1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/config.h> 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/bootmem.h> 24 #include <linux/compiler.h> 25 #include <linux/kernel.h> 26 #include <linux/module.h> 27 #include <linux/suspend.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/slab.h> 31 #include <linux/notifier.h> 32 #include <linux/topology.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/cpuset.h> 36 #include <linux/memory_hotplug.h> 37 #include <linux/nodemask.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mempolicy.h> 40 41 #include <asm/tlbflush.h> 42 #include <asm/div64.h> 43 #include "internal.h" 44 45 /* 46 * MCD - HACK: Find somewhere to initialize this EARLY, or make this 47 * initializer cleaner 48 */ 49 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } }; 50 EXPORT_SYMBOL(node_online_map); 51 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL; 52 EXPORT_SYMBOL(node_possible_map); 53 unsigned long totalram_pages __read_mostly; 54 unsigned long totalhigh_pages __read_mostly; 55 unsigned long totalreserve_pages __read_mostly; 56 long nr_swap_pages; 57 int percpu_pagelist_fraction; 58 59 static void __free_pages_ok(struct page *page, unsigned int order); 60 61 /* 62 * results with 256, 32 in the lowmem_reserve sysctl: 63 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 64 * 1G machine -> (16M dma, 784M normal, 224M high) 65 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 66 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 67 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 68 * 69 * TBD: should special case ZONE_DMA32 machines here - in those we normally 70 * don't need any ZONE_NORMAL reservation 71 */ 72 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 256, 256, 32 }; 73 74 EXPORT_SYMBOL(totalram_pages); 75 76 /* 77 * Used by page_zone() to look up the address of the struct zone whose 78 * id is encoded in the upper bits of page->flags 79 */ 80 struct zone *zone_table[1 << ZONETABLE_SHIFT] __read_mostly; 81 EXPORT_SYMBOL(zone_table); 82 83 static char *zone_names[MAX_NR_ZONES] = { "DMA", "DMA32", "Normal", "HighMem" }; 84 int min_free_kbytes = 1024; 85 86 unsigned long __initdata nr_kernel_pages; 87 unsigned long __initdata nr_all_pages; 88 89 #ifdef CONFIG_DEBUG_VM 90 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 91 { 92 int ret = 0; 93 unsigned seq; 94 unsigned long pfn = page_to_pfn(page); 95 96 do { 97 seq = zone_span_seqbegin(zone); 98 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 99 ret = 1; 100 else if (pfn < zone->zone_start_pfn) 101 ret = 1; 102 } while (zone_span_seqretry(zone, seq)); 103 104 return ret; 105 } 106 107 static int page_is_consistent(struct zone *zone, struct page *page) 108 { 109 #ifdef CONFIG_HOLES_IN_ZONE 110 if (!pfn_valid(page_to_pfn(page))) 111 return 0; 112 #endif 113 if (zone != page_zone(page)) 114 return 0; 115 116 return 1; 117 } 118 /* 119 * Temporary debugging check for pages not lying within a given zone. 120 */ 121 static int bad_range(struct zone *zone, struct page *page) 122 { 123 if (page_outside_zone_boundaries(zone, page)) 124 return 1; 125 if (!page_is_consistent(zone, page)) 126 return 1; 127 128 return 0; 129 } 130 131 #else 132 static inline int bad_range(struct zone *zone, struct page *page) 133 { 134 return 0; 135 } 136 #endif 137 138 static void bad_page(struct page *page) 139 { 140 printk(KERN_EMERG "Bad page state in process '%s'\n" 141 KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n" 142 KERN_EMERG "Trying to fix it up, but a reboot is needed\n" 143 KERN_EMERG "Backtrace:\n", 144 current->comm, page, (int)(2*sizeof(unsigned long)), 145 (unsigned long)page->flags, page->mapping, 146 page_mapcount(page), page_count(page)); 147 dump_stack(); 148 page->flags &= ~(1 << PG_lru | 149 1 << PG_private | 150 1 << PG_locked | 151 1 << PG_active | 152 1 << PG_dirty | 153 1 << PG_reclaim | 154 1 << PG_slab | 155 1 << PG_swapcache | 156 1 << PG_writeback | 157 1 << PG_buddy ); 158 set_page_count(page, 0); 159 reset_page_mapcount(page); 160 page->mapping = NULL; 161 add_taint(TAINT_BAD_PAGE); 162 } 163 164 /* 165 * Higher-order pages are called "compound pages". They are structured thusly: 166 * 167 * The first PAGE_SIZE page is called the "head page". 168 * 169 * The remaining PAGE_SIZE pages are called "tail pages". 170 * 171 * All pages have PG_compound set. All pages have their ->private pointing at 172 * the head page (even the head page has this). 173 * 174 * The first tail page's ->lru.next holds the address of the compound page's 175 * put_page() function. Its ->lru.prev holds the order of allocation. 176 * This usage means that zero-order pages may not be compound. 177 */ 178 179 static void free_compound_page(struct page *page) 180 { 181 __free_pages_ok(page, (unsigned long)page[1].lru.prev); 182 } 183 184 static void prep_compound_page(struct page *page, unsigned long order) 185 { 186 int i; 187 int nr_pages = 1 << order; 188 189 page[1].lru.next = (void *)free_compound_page; /* set dtor */ 190 page[1].lru.prev = (void *)order; 191 for (i = 0; i < nr_pages; i++) { 192 struct page *p = page + i; 193 194 __SetPageCompound(p); 195 set_page_private(p, (unsigned long)page); 196 } 197 } 198 199 static void destroy_compound_page(struct page *page, unsigned long order) 200 { 201 int i; 202 int nr_pages = 1 << order; 203 204 if (unlikely((unsigned long)page[1].lru.prev != order)) 205 bad_page(page); 206 207 for (i = 0; i < nr_pages; i++) { 208 struct page *p = page + i; 209 210 if (unlikely(!PageCompound(p) | 211 (page_private(p) != (unsigned long)page))) 212 bad_page(page); 213 __ClearPageCompound(p); 214 } 215 } 216 217 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 218 { 219 int i; 220 221 BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM); 222 /* 223 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 224 * and __GFP_HIGHMEM from hard or soft interrupt context. 225 */ 226 BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 227 for (i = 0; i < (1 << order); i++) 228 clear_highpage(page + i); 229 } 230 231 /* 232 * function for dealing with page's order in buddy system. 233 * zone->lock is already acquired when we use these. 234 * So, we don't need atomic page->flags operations here. 235 */ 236 static inline unsigned long page_order(struct page *page) 237 { 238 return page_private(page); 239 } 240 241 static inline void set_page_order(struct page *page, int order) 242 { 243 set_page_private(page, order); 244 __SetPageBuddy(page); 245 } 246 247 static inline void rmv_page_order(struct page *page) 248 { 249 __ClearPageBuddy(page); 250 set_page_private(page, 0); 251 } 252 253 /* 254 * Locate the struct page for both the matching buddy in our 255 * pair (buddy1) and the combined O(n+1) page they form (page). 256 * 257 * 1) Any buddy B1 will have an order O twin B2 which satisfies 258 * the following equation: 259 * B2 = B1 ^ (1 << O) 260 * For example, if the starting buddy (buddy2) is #8 its order 261 * 1 buddy is #10: 262 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 263 * 264 * 2) Any buddy B will have an order O+1 parent P which 265 * satisfies the following equation: 266 * P = B & ~(1 << O) 267 * 268 * Assumption: *_mem_map is contigious at least up to MAX_ORDER 269 */ 270 static inline struct page * 271 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order) 272 { 273 unsigned long buddy_idx = page_idx ^ (1 << order); 274 275 return page + (buddy_idx - page_idx); 276 } 277 278 static inline unsigned long 279 __find_combined_index(unsigned long page_idx, unsigned int order) 280 { 281 return (page_idx & ~(1 << order)); 282 } 283 284 /* 285 * This function checks whether a page is free && is the buddy 286 * we can do coalesce a page and its buddy if 287 * (a) the buddy is not in a hole && 288 * (b) the buddy is in the buddy system && 289 * (c) a page and its buddy have the same order. 