xref: /linux/mm/page_alloc.c (revision f5005f7835e0da9ea6f203f8acc356bef9b331da)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/prefetch.h>
58 #include <linux/mm_inline.h>
59 #include <linux/migrate.h>
60 #include <linux/page_ext.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/page_owner.h>
64 #include <linux/kthread.h>
65 
66 #include <asm/sections.h>
67 #include <asm/tlbflush.h>
68 #include <asm/div64.h>
69 #include "internal.h"
70 
71 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
72 static DEFINE_MUTEX(pcp_batch_high_lock);
73 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
74 
75 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
76 DEFINE_PER_CPU(int, numa_node);
77 EXPORT_PER_CPU_SYMBOL(numa_node);
78 #endif
79 
80 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
81 /*
82  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
83  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
84  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
85  * defined in <linux/topology.h>.
86  */
87 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
88 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
89 int _node_numa_mem_[MAX_NUMNODES];
90 #endif
91 
92 /*
93  * Array of node states.
94  */
95 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
96 	[N_POSSIBLE] = NODE_MASK_ALL,
97 	[N_ONLINE] = { { [0] = 1UL } },
98 #ifndef CONFIG_NUMA
99 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
100 #ifdef CONFIG_HIGHMEM
101 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
102 #endif
103 #ifdef CONFIG_MOVABLE_NODE
104 	[N_MEMORY] = { { [0] = 1UL } },
105 #endif
106 	[N_CPU] = { { [0] = 1UL } },
107 #endif	/* NUMA */
108 };
109 EXPORT_SYMBOL(node_states);
110 
111 /* Protect totalram_pages and zone->managed_pages */
112 static DEFINE_SPINLOCK(managed_page_count_lock);
113 
114 unsigned long totalram_pages __read_mostly;
115 unsigned long totalreserve_pages __read_mostly;
116 unsigned long totalcma_pages __read_mostly;
117 /*
118  * When calculating the number of globally allowed dirty pages, there
119  * is a certain number of per-zone reserves that should not be
120  * considered dirtyable memory.  This is the sum of those reserves
121  * over all existing zones that contribute dirtyable memory.
122  */
123 unsigned long dirty_balance_reserve __read_mostly;
124 
125 int percpu_pagelist_fraction;
126 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
127 
128 #ifdef CONFIG_PM_SLEEP
129 /*
130  * The following functions are used by the suspend/hibernate code to temporarily
131  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
132  * while devices are suspended.  To avoid races with the suspend/hibernate code,
133  * they should always be called with pm_mutex held (gfp_allowed_mask also should
134  * only be modified with pm_mutex held, unless the suspend/hibernate code is
135  * guaranteed not to run in parallel with that modification).
136  */
137 
138 static gfp_t saved_gfp_mask;
139 
140 void pm_restore_gfp_mask(void)
141 {
142 	WARN_ON(!mutex_is_locked(&pm_mutex));
143 	if (saved_gfp_mask) {
144 		gfp_allowed_mask = saved_gfp_mask;
145 		saved_gfp_mask = 0;
146 	}
147 }
148 
149 void pm_restrict_gfp_mask(void)
150 {
151 	WARN_ON(!mutex_is_locked(&pm_mutex));
152 	WARN_ON(saved_gfp_mask);
153 	saved_gfp_mask = gfp_allowed_mask;
154 	gfp_allowed_mask &= ~GFP_IOFS;
155 }
156 
157 bool pm_suspended_storage(void)
158 {
159 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
160 		return false;
161 	return true;
162 }
163 #endif /* CONFIG_PM_SLEEP */
164 
165 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
166 int pageblock_order __read_mostly;
167 #endif
168 
169 static void __free_pages_ok(struct page *page, unsigned int order);
170 
171 /*
172  * results with 256, 32 in the lowmem_reserve sysctl:
173  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
174  *	1G machine -> (16M dma, 784M normal, 224M high)
175  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
176  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
177  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
178  *
179  * TBD: should special case ZONE_DMA32 machines here - in those we normally
180  * don't need any ZONE_NORMAL reservation
181  */
182 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
183 #ifdef CONFIG_ZONE_DMA
184 	 256,
185 #endif
186 #ifdef CONFIG_ZONE_DMA32
187 	 256,
188 #endif
189 #ifdef CONFIG_HIGHMEM
190 	 32,
191 #endif
192 	 32,
193 };
194 
195 EXPORT_SYMBOL(totalram_pages);
196 
197 static char * const zone_names[MAX_NR_ZONES] = {
198 #ifdef CONFIG_ZONE_DMA
199 	 "DMA",
200 #endif
201 #ifdef CONFIG_ZONE_DMA32
202 	 "DMA32",
203 #endif
204 	 "Normal",
205 #ifdef CONFIG_HIGHMEM
206 	 "HighMem",
207 #endif
208 	 "Movable",
209 };
210 
211 int min_free_kbytes = 1024;
212 int user_min_free_kbytes = -1;
213 
214 static unsigned long __meminitdata nr_kernel_pages;
215 static unsigned long __meminitdata nr_all_pages;
216 static unsigned long __meminitdata dma_reserve;
217 
218 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
219 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
220 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
221 static unsigned long __initdata required_kernelcore;
222 static unsigned long __initdata required_movablecore;
223 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
224 
225 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
226 int movable_zone;
227 EXPORT_SYMBOL(movable_zone);
228 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
229 
230 #if MAX_NUMNODES > 1
231 int nr_node_ids __read_mostly = MAX_NUMNODES;
232 int nr_online_nodes __read_mostly = 1;
233 EXPORT_SYMBOL(nr_node_ids);
234 EXPORT_SYMBOL(nr_online_nodes);
235 #endif
236 
237 int page_group_by_mobility_disabled __read_mostly;
238 
239 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
240 static inline void reset_deferred_meminit(pg_data_t *pgdat)
241 {
242 	pgdat->first_deferred_pfn = ULONG_MAX;
243 }
244 
245 /* Returns true if the struct page for the pfn is uninitialised */
246 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
247 {
248 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
249 		return true;
250 
251 	return false;
252 }
253 
254 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
255 {
256 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
257 		return true;
258 
259 	return false;
260 }
261 
262 /*
263  * Returns false when the remaining initialisation should be deferred until
264  * later in the boot cycle when it can be parallelised.
265  */
266 static inline bool update_defer_init(pg_data_t *pgdat,
267 				unsigned long pfn, unsigned long zone_end,
268 				unsigned long *nr_initialised)
269 {
270 	/* Always populate low zones for address-contrained allocations */
271 	if (zone_end < pgdat_end_pfn(pgdat))
272 		return true;
273 
274 	/* Initialise at least 2G of the highest zone */
275 	(*nr_initialised)++;
276 	if (*nr_initialised > (2UL << (30 - PAGE_SHIFT)) &&
277 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
278 		pgdat->first_deferred_pfn = pfn;
279 		return false;
280 	}
281 
282 	return true;
283 }
284 #else
285 static inline void reset_deferred_meminit(pg_data_t *pgdat)
286 {
287 }
288 
289 static inline bool early_page_uninitialised(unsigned long pfn)
290 {
291 	return false;
292 }
293 
294 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
295 {
296 	return false;
297 }
298 
299 static inline bool update_defer_init(pg_data_t *pgdat,
300 				unsigned long pfn, unsigned long zone_end,
301 				unsigned long *nr_initialised)
302 {
303 	return true;
304 }
305 #endif
306 
307 
308 void set_pageblock_migratetype(struct page *page, int migratetype)
309 {
310 	if (unlikely(page_group_by_mobility_disabled &&
311 		     migratetype < MIGRATE_PCPTYPES))
312 		migratetype = MIGRATE_UNMOVABLE;
313 
314 	set_pageblock_flags_group(page, (unsigned long)migratetype,
315 					PB_migrate, PB_migrate_end);
316 }
317 
318 #ifdef CONFIG_DEBUG_VM
319 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
320 {
321 	int ret = 0;
322 	unsigned seq;
323 	unsigned long pfn = page_to_pfn(page);
324 	unsigned long sp, start_pfn;
325 
326 	do {
327 		seq = zone_span_seqbegin(zone);
328 		start_pfn = zone->zone_start_pfn;
329 		sp = zone->spanned_pages;
330 		if (!zone_spans_pfn(zone, pfn))
331 			ret = 1;
332 	} while (zone_span_seqretry(zone, seq));
333 
334 	if (ret)
335 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
336 			pfn, zone_to_nid(zone), zone->name,
337 			start_pfn, start_pfn + sp);
338 
339 	return ret;
340 }
341 
342 static int page_is_consistent(struct zone *zone, struct page *page)
343 {
344 	if (!pfn_valid_within(page_to_pfn(page)))
345 		return 0;
346 	if (zone != page_zone(page))
347 		return 0;
348 
349 	return 1;
350 }
351 /*
352  * Temporary debugging check for pages not lying within a given zone.
353  */
354 static int bad_range(struct zone *zone, struct page *page)
355 {
356 	if (page_outside_zone_boundaries(zone, page))
357 		return 1;
358 	if (!page_is_consistent(zone, page))
359 		return 1;
360 
361 	return 0;
362 }
363 #else
364 static inline int bad_range(struct zone *zone, struct page *page)
365 {
366 	return 0;
367 }
368 #endif
369 
370 static void bad_page(struct page *page, const char *reason,
371 		unsigned long bad_flags)
372 {
373 	static unsigned long resume;
374 	static unsigned long nr_shown;
375 	static unsigned long nr_unshown;
376 
377 	/* Don't complain about poisoned pages */
378 	if (PageHWPoison(page)) {
379 		page_mapcount_reset(page); /* remove PageBuddy */
380 		return;
381 	}
382 
383 	/*
384 	 * Allow a burst of 60 reports, then keep quiet for that minute;
385 	 * or allow a steady drip of one report per second.
386 	 */
387 	if (nr_shown == 60) {
388 		if (time_before(jiffies, resume)) {
389 			nr_unshown++;
390 			goto out;
391 		}
392 		if (nr_unshown) {
393 			printk(KERN_ALERT
394 			      "BUG: Bad page state: %lu messages suppressed\n",
395 				nr_unshown);
396 			nr_unshown = 0;
397 		}
398 		nr_shown = 0;
399 	}
400 	if (nr_shown++ == 0)
401 		resume = jiffies + 60 * HZ;
402 
403 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
404 		current->comm, page_to_pfn(page));
405 	dump_page_badflags(page, reason, bad_flags);
406 
407 	print_modules();
408 	dump_stack();
409 out:
410 	/* Leave bad fields for debug, except PageBuddy could make trouble */
411 	page_mapcount_reset(page); /* remove PageBuddy */
412 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
413 }
414 
415 /*
416  * Higher-order pages are called "compound pages".  They are structured thusly:
417  *
418  * The first PAGE_SIZE page is called the "head page".
419  *
420  * The remaining PAGE_SIZE pages are called "tail pages".
421  *
422  * All pages have PG_compound set.  All tail pages have their ->first_page
423  * pointing at the head page.
424  *
425  * The first tail page's ->lru.next holds the address of the compound page's
426  * put_page() function.  Its ->lru.prev holds the order of allocation.
427  * This usage means that zero-order pages may not be compound.
428  */
429 
430 static void free_compound_page(struct page *page)
431 {
432 	__free_pages_ok(page, compound_order(page));
433 }
434 
435 void prep_compound_page(struct page *page, unsigned long order)
436 {
437 	int i;
438 	int nr_pages = 1 << order;
439 
440 	set_compound_page_dtor(page, free_compound_page);
441 	set_compound_order(page, order);
442 	__SetPageHead(page);
443 	for (i = 1; i < nr_pages; i++) {
444 		struct page *p = page + i;
445 		set_page_count(p, 0);
446 		p->first_page = page;
447 		/* Make sure p->first_page is always valid for PageTail() */
448 		smp_wmb();
449 		__SetPageTail(p);
450 	}
451 }
452 
453 #ifdef CONFIG_DEBUG_PAGEALLOC
454 unsigned int _debug_guardpage_minorder;
455 bool _debug_pagealloc_enabled __read_mostly;
456 bool _debug_guardpage_enabled __read_mostly;
457 
458 static int __init early_debug_pagealloc(char *buf)
459 {
460 	if (!buf)
461 		return -EINVAL;
462 
463 	if (strcmp(buf, "on") == 0)
464 		_debug_pagealloc_enabled = true;
465 
466 	return 0;
467 }
468 early_param("debug_pagealloc", early_debug_pagealloc);
469 
470 static bool need_debug_guardpage(void)
471 {
472 	/* If we don't use debug_pagealloc, we don't need guard page */
473 	if (!debug_pagealloc_enabled())
474 		return false;
475 
476 	return true;
477 }
478 
479 static void init_debug_guardpage(void)
480 {
481 	if (!debug_pagealloc_enabled())
482 		return;
483 
484 	_debug_guardpage_enabled = true;
485 }
486 
487 struct page_ext_operations debug_guardpage_ops = {
488 	.need = need_debug_guardpage,
489 	.init = init_debug_guardpage,
490 };
491 
492 static int __init debug_guardpage_minorder_setup(char *buf)
493 {
494 	unsigned long res;
495 
496 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
497 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
498 		return 0;
499 	}
500 	_debug_guardpage_minorder = res;
501 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
502 	return 0;
503 }
504 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
505 
506 static inline void set_page_guard(struct zone *zone, struct page *page,
507 				unsigned int order, int migratetype)
508 {
509 	struct page_ext *page_ext;
510 
511 	if (!debug_guardpage_enabled())
512 		return;
513 
514 	page_ext = lookup_page_ext(page);
515 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
516 
517 	INIT_LIST_HEAD(&page->lru);
518 	set_page_private(page, order);
519 	/* Guard pages are not available for any usage */
520 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
521 }
522 
523 static inline void clear_page_guard(struct zone *zone, struct page *page,
524 				unsigned int order, int migratetype)
525 {
526 	struct page_ext *page_ext;
527 
528 	if (!debug_guardpage_enabled())
529 		return;
530 
531 	page_ext = lookup_page_ext(page);
532 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
533 
534 	set_page_private(page, 0);
535 	if (!is_migrate_isolate(migratetype))
536 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
537 }
538 #else
539 struct page_ext_operations debug_guardpage_ops = { NULL, };
540 static inline void set_page_guard(struct zone *zone, struct page *page,
541 				unsigned int order, int migratetype) {}
542 static inline void clear_page_guard(struct zone *zone, struct page *page,
543 				unsigned int order, int migratetype) {}
544 #endif
545 
546 static inline void set_page_order(struct page *page, unsigned int order)
547 {
548 	set_page_private(page, order);
549 	__SetPageBuddy(page);
550 }
551 
552 static inline void rmv_page_order(struct page *page)
553 {
554 	__ClearPageBuddy(page);
555 	set_page_private(page, 0);
556 }
557 
558 /*
559  * This function checks whether a page is free && is the buddy
560  * we can do coalesce a page and its buddy if
561  * (a) the buddy is not in a hole &&
562  * (b) the buddy is in the buddy system &&
563  * (c) a page and its buddy have the same order &&
564  * (d) a page and its buddy are in the same zone.
565  *
566  * For recording whether a page is in the buddy system, we set ->_mapcount
567  * PAGE_BUDDY_MAPCOUNT_VALUE.
568  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
569  * serialized by zone->lock.
570  *
571  * For recording page's order, we use page_private(page).
572  */
573 static inline int page_is_buddy(struct page *page, struct page *buddy,
574 							unsigned int order)
575 {
576 	if (!pfn_valid_within(page_to_pfn(buddy)))
577 		return 0;
578 
579 	if (page_is_guard(buddy) && page_order(buddy) == order) {
580 		if (page_zone_id(page) != page_zone_id(buddy))
581 			return 0;
582 
583 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
584 
585 		return 1;
586 	}
587 
588 	if (PageBuddy(buddy) && page_order(buddy) == order) {
589 		/*
590 		 * zone check is done late to avoid uselessly
591 		 * calculating zone/node ids for pages that could
592 		 * never merge.
593 		 */
594 		if (page_zone_id(page) != page_zone_id(buddy))
595 			return 0;
596 
597 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
598 
599 		return 1;
600 	}
601 	return 0;
602 }
603 
604 /*
605  * Freeing function for a buddy system allocator.
606  *
607  * The concept of a buddy system is to maintain direct-mapped table
608  * (containing bit values) for memory blocks of various "orders".
609  * The bottom level table contains the map for the smallest allocatable
610  * units of memory (here, pages), and each level above it describes
611  * pairs of units from the levels below, hence, "buddies".
612  * At a high level, all that happens here is marking the table entry
613  * at the bottom level available, and propagating the changes upward
614  * as necessary, plus some accounting needed to play nicely with other
615  * parts of the VM system.
616  * At each level, we keep a list of pages, which are heads of continuous
617  * free pages of length of (1 << order) and marked with _mapcount
618  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
619  * field.
620  * So when we are allocating or freeing one, we can derive the state of the
621  * other.  That is, if we allocate a small block, and both were
622  * free, the remainder of the region must be split into blocks.
623  * If a block is freed, and its buddy is also free, then this
624  * triggers coalescing into a block of larger size.
625  *
626  * -- nyc
627  */
628 
629 static inline void __free_one_page(struct page *page,
630 		unsigned long pfn,
631 		struct zone *zone, unsigned int order,
632 		int migratetype)
633 {
634 	unsigned long page_idx;
635 	unsigned long combined_idx;
636 	unsigned long uninitialized_var(buddy_idx);
637 	struct page *buddy;
638 	int max_order = MAX_ORDER;
639 
640 	VM_BUG_ON(!zone_is_initialized(zone));
641 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
642 
643 	VM_BUG_ON(migratetype == -1);
644 	if (is_migrate_isolate(migratetype)) {
645 		/*
646 		 * We restrict max order of merging to prevent merge
647 		 * between freepages on isolate pageblock and normal
648 		 * pageblock. Without this, pageblock isolation
649 		 * could cause incorrect freepage accounting.
650 		 */
651 		max_order = min(MAX_ORDER, pageblock_order + 1);
652 	} else {
653 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
654 	}
655 
656 	page_idx = pfn & ((1 << max_order) - 1);
657 
658 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
659 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
660 
661 	while (order < max_order - 1) {
662 		buddy_idx = __find_buddy_index(page_idx, order);
663 		buddy = page + (buddy_idx - page_idx);
664 		if (!page_is_buddy(page, buddy, order))
665 			break;
666 		/*
667 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
668 		 * merge with it and move up one order.
669 		 */
670 		if (page_is_guard(buddy)) {
671 			clear_page_guard(zone, buddy, order, migratetype);
672 		} else {
673 			list_del(&buddy->lru);
674 			zone->free_area[order].nr_free--;
675 			rmv_page_order(buddy);
676 		}
677 		combined_idx = buddy_idx & page_idx;
678 		page = page + (combined_idx - page_idx);
679 		page_idx = combined_idx;
680 		order++;
681 	}
682 	set_page_order(page, order);
683 
684 	/*
685 	 * If this is not the largest possible page, check if the buddy
686 	 * of the next-highest order is free. If it is, it's possible
687 	 * that pages are being freed that will coalesce soon. In case,
688 	 * that is happening, add the free page to the tail of the list
689 	 * so it's less likely to be used soon and more likely to be merged
690 	 * as a higher order page
691 	 */
692 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
693 		struct page *higher_page, *higher_buddy;
694 		combined_idx = buddy_idx & page_idx;
695 		higher_page = page + (combined_idx - page_idx);
696 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
697 		higher_buddy = higher_page + (buddy_idx - combined_idx);
698 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
699 			list_add_tail(&page->lru,
700 				&zone->free_area[order].free_list[migratetype]);
701 			goto out;
702 		}
703 	}
704 
705 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
706 out:
707 	zone->free_area[order].nr_free++;
708 }
709 
710 static inline int free_pages_check(struct page *page)
711 {
712 	const char *bad_reason = NULL;
713 	unsigned long bad_flags = 0;
714 
715 	if (unlikely(page_mapcount(page)))
716 		bad_reason = "nonzero mapcount";
717 	if (unlikely(page->mapping != NULL))
718 		bad_reason = "non-NULL mapping";
719 	if (unlikely(atomic_read(&page->_count) != 0))
720 		bad_reason = "nonzero _count";
721 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
722 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
723 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
724 	}
725 #ifdef CONFIG_MEMCG
726 	if (unlikely(page->mem_cgroup))
727 		bad_reason = "page still charged to cgroup";
728 #endif
729 	if (unlikely(bad_reason)) {
730 		bad_page(page, bad_reason, bad_flags);
731 		return 1;
732 	}
733 	page_cpupid_reset_last(page);
734 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
735 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
736 	return 0;
737 }
738 
739 /*
740  * Frees a number of pages from the PCP lists
741  * Assumes all pages on list are in same zone, and of same order.
742  * count is the number of pages to free.
743  *
744  * If the zone was previously in an "all pages pinned" state then look to
745  * see if this freeing clears that state.
746  *
747  * And clear the zone's pages_scanned counter, to hold off the "all pages are
748  * pinned" detection logic.
749  */
750 static void free_pcppages_bulk(struct zone *zone, int count,
751 					struct per_cpu_pages *pcp)
752 {
753 	int migratetype = 0;
754 	int batch_free = 0;
755 	int to_free = count;
756 	unsigned long nr_scanned;
757 
758 	spin_lock(&zone->lock);
759 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
760 	if (nr_scanned)
761 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
762 
763 	while (to_free) {
764 		struct page *page;
765 		struct list_head *list;
766 
767 		/*
768 		 * Remove pages from lists in a round-robin fashion. A
769 		 * batch_free count is maintained that is incremented when an
770 		 * empty list is encountered.  This is so more pages are freed
771 		 * off fuller lists instead of spinning excessively around empty
772 		 * lists
773 		 */
774 		do {
775 			batch_free++;
776 			if (++migratetype == MIGRATE_PCPTYPES)
777 				migratetype = 0;
778 			list = &pcp->lists[migratetype];
779 		} while (list_empty(list));
780 
781 		/* This is the only non-empty list. Free them all. */
782 		if (batch_free == MIGRATE_PCPTYPES)
783 			batch_free = to_free;
784 
785 		do {
786 			int mt;	/* migratetype of the to-be-freed page */
787 
788 			page = list_entry(list->prev, struct page, lru);
789 			/* must delete as __free_one_page list manipulates */
790 			list_del(&page->lru);
791 			mt = get_freepage_migratetype(page);
792 			if (unlikely(has_isolate_pageblock(zone)))
793 				mt = get_pageblock_migratetype(page);
794 
795 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
796 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
797 			trace_mm_page_pcpu_drain(page, 0, mt);
798 		} while (--to_free && --batch_free && !list_empty(list));
799 	}
800 	spin_unlock(&zone->lock);
801 }
802 
803 static void free_one_page(struct zone *zone,
804 				struct page *page, unsigned long pfn,
805 				unsigned int order,
806 				int migratetype)
807 {
808 	unsigned long nr_scanned;
809 	spin_lock(&zone->lock);
810 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
811 	if (nr_scanned)
812 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
813 
814 	if (unlikely(has_isolate_pageblock(zone) ||
815 		is_migrate_isolate(migratetype))) {
816 		migratetype = get_pfnblock_migratetype(page, pfn);
817 	}
818 	__free_one_page(page, pfn, zone, order, migratetype);
819 	spin_unlock(&zone->lock);
820 }
821 
822 static int free_tail_pages_check(struct page *head_page, struct page *page)
823 {
824 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
825 		return 0;
826 	if (unlikely(!PageTail(page))) {
827 		bad_page(page, "PageTail not set", 0);
828 		return 1;
829 	}
830 	if (unlikely(page->first_page != head_page)) {
831 		bad_page(page, "first_page not consistent", 0);
832 		return 1;
833 	}
834 	return 0;
835 }
836 
837 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
838 				unsigned long zone, int nid)
839 {
840 	set_page_links(page, zone, nid, pfn);
841 	init_page_count(page);
842 	page_mapcount_reset(page);
843 	page_cpupid_reset_last(page);
844 
845 	INIT_LIST_HEAD(&page->lru);
846 #ifdef WANT_PAGE_VIRTUAL
847 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
848 	if (!is_highmem_idx(zone))
849 		set_page_address(page, __va(pfn << PAGE_SHIFT));
850 #endif
851 }
852 
853 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
854 					int nid)
855 {
856 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
857 }
858 
859 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
860 static void init_reserved_page(unsigned long pfn)
861 {
862 	pg_data_t *pgdat;
863 	int nid, zid;
864 
865 	if (!early_page_uninitialised(pfn))
866 		return;
867 
868 	nid = early_pfn_to_nid(pfn);
869 	pgdat = NODE_DATA(nid);
870 
871 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
872 		struct zone *zone = &pgdat->node_zones[zid];
873 
874 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
875 			break;
876 	}
877 	__init_single_pfn(pfn, zid, nid);
878 }
879 #else
880 static inline void init_reserved_page(unsigned long pfn)
881 {
882 }
883 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
884 
885 /*
886  * Initialised pages do not have PageReserved set. This function is
887  * called for each range allocated by the bootmem allocator and
888  * marks the pages PageReserved. The remaining valid pages are later
889  * sent to the buddy page allocator.
