1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/notifier.h> 37 #include <linux/topology.h> 38 #include <linux/sysctl.h> 39 #include <linux/cpu.h> 40 #include <linux/cpuset.h> 41 #include <linux/memory_hotplug.h> 42 #include <linux/nodemask.h> 43 #include <linux/vmalloc.h> 44 #include <linux/vmstat.h> 45 #include <linux/mempolicy.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <linux/prefetch.h> 58 #include <linux/mm_inline.h> 59 #include <linux/migrate.h> 60 #include <linux/page_ext.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/page_owner.h> 64 #include <linux/kthread.h> 65 66 #include <asm/sections.h> 67 #include <asm/tlbflush.h> 68 #include <asm/div64.h> 69 #include "internal.h" 70 71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 72 static DEFINE_MUTEX(pcp_batch_high_lock); 73 #define MIN_PERCPU_PAGELIST_FRACTION (8) 74 75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 76 DEFINE_PER_CPU(int, numa_node); 77 EXPORT_PER_CPU_SYMBOL(numa_node); 78 #endif 79 80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 81 /* 82 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 83 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 84 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 85 * defined in <linux/topology.h>. 86 */ 87 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 88 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 89 int _node_numa_mem_[MAX_NUMNODES]; 90 #endif 91 92 /* 93 * Array of node states. 94 */ 95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 96 [N_POSSIBLE] = NODE_MASK_ALL, 97 [N_ONLINE] = { { [0] = 1UL } }, 98 #ifndef CONFIG_NUMA 99 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 100 #ifdef CONFIG_HIGHMEM 101 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 102 #endif 103 #ifdef CONFIG_MOVABLE_NODE 104 [N_MEMORY] = { { [0] = 1UL } }, 105 #endif 106 [N_CPU] = { { [0] = 1UL } }, 107 #endif /* NUMA */ 108 }; 109 EXPORT_SYMBOL(node_states); 110 111 /* Protect totalram_pages and zone->managed_pages */ 112 static DEFINE_SPINLOCK(managed_page_count_lock); 113 114 unsigned long totalram_pages __read_mostly; 115 unsigned long totalreserve_pages __read_mostly; 116 unsigned long totalcma_pages __read_mostly; 117 /* 118 * When calculating the number of globally allowed dirty pages, there 119 * is a certain number of per-zone reserves that should not be 120 * considered dirtyable memory. This is the sum of those reserves 121 * over all existing zones that contribute dirtyable memory. 122 */ 123 unsigned long dirty_balance_reserve __read_mostly; 124 125 int percpu_pagelist_fraction; 126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 127 128 #ifdef CONFIG_PM_SLEEP 129 /* 130 * The following functions are used by the suspend/hibernate code to temporarily 131 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 132 * while devices are suspended. To avoid races with the suspend/hibernate code, 133 * they should always be called with pm_mutex held (gfp_allowed_mask also should 134 * only be modified with pm_mutex held, unless the suspend/hibernate code is 135 * guaranteed not to run in parallel with that modification). 136 */ 137 138 static gfp_t saved_gfp_mask; 139 140 void pm_restore_gfp_mask(void) 141 { 142 WARN_ON(!mutex_is_locked(&pm_mutex)); 143 if (saved_gfp_mask) { 144 gfp_allowed_mask = saved_gfp_mask; 145 saved_gfp_mask = 0; 146 } 147 } 148 149 void pm_restrict_gfp_mask(void) 150 { 151 WARN_ON(!mutex_is_locked(&pm_mutex)); 152 WARN_ON(saved_gfp_mask); 153 saved_gfp_mask = gfp_allowed_mask; 154 gfp_allowed_mask &= ~GFP_IOFS; 155 } 156 157 bool pm_suspended_storage(void) 158 { 159 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 160 return false; 161 return true; 162 } 163 #endif /* CONFIG_PM_SLEEP */ 164 165 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 166 int pageblock_order __read_mostly; 167 #endif 168 169 static void __free_pages_ok(struct page *page, unsigned int order); 170 171 /* 172 * results with 256, 32 in the lowmem_reserve sysctl: 173 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 174 * 1G machine -> (16M dma, 784M normal, 224M high) 175 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 176 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 177 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 178 * 179 * TBD: should special case ZONE_DMA32 machines here - in those we normally 180 * don't need any ZONE_NORMAL reservation 181 */ 182 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 183 #ifdef CONFIG_ZONE_DMA 184 256, 185 #endif 186 #ifdef CONFIG_ZONE_DMA32 187 256, 188 #endif 189 #ifdef CONFIG_HIGHMEM 190 32, 191 #endif 192 32, 193 }; 194 195 EXPORT_SYMBOL(totalram_pages); 196 197 static char * const zone_names[MAX_NR_ZONES] = { 198 #ifdef CONFIG_ZONE_DMA 199 "DMA", 200 #endif 201 #ifdef CONFIG_ZONE_DMA32 202 "DMA32", 203 #endif 204 "Normal", 205 #ifdef CONFIG_HIGHMEM 206 "HighMem", 207 #endif 208 "Movable", 209 }; 210 211 int min_free_kbytes = 1024; 212 int user_min_free_kbytes = -1; 213 214 static unsigned long __meminitdata nr_kernel_pages; 215 static unsigned long __meminitdata nr_all_pages; 216 static unsigned long __meminitdata dma_reserve; 217 218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 219 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 220 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 221 static unsigned long __initdata required_kernelcore; 222 static unsigned long __initdata required_movablecore; 223 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 224 225 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 226 int movable_zone; 227 EXPORT_SYMBOL(movable_zone); 228 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 229 230 #if MAX_NUMNODES > 1 231 int nr_node_ids __read_mostly = MAX_NUMNODES; 232 int nr_online_nodes __read_mostly = 1; 233 EXPORT_SYMBOL(nr_node_ids); 234 EXPORT_SYMBOL(nr_online_nodes); 235 #endif 236 237 int page_group_by_mobility_disabled __read_mostly; 238 239 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 240 static inline void reset_deferred_meminit(pg_data_t *pgdat) 241 { 242 pgdat->first_deferred_pfn = ULONG_MAX; 243 } 244 245 /* Returns true if the struct page for the pfn is uninitialised */ 246 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 247 { 248 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn) 249 return true; 250 251 return false; 252 } 253 254 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 255 { 256 if (pfn >= NODE_DATA(nid)->first_deferred_pfn) 257 return true; 258 259 return false; 260 } 261 262 /* 263 * Returns false when the remaining initialisation should be deferred until 264 * later in the boot cycle when it can be parallelised. 265 */ 266 static inline bool update_defer_init(pg_data_t *pgdat, 267 unsigned long pfn, unsigned long zone_end, 268 unsigned long *nr_initialised) 269 { 270 /* Always populate low zones for address-contrained allocations */ 271 if (zone_end < pgdat_end_pfn(pgdat)) 272 return true; 273 274 /* Initialise at least 2G of the highest zone */ 275 (*nr_initialised)++; 276 if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) && 277 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 278 pgdat->first_deferred_pfn = pfn; 279 return false; 280 } 281 282 return true; 283 } 284 #else 285 static inline void reset_deferred_meminit(pg_data_t *pgdat) 286 { 287 } 288 289 static inline bool early_page_uninitialised(unsigned long pfn) 290 { 291 return false; 292 } 293 294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid) 295 { 296 return false; 297 } 298 299 static inline bool update_defer_init(pg_data_t *pgdat, 300 unsigned long pfn, unsigned long zone_end, 301 unsigned long *nr_initialised) 302 { 303 return true; 304 } 305 #endif 306 307 308 void set_pageblock_migratetype(struct page *page, int migratetype) 309 { 310 if (unlikely(page_group_by_mobility_disabled && 311 migratetype < MIGRATE_PCPTYPES)) 312 migratetype = MIGRATE_UNMOVABLE; 313 314 set_pageblock_flags_group(page, (unsigned long)migratetype, 315 PB_migrate, PB_migrate_end); 316 } 317 318 #ifdef CONFIG_DEBUG_VM 319 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 320 { 321 int ret = 0; 322 unsigned seq; 323 unsigned long pfn = page_to_pfn(page); 324 unsigned long sp, start_pfn; 325 326 do { 327 seq = zone_span_seqbegin(zone); 328 start_pfn = zone->zone_start_pfn; 329 sp = zone->spanned_pages; 330 if (!zone_spans_pfn(zone, pfn)) 331 ret = 1; 332 } while (zone_span_seqretry(zone, seq)); 333 334 if (ret) 335 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 336 pfn, zone_to_nid(zone), zone->name, 337 start_pfn, start_pfn + sp); 338 339 return ret; 340 } 341 342 static int page_is_consistent(struct zone *zone, struct page *page) 343 { 344 if (!pfn_valid_within(page_to_pfn(page))) 345 return 0; 346 if (zone != page_zone(page)) 347 return 0; 348 349 return 1; 350 } 351 /* 352 * Temporary debugging check for pages not lying within a given zone. 353 */ 354 static int bad_range(struct zone *zone, struct page *page) 355 { 356 if (page_outside_zone_boundaries(zone, page)) 357 return 1; 358 if (!page_is_consistent(zone, page)) 359 return 1; 360 361 return 0; 362 } 363 #else 364 static inline int bad_range(struct zone *zone, struct page *page) 365 { 366 return 0; 367 } 368 #endif 369 370 static void bad_page(struct page *page, const char *reason, 371 unsigned long bad_flags) 372 { 373 static unsigned long resume; 374 static unsigned long nr_shown; 375 static unsigned long nr_unshown; 376 377 /* Don't complain about poisoned pages */ 378 if (PageHWPoison(page)) { 379 page_mapcount_reset(page); /* remove PageBuddy */ 380 return; 381 } 382 383 /* 384 * Allow a burst of 60 reports, then keep quiet for that minute; 385 * or allow a steady drip of one report per second. 386 */ 387 if (nr_shown == 60) { 388 if (time_before(jiffies, resume)) { 389 nr_unshown++; 390 goto out; 391 } 392 if (nr_unshown) { 393 printk(KERN_ALERT 394 "BUG: Bad page state: %lu messages suppressed\n", 395 nr_unshown); 396 nr_unshown = 0; 397 } 398 nr_shown = 0; 399 } 400 if (nr_shown++ == 0) 401 resume = jiffies + 60 * HZ; 402 403 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 404 current->comm, page_to_pfn(page)); 405 dump_page_badflags(page, reason, bad_flags); 406 407 print_modules(); 408 dump_stack(); 409 out: 410 /* Leave bad fields for debug, except PageBuddy could make trouble */ 411 page_mapcount_reset(page); /* remove PageBuddy */ 412 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 413 } 414 415 /* 416 * Higher-order pages are called "compound pages". They are structured thusly: 417 * 418 * The first PAGE_SIZE page is called the "head page". 419 * 420 * The remaining PAGE_SIZE pages are called "tail pages". 421 * 422 * All pages have PG_compound set. All tail pages have their ->first_page 423 * pointing at the head page. 424 * 425 * The first tail page's ->lru.next holds the address of the compound page's 426 * put_page() function. Its ->lru.prev holds the order of allocation. 427 * This usage means that zero-order pages may not be compound. 428 */ 429 430 static void free_compound_page(struct page *page) 431 { 432 __free_pages_ok(page, compound_order(page)); 433 } 434 435 void prep_compound_page(struct page *page, unsigned long order) 436 { 437 int i; 438 int nr_pages = 1 << order; 439 440 set_compound_page_dtor(page, free_compound_page); 441 set_compound_order(page, order); 442 __SetPageHead(page); 443 for (i = 1; i < nr_pages; i++) { 444 struct page *p = page + i; 445 set_page_count(p, 0); 446 p->first_page = page; 447 /* Make sure p->first_page is always valid for PageTail() */ 448 smp_wmb(); 449 __SetPageTail(p); 450 } 451 } 452 453 #ifdef CONFIG_DEBUG_PAGEALLOC 454 unsigned int _debug_guardpage_minorder; 455 bool _debug_pagealloc_enabled __read_mostly; 456 bool _debug_guardpage_enabled __read_mostly; 457 458 static int __init early_debug_pagealloc(char *buf) 459 { 460 if (!buf) 461 return -EINVAL; 462 463 if (strcmp(buf, "on") == 0) 464 _debug_pagealloc_enabled = true; 465 466 return 0; 467 } 468 early_param("debug_pagealloc", early_debug_pagealloc); 469 470 static bool need_debug_guardpage(void) 471 { 472 /* If we don't use debug_pagealloc, we don't need guard page */ 473 if (!debug_pagealloc_enabled()) 474 return false; 475 476 return true; 477 } 478 479 static void init_debug_guardpage(void) 480 { 481 if (!debug_pagealloc_enabled()) 482 return; 483 484 _debug_guardpage_enabled = true; 485 } 486 487 struct page_ext_operations debug_guardpage_ops = { 488 .need = need_debug_guardpage, 489 .init = init_debug_guardpage, 490 }; 491 492 static int __init debug_guardpage_minorder_setup(char *buf) 493 { 494 unsigned long res; 495 496 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 497 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 498 return 0; 499 } 500 _debug_guardpage_minorder = res; 501 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 502 return 0; 503 } 504 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 505 506 static inline void set_page_guard(struct zone *zone, struct page *page, 507 unsigned int order, int migratetype) 508 { 509 struct page_ext *page_ext; 510 511 if (!debug_guardpage_enabled()) 512 return; 513 514 page_ext = lookup_page_ext(page); 515 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 516 517 INIT_LIST_HEAD(&page->lru); 518 set_page_private(page, order); 519 /* Guard pages are not available for any usage */ 520 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 521 } 522 523 static inline void clear_page_guard(struct zone *zone, struct page *page, 524 unsigned int order, int migratetype) 525 { 526 struct page_ext *page_ext; 527 528 if (!debug_guardpage_enabled()) 529 return; 530 531 page_ext = lookup_page_ext(page); 532 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 533 534 set_page_private(page, 0); 535 if (!is_migrate_isolate(migratetype)) 536 __mod_zone_freepage_state(zone, (1 << order), migratetype); 537 } 538 #else 539 struct page_ext_operations debug_guardpage_ops = { NULL, }; 540 static inline void set_page_guard(struct zone *zone, struct page *page, 541 unsigned int order, int migratetype) {} 542 static inline void clear_page_guard(struct zone *zone, struct page *page, 543 unsigned int order, int migratetype) {} 544 #endif 545 546 static inline void set_page_order(struct page *page, unsigned int order) 547 { 548 set_page_private(page, order); 549 __SetPageBuddy(page); 550 } 551 552 static inline void rmv_page_order(struct page *page) 553 { 554 __ClearPageBuddy(page); 555 set_page_private(page, 0); 556 } 557 558 /* 559 * This function checks whether a page is free && is the buddy 560 * we can do coalesce a page and its buddy if 561 * (a) the buddy is not in a hole && 562 * (b) the buddy is in the buddy system && 563 * (c) a page and its buddy have the same order && 564 * (d) a page and its buddy are in the same zone. 565 * 566 * For recording whether a page is in the buddy system, we set ->_mapcount 567 * PAGE_BUDDY_MAPCOUNT_VALUE. 568 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 569 * serialized by zone->lock. 570 * 571 * For recording page's order, we use page_private(page). 572 */ 573 static inline int page_is_buddy(struct page *page, struct page *buddy, 574 unsigned int order) 575 { 576 if (!pfn_valid_within(page_to_pfn(buddy))) 577 return 0; 578 579 if (page_is_guard(buddy) && page_order(buddy) == order) { 580 if (page_zone_id(page) != page_zone_id(buddy)) 581 return 0; 582 583 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 584 585 return 1; 586 } 587 588 if (PageBuddy(buddy) && page_order(buddy) == order) { 589 /* 590 * zone check is done late to avoid uselessly 591 * calculating zone/node ids for pages that could 592 * never merge. 593 */ 594 if (page_zone_id(page) != page_zone_id(buddy)) 595 return 0; 596 597 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 598 599 return 1; 600 } 601 return 0; 602 } 603 604 /* 605 * Freeing function for a buddy system allocator. 606 * 607 * The concept of a buddy system is to maintain direct-mapped table 608 * (containing bit values) for memory blocks of various "orders". 609 * The bottom level table contains the map for the smallest allocatable 610 * units of memory (here, pages), and each level above it describes 611 * pairs of units from the levels below, hence, "buddies". 612 * At a high level, all that happens here is marking the table entry 613 * at the bottom level available, and propagating the changes upward 614 * as necessary, plus some accounting needed to play nicely with other 615 * parts of the VM system. 616 * At each level, we keep a list of pages, which are heads of continuous 617 * free pages of length of (1 << order) and marked with _mapcount 618 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 619 * field. 620 * So when we are allocating or freeing one, we can derive the state of the 621 * other. That is, if we allocate a small block, and both were 622 * free, the remainder of the region must be split into blocks. 623 * If a block is freed, and its buddy is also free, then this 624 * triggers coalescing into a block of larger size. 625 * 626 * -- nyc 627 */ 628 629 static inline void __free_one_page(struct page *page, 630 unsigned long pfn, 631 struct zone *zone, unsigned int order, 632 int migratetype) 633 { 634 unsigned long page_idx; 635 unsigned long combined_idx; 636 unsigned long uninitialized_var(buddy_idx); 637 struct page *buddy; 638 int max_order = MAX_ORDER; 639 640 VM_BUG_ON(!zone_is_initialized(zone)); 641 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 642 643 VM_BUG_ON(migratetype == -1); 644 if (is_migrate_isolate(migratetype)) { 645 /* 646 * We restrict max order of merging to prevent merge 647 * between freepages on isolate pageblock and normal 648 * pageblock. Without this, pageblock isolation 649 * could cause incorrect freepage accounting. 650 */ 651 max_order = min(MAX_ORDER, pageblock_order + 1); 652 } else { 653 __mod_zone_freepage_state(zone, 1 << order, migratetype); 654 } 655 656 page_idx = pfn & ((1 << max_order) - 1); 657 658 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page); 659 VM_BUG_ON_PAGE(bad_range(zone, page), page); 660 661 while (order < max_order - 1) { 662 buddy_idx = __find_buddy_index(page_idx, order); 663 buddy = page + (buddy_idx - page_idx); 664 if (!page_is_buddy(page, buddy, order)) 665 break; 666 /* 667 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 668 * merge with it and move up one order. 669 */ 670 if (page_is_guard(buddy)) { 671 clear_page_guard(zone, buddy, order, migratetype); 672 } else { 673 list_del(&buddy->lru); 674 zone->free_area[order].nr_free--; 675 rmv_page_order(buddy); 676 } 677 combined_idx = buddy_idx & page_idx; 678 page = page + (combined_idx - page_idx); 679 page_idx = combined_idx; 680 order++; 681 } 682 set_page_order(page, order); 683 684 /* 685 * If this is not the largest possible page, check if the buddy 686 * of the next-highest order is free. If it is, it's possible 687 * that pages are being freed that will coalesce soon. In case, 688 * that is happening, add the free page to the tail of the list 689 * so it's less likely to be used soon and more likely to be merged 690 * as a higher order page 691 */ 692 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 693 struct page *higher_page, *higher_buddy; 694 combined_idx = buddy_idx & page_idx; 695 higher_page = page + (combined_idx - page_idx); 696 buddy_idx = __find_buddy_index(combined_idx, order + 1); 697 higher_buddy = higher_page + (buddy_idx - combined_idx); 698 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 699 list_add_tail(&page->lru, 700 &zone->free_area[order].free_list[migratetype]); 701 goto out; 702 } 703 } 704 705 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 706 out: 707 zone->free_area[order].nr_free++; 708 } 709 710 static inline int free_pages_check(struct page *page) 711 { 712 const char *bad_reason = NULL; 713 unsigned long bad_flags = 0; 714 715 if (unlikely(page_mapcount(page))) 716 bad_reason = "nonzero mapcount"; 717 if (unlikely(page->mapping != NULL)) 718 bad_reason = "non-NULL mapping"; 719 if (unlikely(atomic_read(&page->_count) != 0)) 720 bad_reason = "nonzero _count"; 721 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 722 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 723 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 724 } 725 #ifdef CONFIG_MEMCG 726 if (unlikely(page->mem_cgroup)) 727 bad_reason = "page still charged to cgroup"; 728 #endif 729 if (unlikely(bad_reason)) { 730 bad_page(page, bad_reason, bad_flags); 731 return 1; 732 } 733 page_cpupid_reset_last(page); 734 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 735 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 736 return 0; 737 } 738 739 /* 740 * Frees a number of pages from the PCP lists 741 * Assumes all pages on list are in same zone, and of same order. 742 * count is the number of pages to free. 743 * 744 * If the zone was previously in an "all pages pinned" state then look to 745 * see if this freeing clears that state. 746 * 747 * And clear the zone's pages_scanned counter, to hold off the "all pages are 748 * pinned" detection logic. 749 */ 750 static void free_pcppages_bulk(struct zone *zone, int count, 751 struct per_cpu_pages *pcp) 752 { 753 int migratetype = 0; 754 int batch_free = 0; 755 int to_free = count; 756 unsigned long nr_scanned; 757 758 spin_lock(&zone->lock); 759 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 760 if (nr_scanned) 761 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 762 763 while (to_free) { 764 struct page *page; 765 struct list_head *list; 766 767 /* 768 * Remove pages from lists in a round-robin fashion. A 769 * batch_free count is maintained that is incremented when an 770 * empty list is encountered. This is so more pages are freed 771 * off fuller lists instead of spinning excessively around empty 772 * lists 773 */ 774 do { 775 batch_free++; 776 if (++migratetype == MIGRATE_PCPTYPES) 777 migratetype = 0; 778 list = &pcp->lists[migratetype]; 779 } while (list_empty(list)); 780 781 /* This is the only non-empty list. Free them all. */ 782 if (batch_free == MIGRATE_PCPTYPES) 783 batch_free = to_free; 784 785 do { 786 int mt; /* migratetype of the to-be-freed page */ 787 788 page = list_entry(list->prev, struct page, lru); 789 /* must delete as __free_one_page list manipulates */ 790 list_del(&page->lru); 791 mt = get_freepage_migratetype(page); 792 if (unlikely(has_isolate_pageblock(zone))) 793 mt = get_pageblock_migratetype(page); 794 795 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 796 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 797 trace_mm_page_pcpu_drain(page, 0, mt); 798 } while (--to_free && --batch_free && !list_empty(list)); 799 } 800 spin_unlock(&zone->lock); 801 } 802 803 static void free_one_page(struct zone *zone, 804 struct page *page, unsigned long pfn, 805 unsigned int order, 806 int migratetype) 807 { 808 unsigned long nr_scanned; 809 spin_lock(&zone->lock); 810 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED); 811 if (nr_scanned) 812 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned); 813 814 if (unlikely(has_isolate_pageblock(zone) || 815 is_migrate_isolate(migratetype))) { 816 migratetype = get_pfnblock_migratetype(page, pfn); 817 } 818 __free_one_page(page, pfn, zone, order, migratetype); 819 spin_unlock(&zone->lock); 820 } 821 822 static int free_tail_pages_check(struct page *head_page, struct page *page) 823 { 824 if (!IS_ENABLED(CONFIG_DEBUG_VM)) 825 return 0; 826 if (unlikely(!PageTail(page))) { 827 bad_page(page, "PageTail not set", 0); 828 return 1; 829 } 830 if (unlikely(page->first_page != head_page)) { 831 bad_page(page, "first_page not consistent", 0); 832 return 1; 833 } 834 return 0; 835 } 836 837 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 838 unsigned long zone, int nid) 839 { 840 set_page_links(page, zone, nid, pfn); 841 init_page_count(page); 842 page_mapcount_reset(page); 843 page_cpupid_reset_last(page); 844 845 INIT_LIST_HEAD(&page->lru); 846 #ifdef WANT_PAGE_VIRTUAL 847 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 848 if (!is_highmem_idx(zone)) 849 set_page_address(page, __va(pfn << PAGE_SHIFT)); 850 #endif 851 } 852 853 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 854 int nid) 855 { 856 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid); 857 } 858 859 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 860 static void init_reserved_page(unsigned long pfn) 861 { 862 pg_data_t *pgdat; 863 int nid, zid; 864 865 if (!early_page_uninitialised(pfn)) 866 return; 867 868 nid = early_pfn_to_nid(pfn); 869 pgdat = NODE_DATA(nid); 870 871 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 872 struct zone *zone = &pgdat->node_zones[zid]; 873 874 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 875 break; 876 } 877 __init_single_pfn(pfn, zid, nid); 878 } 879 #else 880 static inline void init_reserved_page(unsigned long pfn) 881 { 882 } 883 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 884 885 /* 886 * Initialised pages do not have PageReserved set. This function is 887 * called for each range allocated by the bootmem allocator and 888 * marks the pages PageReserved. The remaining valid pages are later 889 * sent to the buddy page allocator. 