290 * 291 * For recording whether a page is in the buddy system, we use PG_buddy. 292 * Setting, clearing, and testing PG_buddy is serialized by zone->lock. 293 * 294 * For recording page's order, we use page_private(page). 295 */ 296 static inline int page_is_buddy(struct page *page, int order) 297 { 298 #ifdef CONFIG_HOLES_IN_ZONE 299 if (!pfn_valid(page_to_pfn(page))) 300 return 0; 301 #endif 302 303 if (PageBuddy(page) && page_order(page) == order) { 304 BUG_ON(page_count(page) != 0); 305 return 1; 306 } 307 return 0; 308 } 309 310 /* 311 * Freeing function for a buddy system allocator. 312 * 313 * The concept of a buddy system is to maintain direct-mapped table 314 * (containing bit values) for memory blocks of various "orders". 315 * The bottom level table contains the map for the smallest allocatable 316 * units of memory (here, pages), and each level above it describes 317 * pairs of units from the levels below, hence, "buddies". 318 * At a high level, all that happens here is marking the table entry 319 * at the bottom level available, and propagating the changes upward 320 * as necessary, plus some accounting needed to play nicely with other 321 * parts of the VM system. 322 * At each level, we keep a list of pages, which are heads of continuous 323 * free pages of length of (1 << order) and marked with PG_buddy. Page's 324 * order is recorded in page_private(page) field. 325 * So when we are allocating or freeing one, we can derive the state of the 326 * other. That is, if we allocate a small block, and both were 327 * free, the remainder of the region must be split into blocks. 328 * If a block is freed, and its buddy is also free, then this 329 * triggers coalescing into a block of larger size. 330 * 331 * -- wli 332 */ 333 334 static inline void __free_one_page(struct page *page, 335 struct zone *zone, unsigned int order) 336 { 337 unsigned long page_idx; 338 int order_size = 1 << order; 339 340 if (unlikely(PageCompound(page))) 341 destroy_compound_page(page, order); 342 343 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 344 345 BUG_ON(page_idx & (order_size - 1)); 346 BUG_ON(bad_range(zone, page)); 347 348 zone->free_pages += order_size; 349 while (order < MAX_ORDER-1) { 350 unsigned long combined_idx; 351 struct free_area *area; 352 struct page *buddy; 353 354 buddy = __page_find_buddy(page, page_idx, order); 355 if (!page_is_buddy(buddy, order)) 356 break; /* Move the buddy up one level. */ 357 358 list_del(&buddy->lru); 359 area = zone->free_area + order; 360 area->nr_free--; 361 rmv_page_order(buddy); 362 combined_idx = __find_combined_index(page_idx, order); 363 page = page + (combined_idx - page_idx); 364 page_idx = combined_idx; 365 order++; 366 } 367 set_page_order(page, order); 368 list_add(&page->lru, &zone->free_area[order].free_list); 369 zone->free_area[order].nr_free++; 370 } 371 372 static inline int free_pages_check(struct page *page) 373 { 374 if (unlikely(page_mapcount(page) | 375 (page->mapping != NULL) | 376 (page_count(page) != 0) | 377 (page->flags & ( 378 1 << PG_lru | 379 1 << PG_private | 380 1 << PG_locked | 381 1 << PG_active | 382 1 << PG_reclaim | 383 1 << PG_slab | 384 1 << PG_swapcache | 385 1 << PG_writeback | 386 1 << PG_reserved | 387 1 << PG_buddy )))) 388 bad_page(page); 389 if (PageDirty(page)) 390 __ClearPageDirty(page); 391 /* 392 * For now, we report if PG_reserved was found set, but do not 393 * clear it, and do not free the page. But we shall soon need 394 * to do more, for when the ZERO_PAGE count wraps negative. 395 */ 396 return PageReserved(page); 397 } 398 399 /* 400 * Frees a list of pages. 401 * Assumes all pages on list are in same zone, and of same order. 402 * count is the number of pages to free. 403 * 404 * If the zone was previously in an "all pages pinned" state then look to 405 * see if this freeing clears that state. 406 * 407 * And clear the zone's pages_scanned counter, to hold off the "all pages are 408 * pinned" detection logic. 409 */ 410 static void free_pages_bulk(struct zone *zone, int count, 411 struct list_head *list, int order) 412 { 413 spin_lock(&zone->lock); 414 zone->all_unreclaimable = 0; 415 zone->pages_scanned = 0; 416 while (count--) { 417 struct page *page; 418 419 BUG_ON(list_empty(list)); 420 page = list_entry(list->prev, struct page, lru); 421 /* have to delete it as __free_one_page list manipulates */ 422 list_del(&page->lru); 423 __free_one_page(page, zone, order); 424 } 425 spin_unlock(&zone->lock); 426 } 427 428 static void free_one_page(struct zone *zone, struct page *page, int order) 429 { 430 LIST_HEAD(list); 431 list_add(&page->lru, &list); 432 free_pages_bulk(zone, 1, &list, order); 433 } 434 435 static void __free_pages_ok(struct page *page, unsigned int order) 436 { 437 unsigned long flags; 438 int i; 439 int reserved = 0; 440 441 arch_free_page(page, order); 442 if (!PageHighMem(page)) 443 mutex_debug_check_no_locks_freed(page_address(page), 444 PAGE_SIZE<<order); 445 446 for (i = 0 ; i < (1 << order) ; ++i) 447 reserved += free_pages_check(page + i); 448 if (reserved) 449 return; 450 451 kernel_map_pages(page, 1 << order, 0); 452 local_irq_save(flags); 453 __mod_page_state(pgfree, 1 << order); 454 free_one_page(page_zone(page), page, order); 455 local_irq_restore(flags); 456 } 457 458 /* 459 * permit the bootmem allocator to evade page validation on high-order frees 460 */ 461 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order) 462 { 463 if (order == 0) { 464 __ClearPageReserved(page); 465 set_page_count(page, 0); 466 set_page_refcounted(page); 467 __free_page(page); 468 } else { 469 int loop; 470 471 prefetchw(page); 472 for (loop = 0; loop < BITS_PER_LONG; loop++) { 473 struct page *p = &page[loop]; 474 475 if (loop + 1 < BITS_PER_LONG) 476 prefetchw(p + 1); 477 __ClearPageReserved(p); 478 set_page_count(p, 0); 479 } 480 481 set_page_refcounted(page); 482 __free_pages(page, order); 483 } 484 } 485 486 487 /* 488 * The order of subdivision here is critical for the IO subsystem. 489 * Please do not alter this order without good reasons and regression 490 * testing. Specifically, as large blocks of memory are subdivided, 491 * the order in which smaller blocks are delivered depends on the order 492 * they're subdivided in this function. This is the primary factor 493 * influencing the order in which pages are delivered to the IO 494 * subsystem according to empirical testing, and this is also justified 495 * by considering the behavior of a buddy system containing a single 496 * large block of memory acted on by a series of small allocations. 497 * This behavior is a critical factor in sglist merging's success. 498 * 499 * -- wli 500 */ 501 static inline void expand(struct zone *zone, struct page *page, 502 int low, int high, struct free_area *area) 503 { 504 unsigned long size = 1 << high; 505 506 while (high > low) { 507 area--; 508 high--; 509 size >>= 1; 510 BUG_ON(bad_range(zone, &page[size])); 511 list_add(&page[size].lru, &area->free_list); 512 area->nr_free++; 513 set_page_order(&page[size], high); 514 } 515 } 516 517 /* 518 * This page is about to be returned from the page allocator 519 */ 520 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 521 { 522 if (unlikely(page_mapcount(page) | 523 (page->mapping != NULL) | 524 (page_count(page) != 0) | 525 (page->flags & ( 526 1 << PG_lru | 527 1 << PG_private | 528 1 << PG_locked | 529 1 << PG_active | 530 1 << PG_dirty | 531 1 << PG_reclaim | 532 1 << PG_slab | 533 1 << PG_swapcache | 534 1 << PG_writeback | 535 1 << PG_reserved | 536 1 << PG_buddy )))) 537 bad_page(page); 538 539 /* 540 * For now, we report if PG_reserved was found set, but do not 541 * clear it, and do not allocate the page: as a safety net. 542 */ 543 if (PageReserved(page)) 544 return 1; 545 546 page->flags &= ~(1 << PG_uptodate | 1 << PG_error | 547 1 << PG_referenced | 1 << PG_arch_1 | 548 1 << PG_checked | 1 << PG_mappedtodisk); 549 set_page_private(page, 0); 550 set_page_refcounted(page); 551 kernel_map_pages(page, 1 << order, 1); 552 553 if (gfp_flags & __GFP_ZERO) 554 prep_zero_page(page, order, gfp_flags); 555 556 if (order && (gfp_flags & __GFP_COMP)) 557 prep_compound_page(page, order); 558 559 return 0; 560 } 561 562 /* 563 * Do the hard work of removing an element from the buddy allocator. 