 		/* Adjust for ZONE_MOVABLE starting within this range */
3105 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3106 				*zone_end_pfn > zone_movable_pfn[nid]) {
3107 			*zone_end_pfn = zone_movable_pfn[nid];
3108 
3109 		/* Check if this whole range is within ZONE_MOVABLE */
3110 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
3111 			*zone_start_pfn = *zone_end_pfn;
3112 	}
3113 }
3114 
3115 /*
3116  * Return the number of pages a zone spans in a node, including holes
3117  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3118  */
3119 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
3120 					unsigned long zone_type,
3121 					unsigned long *ignored)
3122 {
3123 	unsigned long node_start_pfn, node_end_pfn;
3124 	unsigned long zone_start_pfn, zone_end_pfn;
3125 
3126 	/* Get the start and end of the node and zone */
3127 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3128 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3129 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
3130 	adjust_zone_range_for_zone_movable(nid, zone_type,
3131 				node_start_pfn, node_end_pfn,
3132 				&zone_start_pfn, &zone_end_pfn);
3133 
3134 	/* Check that this node has pages within the zone's required range */
3135 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3136 		return 0;
3137 
3138 	/* Move the zone boundaries inside the node if necessary */
3139 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3140 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3141 
3142 	/* Return the spanned pages */
3143 	return zone_end_pfn - zone_start_pfn;
3144 }
3145 
3146 /*
3147  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3148  * then all holes in the requested range will be accounted for.
3149  */
3150 unsigned long __meminit __absent_pages_in_range(int nid,
3151 				unsigned long range_start_pfn,
3152 				unsigned long range_end_pfn)
3153 {
3154 	int i = 0;
3155 	unsigned long prev_end_pfn = 0, hole_pages = 0;
3156 	unsigned long start_pfn;
3157 
3158 	/* Find the end_pfn of the first active range of pfns in the node */
3159 	i = first_active_region_index_in_nid(nid);
3160 	if (i == -1)
3161 		return 0;
3162 
3163 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3164 
3165 	/* Account for ranges before physical memory on this node */
3166 	if (early_node_map[i].start_pfn > range_start_pfn)
3167 		hole_pages = prev_end_pfn - range_start_pfn;
3168 
3169 	/* Find all holes for the zone within the node */
3170 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3171 
3172 		/* No need to continue if prev_end_pfn is outside the zone */
3173 		if (prev_end_pfn >= range_end_pfn)
3174 			break;
3175 
3176 		/* Make sure the end of the zone is not within the hole */
3177 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3178 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3179 
3180 		/* Update the hole size cound and move on */
3181 		if (start_pfn > range_start_pfn) {
3182 			BUG_ON(prev_end_pfn > start_pfn);
3183 			hole_pages += start_pfn - prev_end_pfn;
3184 		}
3185 		prev_end_pfn = early_node_map[i].end_pfn;
3186 	}
3187 
3188 	/* Account for ranges past physical memory on this node */
3189 	if (range_end_pfn > prev_end_pfn)
3190 		hole_pages += range_end_pfn -
3191 				max(range_start_pfn, prev_end_pfn);
3192 
3193 	return hole_pages;
3194 }
3195 
3196 /**
3197  * absent_pages_in_range - Return number of page frames in holes within a range
3198  * @start_pfn: The start PFN to start searching for holes
3199  * @end_pfn: The end PFN to stop searching for holes
3200  *
3201  * It returns the number of pages frames in memory holes within a range.
3202  */
3203 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3204 							unsigned long end_pfn)
3205 {
3206 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3207 }
3208 
3209 /* Return the number of page frames in holes in a zone on a node */
3210 static unsigned long __meminit zone_absent_pages_in_node(int nid,
3211 					unsigned long zone_type,
3212 					unsigned long *ignored)
3213 {
3214 	unsigned long node_start_pfn, node_end_pfn;
3215 	unsigned long zone_start_pfn, zone_end_pfn;
3216 
3217 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3218 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3219 							node_start_pfn);
3220 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3221 							node_end_pfn);
3222 
3223 	adjust_zone_range_for_zone_movable(nid, zone_type,
3224 			node_start_pfn, node_end_pfn,
3225 			&zone_start_pfn, &zone_end_pfn);
3226 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
3227 }
3228 
3229 #else
3230 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
3231 					unsigned long zone_type,
3232 					unsigned long *zones_size)
3233 {
3234 	return zones_size[zone_type];
3235 }
3236 
3237 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
3238 						unsigned long zone_type,
3239 						unsigned long *zholes_size)
3240 {
3241 	if (!zholes_size)
3242 		return 0;
3243 
3244 	return zholes_size[zone_type];
3245 }
3246 
3247 #endif
3248 
3249 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
3250 		unsigned long *zones_size, unsigned long *zholes_size)
3251 {
3252 	unsigned long realtotalpages, totalpages = 0;
3253 	enum zone_type i;
3254 
3255 	for (i = 0; i < MAX_NR_ZONES; i++)
3256 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3257 								zones_size);
3258 	pgdat->node_spanned_pages = totalpages;
3259 
3260 	realtotalpages = totalpages;
3261 	for (i = 0; i < MAX_NR_ZONES; i++)
3262 		realtotalpages -=
3263 			zone_absent_pages_in_node(pgdat->node_id, i,
3264 								zholes_size);
3265 	pgdat->node_present_pages = realtotalpages;
3266 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3267 							realtotalpages);
3268 }
3269 
3270 #ifndef CONFIG_SPARSEMEM
3271 /*
3272  * Calculate the size of the zone->blockflags rounded to an unsigned long
3273  * Start by making sure zonesize is a multiple of pageblock_order by rounding
3274  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3275  * round what is now in bits to nearest long in bits, then return it in
3276  * bytes.