890 */ 891 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end) 892 { 893 unsigned long start_pfn = PFN_DOWN(start); 894 unsigned long end_pfn = PFN_UP(end); 895 896 for (; start_pfn < end_pfn; start_pfn++) { 897 if (pfn_valid(start_pfn)) { 898 struct page *page = pfn_to_page(start_pfn); 899 900 init_reserved_page(start_pfn); 901 SetPageReserved(page); 902 } 903 } 904 } 905 906 static bool free_pages_prepare(struct page *page, unsigned int order) 907 { 908 bool compound = PageCompound(page); 909 int i, bad = 0; 910 911 VM_BUG_ON_PAGE(PageTail(page), page); 912 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 913 914 trace_mm_page_free(page, order); 915 kmemcheck_free_shadow(page, order); 916 kasan_free_pages(page, order); 917 918 if (PageAnon(page)) 919 page->mapping = NULL; 920 bad += free_pages_check(page); 921 for (i = 1; i < (1 << order); i++) { 922 if (compound) 923 bad += free_tail_pages_check(page, page + i); 924 bad += free_pages_check(page + i); 925 } 926 if (bad) 927 return false; 928 929 reset_page_owner(page, order); 930 931 if (!PageHighMem(page)) { 932 debug_check_no_locks_freed(page_address(page), 933 PAGE_SIZE << order); 934 debug_check_no_obj_freed(page_address(page), 935 PAGE_SIZE << order); 936 } 937 arch_free_page(page, order); 938 kernel_map_pages(page, 1 << order, 0); 939 940 return true; 941 } 942 943 static void __free_pages_ok(struct page *page, unsigned int order) 944 { 945 unsigned long flags; 946 int migratetype; 947 unsigned long pfn = page_to_pfn(page); 948 949 if (!free_pages_prepare(page, order)) 950 return; 951 952 migratetype = get_pfnblock_migratetype(page, pfn); 953 local_irq_save(flags); 954 __count_vm_events(PGFREE, 1 << order); 955 set_freepage_migratetype(page, migratetype); 956 free_one_page(page_zone(page), page, pfn, order, migratetype); 957 local_irq_restore(flags); 958 } 959 960 static void __init __free_pages_boot_core(struct page *page, 961 unsigned long pfn, unsigned int order) 962 { 963 unsigned int nr_pages = 1 << order; 964 struct page *p = page; 965 unsigned int loop; 966 967 prefetchw(p); 968 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 969 prefetchw(p + 1); 970 __ClearPageReserved(p); 971 set_page_count(p, 0); 972 } 973 __ClearPageReserved(p); 974 set_page_count(p, 0); 975 976 page_zone(page)->managed_pages += nr_pages; 977 set_page_refcounted(page); 978 __free_pages(page, order); 979 } 980 981 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 982 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 983 984 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 985 986 int __meminit early_pfn_to_nid(unsigned long pfn) 987 { 988 static DEFINE_SPINLOCK(early_pfn_lock); 989 int nid; 990 991 spin_lock(&early_pfn_lock); 992 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 993 if (nid < 0) 994 nid = 0; 995 spin_unlock(&early_pfn_lock); 996 997 return nid; 998 } 999 #endif 1000 1001 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1002 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1003 struct mminit_pfnnid_cache *state) 1004 { 1005 int nid; 1006 1007 nid = __early_pfn_to_nid(pfn, state); 1008 if (nid >= 0 && nid != node) 1009 return false; 1010 return true; 1011 } 1012 1013 /* Only safe to use early in boot when initialisation is single-threaded */ 1014 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1015 { 1016 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1017 } 1018 1019 #else 1020 1021 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1022 { 1023 return true; 1024 } 1025 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node, 1026 struct mminit_pfnnid_cache *state) 1027 { 1028 return true; 1029 } 1030 #endif 1031 1032 1033 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1034 unsigned int order) 1035 { 1036 if (early_page_uninitialised(pfn)) 1037 return; 1038 return __free_pages_boot_core(page, pfn, order); 1039 } 1040 1041 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1042 static void __init deferred_free_range(struct page *page, 1043 unsigned long pfn, int nr_pages) 1044 { 1045 int i; 1046 1047 if (!page) 1048 return; 1049 1050 /* Free a large naturally-aligned chunk if possible */ 1051 if (nr_pages == MAX_ORDER_NR_PAGES && 1052 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) { 1053 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1054 __free_pages_boot_core(page, pfn, MAX_ORDER-1); 1055 return; 1056 } 1057 1058 for (i = 0; i < nr_pages; i++, page++, pfn++) 1059 __free_pages_boot_core(page, pfn, 0); 1060 } 1061 1062 /* Completion tracking for deferred_init_memmap() threads */ 1063 static atomic_t pgdat_init_n_undone __initdata; 1064 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1065 1066 static inline void __init pgdat_init_report_one_done(void) 1067 { 1068 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1069 complete(&pgdat_init_all_done_comp); 1070 } 1071 1072 /* Initialise remaining memory on a node */ 1073 static int __init deferred_init_memmap(void *data) 1074 { 1075 pg_data_t *pgdat = data; 1076 int nid = pgdat->node_id; 1077 struct mminit_pfnnid_cache nid_init_state = { }; 1078 unsigned long start = jiffies; 1079 unsigned long nr_pages = 0; 1080 unsigned long walk_start, walk_end; 1081 int i, zid; 1082 struct zone *zone; 1083 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1084 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1085 1086 if (first_init_pfn == ULONG_MAX) { 1087 pgdat_init_report_one_done(); 1088 return 0; 1089 } 1090 1091 /* Bind memory initialisation thread to a local node if possible */ 1092 if (!cpumask_empty(cpumask)) 1093 set_cpus_allowed_ptr(current, cpumask); 1094 1095 /* Sanity check boundaries */ 1096 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1097 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1098 pgdat->first_deferred_pfn = ULONG_MAX; 1099 1100 /* Only the highest zone is deferred so find it */ 1101 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1102 zone = pgdat->node_zones + zid; 1103 if (first_init_pfn < zone_end_pfn(zone)) 1104 break; 1105 } 1106 1107 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) { 1108 unsigned long pfn, end_pfn; 1109 struct page *page = NULL; 1110 struct page *free_base_page = NULL; 1111 unsigned long free_base_pfn = 0; 1112 int nr_to_free = 0; 1113 1114 end_pfn = min(walk_end, zone_end_pfn(zone)); 1115 pfn = first_init_pfn; 1116 if (pfn < walk_start) 1117 pfn = walk_start; 1118 if (pfn < zone->zone_start_pfn) 1119 pfn = zone->zone_start_pfn; 1120 1121 for (; pfn < end_pfn; pfn++) { 1122 if (!pfn_valid_within(pfn)) 1123 goto free_range; 1124 1125 /* 1126 * Ensure pfn_valid is checked every 1127 * MAX_ORDER_NR_PAGES for memory holes 1128 */ 1129 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) { 1130 if (!pfn_valid(pfn)) { 1131 page = NULL; 1132 goto free_range; 1133 } 1134 } 1135 1136 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) { 1137 page = NULL; 1138 goto free_range; 1139 } 1140 1141 /* Minimise pfn page lookups and scheduler checks */ 1142 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) { 1143 page++; 1144 } else { 1145 nr_pages += nr_to_free; 1146 deferred_free_range(free_base_page, 1147 free_base_pfn, nr_to_free); 1148 free_base_page = NULL; 1149 free_base_pfn = nr_to_free = 0; 1150 1151 page = pfn_to_page(pfn); 1152 cond_resched(); 1153 } 1154 1155 if (page->flags) { 1156 VM_BUG_ON(page_zone(page) != zone); 1157 goto free_range; 1158 } 1159 1160 __init_single_page(page, pfn, zid, nid); 1161 if (!free_base_page) { 1162 free_base_page = page; 1163 free_base_pfn = pfn; 1164 nr_to_free = 0; 1165 } 1166 nr_to_free++; 1167 1168 /* Where possible, batch up pages for a single free */ 1169 continue; 1170 free_range: 1171 /* Free the current block of pages to allocator */ 1172 nr_pages += nr_to_free; 1173 deferred_free_range(free_base_page, free_base_pfn, 1174 nr_to_free); 1175 free_base_page = NULL; 1176 free_base_pfn = nr_to_free = 0; 1177 } 1178 1179 first_init_pfn = max(end_pfn, first_init_pfn); 1180 } 1181 1182 /* Sanity check that the next zone really is unpopulated */ 1183 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1184 1185 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1186 jiffies_to_msecs(jiffies - start)); 1187 1188 pgdat_init_report_one_done(); 1189 return 0; 1190 } 1191 1192 void __init page_alloc_init_late(void) 1193 { 1194 int nid; 1195 1196 /* There will be num_node_state(N_MEMORY) threads */ 1197 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1198 for_each_node_state(nid, N_MEMORY) { 1199 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1200 } 1201 1202 /* Block until all are initialised */ 1203 wait_for_completion(&pgdat_init_all_done_comp); 1204 1205 /* Reinit limits that are based on free pages after the kernel is up */ 1206 files_maxfiles_init(); 1207 } 1208 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1209 1210 #ifdef CONFIG_CMA 1211 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1212 void __init init_cma_reserved_pageblock(struct page *page) 1213 { 1214 unsigned i = pageblock_nr_pages; 1215 struct page *p = page; 1216 1217 do { 1218 __ClearPageReserved(p); 1219 set_page_count(p, 0); 1220 } while (++p, --i); 1221 1222 set_pageblock_migratetype(page, MIGRATE_CMA); 1223 1224 if (pageblock_order >= MAX_ORDER) { 1225 i = pageblock_nr_pages; 1226 p = page; 1227 do { 1228 set_page_refcounted(p); 1229 __free_pages(p, MAX_ORDER - 1); 1230 p += MAX_ORDER_NR_PAGES; 1231 } while (i -= MAX_ORDER_NR_PAGES); 1232 } else { 1233 set_page_refcounted(page); 1234 __free_pages(page, pageblock_order); 1235 } 1236 1237 adjust_managed_page_count(page, pageblock_nr_pages); 1238 } 1239 #endif 1240 1241 /* 1242 * The order of subdivision here is critical for the IO subsystem. 1243 * Please do not alter this order without good reasons and regression 1244 * testing. Specifically, as large blocks of memory are subdivided, 1245 * the order in which smaller blocks are delivered depends on the order 1246 * they're subdivided in this function. This is the primary factor 1247 * influencing the order in which pages are delivered to the IO 1248 * subsystem according to empirical testing, and this is also justified 1249 * by considering the behavior of a buddy system containing a single 1250 * large block of memory acted on by a series of small allocations. 1251 * This behavior is a critical factor in sglist merging's success. 1252 * 1253 * -- nyc 1254 */ 1255 static inline void expand(struct zone *zone, struct page *page, 1256 int low, int high, struct free_area *area, 1257 int migratetype) 1258 { 1259 unsigned long size = 1 << high; 1260 1261 while (high > low) { 1262 area--; 1263 high--; 1264 size >>= 1; 1265 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1266 1267 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 1268 debug_guardpage_enabled() && 1269 high < debug_guardpage_minorder()) { 1270 /* 1271 * Mark as guard pages (or page), that will allow to 1272 * merge back to allocator when buddy will be freed. 1273 * Corresponding page table entries will not be touched, 1274 * pages will stay not present in virtual address space 1275 */ 1276 set_page_guard(zone, &page[size], high, migratetype); 1277 continue; 1278 } 1279 list_add(&page[size].lru, &area->free_list[migratetype]); 1280 area->nr_free++; 1281 set_page_order(&page[size], high); 1282 } 1283 } 1284 1285 /* 1286 * This page is about to be returned from the page allocator 1287 */ 1288 static inline int check_new_page(struct page *page) 1289 { 1290 const char *bad_reason = NULL; 1291 unsigned long bad_flags = 0; 1292 1293 if (unlikely(page_mapcount(page))) 1294 bad_reason = "nonzero mapcount"; 1295 if (unlikely(page->mapping != NULL)) 1296 bad_reason = "non-NULL mapping"; 1297 if (unlikely(atomic_read(&page->_count) != 0)) 1298 bad_reason = "nonzero _count"; 1299 if (unlikely(page->flags & __PG_HWPOISON)) { 1300 bad_reason = "HWPoisoned (hardware-corrupted)"; 1301 bad_flags = __PG_HWPOISON; 1302 } 1303 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1304 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1305 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1306 } 1307 #ifdef CONFIG_MEMCG 1308 if (unlikely(page->mem_cgroup)) 1309 bad_reason = "page still charged to cgroup"; 1310 #endif 1311 if (unlikely(bad_reason)) { 1312 bad_page(page, bad_reason, bad_flags); 1313 return 1; 1314 } 1315 return 0; 1316 } 1317 1318 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1319 int alloc_flags) 1320 { 1321 int i; 1322 1323 for (i = 0; i < (1 << order); i++) { 1324 struct page *p = page + i; 1325 if (unlikely(check_new_page(p))) 1326 return 1; 1327 } 1328 1329 set_page_private(page, 0); 1330 set_page_refcounted(page); 1331 1332 arch_alloc_page(page, order); 1333 kernel_map_pages(page, 1 << order, 1); 1334 kasan_alloc_pages(page, order); 1335 1336 if (gfp_flags & __GFP_ZERO) 1337 for (i = 0; i < (1 << order); i++) 1338 clear_highpage(page + i); 1339 1340 if (order && (gfp_flags & __GFP_COMP)) 1341 prep_compound_page(page, order); 1342 1343 set_page_owner(page, order, gfp_flags); 1344 1345 /* 1346 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to 1347 * allocate the page. The expectation is that the caller is taking 1348 * steps that will free more memory. The caller should avoid the page 1349 * being used for !PFMEMALLOC purposes. 1350 */ 1351 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1352 1353 return 0; 1354 } 1355 1356 /* 1357 * Go through the free lists for the given migratetype and remove 1358 * the smallest available page from the freelists 1359 */ 1360 static inline 1361 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1362 int migratetype) 1363 { 1364 unsigned int current_order; 1365 struct free_area *area; 1366 struct page *page; 1367 1368 /* Find a page of the appropriate size in the preferred list */ 1369 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1370 area = &(zone->free_area[current_order]); 1371 if (list_empty(&area->free_list[migratetype])) 1372 continue; 1373 1374 page = list_entry(area->free_list[migratetype].next, 1375 struct page, lru); 1376 list_del(&page->lru); 1377 rmv_page_order(page); 1378 area->nr_free--; 1379 expand(zone, page, order, current_order, area, migratetype); 1380 set_freepage_migratetype(page, migratetype); 1381 return page; 1382 } 1383 1384 return NULL; 1385 } 1386 1387 1388 /* 1389 * This array describes the order lists are fallen back to when 1390 * the free lists for the desirable migrate type are depleted 1391 */ 1392 static int fallbacks[MIGRATE_TYPES][4] = { 1393 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1394 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 1395 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 1396 #ifdef CONFIG_CMA 1397 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 1398 #endif 1399 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 1400 #ifdef CONFIG_MEMORY_ISOLATION 1401 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 1402 #endif 1403 }; 1404 1405 #ifdef CONFIG_CMA 1406 static struct page *__rmqueue_cma_fallback(struct zone *zone, 1407 unsigned int order) 1408 { 1409 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1410 } 1411 #else 1412 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1413 unsigned int order) { return NULL; } 1414 #endif 1415 1416 /* 1417 * Move the free pages in a range to the free lists of the requested type. 1418 * Note that start_page and end_pages are not aligned on a pageblock 1419 * boundary. If alignment is required, use move_freepages_block() 1420 */ 1421 int move_freepages(struct zone *zone, 1422 struct page *start_page, struct page *end_page, 1423 int migratetype) 1424 { 1425 struct page *page; 1426 unsigned long order; 1427 int pages_moved = 0; 1428 1429 #ifndef CONFIG_HOLES_IN_ZONE 1430 /* 1431 * page_zone is not safe to call in this context when 1432 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1433 * anyway as we check zone boundaries in move_freepages_block(). 1434 * Remove at a later date when no bug reports exist related to 1435 * grouping pages by mobility 1436 */ 1437 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1438 #endif 1439 1440 for (page = start_page; page <= end_page;) { 1441 /* Make sure we are not inadvertently changing nodes */ 1442 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1443 1444 if (!pfn_valid_within(page_to_pfn(page))) { 1445 page++; 1446 continue; 1447 } 1448 1449 if (!PageBuddy(page)) { 1450 page++; 1451 continue; 1452 } 1453 1454 order = page_order(page); 1455 list_move(&page->lru, 1456 &zone->free_area[order].free_list[migratetype]); 1457 set_freepage_migratetype(page, migratetype); 1458 page += 1 << order; 1459 pages_moved += 1 << order; 1460 } 1461 1462 return pages_moved; 1463 } 1464 1465 int move_freepages_block(struct zone *zone, struct page *page, 1466 int migratetype) 1467 { 1468 unsigned long start_pfn, end_pfn; 1469 struct page *start_page, *end_page; 1470 1471 start_pfn = page_to_pfn(page); 1472 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1473 start_page = pfn_to_page(start_pfn); 1474 end_page = start_page + pageblock_nr_pages - 1; 1475 end_pfn = start_pfn + pageblock_nr_pages - 1; 1476 1477 /* Do not cross zone boundaries */ 1478 if (!zone_spans_pfn(zone, start_pfn)) 1479 start_page = page; 1480 if (!zone_spans_pfn(zone, end_pfn)) 1481 return 0; 1482 1483 return move_freepages(zone, start_page, end_page, migratetype); 1484 } 1485 1486 static void change_pageblock_range(struct page *pageblock_page, 1487 int start_order, int migratetype) 1488 { 1489 int nr_pageblocks = 1 << (start_order - pageblock_order); 1490 1491 while (nr_pageblocks--) { 1492 set_pageblock_migratetype(pageblock_page, migratetype); 1493 pageblock_page += pageblock_nr_pages; 1494 } 1495 } 1496 1497 /* 1498 * When we are falling back to another migratetype during allocation, try to 1499 * steal extra free pages from the same pageblocks to satisfy further 1500 * allocations, instead of polluting multiple pageblocks. 1501 * 1502 * If we are stealing a relatively large buddy page, it is likely there will 1503 * be more free pages in the pageblock, so try to steal them all. For 1504 * reclaimable and unmovable allocations, we steal regardless of page size, 1505 * as fragmentation caused by those allocations polluting movable pageblocks 1506 * is worse than movable allocations stealing from unmovable and reclaimable 1507 * pageblocks. 1508 */ 1509 static bool can_steal_fallback(unsigned int order, int start_mt) 1510 { 1511 /* 1512 * Leaving this order check is intended, although there is 1513 * relaxed order check in next check. The reason is that 1514 * we can actually steal whole pageblock if this condition met, 1515 * but, below check doesn't guarantee it and that is just heuristic 1516 * so could be changed anytime. 1517 */ 1518 if (order >= pageblock_order) 1519 return true; 1520 1521 if (order >= pageblock_order / 2 || 1522 start_mt == MIGRATE_RECLAIMABLE || 1523 start_mt == MIGRATE_UNMOVABLE || 1524 page_group_by_mobility_disabled) 1525 return true; 1526 1527 return false; 1528 } 1529 1530 /* 1531 * This function implements actual steal behaviour. If order is large enough, 1532 * we can steal whole pageblock. If not, we first move freepages in this 1533 * pageblock and check whether half of pages are moved or not. If half of 1534 * pages are moved, we can change migratetype of pageblock and permanently 1535 * use it's pages as requested migratetype in the future. 1536 */ 1537 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1538 int start_type) 1539 { 1540 int current_order = page_order(page); 1541 int pages; 1542 1543 /* Take ownership for orders >= pageblock_order */ 1544 if (current_order >= pageblock_order) { 1545 change_pageblock_range(page, current_order, start_type); 1546 return; 1547 } 1548 1549 pages = move_freepages_block(zone, page, start_type); 1550 1551 /* Claim the whole block if over half of it is free */ 1552 if (pages >= (1 << (pageblock_order-1)) || 1553 page_group_by_mobility_disabled) 1554 set_pageblock_migratetype(page, start_type); 1555 } 1556 1557 /* 1558 * Check whether there is a suitable fallback freepage with requested order. 1559 * If only_stealable is true, this function returns fallback_mt only if 1560 * we can steal other freepages all together. This would help to reduce 1561 * fragmentation due to mixed migratetype pages in one pageblock. 1562 */ 1563 int find_suitable_fallback(struct free_area *area, unsigned int order, 1564 int migratetype, bool only_stealable, bool *can_steal) 1565 { 1566 int i; 1567 int fallback_mt; 1568 1569 if (area->nr_free == 0) 1570 return -1; 1571 1572 *can_steal = false; 1573 for (i = 0;; i++) { 1574 fallback_mt = fallbacks[migratetype][i]; 1575 if (fallback_mt == MIGRATE_RESERVE) 1576 break; 1577 1578 if (list_empty(&area->free_list[fallback_mt])) 1579 continue; 1580 1581 if (can_steal_fallback(order, migratetype)) 1582 *can_steal = true; 1583 1584 if (!only_stealable) 1585 return fallback_mt; 1586 1587 if (*can_steal) 1588 return fallback_mt; 1589 } 1590 1591 return -1; 1592 } 1593 1594 /* Remove an element from the buddy allocator from the fallback list */ 1595 static inline struct page * 1596 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype) 1597 { 1598 struct free_area *area; 1599 unsigned int current_order; 1600 struct page *page; 1601 int fallback_mt; 1602 bool can_steal; 1603 1604 /* Find the largest possible block of pages in the other list */ 1605 for (current_order = MAX_ORDER-1; 1606 current_order >= order && current_order <= MAX_ORDER-1; 1607 --current_order) { 1608 area = &(zone->free_area[current_order]); 1609 fallback_mt = find_suitable_fallback(area, current_order, 1610 start_migratetype, false, &can_steal); 1611 if (fallback_mt == -1) 1612 continue; 1613 1614 page = list_entry(area->free_list[fallback_mt].next, 1615 struct page, lru); 1616 if (can_steal) 1617 steal_suitable_fallback(zone, page, start_migratetype); 1618 1619 /* Remove the page from the freelists */ 1620 area->nr_free--; 1621 list_del(&page->lru); 1622 rmv_page_order(page); 1623 1624 expand(zone, page, order, current_order, area, 1625 start_migratetype); 1626 /* 1627 * The freepage_migratetype may differ from pageblock's 1628 * migratetype depending on the decisions in 1629 * try_to_steal_freepages(). This is OK as long as it 1630 * does not differ for MIGRATE_CMA pageblocks. For CMA 1631 * we need to make sure unallocated pages flushed from 1632 * pcp lists are returned to the correct freelist. 1633 */ 1634 set_freepage_migratetype(page, start_migratetype); 1635 1636 trace_mm_page_alloc_extfrag(page, order, current_order, 1637 start_migratetype, fallback_mt); 1638 1639 return page; 1640 } 1641 1642 return NULL; 1643 } 1644 1645 /* 1646 * Do the hard work of removing an element from the buddy allocator. 1647 * Call me with the zone->lock already held. 1648 */ 1649 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1650 int migratetype) 1651 { 1652 struct page *page; 1653 1654 retry_reserve: 1655 page = __rmqueue_smallest(zone, order, migratetype); 1656 1657 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1658 if (migratetype == MIGRATE_MOVABLE) 1659 page = __rmqueue_cma_fallback(zone, order); 1660 1661 if (!page) 1662 page = __rmqueue_fallback(zone, order, migratetype); 1663 1664 /* 1665 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1666 * is used because __rmqueue_smallest is an inline function 1667 * and we want just one call site 1668 */ 1669 if (!page) { 1670 migratetype = MIGRATE_RESERVE; 1671 goto retry_reserve; 1672 } 1673 } 1674 1675 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1676 return page; 1677 } 1678 1679 /* 1680 * Obtain a specified number of elements from the buddy allocator, all under 1681 * a single hold of the lock, for efficiency. Add them to the supplied list. 1682 * Returns the number of new pages which were placed at *list. 1683 */ 1684 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1685 unsigned long count, struct list_head *list, 1686 int migratetype, bool cold) 1687 { 1688 int i; 1689 1690 spin_lock(&zone->lock); 1691 for (i = 0; i < count; ++i) { 1692 struct page *page = __rmqueue(zone, order, migratetype); 1693 if (unlikely(page == NULL)) 1694 break; 1695 1696 /* 1697 * Split buddy pages returned by expand() are received here 1698 * in physical page order. The page is added to the callers and 1699 * list and the list head then moves forward. From the callers 1700 * perspective, the linked list is ordered by page number in 1701 * some conditions. This is useful for IO devices that can 1702 * merge IO requests if the physical pages are ordered 1703 * properly. 1704 */ 1705 if (likely(!cold)) 1706 list_add(&page->lru, list); 1707 else 1708 list_add_tail(&page->lru, list); 1709 list = &page->lru; 1710 if (is_migrate_cma(get_freepage_migratetype(page))) 1711 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1712 -(1 << order)); 1713 } 1714 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1715 spin_unlock(&zone->lock); 1716 return i; 1717 } 1718 1719 #ifdef CONFIG_NUMA 1720 /* 1721 * Called from the vmstat counter updater to drain pagesets of this 1722 * currently executing processor on remote nodes after they have 1723 * expired. 1724 * 1725 * Note that this function must be called with the thread pinned to 1726 * a single processor. 1727 */ 1728 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1729 { 1730 unsigned long flags; 1731 int to_drain, batch; 1732 1733 local_irq_save(flags); 1734 batch = READ_ONCE(pcp->batch); 1735 to_drain = min(pcp->count, batch); 1736 if (to_drain > 0) { 1737 free_pcppages_bulk(zone, to_drain, pcp); 1738 pcp->count -= to_drain; 1739 } 1740 local_irq_restore(flags); 1741 } 1742 #endif 1743 1744 /* 1745 * Drain pcplists of the indicated processor and zone. 1746 * 1747 * The processor must either be the current processor and the 1748 * thread pinned to the current processor or a processor that 1749 * is not online. 1750 */ 1751 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 1752 { 1753 unsigned long flags; 1754 struct per_cpu_pageset *pset; 1755 struct per_cpu_pages *pcp; 1756 1757 local_irq_save(flags); 1758 pset = per_cpu_ptr(zone->pageset, cpu); 1759 1760 pcp = &pset->pcp; 1761 if (pcp->count) { 1762 free_pcppages_bulk(zone, pcp->count, pcp); 1763 pcp->count = 0; 1764 } 1765 local_irq_restore(flags); 1766 } 1767 1768 /* 1769 * Drain pcplists of all zones on the indicated processor. 1770 * 1771 * The processor must either be the current processor and the 1772 * thread pinned to the current processor or a processor that 1773 * is not online. 1774 */ 1775 static void drain_pages(unsigned int cpu) 1776 { 1777 struct zone *zone; 1778 1779 for_each_populated_zone(zone) { 1780 drain_pages_zone(cpu, zone); 1781 } 1782 } 1783 1784 /* 1785 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1786 * 1787 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 1788 * the single zone's pages. 1789 */ 1790 void drain_local_pages(struct zone *zone) 1791 { 1792 int cpu = smp_processor_id(); 1793 1794 if (zone) 1795 drain_pages_zone(cpu, zone); 1796 else 1797 drain_pages(cpu); 1798 } 1799 1800 /* 1801 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1802 * 1803 * When zone parameter is non-NULL, spill just the single zone's pages. 1804 * 1805 * Note that this code is protected against sending an IPI to an offline 1806 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1807 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1808 * nothing keeps CPUs from showing up after we populated the cpumask and 1809 * before the call to on_each_cpu_mask(). 