564 * Call me with the zone->lock already held. 565 */ 566 static struct page *__rmqueue(struct zone *zone, unsigned int order) 567 { 568 struct free_area * area; 569 unsigned int current_order; 570 struct page *page; 571 572 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 573 area = zone->free_area + current_order; 574 if (list_empty(&area->free_list)) 575 continue; 576 577 page = list_entry(area->free_list.next, struct page, lru); 578 list_del(&page->lru); 579 rmv_page_order(page); 580 area->nr_free--; 581 zone->free_pages -= 1UL << order; 582 expand(zone, page, order, current_order, area); 583 return page; 584 } 585 586 return NULL; 587 } 588 589 /* 590 * Obtain a specified number of elements from the buddy allocator, all under 591 * a single hold of the lock, for efficiency. Add them to the supplied list. 592 * Returns the number of new pages which were placed at *list. 593 */ 594 static int rmqueue_bulk(struct zone *zone, unsigned int order, 595 unsigned long count, struct list_head *list) 596 { 597 int i; 598 599 spin_lock(&zone->lock); 600 for (i = 0; i < count; ++i) { 601 struct page *page = __rmqueue(zone, order); 602 if (unlikely(page == NULL)) 603 break; 604 list_add_tail(&page->lru, list); 605 } 606 spin_unlock(&zone->lock); 607 return i; 608 } 609 610 #ifdef CONFIG_NUMA 611 /* 612 * Called from the slab reaper to drain pagesets on a particular node that 613 * belong to the currently executing processor. 614 * Note that this function must be called with the thread pinned to 615 * a single processor. 616 */ 617 void drain_node_pages(int nodeid) 618 { 619 int i, z; 620 unsigned long flags; 621 622 for (z = 0; z < MAX_NR_ZONES; z++) { 623 struct zone *zone = NODE_DATA(nodeid)->node_zones + z; 624 struct per_cpu_pageset *pset; 625 626 pset = zone_pcp(zone, smp_processor_id()); 627 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 628 struct per_cpu_pages *pcp; 629 630 pcp = &pset->pcp[i]; 631 if (pcp->count) { 632 local_irq_save(flags); 633 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 634 pcp->count = 0; 635 local_irq_restore(flags); 636 } 637 } 638 } 639 } 640 #endif 641 642 #if defined(CONFIG_PM) || defined(CONFIG_HOTPLUG_CPU) 643 static void __drain_pages(unsigned int cpu) 644 { 645 unsigned long flags; 646 struct zone *zone; 647 int i; 648 649 for_each_zone(zone) { 650 struct per_cpu_pageset *pset; 651 652 pset = zone_pcp(zone, cpu); 653 for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) { 654 struct per_cpu_pages *pcp; 655 656 pcp = &pset->pcp[i]; 657 local_irq_save(flags); 658 free_pages_bulk(zone, pcp->count, &pcp->list, 0); 659 pcp->count = 0; 660 local_irq_restore(flags); 661 } 662 } 663 } 664 #endif /* CONFIG_PM || CONFIG_HOTPLUG_CPU */ 665 666 #ifdef CONFIG_PM 667 668 void mark_free_pages(struct zone *zone) 669 { 670 unsigned long zone_pfn, flags; 671 int order; 672 struct list_head *curr; 673 674 if (!zone->spanned_pages) 675 return; 676 677 spin_lock_irqsave(&zone->lock, flags); 678 for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) 679 ClearPageNosaveFree(pfn_to_page(zone_pfn + zone->zone_start_pfn)); 680 681 for (order = MAX_ORDER - 1; order >= 0; --order) 682 list_for_each(curr, &zone->free_area[order].free_list) { 683 unsigned long start_pfn, i; 684 685 start_pfn = page_to_pfn(list_entry(curr, struct page, lru)); 686 687 for (i=0; i < (1<<order); i++) 688 SetPageNosaveFree(pfn_to_page(start_pfn+i)); 689 } 690 spin_unlock_irqrestore(&zone->lock, flags); 691 } 692 693 /* 694 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 695 */ 696 void drain_local_pages(void) 697 { 698 unsigned long flags; 699 700 local_irq_save(flags); 701 __drain_pages(smp_processor_id()); 702 local_irq_restore(flags); 703 } 704 #endif /* CONFIG_PM */ 705 706 static void zone_statistics(struct zonelist *zonelist, struct zone *z, int cpu) 707 { 708 #ifdef CONFIG_NUMA 709 pg_data_t *pg = z->zone_pgdat; 710 pg_data_t *orig = zonelist->zones[0]->zone_pgdat; 711 struct per_cpu_pageset *p; 712 713 p = zone_pcp(z, cpu); 714 if (pg == orig) { 715 p->numa_hit++; 716 } else { 717 p->numa_miss++; 718 zone_pcp(zonelist->zones[0], cpu)->numa_foreign++; 719 } 720 if (pg == NODE_DATA(numa_node_id())) 721 p->local_node++; 722 else 723 p->other_node++; 724 #endif 725 } 726 727 /* 728 * Free a 0-order page 729 */ 730 static void fastcall free_hot_cold_page(struct page *page, int cold) 731 { 732 struct zone *zone = page_zone(page); 733 struct per_cpu_pages *pcp; 734 unsigned long flags; 735 736 arch_free_page(page, 0); 737 738 if (PageAnon(page)) 739 page->mapping = NULL; 740 if (free_pages_check(page)) 741 return; 742 743 kernel_map_pages(page, 1, 0); 744 745 pcp = &zone_pcp(zone, get_cpu())->pcp[cold]; 746 local_irq_save(flags); 747 __inc_page_state(pgfree); 748 list_add(&page->lru, &pcp->list); 749 pcp->count++; 750 if (pcp->count >= pcp->high) { 751 free_pages_bulk(zone, pcp->batch, &pcp->list, 0); 752 pcp->count -= pcp->batch; 753 } 754 local_irq_restore(flags); 755 put_cpu(); 756 } 757 758 void fastcall free_hot_page(struct page *page) 759 { 760 free_hot_cold_page(page, 0); 761 } 762 763 void fastcall free_cold_page(struct page *page) 764 { 765 free_hot_cold_page(page, 1); 766 } 767 768 /* 769 * split_page takes a non-compound higher-order page, and splits it into 770 * n (1<<order) sub-pages: page[0..n] 771 * Each sub-page must be freed individually. 772 * 773 * Note: this is probably too low level an operation for use in drivers. 774 * Please consult with lkml before using this in your driver. 775 */ 776 void split_page(struct page *page, unsigned int order) 777 { 778 int i; 779 780 BUG_ON(PageCompound(page)); 781 BUG_ON(!page_count(page)); 782 for (i = 1; i < (1 << order); i++) 783 set_page_refcounted(page + i); 784 } 785 786 /* 787 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 788 * we cheat by calling it from here, in the order > 0 path. Saves a branch 789 * or two. 790 */ 791 static struct page *buffered_rmqueue(struct zonelist *zonelist, 792 struct zone *zone, int order, gfp_t gfp_flags) 793 { 794 unsigned long flags; 795 struct page *page; 796 int cold = !!(gfp_flags & __GFP_COLD); 797 int cpu; 798 799 again: 800 cpu = get_cpu(); 801 if (likely(order == 0)) { 802 struct per_cpu_pages *pcp; 803 804 pcp = &zone_pcp(zone, cpu)->pcp[cold]; 805 local_irq_save(flags); 806 if (!pcp->count) { 807 pcp->count += rmqueue_bulk(zone, 0, 808 pcp->batch, &pcp->list); 809 if (unlikely(!pcp->count)) 810 goto failed; 811 } 812 page = list_entry(pcp->list.next, struct page, lru); 813 list_del(&page->lru); 814 pcp->count--; 815 } else { 816 spin_lock_irqsave(&zone->lock, flags); 817 page = __rmqueue(zone, order); 818 spin_unlock(&zone->lock); 819 if (!page) 820 goto failed; 821 } 822 823 __mod_page_state_zone(zone, pgalloc, 1 << order); 824 zone_statistics(zonelist, zone, cpu); 825 local_irq_restore(flags); 826 put_cpu(); 827 828 BUG_ON(bad_range(zone, page)); 829 if (prep_new_page(page, order, gfp_flags)) 830 goto again; 831 return page; 832 833 failed: 834 local_irq_restore(flags); 835 put_cpu(); 836 return NULL; 837 } 838 839 #define ALLOC_NO_WATERMARKS 0x01 /* don't check watermarks at all */ 840 #define ALLOC_WMARK_MIN 0x02 /* use pages_min watermark */ 841 #define ALLOC_WMARK_LOW 0x04 /* use pages_low watermark */ 842 #define ALLOC_WMARK_HIGH 0x08 /* use pages_high watermark */ 843 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 844 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 845 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 846 847 /* 848 * Return 1 if free pages are above 'mark'. This takes into account the order 849 * of the allocation. 