890  */
891 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
892 {
893 	unsigned long start_pfn = PFN_DOWN(start);
894 	unsigned long end_pfn = PFN_UP(end);
895 
896 	for (; start_pfn < end_pfn; start_pfn++) {
897 		if (pfn_valid(start_pfn)) {
898 			struct page *page = pfn_to_page(start_pfn);
899 
900 			init_reserved_page(start_pfn);
901 			SetPageReserved(page);
902 		}
903 	}
904 }
905 
906 static bool free_pages_prepare(struct page *page, unsigned int order)
907 {
908 	bool compound = PageCompound(page);
909 	int i, bad = 0;
910 
911 	VM_BUG_ON_PAGE(PageTail(page), page);
912 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
913 
914 	trace_mm_page_free(page, order);
915 	kmemcheck_free_shadow(page, order);
916 	kasan_free_pages(page, order);
917 
918 	if (PageAnon(page))
919 		page->mapping = NULL;
920 	bad += free_pages_check(page);
921 	for (i = 1; i < (1 << order); i++) {
922 		if (compound)
923 			bad += free_tail_pages_check(page, page + i);
924 		bad += free_pages_check(page + i);
925 	}
926 	if (bad)
927 		return false;
928 
929 	reset_page_owner(page, order);
930 
931 	if (!PageHighMem(page)) {
932 		debug_check_no_locks_freed(page_address(page),
933 					   PAGE_SIZE << order);
934 		debug_check_no_obj_freed(page_address(page),
935 					   PAGE_SIZE << order);
936 	}
937 	arch_free_page(page, order);
938 	kernel_map_pages(page, 1 << order, 0);
939 
940 	return true;
941 }
942 
943 static void __free_pages_ok(struct page *page, unsigned int order)
944 {
945 	unsigned long flags;
946 	int migratetype;
947 	unsigned long pfn = page_to_pfn(page);
948 
949 	if (!free_pages_prepare(page, order))
950 		return;
951 
952 	migratetype = get_pfnblock_migratetype(page, pfn);
953 	local_irq_save(flags);
954 	__count_vm_events(PGFREE, 1 << order);
955 	set_freepage_migratetype(page, migratetype);
956 	free_one_page(page_zone(page), page, pfn, order, migratetype);
957 	local_irq_restore(flags);
958 }
959 
960 static void __init __free_pages_boot_core(struct page *page,
961 					unsigned long pfn, unsigned int order)
962 {
963 	unsigned int nr_pages = 1 << order;
964 	struct page *p = page;
965 	unsigned int loop;
966 
967 	prefetchw(p);
968 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
969 		prefetchw(p + 1);
970 		__ClearPageReserved(p);
971 		set_page_count(p, 0);
972 	}
973 	__ClearPageReserved(p);
974 	set_page_count(p, 0);
975 
976 	page_zone(page)->managed_pages += nr_pages;
977 	set_page_refcounted(page);
978 	__free_pages(page, order);
979 }
980 
981 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
982 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
983 
984 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
985 
986 int __meminit early_pfn_to_nid(unsigned long pfn)
987 {
988 	static DEFINE_SPINLOCK(early_pfn_lock);
989 	int nid;
990 
991 	spin_lock(&early_pfn_lock);
992 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
993 	if (nid < 0)
994 		nid = 0;
995 	spin_unlock(&early_pfn_lock);
996 
997 	return nid;
998 }
999 #endif
1000 
1001 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1002 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1003 					struct mminit_pfnnid_cache *state)
1004 {
1005 	int nid;
1006 
1007 	nid = __early_pfn_to_nid(pfn, state);
1008 	if (nid >= 0 && nid != node)
1009 		return false;
1010 	return true;
1011 }
1012 
1013 /* Only safe to use early in boot when initialisation is single-threaded */
1014 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1015 {
1016 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1017 }
1018 
1019 #else
1020 
1021 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1022 {
1023 	return true;
1024 }
1025 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1026 					struct mminit_pfnnid_cache *state)
1027 {
1028 	return true;
1029 }
1030 #endif
1031 
1032 
1033 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1034 							unsigned int order)
1035 {
1036 	if (early_page_uninitialised(pfn))
1037 		return;
1038 	return __free_pages_boot_core(page, pfn, order);
1039 }
1040 
1041 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1042 static void __init deferred_free_range(struct page *page,
1043 					unsigned long pfn, int nr_pages)
1044 {
1045 	int i;
1046 
1047 	if (!page)
1048 		return;
1049 
1050 	/* Free a large naturally-aligned chunk if possible */
1051 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1052 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1053 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1054 		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1055 		return;
1056 	}
1057 
1058 	for (i = 0; i < nr_pages; i++, page++, pfn++)
1059 		__free_pages_boot_core(page, pfn, 0);
1060 }
1061 
1062 /* Completion tracking for deferred_init_memmap() threads */
1063 static atomic_t pgdat_init_n_undone __initdata;
1064 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1065 
1066 static inline void __init pgdat_init_report_one_done(void)
1067 {
1068 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1069 		complete(&pgdat_init_all_done_comp);
1070 }
1071 
1072 /* Initialise remaining memory on a node */
1073 static int __init deferred_init_memmap(void *data)
1074 {
1075 	pg_data_t *pgdat = data;
1076 	int nid = pgdat->node_id;
1077 	struct mminit_pfnnid_cache nid_init_state = { };
1078 	unsigned long start = jiffies;
1079 	unsigned long nr_pages = 0;
1080 	unsigned long walk_start, walk_end;
1081 	int i, zid;
1082 	struct zone *zone;
1083 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1084 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1085 
1086 	if (first_init_pfn == ULONG_MAX) {
1087 		pgdat_init_report_one_done();
1088 		return 0;
1089 	}
1090 
1091 	/* Bind memory initialisation thread to a local node if possible */
1092 	if (!cpumask_empty(cpumask))
1093 		set_cpus_allowed_ptr(current, cpumask);
1094 
1095 	/* Sanity check boundaries */
1096 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1097 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1098 	pgdat->first_deferred_pfn = ULONG_MAX;
1099 
1100 	/* Only the highest zone is deferred so find it */
1101 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1102 		zone = pgdat->node_zones + zid;
1103 		if (first_init_pfn < zone_end_pfn(zone))
1104 			break;
1105 	}
1106 
1107 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1108 		unsigned long pfn, end_pfn;
1109 		struct page *page = NULL;
1110 		struct page *free_base_page = NULL;
1111 		unsigned long free_base_pfn = 0;
1112 		int nr_to_free = 0;
1113 
1114 		end_pfn = min(walk_end, zone_end_pfn(zone));
1115 		pfn = first_init_pfn;
1116 		if (pfn < walk_start)
1117 			pfn = walk_start;
1118 		if (pfn < zone->zone_start_pfn)
1119 			pfn = zone->zone_start_pfn;
1120 
1121 		for (; pfn < end_pfn; pfn++) {
1122 			if (!pfn_valid_within(pfn))
1123 				goto free_range;
1124 
1125 			/*
1126 			 * Ensure pfn_valid is checked every
1127 			 * MAX_ORDER_NR_PAGES for memory holes
1128 			 */
1129 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1130 				if (!pfn_valid(pfn)) {
1131 					page = NULL;
1132 					goto free_range;
1133 				}
1134 			}
1135 
1136 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1137 				page = NULL;
1138 				goto free_range;
1139 			}
1140 
1141 			/* Minimise pfn page lookups and scheduler checks */
1142 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1143 				page++;
1144 			} else {
1145 				nr_pages += nr_to_free;
1146 				deferred_free_range(free_base_page,
1147 						free_base_pfn, nr_to_free);
1148 				free_base_page = NULL;
1149 				free_base_pfn = nr_to_free = 0;
1150 
1151 				page = pfn_to_page(pfn);
1152 				cond_resched();
1153 			}
1154 
1155 			if (page->flags) {
1156 				VM_BUG_ON(page_zone(page) != zone);
1157 				goto free_range;
1158 			}
1159 
1160 			__init_single_page(page, pfn, zid, nid);
1161 			if (!free_base_page) {
1162 				free_base_page = page;
1163 				free_base_pfn = pfn;
1164 				nr_to_free = 0;
1165 			}
1166 			nr_to_free++;
1167 
1168 			/* Where possible, batch up pages for a single free */
1169 			continue;
1170 free_range:
1171 			/* Free the current block of pages to allocator */
1172 			nr_pages += nr_to_free;
1173 			deferred_free_range(free_base_page, free_base_pfn,
1174 								nr_to_free);
1175 			free_base_page = NULL;
1176 			free_base_pfn = nr_to_free = 0;
1177 		}
1178 
1179 		first_init_pfn = max(end_pfn, first_init_pfn);
1180 	}
1181 
1182 	/* Sanity check that the next zone really is unpopulated */
1183 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1184 
1185 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1186 					jiffies_to_msecs(jiffies - start));
1187 
1188 	pgdat_init_report_one_done();
1189 	return 0;
1190 }
1191 
1192 void __init page_alloc_init_late(void)
1193 {
1194 	int nid;
1195 
1196 	/* There will be num_node_state(N_MEMORY) threads */
1197 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1198 	for_each_node_state(nid, N_MEMORY) {
1199 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1200 	}
1201 
1202 	/* Block until all are initialised */
1203 	wait_for_completion(&pgdat_init_all_done_comp);
1204 
1205 	/* Reinit limits that are based on free pages after the kernel is up */
1206 	files_maxfiles_init();
1207 }
1208 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1209 
1210 #ifdef CONFIG_CMA
1211 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1212 void __init init_cma_reserved_pageblock(struct page *page)
1213 {
1214 	unsigned i = pageblock_nr_pages;
1215 	struct page *p = page;
1216 
1217 	do {
1218 		__ClearPageReserved(p);
1219 		set_page_count(p, 0);
1220 	} while (++p, --i);
1221 
1222 	set_pageblock_migratetype(page, MIGRATE_CMA);
1223 
1224 	if (pageblock_order >= MAX_ORDER) {
1225 		i = pageblock_nr_pages;
1226 		p = page;
1227 		do {
1228 			set_page_refcounted(p);
1229 			__free_pages(p, MAX_ORDER - 1);
1230 			p += MAX_ORDER_NR_PAGES;
1231 		} while (i -= MAX_ORDER_NR_PAGES);
1232 	} else {
1233 		set_page_refcounted(page);
1234 		__free_pages(page, pageblock_order);
1235 	}
1236 
1237 	adjust_managed_page_count(page, pageblock_nr_pages);
1238 }
1239 #endif
1240 
1241 /*
1242  * The order of subdivision here is critical for the IO subsystem.
1243  * Please do not alter this order without good reasons and regression
1244  * testing. Specifically, as large blocks of memory are subdivided,
1245  * the order in which smaller blocks are delivered depends on the order
1246  * they're subdivided in this function. This is the primary factor
1247  * influencing the order in which pages are delivered to the IO
1248  * subsystem according to empirical testing, and this is also justified
1249  * by considering the behavior of a buddy system containing a single
1250  * large block of memory acted on by a series of small allocations.
1251  * This behavior is a critical factor in sglist merging's success.
1252  *
1253  * -- nyc
1254  */
1255 static inline void expand(struct zone *zone, struct page *page,
1256 	int low, int high, struct free_area *area,
1257 	int migratetype)
1258 {
1259 	unsigned long size = 1 << high;
1260 
1261 	while (high > low) {
1262 		area--;
1263 		high--;
1264 		size >>= 1;
1265 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1266 
1267 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1268 			debug_guardpage_enabled() &&
1269 			high < debug_guardpage_minorder()) {
1270 			/*
1271 			 * Mark as guard pages (or page), that will allow to
1272 			 * merge back to allocator when buddy will be freed.
1273 			 * Corresponding page table entries will not be touched,
1274 			 * pages will stay not present in virtual address space
1275 			 */
1276 			set_page_guard(zone, &page[size], high, migratetype);
1277 			continue;
1278 		}
1279 		list_add(&page[size].lru, &area->free_list[migratetype]);
1280 		area->nr_free++;
1281 		set_page_order(&page[size], high);
1282 	}
1283 }
1284 
1285 /*
1286  * This page is about to be returned from the page allocator
1287  */
1288 static inline int check_new_page(struct page *page)
1289 {
1290 	const char *bad_reason = NULL;
1291 	unsigned long bad_flags = 0;
1292 
1293 	if (unlikely(page_mapcount(page)))
1294 		bad_reason = "nonzero mapcount";
1295 	if (unlikely(page->mapping != NULL))
1296 		bad_reason = "non-NULL mapping";
1297 	if (unlikely(atomic_read(&page->_count) != 0))
1298 		bad_reason = "nonzero _count";
1299 	if (unlikely(page->flags & __PG_HWPOISON)) {
1300 		bad_reason = "HWPoisoned (hardware-corrupted)";
1301 		bad_flags = __PG_HWPOISON;
1302 	}
1303 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1304 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1305 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1306 	}
1307 #ifdef CONFIG_MEMCG
1308 	if (unlikely(page->mem_cgroup))
1309 		bad_reason = "page still charged to cgroup";
1310 #endif
1311 	if (unlikely(bad_reason)) {
1312 		bad_page(page, bad_reason, bad_flags);
1313 		return 1;
1314 	}
1315 	return 0;
1316 }
1317 
1318 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1319 								int alloc_flags)
1320 {
1321 	int i;
1322 
1323 	for (i = 0; i < (1 << order); i++) {
1324 		struct page *p = page + i;
1325 		if (unlikely(check_new_page(p)))
1326 			return 1;
1327 	}
1328 
1329 	set_page_private(page, 0);
1330 	set_page_refcounted(page);
1331 
1332 	arch_alloc_page(page, order);
1333 	kernel_map_pages(page, 1 << order, 1);
1334 	kasan_alloc_pages(page, order);
1335 
1336 	if (gfp_flags & __GFP_ZERO)
1337 		for (i = 0; i < (1 << order); i++)
1338 			clear_highpage(page + i);
1339 
1340 	if (order && (gfp_flags & __GFP_COMP))
1341 		prep_compound_page(page, order);
1342 
1343 	set_page_owner(page, order, gfp_flags);
1344 
1345 	/*
1346 	 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was necessary to
1347 	 * allocate the page. The expectation is that the caller is taking
1348 	 * steps that will free more memory. The caller should avoid the page
1349 	 * being used for !PFMEMALLOC purposes.
1350 	 */
1351 	page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1352 
1353 	return 0;
1354 }
1355 
1356 /*
1357  * Go through the free lists for the given migratetype and remove
1358  * the smallest available page from the freelists
1359  */
1360 static inline
1361 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1362 						int migratetype)
1363 {
1364 	unsigned int current_order;
1365 	struct free_area *area;
1366 	struct page *page;
1367 
1368 	/* Find a page of the appropriate size in the preferred list */
1369 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1370 		area = &(zone->free_area[current_order]);
1371 		if (list_empty(&area->free_list[migratetype]))
1372 			continue;
1373 
1374 		page = list_entry(area->free_list[migratetype].next,
1375 							struct page, lru);
1376 		list_del(&page->lru);
1377 		rmv_page_order(page);
1378 		area->nr_free--;
1379 		expand(zone, page, order, current_order, area, migratetype);
1380 		set_freepage_migratetype(page, migratetype);
1381 		return page;
1382 	}
1383 
1384 	return NULL;
1385 }
1386 
1387 
1388 /*
1389  * This array describes the order lists are fallen back to when
1390  * the free lists for the desirable migrate type are depleted
1391  */
1392 static int fallbacks[MIGRATE_TYPES][4] = {
1393 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1394 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
1395 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
1396 #ifdef CONFIG_CMA
1397 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
1398 #endif
1399 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
1400 #ifdef CONFIG_MEMORY_ISOLATION
1401 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
1402 #endif
1403 };
1404 
1405 #ifdef CONFIG_CMA
1406 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1407 					unsigned int order)
1408 {
1409 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1410 }
1411 #else
1412 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1413 					unsigned int order) { return NULL; }
1414 #endif
1415 
1416 /*
1417  * Move the free pages in a range to the free lists of the requested type.
1418  * Note that start_page and end_pages are not aligned on a pageblock
1419  * boundary. If alignment is required, use move_freepages_block()
1420  */
1421 int move_freepages(struct zone *zone,
1422 			  struct page *start_page, struct page *end_page,
1423 			  int migratetype)
1424 {
1425 	struct page *page;
1426 	unsigned long order;
1427 	int pages_moved = 0;
1428 
1429 #ifndef CONFIG_HOLES_IN_ZONE
1430 	/*
1431 	 * page_zone is not safe to call in this context when
1432 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1433 	 * anyway as we check zone boundaries in move_freepages_block().
1434 	 * Remove at a later date when no bug reports exist related to
1435 	 * grouping pages by mobility
1436 	 */
1437 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1438 #endif
1439 
1440 	for (page = start_page; page <= end_page;) {
1441 		/* Make sure we are not inadvertently changing nodes */
1442 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1443 
1444 		if (!pfn_valid_within(page_to_pfn(page))) {
1445 			page++;
1446 			continue;
1447 		}
1448 
1449 		if (!PageBuddy(page)) {
1450 			page++;
1451 			continue;
1452 		}
1453 
1454 		order = page_order(page);
1455 		list_move(&page->lru,
1456 			  &zone->free_area[order].free_list[migratetype]);
1457 		set_freepage_migratetype(page, migratetype);
1458 		page += 1 << order;
1459 		pages_moved += 1 << order;
1460 	}
1461 
1462 	return pages_moved;
1463 }
1464 
1465 int move_freepages_block(struct zone *zone, struct page *page,
1466 				int migratetype)
1467 {
1468 	unsigned long start_pfn, end_pfn;
1469 	struct page *start_page, *end_page;
1470 
1471 	start_pfn = page_to_pfn(page);
1472 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1473 	start_page = pfn_to_page(start_pfn);
1474 	end_page = start_page + pageblock_nr_pages - 1;
1475 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1476 
1477 	/* Do not cross zone boundaries */
1478 	if (!zone_spans_pfn(zone, start_pfn))
1479 		start_page = page;
1480 	if (!zone_spans_pfn(zone, end_pfn))
1481 		return 0;
1482 
1483 	return move_freepages(zone, start_page, end_page, migratetype);
1484 }
1485 
1486 static void change_pageblock_range(struct page *pageblock_page,
1487 					int start_order, int migratetype)
1488 {
1489 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1490 
1491 	while (nr_pageblocks--) {
1492 		set_pageblock_migratetype(pageblock_page, migratetype);
1493 		pageblock_page += pageblock_nr_pages;
1494 	}
1495 }
1496 
1497 /*
1498  * When we are falling back to another migratetype during allocation, try to
1499  * steal extra free pages from the same pageblocks to satisfy further
1500  * allocations, instead of polluting multiple pageblocks.
1501  *
1502  * If we are stealing a relatively large buddy page, it is likely there will
1503  * be more free pages in the pageblock, so try to steal them all. For
1504  * reclaimable and unmovable allocations, we steal regardless of page size,
1505  * as fragmentation caused by those allocations polluting movable pageblocks
1506  * is worse than movable allocations stealing from unmovable and reclaimable
1507  * pageblocks.
1508  */
1509 static bool can_steal_fallback(unsigned int order, int start_mt)
1510 {
1511 	/*
1512 	 * Leaving this order check is intended, although there is
1513 	 * relaxed order check in next check. The reason is that
1514 	 * we can actually steal whole pageblock if this condition met,
1515 	 * but, below check doesn't guarantee it and that is just heuristic
1516 	 * so could be changed anytime.
1517 	 */
1518 	if (order >= pageblock_order)
1519 		return true;
1520 
1521 	if (order >= pageblock_order / 2 ||
1522 		start_mt == MIGRATE_RECLAIMABLE ||
1523 		start_mt == MIGRATE_UNMOVABLE ||
1524 		page_group_by_mobility_disabled)
1525 		return true;
1526 
1527 	return false;
1528 }
1529 
1530 /*
1531  * This function implements actual steal behaviour. If order is large enough,
1532  * we can steal whole pageblock. If not, we first move freepages in this
1533  * pageblock and check whether half of pages are moved or not. If half of
1534  * pages are moved, we can change migratetype of pageblock and permanently
1535  * use it's pages as requested migratetype in the future.
1536  */
1537 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1538 							  int start_type)
1539 {
1540 	int current_order = page_order(page);
1541 	int pages;
1542 
1543 	/* Take ownership for orders >= pageblock_order */
1544 	if (current_order >= pageblock_order) {
1545 		change_pageblock_range(page, current_order, start_type);
1546 		return;
1547 	}
1548 
1549 	pages = move_freepages_block(zone, page, start_type);
1550 
1551 	/* Claim the whole block if over half of it is free */
1552 	if (pages >= (1 << (pageblock_order-1)) ||
1553 			page_group_by_mobility_disabled)
1554 		set_pageblock_migratetype(page, start_type);
1555 }
1556 
1557 /*
1558  * Check whether there is a suitable fallback freepage with requested order.
1559  * If only_stealable is true, this function returns fallback_mt only if
1560  * we can steal other freepages all together. This would help to reduce
1561  * fragmentation due to mixed migratetype pages in one pageblock.
1562  */
1563 int find_suitable_fallback(struct free_area *area, unsigned int order,
1564 			int migratetype, bool only_stealable, bool *can_steal)
1565 {
1566 	int i;
1567 	int fallback_mt;
1568 
1569 	if (area->nr_free == 0)
1570 		return -1;
1571 
1572 	*can_steal = false;
1573 	for (i = 0;; i++) {
1574 		fallback_mt = fallbacks[migratetype][i];
1575 		if (fallback_mt == MIGRATE_RESERVE)
1576 			break;
1577 
1578 		if (list_empty(&area->free_list[fallback_mt]))
1579 			continue;
1580 
1581 		if (can_steal_fallback(order, migratetype))
1582 			*can_steal = true;
1583 
1584 		if (!only_stealable)
1585 			return fallback_mt;
1586 
1587 		if (*can_steal)
1588 			return fallback_mt;
1589 	}
1590 
1591 	return -1;
1592 }
1593 
1594 /* Remove an element from the buddy allocator from the fallback list */
1595 static inline struct page *
1596 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1597 {
1598 	struct free_area *area;
1599 	unsigned int current_order;
1600 	struct page *page;
1601 	int fallback_mt;
1602 	bool can_steal;
1603 
1604 	/* Find the largest possible block of pages in the other list */
1605 	for (current_order = MAX_ORDER-1;
1606 				current_order >= order && current_order <= MAX_ORDER-1;
1607 				--current_order) {
1608 		area = &(zone->free_area[current_order]);
1609 		fallback_mt = find_suitable_fallback(area, current_order,
1610 				start_migratetype, false, &can_steal);
1611 		if (fallback_mt == -1)
1612 			continue;
1613 
1614 		page = list_entry(area->free_list[fallback_mt].next,
1615 						struct page, lru);
1616 		if (can_steal)
1617 			steal_suitable_fallback(zone, page, start_migratetype);
1618 
1619 		/* Remove the page from the freelists */
1620 		area->nr_free--;
1621 		list_del(&page->lru);
1622 		rmv_page_order(page);
1623 
1624 		expand(zone, page, order, current_order, area,
1625 					start_migratetype);
1626 		/*
1627 		 * The freepage_migratetype may differ from pageblock's
1628 		 * migratetype depending on the decisions in
1629 		 * try_to_steal_freepages(). This is OK as long as it
1630 		 * does not differ for MIGRATE_CMA pageblocks. For CMA
1631 		 * we need to make sure unallocated pages flushed from
1632 		 * pcp lists are returned to the correct freelist.
1633 		 */
1634 		set_freepage_migratetype(page, start_migratetype);
1635 
1636 		trace_mm_page_alloc_extfrag(page, order, current_order,
1637 			start_migratetype, fallback_mt);
1638 
1639 		return page;
1640 	}
1641 
1642 	return NULL;
1643 }
1644 
1645 /*
1646  * Do the hard work of removing an element from the buddy allocator.
1647  * Call me with the zone->lock already held.
1648  */
1649 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1650 						int migratetype)
1651 {
1652 	struct page *page;
1653 
1654 retry_reserve:
1655 	page = __rmqueue_smallest(zone, order, migratetype);
1656 
1657 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1658 		if (migratetype == MIGRATE_MOVABLE)
1659 			page = __rmqueue_cma_fallback(zone, order);
1660 
1661 		if (!page)
1662 			page = __rmqueue_fallback(zone, order, migratetype);
1663 
1664 		/*
1665 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1666 		 * is used because __rmqueue_smallest is an inline function
1667 		 * and we want just one call site
1668 		 */
1669 		if (!page) {
1670 			migratetype = MIGRATE_RESERVE;
1671 			goto retry_reserve;
1672 		}
1673 	}
1674 
1675 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1676 	return page;
1677 }
1678 
1679 /*
1680  * Obtain a specified number of elements from the buddy allocator, all under
1681  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1682  * Returns the number of new pages which were placed at *list.
1683  */
1684 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1685 			unsigned long count, struct list_head *list,
1686 			int migratetype, bool cold)
1687 {
1688 	int i;
1689 
1690 	spin_lock(&zone->lock);
1691 	for (i = 0; i < count; ++i) {
1692 		struct page *page = __rmqueue(zone, order, migratetype);
1693 		if (unlikely(page == NULL))
1694 			break;
1695 
1696 		/*
1697 		 * Split buddy pages returned by expand() are received here
1698 		 * in physical page order. The page is added to the callers and
1699 		 * list and the list head then moves forward. From the callers
1700 		 * perspective, the linked list is ordered by page number in
1701 		 * some conditions. This is useful for IO devices that can
1702 		 * merge IO requests if the physical pages are ordered
1703 		 * properly.
1704 		 */
1705 		if (likely(!cold))
1706 			list_add(&page->lru, list);
1707 		else
1708 			list_add_tail(&page->lru, list);
1709 		list = &page->lru;
1710 		if (is_migrate_cma(get_freepage_migratetype(page)))
1711 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1712 					      -(1 << order));
1713 	}
1714 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1715 	spin_unlock(&zone->lock);
1716 	return i;
1717 }
1718 
1719 #ifdef CONFIG_NUMA
1720 /*
1721  * Called from the vmstat counter updater to drain pagesets of this
1722  * currently executing processor on remote nodes after they have
1723  * expired.
1724  *
1725  * Note that this function must be called with the thread pinned to
1726  * a single processor.
1727  */
1728 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1729 {
1730 	unsigned long flags;
1731 	int to_drain, batch;
1732 
1733 	local_irq_save(flags);
1734 	batch = READ_ONCE(pcp->batch);
1735 	to_drain = min(pcp->count, batch);
1736 	if (to_drain > 0) {
1737 		free_pcppages_bulk(zone, to_drain, pcp);
1738 		pcp->count -= to_drain;
1739 	}
1740 	local_irq_restore(flags);
1741 }
1742 #endif
1743 
1744 /*
1745  * Drain pcplists of the indicated processor and zone.
1746  *
1747  * The processor must either be the current processor and the
1748  * thread pinned to the current processor or a processor that
1749  * is not online.
1750  */
1751 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1752 {
1753 	unsigned long flags;
1754 	struct per_cpu_pageset *pset;
1755 	struct per_cpu_pages *pcp;
1756 
1757 	local_irq_save(flags);
1758 	pset = per_cpu_ptr(zone->pageset, cpu);
1759 
1760 	pcp = &pset->pcp;
1761 	if (pcp->count) {
1762 		free_pcppages_bulk(zone, pcp->count, pcp);
1763 		pcp->count = 0;
1764 	}
1765 	local_irq_restore(flags);
1766 }
1767 
1768 /*
1769  * Drain pcplists of all zones on the indicated processor.
1770  *
1771  * The processor must either be the current processor and the
1772  * thread pinned to the current processor or a processor that
1773  * is not online.
1774  */
1775 static void drain_pages(unsigned int cpu)
1776 {
1777 	struct zone *zone;
1778 
1779 	for_each_populated_zone(zone) {
1780 		drain_pages_zone(cpu, zone);
1781 	}
1782 }
1783 
1784 /*
1785  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1786  *
1787  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
1788  * the single zone's pages.
1789  */
1790 void drain_local_pages(struct zone *zone)
1791 {
1792 	int cpu = smp_processor_id();
1793 
1794 	if (zone)
1795 		drain_pages_zone(cpu, zone);
1796 	else
1797 		drain_pages(cpu);
1798 }
1799 
1800 /*
1801  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1802  *
1803  * When zone parameter is non-NULL, spill just the single zone's pages.
1804  *
1805  * Note that this code is protected against sending an IPI to an offline
1806  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1807  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1808  * nothing keeps CPUs from showing up after we populated the cpumask and
1809  * before the call to on_each_cpu_mask().