3277  */
3278 static unsigned long __init usemap_size(unsigned long zonesize)
3279 {
3280 	unsigned long usemapsize;
3281 
3282 	usemapsize = roundup(zonesize, pageblock_nr_pages);
3283 	usemapsize = usemapsize >> pageblock_order;
3284 	usemapsize *= NR_PAGEBLOCK_BITS;
3285 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3286 
3287 	return usemapsize / 8;
3288 }
3289 
3290 static void __init setup_usemap(struct pglist_data *pgdat,
3291 				struct zone *zone, unsigned long zonesize)
3292 {
3293 	unsigned long usemapsize = usemap_size(zonesize);
3294 	zone->pageblock_flags = NULL;
3295 	if (usemapsize) {
3296 		zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
3297 		memset(zone->pageblock_flags, 0, usemapsize);
3298 	}
3299 }
3300 #else
3301 static void inline setup_usemap(struct pglist_data *pgdat,
3302 				struct zone *zone, unsigned long zonesize) {}
3303 #endif /* CONFIG_SPARSEMEM */
3304 
3305 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
3306 
3307 /* Return a sensible default order for the pageblock size. */
3308 static inline int pageblock_default_order(void)
3309 {
3310 	if (HPAGE_SHIFT > PAGE_SHIFT)
3311 		return HUGETLB_PAGE_ORDER;
3312 
3313 	return MAX_ORDER-1;
3314 }
3315 
3316 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3317 static inline void __init set_pageblock_order(unsigned int order)
3318 {
3319 	/* Check that pageblock_nr_pages has not already been setup */
3320 	if (pageblock_order)
3321 		return;
3322 
3323 	/*
3324 	 * Assume the largest contiguous order of interest is a huge page.
3325 	 * This value may be variable depending on boot parameters on IA64
3326 	 */
3327 	pageblock_order = order;
3328 }
3329 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3330 
3331 /*
3332  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3333  * and pageblock_default_order() are unused as pageblock_order is set
3334  * at compile-time. See include/linux/pageblock-flags.h for the values of
3335  * pageblock_order based on the kernel config
3336  */
3337 static inline int pageblock_default_order(unsigned int order)
3338 {
3339 	return MAX_ORDER-1;
3340 }
3341 #define set_pageblock_order(x)	do {} while (0)
3342 
3343 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3344 
3345 /*
3346  * Set up the zone data structures:
3347  *   - mark all pages reserved
3348  *   - mark all memory queues empty
3349  *   - clear the memory bitmaps
3350  */
3351 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
3352 		unsigned long *zones_size, unsigned long *zholes_size)
3353 {
3354 	enum zone_type j;
3355 	int nid = pgdat->node_id;
3356 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
3357 	int ret;
3358 
3359 	pgdat_resize_init(pgdat);
3360 	pgdat->nr_zones = 0;
3361 	init_waitqueue_head(&pgdat->kswapd_wait);
3362 	pgdat->kswapd_max_order = 0;
3363 
3364 	for (j = 0; j < MAX_NR_ZONES; j++) {
3365 		struct zone *zone = pgdat->node_zones + j;
3366 		unsigned long size, realsize, memmap_pages;
3367 
3368 		size = zone_spanned_pages_in_node(nid, j, zones_size);
3369 		realsize = size - zone_absent_pages_in_node(nid, j,
3370 								zholes_size);
3371 
3372 		/*
3373 		 * Adjust realsize so that it accounts for how much memory
3374 		 * is used by this zone for memmap. This affects the watermark
3375 		 * and per-cpu initialisations
3376 		 */
3377 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
3378 		if (realsize >= memmap_pages) {
3379 			realsize -= memmap_pages;
3380 			printk(KERN_DEBUG
3381 				"  %s zone: %lu pages used for memmap\n",
3382 				zone_names[j], memmap_pages);
3383 		} else
3384 			printk(KERN_WARNING
3385 				"  %s zone: %lu pages exceeds realsize %lu\n",
3386 				zone_names[j], memmap_pages, realsize);
3387 
3388 		/* Account for reserved pages */
3389 		if (j == 0 && realsize > dma_reserve) {
3390 			realsize -= dma_reserve;
3391 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
3392 					zone_names[0], dma_reserve);
3393 		}
3394 
3395 		if (!is_highmem_idx(j))
3396 			nr_kernel_pages += realsize;
3397 		nr_all_pages += realsize;
3398 
3399 		zone->spanned_pages = size;
3400 		zone->present_pages = realsize;
3401 #ifdef CONFIG_NUMA
3402 		zone->node = nid;
3403 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
3404 						/ 100;
3405 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
3406 #endif
3407 		zone->name = zone_names[j];
3408 		spin_lock_init(&zone->lock);
3409 		spin_lock_init(&zone->lru_lock);
3410 		zone_seqlock_init(zone);
3411 		zone->zone_pgdat = pgdat;
3412 
3413 		zone->prev_priority = DEF_PRIORITY;
3414 
3415 		zone_pcp_init(zone);
3416 		INIT_LIST_HEAD(&zone->active_list);
3417 		INIT_LIST_HEAD(&zone->inactive_list);
3418 		zone->nr_scan_active = 0;
3419 		zone->nr_scan_inactive = 0;
3420 		zap_zone_vm_stats(zone);
3421 		zone->flags = 0;
3422 		if (!size)
3423 			continue;
3424 
3425 		set_pageblock_order(pageblock_default_order());
3426 		setup_usemap(pgdat, zone, size);
3427 		ret = init_currently_empty_zone(zone, zone_start_pfn,
3428 						size, MEMMAP_EARLY);
3429 		BUG_ON(ret);
3430 		zone_start_pfn += size;
3431 	}
3432 }
3433 
3434 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
3435 {
3436 	/* Skip empty nodes */
3437 	if (!pgdat->node_spanned_pages)
3438 		return;
3439 
3440 #ifdef CONFIG_FLAT_NODE_MEM_MAP
3441 	/* ia64 gets its own node_mem_map, before this, without bootmem */
3442 	if (!pgdat->node_mem_map) {
3443 		unsigned long size, start, end;
3444 		struct page *map;
3445 
3446 		/*
3447 		 * The zone's endpoints aren't required to be MAX_ORDER
3448 		 * aligned but the node_mem_map endpoints must be in order
3449 		 * for the buddy allocator to function correctly.