850 */ 851 int zone_watermark_ok(struct zone *z, int order, unsigned long mark, 852 int classzone_idx, int alloc_flags) 853 { 854 /* free_pages my go negative - that's OK */ 855 long min = mark, free_pages = z->free_pages - (1 << order) + 1; 856 int o; 857 858 if (alloc_flags & ALLOC_HIGH) 859 min -= min / 2; 860 if (alloc_flags & ALLOC_HARDER) 861 min -= min / 4; 862 863 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 864 return 0; 865 for (o = 0; o < order; o++) { 866 /* At the next order, this order's pages become unavailable */ 867 free_pages -= z->free_area[o].nr_free << o; 868 869 /* Require fewer higher order pages to be free */ 870 min >>= 1; 871 872 if (free_pages <= min) 873 return 0; 874 } 875 return 1; 876 } 877 878 /* 879 * get_page_from_freeliest goes through the zonelist trying to allocate 880 * a page. 881 */ 882 static struct page * 883 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, 884 struct zonelist *zonelist, int alloc_flags) 885 { 886 struct zone **z = zonelist->zones; 887 struct page *page = NULL; 888 int classzone_idx = zone_idx(*z); 889 890 /* 891 * Go through the zonelist once, looking for a zone with enough free. 892 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 893 */ 894 do { 895 if ((alloc_flags & ALLOC_CPUSET) && 896 !cpuset_zone_allowed(*z, gfp_mask)) 897 continue; 898 899 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 900 unsigned long mark; 901 if (alloc_flags & ALLOC_WMARK_MIN) 902 mark = (*z)->pages_min; 903 else if (alloc_flags & ALLOC_WMARK_LOW) 904 mark = (*z)->pages_low; 905 else 906 mark = (*z)->pages_high; 907 if (!zone_watermark_ok(*z, order, mark, 908 classzone_idx, alloc_flags)) 909 if (!zone_reclaim_mode || 910 !zone_reclaim(*z, gfp_mask, order)) 911 continue; 912 } 913 914 page = buffered_rmqueue(zonelist, *z, order, gfp_mask); 915 if (page) { 916 break; 917 } 918 } while (*(++z) != NULL); 919 return page; 920 } 921 922 /* 923 * This is the 'heart' of the zoned buddy allocator. 924 */ 925 struct page * fastcall 926 __alloc_pages(gfp_t gfp_mask, unsigned int order, 927 struct zonelist *zonelist) 928 { 929 const gfp_t wait = gfp_mask & __GFP_WAIT; 930 struct zone **z; 931 struct page *page; 932 struct reclaim_state reclaim_state; 933 struct task_struct *p = current; 934 int do_retry; 935 int alloc_flags; 936 int did_some_progress; 937 938 might_sleep_if(wait); 939 940 restart: 941 z = zonelist->zones; /* the list of zones suitable for gfp_mask */ 942 943 if (unlikely(*z == NULL)) { 944 /* Should this ever happen?? */ 945 return NULL; 946 } 947 948 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 949 zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET); 950 if (page) 951 goto got_pg; 952 953 do { 954 if (cpuset_zone_allowed(*z, gfp_mask|__GFP_HARDWALL)) 955 wakeup_kswapd(*z, order); 956 } while (*(++z)); 957 958 /* 959 * OK, we're below the kswapd watermark and have kicked background 960 * reclaim. Now things get more complex, so set up alloc_flags according 961 * to how we want to proceed. 962 * 963 * The caller may dip into page reserves a bit more if the caller 964 * cannot run direct reclaim, or if the caller has realtime scheduling 965 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 966 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 967 */ 968 alloc_flags = ALLOC_WMARK_MIN; 969 if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait) 970 alloc_flags |= ALLOC_HARDER; 971 if (gfp_mask & __GFP_HIGH) 972 alloc_flags |= ALLOC_HIGH; 973 if (wait) 974 alloc_flags |= ALLOC_CPUSET; 975 976 /* 977 * Go through the zonelist again. Let __GFP_HIGH and allocations 978 * coming from realtime tasks go deeper into reserves. 979 * 980 * This is the last chance, in general, before the goto nopage. 981 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 982 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 983 */ 984 page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags); 985 if (page) 986 goto got_pg; 987 988 /* This allocation should allow future memory freeing. */ 989 990 if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE))) 991 && !in_interrupt()) { 992 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 993 nofail_alloc: 994 /* go through the zonelist yet again, ignoring mins */ 995 page = get_page_from_freelist(gfp_mask, order, 996 zonelist, ALLOC_NO_WATERMARKS); 997 if (page) 998 goto got_pg; 999 if (gfp_mask & __GFP_NOFAIL) { 1000 blk_congestion_wait(WRITE, HZ/50); 1001 goto nofail_alloc; 1002 } 1003 } 1004 goto nopage; 1005 } 1006 1007 /* Atomic allocations - we can't balance anything */ 1008 if (!wait) 1009 goto nopage; 1010 1011 rebalance: 1012 cond_resched(); 1013 1014 /* We now go into synchronous reclaim */ 1015 cpuset_memory_pressure_bump(); 1016 p->flags |= PF_MEMALLOC; 1017 reclaim_state.reclaimed_slab = 0; 1018 p->reclaim_state = &reclaim_state; 1019 1020 did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask); 1021 1022 p->reclaim_state = NULL; 1023 p->flags &= ~PF_MEMALLOC; 1024 1025 cond_resched(); 1026 1027 if (likely(did_some_progress)) { 1028 page = get_page_from_freelist(gfp_mask, order, 1029 zonelist, alloc_flags); 1030 if (page) 1031 goto got_pg; 1032 } else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 1033 /* 1034 * Go through the zonelist yet one more time, keep 1035 * very high watermark here, this is only to catch 1036 * a parallel oom killing, we must fail if we're still 1037 * under heavy pressure. 1038 */ 1039 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order, 1040 zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET); 1041 if (page) 1042 goto got_pg; 1043 1044 out_of_memory(zonelist, gfp_mask, order); 1045 goto restart; 1046 } 1047 1048 /* 1049 * Don't let big-order allocations loop unless the caller explicitly 1050 * requests that. Wait for some write requests to complete then retry. 1051 * 1052 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order 1053 * <= 3, but that may not be true in other implementations. 1054 */ 1055 do_retry = 0; 1056 if (!(gfp_mask & __GFP_NORETRY)) { 1057 if ((order <= 3) || (gfp_mask & __GFP_REPEAT)) 1058 do_retry = 1; 1059 if (gfp_mask & __GFP_NOFAIL) 1060 do_retry = 1; 1061 } 1062 if (do_retry) { 1063 blk_congestion_wait(WRITE, HZ/50); 1064 goto rebalance; 1065 } 1066 1067 nopage: 1068 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) { 1069 printk(KERN_WARNING "%s: page allocation failure." 1070 " order:%d, mode:0x%x\n", 1071 p->comm, order, gfp_mask); 1072 dump_stack(); 1073 show_mem(); 1074 } 1075 got_pg: 1076 return page; 1077 } 1078 1079 EXPORT_SYMBOL(__alloc_pages); 1080 1081 /* 1082 * Common helper functions. 