1810  */
1811 void drain_all_pages(struct zone *zone)
1812 {
1813 	int cpu;
1814 
1815 	/*
1816 	 * Allocate in the BSS so we wont require allocation in
1817 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1818 	 */
1819 	static cpumask_t cpus_with_pcps;
1820 
1821 	/*
1822 	 * We don't care about racing with CPU hotplug event
1823 	 * as offline notification will cause the notified
1824 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1825 	 * disables preemption as part of its processing
1826 	 */
1827 	for_each_online_cpu(cpu) {
1828 		struct per_cpu_pageset *pcp;
1829 		struct zone *z;
1830 		bool has_pcps = false;
1831 
1832 		if (zone) {
1833 			pcp = per_cpu_ptr(zone->pageset, cpu);
1834 			if (pcp->pcp.count)
1835 				has_pcps = true;
1836 		} else {
1837 			for_each_populated_zone(z) {
1838 				pcp = per_cpu_ptr(z->pageset, cpu);
1839 				if (pcp->pcp.count) {
1840 					has_pcps = true;
1841 					break;
1842 				}
1843 			}
1844 		}
1845 
1846 		if (has_pcps)
1847 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1848 		else
1849 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1850 	}
1851 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
1852 								zone, 1);
1853 }
1854 
1855 #ifdef CONFIG_HIBERNATION
1856 
1857 void mark_free_pages(struct zone *zone)
1858 {
1859 	unsigned long pfn, max_zone_pfn;
1860 	unsigned long flags;
1861 	unsigned int order, t;
1862 	struct list_head *curr;
1863 
1864 	if (zone_is_empty(zone))
1865 		return;
1866 
1867 	spin_lock_irqsave(&zone->lock, flags);
1868 
1869 	max_zone_pfn = zone_end_pfn(zone);
1870 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1871 		if (pfn_valid(pfn)) {
1872 			struct page *page = pfn_to_page(pfn);
1873 
1874 			if (!swsusp_page_is_forbidden(page))
1875 				swsusp_unset_page_free(page);
1876 		}
1877 
1878 	for_each_migratetype_order(order, t) {
1879 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1880 			unsigned long i;
1881 
1882 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1883 			for (i = 0; i < (1UL << order); i++)
1884 				swsusp_set_page_free(pfn_to_page(pfn + i));
1885 		}
1886 	}
1887 	spin_unlock_irqrestore(&zone->lock, flags);
1888 }
1889 #endif /* CONFIG_PM */
1890 
1891 /*
1892  * Free a 0-order page
1893  * cold == true ? free a cold page : free a hot page
1894  */
1895 void free_hot_cold_page(struct page *page, bool cold)
1896 {
1897 	struct zone *zone = page_zone(page);
1898 	struct per_cpu_pages *pcp;
1899 	unsigned long flags;
1900 	unsigned long pfn = page_to_pfn(page);
1901 	int migratetype;
1902 
1903 	if (!free_pages_prepare(page, 0))
1904 		return;
1905 
1906 	migratetype = get_pfnblock_migratetype(page, pfn);
1907 	set_freepage_migratetype(page, migratetype);
1908 	local_irq_save(flags);
1909 	__count_vm_event(PGFREE);
1910 
1911 	/*
1912 	 * We only track unmovable, reclaimable and movable on pcp lists.
1913 	 * Free ISOLATE pages back to the allocator because they are being
1914 	 * offlined but treat RESERVE as movable pages so we can get those
1915 	 * areas back if necessary. Otherwise, we may have to free
1916 	 * excessively into the page allocator
1917 	 */
1918 	if (migratetype >= MIGRATE_PCPTYPES) {
1919 		if (unlikely(is_migrate_isolate(migratetype))) {
1920 			free_one_page(zone, page, pfn, 0, migratetype);
1921 			goto out;
1922 		}
1923 		migratetype = MIGRATE_MOVABLE;
1924 	}
1925 
1926 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1927 	if (!cold)
1928 		list_add(&page->lru, &pcp->lists[migratetype]);
1929 	else
1930 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1931 	pcp->count++;
1932 	if (pcp->count >= pcp->high) {
1933 		unsigned long batch = READ_ONCE(pcp->batch);
1934 		free_pcppages_bulk(zone, batch, pcp);
1935 		pcp->count -= batch;
1936 	}
1937 
1938 out:
1939 	local_irq_restore(flags);
1940 }
1941 
1942 /*
1943  * Free a list of 0-order pages
1944  */
1945 void free_hot_cold_page_list(struct list_head *list, bool cold)
1946 {
1947 	struct page *page, *next;
1948 
1949 	list_for_each_entry_safe(page, next, list, lru) {
1950 		trace_mm_page_free_batched(page, cold);
1951 		free_hot_cold_page(page, cold);
1952 	}
1953 }
1954 
1955 /*
1956  * split_page takes a non-compound higher-order page, and splits it into
1957  * n (1<<order) sub-pages: page[0..n]
1958  * Each sub-page must be freed individually.
1959  *
1960  * Note: this is probably too low level an operation for use in drivers.
1961  * Please consult with lkml before using this in your driver.
1962  */
1963 void split_page(struct page *page, unsigned int order)
1964 {
1965 	int i;
1966 	gfp_t gfp_mask;
1967 
1968 	VM_BUG_ON_PAGE(PageCompound(page), page);
1969 	VM_BUG_ON_PAGE(!page_count(page), page);
1970 
1971 #ifdef CONFIG_KMEMCHECK
1972 	/*
1973 	 * Split shadow pages too, because free(page[0]) would
1974 	 * otherwise free the whole shadow.
1975 	 */
1976 	if (kmemcheck_page_is_tracked(page))
1977 		split_page(virt_to_page(page[0].shadow), order);
1978 #endif
1979 
1980 	gfp_mask = get_page_owner_gfp(page);
1981 	set_page_owner(page, 0, gfp_mask);
1982 	for (i = 1; i < (1 << order); i++) {
1983 		set_page_refcounted(page + i);
1984 		set_page_owner(page + i, 0, gfp_mask);
1985 	}
1986 }
1987 EXPORT_SYMBOL_GPL(split_page);
1988 
1989 int __isolate_free_page(struct page *page, unsigned int order)
1990 {
1991 	unsigned long watermark;
1992 	struct zone *zone;
1993 	int mt;
1994 
1995 	BUG_ON(!PageBuddy(page));
1996 
1997 	zone = page_zone(page);
1998 	mt = get_pageblock_migratetype(page);
1999 
2000 	if (!is_migrate_isolate(mt)) {
2001 		/* Obey watermarks as if the page was being allocated */
2002 		watermark = low_wmark_pages(zone) + (1 << order);
2003 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2004 			return 0;
2005 
2006 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2007 	}
2008 
2009 	/* Remove page from free list */
2010 	list_del(&page->lru);
2011 	zone->free_area[order].nr_free--;
2012 	rmv_page_order(page);
2013 
2014 	set_page_owner(page, order, __GFP_MOVABLE);
2015 
2016 	/* Set the pageblock if the isolated page is at least a pageblock */
2017 	if (order >= pageblock_order - 1) {
2018 		struct page *endpage = page + (1 << order) - 1;
2019 		for (; page < endpage; page += pageblock_nr_pages) {
2020 			int mt = get_pageblock_migratetype(page);
2021 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2022 				set_pageblock_migratetype(page,
2023 							  MIGRATE_MOVABLE);
2024 		}
2025 	}
2026 
2027 
2028 	return 1UL << order;
2029 }
2030 
2031 /*
2032  * Similar to split_page except the page is already free. As this is only
2033  * being used for migration, the migratetype of the block also changes.
2034  * As this is called with interrupts disabled, the caller is responsible
2035  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2036  * are enabled.
2037  *
2038  * Note: this is probably too low level an operation for use in drivers.
2039  * Please consult with lkml before using this in your driver.
2040  */
2041 int split_free_page(struct page *page)
2042 {
2043 	unsigned int order;
2044 	int nr_pages;
2045 
2046 	order = page_order(page);
2047 
2048 	nr_pages = __isolate_free_page(page, order);
2049 	if (!nr_pages)
2050 		return 0;
2051 
2052 	/* Split into individual pages */
2053 	set_page_refcounted(page);
2054 	split_page(page, order);
2055 	return nr_pages;
2056 }
2057 
2058 /*
2059  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2060  */
2061 static inline
2062 struct page *buffered_rmqueue(struct zone *preferred_zone,
2063 			struct zone *zone, unsigned int order,
2064 			gfp_t gfp_flags, int migratetype)
2065 {
2066 	unsigned long flags;
2067 	struct page *page;
2068 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2069 
2070 	if (likely(order == 0)) {
2071 		struct per_cpu_pages *pcp;
2072 		struct list_head *list;
2073 
2074 		local_irq_save(flags);
2075 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2076 		list = &pcp->lists[migratetype];
2077 		if (list_empty(list)) {
2078 			pcp->count += rmqueue_bulk(zone, 0,
2079 					pcp->batch, list,
2080 					migratetype, cold);
2081 			if (unlikely(list_empty(list)))
2082 				goto failed;
2083 		}
2084 
2085 		if (cold)
2086 			page = list_entry(list->prev, struct page, lru);
2087 		else
2088 			page = list_entry(list->next, struct page, lru);
2089 
2090 		list_del(&page->lru);
2091 		pcp->count--;
2092 	} else {
2093 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
2094 			/*
2095 			 * __GFP_NOFAIL is not to be used in new code.
2096 			 *
2097 			 * All __GFP_NOFAIL callers should be fixed so that they
2098 			 * properly detect and handle allocation failures.
2099 			 *
2100 			 * We most definitely don't want callers attempting to
2101 			 * allocate greater than order-1 page units with
2102 			 * __GFP_NOFAIL.
2103 			 */
2104 			WARN_ON_ONCE(order > 1);
2105 		}
2106 		spin_lock_irqsave(&zone->lock, flags);
2107 		page = __rmqueue(zone, order, migratetype);
2108 		spin_unlock(&zone->lock);
2109 		if (!page)
2110 			goto failed;
2111 		__mod_zone_freepage_state(zone, -(1 << order),
2112 					  get_freepage_migratetype(page));
2113 	}
2114 
2115 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2116 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2117 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2118 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2119 
2120 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2121 	zone_statistics(preferred_zone, zone, gfp_flags);
2122 	local_irq_restore(flags);
2123 
2124 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2125 	return page;
2126 
2127 failed:
2128 	local_irq_restore(flags);
2129 	return NULL;
2130 }
2131 
2132 #ifdef CONFIG_FAIL_PAGE_ALLOC
2133 
2134 static struct {
2135 	struct fault_attr attr;
2136 
2137 	u32 ignore_gfp_highmem;
2138 	u32 ignore_gfp_wait;
2139 	u32 min_order;
2140 } fail_page_alloc = {
2141 	.attr = FAULT_ATTR_INITIALIZER,
2142 	.ignore_gfp_wait = 1,
2143 	.ignore_gfp_highmem = 1,
2144 	.min_order = 1,
2145 };
2146 
2147 static int __init setup_fail_page_alloc(char *str)
2148 {
2149 	return setup_fault_attr(&fail_page_alloc.attr, str);
2150 }
2151 __setup("fail_page_alloc=", setup_fail_page_alloc);
2152 
2153 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2154 {
2155 	if (order < fail_page_alloc.min_order)
2156 		return false;
2157 	if (gfp_mask & __GFP_NOFAIL)
2158 		return false;
2159 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2160 		return false;
2161 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
2162 		return false;
2163 
2164 	return should_fail(&fail_page_alloc.attr, 1 << order);
2165 }
2166 
2167 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2168 
2169 static int __init fail_page_alloc_debugfs(void)
2170 {
2171 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2172 	struct dentry *dir;
2173 
2174 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2175 					&fail_page_alloc.attr);
2176 	if (IS_ERR(dir))
2177 		return PTR_ERR(dir);
2178 
2179 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2180 				&fail_page_alloc.ignore_gfp_wait))
2181 		goto fail;
2182 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2183 				&fail_page_alloc.ignore_gfp_highmem))
2184 		goto fail;
2185 	if (!debugfs_create_u32("min-order", mode, dir,
2186 				&fail_page_alloc.min_order))
2187 		goto fail;
2188 
2189 	return 0;
2190 fail:
2191 	debugfs_remove_recursive(dir);
2192 
2193 	return -ENOMEM;
2194 }
2195 
2196 late_initcall(fail_page_alloc_debugfs);
2197 
2198 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2199 
2200 #else /* CONFIG_FAIL_PAGE_ALLOC */
2201 
2202 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2203 {
2204 	return false;
2205 }
2206 
2207 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2208 
2209 /*
2210  * Return true if free pages are above 'mark'. This takes into account the order
2211  * of the allocation.
2212  */
2213 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2214 			unsigned long mark, int classzone_idx, int alloc_flags,
2215 			long free_pages)
2216 {
2217 	/* free_pages may go negative - that's OK */
2218 	long min = mark;
2219 	int o;
2220 	long free_cma = 0;
2221 
2222 	free_pages -= (1 << order) - 1;
2223 	if (alloc_flags & ALLOC_HIGH)
2224 		min -= min / 2;
2225 	if (alloc_flags & ALLOC_HARDER)
2226 		min -= min / 4;
2227 #ifdef CONFIG_CMA
2228 	/* If allocation can't use CMA areas don't use free CMA pages */
2229 	if (!(alloc_flags & ALLOC_CMA))
2230 		free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
2231 #endif
2232 
2233 	if (free_pages - free_cma <= min + z->lowmem_reserve[classzone_idx])
2234 		return false;
2235 	for (o = 0; o < order; o++) {
2236 		/* At the next order, this order's pages become unavailable */
2237 		free_pages -= z->free_area[o].nr_free << o;
2238 
2239 		/* Require fewer higher order pages to be free */
2240 		min >>= 1;
2241 
2242 		if (free_pages <= min)
2243 			return false;
2244 	}
2245 	return true;
2246 }
2247 
2248 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2249 		      int classzone_idx, int alloc_flags)
2250 {
2251 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2252 					zone_page_state(z, NR_FREE_PAGES));
2253 }
2254 
2255 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2256 			unsigned long mark, int classzone_idx, int alloc_flags)
2257 {
2258 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2259 
2260 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2261 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2262 
2263 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2264 								free_pages);
2265 }
2266 
2267 #ifdef CONFIG_NUMA
2268 /*
2269  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
2270  * skip over zones that are not allowed by the cpuset, or that have
2271  * been recently (in last second) found to be nearly full.  See further
2272  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
2273  * that have to skip over a lot of full or unallowed zones.
2274  *
2275  * If the zonelist cache is present in the passed zonelist, then
2276  * returns a pointer to the allowed node mask (either the current
2277  * tasks mems_allowed, or node_states[N_MEMORY].)
2278  *
2279  * If the zonelist cache is not available for this zonelist, does
2280  * nothing and returns NULL.
2281  *
2282  * If the fullzones BITMAP in the zonelist cache is stale (more than
2283  * a second since last zap'd) then we zap it out (clear its bits.)
2284  *
2285  * We hold off even calling zlc_setup, until after we've checked the
2286  * first zone in the zonelist, on the theory that most allocations will
2287  * be satisfied from that first zone, so best to examine that zone as
2288  * quickly as we can.
2289  */
2290 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2291 {
2292 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2293 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
2294 
2295 	zlc = zonelist->zlcache_ptr;
2296 	if (!zlc)
2297 		return NULL;
2298 
2299 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
2300 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2301 		zlc->last_full_zap = jiffies;
2302 	}
2303 
2304 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
2305 					&cpuset_current_mems_allowed :
2306 					&node_states[N_MEMORY];
2307 	return allowednodes;
2308 }
2309 
2310 /*
2311  * Given 'z' scanning a zonelist, run a couple of quick checks to see
2312  * if it is worth looking at further for free memory:
2313  *  1) Check that the zone isn't thought to be full (doesn't have its
2314  *     bit set in the zonelist_cache fullzones BITMAP).
2315  *  2) Check that the zones node (obtained from the zonelist_cache
2316  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
2317  * Return true (non-zero) if zone is worth looking at further, or
2318  * else return false (zero) if it is not.
2319  *
2320  * This check -ignores- the distinction between various watermarks,
2321  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
2322  * found to be full for any variation of these watermarks, it will
2323  * be considered full for up to one second by all requests, unless
2324  * we are so low on memory on all allowed nodes that we are forced
2325  * into the second scan of the zonelist.
2326  *
2327  * In the second scan we ignore this zonelist cache and exactly
2328  * apply the watermarks to all zones, even it is slower to do so.
2329  * We are low on memory in the second scan, and should leave no stone
2330  * unturned looking for a free page.
2331  */
2332 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2333 						nodemask_t *allowednodes)
2334 {
2335 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2336 	int i;				/* index of *z in zonelist zones */
2337 	int n;				/* node that zone *z is on */
2338 
2339 	zlc = zonelist->zlcache_ptr;
2340 	if (!zlc)
2341 		return 1;
2342 
2343 	i = z - zonelist->_zonerefs;
2344 	n = zlc->z_to_n[i];
2345 
2346 	/* This zone is worth trying if it is allowed but not full */
2347 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
2348 }
2349 
2350 /*
2351  * Given 'z' scanning a zonelist, set the corresponding bit in
2352  * zlc->fullzones, so that subsequent attempts to allocate a page
2353  * from that zone don't waste time re-examining it.
2354  */
2355 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2356 {
2357 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2358 	int i;				/* index of *z in zonelist zones */
2359 
2360 	zlc = zonelist->zlcache_ptr;
2361 	if (!zlc)
2362 		return;
2363 
2364 	i = z - zonelist->_zonerefs;
2365 
2366 	set_bit(i, zlc->fullzones);
2367 }
2368 
2369 /*
2370  * clear all zones full, called after direct reclaim makes progress so that
2371  * a zone that was recently full is not skipped over for up to a second
2372  */
2373 static void zlc_clear_zones_full(struct zonelist *zonelist)
2374 {
2375 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
2376 
2377 	zlc = zonelist->zlcache_ptr;
2378 	if (!zlc)
2379 		return;
2380 
2381 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
2382 }
2383 
2384 static bool zone_local(struct zone *local_zone, struct zone *zone)
2385 {
2386 	return local_zone->node == zone->node;
2387 }
2388 
2389 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2390 {
2391 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2392 				RECLAIM_DISTANCE;
2393 }
2394 
2395 #else	/* CONFIG_NUMA */
2396 
2397 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
2398 {
2399 	return NULL;
2400 }
2401 
2402 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
2403 				nodemask_t *allowednodes)
2404 {
2405 	return 1;
2406 }
2407 
2408 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
2409 {
2410 }
2411 
2412 static void zlc_clear_zones_full(struct zonelist *zonelist)
2413 {
2414 }
2415 
2416 static bool zone_local(struct zone *local_zone, struct zone *zone)
2417 {
2418 	return true;
2419 }
2420 
2421 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2422 {
2423 	return true;
2424 }
2425 
2426 #endif	/* CONFIG_NUMA */
2427 
2428 static void reset_alloc_batches(struct zone *preferred_zone)
2429 {
2430 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2431 
2432 	do {
2433 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2434 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2435 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2436 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2437 	} while (zone++ != preferred_zone);
2438 }
2439 
2440 /*
2441  * get_page_from_freelist goes through the zonelist trying to allocate
2442  * a page.
2443  */
2444 static struct page *
2445 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2446 						const struct alloc_context *ac)
2447 {
2448 	struct zonelist *zonelist = ac->zonelist;
2449 	struct zoneref *z;
2450 	struct page *page = NULL;
2451 	struct zone *zone;
2452 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
2453 	int zlc_active = 0;		/* set if using zonelist_cache */
2454 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
2455 	bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
2456 				(gfp_mask & __GFP_WRITE);
2457 	int nr_fair_skipped = 0;
2458 	bool zonelist_rescan;
2459 
2460 zonelist_scan:
2461 	zonelist_rescan = false;
2462 
2463 	/*
2464 	 * Scan zonelist, looking for a zone with enough free.
2465 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2466 	 */
2467 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2468 								ac->nodemask) {
2469 		unsigned long mark;
2470 
2471 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2472 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
2473 				continue;
2474 		if (cpusets_enabled() &&
2475 			(alloc_flags & ALLOC_CPUSET) &&
2476 			!cpuset_zone_allowed(zone, gfp_mask))
2477 				continue;
2478 		/*
2479 		 * Distribute pages in proportion to the individual
2480 		 * zone size to ensure fair page aging.  The zone a
2481 		 * page was allocated in should have no effect on the
2482 		 * time the page has in memory before being reclaimed.
2483 		 */
2484 		if (alloc_flags & ALLOC_FAIR) {
2485 			if (!zone_local(ac->preferred_zone, zone))
2486 				break;
2487 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2488 				nr_fair_skipped++;
2489 				continue;
2490 			}
2491 		}
2492 		/*
2493 		 * When allocating a page cache page for writing, we
2494 		 * want to get it from a zone that is within its dirty
2495 		 * limit, such that no single zone holds more than its
2496 		 * proportional share of globally allowed dirty pages.
2497 		 * The dirty limits take into account the zone's
2498 		 * lowmem reserves and high watermark so that kswapd
2499 		 * should be able to balance it without having to
2500 		 * write pages from its LRU list.
2501 		 *
2502 		 * This may look like it could increase pressure on
2503 		 * lower zones by failing allocations in higher zones
2504 		 * before they are full.  But the pages that do spill
2505 		 * over are limited as the lower zones are protected
2506 		 * by this very same mechanism.  It should not become
2507 		 * a practical burden to them.
2508 		 *
2509 		 * XXX: For now, allow allocations to potentially
2510 		 * exceed the per-zone dirty limit in the slowpath
2511 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
2512 		 * which is important when on a NUMA setup the allowed
2513 		 * zones are together not big enough to reach the
2514 		 * global limit.  The proper fix for these situations
2515 		 * will require awareness of zones in the
2516 		 * dirty-throttling and the flusher threads.
2517 		 */
2518 		if (consider_zone_dirty && !zone_dirty_ok(zone))
2519 			continue;
2520 
2521 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2522 		if (!zone_watermark_ok(zone, order, mark,
2523 				       ac->classzone_idx, alloc_flags)) {
2524 			int ret;
2525 
2526 			/* Checked here to keep the fast path fast */
2527 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2528 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2529 				goto try_this_zone;
2530 
2531 			if (IS_ENABLED(CONFIG_NUMA) &&
2532 					!did_zlc_setup && nr_online_nodes > 1) {
2533 				/*
2534 				 * we do zlc_setup if there are multiple nodes
2535 				 * and before considering the first zone allowed
2536 				 * by the cpuset.
2537 				 */
2538 				allowednodes = zlc_setup(zonelist, alloc_flags);
2539 				zlc_active = 1;
2540 				did_zlc_setup = 1;
2541 			}
2542 
2543 			if (zone_reclaim_mode == 0 ||
2544 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2545 				goto this_zone_full;
2546 
2547 			/*
2548 			 * As we may have just activated ZLC, check if the first
2549 			 * eligible zone has failed zone_reclaim recently.
2550 			 */
2551 			if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2552 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
2553 				continue;
2554 
2555 			ret = zone_reclaim(zone, gfp_mask, order);
2556 			switch (ret) {
2557 			case ZONE_RECLAIM_NOSCAN:
2558 				/* did not scan */
2559 				continue;
2560 			case ZONE_RECLAIM_FULL:
2561 				/* scanned but unreclaimable */
2562 				continue;
2563 			default:
2564 				/* did we reclaim enough */
2565 				if (zone_watermark_ok(zone, order, mark,
2566 						ac->classzone_idx, alloc_flags))
2567 					goto try_this_zone;
2568 
2569 				/*
2570 				 * Failed to reclaim enough to meet watermark.
2571 				 * Only mark the zone full if checking the min
2572 				 * watermark or if we failed to reclaim just
2573 				 * 1<<order pages or else the page allocator
2574 				 * fastpath will prematurely mark zones full
2575 				 * when the watermark is between the low and
2576 				 * min watermarks.
2577 				 */
2578 				if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2579 				    ret == ZONE_RECLAIM_SOME)
2580 					goto this_zone_full;
2581 
2582 				continue;
2583 			}
2584 		}
2585 
2586 try_this_zone:
2587 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2588 						gfp_mask, ac->migratetype);
2589 		if (page) {
2590 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2591 				goto try_this_zone;
2592 			return page;
2593 		}
2594 this_zone_full:
2595 		if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2596 			zlc_mark_zone_full(zonelist, z);
2597 	}
2598 
2599 	/*
2600 	 * The first pass makes sure allocations are spread fairly within the
2601 	 * local node.  However, the local node might have free pages left
2602 	 * after the fairness batches are exhausted, and remote zones haven't
2603 	 * even been considered yet.  Try once more without fairness, and
2604 	 * include remote zones now, before entering the slowpath and waking
2605 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2606 	 */
2607 	if (alloc_flags & ALLOC_FAIR) {
2608 		alloc_flags &= ~ALLOC_FAIR;
2609 		if (nr_fair_skipped) {
2610 			zonelist_rescan = true;
2611 			reset_alloc_batches(ac->preferred_zone);
2612 		}
2613 		if (nr_online_nodes > 1)
2614 			zonelist_rescan = true;
2615 	}
2616 
2617 	if (unlikely(IS_ENABLED(CONFIG_NUMA) && zlc_active)) {
2618 		/* Disable zlc cache for second zonelist scan */
2619 		zlc_active = 0;
2620 		zonelist_rescan = true;
2621 	}
2622 
2623 	if (zonelist_rescan)
2624 		goto zonelist_scan;
2625 
2626 	return NULL;
2627 }
2628 
2629 /*
2630  * Large machines with many possible nodes should not always dump per-node
2631  * meminfo in irq context.
2632  */
2633 static inline bool should_suppress_show_mem(void)
2634 {
2635 	bool ret = false;
2636 
2637 #if NODES_SHIFT > 8
2638 	ret = in_interrupt();
2639 #endif
2640 	return ret;
2641 }
2642 
2643 static DEFINE_RATELIMIT_STATE(nopage_rs,
2644 		DEFAULT_RATELIMIT_INTERVAL,
2645 		DEFAULT_RATELIMIT_BURST);
2646 
2647 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2648 {
2649 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2650 
2651 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2652 	    debug_guardpage_minorder() > 0)
2653 		return;
2654 
2655 	/*
2656 	 * This documents exceptions given to allocations in certain
2657 	 * contexts that are allowed to allocate outside current's set
2658 	 * of allowed nodes.
2659 	 */
2660 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2661 		if (test_thread_flag(TIF_MEMDIE) ||
2662 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2663 			filter &= ~SHOW_MEM_FILTER_NODES;
2664 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2665 		filter &= ~SHOW_MEM_FILTER_NODES;
2666 
2667 	if (fmt) {
2668 		struct va_format vaf;
2669 		va_list args;
2670 
2671 		va_start(args, fmt);
2672 
2673 		vaf.fmt = fmt;
2674 		vaf.va = &args;
2675 
2676 		pr_warn("%pV", &vaf);
2677 
2678 		va_end(args);
2679 	}
2680 
2681 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2682 		current->comm, order, gfp_mask);
2683 
2684 	dump_stack();
2685 	if (!should_suppress_show_mem())
2686 		show_mem(filter);
2687 }
2688 
2689 static inline struct page *
2690 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2691 	const struct alloc_context *ac, unsigned long *did_some_progress)
2692 {
2693 	struct page *page;
2694 
2695 	*did_some_progress = 0;
2696 
2697 	/*
2698 	 * Acquire the oom lock.  If that fails, somebody else is
2699 	 * making progress for us.
2700 	 */
2701 	if (!mutex_trylock(&oom_lock)) {
2702 		*did_some_progress = 1;
2703 		schedule_timeout_uninterruptible(1);
2704 		return NULL;
2705 	}
2706 
2707 	/*
2708 	 * Go through the zonelist yet one more time, keep very high watermark
2709 	 * here, this is only to catch a parallel oom killing, we must fail if
2710 	 * we're still under heavy pressure.
2711 	 */
2712 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2713 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2714 	if (page)
2715 		goto out;
2716 
2717 	if (!(gfp_mask & __GFP_NOFAIL)) {
2718 		/* Coredumps can quickly deplete all memory reserves */
2719 		if (current->flags & PF_DUMPCORE)
2720 			goto out;
2721 		/* The OOM killer will not help higher order allocs */
2722 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2723 			goto out;
2724 		/* The OOM killer does not needlessly kill tasks for lowmem */
2725 		if (ac->high_zoneidx < ZONE_NORMAL)
2726 			goto out;
2727 		/* The OOM killer does not compensate for IO-less reclaim */
2728 		if (!(gfp_mask & __GFP_FS)) {
2729 			/*
2730 			 * XXX: Page reclaim didn't yield anything,
2731 			 * and the OOM killer can't be invoked, but
2732 			 * keep looping as per tradition.