1810 */ 1811 void drain_all_pages(struct zone *zone) 1812 { 1813 int cpu; 1814 1815 /* 1816 * Allocate in the BSS so we wont require allocation in 1817 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1818 */ 1819 static cpumask_t cpus_with_pcps; 1820 1821 /* 1822 * We don't care about racing with CPU hotplug event 1823 * as offline notification will cause the notified 1824 * cpu to drain that CPU pcps and on_each_cpu_mask 1825 * disables preemption as part of its processing 1826 */ 1827 for_each_online_cpu(cpu) { 1828 struct per_cpu_pageset *pcp; 1829 struct zone *z; 1830 bool has_pcps = false; 1831 1832 if (zone) { 1833 pcp = per_cpu_ptr(zone->pageset, cpu); 1834 if (pcp->pcp.count) 1835 has_pcps = true; 1836 } else { 1837 for_each_populated_zone(z) { 1838 pcp = per_cpu_ptr(z->pageset, cpu); 1839 if (pcp->pcp.count) { 1840 has_pcps = true; 1841 break; 1842 } 1843 } 1844 } 1845 1846 if (has_pcps) 1847 cpumask_set_cpu(cpu, &cpus_with_pcps); 1848 else 1849 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1850 } 1851 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages, 1852 zone, 1); 1853 } 1854 1855 #ifdef CONFIG_HIBERNATION 1856 1857 void mark_free_pages(struct zone *zone) 1858 { 1859 unsigned long pfn, max_zone_pfn; 1860 unsigned long flags; 1861 unsigned int order, t; 1862 struct list_head *curr; 1863 1864 if (zone_is_empty(zone)) 1865 return; 1866 1867 spin_lock_irqsave(&zone->lock, flags); 1868 1869 max_zone_pfn = zone_end_pfn(zone); 1870 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1871 if (pfn_valid(pfn)) { 1872 struct page *page = pfn_to_page(pfn); 1873 1874 if (!swsusp_page_is_forbidden(page)) 1875 swsusp_unset_page_free(page); 1876 } 1877 1878 for_each_migratetype_order(order, t) { 1879 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1880 unsigned long i; 1881 1882 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1883 for (i = 0; i < (1UL << order); i++) 1884 swsusp_set_page_free(pfn_to_page(pfn + i)); 1885 } 1886 } 1887 spin_unlock_irqrestore(&zone->lock, flags); 1888 } 1889 #endif /* CONFIG_PM */ 1890 1891 /* 1892 * Free a 0-order page 1893 * cold == true ? free a cold page : free a hot page 1894 */ 1895 void free_hot_cold_page(struct page *page, bool cold) 1896 { 1897 struct zone *zone = page_zone(page); 1898 struct per_cpu_pages *pcp; 1899 unsigned long flags; 1900 unsigned long pfn = page_to_pfn(page); 1901 int migratetype; 1902 1903 if (!free_pages_prepare(page, 0)) 1904 return; 1905 1906 migratetype = get_pfnblock_migratetype(page, pfn); 1907 set_freepage_migratetype(page, migratetype); 1908 local_irq_save(flags); 1909 __count_vm_event(PGFREE); 1910 1911 /* 1912 * We only track unmovable, reclaimable and movable on pcp lists. 1913 * Free ISOLATE pages back to the allocator because they are being 1914 * offlined but treat RESERVE as movable pages so we can get those 1915 * areas back if necessary. Otherwise, we may have to free 1916 * excessively into the page allocator 1917 */ 1918 if (migratetype >= MIGRATE_PCPTYPES) { 1919 if (unlikely(is_migrate_isolate(migratetype))) { 1920 free_one_page(zone, page, pfn, 0, migratetype); 1921 goto out; 1922 } 1923 migratetype = MIGRATE_MOVABLE; 1924 } 1925 1926 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1927 if (!cold) 1928 list_add(&page->lru, &pcp->lists[migratetype]); 1929 else 1930 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1931 pcp->count++; 1932 if (pcp->count >= pcp->high) { 1933 unsigned long batch = READ_ONCE(pcp->batch); 1934 free_pcppages_bulk(zone, batch, pcp); 1935 pcp->count -= batch; 1936 } 1937 1938 out: 1939 local_irq_restore(flags); 1940 } 1941 1942 /* 1943 * Free a list of 0-order pages 1944 */ 1945 void free_hot_cold_page_list(struct list_head *list, bool cold) 1946 { 1947 struct page *page, *next; 1948 1949 list_for_each_entry_safe(page, next, list, lru) { 1950 trace_mm_page_free_batched(page, cold); 1951 free_hot_cold_page(page, cold); 1952 } 1953 } 1954 1955 /* 1956 * split_page takes a non-compound higher-order page, and splits it into 1957 * n (1<<order) sub-pages: page[0..n] 1958 * Each sub-page must be freed individually. 1959 * 1960 * Note: this is probably too low level an operation for use in drivers. 1961 * Please consult with lkml before using this in your driver. 1962 */ 1963 void split_page(struct page *page, unsigned int order) 1964 { 1965 int i; 1966 gfp_t gfp_mask; 1967 1968 VM_BUG_ON_PAGE(PageCompound(page), page); 1969 VM_BUG_ON_PAGE(!page_count(page), page); 1970 1971 #ifdef CONFIG_KMEMCHECK 1972 /* 1973 * Split shadow pages too, because free(page[0]) would 1974 * otherwise free the whole shadow. 1975 */ 1976 if (kmemcheck_page_is_tracked(page)) 1977 split_page(virt_to_page(page[0].shadow), order); 1978 #endif 1979 1980 gfp_mask = get_page_owner_gfp(page); 1981 set_page_owner(page, 0, gfp_mask); 1982 for (i = 1; i < (1 << order); i++) { 1983 set_page_refcounted(page + i); 1984 set_page_owner(page + i, 0, gfp_mask); 1985 } 1986 } 1987 EXPORT_SYMBOL_GPL(split_page); 1988 1989 int __isolate_free_page(struct page *page, unsigned int order) 1990 { 1991 unsigned long watermark; 1992 struct zone *zone; 1993 int mt; 1994 1995 BUG_ON(!PageBuddy(page)); 1996 1997 zone = page_zone(page); 1998 mt = get_pageblock_migratetype(page); 1999 2000 if (!is_migrate_isolate(mt)) { 2001 /* Obey watermarks as if the page was being allocated */ 2002 watermark = low_wmark_pages(zone) + (1 << order); 2003 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 2004 return 0; 2005 2006 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2007 } 2008 2009 /* Remove page from free list */ 2010 list_del(&page->lru); 2011 zone->free_area[order].nr_free--; 2012 rmv_page_order(page); 2013 2014 set_page_owner(page, order, __GFP_MOVABLE); 2015 2016 /* Set the pageblock if the isolated page is at least a pageblock */ 2017 if (order >= pageblock_order - 1) { 2018 struct page *endpage = page + (1 << order) - 1; 2019 for (; page < endpage; page += pageblock_nr_pages) { 2020 int mt = get_pageblock_migratetype(page); 2021 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)) 2022 set_pageblock_migratetype(page, 2023 MIGRATE_MOVABLE); 2024 } 2025 } 2026 2027 2028 return 1UL << order; 2029 } 2030 2031 /* 2032 * Similar to split_page except the page is already free. As this is only 2033 * being used for migration, the migratetype of the block also changes. 2034 * As this is called with interrupts disabled, the caller is responsible 2035 * for calling arch_alloc_page() and kernel_map_page() after interrupts 2036 * are enabled. 2037 * 2038 * Note: this is probably too low level an operation for use in drivers. 2039 * Please consult with lkml before using this in your driver. 2040 */ 2041 int split_free_page(struct page *page) 2042 { 2043 unsigned int order; 2044 int nr_pages; 2045 2046 order = page_order(page); 2047 2048 nr_pages = __isolate_free_page(page, order); 2049 if (!nr_pages) 2050 return 0; 2051 2052 /* Split into individual pages */ 2053 set_page_refcounted(page); 2054 split_page(page, order); 2055 return nr_pages; 2056 } 2057 2058 /* 2059 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2060 */ 2061 static inline 2062 struct page *buffered_rmqueue(struct zone *preferred_zone, 2063 struct zone *zone, unsigned int order, 2064 gfp_t gfp_flags, int migratetype) 2065 { 2066 unsigned long flags; 2067 struct page *page; 2068 bool cold = ((gfp_flags & __GFP_COLD) != 0); 2069 2070 if (likely(order == 0)) { 2071 struct per_cpu_pages *pcp; 2072 struct list_head *list; 2073 2074 local_irq_save(flags); 2075 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2076 list = &pcp->lists[migratetype]; 2077 if (list_empty(list)) { 2078 pcp->count += rmqueue_bulk(zone, 0, 2079 pcp->batch, list, 2080 migratetype, cold); 2081 if (unlikely(list_empty(list))) 2082 goto failed; 2083 } 2084 2085 if (cold) 2086 page = list_entry(list->prev, struct page, lru); 2087 else 2088 page = list_entry(list->next, struct page, lru); 2089 2090 list_del(&page->lru); 2091 pcp->count--; 2092 } else { 2093 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 2094 /* 2095 * __GFP_NOFAIL is not to be used in new code. 2096 * 2097 * All __GFP_NOFAIL callers should be fixed so that they 2098 * properly detect and handle allocation failures. 2099 * 2100 * We most definitely don't want callers attempting to 2101 * allocate greater than order-1 page units with 2102 * __GFP_NOFAIL. 2103 */ 2104 WARN_ON_ONCE(order > 1); 2105 } 2106 spin_lock_irqsave(&zone->lock, flags); 2107 page = __rmqueue(zone, order, migratetype); 2108 spin_unlock(&zone->lock); 2109 if (!page) 2110 goto failed; 2111 __mod_zone_freepage_state(zone, -(1 << order), 2112 get_freepage_migratetype(page)); 2113 } 2114 2115 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order)); 2116 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 && 2117 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) 2118 set_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2119 2120 __count_zone_vm_events(PGALLOC, zone, 1 << order); 2121 zone_statistics(preferred_zone, zone, gfp_flags); 2122 local_irq_restore(flags); 2123 2124 VM_BUG_ON_PAGE(bad_range(zone, page), page); 2125 return page; 2126 2127 failed: 2128 local_irq_restore(flags); 2129 return NULL; 2130 } 2131 2132 #ifdef CONFIG_FAIL_PAGE_ALLOC 2133 2134 static struct { 2135 struct fault_attr attr; 2136 2137 u32 ignore_gfp_highmem; 2138 u32 ignore_gfp_wait; 2139 u32 min_order; 2140 } fail_page_alloc = { 2141 .attr = FAULT_ATTR_INITIALIZER, 2142 .ignore_gfp_wait = 1, 2143 .ignore_gfp_highmem = 1, 2144 .min_order = 1, 2145 }; 2146 2147 static int __init setup_fail_page_alloc(char *str) 2148 { 2149 return setup_fault_attr(&fail_page_alloc.attr, str); 2150 } 2151 __setup("fail_page_alloc=", setup_fail_page_alloc); 2152 2153 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2154 { 2155 if (order < fail_page_alloc.min_order) 2156 return false; 2157 if (gfp_mask & __GFP_NOFAIL) 2158 return false; 2159 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2160 return false; 2161 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 2162 return false; 2163 2164 return should_fail(&fail_page_alloc.attr, 1 << order); 2165 } 2166 2167 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2168 2169 static int __init fail_page_alloc_debugfs(void) 2170 { 2171 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2172 struct dentry *dir; 2173 2174 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2175 &fail_page_alloc.attr); 2176 if (IS_ERR(dir)) 2177 return PTR_ERR(dir); 2178 2179 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2180 &fail_page_alloc.ignore_gfp_wait)) 2181 goto fail; 2182 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2183 &fail_page_alloc.ignore_gfp_highmem)) 2184 goto fail; 2185 if (!debugfs_create_u32("min-order", mode, dir, 2186 &fail_page_alloc.min_order)) 2187 goto fail; 2188 2189 return 0; 2190 fail: 2191 debugfs_remove_recursive(dir); 2192 2193 return -ENOMEM; 2194 } 2195 2196 late_initcall(fail_page_alloc_debugfs); 2197 2198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2199 2200 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2201 2202 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2203 { 2204 return false; 2205 } 2206 2207 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2208 2209 /* 2210 * Return true if free pages are above 'mark'. This takes into account the order 2211 * of the allocation. 2212 */ 2213 static bool __zone_watermark_ok(struct zone *z, unsigned int order, 2214 unsigned long mark, int classzone_idx, int alloc_flags, 2215 long free_pages) 2216 { 2217 /* free_pages may go negative - that's OK */ 2218 long min = mark; 2219 int o; 2220 long free_cma = 0; 2221 2222 free_pages -= (1 << order) - 1; 2223 if (alloc_flags & ALLOC_HIGH) 2224 min -= min / 2; 2225 if (alloc_flags & ALLOC_HARDER) 2226 min -= min / 4; 2227 #ifdef CONFIG_CMA 2228 /* If allocation can't use CMA areas don't use free CMA pages */ 2229 if (!(alloc_flags & ALLOC_CMA)) 2230 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES); 2231 #endif 2232 2233 if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx]) 2234 return false; 2235 for (o = 0; o < order; o++) { 2236 /* At the next order, this order's pages become unavailable */ 2237 free_pages -= z->free_area[o].nr_free << o; 2238 2239 /* Require fewer higher order pages to be free */ 2240 min >>= 1; 2241 2242 if (free_pages <= min) 2243 return false; 2244 } 2245 return true; 2246 } 2247 2248 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 2249 int classzone_idx, int alloc_flags) 2250 { 2251 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2252 zone_page_state(z, NR_FREE_PAGES)); 2253 } 2254 2255 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 2256 unsigned long mark, int classzone_idx, int alloc_flags) 2257 { 2258 long free_pages = zone_page_state(z, NR_FREE_PAGES); 2259 2260 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 2261 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 2262 2263 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 2264 free_pages); 2265 } 2266 2267 #ifdef CONFIG_NUMA 2268 /* 2269 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 2270 * skip over zones that are not allowed by the cpuset, or that have 2271 * been recently (in last second) found to be nearly full. See further 2272 * comments in mmzone.h. Reduces cache footprint of zonelist scans 2273 * that have to skip over a lot of full or unallowed zones. 2274 * 2275 * If the zonelist cache is present in the passed zonelist, then 2276 * returns a pointer to the allowed node mask (either the current 2277 * tasks mems_allowed, or node_states[N_MEMORY].) 2278 * 2279 * If the zonelist cache is not available for this zonelist, does 2280 * nothing and returns NULL. 2281 * 2282 * If the fullzones BITMAP in the zonelist cache is stale (more than 2283 * a second since last zap'd) then we zap it out (clear its bits.) 2284 * 2285 * We hold off even calling zlc_setup, until after we've checked the 2286 * first zone in the zonelist, on the theory that most allocations will 2287 * be satisfied from that first zone, so best to examine that zone as 2288 * quickly as we can. 2289 */ 2290 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 2291 { 2292 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2293 nodemask_t *allowednodes; /* zonelist_cache approximation */ 2294 2295 zlc = zonelist->zlcache_ptr; 2296 if (!zlc) 2297 return NULL; 2298 2299 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 2300 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2301 zlc->last_full_zap = jiffies; 2302 } 2303 2304 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 2305 &cpuset_current_mems_allowed : 2306 &node_states[N_MEMORY]; 2307 return allowednodes; 2308 } 2309 2310 /* 2311 * Given 'z' scanning a zonelist, run a couple of quick checks to see 2312 * if it is worth looking at further for free memory: 2313 * 1) Check that the zone isn't thought to be full (doesn't have its 2314 * bit set in the zonelist_cache fullzones BITMAP). 2315 * 2) Check that the zones node (obtained from the zonelist_cache 2316 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 2317 * Return true (non-zero) if zone is worth looking at further, or 2318 * else return false (zero) if it is not. 2319 * 2320 * This check -ignores- the distinction between various watermarks, 2321 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 2322 * found to be full for any variation of these watermarks, it will 2323 * be considered full for up to one second by all requests, unless 2324 * we are so low on memory on all allowed nodes that we are forced 2325 * into the second scan of the zonelist. 2326 * 2327 * In the second scan we ignore this zonelist cache and exactly 2328 * apply the watermarks to all zones, even it is slower to do so. 2329 * We are low on memory in the second scan, and should leave no stone 2330 * unturned looking for a free page. 2331 */ 2332 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 2333 nodemask_t *allowednodes) 2334 { 2335 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2336 int i; /* index of *z in zonelist zones */ 2337 int n; /* node that zone *z is on */ 2338 2339 zlc = zonelist->zlcache_ptr; 2340 if (!zlc) 2341 return 1; 2342 2343 i = z - zonelist->_zonerefs; 2344 n = zlc->z_to_n[i]; 2345 2346 /* This zone is worth trying if it is allowed but not full */ 2347 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 2348 } 2349 2350 /* 2351 * Given 'z' scanning a zonelist, set the corresponding bit in 2352 * zlc->fullzones, so that subsequent attempts to allocate a page 2353 * from that zone don't waste time re-examining it. 2354 */ 2355 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2356 { 2357 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2358 int i; /* index of *z in zonelist zones */ 2359 2360 zlc = zonelist->zlcache_ptr; 2361 if (!zlc) 2362 return; 2363 2364 i = z - zonelist->_zonerefs; 2365 2366 set_bit(i, zlc->fullzones); 2367 } 2368 2369 /* 2370 * clear all zones full, called after direct reclaim makes progress so that 2371 * a zone that was recently full is not skipped over for up to a second 2372 */ 2373 static void zlc_clear_zones_full(struct zonelist *zonelist) 2374 { 2375 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 2376 2377 zlc = zonelist->zlcache_ptr; 2378 if (!zlc) 2379 return; 2380 2381 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 2382 } 2383 2384 static bool zone_local(struct zone *local_zone, struct zone *zone) 2385 { 2386 return local_zone->node == zone->node; 2387 } 2388 2389 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2390 { 2391 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) < 2392 RECLAIM_DISTANCE; 2393 } 2394 2395 #else /* CONFIG_NUMA */ 2396 2397 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 2398 { 2399 return NULL; 2400 } 2401 2402 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 2403 nodemask_t *allowednodes) 2404 { 2405 return 1; 2406 } 2407 2408 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 2409 { 2410 } 2411 2412 static void zlc_clear_zones_full(struct zonelist *zonelist) 2413 { 2414 } 2415 2416 static bool zone_local(struct zone *local_zone, struct zone *zone) 2417 { 2418 return true; 2419 } 2420 2421 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 2422 { 2423 return true; 2424 } 2425 2426 #endif /* CONFIG_NUMA */ 2427 2428 static void reset_alloc_batches(struct zone *preferred_zone) 2429 { 2430 struct zone *zone = preferred_zone->zone_pgdat->node_zones; 2431 2432 do { 2433 mod_zone_page_state(zone, NR_ALLOC_BATCH, 2434 high_wmark_pages(zone) - low_wmark_pages(zone) - 2435 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 2436 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags); 2437 } while (zone++ != preferred_zone); 2438 } 2439 2440 /* 2441 * get_page_from_freelist goes through the zonelist trying to allocate 2442 * a page. 2443 */ 2444 static struct page * 2445 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 2446 const struct alloc_context *ac) 2447 { 2448 struct zonelist *zonelist = ac->zonelist; 2449 struct zoneref *z; 2450 struct page *page = NULL; 2451 struct zone *zone; 2452 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 2453 int zlc_active = 0; /* set if using zonelist_cache */ 2454 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 2455 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) && 2456 (gfp_mask & __GFP_WRITE); 2457 int nr_fair_skipped = 0; 2458 bool zonelist_rescan; 2459 2460 zonelist_scan: 2461 zonelist_rescan = false; 2462 2463 /* 2464 * Scan zonelist, looking for a zone with enough free. 2465 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 2466 */ 2467 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2468 ac->nodemask) { 2469 unsigned long mark; 2470 2471 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2472 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2473 continue; 2474 if (cpusets_enabled() && 2475 (alloc_flags & ALLOC_CPUSET) && 2476 !cpuset_zone_allowed(zone, gfp_mask)) 2477 continue; 2478 /* 2479 * Distribute pages in proportion to the individual 2480 * zone size to ensure fair page aging. The zone a 2481 * page was allocated in should have no effect on the 2482 * time the page has in memory before being reclaimed. 2483 */ 2484 if (alloc_flags & ALLOC_FAIR) { 2485 if (!zone_local(ac->preferred_zone, zone)) 2486 break; 2487 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) { 2488 nr_fair_skipped++; 2489 continue; 2490 } 2491 } 2492 /* 2493 * When allocating a page cache page for writing, we 2494 * want to get it from a zone that is within its dirty 2495 * limit, such that no single zone holds more than its 2496 * proportional share of globally allowed dirty pages. 2497 * The dirty limits take into account the zone's 2498 * lowmem reserves and high watermark so that kswapd 2499 * should be able to balance it without having to 2500 * write pages from its LRU list. 2501 * 2502 * This may look like it could increase pressure on 2503 * lower zones by failing allocations in higher zones 2504 * before they are full. But the pages that do spill 2505 * over are limited as the lower zones are protected 2506 * by this very same mechanism. It should not become 2507 * a practical burden to them. 2508 * 2509 * XXX: For now, allow allocations to potentially 2510 * exceed the per-zone dirty limit in the slowpath 2511 * (ALLOC_WMARK_LOW unset) before going into reclaim, 2512 * which is important when on a NUMA setup the allowed 2513 * zones are together not big enough to reach the 2514 * global limit. The proper fix for these situations 2515 * will require awareness of zones in the 2516 * dirty-throttling and the flusher threads. 2517 */ 2518 if (consider_zone_dirty && !zone_dirty_ok(zone)) 2519 continue; 2520 2521 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 2522 if (!zone_watermark_ok(zone, order, mark, 2523 ac->classzone_idx, alloc_flags)) { 2524 int ret; 2525 2526 /* Checked here to keep the fast path fast */ 2527 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 2528 if (alloc_flags & ALLOC_NO_WATERMARKS) 2529 goto try_this_zone; 2530 2531 if (IS_ENABLED(CONFIG_NUMA) && 2532 !did_zlc_setup && nr_online_nodes > 1) { 2533 /* 2534 * we do zlc_setup if there are multiple nodes 2535 * and before considering the first zone allowed 2536 * by the cpuset. 2537 */ 2538 allowednodes = zlc_setup(zonelist, alloc_flags); 2539 zlc_active = 1; 2540 did_zlc_setup = 1; 2541 } 2542 2543 if (zone_reclaim_mode == 0 || 2544 !zone_allows_reclaim(ac->preferred_zone, zone)) 2545 goto this_zone_full; 2546 2547 /* 2548 * As we may have just activated ZLC, check if the first 2549 * eligible zone has failed zone_reclaim recently. 2550 */ 2551 if (IS_ENABLED(CONFIG_NUMA) && zlc_active && 2552 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 2553 continue; 2554 2555 ret = zone_reclaim(zone, gfp_mask, order); 2556 switch (ret) { 2557 case ZONE_RECLAIM_NOSCAN: 2558 /* did not scan */ 2559 continue; 2560 case ZONE_RECLAIM_FULL: 2561 /* scanned but unreclaimable */ 2562 continue; 2563 default: 2564 /* did we reclaim enough */ 2565 if (zone_watermark_ok(zone, order, mark, 2566 ac->classzone_idx, alloc_flags)) 2567 goto try_this_zone; 2568 2569 /* 2570 * Failed to reclaim enough to meet watermark. 2571 * Only mark the zone full if checking the min 2572 * watermark or if we failed to reclaim just 2573 * 1<<order pages or else the page allocator 2574 * fastpath will prematurely mark zones full 2575 * when the watermark is between the low and 2576 * min watermarks. 2577 */ 2578 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) || 2579 ret == ZONE_RECLAIM_SOME) 2580 goto this_zone_full; 2581 2582 continue; 2583 } 2584 } 2585 2586 try_this_zone: 2587 page = buffered_rmqueue(ac->preferred_zone, zone, order, 2588 gfp_mask, ac->migratetype); 2589 if (page) { 2590 if (prep_new_page(page, order, gfp_mask, alloc_flags)) 2591 goto try_this_zone; 2592 return page; 2593 } 2594 this_zone_full: 2595 if (IS_ENABLED(CONFIG_NUMA) && zlc_active) 2596 zlc_mark_zone_full(zonelist, z); 2597 } 2598 2599 /* 2600 * The first pass makes sure allocations are spread fairly within the 2601 * local node. However, the local node might have free pages left 2602 * after the fairness batches are exhausted, and remote zones haven't 2603 * even been considered yet. Try once more without fairness, and 2604 * include remote zones now, before entering the slowpath and waking 2605 * kswapd: prefer spilling to a remote zone over swapping locally. 2606 */ 2607 if (alloc_flags & ALLOC_FAIR) { 2608 alloc_flags &= ~ALLOC_FAIR; 2609 if (nr_fair_skipped) { 2610 zonelist_rescan = true; 2611 reset_alloc_batches(ac->preferred_zone); 2612 } 2613 if (nr_online_nodes > 1) 2614 zonelist_rescan = true; 2615 } 2616 2617 if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) { 2618 /* Disable zlc cache for second zonelist scan */ 2619 zlc_active = 0; 2620 zonelist_rescan = true; 2621 } 2622 2623 if (zonelist_rescan) 2624 goto zonelist_scan; 2625 2626 return NULL; 2627 } 2628 2629 /* 2630 * Large machines with many possible nodes should not always dump per-node 2631 * meminfo in irq context. 2632 */ 2633 static inline bool should_suppress_show_mem(void) 2634 { 2635 bool ret = false; 2636 2637 #if NODES_SHIFT > 8 2638 ret = in_interrupt(); 2639 #endif 2640 return ret; 2641 } 2642 2643 static DEFINE_RATELIMIT_STATE(nopage_rs, 2644 DEFAULT_RATELIMIT_INTERVAL, 2645 DEFAULT_RATELIMIT_BURST); 2646 2647 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2648 { 2649 unsigned int filter = SHOW_MEM_FILTER_NODES; 2650 2651 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2652 debug_guardpage_minorder() > 0) 2653 return; 2654 2655 /* 2656 * This documents exceptions given to allocations in certain 2657 * contexts that are allowed to allocate outside current's set 2658 * of allowed nodes. 2659 */ 2660 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2661 if (test_thread_flag(TIF_MEMDIE) || 2662 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2663 filter &= ~SHOW_MEM_FILTER_NODES; 2664 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2665 filter &= ~SHOW_MEM_FILTER_NODES; 2666 2667 if (fmt) { 2668 struct va_format vaf; 2669 va_list args; 2670 2671 va_start(args, fmt); 2672 2673 vaf.fmt = fmt; 2674 vaf.va = &args; 2675 2676 pr_warn("%pV", &vaf); 2677 2678 va_end(args); 2679 } 2680 2681 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2682 current->comm, order, gfp_mask); 2683 2684 dump_stack(); 2685 if (!should_suppress_show_mem()) 2686 show_mem(filter); 2687 } 2688 2689 static inline struct page * 2690 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2691 const struct alloc_context *ac, unsigned long *did_some_progress) 2692 { 2693 struct page *page; 2694 2695 *did_some_progress = 0; 2696 2697 /* 2698 * Acquire the oom lock. If that fails, somebody else is 2699 * making progress for us. 2700 */ 2701 if (!mutex_trylock(&oom_lock)) { 2702 *did_some_progress = 1; 2703 schedule_timeout_uninterruptible(1); 2704 return NULL; 2705 } 2706 2707 /* 2708 * Go through the zonelist yet one more time, keep very high watermark 2709 * here, this is only to catch a parallel oom killing, we must fail if 2710 * we're still under heavy pressure. 2711 */ 2712 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order, 2713 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 2714 if (page) 2715 goto out; 2716 2717 if (!