1083 */ 1084 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 1085 { 1086 struct page * page; 1087 page = alloc_pages(gfp_mask, order); 1088 if (!page) 1089 return 0; 1090 return (unsigned long) page_address(page); 1091 } 1092 1093 EXPORT_SYMBOL(__get_free_pages); 1094 1095 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask) 1096 { 1097 struct page * page; 1098 1099 /* 1100 * get_zeroed_page() returns a 32-bit address, which cannot represent 1101 * a highmem page 1102 */ 1103 BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 1104 1105 page = alloc_pages(gfp_mask | __GFP_ZERO, 0); 1106 if (page) 1107 return (unsigned long) page_address(page); 1108 return 0; 1109 } 1110 1111 EXPORT_SYMBOL(get_zeroed_page); 1112 1113 void __pagevec_free(struct pagevec *pvec) 1114 { 1115 int i = pagevec_count(pvec); 1116 1117 while (--i >= 0) 1118 free_hot_cold_page(pvec->pages[i], pvec->cold); 1119 } 1120 1121 fastcall void __free_pages(struct page *page, unsigned int order) 1122 { 1123 if (put_page_testzero(page)) { 1124 if (order == 0) 1125 free_hot_page(page); 1126 else 1127 __free_pages_ok(page, order); 1128 } 1129 } 1130 1131 EXPORT_SYMBOL(__free_pages); 1132 1133 fastcall void free_pages(unsigned long addr, unsigned int order) 1134 { 1135 if (addr != 0) { 1136 BUG_ON(!virt_addr_valid((void *)addr)); 1137 __free_pages(virt_to_page((void *)addr), order); 1138 } 1139 } 1140 1141 EXPORT_SYMBOL(free_pages); 1142 1143 /* 1144 * Total amount of free (allocatable) RAM: 1145 */ 1146 unsigned int nr_free_pages(void) 1147 { 1148 unsigned int sum = 0; 1149 struct zone *zone; 1150 1151 for_each_zone(zone) 1152 sum += zone->free_pages; 1153 1154 return sum; 1155 } 1156 1157 EXPORT_SYMBOL(nr_free_pages); 1158 1159 #ifdef CONFIG_NUMA 1160 unsigned int nr_free_pages_pgdat(pg_data_t *pgdat) 1161 { 1162 unsigned int i, sum = 0; 1163 1164 for (i = 0; i < MAX_NR_ZONES; i++) 1165 sum += pgdat->node_zones[i].free_pages; 1166 1167 return sum; 1168 } 1169 #endif 1170 1171 static unsigned int nr_free_zone_pages(int offset) 1172 { 1173 /* Just pick one node, since fallback list is circular */ 1174 pg_data_t *pgdat = NODE_DATA(numa_node_id()); 1175 unsigned int sum = 0; 1176 1177 struct zonelist *zonelist = pgdat->node_zonelists + offset; 1178 struct zone **zonep = zonelist->zones; 1179 struct zone *zone; 1180 1181 for (zone = *zonep++; zone; zone = *zonep++) { 1182 unsigned long size = zone->present_pages; 1183 unsigned long high = zone->pages_high; 1184 if (size > high) 1185 sum += size - high; 1186 } 1187 1188 return sum; 1189 } 1190 1191 /* 1192 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 1193 */ 1194 unsigned int nr_free_buffer_pages(void) 1195 { 1196 return nr_free_zone_pages(gfp_zone(GFP_USER)); 1197 } 1198 1199 /* 1200 * Amount of free RAM allocatable within all zones 1201 */ 1202 unsigned int nr_free_pagecache_pages(void) 1203 { 1204 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER)); 1205 } 1206 1207 #ifdef CONFIG_HIGHMEM 1208 unsigned int nr_free_highpages (void) 1209 { 1210 pg_data_t *pgdat; 1211 unsigned int pages = 0; 1212 1213 for_each_online_pgdat(pgdat) 1214 pages += pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1215 1216 return pages; 1217 } 1218 #endif 1219 1220 #ifdef CONFIG_NUMA 1221 static void show_node(struct zone *zone) 1222 { 1223 printk("Node %d ", zone->zone_pgdat->node_id); 1224 } 1225 #else 1226 #define show_node(zone) do { } while (0) 1227 #endif 1228 1229 /* 1230 * Accumulate the page_state information across all CPUs. 1231 * The result is unavoidably approximate - it can change 1232 * during and after execution of this function. 1233 */ 1234 static DEFINE_PER_CPU(struct page_state, page_states) = {0}; 1235 1236 atomic_t nr_pagecache = ATOMIC_INIT(0); 1237 EXPORT_SYMBOL(nr_pagecache); 1238 #ifdef CONFIG_SMP 1239 DEFINE_PER_CPU(long, nr_pagecache_local) = 0; 1240 #endif 1241 1242 static void __get_page_state(struct page_state *ret, int nr, cpumask_t *cpumask) 1243 { 1244 unsigned cpu; 1245 1246 memset(ret, 0, nr * sizeof(unsigned long)); 1247 cpus_and(*cpumask, *cpumask, cpu_online_map); 1248 1249 for_each_cpu_mask(cpu, *cpumask) { 1250 unsigned long *in; 1251 unsigned long *out; 1252 unsigned off; 1253 unsigned next_cpu; 1254 1255 in = (unsigned long *)&per_cpu(page_states, cpu); 1256 1257 next_cpu = next_cpu(cpu, *cpumask); 1258 if (likely(next_cpu < NR_CPUS)) 1259 prefetch(&per_cpu(page_states, next_cpu)); 1260 1261 out = (unsigned long *)ret; 1262 for (off = 0; off < nr; off++) 1263 *out++ += *in++; 1264 } 1265 } 1266 1267 void get_page_state_node(struct page_state *ret, int node) 1268 { 1269 int nr; 1270 cpumask_t mask = node_to_cpumask(node); 1271 1272 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1273 nr /= sizeof(unsigned long); 1274 1275 __get_page_state(ret, nr+1, &mask); 1276 } 1277 1278 void get_page_state(struct page_state *ret) 1279 { 1280 int nr; 1281 cpumask_t mask = CPU_MASK_ALL; 1282 1283 nr = offsetof(struct page_state, GET_PAGE_STATE_LAST); 1284 nr /= sizeof(unsigned long); 1285 1286 __get_page_state(ret, nr + 1, &mask); 1287 } 1288 1289 void get_full_page_state(struct page_state *ret) 1290 { 1291 cpumask_t mask = CPU_MASK_ALL; 1292 1293 __get_page_state(ret, sizeof(*ret) / sizeof(unsigned long), &mask); 1294 } 1295 1296 unsigned long read_page_state_offset(unsigned long offset) 1297 { 1298 unsigned long ret = 0; 1299 int cpu; 1300 1301 for_each_online_cpu(cpu) { 1302 unsigned long in; 1303 1304 in = (unsigned long)&per_cpu(page_states, cpu) + offset; 1305 ret += *((unsigned long *)in); 1306 } 1307 return ret; 1308 } 1309 1310 void __mod_page_state_offset(unsigned long offset, unsigned long delta) 1311 { 1312 void *ptr; 1313 1314 ptr = &__get_cpu_var(page_states); 1315 *(unsigned long *)(ptr + offset) += delta; 1316 } 1317 EXPORT_SYMBOL(__mod_page_state_offset); 1318 1319 void mod_page_state_offset(unsigned long offset, unsigned long delta) 1320 { 1321 unsigned long flags; 1322 void *ptr; 1323 1324 local_irq_save(flags); 1325 ptr = &__get_cpu_var(page_states); 1326 *(unsigned long *)(ptr + offset) += delta; 1327 local_irq_restore(flags); 1328 } 1329 EXPORT_SYMBOL(mod_page_state_offset); 1330 1331 void __get_zone_counts(unsigned long *active, unsigned long *inactive, 1332 unsigned long *free, struct pglist_data *pgdat) 1333 { 1334 struct zone *zones = pgdat->node_zones; 1335 int i; 1336 1337 *active = 0; 1338 *inactive = 0; 1339 *free = 0; 1340 for (i = 0; i < MAX_NR_ZONES; i++) { 1341 *active += zones[i].nr_active; 1342 *inactive += zones[i].nr_inactive; 1343 *free += zones[i].free_pages; 1344 } 1345 } 1346 1347 void get_zone_counts(unsigned long *active, 1348 unsigned long *inactive, unsigned long *free) 1349 { 1350 struct pglist_data *pgdat; 1351 1352 *active = 0; 1353 *inactive = 0; 1354 *free = 0; 1355 for_each_online_pgdat(pgdat) { 1356 unsigned long l, m, n; 1357 __get_zone_counts(&l, &m, &n, pgdat); 1358 *active += l; 1359 *inactive += m; 1360 *free += n; 1361 } 1362 } 1363 1364 void si_meminfo(struct sysinfo *val) 1365 { 1366 val->totalram = totalram_pages; 1367 val->sharedram = 0; 1368 val->freeram = nr_free_pages(); 1369 val->bufferram = nr_blockdev_pages(); 1370 #ifdef CONFIG_HIGHMEM 1371 val->totalhigh = totalhigh_pages; 1372 val->freehigh = nr_free_highpages(); 1373 #else 1374 val->totalhigh = 0; 1375 val->freehigh = 0; 1376 #endif 1377 val->mem_unit = PAGE_SIZE; 1378 } 1379 1380 EXPORT_SYMBOL(si_meminfo); 1381 1382 #ifdef CONFIG_NUMA 1383 void si_meminfo_node(struct sysinfo *val, int nid) 1384 { 1385 pg_data_t *pgdat = NODE_DATA(nid); 1386 1387 val->totalram = pgdat->node_present_pages; 1388 val->freeram = nr_free_pages_pgdat(pgdat); 1389 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 1390 val->freehigh = pgdat->node_zones[ZONE_HIGHMEM].free_pages; 1391 val->mem_unit = PAGE_SIZE; 1392 } 1393 #endif 1394 1395 #define K(x) ((x) << (PAGE_SHIFT-10)) 1396 1397 /* 1398 * Show free area list (used inside shift_scroll-lock stuff) 1399 * We also calculate the percentage fragmentation. We do this by counting the 1400 * memory on each free list with the exception of the first item on the list. 1401 */ 1402 void show_free_areas(void) 1403 { 1404 struct page_state ps; 1405 int cpu, temperature; 1406 unsigned long active; 1407 unsigned long inactive; 1408 unsigned long free; 1409 struct zone *zone; 1410 1411 for_each_zone(zone) { 1412 show_node(zone); 1413 printk("%s per-cpu:", zone->name); 1414 1415 if (!populated_zone(zone)) { 1416 printk(" empty\n"); 1417 continue; 1418 } else 1419 printk("\n"); 1420 1421 for_each_online_cpu(cpu) { 1422 struct per_cpu_pageset *pageset; 1423 1424 pageset = zone_pcp(zone, cpu); 1425 1426 for (temperature = 0; temperature < 2; temperature++) 1427 printk("cpu %d %s: high %d, batch %d used:%d\n", 