2733 			 */
2734 			*did_some_progress = 1;
2735 			goto out;
2736 		}
2737 		if (pm_suspended_storage())
2738 			goto out;
2739 		/* The OOM killer may not free memory on a specific node */
2740 		if (gfp_mask & __GFP_THISNODE)
2741 			goto out;
2742 	}
2743 	/* Exhausted what can be done so it's blamo time */
2744 	if (out_of_memory(ac->zonelist, gfp_mask, order, ac->nodemask, false)
2745 			|| WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL))
2746 		*did_some_progress = 1;
2747 out:
2748 	mutex_unlock(&oom_lock);
2749 	return page;
2750 }
2751 
2752 #ifdef CONFIG_COMPACTION
2753 /* Try memory compaction for high-order allocations before reclaim */
2754 static struct page *
2755 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2756 		int alloc_flags, const struct alloc_context *ac,
2757 		enum migrate_mode mode, int *contended_compaction,
2758 		bool *deferred_compaction)
2759 {
2760 	unsigned long compact_result;
2761 	struct page *page;
2762 
2763 	if (!order)
2764 		return NULL;
2765 
2766 	current->flags |= PF_MEMALLOC;
2767 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2768 						mode, contended_compaction);
2769 	current->flags &= ~PF_MEMALLOC;
2770 
2771 	switch (compact_result) {
2772 	case COMPACT_DEFERRED:
2773 		*deferred_compaction = true;
2774 		/* fall-through */
2775 	case COMPACT_SKIPPED:
2776 		return NULL;
2777 	default:
2778 		break;
2779 	}
2780 
2781 	/*
2782 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2783 	 * count a compaction stall
2784 	 */
2785 	count_vm_event(COMPACTSTALL);
2786 
2787 	page = get_page_from_freelist(gfp_mask, order,
2788 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2789 
2790 	if (page) {
2791 		struct zone *zone = page_zone(page);
2792 
2793 		zone->compact_blockskip_flush = false;
2794 		compaction_defer_reset(zone, order, true);
2795 		count_vm_event(COMPACTSUCCESS);
2796 		return page;
2797 	}
2798 
2799 	/*
2800 	 * It's bad if compaction run occurs and fails. The most likely reason
2801 	 * is that pages exist, but not enough to satisfy watermarks.
2802 	 */
2803 	count_vm_event(COMPACTFAIL);
2804 
2805 	cond_resched();
2806 
2807 	return NULL;
2808 }
2809 #else
2810 static inline struct page *
2811 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2812 		int alloc_flags, const struct alloc_context *ac,
2813 		enum migrate_mode mode, int *contended_compaction,
2814 		bool *deferred_compaction)
2815 {
2816 	return NULL;
2817 }
2818 #endif /* CONFIG_COMPACTION */
2819 
2820 /* Perform direct synchronous page reclaim */
2821 static int
2822 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2823 					const struct alloc_context *ac)
2824 {
2825 	struct reclaim_state reclaim_state;
2826 	int progress;
2827 
2828 	cond_resched();
2829 
2830 	/* We now go into synchronous reclaim */
2831 	cpuset_memory_pressure_bump();
2832 	current->flags |= PF_MEMALLOC;
2833 	lockdep_set_current_reclaim_state(gfp_mask);
2834 	reclaim_state.reclaimed_slab = 0;
2835 	current->reclaim_state = &reclaim_state;
2836 
2837 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
2838 								ac->nodemask);
2839 
2840 	current->reclaim_state = NULL;
2841 	lockdep_clear_current_reclaim_state();
2842 	current->flags &= ~PF_MEMALLOC;
2843 
2844 	cond_resched();
2845 
2846 	return progress;
2847 }
2848 
2849 /* The really slow allocator path where we enter direct reclaim */
2850 static inline struct page *
2851 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2852 		int alloc_flags, const struct alloc_context *ac,
2853 		unsigned long *did_some_progress)
2854 {
2855 	struct page *page = NULL;
2856 	bool drained = false;
2857 
2858 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
2859 	if (unlikely(!(*did_some_progress)))
2860 		return NULL;
2861 
2862 	/* After successful reclaim, reconsider all zones for allocation */
2863 	if (IS_ENABLED(CONFIG_NUMA))
2864 		zlc_clear_zones_full(ac->zonelist);
2865 
2866 retry:
2867 	page = get_page_from_freelist(gfp_mask, order,
2868 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2869 
2870 	/*
2871 	 * If an allocation failed after direct reclaim, it could be because
2872 	 * pages are pinned on the per-cpu lists. Drain them and try again
2873 	 */
2874 	if (!page && !drained) {
2875 		drain_all_pages(NULL);
2876 		drained = true;
2877 		goto retry;
2878 	}
2879 
2880 	return page;
2881 }
2882 
2883 /*
2884  * This is called in the allocator slow-path if the allocation request is of
2885  * sufficient urgency to ignore watermarks and take other desperate measures
2886  */
2887 static inline struct page *
2888 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2889 				const struct alloc_context *ac)
2890 {
2891 	struct page *page;
2892 
2893 	do {
2894 		page = get_page_from_freelist(gfp_mask, order,
2895 						ALLOC_NO_WATERMARKS, ac);
2896 
2897 		if (!page && gfp_mask & __GFP_NOFAIL)
2898 			wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC,
2899 									HZ/50);
2900 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2901 
2902 	return page;
2903 }
2904 
2905 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
2906 {
2907 	struct zoneref *z;
2908 	struct zone *zone;
2909 
2910 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2911 						ac->high_zoneidx, ac->nodemask)
2912 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
2913 }
2914 
2915 static inline int
2916 gfp_to_alloc_flags(gfp_t gfp_mask)
2917 {
2918 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2919 	const bool atomic = !(gfp_mask & (__GFP_WAIT | __GFP_NO_KSWAPD));
2920 
2921 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2922 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2923 
2924 	/*
2925 	 * The caller may dip into page reserves a bit more if the caller
2926 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2927 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2928 	 * set both ALLOC_HARDER (atomic == true) and ALLOC_HIGH (__GFP_HIGH).
2929 	 */
2930 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2931 
2932 	if (atomic) {
2933 		/*
2934 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
2935 		 * if it can't schedule.
2936 		 */
2937 		if (!(gfp_mask & __GFP_NOMEMALLOC))
2938 			alloc_flags |= ALLOC_HARDER;
2939 		/*
2940 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
2941 		 * comment for __cpuset_node_allowed().
2942 		 */
2943 		alloc_flags &= ~ALLOC_CPUSET;
2944 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2945 		alloc_flags |= ALLOC_HARDER;
2946 
2947 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2948 		if (gfp_mask & __GFP_MEMALLOC)
2949 			alloc_flags |= ALLOC_NO_WATERMARKS;
2950 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2951 			alloc_flags |= ALLOC_NO_WATERMARKS;
2952 		else if (!in_interrupt() &&
2953 				((current->flags & PF_MEMALLOC) ||
2954 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2955 			alloc_flags |= ALLOC_NO_WATERMARKS;
2956 	}
2957 #ifdef CONFIG_CMA
2958 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2959 		alloc_flags |= ALLOC_CMA;
2960 #endif
2961 	return alloc_flags;
2962 }
2963 
2964 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2965 {
2966 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2967 }
2968 
2969 static inline struct page *
2970 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2971 						struct alloc_context *ac)
2972 {
2973 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2974 	struct page *page = NULL;
2975 	int alloc_flags;
2976 	unsigned long pages_reclaimed = 0;
2977 	unsigned long did_some_progress;
2978 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
2979 	bool deferred_compaction = false;
2980 	int contended_compaction = COMPACT_CONTENDED_NONE;
2981 
2982 	/*
2983 	 * In the slowpath, we sanity check order to avoid ever trying to
2984 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2985 	 * be using allocators in order of preference for an area that is
2986 	 * too large.
2987 	 */
2988 	if (order >= MAX_ORDER) {
2989 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2990 		return NULL;
2991 	}
2992 
2993 	/*
2994 	 * If this allocation cannot block and it is for a specific node, then
2995 	 * fail early.  There's no need to wakeup kswapd or retry for a
2996 	 * speculative node-specific allocation.
2997 	 */
2998 	if (IS_ENABLED(CONFIG_NUMA) && (gfp_mask & __GFP_THISNODE) && !wait)
2999 		goto nopage;
3000 
3001 retry:
3002 	if (!(gfp_mask & __GFP_NO_KSWAPD))
3003 		wake_all_kswapds(order, ac);
3004 
3005 	/*
3006 	 * OK, we're below the kswapd watermark and have kicked background
3007 	 * reclaim. Now things get more complex, so set up alloc_flags according
3008 	 * to how we want to proceed.
3009 	 */
3010 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3011 
3012 	/*
3013 	 * Find the true preferred zone if the allocation is unconstrained by
3014 	 * cpusets.
3015 	 */
3016 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3017 		struct zoneref *preferred_zoneref;
3018 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3019 				ac->high_zoneidx, NULL, &ac->preferred_zone);
3020 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3021 	}
3022 
3023 	/* This is the last chance, in general, before the goto nopage. */
3024 	page = get_page_from_freelist(gfp_mask, order,
3025 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3026 	if (page)
3027 		goto got_pg;
3028 
3029 	/* Allocate without watermarks if the context allows */
3030 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3031 		/*
3032 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3033 		 * the allocation is high priority and these type of
3034 		 * allocations are system rather than user orientated
3035 		 */
3036 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3037 
3038 		page = __alloc_pages_high_priority(gfp_mask, order, ac);
3039 
3040 		if (page) {
3041 			goto got_pg;
3042 		}
3043 	}
3044 
3045 	/* Atomic allocations - we can't balance anything */
3046 	if (!wait) {
3047 		/*
3048 		 * All existing users of the deprecated __GFP_NOFAIL are
3049 		 * blockable, so warn of any new users that actually allow this
3050 		 * type of allocation to fail.
3051 		 */
3052 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3053 		goto nopage;
3054 	}
3055 
3056 	/* Avoid recursion of direct reclaim */
3057 	if (current->flags & PF_MEMALLOC)
3058 		goto nopage;
3059 
3060 	/* Avoid allocations with no watermarks from looping endlessly */
3061 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3062 		goto nopage;
3063 
3064 	/*
3065 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3066 	 * attempts after direct reclaim are synchronous
3067 	 */
3068 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3069 					migration_mode,
3070 					&contended_compaction,
3071 					&deferred_compaction);
3072 	if (page)
3073 		goto got_pg;
3074 
3075 	/* Checks for THP-specific high-order allocations */
3076 	if ((gfp_mask & GFP_TRANSHUGE) == GFP_TRANSHUGE) {
3077 		/*
3078 		 * If compaction is deferred for high-order allocations, it is
3079 		 * because sync compaction recently failed. If this is the case
3080 		 * and the caller requested a THP allocation, we do not want
3081 		 * to heavily disrupt the system, so we fail the allocation
3082 		 * instead of entering direct reclaim.
3083 		 */
3084 		if (deferred_compaction)
3085 			goto nopage;
3086 
3087 		/*
3088 		 * In all zones where compaction was attempted (and not
3089 		 * deferred or skipped), lock contention has been detected.
3090 		 * For THP allocation we do not want to disrupt the others
3091 		 * so we fallback to base pages instead.
3092 		 */
3093 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3094 			goto nopage;
3095 
3096 		/*
3097 		 * If compaction was aborted due to need_resched(), we do not
3098 		 * want to further increase allocation latency, unless it is
3099 		 * khugepaged trying to collapse.
3100 		 */
3101 		if (contended_compaction == COMPACT_CONTENDED_SCHED
3102 			&& !(current->flags & PF_KTHREAD))
3103 			goto nopage;
3104 	}
3105 
3106 	/*
3107 	 * It can become very expensive to allocate transparent hugepages at
3108 	 * fault, so use asynchronous memory compaction for THP unless it is
3109 	 * khugepaged trying to collapse.
3110 	 */
3111 	if ((gfp_mask & GFP_TRANSHUGE) != GFP_TRANSHUGE ||
3112 						(current->flags & PF_KTHREAD))
3113 		migration_mode = MIGRATE_SYNC_LIGHT;
3114 
3115 	/* Try direct reclaim and then allocating */
3116 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3117 							&did_some_progress);
3118 	if (page)
3119 		goto got_pg;
3120 
3121 	/* Do not loop if specifically requested */
3122 	if (gfp_mask & __GFP_NORETRY)
3123 		goto noretry;
3124 
3125 	/* Keep reclaiming pages as long as there is reasonable progress */
3126 	pages_reclaimed += did_some_progress;
3127 	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3128 	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3129 		/* Wait for some write requests to complete then retry */
3130 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3131 		goto retry;
3132 	}
3133 
3134 	/* Reclaim has failed us, start killing things */
3135 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3136 	if (page)
3137 		goto got_pg;
3138 
3139 	/* Retry as long as the OOM killer is making progress */
3140 	if (did_some_progress)
3141 		goto retry;
3142 
3143 noretry:
3144 	/*
3145 	 * High-order allocations do not necessarily loop after
3146 	 * direct reclaim and reclaim/compaction depends on compaction
3147 	 * being called after reclaim so call directly if necessary
3148 	 */
3149 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3150 					    ac, migration_mode,
3151 					    &contended_compaction,
3152 					    &deferred_compaction);
3153 	if (page)
3154 		goto got_pg;
3155 nopage:
3156 	warn_alloc_failed(gfp_mask, order, NULL);
3157 got_pg:
3158 	return page;
3159 }
3160 
3161 /*
3162  * This is the 'heart' of the zoned buddy allocator.
3163  */
3164 struct page *
3165 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3166 			struct zonelist *zonelist, nodemask_t *nodemask)
3167 {
3168 	struct zoneref *preferred_zoneref;
3169 	struct page *page = NULL;
3170 	unsigned int cpuset_mems_cookie;
3171 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3172 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3173 	struct alloc_context ac = {
3174 		.high_zoneidx = gfp_zone(gfp_mask),
3175 		.nodemask = nodemask,
3176 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3177 	};
3178 
3179 	gfp_mask &= gfp_allowed_mask;
3180 
3181 	lockdep_trace_alloc(gfp_mask);
3182 
3183 	might_sleep_if(gfp_mask & __GFP_WAIT);
3184 
3185 	if (should_fail_alloc_page(gfp_mask, order))
3186 		return NULL;
3187 
3188 	/*
3189 	 * Check the zones suitable for the gfp_mask contain at least one
3190 	 * valid zone. It's possible to have an empty zonelist as a result
3191 	 * of __GFP_THISNODE and a memoryless node
3192 	 */
3193 	if (unlikely(!zonelist->_zonerefs->zone))
3194 		return NULL;
3195 
3196 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3197 		alloc_flags |= ALLOC_CMA;
3198 
3199 retry_cpuset:
3200 	cpuset_mems_cookie = read_mems_allowed_begin();
3201 
3202 	/* We set it here, as __alloc_pages_slowpath might have changed it */
3203 	ac.zonelist = zonelist;
3204 	/* The preferred zone is used for statistics later */
3205 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3206 				ac.nodemask ? : &cpuset_current_mems_allowed,
3207 				&ac.preferred_zone);
3208 	if (!ac.preferred_zone)
3209 		goto out;
3210 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3211 
3212 	/* First allocation attempt */
3213 	alloc_mask = gfp_mask|__GFP_HARDWALL;
3214 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3215 	if (unlikely(!page)) {
3216 		/*
3217 		 * Runtime PM, block IO and its error handling path
3218 		 * can deadlock because I/O on the device might not
3219 		 * complete.
3220 		 */
3221 		alloc_mask = memalloc_noio_flags(gfp_mask);
3222 
3223 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3224 	}
3225 
3226 	if (kmemcheck_enabled && page)
3227 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3228 
3229 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3230 
3231 out:
3232 	/*
3233 	 * When updating a task's mems_allowed, it is possible to race with
3234 	 * parallel threads in such a way that an allocation can fail while
3235 	 * the mask is being updated. If a page allocation is about to fail,
3236 	 * check if the cpuset changed during allocation and if so, retry.
3237 	 */
3238 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3239 		goto retry_cpuset;
3240 
3241 	return page;
3242 }
3243 EXPORT_SYMBOL(__alloc_pages_nodemask);
3244 
3245 /*
3246  * Common helper functions.
3247  */
3248 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3249 {
3250 	struct page *page;
3251 
3252 	/*
3253 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3254 	 * a highmem page
3255 	 */
3256 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3257 
3258 	page = alloc_pages(gfp_mask, order);
3259 	if (!page)
3260 		return 0;
3261 	return (unsigned long) page_address(page);
3262 }
3263 EXPORT_SYMBOL(__get_free_pages);
3264 
3265 unsigned long get_zeroed_page(gfp_t gfp_mask)
3266 {
3267 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3268 }
3269 EXPORT_SYMBOL(get_zeroed_page);
3270 
3271 void __free_pages(struct page *page, unsigned int order)
3272 {
3273 	if (put_page_testzero(page)) {
3274 		if (order == 0)
3275 			free_hot_cold_page(page, false);
3276 		else
3277 			__free_pages_ok(page, order);
3278 	}
3279 }
3280 
3281 EXPORT_SYMBOL(__free_pages);
3282 
3283 void free_pages(unsigned long addr, unsigned int order)
3284 {
3285 	if (addr != 0) {
3286 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3287 		__free_pages(virt_to_page((void *)addr), order);
3288 	}
3289 }
3290 
3291 EXPORT_SYMBOL(free_pages);
3292 
3293 /*
3294  * Page Fragment:
3295  *  An arbitrary-length arbitrary-offset area of memory which resides
3296  *  within a 0 or higher order page.  Multiple fragments within that page
3297  *  are individually refcounted, in the page's reference counter.
3298  *
3299  * The page_frag functions below provide a simple allocation framework for
3300  * page fragments.  This is used by the network stack and network device
3301  * drivers to provide a backing region of memory for use as either an
3302  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3303  */
3304 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3305 				       gfp_t gfp_mask)
3306 {
3307 	struct page *page = NULL;
3308 	gfp_t gfp = gfp_mask;
3309 
3310 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3311 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3312 		    __GFP_NOMEMALLOC;
3313 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3314 				PAGE_FRAG_CACHE_MAX_ORDER);
3315 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3316 #endif
3317 	if (unlikely(!page))
3318 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3319 
3320 	nc->va = page ? page_address(page) : NULL;
3321 
3322 	return page;
3323 }
3324 
3325 void *__alloc_page_frag(struct page_frag_cache *nc,
3326 			unsigned int fragsz, gfp_t gfp_mask)
3327 {
3328 	unsigned int size = PAGE_SIZE;
3329 	struct page *page;
3330 	int offset;
3331 
3332 	if (unlikely(!nc->va)) {
3333 refill:
3334 		page = __page_frag_refill(nc, gfp_mask);
3335 		if (!page)
3336 			return NULL;
3337 
3338 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3339 		/* if size can vary use size else just use PAGE_SIZE */
3340 		size = nc->size;
3341 #endif
3342 		/* Even if we own the page, we do not use atomic_set().
3343 		 * This would break get_page_unless_zero() users.
3344 		 */
3345 		atomic_add(size - 1, &page->_count);
3346 
3347 		/* reset page count bias and offset to start of new frag */
3348 		nc->pfmemalloc = page->pfmemalloc;
3349 		nc->pagecnt_bias = size;
3350 		nc->offset = size;
3351 	}
3352 
3353 	offset = nc->offset - fragsz;
3354 	if (unlikely(offset < 0)) {
3355 		page = virt_to_page(nc->va);
3356 
3357 		if (!atomic_sub_and_test(nc->pagecnt_bias, &page->_count))
3358 			goto refill;
3359 
3360 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3361 		/* if size can vary use size else just use PAGE_SIZE */
3362 		size = nc->size;
3363 #endif
3364 		/* OK, page count is 0, we can safely set it */
3365 		atomic_set(&page->_count, size);
3366 
3367 		/* reset page count bias and offset to start of new frag */
3368 		nc->pagecnt_bias = size;
3369 		offset = size - fragsz;
3370 	}
3371 
3372 	nc->pagecnt_bias--;
3373 	nc->offset = offset;
3374 
3375 	return nc->va + offset;
3376 }
3377 EXPORT_SYMBOL(__alloc_page_frag);
3378 
3379 /*
3380  * Frees a page fragment allocated out of either a compound or order 0 page.
3381  */
3382 void __free_page_frag(void *addr)
3383 {
3384 	struct page *page = virt_to_head_page(addr);
3385 
3386 	if (unlikely(put_page_testzero(page)))
3387 		__free_pages_ok(page, compound_order(page));
3388 }
3389 EXPORT_SYMBOL(__free_page_frag);
3390 
3391 /*
3392  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3393  * of the current memory cgroup.
3394  *
3395  * It should be used when the caller would like to use kmalloc, but since the
3396  * allocation is large, it has to fall back to the page allocator.
3397  */
3398 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3399 {
3400 	struct page *page;
3401 	struct mem_cgroup *memcg = NULL;
3402 
3403 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3404 		return NULL;
3405 	page = alloc_pages(gfp_mask, order);
3406 	memcg_kmem_commit_charge(page, memcg, order);
3407 	return page;
3408 }
3409 
3410 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3411 {
3412 	struct page *page;
3413 	struct mem_cgroup *memcg = NULL;
3414 
3415 	if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
3416 		return NULL;
3417 	page = alloc_pages_node(nid, gfp_mask, order);
3418 	memcg_kmem_commit_charge(page, memcg, order);
3419 	return page;
3420 }
3421 
3422 /*
3423  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3424  * alloc_kmem_pages.
3425  */
3426 void __free_kmem_pages(struct page *page, unsigned int order)
3427 {
3428 	memcg_kmem_uncharge_pages(page, order);
3429 	__free_pages(page, order);
3430 }
3431 
3432 void free_kmem_pages(unsigned long addr, unsigned int order)
3433 {
3434 	if (addr != 0) {
3435 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3436 		__free_kmem_pages(virt_to_page((void *)addr), order);
3437 	}
3438 }
3439 
3440 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
3441 {
3442 	if (addr) {
3443 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3444 		unsigned long used = addr + PAGE_ALIGN(size);
3445 
3446 		split_page(virt_to_page((void *)addr), order);
3447 		while (used < alloc_end) {
3448 			free_page(used);
3449 			used += PAGE_SIZE;
3450 		}
3451 	}
3452 	return (void *)addr;
3453 }
3454 
3455 /**
3456  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3457  * @size: the number of bytes to allocate
3458  * @gfp_mask: GFP flags for the allocation
3459  *
3460  * This function is similar to alloc_pages(), except that it allocates the
3461  * minimum number of pages to satisfy the request.  alloc_pages() can only
3462  * allocate memory in power-of-two pages.
3463  *
3464  * This function is also limited by MAX_ORDER.
3465  *
3466  * Memory allocated by this function must be released by free_pages_exact().
3467  */
3468 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3469 {
3470 	unsigned int order = get_order(size);
3471 	unsigned long addr;
3472 
3473 	addr = __get_free_pages(gfp_mask, order);
3474 	return make_alloc_exact(addr, order, size);
3475 }
3476 EXPORT_SYMBOL(alloc_pages_exact);
3477 
3478 /**
3479  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3480  *			   pages on a node.
3481  * @nid: the preferred node ID where memory should be allocated
3482  * @size: the number of bytes to allocate
3483  * @gfp_mask: GFP flags for the allocation
3484  *
3485  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3486  * back.
3487  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
3488  * but is not exact.
3489  */
3490 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3491 {
3492 	unsigned order = get_order(size);
3493 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3494 	if (!p)
3495 		return NULL;
3496 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3497 }
3498 
3499 /**
3500  * free_pages_exact - release memory allocated via alloc_pages_exact()
3501  * @virt: the value returned by alloc_pages_exact.
3502  * @size: size of allocation, same value as passed to alloc_pages_exact().
3503  *
3504  * Release the memory allocated by a previous call to alloc_pages_exact.
3505  */
3506 void free_pages_exact(void *virt, size_t size)
3507 {
3508 	unsigned long addr = (unsigned long)virt;
3509 	unsigned long end = addr + PAGE_ALIGN(size);
3510 
3511 	while (addr < end) {
3512 		free_page(addr);
3513 		addr += PAGE_SIZE;
3514 	}
3515 }
3516 EXPORT_SYMBOL(free_pages_exact);
3517 
3518 /**
3519  * nr_free_zone_pages - count number of pages beyond high watermark
3520  * @offset: The zone index of the highest zone
3521  *
3522  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3523  * high watermark within all zones at or below a given zone index.  For each
3524  * zone, the number of pages is calculated as:
3525  *     managed_pages - high_pages
3526  */
3527 static unsigned long nr_free_zone_pages(int offset)
3528 {
3529 	struct zoneref *z;
3530 	struct zone *zone;
3531 
3532 	/* Just pick one node, since fallback list is circular */
3533 	unsigned long sum = 0;
3534 
3535 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3536 
3537 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3538 		unsigned long size = zone->managed_pages;
3539 		unsigned long high = high_wmark_pages(zone);
3540 		if (size > high)
3541 			sum += size - high;
3542 	}
3543 
3544 	return sum;
3545 }
3546 
3547 /**
3548  * nr_free_buffer_pages - count number of pages beyond high watermark
3549  *
3550  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3551  * watermark within ZONE_DMA and ZONE_NORMAL.
3552  */
3553 unsigned long nr_free_buffer_pages(void)
3554 {
3555 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3556 }
3557 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3558 
3559 /**
3560  * nr_free_pagecache_pages - count number of pages beyond high watermark
3561  *
3562  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3563  * high watermark within all zones.
3564  */
3565 unsigned long nr_free_pagecache_pages(void)
3566 {
3567 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3568 }
3569 
3570 static inline void show_node(struct zone *zone)
3571 {
3572 	if (IS_ENABLED(CONFIG_NUMA))
3573 		printk("Node %d ", zone_to_nid(zone));
3574 }
3575 
3576 void si_meminfo(struct sysinfo *val)
3577 {
3578 	val->totalram = totalram_pages;
3579 	val->sharedram = global_page_state(NR_SHMEM);
3580 	val->freeram = global_page_state(NR_FREE_PAGES);
3581 	val->bufferram = nr_blockdev_pages();
3582 	val->totalhigh = totalhigh_pages;
3583 	val->freehigh = nr_free_highpages();
3584 	val->mem_unit = PAGE_SIZE;
3585 }
3586 
3587 EXPORT_SYMBOL(si_meminfo);
3588 
3589 #ifdef CONFIG_NUMA
3590 void si_meminfo_node(struct sysinfo *val, int nid)
3591 {
3592 	int zone_type;		/* needs to be signed */
3593 	unsigned long managed_pages = 0;
3594 	pg_data_t *pgdat = NODE_DATA(nid);
3595 
3596 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3597 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3598 	val->totalram = managed_pages;
3599 	val->sharedram = node_page_state(nid, NR_SHMEM);
3600 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3601 #ifdef CONFIG_HIGHMEM
3602 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3603 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3604 			NR_FREE_PAGES);
3605 #else
3606 	val->totalhigh = 0;
3607 	val->freehigh = 0;
3608 #endif
3609 	val->mem_unit = PAGE_SIZE;
3610 }
3611 #endif
3612 
3613 /*
3614  * Determine whether the node should be displayed or not, depending on whether
3615  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3616  */
3617 bool skip_free_areas_node(unsigned int flags, int nid)
3618 {
3619 	bool ret = false;
3620 	unsigned int cpuset_mems_cookie;
3621 
3622 	if (!(flags & SHOW_MEM_FILTER_NODES))
3623 		goto out;
3624 
3625 	do {
3626 		cpuset_mems_cookie = read_mems_allowed_begin();
3627 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3628 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3629 out:
3630 	return ret;
3631 }
3632 
3633 #define K(x) ((x) << (PAGE_SHIFT-10))
3634 
3635 static void show_migration_types(unsigned char type)
3636 {
3637 	static const char types[MIGRATE_TYPES] = {
3638 		[MIGRATE_UNMOVABLE]	= 'U',
3639 		[MIGRATE_RECLAIMABLE]	= 'E',
3640 		[MIGRATE_MOVABLE]	= 'M',
3641 		[MIGRATE_RESERVE]	= 'R',
3642 #ifdef CONFIG_CMA
3643 		[MIGRATE_CMA]		= 'C',
3644 #endif
3645 #ifdef CONFIG_MEMORY_ISOLATION
3646 		[MIGRATE_ISOLATE]	= 'I',
3647 #endif
3648 	};
3649 	char tmp[MIGRATE_TYPES + 1];
3650 	char *p = tmp;
3651 	int i;
3652 
3653 	for (i = 0; i < MIGRATE_TYPES; i++) {
3654 		if (type & (1 << i))
3655 			*p++ = types[i];
3656 	}
3657 
3658 	*p = '\0';
3659 	printk("(%s) ", tmp);
3660 }
3661 
3662 /*
3663  * Show free area list (used inside shift_scroll-lock stuff)
3664  * We also calculate the percentage fragmentation. We do this by counting the
3665  * memory on each free list with the exception of the first item on the list.