(gfp_mask & __GFP_NOFAIL)) { 2718 /* Coredumps can quickly deplete all memory reserves */ 2719 if (current->flags & PF_DUMPCORE) 2720 goto out; 2721 /* The OOM killer will not help higher order allocs */ 2722 if (order > PAGE_ALLOC_COSTLY_ORDER) 2723 goto out; 2724 /* The OOM killer does not needlessly kill tasks for lowmem */ 2725 if (ac->high_zoneidx < ZONE_NORMAL) 2726 goto out; 2727 /* The OOM killer does not compensate for IO-less reclaim */ 2728 if (!(gfp_mask & __GFP_FS)) { 2729 /* 2730 * XXX: Page reclaim didn't yield anything, 2731 * and the OOM killer can't be invoked, but 2732 * keep looping as per tradition. 2733 */ 2734 *did_some_progress = 1; 2735 goto out; 2736 } 2737 if (pm_suspended_storage()) 2738 goto out; 2739 /* The OOM killer may not free memory on a specific node */ 2740 if (gfp_mask & __GFP_THISNODE) 2741 goto out; 2742 } 2743 /* Exhausted what can be done so it's blamo time */ 2744 if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false) 2745 || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) 2746 *did_some_progress = 1; 2747 out: 2748 mutex_unlock(&oom_lock); 2749 return page; 2750 } 2751 2752 #ifdef CONFIG_COMPACTION 2753 /* Try memory compaction for high-order allocations before reclaim */ 2754 static struct page * 2755 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2756 int alloc_flags, const struct alloc_context *ac, 2757 enum migrate_mode mode, int *contended_compaction, 2758 bool *deferred_compaction) 2759 { 2760 unsigned long compact_result; 2761 struct page *page; 2762 2763 if (!order) 2764 return NULL; 2765 2766 current->flags |= PF_MEMALLOC; 2767 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 2768 mode, contended_compaction); 2769 current->flags &= ~PF_MEMALLOC; 2770 2771 switch (compact_result) { 2772 case COMPACT_DEFERRED: 2773 *deferred_compaction = true; 2774 /* fall-through */ 2775 case COMPACT_SKIPPED: 2776 return NULL; 2777 default: 2778 break; 2779 } 2780 2781 /* 2782 * At least in one zone compaction wasn't deferred or skipped, so let's 2783 * count a compaction stall 2784 */ 2785 count_vm_event(COMPACTSTALL); 2786 2787 page = get_page_from_freelist(gfp_mask, order, 2788 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2789 2790 if (page) { 2791 struct zone *zone = page_zone(page); 2792 2793 zone->compact_blockskip_flush = false; 2794 compaction_defer_reset(zone, order, true); 2795 count_vm_event(COMPACTSUCCESS); 2796 return page; 2797 } 2798 2799 /* 2800 * It's bad if compaction run occurs and fails. The most likely reason 2801 * is that pages exist, but not enough to satisfy watermarks. 2802 */ 2803 count_vm_event(COMPACTFAIL); 2804 2805 cond_resched(); 2806 2807 return NULL; 2808 } 2809 #else 2810 static inline struct page * 2811 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2812 int alloc_flags, const struct alloc_context *ac, 2813 enum migrate_mode mode, int *contended_compaction, 2814 bool *deferred_compaction) 2815 { 2816 return NULL; 2817 } 2818 #endif /* CONFIG_COMPACTION */ 2819 2820 /* Perform direct synchronous page reclaim */ 2821 static int 2822 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 2823 const struct alloc_context *ac) 2824 { 2825 struct reclaim_state reclaim_state; 2826 int progress; 2827 2828 cond_resched(); 2829 2830 /* We now go into synchronous reclaim */ 2831 cpuset_memory_pressure_bump(); 2832 current->flags |= PF_MEMALLOC; 2833 lockdep_set_current_reclaim_state(gfp_mask); 2834 reclaim_state.reclaimed_slab = 0; 2835 current->reclaim_state = &reclaim_state; 2836 2837 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 2838 ac->nodemask); 2839 2840 current->reclaim_state = NULL; 2841 lockdep_clear_current_reclaim_state(); 2842 current->flags &= ~PF_MEMALLOC; 2843 2844 cond_resched(); 2845 2846 return progress; 2847 } 2848 2849 /* The really slow allocator path where we enter direct reclaim */ 2850 static inline struct page * 2851 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2852 int alloc_flags, const struct alloc_context *ac, 2853 unsigned long *did_some_progress) 2854 { 2855 struct page *page = NULL; 2856 bool drained = false; 2857 2858 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 2859 if (unlikely(!(*did_some_progress))) 2860 return NULL; 2861 2862 /* After successful reclaim, reconsider all zones for allocation */ 2863 if (IS_ENABLED(CONFIG_NUMA)) 2864 zlc_clear_zones_full(ac->zonelist); 2865 2866 retry: 2867 page = get_page_from_freelist(gfp_mask, order, 2868 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 2869 2870 /* 2871 * If an allocation failed after direct reclaim, it could be because 2872 * pages are pinned on the per-cpu lists. Drain them and try again 2873 */ 2874 if (!page && !drained) { 2875 drain_all_pages(NULL); 2876 drained = true; 2877 goto retry; 2878 } 2879 2880 return page; 2881 } 2882 2883 /* 2884 * This is called in the allocator slow-path if the allocation request is of 2885 * sufficient urgency to ignore watermarks and take other desperate measures 2886 */ 2887 static inline struct page * 2888 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2889 const struct alloc_context *ac) 2890 { 2891 struct page *page; 2892 2893 do { 2894 page = get_page_from_freelist(gfp_mask, order, 2895 ALLOC_NO_WATERMARKS, ac); 2896 2897 if (!page && gfp_mask & __GFP_NOFAIL) 2898 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, 2899 HZ/50); 2900 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2901 2902 return page; 2903 } 2904 2905 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 2906 { 2907 struct zoneref *z; 2908 struct zone *zone; 2909 2910 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 2911 ac->high_zoneidx, ac->nodemask) 2912 wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone)); 2913 } 2914 2915 static inline int 2916 gfp_to_alloc_flags(gfp_t gfp_mask) 2917 { 2918 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2919 const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD)); 2920 2921 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2922 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2923 2924 /* 2925 * The caller may dip into page reserves a bit more if the caller 2926 * cannot run direct reclaim, or if the caller has realtime scheduling 2927 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2928 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH). 2929 */ 2930 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2931 2932 if (atomic) { 2933 /* 2934 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 2935 * if it can't schedule. 2936 */ 2937 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2938 alloc_flags |= ALLOC_HARDER; 2939 /* 2940 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 2941 * comment for __cpuset_node_allowed(). 2942 */ 2943 alloc_flags &= ~ALLOC_CPUSET; 2944 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2945 alloc_flags |= ALLOC_HARDER; 2946 2947 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2948 if (gfp_mask & __GFP_MEMALLOC) 2949 alloc_flags |= ALLOC_NO_WATERMARKS; 2950 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2951 alloc_flags |= ALLOC_NO_WATERMARKS; 2952 else if (!in_interrupt() && 2953 ((current->flags & PF_MEMALLOC) || 2954 unlikely(test_thread_flag(TIF_MEMDIE)))) 2955 alloc_flags |= ALLOC_NO_WATERMARKS; 2956 } 2957 #ifdef CONFIG_CMA 2958 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2959 alloc_flags |= ALLOC_CMA; 2960 #endif 2961 return alloc_flags; 2962 } 2963 2964 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2965 { 2966 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2967 } 2968 2969 static inline struct page * 2970 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2971 struct alloc_context *ac) 2972 { 2973 const gfp_t wait = gfp_mask & __GFP_WAIT; 2974 struct page *page = NULL; 2975 int alloc_flags; 2976 unsigned long pages_reclaimed = 0; 2977 unsigned long did_some_progress; 2978 enum migrate_mode migration_mode = MIGRATE_ASYNC; 2979 bool deferred_compaction = false; 2980 int contended_compaction = COMPACT_CONTENDED_NONE; 2981 2982 /* 2983 * In the slowpath, we sanity check order to avoid ever trying to 2984 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2985 * be using allocators in order of preference for an area that is 2986 * too large. 2987 */ 2988 if (order >= MAX_ORDER) { 2989 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2990 return NULL; 2991 } 2992 2993 /* 2994 * If this allocation cannot block and it is for a specific node, then 2995 * fail early. There's no need to wakeup kswapd or retry for a 2996 * speculative node-specific allocation. 2997 */ 2998 if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait) 2999 goto nopage; 3000 3001 retry: 3002 if (!(gfp_mask & __GFP_NO_KSWAPD)) 3003 wake_all_kswapds(order, ac); 3004 3005 /* 3006 * OK, we're below the kswapd watermark and have kicked background 3007 * reclaim. Now things get more complex, so set up alloc_flags according 3008 * to how we want to proceed. 3009 */ 3010 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3011 3012 /* 3013 * Find the true preferred zone if the allocation is unconstrained by 3014 * cpusets. 3015 */ 3016 if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) { 3017 struct zoneref *preferred_zoneref; 3018 preferred_zoneref = first_zones_zonelist(ac->zonelist, 3019 ac->high_zoneidx, NULL, &ac->preferred_zone); 3020 ac->classzone_idx = zonelist_zone_idx(preferred_zoneref); 3021 } 3022 3023 /* This is the last chance, in general, before the goto nopage. */ 3024 page = get_page_from_freelist(gfp_mask, order, 3025 alloc_flags & ~ALLOC_NO_WATERMARKS, ac); 3026 if (page) 3027 goto got_pg; 3028 3029 /* Allocate without watermarks if the context allows */ 3030 if (alloc_flags & ALLOC_NO_WATERMARKS) { 3031 /* 3032 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 3033 * the allocation is high priority and these type of 3034 * allocations are system rather than user orientated 3035 */ 3036 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 3037 3038 page = __alloc_pages_high_priority(gfp_mask, order, ac); 3039 3040 if (page) { 3041 goto got_pg; 3042 } 3043 } 3044 3045 /* Atomic allocations - we can't balance anything */ 3046 if (!wait) { 3047 /* 3048 * All existing users of the deprecated __GFP_NOFAIL are 3049 * blockable, so warn of any new users that actually allow this 3050 * type of allocation to fail. 3051 */ 3052 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL); 3053 goto nopage; 3054 } 3055 3056 /* Avoid recursion of direct reclaim */ 3057 if (current->flags & PF_MEMALLOC) 3058 goto nopage; 3059 3060 /* Avoid allocations with no watermarks from looping endlessly */ 3061 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 3062 goto nopage; 3063 3064 /* 3065 * Try direct compaction. The first pass is asynchronous. Subsequent 3066 * attempts after direct reclaim are synchronous 3067 */ 3068 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 3069 migration_mode, 3070 &contended_compaction, 3071 &deferred_compaction); 3072 if (page) 3073 goto got_pg; 3074 3075 /* Checks for THP-specific high-order allocations */ 3076 if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) { 3077 /* 3078 * If compaction is deferred for high-order allocations, it is 3079 * because sync compaction recently failed. If this is the case 3080 * and the caller requested a THP allocation, we do not want 3081 * to heavily disrupt the system, so we fail the allocation 3082 * instead of entering direct reclaim. 3083 */ 3084 if (deferred_compaction) 3085 goto nopage; 3086 3087 /* 3088 * In all zones where compaction was attempted (and not 3089 * deferred or skipped), lock contention has been detected. 3090 * For THP allocation we do not want to disrupt the others 3091 * so we fallback to base pages instead. 3092 */ 3093 if (contended_compaction == COMPACT_CONTENDED_LOCK) 3094 goto nopage; 3095 3096 /* 3097 * If compaction was aborted due to need_resched(), we do not 3098 * want to further increase allocation latency, unless it is 3099 * khugepaged trying to collapse. 3100 */ 3101 if (contended_compaction == COMPACT_CONTENDED_SCHED 3102 && !(current->flags & PF_KTHREAD)) 3103 goto nopage; 3104 } 3105 3106 /* 3107 * It can become very expensive to allocate transparent hugepages at 3108 * fault, so use asynchronous memory compaction for THP unless it is 3109 * khugepaged trying to collapse. 3110 */ 3111 if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE || 3112 (current->flags & PF_KTHREAD)) 3113 migration_mode = MIGRATE_SYNC_LIGHT; 3114 3115 /* Try direct reclaim and then allocating */ 3116 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 3117 &did_some_progress); 3118 if (page) 3119 goto got_pg; 3120 3121 /* Do not loop if specifically requested */ 3122 if (gfp_mask & __GFP_NORETRY) 3123 goto noretry; 3124 3125 /* Keep reclaiming pages as long as there is reasonable progress */ 3126 pages_reclaimed += did_some_progress; 3127 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) || 3128 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) { 3129 /* Wait for some write requests to complete then retry */ 3130 wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50); 3131 goto retry; 3132 } 3133 3134 /* Reclaim has failed us, start killing things */ 3135 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 3136 if (page) 3137 goto got_pg; 3138 3139 /* Retry as long as the OOM killer is making progress */ 3140 if (did_some_progress) 3141 goto retry; 3142 3143 noretry: 3144 /* 3145 * High-order allocations do not necessarily loop after 3146 * direct reclaim and reclaim/compaction depends on compaction 3147 * being called after reclaim so call directly if necessary 3148 */ 3149 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, 3150 ac, migration_mode, 3151 &contended_compaction, 3152 &deferred_compaction); 3153 if (page) 3154 goto got_pg; 3155 nopage: 3156 warn_alloc_failed(gfp_mask, order, NULL); 3157 got_pg: 3158 return page; 3159 } 3160 3161 /* 3162 * This is the 'heart' of the zoned buddy allocator. 3163 */ 3164 struct page * 3165 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 3166 struct zonelist *zonelist, nodemask_t *nodemask) 3167 { 3168 struct zoneref *preferred_zoneref; 3169 struct page *page = NULL; 3170 unsigned int cpuset_mems_cookie; 3171 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR; 3172 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 3173 struct alloc_context ac = { 3174 .high_zoneidx = gfp_zone(gfp_mask), 3175 .nodemask = nodemask, 3176 .migratetype = gfpflags_to_migratetype(gfp_mask), 3177 }; 3178 3179 gfp_mask &= gfp_allowed_mask; 3180 3181 lockdep_trace_alloc(gfp_mask); 3182 3183 might_sleep_if(gfp_mask & __GFP_WAIT); 3184 3185 if (should_fail_alloc_page(gfp_mask, order)) 3186 return NULL; 3187 3188 /* 3189 * Check the zones suitable for the gfp_mask contain at least one 3190 * valid zone. It's possible to have an empty zonelist as a result 3191 * of __GFP_THISNODE and a memoryless node 3192 */ 3193 if (unlikely(!zonelist->_zonerefs->zone)) 3194 return NULL; 3195 3196 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE) 3197 alloc_flags |= ALLOC_CMA; 3198 3199 retry_cpuset: 3200 cpuset_mems_cookie = read_mems_allowed_begin(); 3201 3202 /* We set it here, as __alloc_pages_slowpath might have changed it */ 3203 ac.zonelist = zonelist; 3204 /* The preferred zone is used for statistics later */ 3205 preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx, 3206 ac.nodemask ? : &cpuset_current_mems_allowed, 3207 &ac.preferred_zone); 3208 if (!ac.preferred_zone) 3209 goto out; 3210 ac.classzone_idx = zonelist_zone_idx(preferred_zoneref); 3211 3212 /* First allocation attempt */ 3213 alloc_mask = gfp_mask|__GFP_HARDWALL; 3214 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 3215 if (unlikely(!page)) { 3216 /* 3217 * Runtime PM, block IO and its error handling path 3218 * can deadlock because I/O on the device might not 3219 * complete. 3220 */ 3221 alloc_mask = memalloc_noio_flags(gfp_mask); 3222 3223 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 3224 } 3225 3226 if (kmemcheck_enabled && page) 3227 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 3228 3229 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 3230 3231 out: 3232 /* 3233 * When updating a task's mems_allowed, it is possible to race with 3234 * parallel threads in such a way that an allocation can fail while 3235 * the mask is being updated. If a page allocation is about to fail, 3236 * check if the cpuset changed during allocation and if so, retry. 3237 */ 3238 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) 3239 goto retry_cpuset; 3240 3241 return page; 3242 } 3243 EXPORT_SYMBOL(__alloc_pages_nodemask); 3244 3245 /* 3246 * Common helper functions. 3247 */ 3248 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 3249 { 3250 struct page *page; 3251 3252 /* 3253 * __get_free_pages() returns a 32-bit address, which cannot represent 3254 * a highmem page 3255 */ 3256 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 3257 3258 page = alloc_pages(gfp_mask, order); 3259 if (!page) 3260 return 0; 3261 return (unsigned long) page_address(page); 3262 } 3263 EXPORT_SYMBOL(__get_free_pages); 3264 3265 unsigned long get_zeroed_page(gfp_t gfp_mask) 3266 { 3267 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 3268 } 3269 EXPORT_SYMBOL(get_zeroed_page); 3270 3271 void __free_pages(struct page *page, unsigned int order) 3272 { 3273 if (put_page_testzero(page)) { 3274 if (order == 0) 3275 free_hot_cold_page(page, false); 3276 else 3277 __free_pages_ok(page, order); 3278 } 3279 } 3280 3281 EXPORT_SYMBOL(__free_pages); 3282 3283 void free_pages(unsigned long addr, unsigned int order) 3284 { 3285 if (addr != 0) { 3286 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3287 __free_pages(virt_to_page((void *)addr), order); 3288 } 3289 } 3290 3291 EXPORT_SYMBOL(free_pages); 3292 3293 /* 3294 * Page Fragment: 3295 * An arbitrary-length arbitrary-offset area of memory which resides 3296 * within a 0 or higher order page. Multiple fragments within that page 3297 * are individually refcounted, in the page's reference counter. 3298 * 3299 * The page_frag functions below provide a simple allocation framework for 3300 * page fragments. This is used by the network stack and network device 3301 * drivers to provide a backing region of memory for use as either an 3302 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 3303 */ 3304 static struct page *__page_frag_refill(struct page_frag_cache *nc, 3305 gfp_t gfp_mask) 3306 { 3307 struct page *page = NULL; 3308 gfp_t gfp = gfp_mask; 3309 3310 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3311 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 3312 __GFP_NOMEMALLOC; 3313 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 3314 PAGE_FRAG_CACHE_MAX_ORDER); 3315 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 3316 #endif 3317 if (unlikely(!page)) 3318 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 3319 3320 nc->va = page ? page_address(page) : NULL; 3321 3322 return page; 3323 } 3324 3325 void *__alloc_page_frag(struct page_frag_cache *nc, 3326 unsigned int fragsz, gfp_t gfp_mask) 3327 { 3328 unsigned int size = PAGE_SIZE; 3329 struct page *page; 3330 int offset; 3331 3332 if (unlikely(!nc->va)) { 3333 refill: 3334 page = __page_frag_refill(nc, gfp_mask); 3335 if (!page) 3336 return NULL; 3337 3338 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3339 /* if size can vary use size else just use PAGE_SIZE */ 3340 size = nc->size; 3341 #endif 3342 /* Even if we own the page, we do not use atomic_set(). 3343 * This would break get_page_unless_zero() users. 3344 */ 3345 atomic_add(size - 1, &page->_count); 3346 3347 /* reset page count bias and offset to start of new frag */ 3348 nc->pfmemalloc = page->pfmemalloc; 3349 nc->pagecnt_bias = size; 3350 nc->offset = size; 3351 } 3352 3353 offset = nc->offset - fragsz; 3354 if (unlikely(offset < 0)) { 3355 page = virt_to_page(nc->va); 3356 3357 if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count)) 3358 goto refill; 3359 3360 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 3361 /* if size can vary use size else just use PAGE_SIZE */ 3362 size = nc->size; 3363 #endif 3364 /* OK, page count is 0, we can safely set it */ 3365 atomic_set(&page->_count, size); 3366 3367 /* reset page count bias and offset to start of new frag */ 3368 nc->pagecnt_bias = size; 3369 offset = size - fragsz; 3370 } 3371 3372 nc->pagecnt_bias--; 3373 nc->offset = offset; 3374 3375 return nc->va + offset; 3376 } 3377 EXPORT_SYMBOL(__alloc_page_frag); 3378 3379 /* 3380 * Frees a page fragment allocated out of either a compound or order 0 page. 3381 */ 3382 void __free_page_frag(void *addr) 3383 { 3384 struct page *page = virt_to_head_page(addr); 3385 3386 if (unlikely(put_page_testzero(page))) 3387 __free_pages_ok(page, compound_order(page)); 3388 } 3389 EXPORT_SYMBOL(__free_page_frag); 3390 3391 /* 3392 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter 3393 * of the current memory cgroup. 3394 * 3395 * It should be used when the caller would like to use kmalloc, but since the 3396 * allocation is large, it has to fall back to the page allocator. 3397 */ 3398 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order) 3399 { 3400 struct page *page; 3401 struct mem_cgroup *memcg = NULL; 3402 3403 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3404 return NULL; 3405 page = alloc_pages(gfp_mask, order); 3406 memcg_kmem_commit_charge(page, memcg, order); 3407 return page; 3408 } 3409 3410 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order) 3411 { 3412 struct page *page; 3413 struct mem_cgroup *memcg = NULL; 3414 3415 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order)) 3416 return NULL; 3417 page = alloc_pages_node(nid, gfp_mask, order); 3418 memcg_kmem_commit_charge(page, memcg, order); 3419 return page; 3420 } 3421 3422 /* 3423 * __free_kmem_pages and free_kmem_pages will free pages allocated with 3424 * alloc_kmem_pages. 3425 */ 3426 void __free_kmem_pages(struct page *page, unsigned int order) 3427 { 3428 memcg_kmem_uncharge_pages(page, order); 3429 __free_pages(page, order); 3430 } 3431 3432 void free_kmem_pages(unsigned long addr, unsigned int order) 3433 { 3434 if (addr != 0) { 3435 VM_BUG_ON(!virt_addr_valid((void *)addr)); 3436 __free_kmem_pages(virt_to_page((void *)addr), order); 3437 } 3438 } 3439 3440 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 3441 { 3442 if (addr) { 3443 unsigned long alloc_end = addr + (PAGE_SIZE << order); 3444 unsigned long used = addr + PAGE_ALIGN(size); 3445 3446 split_page(virt_to_page((void *)addr), order); 3447 while (used < alloc_end) { 3448 free_page(used); 3449 used += PAGE_SIZE; 3450 } 3451 } 3452 return (void *)addr; 3453 } 3454 3455 /** 3456 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 3457 * @size: the number of bytes to allocate 3458 * @gfp_mask: GFP flags for the allocation 3459 * 3460 * This function is similar to alloc_pages(), except that it allocates the 3461 * minimum number of pages to satisfy the request. alloc_pages() can only 3462 * allocate memory in power-of-two pages. 3463 * 3464 * This function is also limited by MAX_ORDER. 3465 * 3466 * Memory allocated by this function must be released by free_pages_exact(). 3467 */ 3468 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 3469 { 3470 unsigned int order = get_order(size); 3471 unsigned long addr; 3472 3473 addr = __get_free_pages(gfp_mask, order); 3474 return make_alloc_exact(addr, order, size); 3475 } 3476 EXPORT_SYMBOL(alloc_pages_exact); 3477 3478 /** 3479 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 3480 * pages on a node. 3481 * @nid: the preferred node ID where memory should be allocated 3482 * @size: the number of bytes to allocate 3483 * @gfp_mask: GFP flags for the allocation 3484 * 3485 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 3486 * back. 3487 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 3488 * but is not exact. 3489 */ 3490 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 3491 { 3492 unsigned order = get_order(size); 3493 struct page *p = alloc_pages_node(nid, gfp_mask, order); 3494 if (!p) 3495 return NULL; 3496 return make_alloc_exact((unsigned long)page_address(p), order, size); 3497 } 3498 3499 /** 3500 * free_pages_exact - release memory allocated via alloc_pages_exact() 3501 * @virt: the value returned by alloc_pages_exact. 3502 * @size: size of allocation, same value as passed to alloc_pages_exact(). 3503 * 3504 * Release the memory allocated by a previous call to alloc_pages_exact. 3505 */ 3506 void free_pages_exact(void *virt, size_t size) 3507 { 3508 unsigned long addr = (unsigned long)virt; 3509 unsigned long end = addr + PAGE_ALIGN(size); 3510 3511 while (addr < end) { 3512 free_page(addr); 3513 addr += PAGE_SIZE; 3514 } 3515 } 3516 EXPORT_SYMBOL(free_pages_exact); 3517 3518 /** 3519 * nr_free_zone_pages - count number of pages beyond high watermark 3520 * @offset: The zone index of the highest zone 3521 * 3522 * nr_free_zone_pages() counts the number of counts pages which are beyond the 3523 * high watermark within all zones at or below a given zone index. For each 3524 * zone, the number of pages is calculated as: 3525 * managed_pages - high_pages 3526 */ 3527 static unsigned long nr_free_zone_pages(int offset) 3528 { 3529 struct zoneref *z; 3530 struct zone *zone; 3531 3532 /* Just pick one node, since fallback list is circular */ 3533 unsigned long sum = 0; 3534 3535 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 3536 3537 for_each_zone_zonelist(zone, z, zonelist, offset) { 3538 unsigned long size = zone->managed_pages; 3539 unsigned long high = high_wmark_pages(zone); 3540 if (size > high) 3541 sum += size - high; 3542 } 3543 3544 return sum; 3545 } 3546 3547 /** 3548 * nr_free_buffer_pages - count number of pages beyond high watermark 3549 * 3550 * nr_free_buffer_pages() counts the number of pages which are beyond the high 3551 * watermark within ZONE_DMA and ZONE_NORMAL. 3552 */ 3553 unsigned long nr_free_buffer_pages(void) 3554 { 3555 return nr_free_zone_pages(gfp_zone(GFP_USER)); 3556 } 3557 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 3558 3559 /** 3560 * nr_free_pagecache_pages - count number of pages beyond high watermark 3561 * 3562 * nr_free_pagecache_pages() counts the number of pages which are beyond the 3563 * high watermark within all zones. 