1428 cpu, 1429 temperature ? "cold" : "hot", 1430 pageset->pcp[temperature].high, 1431 pageset->pcp[temperature].batch, 1432 pageset->pcp[temperature].count); 1433 } 1434 } 1435 1436 get_page_state(&ps); 1437 get_zone_counts(&active, &inactive, &free); 1438 1439 printk("Free pages: %11ukB (%ukB HighMem)\n", 1440 K(nr_free_pages()), 1441 K(nr_free_highpages())); 1442 1443 printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu " 1444 "unstable:%lu free:%u slab:%lu mapped:%lu pagetables:%lu\n", 1445 active, 1446 inactive, 1447 ps.nr_dirty, 1448 ps.nr_writeback, 1449 ps.nr_unstable, 1450 nr_free_pages(), 1451 ps.nr_slab, 1452 ps.nr_mapped, 1453 ps.nr_page_table_pages); 1454 1455 for_each_zone(zone) { 1456 int i; 1457 1458 show_node(zone); 1459 printk("%s" 1460 " free:%lukB" 1461 " min:%lukB" 1462 " low:%lukB" 1463 " high:%lukB" 1464 " active:%lukB" 1465 " inactive:%lukB" 1466 " present:%lukB" 1467 " pages_scanned:%lu" 1468 " all_unreclaimable? %s" 1469 "\n", 1470 zone->name, 1471 K(zone->free_pages), 1472 K(zone->pages_min), 1473 K(zone->pages_low), 1474 K(zone->pages_high), 1475 K(zone->nr_active), 1476 K(zone->nr_inactive), 1477 K(zone->present_pages), 1478 zone->pages_scanned, 1479 (zone->all_unreclaimable ? "yes" : "no") 1480 ); 1481 printk("lowmem_reserve[]:"); 1482 for (i = 0; i < MAX_NR_ZONES; i++) 1483 printk(" %lu", zone->lowmem_reserve[i]); 1484 printk("\n"); 1485 } 1486 1487 for_each_zone(zone) { 1488 unsigned long nr, flags, order, total = 0; 1489 1490 show_node(zone); 1491 printk("%s: ", zone->name); 1492 if (!populated_zone(zone)) { 1493 printk("empty\n"); 1494 continue; 1495 } 1496 1497 spin_lock_irqsave(&zone->lock, flags); 1498 for (order = 0; order < MAX_ORDER; order++) { 1499 nr = zone->free_area[order].nr_free; 1500 total += nr << order; 1501 printk("%lu*%lukB ", nr, K(1UL) << order); 1502 } 1503 spin_unlock_irqrestore(&zone->lock, flags); 1504 printk("= %lukB\n", K(total)); 1505 } 1506 1507 show_swap_cache_info(); 1508 } 1509 1510 /* 1511 * Builds allocation fallback zone lists. 1512 * 1513 * Add all populated zones of a node to the zonelist. 1514 */ 1515 static int __init build_zonelists_node(pg_data_t *pgdat, 1516 struct zonelist *zonelist, int nr_zones, int zone_type) 1517 { 1518 struct zone *zone; 1519 1520 BUG_ON(zone_type > ZONE_HIGHMEM); 1521 1522 do { 1523 zone = pgdat->node_zones + zone_type; 1524 if (populated_zone(zone)) { 1525 #ifndef CONFIG_HIGHMEM 1526 BUG_ON(zone_type > ZONE_NORMAL); 1527 #endif 1528 zonelist->zones[nr_zones++] = zone; 1529 check_highest_zone(zone_type); 1530 } 1531 zone_type--; 1532 1533 } while (zone_type >= 0); 1534 return nr_zones; 1535 } 1536 1537 static inline int highest_zone(int zone_bits) 1538 { 1539 int res = ZONE_NORMAL; 1540 if (zone_bits & (__force int)__GFP_HIGHMEM) 1541 res = ZONE_HIGHMEM; 1542 if (zone_bits & (__force int)__GFP_DMA32) 1543 res = ZONE_DMA32; 1544 if (zone_bits & (__force int)__GFP_DMA) 1545 res = ZONE_DMA; 1546 return res; 1547 } 1548 1549 #ifdef CONFIG_NUMA 1550 #define MAX_NODE_LOAD (num_online_nodes()) 1551 static int __initdata node_load[MAX_NUMNODES]; 1552 /** 1553 * find_next_best_node - find the next node that should appear in a given node's fallback list 1554 * @node: node whose fallback list we're appending 1555 * @used_node_mask: nodemask_t of already used nodes 1556 * 1557 * We use a number of factors to determine which is the next node that should 1558 * appear on a given node's fallback list. The node should not have appeared 1559 * already in @node's fallback list, and it should be the next closest node 1560 * according to the distance array (which contains arbitrary distance values 1561 * from each node to each node in the system), and should also prefer nodes 1562 * with no CPUs, since presumably they'll have very little allocation pressure 1563 * on them otherwise. 1564 * It returns -1 if no node is found. 1565 */ 1566 static int __init find_next_best_node(int node, nodemask_t *used_node_mask) 1567 { 1568 int n, val; 1569 int min_val = INT_MAX; 1570 int best_node = -1; 1571 1572 /* Use the local node if we haven't already */ 1573 if (!node_isset(node, *used_node_mask)) { 1574 node_set(node, *used_node_mask); 1575 return node; 1576 } 1577 1578 for_each_online_node(n) { 1579 cpumask_t tmp; 1580 1581 /* Don't want a node to appear more than once */ 1582 if (node_isset(n, *used_node_mask)) 1583 continue; 1584 1585 /* Use the distance array to find the distance */ 1586 val = node_distance(node, n); 1587 1588 /* Penalize nodes under us ("prefer the next node") */ 1589 val += (n < node); 1590 1591 /* Give preference to headless and unused nodes */ 1592 tmp = node_to_cpumask(n); 1593 if (!cpus_empty(tmp)) 1594 val += PENALTY_FOR_NODE_WITH_CPUS; 1595 1596 /* Slight preference for less loaded node */ 1597 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 1598 val += node_load[n]; 1599 1600 if (val < min_val) { 1601 min_val = val; 1602 best_node = n; 1603 } 1604 } 1605 1606 if (best_node >= 0) 1607 node_set(best_node, *used_node_mask); 1608 1609 return best_node; 1610 } 1611 1612 static void __init build_zonelists(pg_data_t *pgdat) 1613 { 1614 int i, j, k, node, local_node; 1615 int prev_node, load; 1616 struct zonelist *zonelist; 1617 nodemask_t used_mask; 1618 1619 /* initialize zonelists */ 1620 for (i = 0; i < GFP_ZONETYPES; i++) { 1621 zonelist = pgdat->node_zonelists + i; 1622 zonelist->zones[0] = NULL; 1623 } 1624 1625 /* NUMA-aware ordering of nodes */ 1626 local_node = pgdat->node_id; 1627 load = num_online_nodes(); 1628 prev_node = local_node; 1629 nodes_clear(used_mask); 1630 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 1631 int distance = node_distance(local_node, node); 1632 1633 /* 1634 * If another node is sufficiently far away then it is better 1635 * to reclaim pages in a zone before going off node. 1636 */ 1637 if (distance > RECLAIM_DISTANCE) 1638 zone_reclaim_mode = 1; 1639 1640 /* 1641 * We don't want to pressure a particular node. 1642 * So adding penalty to the first node in same 1643 * distance group to make it round-robin. 1644 */ 1645 1646 if (distance != node_distance(local_node, prev_node)) 1647 node_load[node] += load; 1648 prev_node = node; 1649 load--; 1650 for (i = 0; i < GFP_ZONETYPES; i++) { 1651 zonelist = pgdat->node_zonelists + i; 1652 for (j = 0; zonelist->zones[j] != NULL; j++); 1653 1654 k = highest_zone(i); 1655 1656 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1657 zonelist->zones[j] = NULL; 1658 } 1659 } 1660 } 1661 1662 #else /* CONFIG_NUMA */ 1663 1664 static void __init build_zonelists(pg_data_t *pgdat) 1665 { 1666 int i, j, k, node, local_node; 1667 1668 local_node = pgdat->node_id; 1669 for (i = 0; i < GFP_ZONETYPES; i++) { 1670 struct zonelist *zonelist; 1671 1672 zonelist = pgdat->node_zonelists + i; 1673 1674 j = 0; 1675 k = highest_zone(i); 1676 j = build_zonelists_node(pgdat, zonelist, j, k); 1677 /* 1678 * Now we build the zonelist so that it contains the zones 1679 * of all the other nodes. 1680 * We don't want to pressure a particular node, so when 1681 * building the zones for node N, we make sure that the 1682 * zones coming right after the local ones are those from 1683 * node N+1 (modulo N) 1684 */ 1685 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 1686 if (!node_online(node)) 1687 continue; 1688 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1689 } 1690 for (node = 0; node < local_node; node++) { 1691 if (!node_online(node)) 1692 continue; 1693 j = build_zonelists_node(NODE_DATA(node), zonelist, j, k); 1694 } 1695 1696 zonelist->zones[j] = NULL; 1697 } 1698 } 1699 1700 #endif /* CONFIG_NUMA */ 1701 1702 void __init build_all_zonelists(void) 1703 { 1704 int i; 1705 1706 for_each_online_node(i) 1707 build_zonelists(NODE_DATA(i)); 1708 printk("Built %i zonelists\n", num_online_nodes()); 1709 cpuset_init_current_mems_allowed(); 1710 } 1711 1712 /* 1713 * Helper functions to size the waitqueue hash table. 