3450 		 */
3451 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3452 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3453 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
3454 		size =  (end - start) * sizeof(struct page);
3455 		map = alloc_remap(pgdat->node_id, size);
3456 		if (!map)
3457 			map = alloc_bootmem_node(pgdat, size);
3458 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
3459 	}
3460 #ifndef CONFIG_NEED_MULTIPLE_NODES
3461 	/*
3462 	 * With no DISCONTIG, the global mem_map is just set as node 0's
3463 	 */
3464 	if (pgdat == NODE_DATA(0)) {
3465 		mem_map = NODE_DATA(0)->node_mem_map;
3466 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3467 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
3468 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
3469 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3470 	}
3471 #endif
3472 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
3473 }
3474 
3475 void __paginginit free_area_init_node(int nid, struct pglist_data *pgdat,
3476 		unsigned long *zones_size, unsigned long node_start_pfn,
3477 		unsigned long *zholes_size)
3478 {
3479 	pgdat->node_id = nid;
3480 	pgdat->node_start_pfn = node_start_pfn;
3481 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
3482 
3483 	alloc_node_mem_map(pgdat);
3484 
3485 	free_area_init_core(pgdat, zones_size, zholes_size);
3486 }
3487 
3488 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3489 
3490 #if MAX_NUMNODES > 1
3491 /*
3492  * Figure out the number of possible node ids.
3493  */
3494 static void __init setup_nr_node_ids(void)
3495 {
3496 	unsigned int node;
3497 	unsigned int highest = 0;
3498 
3499 	for_each_node_mask(node, node_possible_map)
3500 		highest = node;
3501 	nr_node_ids = highest + 1;
3502 }
3503 #else
3504 static inline void setup_nr_node_ids(void)
3505 {
3506 }
3507 #endif
3508 
3509 /**
3510  * add_active_range - Register a range of PFNs backed by physical memory
3511  * @nid: The node ID the range resides on
3512  * @start_pfn: The start PFN of the available physical memory
3513  * @end_pfn: The end PFN of the available physical memory
3514  *
3515  * These ranges are stored in an early_node_map[] and later used by
3516  * free_area_init_nodes() to calculate zone sizes and holes. If the
3517  * range spans a memory hole, it is up to the architecture to ensure
3518  * the memory is not freed by the bootmem allocator. If possible
3519  * the range being registered will be merged with existing ranges.
3520  */
3521 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3522 						unsigned long end_pfn)
3523 {
3524 	int i;
3525 
3526 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
3527 			  "%d entries of %d used\n",
3528 			  nid, start_pfn, end_pfn,
3529 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
3530 
3531 	/* Merge with existing active regions if possible */
3532 	for (i = 0; i < nr_nodemap_entries; i++) {
3533 		if (early_node_map[i].nid != nid)
3534 			continue;
3535 
3536 		/* Skip if an existing region covers this new one */
3537 		if (start_pfn >= early_node_map[i].start_pfn &&
3538 				end_pfn <= early_node_map[i].end_pfn)
3539 			return;
3540 
3541 		/* Merge forward if suitable */
3542 		if (start_pfn <= early_node_map[i].end_pfn &&
3543 				end_pfn > early_node_map[i].end_pfn) {
3544 			early_node_map[i].end_pfn = end_pfn;
3545 			return;
3546 		}
3547 
3548 		/* Merge backward if suitable */
3549 		if (start_pfn < early_node_map[i].end_pfn &&
3550 				end_pfn >= early_node_map[i].start_pfn) {
3551 			early_node_map[i].start_pfn = start_pfn;
3552 			return;
3553 		}
3554 	}
3555 
3556 	/* Check that early_node_map is large enough */
3557 	if (i >= MAX_ACTIVE_REGIONS) {
3558 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
3559 							MAX_ACTIVE_REGIONS);
3560 		return;
3561 	}
3562 
3563 	early_node_map[i].nid = nid;
3564 	early_node_map[i].start_pfn = start_pfn;
3565 	early_node_map[i].end_pfn = end_pfn;
3566 	nr_nodemap_entries = i + 1;
3567 }
3568 
3569 /**
3570  * shrink_active_range - Shrink an existing registered range of PFNs
3571  * @nid: The node id the range is on that should be shrunk
3572  * @old_end_pfn: The old end PFN of the range
3573  * @new_end_pfn: The new PFN of the range
3574  *
3575  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
3576  * The map is kept at the end physical page range that has already been
3577  * registered with add_active_range(). This function allows an arch to shrink
3578  * an existing registered range.
3579  */
3580 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
3581 						unsigned long new_end_pfn)
3582 {
3583 	int i;
3584 
3585 	/* Find the old active region end and shrink */
3586 	for_each_active_range_index_in_nid(i, nid)
3587 		if (early_node_map[i].end_pfn == old_end_pfn) {
3588 			early_node_map[i].end_pfn = new_end_pfn;
3589 			break;
3590 		}
3591 }
3592 
3593 /**
3594  * remove_all_active_ranges - Remove all currently registered regions
3595  *
3596  * During discovery, it may be found that a table like SRAT is invalid
3597  * and an alternative discovery method must be used. This function removes
3598  * all currently registered regions.
3599  */
3600 void __init remove_all_active_ranges(void)
3601 {
3602 	memset(early_node_map, 0, sizeof(early_node_map));
3603 	nr_nodemap_entries = 0;
3604 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
3605 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
3606 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
3607 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
3608 }
3609 
3610 /* Compare two active node_active_regions */
3611 static int __init cmp_node_active_region(const void *a, const void *b)
3612 {
3613 	struct node_active_region *arange = (struct node_active_region *)a;
3614 	struct node_active_region *brange = (struct node_active_region *)b;
3615 
3616 	/* Done this way to avoid overflows */
3617 	if (arange->start_pfn > brange->start_pfn)
3618 		return 1;
3619 	if (arange->start_pfn < brange->start_pfn)
3620 		return -1;
3621 
3622 	return 0;
3623 }
3624 
3625 /* sort the node_map by start_pfn */
3626 static void __init sort_node_map(void)
3627 {
3628 	sort(early_node_map, (size_t)nr_nodemap_entries,
3629 			sizeof(struct node_active_region),
3630 			cmp_node_active_region, NULL);
3631 }
3632 
3633 /* Find the lowest pfn for a node */
3634 unsigned long __init find_min_pfn_for_node(unsigned long nid)
3635 {
3636 	int i;
3637 	unsigned long min_pfn = ULONG_MAX;
3638 
3639 	/* Assuming a sorted map, the first range found has the starting pfn */
3640 	for_each_active_range_index_in_nid(i, nid)
3641 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
3642 
3643 	if (min_pfn == ULONG_MAX) {
3644 		printk(KERN_WARNING
3645 			"Could not find start_pfn for node %lu\n", nid);
3646 		return 0;
3647 	}
3648 
3649 	return min_pfn;
3650 }
3651 
3652 /**
3653  * find_min_pfn_with_active_regions - Find the minimum PFN registered
3654  *
3655  * It returns the minimum PFN based on information provided via
3656  * add_active_range().