3666  *
3667  * Bits in @filter:
3668  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3669  *   cpuset.
3670  */
3671 void show_free_areas(unsigned int filter)
3672 {
3673 	unsigned long free_pcp = 0;
3674 	int cpu;
3675 	struct zone *zone;
3676 
3677 	for_each_populated_zone(zone) {
3678 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3679 			continue;
3680 
3681 		for_each_online_cpu(cpu)
3682 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3683 	}
3684 
3685 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3686 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3687 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3688 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3689 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3690 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3691 		global_page_state(NR_ACTIVE_ANON),
3692 		global_page_state(NR_INACTIVE_ANON),
3693 		global_page_state(NR_ISOLATED_ANON),
3694 		global_page_state(NR_ACTIVE_FILE),
3695 		global_page_state(NR_INACTIVE_FILE),
3696 		global_page_state(NR_ISOLATED_FILE),
3697 		global_page_state(NR_UNEVICTABLE),
3698 		global_page_state(NR_FILE_DIRTY),
3699 		global_page_state(NR_WRITEBACK),
3700 		global_page_state(NR_UNSTABLE_NFS),
3701 		global_page_state(NR_SLAB_RECLAIMABLE),
3702 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3703 		global_page_state(NR_FILE_MAPPED),
3704 		global_page_state(NR_SHMEM),
3705 		global_page_state(NR_PAGETABLE),
3706 		global_page_state(NR_BOUNCE),
3707 		global_page_state(NR_FREE_PAGES),
3708 		free_pcp,
3709 		global_page_state(NR_FREE_CMA_PAGES));
3710 
3711 	for_each_populated_zone(zone) {
3712 		int i;
3713 
3714 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3715 			continue;
3716 
3717 		free_pcp = 0;
3718 		for_each_online_cpu(cpu)
3719 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3720 
3721 		show_node(zone);
3722 		printk("%s"
3723 			" free:%lukB"
3724 			" min:%lukB"
3725 			" low:%lukB"
3726 			" high:%lukB"
3727 			" active_anon:%lukB"
3728 			" inactive_anon:%lukB"
3729 			" active_file:%lukB"
3730 			" inactive_file:%lukB"
3731 			" unevictable:%lukB"
3732 			" isolated(anon):%lukB"
3733 			" isolated(file):%lukB"
3734 			" present:%lukB"
3735 			" managed:%lukB"
3736 			" mlocked:%lukB"
3737 			" dirty:%lukB"
3738 			" writeback:%lukB"
3739 			" mapped:%lukB"
3740 			" shmem:%lukB"
3741 			" slab_reclaimable:%lukB"
3742 			" slab_unreclaimable:%lukB"
3743 			" kernel_stack:%lukB"
3744 			" pagetables:%lukB"
3745 			" unstable:%lukB"
3746 			" bounce:%lukB"
3747 			" free_pcp:%lukB"
3748 			" local_pcp:%ukB"
3749 			" free_cma:%lukB"
3750 			" writeback_tmp:%lukB"
3751 			" pages_scanned:%lu"
3752 			" all_unreclaimable? %s"
3753 			"\n",
3754 			zone->name,
3755 			K(zone_page_state(zone, NR_FREE_PAGES)),
3756 			K(min_wmark_pages(zone)),
3757 			K(low_wmark_pages(zone)),
3758 			K(high_wmark_pages(zone)),
3759 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3760 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3761 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3762 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3763 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3764 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3765 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3766 			K(zone->present_pages),
3767 			K(zone->managed_pages),
3768 			K(zone_page_state(zone, NR_MLOCK)),
3769 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3770 			K(zone_page_state(zone, NR_WRITEBACK)),
3771 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3772 			K(zone_page_state(zone, NR_SHMEM)),
3773 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3774 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3775 			zone_page_state(zone, NR_KERNEL_STACK) *
3776 				THREAD_SIZE / 1024,
3777 			K(zone_page_state(zone, NR_PAGETABLE)),
3778 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3779 			K(zone_page_state(zone, NR_BOUNCE)),
3780 			K(free_pcp),
3781 			K(this_cpu_read(zone->pageset->pcp.count)),
3782 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3783 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3784 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3785 			(!zone_reclaimable(zone) ? "yes" : "no")
3786 			);
3787 		printk("lowmem_reserve[]:");
3788 		for (i = 0; i < MAX_NR_ZONES; i++)
3789 			printk(" %ld", zone->lowmem_reserve[i]);
3790 		printk("\n");
3791 	}
3792 
3793 	for_each_populated_zone(zone) {
3794 		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3795 		unsigned char types[MAX_ORDER];
3796 
3797 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3798 			continue;
3799 		show_node(zone);
3800 		printk("%s: ", zone->name);
3801 
3802 		spin_lock_irqsave(&zone->lock, flags);
3803 		for (order = 0; order < MAX_ORDER; order++) {
3804 			struct free_area *area = &zone->free_area[order];
3805 			int type;
3806 
3807 			nr[order] = area->nr_free;
3808 			total += nr[order] << order;
3809 
3810 			types[order] = 0;
3811 			for (type = 0; type < MIGRATE_TYPES; type++) {
3812 				if (!list_empty(&area->free_list[type]))
3813 					types[order] |= 1 << type;
3814 			}
3815 		}
3816 		spin_unlock_irqrestore(&zone->lock, flags);
3817 		for (order = 0; order < MAX_ORDER; order++) {
3818 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3819 			if (nr[order])
3820 				show_migration_types(types[order]);
3821 		}
3822 		printk("= %lukB\n", K(total));
3823 	}
3824 
3825 	hugetlb_show_meminfo();
3826 
3827 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3828 
3829 	show_swap_cache_info();
3830 }
3831 
3832 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3833 {
3834 	zoneref->zone = zone;
3835 	zoneref->zone_idx = zone_idx(zone);
3836 }
3837 
3838 /*
3839  * Builds allocation fallback zone lists.
3840  *
3841  * Add all populated zones of a node to the zonelist.
3842  */
3843 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3844 				int nr_zones)
3845 {
3846 	struct zone *zone;
3847 	enum zone_type zone_type = MAX_NR_ZONES;
3848 
3849 	do {
3850 		zone_type--;
3851 		zone = pgdat->node_zones + zone_type;
3852 		if (populated_zone(zone)) {
3853 			zoneref_set_zone(zone,
3854 				&zonelist->_zonerefs[nr_zones++]);
3855 			check_highest_zone(zone_type);
3856 		}
3857 	} while (zone_type);
3858 
3859 	return nr_zones;
3860 }
3861 
3862 
3863 /*
3864  *  zonelist_order:
3865  *  0 = automatic detection of better ordering.
3866  *  1 = order by ([node] distance, -zonetype)
3867  *  2 = order by (-zonetype, [node] distance)
3868  *
3869  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3870  *  the same zonelist. So only NUMA can configure this param.
3871  */
3872 #define ZONELIST_ORDER_DEFAULT  0
3873 #define ZONELIST_ORDER_NODE     1
3874 #define ZONELIST_ORDER_ZONE     2
3875 
3876 /* zonelist order in the kernel.
3877  * set_zonelist_order() will set this to NODE or ZONE.
3878  */
3879 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3880 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3881 
3882 
3883 #ifdef CONFIG_NUMA
3884 /* The value user specified ....changed by config */
3885 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3886 /* string for sysctl */
3887 #define NUMA_ZONELIST_ORDER_LEN	16
3888 char numa_zonelist_order[16] = "default";
3889 
3890 /*
3891  * interface for configure zonelist ordering.
3892  * command line option "numa_zonelist_order"
3893  *	= "[dD]efault	- default, automatic configuration.
3894  *	= "[nN]ode 	- order by node locality, then by zone within node
3895  *	= "[zZ]one      - order by zone, then by locality within zone
3896  */
3897 
3898 static int __parse_numa_zonelist_order(char *s)
3899 {
3900 	if (*s == 'd' || *s == 'D') {
3901 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3902 	} else if (*s == 'n' || *s == 'N') {
3903 		user_zonelist_order = ZONELIST_ORDER_NODE;
3904 	} else if (*s == 'z' || *s == 'Z') {
3905 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3906 	} else {
3907 		printk(KERN_WARNING
3908 			"Ignoring invalid numa_zonelist_order value:  "
3909 			"%s\n", s);
3910 		return -EINVAL;
3911 	}
3912 	return 0;
3913 }
3914 
3915 static __init int setup_numa_zonelist_order(char *s)
3916 {
3917 	int ret;
3918 
3919 	if (!s)
3920 		return 0;
3921 
3922 	ret = __parse_numa_zonelist_order(s);
3923 	if (ret == 0)
3924 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3925 
3926 	return ret;
3927 }
3928 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3929 
3930 /*
3931  * sysctl handler for numa_zonelist_order
3932  */
3933 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3934 		void __user *buffer, size_t *length,
3935 		loff_t *ppos)
3936 {
3937 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3938 	int ret;
3939 	static DEFINE_MUTEX(zl_order_mutex);
3940 
3941 	mutex_lock(&zl_order_mutex);
3942 	if (write) {
3943 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3944 			ret = -EINVAL;
3945 			goto out;
3946 		}
3947 		strcpy(saved_string, (char *)table->data);
3948 	}
3949 	ret = proc_dostring(table, write, buffer, length, ppos);
3950 	if (ret)
3951 		goto out;
3952 	if (write) {
3953 		int oldval = user_zonelist_order;
3954 
3955 		ret = __parse_numa_zonelist_order((char *)table->data);
3956 		if (ret) {
3957 			/*
3958 			 * bogus value.  restore saved string
3959 			 */
3960 			strncpy((char *)table->data, saved_string,
3961 				NUMA_ZONELIST_ORDER_LEN);
3962 			user_zonelist_order = oldval;
3963 		} else if (oldval != user_zonelist_order) {
3964 			mutex_lock(&zonelists_mutex);
3965 			build_all_zonelists(NULL, NULL);
3966 			mutex_unlock(&zonelists_mutex);
3967 		}
3968 	}
3969 out:
3970 	mutex_unlock(&zl_order_mutex);
3971 	return ret;
3972 }
3973 
3974 
3975 #define MAX_NODE_LOAD (nr_online_nodes)
3976 static int node_load[MAX_NUMNODES];
3977 
3978 /**
3979  * find_next_best_node - find the next node that should appear in a given node's fallback list
3980  * @node: node whose fallback list we're appending
3981  * @used_node_mask: nodemask_t of already used nodes
3982  *
3983  * We use a number of factors to determine which is the next node that should
3984  * appear on a given node's fallback list.  The node should not have appeared
3985  * already in @node's fallback list, and it should be the next closest node
3986  * according to the distance array (which contains arbitrary distance values
3987  * from each node to each node in the system), and should also prefer nodes
3988  * with no CPUs, since presumably they'll have very little allocation pressure
3989  * on them otherwise.
3990  * It returns -1 if no node is found.
3991  */
3992 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3993 {
3994 	int n, val;
3995 	int min_val = INT_MAX;
3996 	int best_node = NUMA_NO_NODE;
3997 	const struct cpumask *tmp = cpumask_of_node(0);
3998 
3999 	/* Use the local node if we haven't already */
4000 	if (!node_isset(node, *used_node_mask)) {
4001 		node_set(node, *used_node_mask);
4002 		return node;
4003 	}
4004 
4005 	for_each_node_state(n, N_MEMORY) {
4006 
4007 		/* Don't want a node to appear more than once */
4008 		if (node_isset(n, *used_node_mask))
4009 			continue;
4010 
4011 		/* Use the distance array to find the distance */
4012 		val = node_distance(node, n);
4013 
4014 		/* Penalize nodes under us ("prefer the next node") */
4015 		val += (n < node);
4016 
4017 		/* Give preference to headless and unused nodes */
4018 		tmp = cpumask_of_node(n);
4019 		if (!cpumask_empty(tmp))
4020 			val += PENALTY_FOR_NODE_WITH_CPUS;
4021 
4022 		/* Slight preference for less loaded node */
4023 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4024 		val += node_load[n];
4025 
4026 		if (val < min_val) {
4027 			min_val = val;
4028 			best_node = n;
4029 		}
4030 	}
4031 
4032 	if (best_node >= 0)
4033 		node_set(best_node, *used_node_mask);
4034 
4035 	return best_node;
4036 }
4037 
4038 
4039 /*
4040  * Build zonelists ordered by node and zones within node.
4041  * This results in maximum locality--normal zone overflows into local
4042  * DMA zone, if any--but risks exhausting DMA zone.
4043  */
4044 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4045 {
4046 	int j;
4047 	struct zonelist *zonelist;
4048 
4049 	zonelist = &pgdat->node_zonelists[0];
4050 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4051 		;
4052 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4053 	zonelist->_zonerefs[j].zone = NULL;
4054 	zonelist->_zonerefs[j].zone_idx = 0;
4055 }
4056 
4057 /*
4058  * Build gfp_thisnode zonelists
4059  */
4060 static void build_thisnode_zonelists(pg_data_t *pgdat)
4061 {
4062 	int j;
4063 	struct zonelist *zonelist;
4064 
4065 	zonelist = &pgdat->node_zonelists[1];
4066 	j = build_zonelists_node(pgdat, zonelist, 0);
4067 	zonelist->_zonerefs[j].zone = NULL;
4068 	zonelist->_zonerefs[j].zone_idx = 0;
4069 }
4070 
4071 /*
4072  * Build zonelists ordered by zone and nodes within zones.
4073  * This results in conserving DMA zone[s] until all Normal memory is
4074  * exhausted, but results in overflowing to remote node while memory
4075  * may still exist in local DMA zone.
4076  */
4077 static int node_order[MAX_NUMNODES];
4078 
4079 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4080 {
4081 	int pos, j, node;
4082 	int zone_type;		/* needs to be signed */
4083 	struct zone *z;
4084 	struct zonelist *zonelist;
4085 
4086 	zonelist = &pgdat->node_zonelists[0];
4087 	pos = 0;
4088 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4089 		for (j = 0; j < nr_nodes; j++) {
4090 			node = node_order[j];
4091 			z = &NODE_DATA(node)->node_zones[zone_type];
4092 			if (populated_zone(z)) {
4093 				zoneref_set_zone(z,
4094 					&zonelist->_zonerefs[pos++]);
4095 				check_highest_zone(zone_type);
4096 			}
4097 		}
4098 	}
4099 	zonelist->_zonerefs[pos].zone = NULL;
4100 	zonelist->_zonerefs[pos].zone_idx = 0;
4101 }
4102 
4103 #if defined(CONFIG_64BIT)
4104 /*
4105  * Devices that require DMA32/DMA are relatively rare and do not justify a
4106  * penalty to every machine in case the specialised case applies. Default
4107  * to Node-ordering on 64-bit NUMA machines
4108  */
4109 static int default_zonelist_order(void)
4110 {
4111 	return ZONELIST_ORDER_NODE;
4112 }
4113 #else
4114 /*
4115  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4116  * by the kernel. If processes running on node 0 deplete the low memory zone
4117  * then reclaim will occur more frequency increasing stalls and potentially
4118  * be easier to OOM if a large percentage of the zone is under writeback or
4119  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4120  * Hence, default to zone ordering on 32-bit.
4121  */
4122 static int default_zonelist_order(void)
4123 {
4124 	return ZONELIST_ORDER_ZONE;
4125 }
4126 #endif /* CONFIG_64BIT */
4127 
4128 static void set_zonelist_order(void)
4129 {
4130 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4131 		current_zonelist_order = default_zonelist_order();
4132 	else
4133 		current_zonelist_order = user_zonelist_order;
4134 }
4135 
4136 static void build_zonelists(pg_data_t *pgdat)
4137 {
4138 	int j, node, load;
4139 	enum zone_type i;
4140 	nodemask_t used_mask;
4141 	int local_node, prev_node;
4142 	struct zonelist *zonelist;
4143 	int order = current_zonelist_order;
4144 
4145 	/* initialize zonelists */
4146 	for (i = 0; i < MAX_ZONELISTS; i++) {
4147 		zonelist = pgdat->node_zonelists + i;
4148 		zonelist->_zonerefs[0].zone = NULL;
4149 		zonelist->_zonerefs[0].zone_idx = 0;
4150 	}
4151 
4152 	/* NUMA-aware ordering of nodes */
4153 	local_node = pgdat->node_id;
4154 	load = nr_online_nodes;
4155 	prev_node = local_node;
4156 	nodes_clear(used_mask);
4157 
4158 	memset(node_order, 0, sizeof(node_order));
4159 	j = 0;
4160 
4161 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4162 		/*
4163 		 * We don't want to pressure a particular node.
4164 		 * So adding penalty to the first node in same
4165 		 * distance group to make it round-robin.
4166 		 */
4167 		if (node_distance(local_node, node) !=
4168 		    node_distance(local_node, prev_node))
4169 			node_load[node] = load;
4170 
4171 		prev_node = node;
4172 		load--;
4173 		if (order == ZONELIST_ORDER_NODE)
4174 			build_zonelists_in_node_order(pgdat, node);
4175 		else
4176 			node_order[j++] = node;	/* remember order */
4177 	}
4178 
4179 	if (order == ZONELIST_ORDER_ZONE) {
4180 		/* calculate node order -- i.e., DMA last! */
4181 		build_zonelists_in_zone_order(pgdat, j);
4182 	}
4183 
4184 	build_thisnode_zonelists(pgdat);
4185 }
4186 
4187 /* Construct the zonelist performance cache - see further mmzone.h */
4188 static void build_zonelist_cache(pg_data_t *pgdat)
4189 {
4190 	struct zonelist *zonelist;
4191 	struct zonelist_cache *zlc;
4192 	struct zoneref *z;
4193 
4194 	zonelist = &pgdat->node_zonelists[0];
4195 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
4196 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
4197 	for (z = zonelist->_zonerefs; z->zone; z++)
4198 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
4199 }
4200 
4201 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4202 /*
4203  * Return node id of node used for "local" allocations.
4204  * I.e., first node id of first zone in arg node's generic zonelist.
4205  * Used for initializing percpu 'numa_mem', which is used primarily
4206  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4207  */
4208 int local_memory_node(int node)
4209 {
4210 	struct zone *zone;
4211 
4212 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4213 				   gfp_zone(GFP_KERNEL),
4214 				   NULL,
4215 				   &zone);
4216 	return zone->node;
4217 }
4218 #endif
4219 
4220 #else	/* CONFIG_NUMA */
4221 
4222 static void set_zonelist_order(void)
4223 {
4224 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4225 }
4226 
4227 static void build_zonelists(pg_data_t *pgdat)
4228 {
4229 	int node, local_node;
4230 	enum zone_type j;
4231 	struct zonelist *zonelist;
4232 
4233 	local_node = pgdat->node_id;
4234 
4235 	zonelist = &pgdat->node_zonelists[0];
4236 	j = build_zonelists_node(pgdat, zonelist, 0);
4237 
4238 	/*
4239 	 * Now we build the zonelist so that it contains the zones
4240 	 * of all the other nodes.
4241 	 * We don't want to pressure a particular node, so when
4242 	 * building the zones for node N, we make sure that the
4243 	 * zones coming right after the local ones are those from
4244 	 * node N+1 (modulo N)
4245 	 */
4246 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4247 		if (!node_online(node))
4248 			continue;
4249 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4250 	}
4251 	for (node = 0; node < local_node; node++) {
4252 		if (!node_online(node))
4253 			continue;
4254 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4255 	}
4256 
4257 	zonelist->_zonerefs[j].zone = NULL;
4258 	zonelist->_zonerefs[j].zone_idx = 0;
4259 }
4260 
4261 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
4262 static void build_zonelist_cache(pg_data_t *pgdat)
4263 {
4264 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
4265 }
4266 
4267 #endif	/* CONFIG_NUMA */
4268 
4269 /*
4270  * Boot pageset table. One per cpu which is going to be used for all
4271  * zones and all nodes. The parameters will be set in such a way
4272  * that an item put on a list will immediately be handed over to
4273  * the buddy list. This is safe since pageset manipulation is done
4274  * with interrupts disabled.
4275  *
4276  * The boot_pagesets must be kept even after bootup is complete for
4277  * unused processors and/or zones. They do play a role for bootstrapping
4278  * hotplugged processors.
4279  *
4280  * zoneinfo_show() and maybe other functions do
4281  * not check if the processor is online before following the pageset pointer.
4282  * Other parts of the kernel may not check if the zone is available.
4283  */
4284 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4285 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4286 static void setup_zone_pageset(struct zone *zone);
4287 
4288 /*
4289  * Global mutex to protect against size modification of zonelists
4290  * as well as to serialize pageset setup for the new populated zone.
4291  */
4292 DEFINE_MUTEX(zonelists_mutex);
4293 
4294 /* return values int ....just for stop_machine() */
4295 static int __build_all_zonelists(void *data)
4296 {
4297 	int nid;
4298 	int cpu;
4299 	pg_data_t *self = data;
4300 
4301 #ifdef CONFIG_NUMA
4302 	memset(node_load, 0, sizeof(node_load));
4303 #endif
4304 
4305 	if (self && !node_online(self->node_id)) {
4306 		build_zonelists(self);
4307 		build_zonelist_cache(self);
4308 	}
4309 
4310 	for_each_online_node(nid) {
4311 		pg_data_t *pgdat = NODE_DATA(nid);
4312 
4313 		build_zonelists(pgdat);
4314 		build_zonelist_cache(pgdat);
4315 	}
4316 
4317 	/*
4318 	 * Initialize the boot_pagesets that are going to be used
4319 	 * for bootstrapping processors. The real pagesets for
4320 	 * each zone will be allocated later when the per cpu
4321 	 * allocator is available.
4322 	 *
4323 	 * boot_pagesets are used also for bootstrapping offline
4324 	 * cpus if the system is already booted because the pagesets
4325 	 * are needed to initialize allocators on a specific cpu too.
4326 	 * F.e. the percpu allocator needs the page allocator which
4327 	 * needs the percpu allocator in order to allocate its pagesets
4328 	 * (a chicken-egg dilemma).
4329 	 */
4330 	for_each_possible_cpu(cpu) {
4331 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4332 
4333 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4334 		/*
4335 		 * We now know the "local memory node" for each node--
4336 		 * i.e., the node of the first zone in the generic zonelist.
4337 		 * Set up numa_mem percpu variable for on-line cpus.  During
4338 		 * boot, only the boot cpu should be on-line;  we'll init the
4339 		 * secondary cpus' numa_mem as they come on-line.  During
4340 		 * node/memory hotplug, we'll fixup all on-line cpus.
4341 		 */
4342 		if (cpu_online(cpu))
4343 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4344 #endif
4345 	}
4346 
4347 	return 0;
4348 }
4349 
4350 static noinline void __init
4351 build_all_zonelists_init(void)
4352 {
4353 	__build_all_zonelists(NULL);
4354 	mminit_verify_zonelist();
4355 	cpuset_init_current_mems_allowed();
4356 }
4357 
4358 /*
4359  * Called with zonelists_mutex held always
4360  * unless system_state == SYSTEM_BOOTING.
4361  *
4362  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4363  * [we're only called with non-NULL zone through __meminit paths] and
4364  * (2) call of __init annotated helper build_all_zonelists_init
4365  * [protected by SYSTEM_BOOTING].
4366  */
4367 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4368 {
4369 	set_zonelist_order();
4370 
4371 	if (system_state == SYSTEM_BOOTING) {
4372 		build_all_zonelists_init();
4373 	} else {
4374 #ifdef CONFIG_MEMORY_HOTPLUG
4375 		if (zone)
4376 			setup_zone_pageset(zone);
4377 #endif
4378 		/* we have to stop all cpus to guarantee there is no user
4379 		   of zonelist */
4380 		stop_machine(__build_all_zonelists, pgdat, NULL);
4381 		/* cpuset refresh routine should be here */
4382 	}
4383 	vm_total_pages = nr_free_pagecache_pages();
4384 	/*
4385 	 * Disable grouping by mobility if the number of pages in the
4386 	 * system is too low to allow the mechanism to work. It would be
4387 	 * more accurate, but expensive to check per-zone. This check is
4388 	 * made on memory-hotadd so a system can start with mobility
4389 	 * disabled and enable it later
4390 	 */
4391 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4392 		page_group_by_mobility_disabled = 1;
4393 	else
4394 		page_group_by_mobility_disabled = 0;
4395 
4396 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  "
4397 		"Total pages: %ld\n",
4398 			nr_online_nodes,
4399 			zonelist_order_name[current_zonelist_order],
4400 			page_group_by_mobility_disabled ? "off" : "on",
4401 			vm_total_pages);
4402 #ifdef CONFIG_NUMA
4403 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4404 #endif
4405 }
4406 
4407 /*
4408  * Helper functions to size the waitqueue hash table.
4409  * Essentially these want to choose hash table sizes sufficiently
4410  * large so that collisions trying to wait on pages are rare.
4411  * But in fact, the number of active page waitqueues on typical
4412  * systems is ridiculously low, less than 200. So this is even
4413  * conservative, even though it seems large.
4414  *
4415  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4416  * waitqueues, i.e. the size of the waitq table given the number of pages.
4417  */
4418 #define PAGES_PER_WAITQUEUE	256
4419 
4420 #ifndef CONFIG_MEMORY_HOTPLUG
4421 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4422 {
4423 	unsigned long size = 1;
4424 
4425 	pages /= PAGES_PER_WAITQUEUE;
4426 
4427 	while (size < pages)
4428 		size <<= 1;
4429 
4430 	/*
4431 	 * Once we have dozens or even hundreds of threads sleeping
4432 	 * on IO we've got bigger problems than wait queue collision.
4433 	 * Limit the size of the wait table to a reasonable size.
4434 	 */
4435 	size = min(size, 4096UL);
4436 
4437 	return max(size, 4UL);
4438 }
4439 #else
4440 /*
4441  * A zone's size might be changed by hot-add, so it is not possible to determine
4442  * a suitable size for its wait_table.  So we use the maximum size now.
4443  *
4444  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4445  *
4446  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4447  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4448  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4449  *
4450  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4451  * or more by the traditional way. (See above).  It equals:
4452  *
4453  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4454  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4455  *    powerpc (64K page size)             : =  (32G +16M)byte.
4456  */
4457 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4458 {
4459 	return 4096UL;
4460 }
4461 #endif
4462 
4463 /*
4464  * This is an integer logarithm so that shifts can be used later
4465  * to extract the more random high bits from the multiplicative
4466  * hash function before the remainder is taken.