3564 */ 3565 unsigned long nr_free_pagecache_pages(void) 3566 { 3567 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 3568 } 3569 3570 static inline void show_node(struct zone *zone) 3571 { 3572 if (IS_ENABLED(CONFIG_NUMA)) 3573 printk("Node %d ", zone_to_nid(zone)); 3574 } 3575 3576 void si_meminfo(struct sysinfo *val) 3577 { 3578 val->totalram = totalram_pages; 3579 val->sharedram = global_page_state(NR_SHMEM); 3580 val->freeram = global_page_state(NR_FREE_PAGES); 3581 val->bufferram = nr_blockdev_pages(); 3582 val->totalhigh = totalhigh_pages; 3583 val->freehigh = nr_free_highpages(); 3584 val->mem_unit = PAGE_SIZE; 3585 } 3586 3587 EXPORT_SYMBOL(si_meminfo); 3588 3589 #ifdef CONFIG_NUMA 3590 void si_meminfo_node(struct sysinfo *val, int nid) 3591 { 3592 int zone_type; /* needs to be signed */ 3593 unsigned long managed_pages = 0; 3594 pg_data_t *pgdat = NODE_DATA(nid); 3595 3596 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 3597 managed_pages += pgdat->node_zones[zone_type].managed_pages; 3598 val->totalram = managed_pages; 3599 val->sharedram = node_page_state(nid, NR_SHMEM); 3600 val->freeram = node_page_state(nid, NR_FREE_PAGES); 3601 #ifdef CONFIG_HIGHMEM 3602 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages; 3603 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 3604 NR_FREE_PAGES); 3605 #else 3606 val->totalhigh = 0; 3607 val->freehigh = 0; 3608 #endif 3609 val->mem_unit = PAGE_SIZE; 3610 } 3611 #endif 3612 3613 /* 3614 * Determine whether the node should be displayed or not, depending on whether 3615 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 3616 */ 3617 bool skip_free_areas_node(unsigned int flags, int nid) 3618 { 3619 bool ret = false; 3620 unsigned int cpuset_mems_cookie; 3621 3622 if (!(flags & SHOW_MEM_FILTER_NODES)) 3623 goto out; 3624 3625 do { 3626 cpuset_mems_cookie = read_mems_allowed_begin(); 3627 ret = !node_isset(nid, cpuset_current_mems_allowed); 3628 } while (read_mems_allowed_retry(cpuset_mems_cookie)); 3629 out: 3630 return ret; 3631 } 3632 3633 #define K(x) ((x) << (PAGE_SHIFT-10)) 3634 3635 static void show_migration_types(unsigned char type) 3636 { 3637 static const char types[MIGRATE_TYPES] = { 3638 [MIGRATE_UNMOVABLE] = 'U', 3639 [MIGRATE_RECLAIMABLE] = 'E', 3640 [MIGRATE_MOVABLE] = 'M', 3641 [MIGRATE_RESERVE] = 'R', 3642 #ifdef CONFIG_CMA 3643 [MIGRATE_CMA] = 'C', 3644 #endif 3645 #ifdef CONFIG_MEMORY_ISOLATION 3646 [MIGRATE_ISOLATE] = 'I', 3647 #endif 3648 }; 3649 char tmp[MIGRATE_TYPES + 1]; 3650 char *p = tmp; 3651 int i; 3652 3653 for (i = 0; i < MIGRATE_TYPES; i++) { 3654 if (type & (1 << i)) 3655 *p++ = types[i]; 3656 } 3657 3658 *p = '\0'; 3659 printk("(%s) ", tmp); 3660 } 3661 3662 /* 3663 * Show free area list (used inside shift_scroll-lock stuff) 3664 * We also calculate the percentage fragmentation. We do this by counting the 3665 * memory on each free list with the exception of the first item on the list. 3666 * 3667 * Bits in @filter: 3668 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 3669 * cpuset. 3670 */ 3671 void show_free_areas(unsigned int filter) 3672 { 3673 unsigned long free_pcp = 0; 3674 int cpu; 3675 struct zone *zone; 3676 3677 for_each_populated_zone(zone) { 3678 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3679 continue; 3680 3681 for_each_online_cpu(cpu) 3682 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3683 } 3684 3685 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 3686 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 3687 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 3688 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 3689 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 3690 " free:%lu free_pcp:%lu free_cma:%lu\n", 3691 global_page_state(NR_ACTIVE_ANON), 3692 global_page_state(NR_INACTIVE_ANON), 3693 global_page_state(NR_ISOLATED_ANON), 3694 global_page_state(NR_ACTIVE_FILE), 3695 global_page_state(NR_INACTIVE_FILE), 3696 global_page_state(NR_ISOLATED_FILE), 3697 global_page_state(NR_UNEVICTABLE), 3698 global_page_state(NR_FILE_DIRTY), 3699 global_page_state(NR_WRITEBACK), 3700 global_page_state(NR_UNSTABLE_NFS), 3701 global_page_state(NR_SLAB_RECLAIMABLE), 3702 global_page_state(NR_SLAB_UNRECLAIMABLE), 3703 global_page_state(NR_FILE_MAPPED), 3704 global_page_state(NR_SHMEM), 3705 global_page_state(NR_PAGETABLE), 3706 global_page_state(NR_BOUNCE), 3707 global_page_state(NR_FREE_PAGES), 3708 free_pcp, 3709 global_page_state(NR_FREE_CMA_PAGES)); 3710 3711 for_each_populated_zone(zone) { 3712 int i; 3713 3714 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3715 continue; 3716 3717 free_pcp = 0; 3718 for_each_online_cpu(cpu) 3719 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 3720 3721 show_node(zone); 3722 printk("%s" 3723 " free:%lukB" 3724 " min:%lukB" 3725 " low:%lukB" 3726 " high:%lukB" 3727 " active_anon:%lukB" 3728 " inactive_anon:%lukB" 3729 " active_file:%lukB" 3730 " inactive_file:%lukB" 3731 " unevictable:%lukB" 3732 " isolated(anon):%lukB" 3733 " isolated(file):%lukB" 3734 " present:%lukB" 3735 " managed:%lukB" 3736 " mlocked:%lukB" 3737 " dirty:%lukB" 3738 " writeback:%lukB" 3739 " mapped:%lukB" 3740 " shmem:%lukB" 3741 " slab_reclaimable:%lukB" 3742 " slab_unreclaimable:%lukB" 3743 " kernel_stack:%lukB" 3744 " pagetables:%lukB" 3745 " unstable:%lukB" 3746 " bounce:%lukB" 3747 " free_pcp:%lukB" 3748 " local_pcp:%ukB" 3749 " free_cma:%lukB" 3750 " writeback_tmp:%lukB" 3751 " pages_scanned:%lu" 3752 " all_unreclaimable? %s" 3753 "\n", 3754 zone->name, 3755 K(zone_page_state(zone, NR_FREE_PAGES)), 3756 K(min_wmark_pages(zone)), 3757 K(low_wmark_pages(zone)), 3758 K(high_wmark_pages(zone)), 3759 K(zone_page_state(zone, NR_ACTIVE_ANON)), 3760 K(zone_page_state(zone, NR_INACTIVE_ANON)), 3761 K(zone_page_state(zone, NR_ACTIVE_FILE)), 3762 K(zone_page_state(zone, NR_INACTIVE_FILE)), 3763 K(zone_page_state(zone, NR_UNEVICTABLE)), 3764 K(zone_page_state(zone, NR_ISOLATED_ANON)), 3765 K(zone_page_state(zone, NR_ISOLATED_FILE)), 3766 K(zone->present_pages), 3767 K(zone->managed_pages), 3768 K(zone_page_state(zone, NR_MLOCK)), 3769 K(zone_page_state(zone, NR_FILE_DIRTY)), 3770 K(zone_page_state(zone, NR_WRITEBACK)), 3771 K(zone_page_state(zone, NR_FILE_MAPPED)), 3772 K(zone_page_state(zone, NR_SHMEM)), 3773 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 3774 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 3775 zone_page_state(zone, NR_KERNEL_STACK) * 3776 THREAD_SIZE / 1024, 3777 K(zone_page_state(zone, NR_PAGETABLE)), 3778 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 3779 K(zone_page_state(zone, NR_BOUNCE)), 3780 K(free_pcp), 3781 K(this_cpu_read(zone->pageset->pcp.count)), 3782 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 3783 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 3784 K(zone_page_state(zone, NR_PAGES_SCANNED)), 3785 (!zone_reclaimable(zone) ? "yes" : "no") 3786 ); 3787 printk("lowmem_reserve[]:"); 3788 for (i = 0; i < MAX_NR_ZONES; i++) 3789 printk(" %ld", zone->lowmem_reserve[i]); 3790 printk("\n"); 3791 } 3792 3793 for_each_populated_zone(zone) { 3794 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3795 unsigned char types[MAX_ORDER]; 3796 3797 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3798 continue; 3799 show_node(zone); 3800 printk("%s: ", zone->name); 3801 3802 spin_lock_irqsave(&zone->lock, flags); 3803 for (order = 0; order < MAX_ORDER; order++) { 3804 struct free_area *area = &zone->free_area[order]; 3805 int type; 3806 3807 nr[order] = area->nr_free; 3808 total += nr[order] << order; 3809 3810 types[order] = 0; 3811 for (type = 0; type < MIGRATE_TYPES; type++) { 3812 if (!list_empty(&area->free_list[type])) 3813 types[order] |= 1 << type; 3814 } 3815 } 3816 spin_unlock_irqrestore(&zone->lock, flags); 3817 for (order = 0; order < MAX_ORDER; order++) { 3818 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3819 if (nr[order]) 3820 show_migration_types(types[order]); 3821 } 3822 printk("= %lukB\n", K(total)); 3823 } 3824 3825 hugetlb_show_meminfo(); 3826 3827 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3828 3829 show_swap_cache_info(); 3830 } 3831 3832 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3833 { 3834 zoneref->zone = zone; 3835 zoneref->zone_idx = zone_idx(zone); 3836 } 3837 3838 /* 3839 * Builds allocation fallback zone lists. 3840 * 3841 * Add all populated zones of a node to the zonelist. 3842 */ 3843 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3844 int nr_zones) 3845 { 3846 struct zone *zone; 3847 enum zone_type zone_type = MAX_NR_ZONES; 3848 3849 do { 3850 zone_type--; 3851 zone = pgdat->node_zones + zone_type; 3852 if (populated_zone(zone)) { 3853 zoneref_set_zone(zone, 3854 &zonelist->_zonerefs[nr_zones++]); 3855 check_highest_zone(zone_type); 3856 } 3857 } while (zone_type); 3858 3859 return nr_zones; 3860 } 3861 3862 3863 /* 3864 * zonelist_order: 3865 * 0 = automatic detection of better ordering. 3866 * 1 = order by ([node] distance, -zonetype) 3867 * 2 = order by (-zonetype, [node] distance) 3868 * 3869 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3870 * the same zonelist. So only NUMA can configure this param. 3871 */ 3872 #define ZONELIST_ORDER_DEFAULT 0 3873 #define ZONELIST_ORDER_NODE 1 3874 #define ZONELIST_ORDER_ZONE 2 3875 3876 /* zonelist order in the kernel. 3877 * set_zonelist_order() will set this to NODE or ZONE. 3878 */ 3879 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3880 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3881 3882 3883 #ifdef CONFIG_NUMA 3884 /* The value user specified ....changed by config */ 3885 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3886 /* string for sysctl */ 3887 #define NUMA_ZONELIST_ORDER_LEN 16 3888 char numa_zonelist_order[16] = "default"; 3889 3890 /* 3891 * interface for configure zonelist ordering. 3892 * command line option "numa_zonelist_order" 3893 * = "[dD]efault - default, automatic configuration. 3894 * = "[nN]ode - order by node locality, then by zone within node 3895 * = "[zZ]one - order by zone, then by locality within zone 3896 */ 3897 3898 static int __parse_numa_zonelist_order(char *s) 3899 { 3900 if (*s == 'd' || *s == 'D') { 3901 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3902 } else if (*s == 'n' || *s == 'N') { 3903 user_zonelist_order = ZONELIST_ORDER_NODE; 3904 } else if (*s == 'z' || *s == 'Z') { 3905 user_zonelist_order = ZONELIST_ORDER_ZONE; 3906 } else { 3907 printk(KERN_WARNING 3908 "Ignoring invalid numa_zonelist_order value: " 3909 "%s\n", s); 3910 return -EINVAL; 3911 } 3912 return 0; 3913 } 3914 3915 static __init int setup_numa_zonelist_order(char *s) 3916 { 3917 int ret; 3918 3919 if (!s) 3920 return 0; 3921 3922 ret = __parse_numa_zonelist_order(s); 3923 if (ret == 0) 3924 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3925 3926 return ret; 3927 } 3928 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3929 3930 /* 3931 * sysctl handler for numa_zonelist_order 3932 */ 3933 int numa_zonelist_order_handler(struct ctl_table *table, int write, 3934 void __user *buffer, size_t *length, 3935 loff_t *ppos) 3936 { 3937 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3938 int ret; 3939 static DEFINE_MUTEX(zl_order_mutex); 3940 3941 mutex_lock(&zl_order_mutex); 3942 if (write) { 3943 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) { 3944 ret = -EINVAL; 3945 goto out; 3946 } 3947 strcpy(saved_string, (char *)table->data); 3948 } 3949 ret = proc_dostring(table, write, buffer, length, ppos); 3950 if (ret) 3951 goto out; 3952 if (write) { 3953 int oldval = user_zonelist_order; 3954 3955 ret = __parse_numa_zonelist_order((char *)table->data); 3956 if (ret) { 3957 /* 3958 * bogus value. restore saved string 3959 */ 3960 strncpy((char *)table->data, saved_string, 3961 NUMA_ZONELIST_ORDER_LEN); 3962 user_zonelist_order = oldval; 3963 } else if (oldval != user_zonelist_order) { 3964 mutex_lock(&zonelists_mutex); 3965 build_all_zonelists(NULL, NULL); 3966 mutex_unlock(&zonelists_mutex); 3967 } 3968 } 3969 out: 3970 mutex_unlock(&zl_order_mutex); 3971 return ret; 3972 } 3973 3974 3975 #define MAX_NODE_LOAD (nr_online_nodes) 3976 static int node_load[MAX_NUMNODES]; 3977 3978 /** 3979 * find_next_best_node - find the next node that should appear in a given node's fallback list 3980 * @node: node whose fallback list we're appending 3981 * @used_node_mask: nodemask_t of already used nodes 3982 * 3983 * We use a number of factors to determine which is the next node that should 3984 * appear on a given node's fallback list. The node should not have appeared 3985 * already in @node's fallback list, and it should be the next closest node 3986 * according to the distance array (which contains arbitrary distance values 3987 * from each node to each node in the system), and should also prefer nodes 3988 * with no CPUs, since presumably they'll have very little allocation pressure 3989 * on them otherwise. 3990 * It returns -1 if no node is found. 3991 */ 3992 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3993 { 3994 int n, val; 3995 int min_val = INT_MAX; 3996 int best_node = NUMA_NO_NODE; 3997 const struct cpumask *tmp = cpumask_of_node(0); 3998 3999 /* Use the local node if we haven't already */ 4000 if (!node_isset(node, *used_node_mask)) { 4001 node_set(node, *used_node_mask); 4002 return node; 4003 } 4004 4005 for_each_node_state(n, N_MEMORY) { 4006 4007 /* Don't want a node to appear more than once */ 4008 if (node_isset(n, *used_node_mask)) 4009 continue; 4010 4011 /* Use the distance array to find the distance */ 4012 val = node_distance(node, n); 4013 4014 /* Penalize nodes under us ("prefer the next node") */ 4015 val += (n < node); 4016 4017 /* Give preference to headless and unused nodes */ 4018 tmp = cpumask_of_node(n); 4019 if (!cpumask_empty(tmp)) 4020 val += PENALTY_FOR_NODE_WITH_CPUS; 4021 4022 /* Slight preference for less loaded node */ 4023 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 4024 val += node_load[n]; 4025 4026 if (val < min_val) { 4027 min_val = val; 4028 best_node = n; 4029 } 4030 } 4031 4032 if (best_node >= 0) 4033 node_set(best_node, *used_node_mask); 4034 4035 return best_node; 4036 } 4037 4038 4039 /* 4040 * Build zonelists ordered by node and zones within node. 4041 * This results in maximum locality--normal zone overflows into local 4042 * DMA zone, if any--but risks exhausting DMA zone. 4043 */ 4044 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 4045 { 4046 int j; 4047 struct zonelist *zonelist; 4048 4049 zonelist = &pgdat->node_zonelists[0]; 4050 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 4051 ; 4052 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4053 zonelist->_zonerefs[j].zone = NULL; 4054 zonelist->_zonerefs[j].zone_idx = 0; 4055 } 4056 4057 /* 4058 * Build gfp_thisnode zonelists 4059 */ 4060 static void build_thisnode_zonelists(pg_data_t *pgdat) 4061 { 4062 int j; 4063 struct zonelist *zonelist; 4064 4065 zonelist = &pgdat->node_zonelists[1]; 4066 j = build_zonelists_node(pgdat, zonelist, 0); 4067 zonelist->_zonerefs[j].zone = NULL; 4068 zonelist->_zonerefs[j].zone_idx = 0; 4069 } 4070 4071 /* 4072 * Build zonelists ordered by zone and nodes within zones. 4073 * This results in conserving DMA zone[s] until all Normal memory is 4074 * exhausted, but results in overflowing to remote node while memory 4075 * may still exist in local DMA zone. 4076 */ 4077 static int node_order[MAX_NUMNODES]; 4078 4079 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 4080 { 4081 int pos, j, node; 4082 int zone_type; /* needs to be signed */ 4083 struct zone *z; 4084 struct zonelist *zonelist; 4085 4086 zonelist = &pgdat->node_zonelists[0]; 4087 pos = 0; 4088 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 4089 for (j = 0; j < nr_nodes; j++) { 4090 node = node_order[j]; 4091 z = &NODE_DATA(node)->node_zones[zone_type]; 4092 if (populated_zone(z)) { 4093 zoneref_set_zone(z, 4094 &zonelist->_zonerefs[pos++]); 4095 check_highest_zone(zone_type); 4096 } 4097 } 4098 } 4099 zonelist->_zonerefs[pos].zone = NULL; 4100 zonelist->_zonerefs[pos].zone_idx = 0; 4101 } 4102 4103 #if defined(CONFIG_64BIT) 4104 /* 4105 * Devices that require DMA32/DMA are relatively rare and do not justify a 4106 * penalty to every machine in case the specialised case applies. Default 4107 * to Node-ordering on 64-bit NUMA machines 4108 */ 4109 static int default_zonelist_order(void) 4110 { 4111 return ZONELIST_ORDER_NODE; 4112 } 4113 #else 4114 /* 4115 * On 32-bit, the Normal zone needs to be preserved for allocations accessible 4116 * by the kernel. If processes running on node 0 deplete the low memory zone 4117 * then reclaim will occur more frequency increasing stalls and potentially 4118 * be easier to OOM if a large percentage of the zone is under writeback or 4119 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set. 4120 * Hence, default to zone ordering on 32-bit. 4121 */ 4122 static int default_zonelist_order(void) 4123 { 4124 return ZONELIST_ORDER_ZONE; 4125 } 4126 #endif /* CONFIG_64BIT */ 4127 4128 static void set_zonelist_order(void) 4129 { 4130 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 4131 current_zonelist_order = default_zonelist_order(); 4132 else 4133 current_zonelist_order = user_zonelist_order; 4134 } 4135 4136 static void build_zonelists(pg_data_t *pgdat) 4137 { 4138 int j, node, load; 4139 enum zone_type i; 4140 nodemask_t used_mask; 4141 int local_node, prev_node; 4142 struct zonelist *zonelist; 4143 int order = current_zonelist_order; 4144 4145 /* initialize zonelists */ 4146 for (i = 0; i < MAX_ZONELISTS; i++) { 4147 zonelist = pgdat->node_zonelists + i; 4148 zonelist->_zonerefs[0].zone = NULL; 4149 zonelist->_zonerefs[0].zone_idx = 0; 4150 } 4151 4152 /* NUMA-aware ordering of nodes */ 4153 local_node = pgdat->node_id; 4154 load = nr_online_nodes; 4155 prev_node = local_node; 4156 nodes_clear(used_mask); 4157 4158 memset(node_order, 0, sizeof(node_order)); 4159 j = 0; 4160 4161 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 4162 /* 4163 * We don't want to pressure a particular node. 4164 * So adding penalty to the first node in same 4165 * distance group to make it round-robin. 4166 */ 4167 if (node_distance(local_node, node) != 4168 node_distance(local_node, prev_node)) 4169 node_load[node] = load; 4170 4171 prev_node = node; 4172 load--; 4173 if (order == ZONELIST_ORDER_NODE) 4174 build_zonelists_in_node_order(pgdat, node); 4175 else 4176 node_order[j++] = node; /* remember order */ 4177 } 4178 4179 if (order == ZONELIST_ORDER_ZONE) { 4180 /* calculate node order -- i.e., DMA last! */ 4181 build_zonelists_in_zone_order(pgdat, j); 4182 } 4183 4184 build_thisnode_zonelists(pgdat); 4185 } 4186 4187 /* Construct the zonelist performance cache - see further mmzone.h */ 4188 static void build_zonelist_cache(pg_data_t *pgdat) 4189 { 4190 struct zonelist *zonelist; 4191 struct zonelist_cache *zlc; 4192 struct zoneref *z; 4193 4194 zonelist = &pgdat->node_zonelists[0]; 4195 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 4196 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 4197 for (z = zonelist->_zonerefs; z->zone; z++) 4198 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 4199 } 4200 4201 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4202 /* 4203 * Return node id of node used for "local" allocations. 4204 * I.e., first node id of first zone in arg node's generic zonelist. 4205 * Used for initializing percpu 'numa_mem', which is used primarily 4206 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 4207 */ 4208 int local_memory_node(int node) 4209 { 4210 struct zone *zone; 4211 4212 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 4213 gfp_zone(GFP_KERNEL), 4214 NULL, 4215 &zone); 4216 return zone->node; 4217 } 4218 #endif 4219 4220 #else /* CONFIG_NUMA */ 4221 4222 static void set_zonelist_order(void) 4223 { 4224 current_zonelist_order = ZONELIST_ORDER_ZONE; 4225 } 4226 4227 static void build_zonelists(pg_data_t *pgdat) 4228 { 4229 int node, local_node; 4230 enum zone_type j; 4231 struct zonelist *zonelist; 4232 4233 local_node = pgdat->node_id; 4234 4235 zonelist = &pgdat->node_zonelists[0]; 4236 j = build_zonelists_node(pgdat, zonelist, 0); 4237 4238 /* 4239 * Now we build the zonelist so that it contains the zones 4240 * of all the other nodes. 4241 * We don't want to pressure a particular node, so when 4242 * building the zones for node N, we make sure that the 4243 * zones coming right after the local ones are those from 4244 * node N+1 (modulo N) 4245 */ 4246 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 4247 if (!node_online(node)) 4248 continue; 4249 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4250 } 4251 for (node = 0; node < local_node; node++) { 4252 if (!node_online(node)) 4253 continue; 4254 j = build_zonelists_node(NODE_DATA(node), zonelist, j); 4255 } 4256 4257 zonelist->_zonerefs[j].zone = NULL; 4258 zonelist->_zonerefs[j].zone_idx = 0; 4259 } 4260 4261 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 4262 static void build_zonelist_cache(pg_data_t *pgdat) 4263 { 4264 pgdat->node_zonelists[0].zlcache_ptr = NULL; 4265 } 4266 4267 #endif /* CONFIG_NUMA */ 4268 4269 /* 4270 * Boot pageset table. One per cpu which is going to be used for all 4271 * zones and all nodes. The parameters will be set in such a way 4272 * that an item put on a list will immediately be handed over to 4273 * the buddy list. This is safe since pageset manipulation is done 4274 * with interrupts disabled. 4275 * 4276 * The boot_pagesets must be kept even after bootup is complete for 4277 * unused processors and/or zones. They do play a role for bootstrapping 4278 * hotplugged processors. 4279 * 4280 * zoneinfo_show() and maybe other functions do 4281 * not check if the processor is online before following the pageset pointer. 4282 * Other parts of the kernel may not check if the zone is available. 4283 */ 4284 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 4285 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 4286 static void setup_zone_pageset(struct zone *zone); 4287 4288 /* 4289 * Global mutex to protect against size modification of zonelists 4290 * as well as to serialize pageset setup for the new populated zone. 4291 */ 4292 DEFINE_MUTEX(zonelists_mutex); 4293 4294 /* return values int ....just for stop_machine() */ 4295 static int __build_all_zonelists(void *data) 4296 { 4297 int nid; 4298 int cpu; 4299 pg_data_t *self = data; 4300 4301 #ifdef CONFIG_NUMA 4302 memset(node_load, 0, sizeof(node_load)); 4303 #endif 4304 4305 if (self && !node_online(self->node_id)) { 4306 build_zonelists(self); 4307 build_zonelist_cache(self); 4308 } 4309 4310 for_each_online_node(nid) { 4311 pg_data_t *pgdat = NODE_DATA(nid); 4312 4313 build_zonelists(pgdat); 4314 build_zonelist_cache(pgdat); 4315 } 4316 4317 /* 4318 * Initialize the boot_pagesets that are going to be used 4319 * for bootstrapping processors. The real pagesets for 4320 * each zone will be allocated later when the per cpu 4321 * allocator is available. 4322 * 4323 * boot_pagesets are used also for bootstrapping offline 4324 * cpus if the system is already booted because the pagesets 4325 * are needed to initialize allocators on a specific cpu too. 4326 * F.e. the percpu allocator needs the page allocator which 4327 * needs the percpu allocator in order to allocate its pagesets 4328 * (a chicken-egg dilemma). 4329 */ 4330 for_each_possible_cpu(cpu) { 4331 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 4332 4333 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 4334 /* 4335 * We now know the "local memory node" for each node-- 4336 * i.e., the node of the first zone in the generic zonelist. 4337 * Set up numa_mem percpu variable for on-line cpus. During 4338 * boot, only the boot cpu should be on-line; we'll init the 4339 * secondary cpus' numa_mem as they come on-line. During 4340 * node/memory hotplug, we'll fixup all on-line cpus. 4341 */ 4342 if (cpu_online(cpu)) 4343 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 4344 #endif 4345 } 4346 4347 return 0; 4348 } 4349 4350 static noinline void __init 4351 build_all_zonelists_init(void) 4352 { 4353 __build_all_zonelists(NULL); 4354 mminit_verify_zonelist(); 4355 cpuset_init_current_mems_allowed(); 4356 } 4357 4358 /* 4359 * Called with zonelists_mutex held always 4360 * unless system_state == SYSTEM_BOOTING. 4361 * 4362 * __ref due to (1) call of __meminit annotated setup_zone_pageset 4363 * [we're only called with non-NULL zone through __meminit paths] and 4364 * (2) call of __init annotated helper build_all_zonelists_init 4365 * [protected by SYSTEM_BOOTING]. 4366 */ 4367 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 4368 { 4369 set_zonelist_order(); 4370 4371 if (system_state == SYSTEM_BOOTING) { 4372 build_all_zonelists_init(); 4373 } else { 4374 #ifdef CONFIG_MEMORY_HOTPLUG 4375 if (zone) 4376 setup_zone_pageset(zone); 4377 #endif 4378 /* we have to stop all cpus to guarantee there is no user 4379 of zonelist */ 4380 stop_machine(__build_all_zonelists, pgdat, NULL); 4381 /* cpuset refresh routine should be here */ 4382 } 4383 vm_total_pages = nr_free_pagecache_pages(); 4384 /* 4385 * Disable grouping by mobility if the number of pages in the 4386 * system is too low to allow the mechanism to work. It would be 4387 * more accurate, but expensive to check per-zone. This check is 4388 * made on memory-hotadd so a system can start with mobility 4389 * disabled and enable it later 4390 */ 4391 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 4392 page_group_by_mobility_disabled = 1; 4393 else 4394 page_group_by_mobility_disabled = 0; 4395 4396 pr_info("Built %i zonelists in %s order, mobility grouping %s. " 4397 "Total pages: %ld\n", 4398 nr_online_nodes, 4399 zonelist_order_name[current_zonelist_order], 4400 page_group_by_mobility_disabled ? "off" : "on", 4401 vm_total_pages); 4402 #ifdef CONFIG_NUMA 4403 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 4404 #endif 4405 } 4406 4407 /* 4408 * Helper functions to size the waitqueue hash table. 4409 * Essentially these want to choose hash table sizes sufficiently 4410 * large so that collisions trying to wait on pages are rare. 4411 * But in fact, the number of active page waitqueues on typical 4412 * systems is ridiculously low, less than 200. So this is even 4413 * conservative, even though it seems large. 4414 * 4415 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 4416 * waitqueues, i.e. the size of the waitq table given the number of pages. 4417 */ 4418 #define PAGES_PER_WAITQUEUE 256 4419 4420 #ifndef CONFIG_MEMORY_HOTPLUG 4421 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4422 { 4423 unsigned long size = 1; 4424 4425 pages /= PAGES_PER_WAITQUEUE; 4426 4427 while (size < pages) 4428 size <<= 1; 4429 4430 /* 4431 * Once we have dozens or even hundreds of threads sleeping 4432 * on IO we've got bigger problems than wait queue collision. 