3657  */
3658 unsigned long __init find_min_pfn_with_active_regions(void)
3659 {
3660 	return find_min_pfn_for_node(MAX_NUMNODES);
3661 }
3662 
3663 /**
3664  * find_max_pfn_with_active_regions - Find the maximum PFN registered
3665  *
3666  * It returns the maximum PFN based on information provided via
3667  * add_active_range().
3668  */
3669 unsigned long __init find_max_pfn_with_active_regions(void)
3670 {
3671 	int i;
3672 	unsigned long max_pfn = 0;
3673 
3674 	for (i = 0; i < nr_nodemap_entries; i++)
3675 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
3676 
3677 	return max_pfn;
3678 }
3679 
3680 /*
3681  * early_calculate_totalpages()
3682  * Sum pages in active regions for movable zone.
3683  * Populate N_HIGH_MEMORY for calculating usable_nodes.
3684  */
3685 static unsigned long __init early_calculate_totalpages(void)
3686 {
3687 	int i;
3688 	unsigned long totalpages = 0;
3689 
3690 	for (i = 0; i < nr_nodemap_entries; i++) {
3691 		unsigned long pages = early_node_map[i].end_pfn -
3692 						early_node_map[i].start_pfn;
3693 		totalpages += pages;
3694 		if (pages)
3695 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3696 	}
3697   	return totalpages;
3698 }
3699 
3700 /*
3701  * Find the PFN the Movable zone begins in each node. Kernel memory
3702  * is spread evenly between nodes as long as the nodes have enough
3703  * memory. When they don't, some nodes will have more kernelcore than
3704  * others
3705  */
3706 void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
3707 {
3708 	int i, nid;
3709 	unsigned long usable_startpfn;
3710 	unsigned long kernelcore_node, kernelcore_remaining;
3711 	unsigned long totalpages = early_calculate_totalpages();
3712 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
3713 
3714 	/*
3715 	 * If movablecore was specified, calculate what size of
3716 	 * kernelcore that corresponds so that memory usable for
3717 	 * any allocation type is evenly spread. If both kernelcore
3718 	 * and movablecore are specified, then the value of kernelcore
3719 	 * will be used for required_kernelcore if it's greater than
3720 	 * what movablecore would have allowed.
3721 	 */
3722 	if (required_movablecore) {
3723 		unsigned long corepages;
3724 
3725 		/*
3726 		 * Round-up so that ZONE_MOVABLE is at least as large as what
3727 		 * was requested by the user
3728 		 */
3729 		required_movablecore =
3730 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
3731 		corepages = totalpages - required_movablecore;
3732 
3733 		required_kernelcore = max(required_kernelcore, corepages);
3734 	}
3735 
3736 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
3737 	if (!required_kernelcore)
3738 		return;
3739 
3740 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
3741 	find_usable_zone_for_movable();
3742 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
3743 
3744 restart:
3745 	/* Spread kernelcore memory as evenly as possible throughout nodes */
3746 	kernelcore_node = required_kernelcore / usable_nodes;
3747 	for_each_node_state(nid, N_HIGH_MEMORY) {
3748 		/*
3749 		 * Recalculate kernelcore_node if the division per node
3750 		 * now exceeds what is necessary to satisfy the requested
3751 		 * amount of memory for the kernel
3752 		 */
3753 		if (required_kernelcore < kernelcore_node)
3754 			kernelcore_node = required_kernelcore / usable_nodes;
3755 
3756 		/*
3757 		 * As the map is walked, we track how much memory is usable
3758 		 * by the kernel using kernelcore_remaining. When it is
3759 		 * 0, the rest of the node is usable by ZONE_MOVABLE
3760 		 */
3761 		kernelcore_remaining = kernelcore_node;
3762 
3763 		/* Go through each range of PFNs within this node */
3764 		for_each_active_range_index_in_nid(i, nid) {
3765 			unsigned long start_pfn, end_pfn;
3766 			unsigned long size_pages;
3767 
3768 			start_pfn = max(early_node_map[i].start_pfn,
3769 						zone_movable_pfn[nid]);
3770 			end_pfn = early_node_map[i].end_pfn;
3771 			if (start_pfn >= end_pfn)
3772 				continue;
3773 
3774 			/* Account for what is only usable for kernelcore */
3775 			if (start_pfn < usable_startpfn) {
3776 				unsigned long kernel_pages;
3777 				kernel_pages = min(end_pfn, usable_startpfn)
3778 								- start_pfn;
3779 
3780 				kernelcore_remaining -= min(kernel_pages,
3781 							kernelcore_remaining);
3782 				required_kernelcore -= min(kernel_pages,
3783 							required_kernelcore);
3784 
3785 				/* Continue if range is now fully accounted */
3786 				if (end_pfn <= usable_startpfn) {
3787 
3788 					/*
3789 					 * Push zone_movable_pfn to the end so
3790 					 * that if we have to rebalance
3791 					 * kernelcore across nodes, we will
3792 					 * not double account here
3793 					 */
3794 					zone_movable_pfn[nid] = end_pfn;
3795 					continue;
3796 				}
3797 				start_pfn = usable_startpfn;
3798 			}
3799 
3800 			/*
3801 			 * The usable PFN range for ZONE_MOVABLE is from
3802 			 * start_pfn->end_pfn. Calculate size_pages as the
3803 			 * number of pages used as kernelcore
3804 			 */
3805 			size_pages = end_pfn - start_pfn;
3806 			if (size_pages > kernelcore_remaining)
3807 				size_pages = kernelcore_remaining;
3808 			zone_movable_pfn[nid] = start_pfn + size_pages;
3809 
3810 			/*
3811 			 * Some kernelcore has been met, update counts and
3812 			 * break if the kernelcore for this node has been
3813 			 * satisified
3814 			 */
3815 			required_kernelcore -= min(required_kernelcore,
3816 								size_pages);
3817 			kernelcore_remaining -= size_pages;
3818 			if (!kernelcore_remaining)
3819 				break;
3820 		}
3821 	}
3822 
3823 	/*
3824 	 * If there is still required_kernelcore, we do another pass with one
3825 	 * less node in the count. This will push zone_movable_pfn[nid] further
3826 	 * along on the nodes that still have memory until kernelcore is
3827 	 * satisified
3828 	 */
3829 	usable_nodes--;
3830 	if (usable_nodes && required_kernelcore > usable_nodes)
3831 		goto restart;
3832 
3833 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
3834 	for (nid = 0; nid < MAX_NUMNODES; nid++)
3835 		zone_movable_pfn[nid] =
3836 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
3837 }
3838 
3839 /* Any regular memory on that node ? */
3840 static void check_for_regular_memory(pg_data_t *pgdat)
3841 {
3842 #ifdef CONFIG_HIGHMEM
3843 	enum zone_type zone_type;
3844 
3845 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
3846 		struct zone *zone = &pgdat->node_zones[zone_type];
3847 		if (zone->present_pages)
3848 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
3849 	}
3850 #endif
3851 }
3852 
3853 /**
3854  * free_area_init_nodes - Initialise all pg_data_t and zone data
3855  * @max_zone_pfn: an array of max PFNs for each zone
3856  *
3857  * This will call free_area_init_node() for each active node in the system.