4467  */
4468 static inline unsigned long wait_table_bits(unsigned long size)
4469 {
4470 	return ffz(~size);
4471 }
4472 
4473 /*
4474  * Check if a pageblock contains reserved pages
4475  */
4476 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
4477 {
4478 	unsigned long pfn;
4479 
4480 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4481 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
4482 			return 1;
4483 	}
4484 	return 0;
4485 }
4486 
4487 /*
4488  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
4489  * of blocks reserved is based on min_wmark_pages(zone). The memory within
4490  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
4491  * higher will lead to a bigger reserve which will get freed as contiguous
4492  * blocks as reclaim kicks in
4493  */
4494 static void setup_zone_migrate_reserve(struct zone *zone)
4495 {
4496 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
4497 	struct page *page;
4498 	unsigned long block_migratetype;
4499 	int reserve;
4500 	int old_reserve;
4501 
4502 	/*
4503 	 * Get the start pfn, end pfn and the number of blocks to reserve
4504 	 * We have to be careful to be aligned to pageblock_nr_pages to
4505 	 * make sure that we always check pfn_valid for the first page in
4506 	 * the block.
4507 	 */
4508 	start_pfn = zone->zone_start_pfn;
4509 	end_pfn = zone_end_pfn(zone);
4510 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
4511 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4512 							pageblock_order;
4513 
4514 	/*
4515 	 * Reserve blocks are generally in place to help high-order atomic
4516 	 * allocations that are short-lived. A min_free_kbytes value that
4517 	 * would result in more than 2 reserve blocks for atomic allocations
4518 	 * is assumed to be in place to help anti-fragmentation for the
4519 	 * future allocation of hugepages at runtime.
4520 	 */
4521 	reserve = min(2, reserve);
4522 	old_reserve = zone->nr_migrate_reserve_block;
4523 
4524 	/* When memory hot-add, we almost always need to do nothing */
4525 	if (reserve == old_reserve)
4526 		return;
4527 	zone->nr_migrate_reserve_block = reserve;
4528 
4529 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4530 		if (!early_page_nid_uninitialised(pfn, zone_to_nid(zone)))
4531 			return;
4532 
4533 		if (!pfn_valid(pfn))
4534 			continue;
4535 		page = pfn_to_page(pfn);
4536 
4537 		/* Watch out for overlapping nodes */
4538 		if (page_to_nid(page) != zone_to_nid(zone))
4539 			continue;
4540 
4541 		block_migratetype = get_pageblock_migratetype(page);
4542 
4543 		/* Only test what is necessary when the reserves are not met */
4544 		if (reserve > 0) {
4545 			/*
4546 			 * Blocks with reserved pages will never free, skip
4547 			 * them.
4548 			 */
4549 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4550 			if (pageblock_is_reserved(pfn, block_end_pfn))
4551 				continue;
4552 
4553 			/* If this block is reserved, account for it */
4554 			if (block_migratetype == MIGRATE_RESERVE) {
4555 				reserve--;
4556 				continue;
4557 			}
4558 
4559 			/* Suitable for reserving if this block is movable */
4560 			if (block_migratetype == MIGRATE_MOVABLE) {
4561 				set_pageblock_migratetype(page,
4562 							MIGRATE_RESERVE);
4563 				move_freepages_block(zone, page,
4564 							MIGRATE_RESERVE);
4565 				reserve--;
4566 				continue;
4567 			}
4568 		} else if (!old_reserve) {
4569 			/*
4570 			 * At boot time we don't need to scan the whole zone
4571 			 * for turning off MIGRATE_RESERVE.
4572 			 */
4573 			break;
4574 		}
4575 
4576 		/*
4577 		 * If the reserve is met and this is a previous reserved block,
4578 		 * take it back
4579 		 */
4580 		if (block_migratetype == MIGRATE_RESERVE) {
4581 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4582 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
4583 		}
4584 	}
4585 }
4586 
4587 /*
4588  * Initially all pages are reserved - free ones are freed
4589  * up by free_all_bootmem() once the early boot process is
4590  * done. Non-atomic initialization, single-pass.
4591  */
4592 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4593 		unsigned long start_pfn, enum memmap_context context)
4594 {
4595 	pg_data_t *pgdat = NODE_DATA(nid);
4596 	unsigned long end_pfn = start_pfn + size;
4597 	unsigned long pfn;
4598 	struct zone *z;
4599 	unsigned long nr_initialised = 0;
4600 
4601 	if (highest_memmap_pfn < end_pfn - 1)
4602 		highest_memmap_pfn = end_pfn - 1;
4603 
4604 	z = &pgdat->node_zones[zone];
4605 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4606 		/*
4607 		 * There can be holes in boot-time mem_map[]s
4608 		 * handed to this function.  They do not
4609 		 * exist on hotplugged memory.
4610 		 */
4611 		if (context == MEMMAP_EARLY) {
4612 			if (!early_pfn_valid(pfn))
4613 				continue;
4614 			if (!early_pfn_in_nid(pfn, nid))
4615 				continue;
4616 			if (!update_defer_init(pgdat, pfn, end_pfn,
4617 						&nr_initialised))
4618 				break;
4619 		}
4620 
4621 		/*
4622 		 * Mark the block movable so that blocks are reserved for
4623 		 * movable at startup. This will force kernel allocations
4624 		 * to reserve their blocks rather than leaking throughout
4625 		 * the address space during boot when many long-lived
4626 		 * kernel allocations are made. Later some blocks near
4627 		 * the start are marked MIGRATE_RESERVE by
4628 		 * setup_zone_migrate_reserve()
4629 		 *
4630 		 * bitmap is created for zone's valid pfn range. but memmap
4631 		 * can be created for invalid pages (for alignment)
4632 		 * check here not to call set_pageblock_migratetype() against
4633 		 * pfn out of zone.
4634 		 */
4635 		if (!(pfn & (pageblock_nr_pages - 1))) {
4636 			struct page *page = pfn_to_page(pfn);
4637 
4638 			__init_single_page(page, pfn, zone, nid);
4639 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4640 		} else {
4641 			__init_single_pfn(pfn, zone, nid);
4642 		}
4643 	}
4644 }
4645 
4646 static void __meminit zone_init_free_lists(struct zone *zone)
4647 {
4648 	unsigned int order, t;
4649 	for_each_migratetype_order(order, t) {
4650 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4651 		zone->free_area[order].nr_free = 0;
4652 	}
4653 }
4654 
4655 #ifndef __HAVE_ARCH_MEMMAP_INIT
4656 #define memmap_init(size, nid, zone, start_pfn) \
4657 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4658 #endif
4659 
4660 static int zone_batchsize(struct zone *zone)
4661 {
4662 #ifdef CONFIG_MMU
4663 	int batch;
4664 
4665 	/*
4666 	 * The per-cpu-pages pools are set to around 1000th of the
4667 	 * size of the zone.  But no more than 1/2 of a meg.
4668 	 *
4669 	 * OK, so we don't know how big the cache is.  So guess.
4670 	 */
4671 	batch = zone->managed_pages / 1024;
4672 	if (batch * PAGE_SIZE > 512 * 1024)
4673 		batch = (512 * 1024) / PAGE_SIZE;
4674 	batch /= 4;		/* We effectively *= 4 below */
4675 	if (batch < 1)
4676 		batch = 1;
4677 
4678 	/*
4679 	 * Clamp the batch to a 2^n - 1 value. Having a power
4680 	 * of 2 value was found to be more likely to have
4681 	 * suboptimal cache aliasing properties in some cases.
4682 	 *
4683 	 * For example if 2 tasks are alternately allocating
4684 	 * batches of pages, one task can end up with a lot
4685 	 * of pages of one half of the possible page colors
4686 	 * and the other with pages of the other colors.
4687 	 */
4688 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4689 
4690 	return batch;
4691 
4692 #else
4693 	/* The deferral and batching of frees should be suppressed under NOMMU
4694 	 * conditions.
4695 	 *
4696 	 * The problem is that NOMMU needs to be able to allocate large chunks
4697 	 * of contiguous memory as there's no hardware page translation to
4698 	 * assemble apparent contiguous memory from discontiguous pages.
4699 	 *
4700 	 * Queueing large contiguous runs of pages for batching, however,
4701 	 * causes the pages to actually be freed in smaller chunks.  As there
4702 	 * can be a significant delay between the individual batches being
4703 	 * recycled, this leads to the once large chunks of space being
4704 	 * fragmented and becoming unavailable for high-order allocations.
4705 	 */
4706 	return 0;
4707 #endif
4708 }
4709 
4710 /*
4711  * pcp->high and pcp->batch values are related and dependent on one another:
4712  * ->batch must never be higher then ->high.
4713  * The following function updates them in a safe manner without read side
4714  * locking.
4715  *
4716  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4717  * those fields changing asynchronously (acording the the above rule).
4718  *
4719  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4720  * outside of boot time (or some other assurance that no concurrent updaters
4721  * exist).
4722  */
4723 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4724 		unsigned long batch)
4725 {
4726        /* start with a fail safe value for batch */
4727 	pcp->batch = 1;
4728 	smp_wmb();
4729 
4730        /* Update high, then batch, in order */
4731 	pcp->high = high;
4732 	smp_wmb();
4733 
4734 	pcp->batch = batch;
4735 }
4736 
4737 /* a companion to pageset_set_high() */
4738 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4739 {
4740 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4741 }
4742 
4743 static void pageset_init(struct per_cpu_pageset *p)
4744 {
4745 	struct per_cpu_pages *pcp;
4746 	int migratetype;
4747 
4748 	memset(p, 0, sizeof(*p));
4749 
4750 	pcp = &p->pcp;
4751 	pcp->count = 0;
4752 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4753 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4754 }
4755 
4756 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4757 {
4758 	pageset_init(p);
4759 	pageset_set_batch(p, batch);
4760 }
4761 
4762 /*
4763  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4764  * to the value high for the pageset p.
4765  */
4766 static void pageset_set_high(struct per_cpu_pageset *p,
4767 				unsigned long high)
4768 {
4769 	unsigned long batch = max(1UL, high / 4);
4770 	if ((high / 4) > (PAGE_SHIFT * 8))
4771 		batch = PAGE_SHIFT * 8;
4772 
4773 	pageset_update(&p->pcp, high, batch);
4774 }
4775 
4776 static void pageset_set_high_and_batch(struct zone *zone,
4777 				       struct per_cpu_pageset *pcp)
4778 {
4779 	if (percpu_pagelist_fraction)
4780 		pageset_set_high(pcp,
4781 			(zone->managed_pages /
4782 				percpu_pagelist_fraction));
4783 	else
4784 		pageset_set_batch(pcp, zone_batchsize(zone));
4785 }
4786 
4787 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4788 {
4789 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4790 
4791 	pageset_init(pcp);
4792 	pageset_set_high_and_batch(zone, pcp);
4793 }
4794 
4795 static void __meminit setup_zone_pageset(struct zone *zone)
4796 {
4797 	int cpu;
4798 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4799 	for_each_possible_cpu(cpu)
4800 		zone_pageset_init(zone, cpu);
4801 }
4802 
4803 /*
4804  * Allocate per cpu pagesets and initialize them.
4805  * Before this call only boot pagesets were available.
4806  */
4807 void __init setup_per_cpu_pageset(void)
4808 {
4809 	struct zone *zone;
4810 
4811 	for_each_populated_zone(zone)
4812 		setup_zone_pageset(zone);
4813 }
4814 
4815 static noinline __init_refok
4816 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4817 {
4818 	int i;
4819 	size_t alloc_size;
4820 
4821 	/*
4822 	 * The per-page waitqueue mechanism uses hashed waitqueues
4823 	 * per zone.
4824 	 */
4825 	zone->wait_table_hash_nr_entries =
4826 		 wait_table_hash_nr_entries(zone_size_pages);
4827 	zone->wait_table_bits =
4828 		wait_table_bits(zone->wait_table_hash_nr_entries);
4829 	alloc_size = zone->wait_table_hash_nr_entries
4830 					* sizeof(wait_queue_head_t);
4831 
4832 	if (!slab_is_available()) {
4833 		zone->wait_table = (wait_queue_head_t *)
4834 			memblock_virt_alloc_node_nopanic(
4835 				alloc_size, zone->zone_pgdat->node_id);
4836 	} else {
4837 		/*
4838 		 * This case means that a zone whose size was 0 gets new memory
4839 		 * via memory hot-add.
4840 		 * But it may be the case that a new node was hot-added.  In
4841 		 * this case vmalloc() will not be able to use this new node's
4842 		 * memory - this wait_table must be initialized to use this new
4843 		 * node itself as well.
4844 		 * To use this new node's memory, further consideration will be
4845 		 * necessary.
4846 		 */
4847 		zone->wait_table = vmalloc(alloc_size);
4848 	}
4849 	if (!zone->wait_table)
4850 		return -ENOMEM;
4851 
4852 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4853 		init_waitqueue_head(zone->wait_table + i);
4854 
4855 	return 0;
4856 }
4857 
4858 static __meminit void zone_pcp_init(struct zone *zone)
4859 {
4860 	/*
4861 	 * per cpu subsystem is not up at this point. The following code
4862 	 * relies on the ability of the linker to provide the
4863 	 * offset of a (static) per cpu variable into the per cpu area.
4864 	 */
4865 	zone->pageset = &boot_pageset;
4866 
4867 	if (populated_zone(zone))
4868 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4869 			zone->name, zone->present_pages,
4870 					 zone_batchsize(zone));
4871 }
4872 
4873 int __meminit init_currently_empty_zone(struct zone *zone,
4874 					unsigned long zone_start_pfn,
4875 					unsigned long size,
4876 					enum memmap_context context)
4877 {
4878 	struct pglist_data *pgdat = zone->zone_pgdat;
4879 	int ret;
4880 	ret = zone_wait_table_init(zone, size);
4881 	if (ret)
4882 		return ret;
4883 	pgdat->nr_zones = zone_idx(zone) + 1;
4884 
4885 	zone->zone_start_pfn = zone_start_pfn;
4886 
4887 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4888 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4889 			pgdat->node_id,
4890 			(unsigned long)zone_idx(zone),
4891 			zone_start_pfn, (zone_start_pfn + size));
4892 
4893 	zone_init_free_lists(zone);
4894 
4895 	return 0;
4896 }
4897 
4898 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4899 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4900 
4901 /*
4902  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4903  */
4904 int __meminit __early_pfn_to_nid(unsigned long pfn,
4905 					struct mminit_pfnnid_cache *state)
4906 {
4907 	unsigned long start_pfn, end_pfn;
4908 	int nid;
4909 
4910 	if (state->last_start <= pfn && pfn < state->last_end)
4911 		return state->last_nid;
4912 
4913 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4914 	if (nid != -1) {
4915 		state->last_start = start_pfn;
4916 		state->last_end = end_pfn;
4917 		state->last_nid = nid;
4918 	}
4919 
4920 	return nid;
4921 }
4922 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4923 
4924 /**
4925  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4926  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4927  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4928  *
4929  * If an architecture guarantees that all ranges registered contain no holes
4930  * and may be freed, this this function may be used instead of calling
4931  * memblock_free_early_nid() manually.
4932  */
4933 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4934 {
4935 	unsigned long start_pfn, end_pfn;
4936 	int i, this_nid;
4937 
4938 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4939 		start_pfn = min(start_pfn, max_low_pfn);
4940 		end_pfn = min(end_pfn, max_low_pfn);
4941 
4942 		if (start_pfn < end_pfn)
4943 			memblock_free_early_nid(PFN_PHYS(start_pfn),
4944 					(end_pfn - start_pfn) << PAGE_SHIFT,
4945 					this_nid);
4946 	}
4947 }
4948 
4949 /**
4950  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4951  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4952  *
4953  * If an architecture guarantees that all ranges registered contain no holes and may
4954  * be freed, this function may be used instead of calling memory_present() manually.
4955  */
4956 void __init sparse_memory_present_with_active_regions(int nid)
4957 {
4958 	unsigned long start_pfn, end_pfn;
4959 	int i, this_nid;
4960 
4961 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4962 		memory_present(this_nid, start_pfn, end_pfn);
4963 }
4964 
4965 /**
4966  * get_pfn_range_for_nid - Return the start and end page frames for a node
4967  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4968  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4969  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4970  *
4971  * It returns the start and end page frame of a node based on information
4972  * provided by memblock_set_node(). If called for a node
4973  * with no available memory, a warning is printed and the start and end
4974  * PFNs will be 0.
4975  */
4976 void __meminit get_pfn_range_for_nid(unsigned int nid,
4977 			unsigned long *start_pfn, unsigned long *end_pfn)
4978 {
4979 	unsigned long this_start_pfn, this_end_pfn;
4980 	int i;
4981 
4982 	*start_pfn = -1UL;
4983 	*end_pfn = 0;
4984 
4985 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4986 		*start_pfn = min(*start_pfn, this_start_pfn);
4987 		*end_pfn = max(*end_pfn, this_end_pfn);
4988 	}
4989 
4990 	if (*start_pfn == -1UL)
4991 		*start_pfn = 0;
4992 }
4993 
4994 /*
4995  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4996  * assumption is made that zones within a node are ordered in monotonic
4997  * increasing memory addresses so that the "highest" populated zone is used
4998  */
4999 static void __init find_usable_zone_for_movable(void)
5000 {
5001 	int zone_index;
5002 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5003 		if (zone_index == ZONE_MOVABLE)
5004 			continue;
5005 
5006 		if (arch_zone_highest_possible_pfn[zone_index] >
5007 				arch_zone_lowest_possible_pfn[zone_index])
5008 			break;
5009 	}
5010 
5011 	VM_BUG_ON(zone_index == -1);
5012 	movable_zone = zone_index;
5013 }
5014 
5015 /*
5016  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5017  * because it is sized independent of architecture. Unlike the other zones,
5018  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5019  * in each node depending on the size of each node and how evenly kernelcore
5020  * is distributed. This helper function adjusts the zone ranges
5021  * provided by the architecture for a given node by using the end of the
5022  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5023  * zones within a node are in order of monotonic increases memory addresses
5024  */
5025 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5026 					unsigned long zone_type,
5027 					unsigned long node_start_pfn,
5028 					unsigned long node_end_pfn,
5029 					unsigned long *zone_start_pfn,
5030 					unsigned long *zone_end_pfn)
5031 {
5032 	/* Only adjust if ZONE_MOVABLE is on this node */
5033 	if (zone_movable_pfn[nid]) {
5034 		/* Size ZONE_MOVABLE */
5035 		if (zone_type == ZONE_MOVABLE) {
5036 			*zone_start_pfn = zone_movable_pfn[nid];
5037 			*zone_end_pfn = min(node_end_pfn,
5038 				arch_zone_highest_possible_pfn[movable_zone]);
5039 
5040 		/* Adjust for ZONE_MOVABLE starting within this range */
5041 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
5042 				*zone_end_pfn > zone_movable_pfn[nid]) {
5043 			*zone_end_pfn = zone_movable_pfn[nid];
5044 
5045 		/* Check if this whole range is within ZONE_MOVABLE */
5046 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5047 			*zone_start_pfn = *zone_end_pfn;
5048 	}
5049 }
5050 
5051 /*
5052  * Return the number of pages a zone spans in a node, including holes
5053  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5054  */
5055 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5056 					unsigned long zone_type,
5057 					unsigned long node_start_pfn,
5058 					unsigned long node_end_pfn,
5059 					unsigned long *ignored)
5060 {
5061 	unsigned long zone_start_pfn, zone_end_pfn;
5062 
5063 	/* Get the start and end of the zone */
5064 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5065 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5066 	adjust_zone_range_for_zone_movable(nid, zone_type,
5067 				node_start_pfn, node_end_pfn,
5068 				&zone_start_pfn, &zone_end_pfn);
5069 
5070 	/* Check that this node has pages within the zone's required range */
5071 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
5072 		return 0;
5073 
5074 	/* Move the zone boundaries inside the node if necessary */
5075 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
5076 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
5077 
5078 	/* Return the spanned pages */
5079 	return zone_end_pfn - zone_start_pfn;
5080 }
5081 
5082 /*
5083  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5084  * then all holes in the requested range will be accounted for.
5085  */
5086 unsigned long __meminit __absent_pages_in_range(int nid,
5087 				unsigned long range_start_pfn,
5088 				unsigned long range_end_pfn)
5089 {
5090 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5091 	unsigned long start_pfn, end_pfn;
5092 	int i;
5093 
5094 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5095 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5096 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5097 		nr_absent -= end_pfn - start_pfn;
5098 	}
5099 	return nr_absent;
5100 }
5101 
5102 /**
5103  * absent_pages_in_range - Return number of page frames in holes within a range
5104  * @start_pfn: The start PFN to start searching for holes
5105  * @end_pfn: The end PFN to stop searching for holes
5106  *
5107  * It returns the number of pages frames in memory holes within a range.
5108  */
5109 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5110 							unsigned long end_pfn)
5111 {
5112 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5113 }
5114 
5115 /* Return the number of page frames in holes in a zone on a node */
5116 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5117 					unsigned long zone_type,
5118 					unsigned long node_start_pfn,
5119 					unsigned long node_end_pfn,
5120 					unsigned long *ignored)
5121 {
5122 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5123 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5124 	unsigned long zone_start_pfn, zone_end_pfn;
5125 
5126 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5127 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5128 
5129 	adjust_zone_range_for_zone_movable(nid, zone_type,
5130 			node_start_pfn, node_end_pfn,
5131 			&zone_start_pfn, &zone_end_pfn);
5132 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5133 }
5134 
5135 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5136 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5137 					unsigned long zone_type,
5138 					unsigned long node_start_pfn,
5139 					unsigned long node_end_pfn,
5140 					unsigned long *zones_size)
5141 {
5142 	return zones_size[zone_type];
5143 }
5144 
5145 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5146 						unsigned long zone_type,
5147 						unsigned long node_start_pfn,
5148 						unsigned long node_end_pfn,
5149 						unsigned long *zholes_size)
5150 {
5151 	if (!zholes_size)
5152 		return 0;
5153 
5154 	return zholes_size[zone_type];
5155 }
5156 
5157 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5158 
5159 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5160 						unsigned long node_start_pfn,
5161 						unsigned long node_end_pfn,
5162 						unsigned long *zones_size,
5163 						unsigned long *zholes_size)
5164 {
5165 	unsigned long realtotalpages = 0, totalpages = 0;
5166 	enum zone_type i;
5167 
5168 	for (i = 0; i < MAX_NR_ZONES; i++) {
5169 		struct zone *zone = pgdat->node_zones + i;
5170 		unsigned long size, real_size;
5171 
5172 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5173 						  node_start_pfn,
5174 						  node_end_pfn,
5175 						  zones_size);
5176 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5177 						  node_start_pfn, node_end_pfn,
5178 						  zholes_size);
5179 		zone->spanned_pages = size;
5180 		zone->present_pages = real_size;
5181 
5182 		totalpages += size;
5183 		realtotalpages += real_size;
5184 	}
5185 
5186 	pgdat->node_spanned_pages = totalpages;
5187 	pgdat->node_present_pages = realtotalpages;
5188 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5189 							realtotalpages);
5190 }
5191 
5192 #ifndef CONFIG_SPARSEMEM
5193 /*
5194  * Calculate the size of the zone->blockflags rounded to an unsigned long
5195  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5196  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5197  * round what is now in bits to nearest long in bits, then return it in
5198  * bytes.
5199  */
5200 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5201 {
5202 	unsigned long usemapsize;
5203 
5204 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5205 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5206 	usemapsize = usemapsize >> pageblock_order;
5207 	usemapsize *= NR_PAGEBLOCK_BITS;
5208 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5209 
5210 	return usemapsize / 8;
5211 }
5212 
5213 static void __init setup_usemap(struct pglist_data *pgdat,
5214 				struct zone *zone,
5215 				unsigned long zone_start_pfn,
5216 				unsigned long zonesize)
5217 {
5218 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5219 	zone->pageblock_flags = NULL;
5220 	if (usemapsize)
5221 		zone->pageblock_flags =
5222 			memblock_virt_alloc_node_nopanic(usemapsize,
5223 							 pgdat->node_id);
5224 }
5225 #else
5226 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5227 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5228 #endif /* CONFIG_SPARSEMEM */
5229 
5230 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5231 
5232 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5233 void __paginginit set_pageblock_order(void)
5234 {
5235 	unsigned int order;
5236 
5237 	/* Check that pageblock_nr_pages has not already been setup */
5238 	if (pageblock_order)
5239 		return;
5240 
5241 	if (HPAGE_SHIFT > PAGE_SHIFT)
5242 		order = HUGETLB_PAGE_ORDER;
5243 	else
5244 		order = MAX_ORDER - 1;
5245 
5246 	/*
5247 	 * Assume the largest contiguous order of interest is a huge page.
5248 	 * This value may be variable depending on boot parameters on IA64 and
5249 	 * powerpc.
5250 	 */
5251 	pageblock_order = order;
5252 }
5253 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5254 
5255 /*
5256  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5257  * is unused as pageblock_order is set at compile-time. See
5258  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5259  * the kernel config
5260  */
5261 void __paginginit set_pageblock_order(void)
5262 {
5263 }
5264 
5265 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5266 
5267 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5268 						   unsigned long present_pages)
5269 {
5270 	unsigned long pages = spanned_pages;
5271 
5272 	/*
5273 	 * Provide a more accurate estimation if there are holes within
5274 	 * the zone and SPARSEMEM is in use. If there are holes within the
5275 	 * zone, each populated memory region may cost us one or two extra
5276 	 * memmap pages due to alignment because memmap pages for each
5277 	 * populated regions may not naturally algined on page boundary.
5278 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5279 	 */
5280 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5281 	    IS_ENABLED(CONFIG_SPARSEMEM))
5282 		pages = present_pages;
5283 
5284 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5285 }
5286 
5287 /*
5288  * Set up the zone data structures:
5289  *   - mark all pages reserved
5290  *   - mark all memory queues empty
5291  *   - clear the memory bitmaps
5292  *
5293  * NOTE: pgdat should get zeroed by caller.
5294  */
5295 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
5296 		unsigned long node_start_pfn, unsigned long node_end_pfn)
5297 {
5298 	enum zone_type j;
5299 	int nid = pgdat->node_id;
5300 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
5301 	int ret;
5302 
5303 	pgdat_resize_init(pgdat);
5304 #ifdef CONFIG_NUMA_BALANCING
5305 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5306 	pgdat->numabalancing_migrate_nr_pages = 0;
5307 	pgdat->numabalancing_migrate_next_window = jiffies;
5308 #endif
5309 	init_waitqueue_head(&pgdat->kswapd_wait);
5310 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5311 	pgdat_page_ext_init(pgdat);
5312 
5313 	for (j = 0; j < MAX_NR_ZONES; j++) {
5314 		struct zone *zone = pgdat->node_zones + j;
5315 		unsigned long size, realsize, freesize, memmap_pages;
5316 
5317 		size = zone->spanned_pages;
5318 		realsize = freesize = zone->present_pages;
5319 
5320 		/*
5321 		 * Adjust freesize so that it accounts for how much memory
5322 		 * is used by this zone for memmap. This affects the watermark
5323 		 * and per-cpu initialisations
5324 		 */
5325 		memmap_pages = calc_memmap_size(size, realsize);
5326 		if (!is_highmem_idx(j)) {
5327 			if (freesize >= memmap_pages) {
5328 				freesize -= memmap_pages;
5329 				if (memmap_pages)
5330 					printk(KERN_DEBUG
5331 					       "  %s zone: %lu pages used for memmap\n",
5332 					       zone_names[j], memmap_pages);
5333 			} else
5334 				printk(KERN_WARNING
5335 					"  %s zone: %lu pages exceeds freesize %lu\n",
5336 					zone_names[j], memmap_pages, freesize);
5337 		}
5338 
5339 		/* Account for reserved pages */
5340 		if (j == 0 && freesize > dma_reserve) {
5341 			freesize -= dma_reserve;
5342 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5343 					zone_names[0], dma_reserve);
5344 		}
5345 
5346 		if (!is_highmem_idx(j))
5347 			nr_kernel_pages += freesize;
5348 		/* Charge for highmem memmap if there are enough kernel pages */
5349 		else if (nr_kernel_pages > memmap_pages * 2)
5350 			nr_kernel_pages -= memmap_pages;
5351 		nr_all_pages += freesize;
5352 
5353 		/*
5354 		 * Set an approximate value for lowmem here, it will be adjusted
5355 		 * when the bootmem allocator frees pages into the buddy system.