4433 * Limit the size of the wait table to a reasonable size. 4434 */ 4435 size = min(size, 4096UL); 4436 4437 return max(size, 4UL); 4438 } 4439 #else 4440 /* 4441 * A zone's size might be changed by hot-add, so it is not possible to determine 4442 * a suitable size for its wait_table. So we use the maximum size now. 4443 * 4444 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 4445 * 4446 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 4447 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 4448 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 4449 * 4450 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 4451 * or more by the traditional way. (See above). It equals: 4452 * 4453 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 4454 * ia64(16K page size) : = ( 8G + 4M)byte. 4455 * powerpc (64K page size) : = (32G +16M)byte. 4456 */ 4457 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 4458 { 4459 return 4096UL; 4460 } 4461 #endif 4462 4463 /* 4464 * This is an integer logarithm so that shifts can be used later 4465 * to extract the more random high bits from the multiplicative 4466 * hash function before the remainder is taken. 4467 */ 4468 static inline unsigned long wait_table_bits(unsigned long size) 4469 { 4470 return ffz(~size); 4471 } 4472 4473 /* 4474 * Check if a pageblock contains reserved pages 4475 */ 4476 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 4477 { 4478 unsigned long pfn; 4479 4480 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4481 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 4482 return 1; 4483 } 4484 return 0; 4485 } 4486 4487 /* 4488 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 4489 * of blocks reserved is based on min_wmark_pages(zone). The memory within 4490 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 4491 * higher will lead to a bigger reserve which will get freed as contiguous 4492 * blocks as reclaim kicks in 4493 */ 4494 static void setup_zone_migrate_reserve(struct zone *zone) 4495 { 4496 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 4497 struct page *page; 4498 unsigned long block_migratetype; 4499 int reserve; 4500 int old_reserve; 4501 4502 /* 4503 * Get the start pfn, end pfn and the number of blocks to reserve 4504 * We have to be careful to be aligned to pageblock_nr_pages to 4505 * make sure that we always check pfn_valid for the first page in 4506 * the block. 4507 */ 4508 start_pfn = zone->zone_start_pfn; 4509 end_pfn = zone_end_pfn(zone); 4510 start_pfn = roundup(start_pfn, pageblock_nr_pages); 4511 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 4512 pageblock_order; 4513 4514 /* 4515 * Reserve blocks are generally in place to help high-order atomic 4516 * allocations that are short-lived. A min_free_kbytes value that 4517 * would result in more than 2 reserve blocks for atomic allocations 4518 * is assumed to be in place to help anti-fragmentation for the 4519 * future allocation of hugepages at runtime. 4520 */ 4521 reserve = min(2, reserve); 4522 old_reserve = zone->nr_migrate_reserve_block; 4523 4524 /* When memory hot-add, we almost always need to do nothing */ 4525 if (reserve == old_reserve) 4526 return; 4527 zone->nr_migrate_reserve_block = reserve; 4528 4529 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 4530 if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone))) 4531 return; 4532 4533 if (!pfn_valid(pfn)) 4534 continue; 4535 page = pfn_to_page(pfn); 4536 4537 /* Watch out for overlapping nodes */ 4538 if (page_to_nid(page) != zone_to_nid(zone)) 4539 continue; 4540 4541 block_migratetype = get_pageblock_migratetype(page); 4542 4543 /* Only test what is necessary when the reserves are not met */ 4544 if (reserve > 0) { 4545 /* 4546 * Blocks with reserved pages will never free, skip 4547 * them. 4548 */ 4549 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 4550 if (pageblock_is_reserved(pfn, block_end_pfn)) 4551 continue; 4552 4553 /* If this block is reserved, account for it */ 4554 if (block_migratetype == MIGRATE_RESERVE) { 4555 reserve--; 4556 continue; 4557 } 4558 4559 /* Suitable for reserving if this block is movable */ 4560 if (block_migratetype == MIGRATE_MOVABLE) { 4561 set_pageblock_migratetype(page, 4562 MIGRATE_RESERVE); 4563 move_freepages_block(zone, page, 4564 MIGRATE_RESERVE); 4565 reserve--; 4566 continue; 4567 } 4568 } else if (!old_reserve) { 4569 /* 4570 * At boot time we don't need to scan the whole zone 4571 * for turning off MIGRATE_RESERVE. 4572 */ 4573 break; 4574 } 4575 4576 /* 4577 * If the reserve is met and this is a previous reserved block, 4578 * take it back 4579 */ 4580 if (block_migratetype == MIGRATE_RESERVE) { 4581 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4582 move_freepages_block(zone, page, MIGRATE_MOVABLE); 4583 } 4584 } 4585 } 4586 4587 /* 4588 * Initially all pages are reserved - free ones are freed 4589 * up by free_all_bootmem() once the early boot process is 4590 * done. Non-atomic initialization, single-pass. 4591 */ 4592 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 4593 unsigned long start_pfn, enum memmap_context context) 4594 { 4595 pg_data_t *pgdat = NODE_DATA(nid); 4596 unsigned long end_pfn = start_pfn + size; 4597 unsigned long pfn; 4598 struct zone *z; 4599 unsigned long nr_initialised = 0; 4600 4601 if (highest_memmap_pfn < end_pfn - 1) 4602 highest_memmap_pfn = end_pfn - 1; 4603 4604 z = &pgdat->node_zones[zone]; 4605 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 4606 /* 4607 * There can be holes in boot-time mem_map[]s 4608 * handed to this function. They do not 4609 * exist on hotplugged memory. 4610 */ 4611 if (context == MEMMAP_EARLY) { 4612 if (!early_pfn_valid(pfn)) 4613 continue; 4614 if (!early_pfn_in_nid(pfn, nid)) 4615 continue; 4616 if (!update_defer_init(pgdat, pfn, end_pfn, 4617 &nr_initialised)) 4618 break; 4619 } 4620 4621 /* 4622 * Mark the block movable so that blocks are reserved for 4623 * movable at startup. This will force kernel allocations 4624 * to reserve their blocks rather than leaking throughout 4625 * the address space during boot when many long-lived 4626 * kernel allocations are made. Later some blocks near 4627 * the start are marked MIGRATE_RESERVE by 4628 * setup_zone_migrate_reserve() 4629 * 4630 * bitmap is created for zone's valid pfn range. but memmap 4631 * can be created for invalid pages (for alignment) 4632 * check here not to call set_pageblock_migratetype() against 4633 * pfn out of zone. 4634 */ 4635 if (!(pfn & (pageblock_nr_pages - 1))) { 4636 struct page *page = pfn_to_page(pfn); 4637 4638 __init_single_page(page, pfn, zone, nid); 4639 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 4640 } else { 4641 __init_single_pfn(pfn, zone, nid); 4642 } 4643 } 4644 } 4645 4646 static void __meminit zone_init_free_lists(struct zone *zone) 4647 { 4648 unsigned int order, t; 4649 for_each_migratetype_order(order, t) { 4650 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 4651 zone->free_area[order].nr_free = 0; 4652 } 4653 } 4654 4655 #ifndef __HAVE_ARCH_MEMMAP_INIT 4656 #define memmap_init(size, nid, zone, start_pfn) \ 4657 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 4658 #endif 4659 4660 static int zone_batchsize(struct zone *zone) 4661 { 4662 #ifdef CONFIG_MMU 4663 int batch; 4664 4665 /* 4666 * The per-cpu-pages pools are set to around 1000th of the 4667 * size of the zone. But no more than 1/2 of a meg. 4668 * 4669 * OK, so we don't know how big the cache is. So guess. 4670 */ 4671 batch = zone->managed_pages / 1024; 4672 if (batch * PAGE_SIZE > 512 * 1024) 4673 batch = (512 * 1024) / PAGE_SIZE; 4674 batch /= 4; /* We effectively *= 4 below */ 4675 if (batch < 1) 4676 batch = 1; 4677 4678 /* 4679 * Clamp the batch to a 2^n - 1 value. Having a power 4680 * of 2 value was found to be more likely to have 4681 * suboptimal cache aliasing properties in some cases. 4682 * 4683 * For example if 2 tasks are alternately allocating 4684 * batches of pages, one task can end up with a lot 4685 * of pages of one half of the possible page colors 4686 * and the other with pages of the other colors. 4687 */ 4688 batch = rounddown_pow_of_two(batch + batch/2) - 1; 4689 4690 return batch; 4691 4692 #else 4693 /* The deferral and batching of frees should be suppressed under NOMMU 4694 * conditions. 4695 * 4696 * The problem is that NOMMU needs to be able to allocate large chunks 4697 * of contiguous memory as there's no hardware page translation to 4698 * assemble apparent contiguous memory from discontiguous pages. 4699 * 4700 * Queueing large contiguous runs of pages for batching, however, 4701 * causes the pages to actually be freed in smaller chunks. As there 4702 * can be a significant delay between the individual batches being 4703 * recycled, this leads to the once large chunks of space being 4704 * fragmented and becoming unavailable for high-order allocations. 4705 */ 4706 return 0; 4707 #endif 4708 } 4709 4710 /* 4711 * pcp->high and pcp->batch values are related and dependent on one another: 4712 * ->batch must never be higher then ->high. 4713 * The following function updates them in a safe manner without read side 4714 * locking. 4715 * 4716 * Any new users of pcp->batch and pcp->high should ensure they can cope with 4717 * those fields changing asynchronously (acording the the above rule). 4718 * 4719 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 4720 * outside of boot time (or some other assurance that no concurrent updaters 4721 * exist). 4722 */ 4723 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 4724 unsigned long batch) 4725 { 4726 /* start with a fail safe value for batch */ 4727 pcp->batch = 1; 4728 smp_wmb(); 4729 4730 /* Update high, then batch, in order */ 4731 pcp->high = high; 4732 smp_wmb(); 4733 4734 pcp->batch = batch; 4735 } 4736 4737 /* a companion to pageset_set_high() */ 4738 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 4739 { 4740 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 4741 } 4742 4743 static void pageset_init(struct per_cpu_pageset *p) 4744 { 4745 struct per_cpu_pages *pcp; 4746 int migratetype; 4747 4748 memset(p, 0, sizeof(*p)); 4749 4750 pcp = &p->pcp; 4751 pcp->count = 0; 4752 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 4753 INIT_LIST_HEAD(&pcp->lists[migratetype]); 4754 } 4755 4756 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 4757 { 4758 pageset_init(p); 4759 pageset_set_batch(p, batch); 4760 } 4761 4762 /* 4763 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 4764 * to the value high for the pageset p. 4765 */ 4766 static void pageset_set_high(struct per_cpu_pageset *p, 4767 unsigned long high) 4768 { 4769 unsigned long batch = max(1UL, high / 4); 4770 if ((high / 4) > (PAGE_SHIFT * 8)) 4771 batch = PAGE_SHIFT * 8; 4772 4773 pageset_update(&p->pcp, high, batch); 4774 } 4775 4776 static void pageset_set_high_and_batch(struct zone *zone, 4777 struct per_cpu_pageset *pcp) 4778 { 4779 if (percpu_pagelist_fraction) 4780 pageset_set_high(pcp, 4781 (zone->managed_pages / 4782 percpu_pagelist_fraction)); 4783 else 4784 pageset_set_batch(pcp, zone_batchsize(zone)); 4785 } 4786 4787 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 4788 { 4789 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 4790 4791 pageset_init(pcp); 4792 pageset_set_high_and_batch(zone, pcp); 4793 } 4794 4795 static void __meminit setup_zone_pageset(struct zone *zone) 4796 { 4797 int cpu; 4798 zone->pageset = alloc_percpu(struct per_cpu_pageset); 4799 for_each_possible_cpu(cpu) 4800 zone_pageset_init(zone, cpu); 4801 } 4802 4803 /* 4804 * Allocate per cpu pagesets and initialize them. 4805 * Before this call only boot pagesets were available. 4806 */ 4807 void __init setup_per_cpu_pageset(void) 4808 { 4809 struct zone *zone; 4810 4811 for_each_populated_zone(zone) 4812 setup_zone_pageset(zone); 4813 } 4814 4815 static noinline __init_refok 4816 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 4817 { 4818 int i; 4819 size_t alloc_size; 4820 4821 /* 4822 * The per-page waitqueue mechanism uses hashed waitqueues 4823 * per zone. 4824 */ 4825 zone->wait_table_hash_nr_entries = 4826 wait_table_hash_nr_entries(zone_size_pages); 4827 zone->wait_table_bits = 4828 wait_table_bits(zone->wait_table_hash_nr_entries); 4829 alloc_size = zone->wait_table_hash_nr_entries 4830 * sizeof(wait_queue_head_t); 4831 4832 if (!slab_is_available()) { 4833 zone->wait_table = (wait_queue_head_t *) 4834 memblock_virt_alloc_node_nopanic( 4835 alloc_size, zone->zone_pgdat->node_id); 4836 } else { 4837 /* 4838 * This case means that a zone whose size was 0 gets new memory 4839 * via memory hot-add. 4840 * But it may be the case that a new node was hot-added. In 4841 * this case vmalloc() will not be able to use this new node's 4842 * memory - this wait_table must be initialized to use this new 4843 * node itself as well. 4844 * To use this new node's memory, further consideration will be 4845 * necessary. 4846 */ 4847 zone->wait_table = vmalloc(alloc_size); 4848 } 4849 if (!zone->wait_table) 4850 return -ENOMEM; 4851 4852 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4853 init_waitqueue_head(zone->wait_table + i); 4854 4855 return 0; 4856 } 4857 4858 static __meminit void zone_pcp_init(struct zone *zone) 4859 { 4860 /* 4861 * per cpu subsystem is not up at this point. The following code 4862 * relies on the ability of the linker to provide the 4863 * offset of a (static) per cpu variable into the per cpu area. 4864 */ 4865 zone->pageset = &boot_pageset; 4866 4867 if (populated_zone(zone)) 4868 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4869 zone->name, zone->present_pages, 4870 zone_batchsize(zone)); 4871 } 4872 4873 int __meminit init_currently_empty_zone(struct zone *zone, 4874 unsigned long zone_start_pfn, 4875 unsigned long size, 4876 enum memmap_context context) 4877 { 4878 struct pglist_data *pgdat = zone->zone_pgdat; 4879 int ret; 4880 ret = zone_wait_table_init(zone, size); 4881 if (ret) 4882 return ret; 4883 pgdat->nr_zones = zone_idx(zone) + 1; 4884 4885 zone->zone_start_pfn = zone_start_pfn; 4886 4887 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4888 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4889 pgdat->node_id, 4890 (unsigned long)zone_idx(zone), 4891 zone_start_pfn, (zone_start_pfn + size)); 4892 4893 zone_init_free_lists(zone); 4894 4895 return 0; 4896 } 4897 4898 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4899 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4900 4901 /* 4902 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4903 */ 4904 int __meminit __early_pfn_to_nid(unsigned long pfn, 4905 struct mminit_pfnnid_cache *state) 4906 { 4907 unsigned long start_pfn, end_pfn; 4908 int nid; 4909 4910 if (state->last_start <= pfn && pfn < state->last_end) 4911 return state->last_nid; 4912 4913 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 4914 if (nid != -1) { 4915 state->last_start = start_pfn; 4916 state->last_end = end_pfn; 4917 state->last_nid = nid; 4918 } 4919 4920 return nid; 4921 } 4922 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4923 4924 /** 4925 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 4926 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4927 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 4928 * 4929 * If an architecture guarantees that all ranges registered contain no holes 4930 * and may be freed, this this function may be used instead of calling 4931 * memblock_free_early_nid() manually. 4932 */ 4933 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4934 { 4935 unsigned long start_pfn, end_pfn; 4936 int i, this_nid; 4937 4938 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4939 start_pfn = min(start_pfn, max_low_pfn); 4940 end_pfn = min(end_pfn, max_low_pfn); 4941 4942 if (start_pfn < end_pfn) 4943 memblock_free_early_nid(PFN_PHYS(start_pfn), 4944 (end_pfn - start_pfn) << PAGE_SHIFT, 4945 this_nid); 4946 } 4947 } 4948 4949 /** 4950 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4951 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4952 * 4953 * If an architecture guarantees that all ranges registered contain no holes and may 4954 * be freed, this function may be used instead of calling memory_present() manually. 4955 */ 4956 void __init sparse_memory_present_with_active_regions(int nid) 4957 { 4958 unsigned long start_pfn, end_pfn; 4959 int i, this_nid; 4960 4961 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4962 memory_present(this_nid, start_pfn, end_pfn); 4963 } 4964 4965 /** 4966 * get_pfn_range_for_nid - Return the start and end page frames for a node 4967 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4968 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4969 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4970 * 4971 * It returns the start and end page frame of a node based on information 4972 * provided by memblock_set_node(). If called for a node 4973 * with no available memory, a warning is printed and the start and end 4974 * PFNs will be 0. 4975 */ 4976 void __meminit get_pfn_range_for_nid(unsigned int nid, 4977 unsigned long *start_pfn, unsigned long *end_pfn) 4978 { 4979 unsigned long this_start_pfn, this_end_pfn; 4980 int i; 4981 4982 *start_pfn = -1UL; 4983 *end_pfn = 0; 4984 4985 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4986 *start_pfn = min(*start_pfn, this_start_pfn); 4987 *end_pfn = max(*end_pfn, this_end_pfn); 4988 } 4989 4990 if (*start_pfn == -1UL) 4991 *start_pfn = 0; 4992 } 4993 4994 /* 4995 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4996 * assumption is made that zones within a node are ordered in monotonic 4997 * increasing memory addresses so that the "highest" populated zone is used 4998 */ 4999 static void __init find_usable_zone_for_movable(void) 5000 { 5001 int zone_index; 5002 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5003 if (zone_index == ZONE_MOVABLE) 5004 continue; 5005 5006 if (arch_zone_highest_possible_pfn[zone_index] > 5007 arch_zone_lowest_possible_pfn[zone_index]) 5008 break; 5009 } 5010 5011 VM_BUG_ON(zone_index == -1); 5012 movable_zone = zone_index; 5013 } 5014 5015 /* 5016 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5017 * because it is sized independent of architecture. Unlike the other zones, 5018 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5019 * in each node depending on the size of each node and how evenly kernelcore 5020 * is distributed. This helper function adjusts the zone ranges 5021 * provided by the architecture for a given node by using the end of the 5022 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5023 * zones within a node are in order of monotonic increases memory addresses 5024 */ 5025 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5026 unsigned long zone_type, 5027 unsigned long node_start_pfn, 5028 unsigned long node_end_pfn, 5029 unsigned long *zone_start_pfn, 5030 unsigned long *zone_end_pfn) 5031 { 5032 /* Only adjust if ZONE_MOVABLE is on this node */ 5033 if (zone_movable_pfn[nid]) { 5034 /* Size ZONE_MOVABLE */ 5035 if (zone_type == ZONE_MOVABLE) { 5036 *zone_start_pfn = zone_movable_pfn[nid]; 5037 *zone_end_pfn = min(node_end_pfn, 5038 arch_zone_highest_possible_pfn[movable_zone]); 5039 5040 /* Adjust for ZONE_MOVABLE starting within this range */ 5041 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 5042 *zone_end_pfn > zone_movable_pfn[nid]) { 5043 *zone_end_pfn = zone_movable_pfn[nid]; 5044 5045 /* Check if this whole range is within ZONE_MOVABLE */ 5046 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5047 *zone_start_pfn = *zone_end_pfn; 5048 } 5049 } 5050 5051 /* 5052 * Return the number of pages a zone spans in a node, including holes 5053 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5054 */ 5055 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5056 unsigned long zone_type, 5057 unsigned long node_start_pfn, 5058 unsigned long node_end_pfn, 5059 unsigned long *ignored) 5060 { 5061 unsigned long zone_start_pfn, zone_end_pfn; 5062 5063 /* Get the start and end of the zone */ 5064 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5065 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5066 adjust_zone_range_for_zone_movable(nid, zone_type, 5067 node_start_pfn, node_end_pfn, 5068 &zone_start_pfn, &zone_end_pfn); 5069 5070 /* Check that this node has pages within the zone's required range */ 5071 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 5072 return 0; 5073 5074 /* Move the zone boundaries inside the node if necessary */ 5075 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 5076 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 5077 5078 /* Return the spanned pages */ 5079 return zone_end_pfn - zone_start_pfn; 5080 } 5081 5082 /* 5083 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5084 * then all holes in the requested range will be accounted for. 5085 */ 5086 unsigned long __meminit __absent_pages_in_range(int nid, 5087 unsigned long range_start_pfn, 5088 unsigned long range_end_pfn) 5089 { 5090 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5091 unsigned long start_pfn, end_pfn; 5092 int i; 5093 5094 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5095 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5096 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5097 nr_absent -= end_pfn - start_pfn; 5098 } 5099 return nr_absent; 5100 } 5101 5102 /** 5103 * absent_pages_in_range - Return number of page frames in holes within a range 5104 * @start_pfn: The start PFN to start searching for holes 5105 * @end_pfn: The end PFN to stop searching for holes 5106 * 5107 * It returns the number of pages frames in memory holes within a range. 5108 */ 5109 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5110 unsigned long end_pfn) 5111 { 5112 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5113 } 5114 5115 /* Return the number of page frames in holes in a zone on a node */ 5116 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5117 unsigned long zone_type, 5118 unsigned long node_start_pfn, 5119 unsigned long node_end_pfn, 5120 unsigned long *ignored) 5121 { 5122 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5123 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5124 unsigned long zone_start_pfn, zone_end_pfn; 5125 5126 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5127 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5128 5129 adjust_zone_range_for_zone_movable(nid, zone_type, 5130 node_start_pfn, node_end_pfn, 5131 &zone_start_pfn, &zone_end_pfn); 5132 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5133 } 5134 5135 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5136 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5137 unsigned long zone_type, 5138 unsigned long node_start_pfn, 5139 unsigned long node_end_pfn, 5140 unsigned long *zones_size) 5141 { 5142 return zones_size[zone_type]; 5143 } 5144 5145 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5146 unsigned long zone_type, 5147 unsigned long node_start_pfn, 5148 unsigned long node_end_pfn, 5149 unsigned long *zholes_size) 5150 { 5151 if (!zholes_size) 5152 return 0; 5153 5154 return zholes_size[zone_type]; 5155 } 5156 5157 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5158 5159 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5160 unsigned long node_start_pfn, 5161 unsigned long node_end_pfn, 5162 unsigned long *zones_size, 5163 unsigned long *zholes_size) 5164 { 5165 unsigned long realtotalpages = 0, totalpages = 0; 5166 enum zone_type i; 5167 5168 for (i = 0; i < MAX_NR_ZONES; i++) { 5169 struct zone *zone = pgdat->node_zones + i; 5170 unsigned long size, real_size; 5171 5172 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5173 node_start_pfn, 5174 node_end_pfn, 5175 zones_size); 5176 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5177 node_start_pfn, node_end_pfn, 5178 zholes_size); 5179 zone->spanned_pages = size; 5180 zone->present_pages = real_size; 5181 5182 totalpages += size; 5183 realtotalpages += real_size; 5184 } 5185 5186 pgdat->node_spanned_pages = totalpages; 5187 pgdat->node_present_pages = realtotalpages; 5188 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5189 realtotalpages); 5190 } 5191 5192 #ifndef CONFIG_SPARSEMEM 5193 /* 5194 * Calculate the size of the zone->blockflags rounded to an unsigned long 5195 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5196 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5197 * round what is now in bits to nearest long in bits, then return it in 5198 * bytes. 5199 */ 5200 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5201 { 5202 unsigned long usemapsize; 5203 5204 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5205 usemapsize = roundup(zonesize, pageblock_nr_pages); 5206 usemapsize = usemapsize >> pageblock_order; 5207 usemapsize *= NR_PAGEBLOCK_BITS; 5208 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5209 5210 return usemapsize / 8; 5211 } 5212 5213 static void __init setup_usemap(struct pglist_data *pgdat, 5214 struct zone *zone, 5215 unsigned long zone_start_pfn, 5216 unsigned long zonesize) 5217 { 5218 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 5219 zone->pageblock_flags = NULL; 5220 if (usemapsize) 5221 zone->pageblock_flags = 5222 memblock_virt_alloc_node_nopanic(usemapsize, 5223 pgdat->node_id); 5224 } 5225 #else 5226 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 5227 unsigned long zone_start_pfn, unsigned long zonesize) {} 5228 #endif /* CONFIG_SPARSEMEM */ 5229 5230 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 5231 5232 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 5233 void __paginginit set_pageblock_order(void) 5234 { 5235 unsigned int order; 5236 5237 /* Check that pageblock_nr_pages has not already been setup */ 5238 if (pageblock_order) 5239 return; 5240 5241 if (HPAGE_SHIFT > PAGE_SHIFT) 5242 order = HUGETLB_PAGE_ORDER; 5243 else 5244 order = MAX_ORDER - 1; 5245 5246 /* 5247 * Assume the largest contiguous order of interest is a huge page. 5248 * This value may be variable depending on boot parameters on IA64 and 5249 * powerpc. 5250 */ 5251 pageblock_order = order; 5252 } 5253 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5254 5255 /* 5256 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 5257 * is unused as pageblock_order is set at compile-time. See 5258 * include/linux/pageblock-flags.h for the values of pageblock_order based on 5259 * the kernel config 5260 */ 5261 void __paginginit set_pageblock_order(void) 5262 { 5263 } 5264 5265 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 5266 5267 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 5268 unsigned long present_pages) 5269 { 5270 unsigned long pages = spanned_pages; 5271 5272 /* 5273 * Provide a more accurate estimation if there are holes within 5274 * the zone and SPARSEMEM is in use. If there are holes within the 5275 * zone, each populated memory region may cost us one or two extra 5276 * memmap pages due to alignment because memmap pages for each 5277 * populated regions may not naturally algined on page boundary. 