3858  * Using the page ranges provided by add_active_range(), the size of each
3859  * zone in each node and their holes is calculated. If the maximum PFN
3860  * between two adjacent zones match, it is assumed that the zone is empty.
3861  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
3862  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
3863  * starts where the previous one ended. For example, ZONE_DMA32 starts
3864  * at arch_max_dma_pfn.
3865  */
3866 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
3867 {
3868 	unsigned long nid;
3869 	enum zone_type i;
3870 
3871 	/* Sort early_node_map as initialisation assumes it is sorted */
3872 	sort_node_map();
3873 
3874 	/* Record where the zone boundaries are */
3875 	memset(arch_zone_lowest_possible_pfn, 0,
3876 				sizeof(arch_zone_lowest_possible_pfn));
3877 	memset(arch_zone_highest_possible_pfn, 0,
3878 				sizeof(arch_zone_highest_possible_pfn));
3879 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
3880 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
3881 	for (i = 1; i < MAX_NR_ZONES; i++) {
3882 		if (i == ZONE_MOVABLE)
3883 			continue;
3884 		arch_zone_lowest_possible_pfn[i] =
3885 			arch_zone_highest_possible_pfn[i-1];
3886 		arch_zone_highest_possible_pfn[i] =
3887 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
3888 	}
3889 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
3890 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
3891 
3892 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
3893 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
3894 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
3895 
3896 	/* Print out the zone ranges */
3897 	printk("Zone PFN ranges:\n");
3898 	for (i = 0; i < MAX_NR_ZONES; i++) {
3899 		if (i == ZONE_MOVABLE)
3900 			continue;
3901 		printk("  %-8s %8lu -> %8lu\n",
3902 				zone_names[i],
3903 				arch_zone_lowest_possible_pfn[i],
3904 				arch_zone_highest_possible_pfn[i]);
3905 	}
3906 
3907 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
3908 	printk("Movable zone start PFN for each node\n");
3909 	for (i = 0; i < MAX_NUMNODES; i++) {
3910 		if (zone_movable_pfn[i])
3911 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
3912 	}
3913 
3914 	/* Print out the early_node_map[] */
3915 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
3916 	for (i = 0; i < nr_nodemap_entries; i++)
3917 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
3918 						early_node_map[i].start_pfn,
3919 						early_node_map[i].end_pfn);
3920 
3921 	/* Initialise every node */
3922 	setup_nr_node_ids();
3923 	for_each_online_node(nid) {
3924 		pg_data_t *pgdat = NODE_DATA(nid);
3925 		free_area_init_node(nid, pgdat, NULL,
3926 				find_min_pfn_for_node(nid), NULL);
3927 
3928 		/* Any memory on that node */
3929 		if (pgdat->node_present_pages)
3930 			node_set_state(nid, N_HIGH_MEMORY);
3931 		check_for_regular_memory(pgdat);
3932 	}
3933 }
3934 
3935 static int __init cmdline_parse_core(char *p, unsigned long *core)
3936 {
3937 	unsigned long long coremem;
3938 	if (!p)
3939 		return -EINVAL;
3940 
3941 	coremem = memparse(p, &p);
3942 	*core = coremem >> PAGE_SHIFT;
3943 
3944 	/* Paranoid check that UL is enough for the coremem value */
3945 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
3946 
3947 	return 0;
3948 }
3949 
3950 /*
3951  * kernelcore=size sets the amount of memory for use for allocations that
3952  * cannot be reclaimed or migrated.
3953  */
3954 static int __init cmdline_parse_kernelcore(char *p)
3955 {
3956 	return cmdline_parse_core(p, &required_kernelcore);
3957 }
3958 
3959 /*
3960  * movablecore=size sets the amount of memory for use for allocations that
3961  * can be reclaimed or migrated.
3962  */
3963 static int __init cmdline_parse_movablecore(char *p)
3964 {
3965 	return cmdline_parse_core(p, &required_movablecore);
3966 }
3967 
3968 early_param("kernelcore", cmdline_parse_kernelcore);
3969 early_param("movablecore", cmdline_parse_movablecore);
3970 
3971 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3972 
3973 /**
3974  * set_dma_reserve - set the specified number of pages reserved in the first zone
3975  * @new_dma_reserve: The number of pages to mark reserved
3976  *
3977  * The per-cpu batchsize and zone watermarks are determined by present_pages.
3978  * In the DMA zone, a significant percentage may be consumed by kernel image
3979  * and other unfreeable allocations which can skew the watermarks badly. This
3980  * function may optionally be used to account for unfreeable pages in the
3981  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
3982  * smaller per-cpu batchsize.
3983  */
3984 void __init set_dma_reserve(unsigned long new_dma_reserve)
3985 {
3986 	dma_reserve = new_dma_reserve;
3987 }
3988 
3989 #ifndef CONFIG_NEED_MULTIPLE_NODES
3990 static bootmem_data_t contig_bootmem_data;
3991 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3992 
3993 EXPORT_SYMBOL(contig_page_data);
3994 #endif
3995 
3996 void __init free_area_init(unsigned long *zones_size)
3997 {
3998 	free_area_init_node(0, NODE_DATA(0), zones_size,
3999 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4000 }
4001 
4002 static int page_alloc_cpu_notify(struct notifier_block *self,
4003 				 unsigned long action, void *hcpu)
4004 {
4005 	int cpu = (unsigned long)hcpu;
4006 
4007 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
4008 		drain_pages(cpu);
4009 
4010 		/*
4011 		 * Spill the event counters of the dead processor
4012 		 * into the current processors event counters.