5356 		 * And all highmem pages will be managed by the buddy system.
5357 		 */
5358 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5359 #ifdef CONFIG_NUMA
5360 		zone->node = nid;
5361 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5362 						/ 100;
5363 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5364 #endif
5365 		zone->name = zone_names[j];
5366 		spin_lock_init(&zone->lock);
5367 		spin_lock_init(&zone->lru_lock);
5368 		zone_seqlock_init(zone);
5369 		zone->zone_pgdat = pgdat;
5370 		zone_pcp_init(zone);
5371 
5372 		/* For bootup, initialized properly in watermark setup */
5373 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5374 
5375 		lruvec_init(&zone->lruvec);
5376 		if (!size)
5377 			continue;
5378 
5379 		set_pageblock_order();
5380 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5381 		ret = init_currently_empty_zone(zone, zone_start_pfn,
5382 						size, MEMMAP_EARLY);
5383 		BUG_ON(ret);
5384 		memmap_init(size, nid, j, zone_start_pfn);
5385 		zone_start_pfn += size;
5386 	}
5387 }
5388 
5389 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5390 {
5391 	/* Skip empty nodes */
5392 	if (!pgdat->node_spanned_pages)
5393 		return;
5394 
5395 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5396 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5397 	if (!pgdat->node_mem_map) {
5398 		unsigned long size, start, end;
5399 		struct page *map;
5400 
5401 		/*
5402 		 * The zone's endpoints aren't required to be MAX_ORDER
5403 		 * aligned but the node_mem_map endpoints must be in order
5404 		 * for the buddy allocator to function correctly.
5405 		 */
5406 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5407 		end = pgdat_end_pfn(pgdat);
5408 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5409 		size =  (end - start) * sizeof(struct page);
5410 		map = alloc_remap(pgdat->node_id, size);
5411 		if (!map)
5412 			map = memblock_virt_alloc_node_nopanic(size,
5413 							       pgdat->node_id);
5414 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
5415 	}
5416 #ifndef CONFIG_NEED_MULTIPLE_NODES
5417 	/*
5418 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5419 	 */
5420 	if (pgdat == NODE_DATA(0)) {
5421 		mem_map = NODE_DATA(0)->node_mem_map;
5422 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5423 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5424 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
5425 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5426 	}
5427 #endif
5428 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5429 }
5430 
5431 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5432 		unsigned long node_start_pfn, unsigned long *zholes_size)
5433 {
5434 	pg_data_t *pgdat = NODE_DATA(nid);
5435 	unsigned long start_pfn = 0;
5436 	unsigned long end_pfn = 0;
5437 
5438 	/* pg_data_t should be reset to zero when it's allocated */
5439 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5440 
5441 	reset_deferred_meminit(pgdat);
5442 	pgdat->node_id = nid;
5443 	pgdat->node_start_pfn = node_start_pfn;
5444 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5445 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5446 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5447 		(u64)start_pfn << PAGE_SHIFT, ((u64)end_pfn << PAGE_SHIFT) - 1);
5448 #endif
5449 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5450 				  zones_size, zholes_size);
5451 
5452 	alloc_node_mem_map(pgdat);
5453 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5454 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5455 		nid, (unsigned long)pgdat,
5456 		(unsigned long)pgdat->node_mem_map);
5457 #endif
5458 
5459 	free_area_init_core(pgdat, start_pfn, end_pfn);
5460 }
5461 
5462 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5463 
5464 #if MAX_NUMNODES > 1
5465 /*
5466  * Figure out the number of possible node ids.
5467  */
5468 void __init setup_nr_node_ids(void)
5469 {
5470 	unsigned int node;
5471 	unsigned int highest = 0;
5472 
5473 	for_each_node_mask(node, node_possible_map)
5474 		highest = node;
5475 	nr_node_ids = highest + 1;
5476 }
5477 #endif
5478 
5479 /**
5480  * node_map_pfn_alignment - determine the maximum internode alignment
5481  *
5482  * This function should be called after node map is populated and sorted.
5483  * It calculates the maximum power of two alignment which can distinguish
5484  * all the nodes.
5485  *
5486  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5487  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5488  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5489  * shifted, 1GiB is enough and this function will indicate so.
5490  *
5491  * This is used to test whether pfn -> nid mapping of the chosen memory
5492  * model has fine enough granularity to avoid incorrect mapping for the
5493  * populated node map.
5494  *
5495  * Returns the determined alignment in pfn's.  0 if there is no alignment
5496  * requirement (single node).
5497  */
5498 unsigned long __init node_map_pfn_alignment(void)
5499 {
5500 	unsigned long accl_mask = 0, last_end = 0;
5501 	unsigned long start, end, mask;
5502 	int last_nid = -1;
5503 	int i, nid;
5504 
5505 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5506 		if (!start || last_nid < 0 || last_nid == nid) {
5507 			last_nid = nid;
5508 			last_end = end;
5509 			continue;
5510 		}
5511 
5512 		/*
5513 		 * Start with a mask granular enough to pin-point to the
5514 		 * start pfn and tick off bits one-by-one until it becomes
5515 		 * too coarse to separate the current node from the last.
5516 		 */
5517 		mask = ~((1 << __ffs(start)) - 1);
5518 		while (mask && last_end <= (start & (mask << 1)))
5519 			mask <<= 1;
5520 
5521 		/* accumulate all internode masks */
5522 		accl_mask |= mask;
5523 	}
5524 
5525 	/* convert mask to number of pages */
5526 	return ~accl_mask + 1;
5527 }
5528 
5529 /* Find the lowest pfn for a node */
5530 static unsigned long __init find_min_pfn_for_node(int nid)
5531 {
5532 	unsigned long min_pfn = ULONG_MAX;
5533 	unsigned long start_pfn;
5534 	int i;
5535 
5536 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5537 		min_pfn = min(min_pfn, start_pfn);
5538 
5539 	if (min_pfn == ULONG_MAX) {
5540 		printk(KERN_WARNING
5541 			"Could not find start_pfn for node %d\n", nid);
5542 		return 0;
5543 	}
5544 
5545 	return min_pfn;
5546 }
5547 
5548 /**
5549  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5550  *
5551  * It returns the minimum PFN based on information provided via
5552  * memblock_set_node().
5553  */
5554 unsigned long __init find_min_pfn_with_active_regions(void)
5555 {
5556 	return find_min_pfn_for_node(MAX_NUMNODES);
5557 }
5558 
5559 /*
5560  * early_calculate_totalpages()
5561  * Sum pages in active regions for movable zone.
5562  * Populate N_MEMORY for calculating usable_nodes.
5563  */
5564 static unsigned long __init early_calculate_totalpages(void)
5565 {
5566 	unsigned long totalpages = 0;
5567 	unsigned long start_pfn, end_pfn;
5568 	int i, nid;
5569 
5570 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5571 		unsigned long pages = end_pfn - start_pfn;
5572 
5573 		totalpages += pages;
5574 		if (pages)
5575 			node_set_state(nid, N_MEMORY);
5576 	}
5577 	return totalpages;
5578 }
5579 
5580 /*
5581  * Find the PFN the Movable zone begins in each node. Kernel memory
5582  * is spread evenly between nodes as long as the nodes have enough
5583  * memory. When they don't, some nodes will have more kernelcore than
5584  * others
5585  */
5586 static void __init find_zone_movable_pfns_for_nodes(void)
5587 {
5588 	int i, nid;
5589 	unsigned long usable_startpfn;
5590 	unsigned long kernelcore_node, kernelcore_remaining;
5591 	/* save the state before borrow the nodemask */
5592 	nodemask_t saved_node_state = node_states[N_MEMORY];
5593 	unsigned long totalpages = early_calculate_totalpages();
5594 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5595 	struct memblock_region *r;
5596 
5597 	/* Need to find movable_zone earlier when movable_node is specified. */
5598 	find_usable_zone_for_movable();
5599 
5600 	/*
5601 	 * If movable_node is specified, ignore kernelcore and movablecore
5602 	 * options.
5603 	 */
5604 	if (movable_node_is_enabled()) {
5605 		for_each_memblock(memory, r) {
5606 			if (!memblock_is_hotpluggable(r))
5607 				continue;
5608 
5609 			nid = r->nid;
5610 
5611 			usable_startpfn = PFN_DOWN(r->base);
5612 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5613 				min(usable_startpfn, zone_movable_pfn[nid]) :
5614 				usable_startpfn;
5615 		}
5616 
5617 		goto out2;
5618 	}
5619 
5620 	/*
5621 	 * If movablecore=nn[KMG] was specified, calculate what size of
5622 	 * kernelcore that corresponds so that memory usable for
5623 	 * any allocation type is evenly spread. If both kernelcore
5624 	 * and movablecore are specified, then the value of kernelcore
5625 	 * will be used for required_kernelcore if it's greater than
5626 	 * what movablecore would have allowed.
5627 	 */
5628 	if (required_movablecore) {
5629 		unsigned long corepages;
5630 
5631 		/*
5632 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5633 		 * was requested by the user
5634 		 */
5635 		required_movablecore =
5636 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5637 		corepages = totalpages - required_movablecore;
5638 
5639 		required_kernelcore = max(required_kernelcore, corepages);
5640 	}
5641 
5642 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
5643 	if (!required_kernelcore)
5644 		goto out;
5645 
5646 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5647 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5648 
5649 restart:
5650 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5651 	kernelcore_node = required_kernelcore / usable_nodes;
5652 	for_each_node_state(nid, N_MEMORY) {
5653 		unsigned long start_pfn, end_pfn;
5654 
5655 		/*
5656 		 * Recalculate kernelcore_node if the division per node
5657 		 * now exceeds what is necessary to satisfy the requested
5658 		 * amount of memory for the kernel
5659 		 */
5660 		if (required_kernelcore < kernelcore_node)
5661 			kernelcore_node = required_kernelcore / usable_nodes;
5662 
5663 		/*
5664 		 * As the map is walked, we track how much memory is usable
5665 		 * by the kernel using kernelcore_remaining. When it is
5666 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5667 		 */
5668 		kernelcore_remaining = kernelcore_node;
5669 
5670 		/* Go through each range of PFNs within this node */
5671 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5672 			unsigned long size_pages;
5673 
5674 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5675 			if (start_pfn >= end_pfn)
5676 				continue;
5677 
5678 			/* Account for what is only usable for kernelcore */
5679 			if (start_pfn < usable_startpfn) {
5680 				unsigned long kernel_pages;
5681 				kernel_pages = min(end_pfn, usable_startpfn)
5682 								- start_pfn;
5683 
5684 				kernelcore_remaining -= min(kernel_pages,
5685 							kernelcore_remaining);
5686 				required_kernelcore -= min(kernel_pages,
5687 							required_kernelcore);
5688 
5689 				/* Continue if range is now fully accounted */
5690 				if (end_pfn <= usable_startpfn) {
5691 
5692 					/*
5693 					 * Push zone_movable_pfn to the end so
5694 					 * that if we have to rebalance
5695 					 * kernelcore across nodes, we will
5696 					 * not double account here
5697 					 */
5698 					zone_movable_pfn[nid] = end_pfn;
5699 					continue;
5700 				}
5701 				start_pfn = usable_startpfn;
5702 			}
5703 
5704 			/*
5705 			 * The usable PFN range for ZONE_MOVABLE is from
5706 			 * start_pfn->end_pfn. Calculate size_pages as the
5707 			 * number of pages used as kernelcore
5708 			 */
5709 			size_pages = end_pfn - start_pfn;
5710 			if (size_pages > kernelcore_remaining)
5711 				size_pages = kernelcore_remaining;
5712 			zone_movable_pfn[nid] = start_pfn + size_pages;
5713 
5714 			/*
5715 			 * Some kernelcore has been met, update counts and
5716 			 * break if the kernelcore for this node has been
5717 			 * satisfied
5718 			 */
5719 			required_kernelcore -= min(required_kernelcore,
5720 								size_pages);
5721 			kernelcore_remaining -= size_pages;
5722 			if (!kernelcore_remaining)
5723 				break;
5724 		}
5725 	}
5726 
5727 	/*
5728 	 * If there is still required_kernelcore, we do another pass with one
5729 	 * less node in the count. This will push zone_movable_pfn[nid] further
5730 	 * along on the nodes that still have memory until kernelcore is
5731 	 * satisfied
5732 	 */
5733 	usable_nodes--;
5734 	if (usable_nodes && required_kernelcore > usable_nodes)
5735 		goto restart;
5736 
5737 out2:
5738 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5739 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5740 		zone_movable_pfn[nid] =
5741 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5742 
5743 out:
5744 	/* restore the node_state */
5745 	node_states[N_MEMORY] = saved_node_state;
5746 }
5747 
5748 /* Any regular or high memory on that node ? */
5749 static void check_for_memory(pg_data_t *pgdat, int nid)
5750 {
5751 	enum zone_type zone_type;
5752 
5753 	if (N_MEMORY == N_NORMAL_MEMORY)
5754 		return;
5755 
5756 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5757 		struct zone *zone = &pgdat->node_zones[zone_type];
5758 		if (populated_zone(zone)) {
5759 			node_set_state(nid, N_HIGH_MEMORY);
5760 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5761 			    zone_type <= ZONE_NORMAL)
5762 				node_set_state(nid, N_NORMAL_MEMORY);
5763 			break;
5764 		}
5765 	}
5766 }
5767 
5768 /**
5769  * free_area_init_nodes - Initialise all pg_data_t and zone data
5770  * @max_zone_pfn: an array of max PFNs for each zone
5771  *
5772  * This will call free_area_init_node() for each active node in the system.
5773  * Using the page ranges provided by memblock_set_node(), the size of each
5774  * zone in each node and their holes is calculated. If the maximum PFN
5775  * between two adjacent zones match, it is assumed that the zone is empty.
5776  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5777  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5778  * starts where the previous one ended. For example, ZONE_DMA32 starts
5779  * at arch_max_dma_pfn.
5780  */
5781 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5782 {
5783 	unsigned long start_pfn, end_pfn;
5784 	int i, nid;
5785 
5786 	/* Record where the zone boundaries are */
5787 	memset(arch_zone_lowest_possible_pfn, 0,
5788 				sizeof(arch_zone_lowest_possible_pfn));
5789 	memset(arch_zone_highest_possible_pfn, 0,
5790 				sizeof(arch_zone_highest_possible_pfn));
5791 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5792 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5793 	for (i = 1; i < MAX_NR_ZONES; i++) {
5794 		if (i == ZONE_MOVABLE)
5795 			continue;
5796 		arch_zone_lowest_possible_pfn[i] =
5797 			arch_zone_highest_possible_pfn[i-1];
5798 		arch_zone_highest_possible_pfn[i] =
5799 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5800 	}
5801 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5802 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5803 
5804 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5805 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5806 	find_zone_movable_pfns_for_nodes();
5807 
5808 	/* Print out the zone ranges */
5809 	pr_info("Zone ranges:\n");
5810 	for (i = 0; i < MAX_NR_ZONES; i++) {
5811 		if (i == ZONE_MOVABLE)
5812 			continue;
5813 		pr_info("  %-8s ", zone_names[i]);
5814 		if (arch_zone_lowest_possible_pfn[i] ==
5815 				arch_zone_highest_possible_pfn[i])
5816 			pr_cont("empty\n");
5817 		else
5818 			pr_cont("[mem %#018Lx-%#018Lx]\n",
5819 				(u64)arch_zone_lowest_possible_pfn[i]
5820 					<< PAGE_SHIFT,
5821 				((u64)arch_zone_highest_possible_pfn[i]
5822 					<< PAGE_SHIFT) - 1);
5823 	}
5824 
5825 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
5826 	pr_info("Movable zone start for each node\n");
5827 	for (i = 0; i < MAX_NUMNODES; i++) {
5828 		if (zone_movable_pfn[i])
5829 			pr_info("  Node %d: %#018Lx\n", i,
5830 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
5831 	}
5832 
5833 	/* Print out the early node map */
5834 	pr_info("Early memory node ranges\n");
5835 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5836 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
5837 			(u64)start_pfn << PAGE_SHIFT,
5838 			((u64)end_pfn << PAGE_SHIFT) - 1);
5839 
5840 	/* Initialise every node */
5841 	mminit_verify_pageflags_layout();
5842 	setup_nr_node_ids();
5843 	for_each_online_node(nid) {
5844 		pg_data_t *pgdat = NODE_DATA(nid);
5845 		free_area_init_node(nid, NULL,
5846 				find_min_pfn_for_node(nid), NULL);
5847 
5848 		/* Any memory on that node */
5849 		if (pgdat->node_present_pages)
5850 			node_set_state(nid, N_MEMORY);
5851 		check_for_memory(pgdat, nid);
5852 	}
5853 }
5854 
5855 static int __init cmdline_parse_core(char *p, unsigned long *core)
5856 {
5857 	unsigned long long coremem;
5858 	if (!p)
5859 		return -EINVAL;
5860 
5861 	coremem = memparse(p, &p);
5862 	*core = coremem >> PAGE_SHIFT;
5863 
5864 	/* Paranoid check that UL is enough for the coremem value */
5865 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5866 
5867 	return 0;
5868 }
5869 
5870 /*
5871  * kernelcore=size sets the amount of memory for use for allocations that
5872  * cannot be reclaimed or migrated.
5873  */
5874 static int __init cmdline_parse_kernelcore(char *p)
5875 {
5876 	return cmdline_parse_core(p, &required_kernelcore);
5877 }
5878 
5879 /*
5880  * movablecore=size sets the amount of memory for use for allocations that
5881  * can be reclaimed or migrated.
5882  */
5883 static int __init cmdline_parse_movablecore(char *p)
5884 {
5885 	return cmdline_parse_core(p, &required_movablecore);
5886 }
5887 
5888 early_param("kernelcore", cmdline_parse_kernelcore);
5889 early_param("movablecore", cmdline_parse_movablecore);
5890 
5891 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5892 
5893 void adjust_managed_page_count(struct page *page, long count)
5894 {
5895 	spin_lock(&managed_page_count_lock);
5896 	page_zone(page)->managed_pages += count;
5897 	totalram_pages += count;
5898 #ifdef CONFIG_HIGHMEM
5899 	if (PageHighMem(page))
5900 		totalhigh_pages += count;
5901 #endif
5902 	spin_unlock(&managed_page_count_lock);
5903 }
5904 EXPORT_SYMBOL(adjust_managed_page_count);
5905 
5906 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5907 {
5908 	void *pos;
5909 	unsigned long pages = 0;
5910 
5911 	start = (void *)PAGE_ALIGN((unsigned long)start);
5912 	end = (void *)((unsigned long)end & PAGE_MASK);
5913 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5914 		if ((unsigned int)poison <= 0xFF)
5915 			memset(pos, poison, PAGE_SIZE);
5916 		free_reserved_page(virt_to_page(pos));
5917 	}
5918 
5919 	if (pages && s)
5920 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5921 			s, pages << (PAGE_SHIFT - 10), start, end);
5922 
5923 	return pages;
5924 }
5925 EXPORT_SYMBOL(free_reserved_area);
5926 
5927 #ifdef	CONFIG_HIGHMEM
5928 void free_highmem_page(struct page *page)
5929 {
5930 	__free_reserved_page(page);
5931 	totalram_pages++;
5932 	page_zone(page)->managed_pages++;
5933 	totalhigh_pages++;
5934 }
5935 #endif
5936 
5937 
5938 void __init mem_init_print_info(const char *str)
5939 {
5940 	unsigned long physpages, codesize, datasize, rosize, bss_size;
5941 	unsigned long init_code_size, init_data_size;
5942 
5943 	physpages = get_num_physpages();
5944 	codesize = _etext - _stext;
5945 	datasize = _edata - _sdata;
5946 	rosize = __end_rodata - __start_rodata;
5947 	bss_size = __bss_stop - __bss_start;
5948 	init_data_size = __init_end - __init_begin;
5949 	init_code_size = _einittext - _sinittext;
5950 
5951 	/*
5952 	 * Detect special cases and adjust section sizes accordingly:
5953 	 * 1) .init.* may be embedded into .data sections
5954 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
5955 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
5956 	 * 3) .rodata.* may be embedded into .text or .data sections.
5957 	 */
5958 #define adj_init_size(start, end, size, pos, adj) \
5959 	do { \
5960 		if (start <= pos && pos < end && size > adj) \
5961 			size -= adj; \
5962 	} while (0)
5963 
5964 	adj_init_size(__init_begin, __init_end, init_data_size,
5965 		     _sinittext, init_code_size);
5966 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5967 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5968 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5969 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5970 
5971 #undef	adj_init_size
5972 
5973 	pr_info("Memory: %luK/%luK available "
5974 	       "(%luK kernel code, %luK rwdata, %luK rodata, "
5975 	       "%luK init, %luK bss, %luK reserved, %luK cma-reserved"
5976 #ifdef	CONFIG_HIGHMEM
5977 	       ", %luK highmem"
5978 #endif
5979 	       "%s%s)\n",
5980 	       nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5981 	       codesize >> 10, datasize >> 10, rosize >> 10,
5982 	       (init_data_size + init_code_size) >> 10, bss_size >> 10,
5983 	       (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT-10),
5984 	       totalcma_pages << (PAGE_SHIFT-10),
5985 #ifdef	CONFIG_HIGHMEM
5986 	       totalhigh_pages << (PAGE_SHIFT-10),
5987 #endif
5988 	       str ? ", " : "", str ? str : "");
5989 }
5990 
5991 /**
5992  * set_dma_reserve - set the specified number of pages reserved in the first zone
5993  * @new_dma_reserve: The number of pages to mark reserved
5994  *
5995  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5996  * In the DMA zone, a significant percentage may be consumed by kernel image
5997  * and other unfreeable allocations which can skew the watermarks badly. This
5998  * function may optionally be used to account for unfreeable pages in the
5999  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6000  * smaller per-cpu batchsize.
6001  */
6002 void __init set_dma_reserve(unsigned long new_dma_reserve)
6003 {
6004 	dma_reserve = new_dma_reserve;
6005 }
6006 
6007 void __init free_area_init(unsigned long *zones_size)
6008 {
6009 	free_area_init_node(0, zones_size,
6010 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6011 }
6012 
6013 static int page_alloc_cpu_notify(struct notifier_block *self,
6014 				 unsigned long action, void *hcpu)
6015 {
6016 	int cpu = (unsigned long)hcpu;
6017 
6018 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6019 		lru_add_drain_cpu(cpu);
6020 		drain_pages(cpu);
6021 
6022 		/*
6023 		 * Spill the event counters of the dead processor
6024 		 * into the current processors event counters.
6025 		 * This artificially elevates the count of the current
6026 		 * processor.
6027 		 */
6028 		vm_events_fold_cpu(cpu);
6029 
6030 		/*
6031 		 * Zero the differential counters of the dead processor
6032 		 * so that the vm statistics are consistent.
6033 		 *
6034 		 * This is only okay since the processor is dead and cannot
6035 		 * race with what we are doing.
6036 		 */
6037 		cpu_vm_stats_fold(cpu);
6038 	}
6039 	return NOTIFY_OK;
6040 }
6041 
6042 void __init page_alloc_init(void)
6043 {
6044 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6045 }
6046 
6047 /*
6048  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
6049  *	or min_free_kbytes changes.
6050  */
6051 static void calculate_totalreserve_pages(void)
6052 {
6053 	struct pglist_data *pgdat;
6054 	unsigned long reserve_pages = 0;
6055 	enum zone_type i, j;
6056 
6057 	for_each_online_pgdat(pgdat) {
6058 		for (i = 0; i < MAX_NR_ZONES; i++) {
6059 			struct zone *zone = pgdat->node_zones + i;
6060 			long max = 0;
6061 
6062 			/* Find valid and maximum lowmem_reserve in the zone */
6063 			for (j = i; j < MAX_NR_ZONES; j++) {
6064 				if (zone->lowmem_reserve[j] > max)
6065 					max = zone->lowmem_reserve[j];
6066 			}
6067 
6068 			/* we treat the high watermark as reserved pages. */
6069 			max += high_wmark_pages(zone);
6070 
6071 			if (max > zone->managed_pages)
6072 				max = zone->managed_pages;
6073 			reserve_pages += max;
6074 			/*
6075 			 * Lowmem reserves are not available to
6076 			 * GFP_HIGHUSER page cache allocations and
6077 			 * kswapd tries to balance zones to their high
6078 			 * watermark.  As a result, neither should be
6079 			 * regarded as dirtyable memory, to prevent a
6080 			 * situation where reclaim has to clean pages
6081 			 * in order to balance the zones.
6082 			 */
6083 			zone->dirty_balance_reserve = max;
6084 		}
6085 	}
6086 	dirty_balance_reserve = reserve_pages;
6087 	totalreserve_pages = reserve_pages;
6088 }
6089 
6090 /*
6091  * setup_per_zone_lowmem_reserve - called whenever
6092  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
6093  *	has a correct pages reserved value, so an adequate number of
6094  *	pages are left in the zone after a successful __alloc_pages().
6095  */
6096 static void setup_per_zone_lowmem_reserve(void)
6097 {
6098 	struct pglist_data *pgdat;
6099 	enum zone_type j, idx;
6100 
6101 	for_each_online_pgdat(pgdat) {
6102 		for (j = 0; j < MAX_NR_ZONES; j++) {
6103 			struct zone *zone = pgdat->node_zones + j;
6104 			unsigned long managed_pages = zone->managed_pages;
6105 
6106 			zone->lowmem_reserve[j] = 0;
6107 
6108 			idx = j;
6109 			while (idx) {
6110 				struct zone *lower_zone;
6111 
6112 				idx--;
6113 
6114 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6115 					sysctl_lowmem_reserve_ratio[idx] = 1;
6116 
6117 				lower_zone = pgdat->node_zones + idx;
6118 				lower_zone->lowmem_reserve[j] = managed_pages /
6119 					sysctl_lowmem_reserve_ratio[idx];
6120 				managed_pages += lower_zone->managed_pages;
6121 			}
6122 		}
6123 	}
6124 
6125 	/* update totalreserve_pages */
6126 	calculate_totalreserve_pages();
6127 }
6128 
6129 static void __setup_per_zone_wmarks(void)
6130 {
6131 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6132 	unsigned long lowmem_pages = 0;
6133 	struct zone *zone;
6134 	unsigned long flags;
6135 
6136 	/* Calculate total number of !ZONE_HIGHMEM pages */
6137 	for_each_zone(zone) {
6138 		if (!is_highmem(zone))
6139 			lowmem_pages += zone->managed_pages;
6140 	}
6141 
6142 	for_each_zone(zone) {
6143 		u64 tmp;
6144 
6145 		spin_lock_irqsave(&zone->lock, flags);
6146 		tmp = (u64)pages_min * zone->managed_pages;
6147 		do_div(tmp, lowmem_pages);
6148 		if (is_highmem(zone)) {
6149 			/*
6150 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6151 			 * need highmem pages, so cap pages_min to a small
6152 			 * value here.
6153 			 *
6154 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6155 			 * deltas control asynch page reclaim, and so should
6156 			 * not be capped for highmem.