5278 * So the (present_pages >> 4) heuristic is a tradeoff for that. 5279 */ 5280 if (spanned_pages > present_pages + (present_pages >> 4) && 5281 IS_ENABLED(CONFIG_SPARSEMEM)) 5282 pages = present_pages; 5283 5284 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 5285 } 5286 5287 /* 5288 * Set up the zone data structures: 5289 * - mark all pages reserved 5290 * - mark all memory queues empty 5291 * - clear the memory bitmaps 5292 * 5293 * NOTE: pgdat should get zeroed by caller. 5294 */ 5295 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 5296 unsigned long node_start_pfn, unsigned long node_end_pfn) 5297 { 5298 enum zone_type j; 5299 int nid = pgdat->node_id; 5300 unsigned long zone_start_pfn = pgdat->node_start_pfn; 5301 int ret; 5302 5303 pgdat_resize_init(pgdat); 5304 #ifdef CONFIG_NUMA_BALANCING 5305 spin_lock_init(&pgdat->numabalancing_migrate_lock); 5306 pgdat->numabalancing_migrate_nr_pages = 0; 5307 pgdat->numabalancing_migrate_next_window = jiffies; 5308 #endif 5309 init_waitqueue_head(&pgdat->kswapd_wait); 5310 init_waitqueue_head(&pgdat->pfmemalloc_wait); 5311 pgdat_page_ext_init(pgdat); 5312 5313 for (j = 0; j < MAX_NR_ZONES; j++) { 5314 struct zone *zone = pgdat->node_zones + j; 5315 unsigned long size, realsize, freesize, memmap_pages; 5316 5317 size = zone->spanned_pages; 5318 realsize = freesize = zone->present_pages; 5319 5320 /* 5321 * Adjust freesize so that it accounts for how much memory 5322 * is used by this zone for memmap. This affects the watermark 5323 * and per-cpu initialisations 5324 */ 5325 memmap_pages = calc_memmap_size(size, realsize); 5326 if (!is_highmem_idx(j)) { 5327 if (freesize >= memmap_pages) { 5328 freesize -= memmap_pages; 5329 if (memmap_pages) 5330 printk(KERN_DEBUG 5331 " %s zone: %lu pages used for memmap\n", 5332 zone_names[j], memmap_pages); 5333 } else 5334 printk(KERN_WARNING 5335 " %s zone: %lu pages exceeds freesize %lu\n", 5336 zone_names[j], memmap_pages, freesize); 5337 } 5338 5339 /* Account for reserved pages */ 5340 if (j == 0 && freesize > dma_reserve) { 5341 freesize -= dma_reserve; 5342 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 5343 zone_names[0], dma_reserve); 5344 } 5345 5346 if (!is_highmem_idx(j)) 5347 nr_kernel_pages += freesize; 5348 /* Charge for highmem memmap if there are enough kernel pages */ 5349 else if (nr_kernel_pages > memmap_pages * 2) 5350 nr_kernel_pages -= memmap_pages; 5351 nr_all_pages += freesize; 5352 5353 /* 5354 * Set an approximate value for lowmem here, it will be adjusted 5355 * when the bootmem allocator frees pages into the buddy system. 5356 * And all highmem pages will be managed by the buddy system. 5357 */ 5358 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 5359 #ifdef CONFIG_NUMA 5360 zone->node = nid; 5361 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio) 5362 / 100; 5363 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100; 5364 #endif 5365 zone->name = zone_names[j]; 5366 spin_lock_init(&zone->lock); 5367 spin_lock_init(&zone->lru_lock); 5368 zone_seqlock_init(zone); 5369 zone->zone_pgdat = pgdat; 5370 zone_pcp_init(zone); 5371 5372 /* For bootup, initialized properly in watermark setup */ 5373 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages); 5374 5375 lruvec_init(&zone->lruvec); 5376 if (!size) 5377 continue; 5378 5379 set_pageblock_order(); 5380 setup_usemap(pgdat, zone, zone_start_pfn, size); 5381 ret = init_currently_empty_zone(zone, zone_start_pfn, 5382 size, MEMMAP_EARLY); 5383 BUG_ON(ret); 5384 memmap_init(size, nid, j, zone_start_pfn); 5385 zone_start_pfn += size; 5386 } 5387 } 5388 5389 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 5390 { 5391 /* Skip empty nodes */ 5392 if (!pgdat->node_spanned_pages) 5393 return; 5394 5395 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5396 /* ia64 gets its own node_mem_map, before this, without bootmem */ 5397 if (!pgdat->node_mem_map) { 5398 unsigned long size, start, end; 5399 struct page *map; 5400 5401 /* 5402 * The zone's endpoints aren't required to be MAX_ORDER 5403 * aligned but the node_mem_map endpoints must be in order 5404 * for the buddy allocator to function correctly. 5405 */ 5406 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 5407 end = pgdat_end_pfn(pgdat); 5408 end = ALIGN(end, MAX_ORDER_NR_PAGES); 5409 size = (end - start) * sizeof(struct page); 5410 map = alloc_remap(pgdat->node_id, size); 5411 if (!map) 5412 map = memblock_virt_alloc_node_nopanic(size, 5413 pgdat->node_id); 5414 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 5415 } 5416 #ifndef CONFIG_NEED_MULTIPLE_NODES 5417 /* 5418 * With no DISCONTIG, the global mem_map is just set as node 0's 5419 */ 5420 if (pgdat == NODE_DATA(0)) { 5421 mem_map = NODE_DATA(0)->node_mem_map; 5422 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5423 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 5424 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 5425 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5426 } 5427 #endif 5428 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 5429 } 5430 5431 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 5432 unsigned long node_start_pfn, unsigned long *zholes_size) 5433 { 5434 pg_data_t *pgdat = NODE_DATA(nid); 5435 unsigned long start_pfn = 0; 5436 unsigned long end_pfn = 0; 5437 5438 /* pg_data_t should be reset to zero when it's allocated */ 5439 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 5440 5441 reset_deferred_meminit(pgdat); 5442 pgdat->node_id = nid; 5443 pgdat->node_start_pfn = node_start_pfn; 5444 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5445 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 5446 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 5447 (u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1); 5448 #endif 5449 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 5450 zones_size, zholes_size); 5451 5452 alloc_node_mem_map(pgdat); 5453 #ifdef CONFIG_FLAT_NODE_MEM_MAP 5454 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 5455 nid, (unsigned long)pgdat, 5456 (unsigned long)pgdat->node_mem_map); 5457 #endif 5458 5459 free_area_init_core(pgdat, start_pfn, end_pfn); 5460 } 5461 5462 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5463 5464 #if MAX_NUMNODES > 1 5465 /* 5466 * Figure out the number of possible node ids. 5467 */ 5468 void __init setup_nr_node_ids(void) 5469 { 5470 unsigned int node; 5471 unsigned int highest = 0; 5472 5473 for_each_node_mask(node, node_possible_map) 5474 highest = node; 5475 nr_node_ids = highest + 1; 5476 } 5477 #endif 5478 5479 /** 5480 * node_map_pfn_alignment - determine the maximum internode alignment 5481 * 5482 * This function should be called after node map is populated and sorted. 5483 * It calculates the maximum power of two alignment which can distinguish 5484 * all the nodes. 5485 * 5486 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 5487 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 5488 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 5489 * shifted, 1GiB is enough and this function will indicate so. 5490 * 5491 * This is used to test whether pfn -> nid mapping of the chosen memory 5492 * model has fine enough granularity to avoid incorrect mapping for the 5493 * populated node map. 5494 * 5495 * Returns the determined alignment in pfn's. 0 if there is no alignment 5496 * requirement (single node). 5497 */ 5498 unsigned long __init node_map_pfn_alignment(void) 5499 { 5500 unsigned long accl_mask = 0, last_end = 0; 5501 unsigned long start, end, mask; 5502 int last_nid = -1; 5503 int i, nid; 5504 5505 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 5506 if (!start || last_nid < 0 || last_nid == nid) { 5507 last_nid = nid; 5508 last_end = end; 5509 continue; 5510 } 5511 5512 /* 5513 * Start with a mask granular enough to pin-point to the 5514 * start pfn and tick off bits one-by-one until it becomes 5515 * too coarse to separate the current node from the last. 5516 */ 5517 mask = ~((1 << __ffs(start)) - 1); 5518 while (mask && last_end <= (start & (mask << 1))) 5519 mask <<= 1; 5520 5521 /* accumulate all internode masks */ 5522 accl_mask |= mask; 5523 } 5524 5525 /* convert mask to number of pages */ 5526 return ~accl_mask + 1; 5527 } 5528 5529 /* Find the lowest pfn for a node */ 5530 static unsigned long __init find_min_pfn_for_node(int nid) 5531 { 5532 unsigned long min_pfn = ULONG_MAX; 5533 unsigned long start_pfn; 5534 int i; 5535 5536 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 5537 min_pfn = min(min_pfn, start_pfn); 5538 5539 if (min_pfn == ULONG_MAX) { 5540 printk(KERN_WARNING 5541 "Could not find start_pfn for node %d\n", nid); 5542 return 0; 5543 } 5544 5545 return min_pfn; 5546 } 5547 5548 /** 5549 * find_min_pfn_with_active_regions - Find the minimum PFN registered 5550 * 5551 * It returns the minimum PFN based on information provided via 5552 * memblock_set_node(). 5553 */ 5554 unsigned long __init find_min_pfn_with_active_regions(void) 5555 { 5556 return find_min_pfn_for_node(MAX_NUMNODES); 5557 } 5558 5559 /* 5560 * early_calculate_totalpages() 5561 * Sum pages in active regions for movable zone. 5562 * Populate N_MEMORY for calculating usable_nodes. 5563 */ 5564 static unsigned long __init early_calculate_totalpages(void) 5565 { 5566 unsigned long totalpages = 0; 5567 unsigned long start_pfn, end_pfn; 5568 int i, nid; 5569 5570 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 5571 unsigned long pages = end_pfn - start_pfn; 5572 5573 totalpages += pages; 5574 if (pages) 5575 node_set_state(nid, N_MEMORY); 5576 } 5577 return totalpages; 5578 } 5579 5580 /* 5581 * Find the PFN the Movable zone begins in each node. Kernel memory 5582 * is spread evenly between nodes as long as the nodes have enough 5583 * memory. When they don't, some nodes will have more kernelcore than 5584 * others 5585 */ 5586 static void __init find_zone_movable_pfns_for_nodes(void) 5587 { 5588 int i, nid; 5589 unsigned long usable_startpfn; 5590 unsigned long kernelcore_node, kernelcore_remaining; 5591 /* save the state before borrow the nodemask */ 5592 nodemask_t saved_node_state = node_states[N_MEMORY]; 5593 unsigned long totalpages = early_calculate_totalpages(); 5594 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 5595 struct memblock_region *r; 5596 5597 /* Need to find movable_zone earlier when movable_node is specified. */ 5598 find_usable_zone_for_movable(); 5599 5600 /* 5601 * If movable_node is specified, ignore kernelcore and movablecore 5602 * options. 5603 */ 5604 if (movable_node_is_enabled()) { 5605 for_each_memblock(memory, r) { 5606 if (!memblock_is_hotpluggable(r)) 5607 continue; 5608 5609 nid = r->nid; 5610 5611 usable_startpfn = PFN_DOWN(r->base); 5612 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 5613 min(usable_startpfn, zone_movable_pfn[nid]) : 5614 usable_startpfn; 5615 } 5616 5617 goto out2; 5618 } 5619 5620 /* 5621 * If movablecore=nn[KMG] was specified, calculate what size of 5622 * kernelcore that corresponds so that memory usable for 5623 * any allocation type is evenly spread. If both kernelcore 5624 * and movablecore are specified, then the value of kernelcore 5625 * will be used for required_kernelcore if it's greater than 5626 * what movablecore would have allowed. 5627 */ 5628 if (required_movablecore) { 5629 unsigned long corepages; 5630 5631 /* 5632 * Round-up so that ZONE_MOVABLE is at least as large as what 5633 * was requested by the user 5634 */ 5635 required_movablecore = 5636 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 5637 corepages = totalpages - required_movablecore; 5638 5639 required_kernelcore = max(required_kernelcore, corepages); 5640 } 5641 5642 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 5643 if (!required_kernelcore) 5644 goto out; 5645 5646 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 5647 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 5648 5649 restart: 5650 /* Spread kernelcore memory as evenly as possible throughout nodes */ 5651 kernelcore_node = required_kernelcore / usable_nodes; 5652 for_each_node_state(nid, N_MEMORY) { 5653 unsigned long start_pfn, end_pfn; 5654 5655 /* 5656 * Recalculate kernelcore_node if the division per node 5657 * now exceeds what is necessary to satisfy the requested 5658 * amount of memory for the kernel 5659 */ 5660 if (required_kernelcore < kernelcore_node) 5661 kernelcore_node = required_kernelcore / usable_nodes; 5662 5663 /* 5664 * As the map is walked, we track how much memory is usable 5665 * by the kernel using kernelcore_remaining. When it is 5666 * 0, the rest of the node is usable by ZONE_MOVABLE 5667 */ 5668 kernelcore_remaining = kernelcore_node; 5669 5670 /* Go through each range of PFNs within this node */ 5671 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5672 unsigned long size_pages; 5673 5674 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 5675 if (start_pfn >= end_pfn) 5676 continue; 5677 5678 /* Account for what is only usable for kernelcore */ 5679 if (start_pfn < usable_startpfn) { 5680 unsigned long kernel_pages; 5681 kernel_pages = min(end_pfn, usable_startpfn) 5682 - start_pfn; 5683 5684 kernelcore_remaining -= min(kernel_pages, 5685 kernelcore_remaining); 5686 required_kernelcore -= min(kernel_pages, 5687 required_kernelcore); 5688 5689 /* Continue if range is now fully accounted */ 5690 if (end_pfn <= usable_startpfn) { 5691 5692 /* 5693 * Push zone_movable_pfn to the end so 5694 * that if we have to rebalance 5695 * kernelcore across nodes, we will 5696 * not double account here 5697 */ 5698 zone_movable_pfn[nid] = end_pfn; 5699 continue; 5700 } 5701 start_pfn = usable_startpfn; 5702 } 5703 5704 /* 5705 * The usable PFN range for ZONE_MOVABLE is from 5706 * start_pfn->end_pfn. Calculate size_pages as the 5707 * number of pages used as kernelcore 5708 */ 5709 size_pages = end_pfn - start_pfn; 5710 if (size_pages > kernelcore_remaining) 5711 size_pages = kernelcore_remaining; 5712 zone_movable_pfn[nid] = start_pfn + size_pages; 5713 5714 /* 5715 * Some kernelcore has been met, update counts and 5716 * break if the kernelcore for this node has been 5717 * satisfied 5718 */ 5719 required_kernelcore -= min(required_kernelcore, 5720 size_pages); 5721 kernelcore_remaining -= size_pages; 5722 if (!kernelcore_remaining) 5723 break; 5724 } 5725 } 5726 5727 /* 5728 * If there is still required_kernelcore, we do another pass with one 5729 * less node in the count. This will push zone_movable_pfn[nid] further 5730 * along on the nodes that still have memory until kernelcore is 5731 * satisfied 5732 */ 5733 usable_nodes--; 5734 if (usable_nodes && required_kernelcore > usable_nodes) 5735 goto restart; 5736 5737 out2: 5738 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 5739 for (nid = 0; nid < MAX_NUMNODES; nid++) 5740 zone_movable_pfn[nid] = 5741 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 5742 5743 out: 5744 /* restore the node_state */ 5745 node_states[N_MEMORY] = saved_node_state; 5746 } 5747 5748 /* Any regular or high memory on that node ? */ 5749 static void check_for_memory(pg_data_t *pgdat, int nid) 5750 { 5751 enum zone_type zone_type; 5752 5753 if (N_MEMORY == N_NORMAL_MEMORY) 5754 return; 5755 5756 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 5757 struct zone *zone = &pgdat->node_zones[zone_type]; 5758 if (populated_zone(zone)) { 5759 node_set_state(nid, N_HIGH_MEMORY); 5760 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 5761 zone_type <= ZONE_NORMAL) 5762 node_set_state(nid, N_NORMAL_MEMORY); 5763 break; 5764 } 5765 } 5766 } 5767 5768 /** 5769 * free_area_init_nodes - Initialise all pg_data_t and zone data 5770 * @max_zone_pfn: an array of max PFNs for each zone 5771 * 5772 * This will call free_area_init_node() for each active node in the system. 5773 * Using the page ranges provided by memblock_set_node(), the size of each 5774 * zone in each node and their holes is calculated. If the maximum PFN 5775 * between two adjacent zones match, it is assumed that the zone is empty. 5776 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 5777 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 5778 * starts where the previous one ended. For example, ZONE_DMA32 starts 5779 * at arch_max_dma_pfn. 5780 */ 5781 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 5782 { 5783 unsigned long start_pfn, end_pfn; 5784 int i, nid; 5785 5786 /* Record where the zone boundaries are */ 5787 memset(arch_zone_lowest_possible_pfn, 0, 5788 sizeof(arch_zone_lowest_possible_pfn)); 5789 memset(arch_zone_highest_possible_pfn, 0, 5790 sizeof(arch_zone_highest_possible_pfn)); 5791 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 5792 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 5793 for (i = 1; i < MAX_NR_ZONES; i++) { 5794 if (i == ZONE_MOVABLE) 5795 continue; 5796 arch_zone_lowest_possible_pfn[i] = 5797 arch_zone_highest_possible_pfn[i-1]; 5798 arch_zone_highest_possible_pfn[i] = 5799 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 5800 } 5801 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 5802 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 5803 5804 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 5805 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 5806 find_zone_movable_pfns_for_nodes(); 5807 5808 /* Print out the zone ranges */ 5809 pr_info("Zone ranges:\n"); 5810 for (i = 0; i < MAX_NR_ZONES; i++) { 5811 if (i == ZONE_MOVABLE) 5812 continue; 5813 pr_info(" %-8s ", zone_names[i]); 5814 if (arch_zone_lowest_possible_pfn[i] == 5815 arch_zone_highest_possible_pfn[i]) 5816 pr_cont("empty\n"); 5817 else 5818 pr_cont("[mem %#018Lx-%#018Lx]\n", 5819 (u64)arch_zone_lowest_possible_pfn[i] 5820 << PAGE_SHIFT, 5821 ((u64)arch_zone_highest_possible_pfn[i] 5822 << PAGE_SHIFT) - 1); 5823 } 5824 5825 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 5826 pr_info("Movable zone start for each node\n"); 5827 for (i = 0; i < MAX_NUMNODES; i++) { 5828 if (zone_movable_pfn[i]) 5829 pr_info(" Node %d: %#018Lx\n", i, 5830 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 5831 } 5832 5833 /* Print out the early node map */ 5834 pr_info("Early memory node ranges\n"); 5835 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 5836 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 5837 (u64)start_pfn << PAGE_SHIFT, 5838 ((u64)end_pfn << PAGE_SHIFT) - 1); 5839 5840 /* Initialise every node */ 5841 mminit_verify_pageflags_layout(); 5842 setup_nr_node_ids(); 5843 for_each_online_node(nid) { 5844 pg_data_t *pgdat = NODE_DATA(nid); 5845 free_area_init_node(nid, NULL, 5846 find_min_pfn_for_node(nid), NULL); 5847 5848 /* Any memory on that node */ 5849 if (pgdat->node_present_pages) 5850 node_set_state(nid, N_MEMORY); 5851 check_for_memory(pgdat, nid); 5852 } 5853 } 5854 5855 static int __init cmdline_parse_core(char *p, unsigned long *core) 5856 { 5857 unsigned long long coremem; 5858 if (!p) 5859 return -EINVAL; 5860 5861 coremem = memparse(p, &p); 5862 *core = coremem >> PAGE_SHIFT; 5863 5864 /* Paranoid check that UL is enough for the coremem value */ 5865 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 5866 5867 return 0; 5868 } 5869 5870 /* 5871 * kernelcore=size sets the amount of memory for use for allocations that 5872 * cannot be reclaimed or migrated. 5873 */ 5874 static int __init cmdline_parse_kernelcore(char *p) 5875 { 5876 return cmdline_parse_core(p, &required_kernelcore); 5877 } 5878 5879 /* 5880 * movablecore=size sets the amount of memory for use for allocations that 5881 * can be reclaimed or migrated. 5882 */ 5883 static int __init cmdline_parse_movablecore(char *p) 5884 { 5885 return cmdline_parse_core(p, &required_movablecore); 5886 } 5887 5888 early_param("kernelcore", cmdline_parse_kernelcore); 5889 early_param("movablecore", cmdline_parse_movablecore); 5890 5891 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5892 5893 void adjust_managed_page_count(struct page *page, long count) 5894 { 5895 spin_lock(&managed_page_count_lock); 5896 page_zone(page)->managed_pages += count; 5897 totalram_pages += count; 5898 #ifdef CONFIG_HIGHMEM 5899 if (PageHighMem(page)) 5900 totalhigh_pages += count; 5901 #endif 5902 spin_unlock(&managed_page_count_lock); 5903 } 5904 EXPORT_SYMBOL(adjust_managed_page_count); 5905 5906 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 5907 { 5908 void *pos; 5909 unsigned long pages = 0; 5910 5911 start = (void *)PAGE_ALIGN((unsigned long)start); 5912 end = (void *)((unsigned long)end & PAGE_MASK); 5913 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 5914 if ((unsigned int)poison <= 0xFF) 5915 memset(pos, poison, PAGE_SIZE); 5916 free_reserved_page(virt_to_page(pos)); 5917 } 5918 5919 if (pages && s) 5920 pr_info("Freeing %s memory: %ldK (%p - %p)\n", 5921 s, pages << (PAGE_SHIFT - 10), start, end); 5922 5923 return pages; 5924 } 5925 EXPORT_SYMBOL(free_reserved_area); 5926 5927 #ifdef CONFIG_HIGHMEM 5928 void free_highmem_page(struct page *page) 5929 { 5930 __free_reserved_page(page); 5931 totalram_pages++; 5932 page_zone(page)->managed_pages++; 5933 totalhigh_pages++; 5934 } 5935 #endif 5936 5937 5938 void __init mem_init_print_info(const char *str) 5939 { 5940 unsigned long physpages, codesize, datasize, rosize, bss_size; 5941 unsigned long init_code_size, init_data_size; 5942 5943 physpages = get_num_physpages(); 5944 codesize = _etext - _stext; 5945 datasize = _edata - _sdata; 5946 rosize = __end_rodata - __start_rodata; 5947 bss_size = __bss_stop - __bss_start; 5948 init_data_size = __init_end - __init_begin; 5949 init_code_size = _einittext - _sinittext; 5950 5951 /* 5952 * Detect special cases and adjust section sizes accordingly: 5953 * 1) .init.* may be embedded into .data sections 5954 * 2) .init.text.* may be out of [__init_begin, __init_end], 5955 * please refer to arch/tile/kernel/vmlinux.lds.S. 5956 * 3) .rodata.* may be embedded into .text or .data sections. 5957 */ 5958 #define adj_init_size(start, end, size, pos, adj) \ 5959 do { \ 5960 if (start <= pos && pos < end && size > adj) \ 5961 size -= adj; \ 5962 } while (0) 5963 5964 adj_init_size(__init_begin, __init_end, init_data_size, 5965 _sinittext, init_code_size); 5966 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 5967 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 5968 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 5969 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 5970 5971 #undef adj_init_size 5972 5973 pr_info("Memory: %luK/%luK available " 5974 "(%luK kernel code, %luK rwdata, %luK rodata, " 5975 "%luK init, %luK bss, %luK reserved, %luK cma-reserved" 5976 #ifdef CONFIG_HIGHMEM 5977 ", %luK highmem" 5978 #endif 5979 "%s%s)\n", 5980 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10), 5981 codesize >> 10, datasize >> 10, rosize >> 10, 5982 (init_data_size + init_code_size) >> 10, bss_size >> 10, 5983 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10), 5984 totalcma_pages << (PAGE_SHIFT-10), 5985 #ifdef CONFIG_HIGHMEM 5986 totalhigh_pages << (PAGE_SHIFT-10), 5987 #endif 5988 str ? ", " : "", str ? str : ""); 5989 } 5990 5991 /** 5992 * set_dma_reserve - set the specified number of pages reserved in the first zone 5993 * @new_dma_reserve: The number of pages to mark reserved 5994 * 5995 * The per-cpu batchsize and zone watermarks are determined by present_pages. 5996 * In the DMA zone, a significant percentage may be consumed by kernel image 5997 * and other unfreeable allocations which can skew the watermarks badly. This 5998 * function may optionally be used to account for unfreeable pages in the 5999 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6000 * smaller per-cpu batchsize. 6001 */ 6002 void __init set_dma_reserve(unsigned long new_dma_reserve) 6003 { 6004 dma_reserve = new_dma_reserve; 6005 } 6006 6007 void __init free_area_init(unsigned long *zones_size) 6008 { 6009 free_area_init_node(0, zones_size, 6010 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6011 } 6012 6013 static int page_alloc_cpu_notify(struct notifier_block *self, 6014 unsigned long action, void *hcpu) 6015 { 6016 int cpu = (unsigned long)hcpu; 6017 6018 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 6019 lru_add_drain_cpu(cpu); 6020 drain_pages(cpu); 6021 6022 /* 6023 * Spill the event counters of the dead processor 6024 * into the current processors event counters. 6025 * This artificially elevates the count of the current 6026 * processor. 6027 */ 6028 vm_events_fold_cpu(cpu); 6029 6030 /* 6031 * Zero the differential counters of the dead processor 6032 * so that the vm statistics are consistent. 6033 * 6034 * This is only okay since the processor is dead and cannot 6035 * race with what we are doing. 6036 */ 6037 cpu_vm_stats_fold(cpu); 6038 } 6039 return NOTIFY_OK; 6040 } 6041 6042 void __init page_alloc_init(void) 6043 { 6044 hotcpu_notifier(page_alloc_cpu_notify, 0); 6045 } 6046 6047 /* 6048 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 6049 * or min_free_kbytes changes. 6050 */ 6051 static void calculate_totalreserve_pages(void) 6052 { 6053 struct pglist_data *pgdat; 6054 unsigned long reserve_pages = 0; 6055 enum zone_type i, j; 6056 6057 for_each_online_pgdat(pgdat) { 6058 for (i = 0; i < MAX_NR_ZONES; i++) { 6059 struct zone *zone = pgdat->node_zones + i; 6060 long max = 0; 6061 6062 /* Find valid and maximum lowmem_reserve in the zone */ 6063 for (j = i; j < MAX_NR_ZONES; j++) { 6064 if (zone->lowmem_reserve[j] > max) 6065 max = zone->lowmem_reserve[j]; 6066 } 6067 6068 /* we treat the high watermark as reserved pages. */ 6069 max += high_wmark_pages(zone); 6070 6071 if (max > zone->managed_pages) 6072 max = zone->managed_pages; 6073 reserve_pages += max; 6074 /* 6075 * Lowmem reserves are not available to 6076 * GFP_HIGHUSER page cache allocations and 6077 * kswapd tries to balance zones to their high 6078 * watermark. As a result, neither should be 6079 * regarded as dirtyable memory, to prevent a 6080 * situation where reclaim has to clean pages 6081 * in order to balance the zones. 6082 */ 6083 zone->dirty_balance_reserve = max; 6084 } 6085 } 6086 dirty_balance_reserve = reserve_pages; 6087 totalreserve_pages = reserve_pages; 6088 } 6089 6090 /* 6091 * setup_per_zone_lowmem_reserve - called whenever 6092 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 6093 * has a correct pages reserved value, so an adequate number of 6094 * pages are left in the zone after a successful __alloc_pages(). 