4013 		 * This artificially elevates the count of the current
4014 		 * processor.
4015 		 */
4016 		vm_events_fold_cpu(cpu);
4017 
4018 		/*
4019 		 * Zero the differential counters of the dead processor
4020 		 * so that the vm statistics are consistent.
4021 		 *
4022 		 * This is only okay since the processor is dead and cannot
4023 		 * race with what we are doing.
4024 		 */
4025 		refresh_cpu_vm_stats(cpu);
4026 	}
4027 	return NOTIFY_OK;
4028 }
4029 
4030 void __init page_alloc_init(void)
4031 {
4032 	hotcpu_notifier(page_alloc_cpu_notify, 0);
4033 }
4034 
4035 /*
4036  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4037  *	or min_free_kbytes changes.
4038  */
4039 static void calculate_totalreserve_pages(void)
4040 {
4041 	struct pglist_data *pgdat;
4042 	unsigned long reserve_pages = 0;
4043 	enum zone_type i, j;
4044 
4045 	for_each_online_pgdat(pgdat) {
4046 		for (i = 0; i < MAX_NR_ZONES; i++) {
4047 			struct zone *zone = pgdat->node_zones + i;
4048 			unsigned long max = 0;
4049 
4050 			/* Find valid and maximum lowmem_reserve in the zone */
4051 			for (j = i; j < MAX_NR_ZONES; j++) {
4052 				if (zone->lowmem_reserve[j] > max)
4053 					max = zone->lowmem_reserve[j];
4054 			}
4055 
4056 			/* we treat pages_high as reserved pages. */
4057 			max += zone->pages_high;
4058 
4059 			if (max > zone->present_pages)
4060 				max = zone->present_pages;
4061 			reserve_pages += max;
4062 		}
4063 	}
4064 	totalreserve_pages = reserve_pages;
4065 }
4066 
4067 /*
4068  * setup_per_zone_lowmem_reserve - called whenever
4069  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
4070  *	has a correct pages reserved value, so an adequate number of
4071  *	pages are left in the zone after a successful __alloc_pages().
4072  */
4073 static void setup_per_zone_lowmem_reserve(void)
4074 {
4075 	struct pglist_data *pgdat;
4076 	enum zone_type j, idx;
4077 
4078 	for_each_online_pgdat(pgdat) {
4079 		for (j = 0; j < MAX_NR_ZONES; j++) {
4080 			struct zone *zone = pgdat->node_zones + j;
4081 			unsigned long present_pages = zone->present_pages;
4082 
4083 			zone->lowmem_reserve[j] = 0;
4084 
4085 			idx = j;
4086 			while (idx) {
4087 				struct zone *lower_zone;
4088 
4089 				idx--;
4090 
4091 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
4092 					sysctl_lowmem_reserve_ratio[idx] = 1;
4093 
4094 				lower_zone = pgdat->node_zones + idx;
4095 				lower_zone->lowmem_reserve[j] = present_pages /
4096 					sysctl_lowmem_reserve_ratio[idx];
4097 				present_pages += lower_zone->present_pages;
4098 			}
4099 		}
4100 	}
4101 
4102 	/* update totalreserve_pages */
4103 	calculate_totalreserve_pages();
4104 }
4105 
4106 /**
4107  * setup_per_zone_pages_min - called when min_free_kbytes changes.
4108  *
4109  * Ensures that the pages_{min,low,high} values for each zone are set correctly
4110  * with respect to min_free_kbytes.
4111  */
4112 void setup_per_zone_pages_min(void)
4113 {
4114 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4115 	unsigned long lowmem_pages = 0;
4116 	struct zone *zone;
4117 	unsigned long flags;
4118 
4119 	/* Calculate total number of !ZONE_HIGHMEM pages */
4120 	for_each_zone(zone) {
4121 		if (!is_highmem(zone))
4122 			lowmem_pages += zone->present_pages;
4123 	}
4124 
4125 	for_each_zone(zone) {
4126 		u64 tmp;
4127 
4128 		spin_lock_irqsave(&zone->lru_lock, flags);
4129 		tmp = (u64)pages_min * zone->present_pages;
4130 		do_div(tmp, lowmem_pages);
4131 		if (is_highmem(zone)) {
4132 			/*
4133 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4134 			 * need highmem pages, so cap pages_min to a small
4135 			 * value here.
4136 			 *
4137 			 * The (pages_high-pages_low) and (pages_low-pages_min)
4138 			 * deltas controls asynch page reclaim, and so should
4139 			 * not be capped for highmem.
4140 			 */
4141 			int min_pages;
4142 
4143 			min_pages = zone->present_pages / 1024;
4144 			if (min_pages < SWAP_CLUSTER_MAX)
4145 				min_pages = SWAP_CLUSTER_MAX;
4146 			if (min_pages > 128)
4147 				min_pages = 128;
4148 			zone->pages_min = min_pages;
4149 		} else {
4150 			/*
4151 			 * If it's a lowmem zone, reserve a number of pages
4152 			 * proportionate to the zone's size.
4153 			 */
4154 			zone->pages_min = tmp;
4155 		}
4156 
4157 		zone->pages_low   = zone->pages_min + (tmp >> 2);
4158 		zone->pages_high  = zone->pages_min + (tmp >> 1);
4159 		setup_zone_migrate_reserve(zone);
4160 		spin_unlock_irqrestore(&zone->lru_lock, flags);
4161 	}
4162 
4163 	/* update totalreserve_pages */
4164 	calculate_totalreserve_pages();
4165 }
4166 
4167 /*
4168  * Initialise min_free_kbytes.