1714 * Essentially these want to choose hash table sizes sufficiently 1715 * large so that collisions trying to wait on pages are rare. 1716 * But in fact, the number of active page waitqueues on typical 1717 * systems is ridiculously low, less than 200. So this is even 1718 * conservative, even though it seems large. 1719 * 1720 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 1721 * waitqueues, i.e. the size of the waitq table given the number of pages. 1722 */ 1723 #define PAGES_PER_WAITQUEUE 256 1724 1725 static inline unsigned long wait_table_size(unsigned long pages) 1726 { 1727 unsigned long size = 1; 1728 1729 pages /= PAGES_PER_WAITQUEUE; 1730 1731 while (size < pages) 1732 size <<= 1; 1733 1734 /* 1735 * Once we have dozens or even hundreds of threads sleeping 1736 * on IO we've got bigger problems than wait queue collision. 1737 * Limit the size of the wait table to a reasonable size. 1738 */ 1739 size = min(size, 4096UL); 1740 1741 return max(size, 4UL); 1742 } 1743 1744 /* 1745 * This is an integer logarithm so that shifts can be used later 1746 * to extract the more random high bits from the multiplicative 1747 * hash function before the remainder is taken. 1748 */ 1749 static inline unsigned long wait_table_bits(unsigned long size) 1750 { 1751 return ffz(~size); 1752 } 1753 1754 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 1755 1756 static void __init calculate_zone_totalpages(struct pglist_data *pgdat, 1757 unsigned long *zones_size, unsigned long *zholes_size) 1758 { 1759 unsigned long realtotalpages, totalpages = 0; 1760 int i; 1761 1762 for (i = 0; i < MAX_NR_ZONES; i++) 1763 totalpages += zones_size[i]; 1764 pgdat->node_spanned_pages = totalpages; 1765 1766 realtotalpages = totalpages; 1767 if (zholes_size) 1768 for (i = 0; i < MAX_NR_ZONES; i++) 1769 realtotalpages -= zholes_size[i]; 1770 pgdat->node_present_pages = realtotalpages; 1771 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 1772 } 1773 1774 1775 /* 1776 * Initially all pages are reserved - free ones are freed 1777 * up by free_all_bootmem() once the early boot process is 1778 * done. Non-atomic initialization, single-pass. 1779 */ 1780 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 1781 unsigned long start_pfn) 1782 { 1783 struct page *page; 1784 unsigned long end_pfn = start_pfn + size; 1785 unsigned long pfn; 1786 1787 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1788 if (!early_pfn_valid(pfn)) 1789 continue; 1790 page = pfn_to_page(pfn); 1791 set_page_links(page, zone, nid, pfn); 1792 init_page_count(page); 1793 reset_page_mapcount(page); 1794 SetPageReserved(page); 1795 INIT_LIST_HEAD(&page->lru); 1796 #ifdef WANT_PAGE_VIRTUAL 1797 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1798 if (!is_highmem_idx(zone)) 1799 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1800 #endif 1801 } 1802 } 1803 1804 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone, 1805 unsigned long size) 1806 { 1807 int order; 1808 for (order = 0; order < MAX_ORDER ; order++) { 1809 INIT_LIST_HEAD(&zone->free_area[order].free_list); 1810 zone->free_area[order].nr_free = 0; 1811 } 1812 } 1813 1814 #define ZONETABLE_INDEX(x, zone_nr) ((x << ZONES_SHIFT) | zone_nr) 1815 void zonetable_add(struct zone *zone, int nid, int zid, unsigned long pfn, 1816 unsigned long size) 1817 { 1818 unsigned long snum = pfn_to_section_nr(pfn); 1819 unsigned long end = pfn_to_section_nr(pfn + size); 1820 1821 if (FLAGS_HAS_NODE) 1822 zone_table[ZONETABLE_INDEX(nid, zid)] = zone; 1823 else 1824 for (; snum <= end; snum++) 1825 zone_table[ZONETABLE_INDEX(snum, zid)] = zone; 1826 } 1827 1828 #ifndef __HAVE_ARCH_MEMMAP_INIT 1829 #define memmap_init(size, nid, zone, start_pfn) \ 1830 memmap_init_zone((size), (nid), (zone), (start_pfn)) 1831 #endif 1832 1833 static int __cpuinit zone_batchsize(struct zone *zone) 1834 { 1835 int batch; 1836 1837 /* 1838 * The per-cpu-pages pools are set to around 1000th of the 1839 * size of the zone. But no more than 1/2 of a meg. 1840 * 1841 * OK, so we don't know how big the cache is. So guess. 1842 */ 1843 batch = zone->present_pages / 1024; 1844 if (batch * PAGE_SIZE > 512 * 1024) 1845 batch = (512 * 1024) / PAGE_SIZE; 1846 batch /= 4; /* We effectively *= 4 below */ 1847 if (batch < 1) 1848 batch = 1; 1849 1850 /* 1851 * Clamp the batch to a 2^n - 1 value. Having a power 1852 * of 2 value was found to be more likely to have 1853 * suboptimal cache aliasing properties in some cases. 1854 * 1855 * For example if 2 tasks are alternately allocating 1856 * batches of pages, one task can end up with a lot 1857 * of pages of one half of the possible page colors 1858 * and the other with pages of the other colors. 1859 */ 1860 batch = (1 << (fls(batch + batch/2)-1)) - 1; 1861 1862 return batch; 1863 } 1864 1865 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 1866 { 1867 struct per_cpu_pages *pcp; 1868 1869 memset(p, 0, sizeof(*p)); 1870 1871 pcp = &p->pcp[0]; /* hot */ 1872 pcp->count = 0; 1873 pcp->high = 6 * batch; 1874 pcp->batch = max(1UL, 1 * batch); 1875 INIT_LIST_HEAD(&pcp->list); 1876 1877 pcp = &p->pcp[1]; /* cold*/ 1878 pcp->count = 0; 1879 pcp->high = 2 * batch; 1880 pcp->batch = max(1UL, batch/2); 1881 INIT_LIST_HEAD(&pcp->list); 1882 } 1883 1884 /* 1885 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 1886 * to the value high for the pageset p. 1887 */ 1888 1889 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 1890 unsigned long high) 1891 { 1892 struct per_cpu_pages *pcp; 1893 1894 pcp = &p->pcp[0]; /* hot list */ 1895 pcp->high = high; 1896 pcp->batch = max(1UL, high/4); 1897 if ((high/4) > (PAGE_SHIFT * 8)) 1898 pcp->batch = PAGE_SHIFT * 8; 1899 } 1900 1901 1902 #ifdef CONFIG_NUMA 1903 /* 1904 * Boot pageset table. One per cpu which is going to be used for all 1905 * zones and all nodes. The parameters will be set in such a way 1906 * that an item put on a list will immediately be handed over to 1907 * the buddy list. This is safe since pageset manipulation is done 1908 * with interrupts disabled. 1909 * 1910 * Some NUMA counter updates may also be caught by the boot pagesets. 1911 * 1912 * The boot_pagesets must be kept even after bootup is complete for 1913 * unused processors and/or zones. They do play a role for bootstrapping 1914 * hotplugged processors. 1915 * 1916 * zoneinfo_show() and maybe other functions do 1917 * not check if the processor is online before following the pageset pointer. 1918 * Other parts of the kernel may not check if the zone is available. 1919 */ 1920 static struct per_cpu_pageset boot_pageset[NR_CPUS]; 1921 1922 /* 1923 * Dynamically allocate memory for the 1924 * per cpu pageset array in struct zone. 1925 */ 1926 static int __cpuinit process_zones(int cpu) 1927 { 1928 struct zone *zone, *dzone; 1929 1930 for_each_zone(zone) { 1931 1932 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset), 1933 GFP_KERNEL, cpu_to_node(cpu)); 1934 if (!zone_pcp(zone, cpu)) 1935 goto bad; 1936 1937 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone)); 1938 1939 if (percpu_pagelist_fraction) 1940 setup_pagelist_highmark(zone_pcp(zone, cpu), 1941 (zone->present_pages / percpu_pagelist_fraction)); 1942 } 1943 1944 return 0; 1945 bad: 1946 for_each_zone(dzone) { 1947 if (dzone == zone) 1948 break; 1949 kfree(zone_pcp(dzone, cpu)); 1950 zone_pcp(dzone, cpu) = NULL; 1951 } 1952 return -ENOMEM; 1953 } 1954 1955 static inline void free_zone_pagesets(int cpu) 1956 { 1957 struct zone *zone; 1958 1959 for_each_zone(zone) { 1960 struct per_cpu_pageset *pset = zone_pcp(zone, cpu); 1961 1962 zone_pcp(zone, cpu) = NULL; 1963 kfree(pset); 1964 } 1965 } 1966 1967 static int pageset_cpuup_callback(struct notifier_block *nfb, 1968 unsigned long action, 1969 void *hcpu) 1970 { 1971 int cpu = (long)hcpu; 1972 int ret = NOTIFY_OK; 1973 1974 switch (action) { 1975 case CPU_UP_PREPARE: 1976 if (process_zones(cpu)) 1977 ret = NOTIFY_BAD; 1978 break; 1979 case CPU_UP_CANCELED: 1980 case CPU_DEAD: 1981 free_zone_pagesets(cpu); 1982 break; 1983 default: 1984 break; 1985 } 1986 return ret; 1987 } 1988 1989 static struct notifier_block pageset_notifier = 1990 { &pageset_cpuup_callback, NULL, 0 }; 1991 1992 void __init setup_per_cpu_pageset(void) 1993 { 1994 int err; 1995 1996 /* Initialize per_cpu_pageset for cpu 0. 