6095 */ 6096 static void setup_per_zone_lowmem_reserve(void) 6097 { 6098 struct pglist_data *pgdat; 6099 enum zone_type j, idx; 6100 6101 for_each_online_pgdat(pgdat) { 6102 for (j = 0; j < MAX_NR_ZONES; j++) { 6103 struct zone *zone = pgdat->node_zones + j; 6104 unsigned long managed_pages = zone->managed_pages; 6105 6106 zone->lowmem_reserve[j] = 0; 6107 6108 idx = j; 6109 while (idx) { 6110 struct zone *lower_zone; 6111 6112 idx--; 6113 6114 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6115 sysctl_lowmem_reserve_ratio[idx] = 1; 6116 6117 lower_zone = pgdat->node_zones + idx; 6118 lower_zone->lowmem_reserve[j] = managed_pages / 6119 sysctl_lowmem_reserve_ratio[idx]; 6120 managed_pages += lower_zone->managed_pages; 6121 } 6122 } 6123 } 6124 6125 /* update totalreserve_pages */ 6126 calculate_totalreserve_pages(); 6127 } 6128 6129 static void __setup_per_zone_wmarks(void) 6130 { 6131 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6132 unsigned long lowmem_pages = 0; 6133 struct zone *zone; 6134 unsigned long flags; 6135 6136 /* Calculate total number of !ZONE_HIGHMEM pages */ 6137 for_each_zone(zone) { 6138 if (!is_highmem(zone)) 6139 lowmem_pages += zone->managed_pages; 6140 } 6141 6142 for_each_zone(zone) { 6143 u64 tmp; 6144 6145 spin_lock_irqsave(&zone->lock, flags); 6146 tmp = (u64)pages_min * zone->managed_pages; 6147 do_div(tmp, lowmem_pages); 6148 if (is_highmem(zone)) { 6149 /* 6150 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6151 * need highmem pages, so cap pages_min to a small 6152 * value here. 6153 * 6154 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6155 * deltas control asynch page reclaim, and so should 6156 * not be capped for highmem. 6157 */ 6158 unsigned long min_pages; 6159 6160 min_pages = zone->managed_pages / 1024; 6161 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6162 zone->watermark[WMARK_MIN] = min_pages; 6163 } else { 6164 /* 6165 * If it's a lowmem zone, reserve a number of pages 6166 * proportionate to the zone's size. 6167 */ 6168 zone->watermark[WMARK_MIN] = tmp; 6169 } 6170 6171 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 6172 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 6173 6174 __mod_zone_page_state(zone, NR_ALLOC_BATCH, 6175 high_wmark_pages(zone) - low_wmark_pages(zone) - 6176 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH])); 6177 6178 setup_zone_migrate_reserve(zone); 6179 spin_unlock_irqrestore(&zone->lock, flags); 6180 } 6181 6182 /* update totalreserve_pages */ 6183 calculate_totalreserve_pages(); 6184 } 6185 6186 /** 6187 * setup_per_zone_wmarks - called when min_free_kbytes changes 6188 * or when memory is hot-{added|removed} 6189 * 6190 * Ensures that the watermark[min,low,high] values for each zone are set 6191 * correctly with respect to min_free_kbytes. 6192 */ 6193 void setup_per_zone_wmarks(void) 6194 { 6195 mutex_lock(&zonelists_mutex); 6196 __setup_per_zone_wmarks(); 6197 mutex_unlock(&zonelists_mutex); 6198 } 6199 6200 /* 6201 * The inactive anon list should be small enough that the VM never has to 6202 * do too much work, but large enough that each inactive page has a chance 6203 * to be referenced again before it is swapped out. 6204 * 6205 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 6206 * INACTIVE_ANON pages on this zone's LRU, maintained by the 6207 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 6208 * the anonymous pages are kept on the inactive list. 6209 * 6210 * total target max 6211 * memory ratio inactive anon 6212 * ------------------------------------- 6213 * 10MB 1 5MB 6214 * 100MB 1 50MB 6215 * 1GB 3 250MB 6216 * 10GB 10 0.9GB 6217 * 100GB 31 3GB 6218 * 1TB 101 10GB 6219 * 10TB 320 32GB 6220 */ 6221 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 6222 { 6223 unsigned int gb, ratio; 6224 6225 /* Zone size in gigabytes */ 6226 gb = zone->managed_pages >> (30 - PAGE_SHIFT); 6227 if (gb) 6228 ratio = int_sqrt(10 * gb); 6229 else 6230 ratio = 1; 6231 6232 zone->inactive_ratio = ratio; 6233 } 6234 6235 static void __meminit setup_per_zone_inactive_ratio(void) 6236 { 6237 struct zone *zone; 6238 6239 for_each_zone(zone) 6240 calculate_zone_inactive_ratio(zone); 6241 } 6242 6243 /* 6244 * Initialise min_free_kbytes. 6245 * 6246 * For small machines we want it small (128k min). For large machines 6247 * we want it large (64MB max). But it is not linear, because network 6248 * bandwidth does not increase linearly with machine size. We use 6249 * 6250 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6251 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6252 * 6253 * which yields 6254 * 6255 * 16MB: 512k 6256 * 32MB: 724k 6257 * 64MB: 1024k 6258 * 128MB: 1448k 6259 * 256MB: 2048k 6260 * 512MB: 2896k 6261 * 1024MB: 4096k 6262 * 2048MB: 5792k 6263 * 4096MB: 8192k 6264 * 8192MB: 11584k 6265 * 16384MB: 16384k 6266 */ 6267 int __meminit init_per_zone_wmark_min(void) 6268 { 6269 unsigned long lowmem_kbytes; 6270 int new_min_free_kbytes; 6271 6272 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6273 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6274 6275 if (new_min_free_kbytes > user_min_free_kbytes) { 6276 min_free_kbytes = new_min_free_kbytes; 6277 if (min_free_kbytes < 128) 6278 min_free_kbytes = 128; 6279 if (min_free_kbytes > 65536) 6280 min_free_kbytes = 65536; 6281 } else { 6282 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6283 new_min_free_kbytes, user_min_free_kbytes); 6284 } 6285 setup_per_zone_wmarks(); 6286 refresh_zone_stat_thresholds(); 6287 setup_per_zone_lowmem_reserve(); 6288 setup_per_zone_inactive_ratio(); 6289 return 0; 6290 } 6291 module_init(init_per_zone_wmark_min) 6292 6293 /* 6294 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6295 * that we can call two helper functions whenever min_free_kbytes 6296 * changes. 6297 */ 6298 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6299 void __user *buffer, size_t *length, loff_t *ppos) 6300 { 6301 int rc; 6302 6303 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6304 if (rc) 6305 return rc; 6306 6307 if (write) { 6308 user_min_free_kbytes = min_free_kbytes; 6309 setup_per_zone_wmarks(); 6310 } 6311 return 0; 6312 } 6313 6314 #ifdef CONFIG_NUMA 6315 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6316 void __user *buffer, size_t *length, loff_t *ppos) 6317 { 6318 struct zone *zone; 6319 int rc; 6320 6321 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6322 if (rc) 6323 return rc; 6324 6325 for_each_zone(zone) 6326 zone->min_unmapped_pages = (zone->managed_pages * 6327 sysctl_min_unmapped_ratio) / 100; 6328 return 0; 6329 } 6330 6331 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6332 void __user *buffer, size_t *length, loff_t *ppos) 6333 { 6334 struct zone *zone; 6335 int rc; 6336 6337 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6338 if (rc) 6339 return rc; 6340 6341 for_each_zone(zone) 6342 zone->min_slab_pages = (zone->managed_pages * 6343 sysctl_min_slab_ratio) / 100; 6344 return 0; 6345 } 6346 #endif 6347 6348 /* 6349 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6350 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6351 * whenever sysctl_lowmem_reserve_ratio changes. 6352 * 6353 * The reserve ratio obviously has absolutely no relation with the 6354 * minimum watermarks. The lowmem reserve ratio can only make sense 6355 * if in function of the boot time zone sizes. 6356 */ 6357 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6358 void __user *buffer, size_t *length, loff_t *ppos) 6359 { 6360 proc_dointvec_minmax(table, write, buffer, length, ppos); 6361 setup_per_zone_lowmem_reserve(); 6362 return 0; 6363 } 6364 6365 /* 6366 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 6367 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6368 * pagelist can have before it gets flushed back to buddy allocator. 6369 */ 6370 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 6371 void __user *buffer, size_t *length, loff_t *ppos) 6372 { 6373 struct zone *zone; 6374 int old_percpu_pagelist_fraction; 6375 int ret; 6376 6377 mutex_lock(&pcp_batch_high_lock); 6378 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 6379 6380 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6381 if (!write || ret < 0) 6382 goto out; 6383 6384 /* Sanity checking to avoid pcp imbalance */ 6385 if (percpu_pagelist_fraction && 6386 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 6387 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 6388 ret = -EINVAL; 6389 goto out; 6390 } 6391 6392 /* No change? */ 6393 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 6394 goto out; 6395 6396 for_each_populated_zone(zone) { 6397 unsigned int cpu; 6398 6399 for_each_possible_cpu(cpu) 6400 pageset_set_high_and_batch(zone, 6401 per_cpu_ptr(zone->pageset, cpu)); 6402 } 6403 out: 6404 mutex_unlock(&pcp_batch_high_lock); 6405 return ret; 6406 } 6407 6408 #ifdef CONFIG_NUMA 6409 int hashdist = HASHDIST_DEFAULT; 6410 6411 static int __init set_hashdist(char *str) 6412 { 6413 if (!str) 6414 return 0; 6415 hashdist = simple_strtoul(str, &str, 0); 6416 return 1; 6417 } 6418 __setup("hashdist=", set_hashdist); 6419 #endif 6420 6421 /* 6422 * allocate a large system hash table from bootmem 6423 * - it is assumed that the hash table must contain an exact power-of-2 6424 * quantity of entries 6425 * - limit is the number of hash buckets, not the total allocation size 6426 */ 6427 void *__init alloc_large_system_hash(const char *tablename, 6428 unsigned long bucketsize, 6429 unsigned long numentries, 6430 int scale, 6431 int flags, 6432 unsigned int *_hash_shift, 6433 unsigned int *_hash_mask, 6434 unsigned long low_limit, 6435 unsigned long high_limit) 6436 { 6437 unsigned long long max = high_limit; 6438 unsigned long log2qty, size; 6439 void *table = NULL; 6440 6441 /* allow the kernel cmdline to have a say */ 6442 if (!numentries) { 6443 /* round applicable memory size up to nearest megabyte */ 6444 numentries = nr_kernel_pages; 6445 6446 /* It isn't necessary when PAGE_SIZE >= 1MB */ 6447 if (PAGE_SHIFT < 20) 6448 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 6449 6450 /* limit to 1 bucket per 2^scale bytes of low memory */ 6451 if (scale > PAGE_SHIFT) 6452 numentries >>= (scale - PAGE_SHIFT); 6453 else 6454 numentries <<= (PAGE_SHIFT - scale); 6455 6456 /* Make sure we've got at least a 0-order allocation.. */ 6457 if (unlikely(flags & HASH_SMALL)) { 6458 /* Makes no sense without HASH_EARLY */ 6459 WARN_ON(!(flags & HASH_EARLY)); 6460 if (!(numentries >> *_hash_shift)) { 6461 numentries = 1UL << *_hash_shift; 6462 BUG_ON(!numentries); 6463 } 6464 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 6465 numentries = PAGE_SIZE / bucketsize; 6466 } 6467 numentries = roundup_pow_of_two(numentries); 6468 6469 /* limit allocation size to 1/16 total memory by default */ 6470 if (max == 0) { 6471 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 6472 do_div(max, bucketsize); 6473 } 6474 max = min(max, 0x80000000ULL); 6475 6476 if (numentries < low_limit) 6477 numentries = low_limit; 6478 if (numentries > max) 6479 numentries = max; 6480 6481 log2qty = ilog2(numentries); 6482 6483 do { 6484 size = bucketsize << log2qty; 6485 if (flags & HASH_EARLY) 6486 table = memblock_virt_alloc_nopanic(size, 0); 6487 else if (hashdist) 6488 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 6489 else { 6490 /* 6491 * If bucketsize is not a power-of-two, we may free 6492 * some pages at the end of hash table which 6493 * alloc_pages_exact() automatically does 6494 */ 6495 if (get_order(size) < MAX_ORDER) { 6496 table = alloc_pages_exact(size, GFP_ATOMIC); 6497 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 6498 } 6499 } 6500 } while (!table && size > PAGE_SIZE && --log2qty); 6501 6502 if (!table) 6503 panic("Failed to allocate %s hash table\n", tablename); 6504 6505 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 6506 tablename, 6507 (1UL << log2qty), 6508 ilog2(size) - PAGE_SHIFT, 6509 size); 6510 6511 if (_hash_shift) 6512 *_hash_shift = log2qty; 6513 if (_hash_mask) 6514 *_hash_mask = (1 << log2qty) - 1; 6515 6516 return table; 6517 } 6518 6519 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 6520 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 6521 unsigned long pfn) 6522 { 6523 #ifdef CONFIG_SPARSEMEM 6524 return __pfn_to_section(pfn)->pageblock_flags; 6525 #else 6526 return zone->pageblock_flags; 6527 #endif /* CONFIG_SPARSEMEM */ 6528 } 6529 6530 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 6531 { 6532 #ifdef CONFIG_SPARSEMEM 6533 pfn &= (PAGES_PER_SECTION-1); 6534 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6535 #else 6536 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages); 6537 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 6538 #endif /* CONFIG_SPARSEMEM */ 6539 } 6540 6541 /** 6542 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 6543 * @page: The page within the block of interest 6544 * @pfn: The target page frame number 6545 * @end_bitidx: The last bit of interest to retrieve 6546 * @mask: mask of bits that the caller is interested in 6547 * 6548 * Return: pageblock_bits flags 6549 */ 6550 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 6551 unsigned long end_bitidx, 6552 unsigned long mask) 6553 { 6554 struct zone *zone; 6555 unsigned long *bitmap; 6556 unsigned long bitidx, word_bitidx; 6557 unsigned long word; 6558 6559 zone = page_zone(page); 6560 bitmap = get_pageblock_bitmap(zone, pfn); 6561 bitidx = pfn_to_bitidx(zone, pfn); 6562 word_bitidx = bitidx / BITS_PER_LONG; 6563 bitidx &= (BITS_PER_LONG-1); 6564 6565 word = bitmap[word_bitidx]; 6566 bitidx += end_bitidx; 6567 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 6568 } 6569 6570 /** 6571 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 6572 * @page: The page within the block of interest 6573 * @flags: The flags to set 6574 * @pfn: The target page frame number 6575 * @end_bitidx: The last bit of interest 6576 * @mask: mask of bits that the caller is interested in 6577 */ 6578 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 6579 unsigned long pfn, 6580 unsigned long end_bitidx, 6581 unsigned long mask) 6582 { 6583 struct zone *zone; 6584 unsigned long *bitmap; 6585 unsigned long bitidx, word_bitidx; 6586 unsigned long old_word, word; 6587 6588 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 6589 6590 zone = page_zone(page); 6591 bitmap = get_pageblock_bitmap(zone, pfn); 6592 bitidx = pfn_to_bitidx(zone, pfn); 6593 word_bitidx = bitidx / BITS_PER_LONG; 6594 bitidx &= (BITS_PER_LONG-1); 6595 6596 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page); 6597 6598 bitidx += end_bitidx; 6599 mask <<= (BITS_PER_LONG - bitidx - 1); 6600 flags <<= (BITS_PER_LONG - bitidx - 1); 6601 6602 word = READ_ONCE(bitmap[word_bitidx]); 6603 for (;;) { 6604 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 6605 if (word == old_word) 6606 break; 6607 word = old_word; 6608 } 6609 } 6610 6611 /* 6612 * This function checks whether pageblock includes unmovable pages or not. 6613 * If @count is not zero, it is okay to include less @count unmovable pages 6614 * 6615 * PageLRU check without isolation or lru_lock could race so that 6616 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 6617 * expect this function should be exact. 6618 */ 6619 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 6620 bool skip_hwpoisoned_pages) 6621 { 6622 unsigned long pfn, iter, found; 6623 int mt; 6624 6625 /* 6626 * For avoiding noise data, lru_add_drain_all() should be called 6627 * If ZONE_MOVABLE, the zone never contains unmovable pages 6628 */ 6629 if (zone_idx(zone) == ZONE_MOVABLE) 6630 return false; 6631 mt = get_pageblock_migratetype(page); 6632 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 6633 return false; 6634 6635 pfn = page_to_pfn(page); 6636 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 6637 unsigned long check = pfn + iter; 6638 6639 if (!pfn_valid_within(check)) 6640 continue; 6641 6642 page = pfn_to_page(check); 6643 6644 /* 6645 * Hugepages are not in LRU lists, but they're movable. 6646 * We need not scan over tail pages bacause we don't 6647 * handle each tail page individually in migration. 6648 */ 6649 if (PageHuge(page)) { 6650 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 6651 continue; 6652 } 6653 6654 /* 6655 * We can't use page_count without pin a page 6656 * because another CPU can free compound page. 6657 * This check already skips compound tails of THP 6658 * because their page->_count is zero at all time. 6659 */ 6660 if (!atomic_read(&page->_count)) { 6661 if (PageBuddy(page)) 6662 iter += (1 << page_order(page)) - 1; 6663 continue; 6664 } 6665 6666 /* 6667 * The HWPoisoned page may be not in buddy system, and 6668 * page_count() is not 0. 6669 */ 6670 if (skip_hwpoisoned_pages && PageHWPoison(page)) 6671 continue; 6672 6673 if (!PageLRU(page)) 6674 found++; 6675 /* 6676 * If there are RECLAIMABLE pages, we need to check 6677 * it. But now, memory offline itself doesn't call 6678 * shrink_node_slabs() and it still to be fixed. 6679 */ 6680 /* 6681 * If the page is not RAM, page_count()should be 0. 6682 * we don't need more check. This is an _used_ not-movable page. 6683 * 6684 * The problematic thing here is PG_reserved pages. PG_reserved 6685 * is set to both of a memory hole page and a _used_ kernel 6686 * page at boot. 6687 */ 6688 if (found > count) 6689 return true; 6690 } 6691 return false; 6692 } 6693 6694 bool is_pageblock_removable_nolock(struct page *page) 6695 { 6696 struct zone *zone; 6697 unsigned long pfn; 6698 6699 /* 6700 * We have to be careful here because we are iterating over memory 6701 * sections which are not zone aware so we might end up outside of 6702 * the zone but still within the section. 6703 * We have to take care about the node as well. If the node is offline 6704 * its NODE_DATA will be NULL - see page_zone. 6705 */ 6706 if (!node_online(page_to_nid(page))) 6707 return false; 6708 6709 zone = page_zone(page); 6710 pfn = page_to_pfn(page); 6711 if (!zone_spans_pfn(zone, pfn)) 6712 return false; 6713 6714 return !has_unmovable_pages(zone, page, 0, true); 6715 } 6716 6717 #ifdef CONFIG_CMA 6718 6719 static unsigned long pfn_max_align_down(unsigned long pfn) 6720 { 6721 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 6722 pageblock_nr_pages) - 1); 6723 } 6724 6725 static unsigned long pfn_max_align_up(unsigned long pfn) 6726 { 6727 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 6728 pageblock_nr_pages)); 6729 } 6730 6731 /* [start, end) must belong to a single zone. */ 6732 static int __alloc_contig_migrate_range(struct compact_control *cc, 6733 unsigned long start, unsigned long end) 6734 { 6735 /* This function is based on compact_zone() from compaction.c. */ 6736 unsigned long nr_reclaimed; 6737 unsigned long pfn = start; 6738 unsigned int tries = 0; 6739 int ret = 0; 6740 6741 migrate_prep(); 6742 6743 while (pfn < end || !list_empty(&cc->migratepages)) { 6744 if (fatal_signal_pending(current)) { 6745 ret = -EINTR; 6746 break; 6747 } 6748 6749 if (list_empty(&cc->migratepages)) { 6750 cc->nr_migratepages = 0; 6751 pfn = isolate_migratepages_range(cc, pfn, end); 6752 if (!pfn) { 6753 ret = -EINTR; 6754 break; 6755 } 6756 tries = 0; 6757 } else if (++tries == 5) { 6758 ret = ret < 0 ? ret : -EBUSY; 6759 break; 6760 } 6761 6762 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6763 &cc->migratepages); 6764 cc->nr_migratepages -= nr_reclaimed; 6765 6766 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 6767 NULL, 0, cc->mode, MR_CMA); 6768 } 6769 if (ret < 0) { 6770 putback_movable_pages(&cc->migratepages); 6771 return ret; 6772 } 6773 return 0; 6774 } 6775 6776 /** 6777 * alloc_contig_range() -- tries to allocate given range of pages 6778 * @start: start PFN to allocate 6779 * @end: one-past-the-last PFN to allocate 6780 * @migratetype: migratetype of the underlaying pageblocks (either 6781 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6782 * in range must have the same migratetype and it must 6783 * be either of the two. 6784 * 6785 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 6786 * aligned, however it's the caller's responsibility to guarantee that 6787 * we are the only thread that changes migrate type of pageblocks the 6788 * pages fall in. 6789 * 6790 * The PFN range must belong to a single zone. 6791 * 6792 * Returns zero on success or negative error code. On success all 6793 * pages which PFN is in [start, end) are allocated for the caller and 6794 * need to be freed with free_contig_range(). 6795 */ 6796 int alloc_contig_range(unsigned long start, unsigned long end, 6797 unsigned migratetype) 6798 { 6799 unsigned long outer_start, outer_end; 6800 int ret = 0, order; 6801 6802 struct compact_control cc = { 6803 .nr_migratepages = 0, 6804 .order = -1, 6805 .zone = page_zone(pfn_to_page(start)), 6806 .mode = MIGRATE_SYNC, 6807 .ignore_skip_hint = true, 6808 }; 6809 INIT_LIST_HEAD(&cc.migratepages); 6810 6811 /* 6812 * What we do here is we mark all pageblocks in range as 6813 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6814 * have different sizes, and due to the way page allocator 6815 * work, we align the range to biggest of the two pages so 6816 * that page allocator won't try to merge buddies from 6817 * different pageblocks and change MIGRATE_ISOLATE to some 6818 * other migration type. 6819 * 6820 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6821 * migrate the pages from an unaligned range (ie. pages that 6822 * we are interested in). This will put all the pages in 6823 * range back to page allocator as MIGRATE_ISOLATE. 6824 * 6825 * When this is done, we take the pages in range from page 6826 * allocator removing them from the buddy system. This way 6827 * page allocator will never consider using them. 6828 * 6829 * This lets us mark the pageblocks back as 6830 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6831 * aligned range but not in the unaligned, original range are 6832 * put back to page allocator so that buddy can use them. 6833 */ 6834 6835 ret = start_isolate_page_range(pfn_max_align_down(start), 6836 pfn_max_align_up(end), migratetype, 6837 false); 6838 if (ret) 6839 return ret; 6840 6841 ret = __alloc_contig_migrate_range(&cc, start, end); 6842 if (ret) 6843 goto done; 6844 6845 /* 6846 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 6847 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6848 * more, all pages in [start, end) are free in page allocator. 6849 * What we are going to do is to allocate all pages from 6850 * [start, end) (that is remove them from page allocator). 6851 * 6852 * The only problem is that pages at the beginning and at the 6853 * end of interesting range may be not aligned with pages that 6854 * page allocator holds, ie. they can be part of higher order 6855 * pages. Because of this, we reserve the bigger range and 6856 * once this is done free the pages we are not interested in. 6857 * 6858 * We don't have to hold zone->lock here because the pages are 6859 * isolated thus they won't get removed from buddy. 6860 */ 6861 6862 lru_add_drain_all(); 6863 drain_all_pages(cc.zone); 6864 6865 order = 0; 6866 outer_start = start; 6867 while (!PageBuddy(pfn_to_page(outer_start))) { 6868 if (++order >= MAX_ORDER) { 6869 ret = -EBUSY; 6870 goto done; 6871 } 6872 outer_start &= ~0UL << order; 6873 } 6874 6875 /* Make sure the range is really isolated. */ 6876 if (test_pages_isolated(outer_start, end, false)) { 6877 pr_info("%s: [%lx, %lx) PFNs busy\n", 6878 __func__, outer_start, end); 6879 ret = -EBUSY; 6880 goto done; 6881 } 6882 6883 /* Grab isolated pages from freelists. */ 6884 outer_end = isolate_freepages_range(&cc, outer_start, end); 6885 if (!outer_end) { 6886 ret = -EBUSY; 6887 goto done; 6888 } 6889 6890 /* Free head and tail (if any) */ 6891 if (start != outer_start) 6892 free_contig_range(outer_start, start - outer_start); 6893 if (end != outer_end) 6894 free_contig_range(end, outer_end - end); 6895 6896 done: 6897 undo_isolate_page_range(pfn_max_align_down(start), 6898 pfn_max_align_up(end), migratetype); 6899 return ret; 6900 } 6901 6902 void free_contig_range(unsigned long pfn, unsigned nr_pages) 6903 { 6904 unsigned int count = 0; 6905 6906 for (; nr_pages--; pfn++) { 6907 struct page *page = pfn_to_page(pfn); 6908 6909 count += page_count(page) != 1; 6910 __free_page(page); 6911 } 6912 WARN(count != 0, "%d pages are still in use!\n", count); 6913 } 6914 #endif 6915 6916 #ifdef CONFIG_MEMORY_HOTPLUG 6917 /* 6918 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6919 * page high values need to be recalulated. 6920 */ 6921 void __meminit zone_pcp_update(struct zone *zone) 6922 { 6923 unsigned cpu; 6924 mutex_lock(&pcp_batch_high_lock); 6925 for_each_possible_cpu(cpu) 6926 pageset_set_high_and_batch(zone, 6927 per_cpu_ptr(zone->pageset, cpu)); 6928 mutex_unlock(&pcp_batch_high_lock); 6929 } 6930 #endif 6931 6932 void zone_pcp_reset(struct zone *zone) 6933 { 6934 unsigned long flags; 6935 int cpu; 6936 struct per_cpu_pageset *pset; 6937 6938 /* avoid races with drain_pages() */ 6939 local_irq_save(flags); 6940 if (zone->pageset != &boot_pageset) { 6941 for_each_online_cpu(cpu) { 6942 pset = per_cpu_ptr(zone->pageset, cpu); 6943 drain_zonestat(zone, pset); 6944 } 6945 free_percpu(zone->pageset); 6946 zone->pageset = &boot_pageset; 6947 } 6948 local_irq_restore(flags); 6949 } 6950 6951 #ifdef CONFIG_MEMORY_HOTREMOVE 6952 /* 6953 * All pages in the range must be isolated before calling this. 6954 */ 6955 void 6956 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 6957 { 6958 struct page *page; 6959 struct zone *zone; 6960 unsigned int order, i; 6961 unsigned long pfn; 6962 unsigned long flags; 6963 /* find the first valid pfn */ 6964 for (pfn = start_pfn; pfn < end_pfn; pfn++) 6965 if (pfn_valid(pfn)) 6966 break; 6967 if (pfn == end_pfn) 6968 return; 6969 zone = page_zone(pfn_to_page(pfn)); 6970 spin_lock_irqsave(&zone->lock, flags); 6971 pfn = start_pfn; 6972 while (pfn < end_pfn) { 6973 if (!pfn_valid(pfn)) { 6974 pfn++; 6975 continue; 6976 } 6977 page = pfn_to_page(pfn); 6978 /* 6979 * The HWPoisoned page may be not in buddy system, and 6980 * page_count() is not 0. 6981 */ 6982 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 6983 pfn++; 6984 SetPageReserved(page); 6985 continue; 6986 } 6987 6988 BUG_ON(page_count(page)); 6989 BUG_ON(!PageBuddy(page)); 6990 order = page_order(page); 6991 #ifdef CONFIG_DEBUG_VM 6992 printk(KERN_INFO "remove from free list %lx %d %lx\n", 6993 pfn, 1 << order, end_pfn); 6994 #endif 6995 list_del(&page->lru); 6996 rmv_page_order(page); 6997 zone->free_area[order].nr_free--; 6998 for (i = 0; i < (1 << order); i++) 6999 SetPageReserved((page+i)); 7000 pfn += (1 << order); 7001 } 7002 spin_unlock_irqrestore(&zone->lock, flags); 7003 } 7004 #endif 7005 7006 #ifdef CONFIG_MEMORY_FAILURE 7007 bool is_free_buddy_page(struct page *page) 7008 { 7009 struct zone *zone = page_zone(page); 7010 unsigned long pfn = page_to_pfn(page); 7011 unsigned long flags; 7012 unsigned int order; 7013 7014 spin_lock_irqsave(&zone->lock, flags); 7015 for (order = 0; order < MAX_ORDER; order++) { 7016 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7017 7018 if (PageBuddy(page_head) && page_order(page_head) >= order) 7019 break; 7020 } 7021 spin_unlock_irqrestore(&zone->lock, flags); 7022 7023 return order < MAX_ORDER; 7024 } 7025 #endif 7026