4169  *
4170  * For small machines we want it small (128k min).  For large machines
4171  * we want it large (64MB max).  But it is not linear, because network
4172  * bandwidth does not increase linearly with machine size.  We use
4173  *
4174  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4175  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
4176  *
4177  * which yields
4178  *
4179  * 16MB:	512k
4180  * 32MB:	724k
4181  * 64MB:	1024k
4182  * 128MB:	1448k
4183  * 256MB:	2048k
4184  * 512MB:	2896k
4185  * 1024MB:	4096k
4186  * 2048MB:	5792k
4187  * 4096MB:	8192k
4188  * 8192MB:	11584k
4189  * 16384MB:	16384k
4190  */
4191 static int __init init_per_zone_pages_min(void)
4192 {
4193 	unsigned long lowmem_kbytes;
4194 
4195 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4196 
4197 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4198 	if (min_free_kbytes < 128)
4199 		min_free_kbytes = 128;
4200 	if (min_free_kbytes > 65536)
4201 		min_free_kbytes = 65536;
4202 	setup_per_zone_pages_min();
4203 	setup_per_zone_lowmem_reserve();
4204 	return 0;
4205 }
4206 module_init(init_per_zone_pages_min)
4207 
4208 /*
4209  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4210  *	that we can call two helper functions whenever min_free_kbytes
4211  *	changes.
4212  */
4213 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4214 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4215 {
4216 	proc_dointvec(table, write, file, buffer, length, ppos);
4217 	if (write)
4218 		setup_per_zone_pages_min();
4219 	return 0;
4220 }
4221 
4222 #ifdef CONFIG_NUMA
4223 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4224 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4225 {
4226 	struct zone *zone;
4227 	int rc;
4228 
4229 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4230 	if (rc)
4231 		return rc;
4232 
4233 	for_each_zone(zone)
4234 		zone->min_unmapped_pages = (zone->present_pages *
4235 				sysctl_min_unmapped_ratio) / 100;
4236 	return 0;
4237 }
4238 
4239 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4240 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4241 {
4242 	struct zone *zone;
4243 	int rc;
4244 
4245 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4246 	if (rc)
4247 		return rc;
4248 
4249 	for_each_zone(zone)
4250 		zone->min_slab_pages = (zone->present_pages *
4251 				sysctl_min_slab_ratio) / 100;
4252 	return 0;
4253 }
4254 #endif
4255 
4256 /*
4257  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4258  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4259  *	whenever sysctl_lowmem_reserve_ratio changes.
4260  *
4261  * The reserve ratio obviously has absolutely no relation with the
4262  * pages_min watermarks. The lowmem reserve ratio can only make sense
4263  * if in function of the boot time zone sizes.
4264  */
4265 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4266 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4267 {
4268 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4269 	setup_per_zone_lowmem_reserve();
4270 	return 0;
4271 }
4272 
4273 /*
4274  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4275  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
4276  * can have before it gets flushed back to buddy allocator.
4277  */
4278 
4279 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4280 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4281 {
4282 	struct zone *zone;
4283 	unsigned int cpu;
4284 	int ret;
4285 
4286 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4287 	if (!write || (ret == -EINVAL))
4288 		return ret;
4289 	for_each_zone(zone) {
4290 		for_each_online_cpu(cpu) {
4291 			unsigned long  high;
4292 			high = zone->present_pages / percpu_pagelist_fraction;
4293 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4294 		}
4295 	}
4296 	return 0;
4297 }
4298 
4299 int hashdist = HASHDIST_DEFAULT;
4300 
4301 #ifdef CONFIG_NUMA
4302 static int __init set_hashdist(char *str)
4303 {
4304 	if (!str)
4305 		return 0;
4306 	hashdist = simple_strtoul(str, &str, 0);
4307 	return 1;
4308 }
4309 __setup("hashdist=", set_hashdist);
4310 #endif
4311 
4312 /*
4313  * allocate a large system hash table from bootmem
4314  * - it is assumed that the hash table must contain an exact power-of-2
4315  *   quantity of entries
4316  * - limit is the number of hash buckets, not the total allocation size
4317  */
4318 void *__init alloc_large_system_hash(const char *tablename,
4319 				     unsigned long bucketsize,
4320 				     unsigned long numentries,
4321 				     int scale,
4322 				     int flags,
4323 				     unsigned int *_hash_shift,
4324 				     unsigned int *_hash_mask,
4325 				     unsigned long limit)
4326 {
4327 	unsigned long long max = limit;
4328 	unsigned long log2qty, size;
4329 	void *table = NULL;
4330 
4331 	/* allow the kernel cmdline to have a say */
4332 	if (!numentries) {
4333 		/* round applicable memory size up to nearest megabyte */
4334 		numentries = nr_kernel_pages;
4335 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4336 		numentries >>= 20 - PAGE_SHIFT;
4337 		numentries <<= 20 - PAGE_SHIFT;
4338 
4339 		/* limit to 1 bucket per 2^scale bytes of low memory */
4340 		if (scale > PAGE_SHIFT)
4341 			numentries >>= (scale - PAGE_SHIFT);
4342 		else
4343 			numentries <<= (PAGE_SHIFT - scale);
4344 
4345 		/* Make sure we've got at least a 0-order allocation.. */
4346 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4347 			numentries = PAGE_SIZE / bucketsize;
4348 	}
4349 	numentries = roundup_pow_of_two(numentries);
4350 
4351 	/* limit allocation size to 1/16 total memory by default */
4352 	if (max == 0) {
4353 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4354 		do_div(max, bucketsize);
4355 	}
4356 
4357 	if (numentries > max)
4358 		numentries = max;
4359 
4360 	log2qty = ilog2(numentries);
4361 
4362 	do {
4363 		size = bucketsize << log2qty;
4364 		if (flags & HASH_EARLY)
4365 			table = alloc_bootmem(size);
4366 		else if (hashdist)
4367 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4368 		else {
4369 			unsigned long order = get_order(size);
4370 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
4371 			/*
4372 			 * If bucketsize is not a power-of-two, we may free
4373 			 * some pages at the end of hash table.