6157 			 */
6158 			unsigned long min_pages;
6159 
6160 			min_pages = zone->managed_pages / 1024;
6161 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6162 			zone->watermark[WMARK_MIN] = min_pages;
6163 		} else {
6164 			/*
6165 			 * If it's a lowmem zone, reserve a number of pages
6166 			 * proportionate to the zone's size.
6167 			 */
6168 			zone->watermark[WMARK_MIN] = tmp;
6169 		}
6170 
6171 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
6172 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
6173 
6174 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6175 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6176 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6177 
6178 		setup_zone_migrate_reserve(zone);
6179 		spin_unlock_irqrestore(&zone->lock, flags);
6180 	}
6181 
6182 	/* update totalreserve_pages */
6183 	calculate_totalreserve_pages();
6184 }
6185 
6186 /**
6187  * setup_per_zone_wmarks - called when min_free_kbytes changes
6188  * or when memory is hot-{added|removed}
6189  *
6190  * Ensures that the watermark[min,low,high] values for each zone are set
6191  * correctly with respect to min_free_kbytes.
6192  */
6193 void setup_per_zone_wmarks(void)
6194 {
6195 	mutex_lock(&zonelists_mutex);
6196 	__setup_per_zone_wmarks();
6197 	mutex_unlock(&zonelists_mutex);
6198 }
6199 
6200 /*
6201  * The inactive anon list should be small enough that the VM never has to
6202  * do too much work, but large enough that each inactive page has a chance
6203  * to be referenced again before it is swapped out.
6204  *
6205  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6206  * INACTIVE_ANON pages on this zone's LRU, maintained by the
6207  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6208  * the anonymous pages are kept on the inactive list.
6209  *
6210  * total     target    max
6211  * memory    ratio     inactive anon
6212  * -------------------------------------
6213  *   10MB       1         5MB
6214  *  100MB       1        50MB
6215  *    1GB       3       250MB
6216  *   10GB      10       0.9GB
6217  *  100GB      31         3GB
6218  *    1TB     101        10GB
6219  *   10TB     320        32GB
6220  */
6221 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6222 {
6223 	unsigned int gb, ratio;
6224 
6225 	/* Zone size in gigabytes */
6226 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6227 	if (gb)
6228 		ratio = int_sqrt(10 * gb);
6229 	else
6230 		ratio = 1;
6231 
6232 	zone->inactive_ratio = ratio;
6233 }
6234 
6235 static void __meminit setup_per_zone_inactive_ratio(void)
6236 {
6237 	struct zone *zone;
6238 
6239 	for_each_zone(zone)
6240 		calculate_zone_inactive_ratio(zone);
6241 }
6242 
6243 /*
6244  * Initialise min_free_kbytes.
6245  *
6246  * For small machines we want it small (128k min).  For large machines
6247  * we want it large (64MB max).  But it is not linear, because network
6248  * bandwidth does not increase linearly with machine size.  We use
6249  *
6250  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6251  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6252  *
6253  * which yields
6254  *
6255  * 16MB:	512k
6256  * 32MB:	724k
6257  * 64MB:	1024k
6258  * 128MB:	1448k
6259  * 256MB:	2048k
6260  * 512MB:	2896k
6261  * 1024MB:	4096k
6262  * 2048MB:	5792k
6263  * 4096MB:	8192k
6264  * 8192MB:	11584k
6265  * 16384MB:	16384k
6266  */
6267 int __meminit init_per_zone_wmark_min(void)
6268 {
6269 	unsigned long lowmem_kbytes;
6270 	int new_min_free_kbytes;
6271 
6272 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6273 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6274 
6275 	if (new_min_free_kbytes > user_min_free_kbytes) {
6276 		min_free_kbytes = new_min_free_kbytes;
6277 		if (min_free_kbytes < 128)
6278 			min_free_kbytes = 128;
6279 		if (min_free_kbytes > 65536)
6280 			min_free_kbytes = 65536;
6281 	} else {
6282 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6283 				new_min_free_kbytes, user_min_free_kbytes);
6284 	}
6285 	setup_per_zone_wmarks();
6286 	refresh_zone_stat_thresholds();
6287 	setup_per_zone_lowmem_reserve();
6288 	setup_per_zone_inactive_ratio();
6289 	return 0;
6290 }
6291 module_init(init_per_zone_wmark_min)
6292 
6293 /*
6294  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6295  *	that we can call two helper functions whenever min_free_kbytes
6296  *	changes.
6297  */
6298 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6299 	void __user *buffer, size_t *length, loff_t *ppos)
6300 {
6301 	int rc;
6302 
6303 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6304 	if (rc)
6305 		return rc;
6306 
6307 	if (write) {
6308 		user_min_free_kbytes = min_free_kbytes;
6309 		setup_per_zone_wmarks();
6310 	}
6311 	return 0;
6312 }
6313 
6314 #ifdef CONFIG_NUMA
6315 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6316 	void __user *buffer, size_t *length, loff_t *ppos)
6317 {
6318 	struct zone *zone;
6319 	int rc;
6320 
6321 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6322 	if (rc)
6323 		return rc;
6324 
6325 	for_each_zone(zone)
6326 		zone->min_unmapped_pages = (zone->managed_pages *
6327 				sysctl_min_unmapped_ratio) / 100;
6328 	return 0;
6329 }
6330 
6331 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6332 	void __user *buffer, size_t *length, loff_t *ppos)
6333 {
6334 	struct zone *zone;
6335 	int rc;
6336 
6337 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6338 	if (rc)
6339 		return rc;
6340 
6341 	for_each_zone(zone)
6342 		zone->min_slab_pages = (zone->managed_pages *
6343 				sysctl_min_slab_ratio) / 100;
6344 	return 0;
6345 }
6346 #endif
6347 
6348 /*
6349  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6350  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6351  *	whenever sysctl_lowmem_reserve_ratio changes.
6352  *
6353  * The reserve ratio obviously has absolutely no relation with the
6354  * minimum watermarks. The lowmem reserve ratio can only make sense
6355  * if in function of the boot time zone sizes.
6356  */
6357 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6358 	void __user *buffer, size_t *length, loff_t *ppos)
6359 {
6360 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6361 	setup_per_zone_lowmem_reserve();
6362 	return 0;
6363 }
6364 
6365 /*
6366  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6367  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6368  * pagelist can have before it gets flushed back to buddy allocator.
6369  */
6370 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6371 	void __user *buffer, size_t *length, loff_t *ppos)
6372 {
6373 	struct zone *zone;
6374 	int old_percpu_pagelist_fraction;
6375 	int ret;
6376 
6377 	mutex_lock(&pcp_batch_high_lock);
6378 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6379 
6380 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6381 	if (!write || ret < 0)
6382 		goto out;
6383 
6384 	/* Sanity checking to avoid pcp imbalance */
6385 	if (percpu_pagelist_fraction &&
6386 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6387 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6388 		ret = -EINVAL;
6389 		goto out;
6390 	}
6391 
6392 	/* No change? */
6393 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6394 		goto out;
6395 
6396 	for_each_populated_zone(zone) {
6397 		unsigned int cpu;
6398 
6399 		for_each_possible_cpu(cpu)
6400 			pageset_set_high_and_batch(zone,
6401 					per_cpu_ptr(zone->pageset, cpu));
6402 	}
6403 out:
6404 	mutex_unlock(&pcp_batch_high_lock);
6405 	return ret;
6406 }
6407 
6408 #ifdef CONFIG_NUMA
6409 int hashdist = HASHDIST_DEFAULT;
6410 
6411 static int __init set_hashdist(char *str)
6412 {
6413 	if (!str)
6414 		return 0;
6415 	hashdist = simple_strtoul(str, &str, 0);
6416 	return 1;
6417 }
6418 __setup("hashdist=", set_hashdist);
6419 #endif
6420 
6421 /*
6422  * allocate a large system hash table from bootmem
6423  * - it is assumed that the hash table must contain an exact power-of-2
6424  *   quantity of entries
6425  * - limit is the number of hash buckets, not the total allocation size
6426  */
6427 void *__init alloc_large_system_hash(const char *tablename,
6428 				     unsigned long bucketsize,
6429 				     unsigned long numentries,
6430 				     int scale,
6431 				     int flags,
6432 				     unsigned int *_hash_shift,
6433 				     unsigned int *_hash_mask,
6434 				     unsigned long low_limit,
6435 				     unsigned long high_limit)
6436 {
6437 	unsigned long long max = high_limit;
6438 	unsigned long log2qty, size;
6439 	void *table = NULL;
6440 
6441 	/* allow the kernel cmdline to have a say */
6442 	if (!numentries) {
6443 		/* round applicable memory size up to nearest megabyte */
6444 		numentries = nr_kernel_pages;
6445 
6446 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6447 		if (PAGE_SHIFT < 20)
6448 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6449 
6450 		/* limit to 1 bucket per 2^scale bytes of low memory */
6451 		if (scale > PAGE_SHIFT)
6452 			numentries >>= (scale - PAGE_SHIFT);
6453 		else
6454 			numentries <<= (PAGE_SHIFT - scale);
6455 
6456 		/* Make sure we've got at least a 0-order allocation.. */
6457 		if (unlikely(flags & HASH_SMALL)) {
6458 			/* Makes no sense without HASH_EARLY */
6459 			WARN_ON(!(flags & HASH_EARLY));
6460 			if (!(numentries >> *_hash_shift)) {
6461 				numentries = 1UL << *_hash_shift;
6462 				BUG_ON(!numentries);
6463 			}
6464 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6465 			numentries = PAGE_SIZE / bucketsize;
6466 	}
6467 	numentries = roundup_pow_of_two(numentries);
6468 
6469 	/* limit allocation size to 1/16 total memory by default */
6470 	if (max == 0) {
6471 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6472 		do_div(max, bucketsize);
6473 	}
6474 	max = min(max, 0x80000000ULL);
6475 
6476 	if (numentries < low_limit)
6477 		numentries = low_limit;
6478 	if (numentries > max)
6479 		numentries = max;
6480 
6481 	log2qty = ilog2(numentries);
6482 
6483 	do {
6484 		size = bucketsize << log2qty;
6485 		if (flags & HASH_EARLY)
6486 			table = memblock_virt_alloc_nopanic(size, 0);
6487 		else if (hashdist)
6488 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6489 		else {
6490 			/*
6491 			 * If bucketsize is not a power-of-two, we may free
6492 			 * some pages at the end of hash table which
6493 			 * alloc_pages_exact() automatically does
6494 			 */
6495 			if (get_order(size) < MAX_ORDER) {
6496 				table = alloc_pages_exact(size, GFP_ATOMIC);
6497 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6498 			}
6499 		}
6500 	} while (!table && size > PAGE_SIZE && --log2qty);
6501 
6502 	if (!table)
6503 		panic("Failed to allocate %s hash table\n", tablename);
6504 
6505 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6506 	       tablename,
6507 	       (1UL << log2qty),
6508 	       ilog2(size) - PAGE_SHIFT,
6509 	       size);
6510 
6511 	if (_hash_shift)
6512 		*_hash_shift = log2qty;
6513 	if (_hash_mask)
6514 		*_hash_mask = (1 << log2qty) - 1;
6515 
6516 	return table;
6517 }
6518 
6519 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6520 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6521 							unsigned long pfn)
6522 {
6523 #ifdef CONFIG_SPARSEMEM
6524 	return __pfn_to_section(pfn)->pageblock_flags;
6525 #else
6526 	return zone->pageblock_flags;
6527 #endif /* CONFIG_SPARSEMEM */
6528 }
6529 
6530 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6531 {
6532 #ifdef CONFIG_SPARSEMEM
6533 	pfn &= (PAGES_PER_SECTION-1);
6534 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6535 #else
6536 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6537 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6538 #endif /* CONFIG_SPARSEMEM */
6539 }
6540 
6541 /**
6542  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6543  * @page: The page within the block of interest
6544  * @pfn: The target page frame number
6545  * @end_bitidx: The last bit of interest to retrieve
6546  * @mask: mask of bits that the caller is interested in
6547  *
6548  * Return: pageblock_bits flags
6549  */
6550 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6551 					unsigned long end_bitidx,
6552 					unsigned long mask)
6553 {
6554 	struct zone *zone;
6555 	unsigned long *bitmap;
6556 	unsigned long bitidx, word_bitidx;
6557 	unsigned long word;
6558 
6559 	zone = page_zone(page);
6560 	bitmap = get_pageblock_bitmap(zone, pfn);
6561 	bitidx = pfn_to_bitidx(zone, pfn);
6562 	word_bitidx = bitidx / BITS_PER_LONG;
6563 	bitidx &= (BITS_PER_LONG-1);
6564 
6565 	word = bitmap[word_bitidx];
6566 	bitidx += end_bitidx;
6567 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6568 }
6569 
6570 /**
6571  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6572  * @page: The page within the block of interest
6573  * @flags: The flags to set
6574  * @pfn: The target page frame number
6575  * @end_bitidx: The last bit of interest
6576  * @mask: mask of bits that the caller is interested in
6577  */
6578 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6579 					unsigned long pfn,
6580 					unsigned long end_bitidx,
6581 					unsigned long mask)
6582 {
6583 	struct zone *zone;
6584 	unsigned long *bitmap;
6585 	unsigned long bitidx, word_bitidx;
6586 	unsigned long old_word, word;
6587 
6588 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6589 
6590 	zone = page_zone(page);
6591 	bitmap = get_pageblock_bitmap(zone, pfn);
6592 	bitidx = pfn_to_bitidx(zone, pfn);
6593 	word_bitidx = bitidx / BITS_PER_LONG;
6594 	bitidx &= (BITS_PER_LONG-1);
6595 
6596 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6597 
6598 	bitidx += end_bitidx;
6599 	mask <<= (BITS_PER_LONG - bitidx - 1);
6600 	flags <<= (BITS_PER_LONG - bitidx - 1);
6601 
6602 	word = READ_ONCE(bitmap[word_bitidx]);
6603 	for (;;) {
6604 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6605 		if (word == old_word)
6606 			break;
6607 		word = old_word;
6608 	}
6609 }
6610 
6611 /*
6612  * This function checks whether pageblock includes unmovable pages or not.
6613  * If @count is not zero, it is okay to include less @count unmovable pages
6614  *
6615  * PageLRU check without isolation or lru_lock could race so that
6616  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6617  * expect this function should be exact.
6618  */
6619 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6620 			 bool skip_hwpoisoned_pages)
6621 {
6622 	unsigned long pfn, iter, found;
6623 	int mt;
6624 
6625 	/*
6626 	 * For avoiding noise data, lru_add_drain_all() should be called
6627 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6628 	 */
6629 	if (zone_idx(zone) == ZONE_MOVABLE)
6630 		return false;
6631 	mt = get_pageblock_migratetype(page);
6632 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6633 		return false;
6634 
6635 	pfn = page_to_pfn(page);
6636 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6637 		unsigned long check = pfn + iter;
6638 
6639 		if (!pfn_valid_within(check))
6640 			continue;
6641 
6642 		page = pfn_to_page(check);
6643 
6644 		/*
6645 		 * Hugepages are not in LRU lists, but they're movable.
6646 		 * We need not scan over tail pages bacause we don't
6647 		 * handle each tail page individually in migration.
6648 		 */
6649 		if (PageHuge(page)) {
6650 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6651 			continue;
6652 		}
6653 
6654 		/*
6655 		 * We can't use page_count without pin a page
6656 		 * because another CPU can free compound page.
6657 		 * This check already skips compound tails of THP
6658 		 * because their page->_count is zero at all time.
6659 		 */
6660 		if (!atomic_read(&page->_count)) {
6661 			if (PageBuddy(page))
6662 				iter += (1 << page_order(page)) - 1;
6663 			continue;
6664 		}
6665 
6666 		/*
6667 		 * The HWPoisoned page may be not in buddy system, and
6668 		 * page_count() is not 0.
6669 		 */
6670 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6671 			continue;
6672 
6673 		if (!PageLRU(page))
6674 			found++;
6675 		/*
6676 		 * If there are RECLAIMABLE pages, we need to check
6677 		 * it.  But now, memory offline itself doesn't call
6678 		 * shrink_node_slabs() and it still to be fixed.
6679 		 */
6680 		/*
6681 		 * If the page is not RAM, page_count()should be 0.
6682 		 * we don't need more check. This is an _used_ not-movable page.
6683 		 *
6684 		 * The problematic thing here is PG_reserved pages. PG_reserved
6685 		 * is set to both of a memory hole page and a _used_ kernel
6686 		 * page at boot.
6687 		 */
6688 		if (found > count)
6689 			return true;
6690 	}
6691 	return false;
6692 }
6693 
6694 bool is_pageblock_removable_nolock(struct page *page)
6695 {
6696 	struct zone *zone;
6697 	unsigned long pfn;
6698 
6699 	/*
6700 	 * We have to be careful here because we are iterating over memory
6701 	 * sections which are not zone aware so we might end up outside of
6702 	 * the zone but still within the section.
6703 	 * We have to take care about the node as well. If the node is offline
6704 	 * its NODE_DATA will be NULL - see page_zone.
6705 	 */
6706 	if (!node_online(page_to_nid(page)))
6707 		return false;
6708 
6709 	zone = page_zone(page);
6710 	pfn = page_to_pfn(page);
6711 	if (!zone_spans_pfn(zone, pfn))
6712 		return false;
6713 
6714 	return !has_unmovable_pages(zone, page, 0, true);
6715 }
6716 
6717 #ifdef CONFIG_CMA
6718 
6719 static unsigned long pfn_max_align_down(unsigned long pfn)
6720 {
6721 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6722 			     pageblock_nr_pages) - 1);
6723 }
6724 
6725 static unsigned long pfn_max_align_up(unsigned long pfn)
6726 {
6727 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6728 				pageblock_nr_pages));
6729 }
6730 
6731 /* [start, end) must belong to a single zone. */
6732 static int __alloc_contig_migrate_range(struct compact_control *cc,
6733 					unsigned long start, unsigned long end)
6734 {
6735 	/* This function is based on compact_zone() from compaction.c. */
6736 	unsigned long nr_reclaimed;
6737 	unsigned long pfn = start;
6738 	unsigned int tries = 0;
6739 	int ret = 0;
6740 
6741 	migrate_prep();
6742 
6743 	while (pfn < end || !list_empty(&cc->migratepages)) {
6744 		if (fatal_signal_pending(current)) {
6745 			ret = -EINTR;
6746 			break;
6747 		}
6748 
6749 		if (list_empty(&cc->migratepages)) {
6750 			cc->nr_migratepages = 0;
6751 			pfn = isolate_migratepages_range(cc, pfn, end);
6752 			if (!pfn) {
6753 				ret = -EINTR;
6754 				break;
6755 			}
6756 			tries = 0;
6757 		} else if (++tries == 5) {
6758 			ret = ret < 0 ? ret : -EBUSY;
6759 			break;
6760 		}
6761 
6762 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6763 							&cc->migratepages);
6764 		cc->nr_migratepages -= nr_reclaimed;
6765 
6766 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6767 				    NULL, 0, cc->mode, MR_CMA);
6768 	}
6769 	if (ret < 0) {
6770 		putback_movable_pages(&cc->migratepages);
6771 		return ret;
6772 	}
6773 	return 0;
6774 }
6775 
6776 /**
6777  * alloc_contig_range() -- tries to allocate given range of pages
6778  * @start:	start PFN to allocate
6779  * @end:	one-past-the-last PFN to allocate
6780  * @migratetype:	migratetype of the underlaying pageblocks (either
6781  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6782  *			in range must have the same migratetype and it must
6783  *			be either of the two.
6784  *
6785  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6786  * aligned, however it's the caller's responsibility to guarantee that
6787  * we are the only thread that changes migrate type of pageblocks the
6788  * pages fall in.
6789  *
6790  * The PFN range must belong to a single zone.
6791  *
6792  * Returns zero on success or negative error code.  On success all
6793  * pages which PFN is in [start, end) are allocated for the caller and
6794  * need to be freed with free_contig_range().
6795  */
6796 int alloc_contig_range(unsigned long start, unsigned long end,
6797 		       unsigned migratetype)
6798 {
6799 	unsigned long outer_start, outer_end;
6800 	int ret = 0, order;
6801 
6802 	struct compact_control cc = {
6803 		.nr_migratepages = 0,
6804 		.order = -1,
6805 		.zone = page_zone(pfn_to_page(start)),
6806 		.mode = MIGRATE_SYNC,
6807 		.ignore_skip_hint = true,
6808 	};
6809 	INIT_LIST_HEAD(&cc.migratepages);
6810 
6811 	/*
6812 	 * What we do here is we mark all pageblocks in range as
6813 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6814 	 * have different sizes, and due to the way page allocator
6815 	 * work, we align the range to biggest of the two pages so
6816 	 * that page allocator won't try to merge buddies from
6817 	 * different pageblocks and change MIGRATE_ISOLATE to some
6818 	 * other migration type.
6819 	 *
6820 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6821 	 * migrate the pages from an unaligned range (ie. pages that
6822 	 * we are interested in).  This will put all the pages in
6823 	 * range back to page allocator as MIGRATE_ISOLATE.
6824 	 *
6825 	 * When this is done, we take the pages in range from page
6826 	 * allocator removing them from the buddy system.  This way
6827 	 * page allocator will never consider using them.
6828 	 *
6829 	 * This lets us mark the pageblocks back as
6830 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6831 	 * aligned range but not in the unaligned, original range are
6832 	 * put back to page allocator so that buddy can use them.
6833 	 */
6834 
6835 	ret = start_isolate_page_range(pfn_max_align_down(start),
6836 				       pfn_max_align_up(end), migratetype,
6837 				       false);
6838 	if (ret)
6839 		return ret;
6840 
6841 	ret = __alloc_contig_migrate_range(&cc, start, end);
6842 	if (ret)
6843 		goto done;
6844 
6845 	/*
6846 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6847 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6848 	 * more, all pages in [start, end) are free in page allocator.
6849 	 * What we are going to do is to allocate all pages from
6850 	 * [start, end) (that is remove them from page allocator).
6851 	 *
6852 	 * The only problem is that pages at the beginning and at the
6853 	 * end of interesting range may be not aligned with pages that
6854 	 * page allocator holds, ie. they can be part of higher order
6855 	 * pages.  Because of this, we reserve the bigger range and
6856 	 * once this is done free the pages we are not interested in.
6857 	 *
6858 	 * We don't have to hold zone->lock here because the pages are
6859 	 * isolated thus they won't get removed from buddy.
6860 	 */
6861 
6862 	lru_add_drain_all();
6863 	drain_all_pages(cc.zone);
6864 
6865 	order = 0;
6866 	outer_start = start;
6867 	while (!PageBuddy(pfn_to_page(outer_start))) {
6868 		if (++order >= MAX_ORDER) {
6869 			ret = -EBUSY;
6870 			goto done;
6871 		}
6872 		outer_start &= ~0UL << order;
6873 	}
6874 
6875 	/* Make sure the range is really isolated. */
6876 	if (test_pages_isolated(outer_start, end, false)) {
6877 		pr_info("%s: [%lx, %lx) PFNs busy\n",
6878 			__func__, outer_start, end);
6879 		ret = -EBUSY;
6880 		goto done;
6881 	}
6882 
6883 	/* Grab isolated pages from freelists. */
6884 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6885 	if (!outer_end) {
6886 		ret = -EBUSY;
6887 		goto done;
6888 	}
6889 
6890 	/* Free head and tail (if any) */
6891 	if (start != outer_start)
6892 		free_contig_range(outer_start, start - outer_start);
6893 	if (end != outer_end)
6894 		free_contig_range(end, outer_end - end);
6895 
6896 done:
6897 	undo_isolate_page_range(pfn_max_align_down(start),
6898 				pfn_max_align_up(end), migratetype);
6899 	return ret;
6900 }
6901 
6902 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6903 {
6904 	unsigned int count = 0;
6905 
6906 	for (; nr_pages--; pfn++) {
6907 		struct page *page = pfn_to_page(pfn);
6908 
6909 		count += page_count(page) != 1;
6910 		__free_page(page);
6911 	}
6912 	WARN(count != 0, "%d pages are still in use!\n", count);
6913 }
6914 #endif
6915 
6916 #ifdef CONFIG_MEMORY_HOTPLUG
6917 /*
6918  * The zone indicated has a new number of managed_pages; batch sizes and percpu
6919  * page high values need to be recalulated.
6920  */
6921 void __meminit zone_pcp_update(struct zone *zone)
6922 {
6923 	unsigned cpu;
6924 	mutex_lock(&pcp_batch_high_lock);
6925 	for_each_possible_cpu(cpu)
6926 		pageset_set_high_and_batch(zone,
6927 				per_cpu_ptr(zone->pageset, cpu));
6928 	mutex_unlock(&pcp_batch_high_lock);
6929 }
6930 #endif
6931 
6932 void zone_pcp_reset(struct zone *zone)
6933 {
6934 	unsigned long flags;
6935 	int cpu;
6936 	struct per_cpu_pageset *pset;
6937 
6938 	/* avoid races with drain_pages()  */
6939 	local_irq_save(flags);
6940 	if (zone->pageset != &boot_pageset) {
6941 		for_each_online_cpu(cpu) {
6942 			pset = per_cpu_ptr(zone->pageset, cpu);
6943 			drain_zonestat(zone, pset);
6944 		}
6945 		free_percpu(zone->pageset);
6946 		zone->pageset = &boot_pageset;
6947 	}
6948 	local_irq_restore(flags);
6949 }
6950 
6951 #ifdef CONFIG_MEMORY_HOTREMOVE
6952 /*
6953  * All pages in the range must be isolated before calling this.
6954  */
6955 void
6956 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6957 {
6958 	struct page *page;
6959 	struct zone *zone;
6960 	unsigned int order, i;
6961 	unsigned long pfn;
6962 	unsigned long flags;
6963 	/* find the first valid pfn */
6964 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
6965 		if (pfn_valid(pfn))
6966 			break;
6967 	if (pfn == end_pfn)
6968 		return;
6969 	zone = page_zone(pfn_to_page(pfn));
6970 	spin_lock_irqsave(&zone->lock, flags);
6971 	pfn = start_pfn;
6972 	while (pfn < end_pfn) {
6973 		if (!pfn_valid(pfn)) {
6974 			pfn++;
6975 			continue;
6976 		}
6977 		page = pfn_to_page(pfn);
6978 		/*
6979 		 * The HWPoisoned page may be not in buddy system, and
6980 		 * page_count() is not 0.
6981 		 */
6982 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6983 			pfn++;
6984 			SetPageReserved(page);
6985 			continue;
6986 		}
6987 
6988 		BUG_ON(page_count(page));
6989 		BUG_ON(!PageBuddy(page));
6990 		order = page_order(page);
6991 #ifdef CONFIG_DEBUG_VM
6992 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
6993 		       pfn, 1 << order, end_pfn);
6994 #endif
6995 		list_del(&page->lru);
6996 		rmv_page_order(page);
6997 		zone->free_area[order].nr_free--;
6998 		for (i = 0; i < (1 << order); i++)
6999 			SetPageReserved((page+i));
7000 		pfn += (1 << order);
7001 	}
7002 	spin_unlock_irqrestore(&zone->lock, flags);
7003 }
7004 #endif
7005 
7006 #ifdef CONFIG_MEMORY_FAILURE
7007 bool is_free_buddy_page(struct page *page)
7008 {
7009 	struct zone *zone = page_zone(page);
7010 	unsigned long pfn = page_to_pfn(page);
7011 	unsigned long flags;
7012 	unsigned int order;
7013 
7014 	spin_lock_irqsave(&zone->lock, flags);
7015 	for (order = 0; order < MAX_ORDER; order++) {
7016 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7017 
7018 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7019 			break;
7020 	}
7021 	spin_unlock_irqrestore(&zone->lock, flags);
7022 
7023 	return order < MAX_ORDER;
7024 }
7025 #endif
7026