4374 			 */
4375 			if (table) {
4376 				unsigned long alloc_end = (unsigned long)table +
4377 						(PAGE_SIZE << order);
4378 				unsigned long used = (unsigned long)table +
4379 						PAGE_ALIGN(size);
4380 				split_page(virt_to_page(table), order);
4381 				while (used < alloc_end) {
4382 					free_page(used);
4383 					used += PAGE_SIZE;
4384 				}
4385 			}
4386 		}
4387 	} while (!table && size > PAGE_SIZE && --log2qty);
4388 
4389 	if (!table)
4390 		panic("Failed to allocate %s hash table\n", tablename);
4391 
4392 	printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
4393 	       tablename,
4394 	       (1U << log2qty),
4395 	       ilog2(size) - PAGE_SHIFT,
4396 	       size);
4397 
4398 	if (_hash_shift)
4399 		*_hash_shift = log2qty;
4400 	if (_hash_mask)
4401 		*_hash_mask = (1 << log2qty) - 1;
4402 
4403 	return table;
4404 }
4405 
4406 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
4407 struct page *pfn_to_page(unsigned long pfn)
4408 {
4409 	return __pfn_to_page(pfn);
4410 }
4411 unsigned long page_to_pfn(struct page *page)
4412 {
4413 	return __page_to_pfn(page);
4414 }
4415 EXPORT_SYMBOL(pfn_to_page);
4416 EXPORT_SYMBOL(page_to_pfn);
4417 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
4418 
4419 /* Return a pointer to the bitmap storing bits affecting a block of pages */
4420 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4421 							unsigned long pfn)
4422 {
4423 #ifdef CONFIG_SPARSEMEM
4424 	return __pfn_to_section(pfn)->pageblock_flags;
4425 #else
4426 	return zone->pageblock_flags;
4427 #endif /* CONFIG_SPARSEMEM */
4428 }
4429 
4430 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4431 {
4432 #ifdef CONFIG_SPARSEMEM
4433 	pfn &= (PAGES_PER_SECTION-1);
4434 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4435 #else
4436 	pfn = pfn - zone->zone_start_pfn;
4437 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
4438 #endif /* CONFIG_SPARSEMEM */
4439 }
4440 
4441 /**
4442  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
4443  * @page: The page within the block of interest
4444  * @start_bitidx: The first bit of interest to retrieve
4445  * @end_bitidx: The last bit of interest
4446  * returns pageblock_bits flags
4447  */
4448 unsigned long get_pageblock_flags_group(struct page *page,
4449 					int start_bitidx, int end_bitidx)
4450 {
4451 	struct zone *zone;
4452 	unsigned long *bitmap;
4453 	unsigned long pfn, bitidx;
4454 	unsigned long flags = 0;
4455 	unsigned long value = 1;
4456 
4457 	zone = page_zone(page);
4458 	pfn = page_to_pfn(page);
4459 	bitmap = get_pageblock_bitmap(zone, pfn);
4460 	bitidx = pfn_to_bitidx(zone, pfn);
4461 
4462 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4463 		if (test_bit(bitidx + start_bitidx, bitmap))
4464 			flags |= value;
4465 
4466 	return flags;
4467 }
4468 
4469 /**
4470  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
4471  * @page: The page within the block of interest
4472  * @start_bitidx: The first bit of interest
4473  * @end_bitidx: The last bit of interest
4474  * @flags: The flags to set
4475  */
4476 void set_pageblock_flags_group(struct page *page, unsigned long flags,
4477 					int start_bitidx, int end_bitidx)
4478 {
4479 	struct zone *zone;
4480 	unsigned long *bitmap;
4481 	unsigned long pfn, bitidx;
4482 	unsigned long value = 1;
4483 
4484 	zone = page_zone(page);
4485 	pfn = page_to_pfn(page);
4486 	bitmap = get_pageblock_bitmap(zone, pfn);
4487 	bitidx = pfn_to_bitidx(zone, pfn);
4488 	VM_BUG_ON(pfn < zone->zone_start_pfn);
4489 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
4490 
4491 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4492 		if (flags & value)
4493 			__set_bit(bitidx + start_bitidx, bitmap);
4494 		else
4495 			__clear_bit(bitidx + start_bitidx, bitmap);
4496 }
4497 
4498 /*
4499  * This is designed as sub function...plz see page_isolation.c also.
4500  * set/clear page block's type to be ISOLATE.
4501  * page allocater never alloc memory from ISOLATE block.
4502  */
4503 
4504 int set_migratetype_isolate(struct page *page)
4505 {
4506 	struct zone *zone;
4507 	unsigned long flags;
4508 	int ret = -EBUSY;
4509 
4510 	zone = page_zone(page);
4511 	spin_lock_irqsave(&zone->lock, flags);
4512 	/*
4513 	 * In future, more migrate types will be able to be isolation target.
4514 	 */
4515 	if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4516 		goto out;
4517 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4518 	move_freepages_block(zone, page, MIGRATE_ISOLATE);
4519 	ret = 0;
4520 out:
4521 	spin_unlock_irqrestore(&zone->lock, flags);
4522 	if (!ret)
4523 		drain_all_pages();
4524 	return ret;
4525 }
4526 
4527 void unset_migratetype_isolate(struct page *page)
4528 {
4529 	struct zone *zone;
4530 	unsigned long flags;
4531 	zone = page_zone(page);
4532 	spin_lock_irqsave(&zone->lock, flags);
4533 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4534 		goto out;
4535 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4536 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
4537 out:
4538 	spin_unlock_irqrestore(&zone->lock, flags);
4539 }
4540 
4541 #ifdef CONFIG_MEMORY_HOTREMOVE
4542 /*
4543  * All pages in the range must be isolated before calling this.
4544  */
4545 void
4546 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4547 {
4548 	struct page *page;
4549 	struct zone *zone;
4550 	int order, i;
4551 	unsigned long pfn;
4552 	unsigned long flags;
4553 	/* find the first valid pfn */
4554 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
4555 		if (pfn_valid(pfn))
4556 			break;
4557 	if (pfn == end_pfn)
4558 		return;
4559 	zone = page_zone(pfn_to_page(pfn));
4560 	spin_lock_irqsave(&zone->lock, flags);
4561 	pfn = start_pfn;
4562 	while (pfn < end_pfn) {
4563 		if (!pfn_valid(pfn)) {
4564 			pfn++;
4565 			continue;
4566 		}
4567 		page = pfn_to_page(pfn);
4568 		BUG_ON(page_count(page));
4569 		BUG_ON(!PageBuddy(page));
4570 		order = page_order(page);
4571 #ifdef CONFIG_DEBUG_VM
4572 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
4573 		       pfn, 1 << order, end_pfn);
4574 #endif
4575 		list_del(&page->lru);
4576 		rmv_page_order(page);
4577 		zone->free_area[order].nr_free--;
4578 		__mod_zone_page_state(zone, NR_FREE_PAGES,
4579 				      - (1UL << order));
4580 		for (i = 0; i < (1 << order); i++)
4581 			SetPageReserved((page+i));
4582 		pfn += (1 << order);
4583 	}
4584 	spin_unlock_irqrestore(&zone->lock, flags);
4585 }
4586 #endif
4587