1997 * A cpuup callback will do this for every cpu 1998 * as it comes online 1999 */ 2000 err = process_zones(smp_processor_id()); 2001 BUG_ON(err); 2002 register_cpu_notifier(&pageset_notifier); 2003 } 2004 2005 #endif 2006 2007 static __meminit 2008 void zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 2009 { 2010 int i; 2011 struct pglist_data *pgdat = zone->zone_pgdat; 2012 2013 /* 2014 * The per-page waitqueue mechanism uses hashed waitqueues 2015 * per zone. 2016 */ 2017 zone->wait_table_size = wait_table_size(zone_size_pages); 2018 zone->wait_table_bits = wait_table_bits(zone->wait_table_size); 2019 zone->wait_table = (wait_queue_head_t *) 2020 alloc_bootmem_node(pgdat, zone->wait_table_size 2021 * sizeof(wait_queue_head_t)); 2022 2023 for(i = 0; i < zone->wait_table_size; ++i) 2024 init_waitqueue_head(zone->wait_table + i); 2025 } 2026 2027 static __meminit void zone_pcp_init(struct zone *zone) 2028 { 2029 int cpu; 2030 unsigned long batch = zone_batchsize(zone); 2031 2032 for (cpu = 0; cpu < NR_CPUS; cpu++) { 2033 #ifdef CONFIG_NUMA 2034 /* Early boot. Slab allocator not functional yet */ 2035 zone_pcp(zone, cpu) = &boot_pageset[cpu]; 2036 setup_pageset(&boot_pageset[cpu],0); 2037 #else 2038 setup_pageset(zone_pcp(zone,cpu), batch); 2039 #endif 2040 } 2041 if (zone->present_pages) 2042 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n", 2043 zone->name, zone->present_pages, batch); 2044 } 2045 2046 static __meminit void init_currently_empty_zone(struct zone *zone, 2047 unsigned long zone_start_pfn, unsigned long size) 2048 { 2049 struct pglist_data *pgdat = zone->zone_pgdat; 2050 2051 zone_wait_table_init(zone, size); 2052 pgdat->nr_zones = zone_idx(zone) + 1; 2053 2054 zone->zone_start_pfn = zone_start_pfn; 2055 2056 memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn); 2057 2058 zone_init_free_lists(pgdat, zone, zone->spanned_pages); 2059 } 2060 2061 /* 2062 * Set up the zone data structures: 2063 * - mark all pages reserved 2064 * - mark all memory queues empty 2065 * - clear the memory bitmaps 2066 */ 2067 static void __init free_area_init_core(struct pglist_data *pgdat, 2068 unsigned long *zones_size, unsigned long *zholes_size) 2069 { 2070 unsigned long j; 2071 int nid = pgdat->node_id; 2072 unsigned long zone_start_pfn = pgdat->node_start_pfn; 2073 2074 pgdat_resize_init(pgdat); 2075 pgdat->nr_zones = 0; 2076 init_waitqueue_head(&pgdat->kswapd_wait); 2077 pgdat->kswapd_max_order = 0; 2078 2079 for (j = 0; j < MAX_NR_ZONES; j++) { 2080 struct zone *zone = pgdat->node_zones + j; 2081 unsigned long size, realsize; 2082 2083 realsize = size = zones_size[j]; 2084 if (zholes_size) 2085 realsize -= zholes_size[j]; 2086 2087 if (j < ZONE_HIGHMEM) 2088 nr_kernel_pages += realsize; 2089 nr_all_pages += realsize; 2090 2091 zone->spanned_pages = size; 2092 zone->present_pages = realsize; 2093 zone->name = zone_names[j]; 2094 spin_lock_init(&zone->lock); 2095 spin_lock_init(&zone->lru_lock); 2096 zone_seqlock_init(zone); 2097 zone->zone_pgdat = pgdat; 2098 zone->free_pages = 0; 2099 2100 zone->temp_priority = zone->prev_priority = DEF_PRIORITY; 2101 2102 zone_pcp_init(zone); 2103 INIT_LIST_HEAD(&zone->active_list); 2104 INIT_LIST_HEAD(&zone->inactive_list); 2105 zone->nr_scan_active = 0; 2106 zone->nr_scan_inactive = 0; 2107 zone->nr_active = 0; 2108 zone->nr_inactive = 0; 2109 atomic_set(&zone->reclaim_in_progress, 0); 2110 if (!size) 2111 continue; 2112 2113 zonetable_add(zone, nid, j, zone_start_pfn, size); 2114 init_currently_empty_zone(zone, zone_start_pfn, size); 2115 zone_start_pfn += size; 2116 } 2117 } 2118 2119 static void __init alloc_node_mem_map(struct pglist_data *pgdat) 2120 { 2121 /* Skip empty nodes */ 2122 if (!pgdat->node_spanned_pages) 2123 return; 2124 2125 #ifdef CONFIG_FLAT_NODE_MEM_MAP 2126 /* ia64 gets its own node_mem_map, before this, without bootmem */ 2127 if (!pgdat->node_mem_map) { 2128 unsigned long size, start, end; 2129 struct page *map; 2130 2131 /* 2132 * The zone's endpoints aren't required to be MAX_ORDER 2133 * aligned but the node_mem_map endpoints must be in order 2134 * for the buddy allocator to function correctly. 2135 */ 2136 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 2137 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 2138 end = ALIGN(end, MAX_ORDER_NR_PAGES); 2139 size = (end - start) * sizeof(struct page); 2140 map = alloc_remap(pgdat->node_id, size); 2141 if (!map) 2142 map = alloc_bootmem_node(pgdat, size); 2143 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 2144 } 2145 #ifdef CONFIG_FLATMEM 2146 /* 2147 * With no DISCONTIG, the global mem_map is just set as node 0's 2148 */ 2149 if (pgdat == NODE_DATA(0)) 2150 mem_map = NODE_DATA(0)->node_mem_map; 2151 #endif 2152 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 2153 } 2154 2155 void __init free_area_init_node(int nid, struct pglist_data *pgdat, 2156 unsigned long *zones_size, unsigned long node_start_pfn, 2157 unsigned long *zholes_size) 2158 { 2159 pgdat->node_id = nid; 2160 pgdat->node_start_pfn = node_start_pfn; 2161 calculate_zone_totalpages(pgdat, zones_size, zholes_size); 2162 2163 alloc_node_mem_map(pgdat); 2164 2165 free_area_init_core(pgdat, zones_size, zholes_size); 2166 } 2167 2168 #ifndef CONFIG_NEED_MULTIPLE_NODES 2169 static bootmem_data_t contig_bootmem_data; 2170 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data }; 2171 2172 EXPORT_SYMBOL(contig_page_data); 2173 #endif 2174 2175 void __init free_area_init(unsigned long *zones_size) 2176 { 2177 free_area_init_node(0, NODE_DATA(0), zones_size, 2178 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 2179 } 2180 2181 #ifdef CONFIG_PROC_FS 2182 2183 #include <linux/seq_file.h> 2184 2185 static void *frag_start(struct seq_file *m, loff_t *pos) 2186 { 2187 pg_data_t *pgdat; 2188 loff_t node = *pos; 2189 for (pgdat = first_online_pgdat(); 2190 pgdat && node; 2191 pgdat = next_online_pgdat(pgdat)) 2192 --node; 2193 2194 return pgdat; 2195 } 2196 2197 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos) 2198 { 2199 pg_data_t *pgdat = (pg_data_t *)arg; 2200 2201 (*pos)++; 2202 return next_online_pgdat(pgdat); 2203 } 2204 2205 static void frag_stop(struct seq_file *m, void *arg) 2206 { 2207 } 2208 2209 /* 2210 * This walks the free areas for each zone. 2211 */ 2212 static int frag_show(struct seq_file *m, void *arg) 2213 { 2214 pg_data_t *pgdat = (pg_data_t *)arg; 2215 struct zone *zone; 2216 struct zone *node_zones = pgdat->node_zones; 2217 unsigned long flags; 2218 int order; 2219 2220 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) { 2221 if (!populated_zone(zone)) 2222 continue; 2223 2224 spin_lock_irqsave(&zone->lock, flags); 2225 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name); 2226 for (order = 0; order < MAX_ORDER; ++order) 2227 seq_printf(m, "%6lu ", zone->free_area[order].nr_free); 2228 spin_unlock_irqrestore(&zone->lock, flags); 2229 seq_putc(m, '\n'); 2230 } 2231 return 0; 2232 } 2233 2234 struct seq_operations fragmentation_op = { 2235 .start = frag_start, 2236 .next = frag_next, 2237 .stop = frag_stop, 2238 .show = frag_show, 2239 }; 2240 2241 /* 2242 * Output information about zones in @pgdat. 2243 */ 2244 static int zoneinfo_show(struct seq_file *m, void *arg) 2245 { 2246 pg_data_t *pgdat = arg; 2247 struct zone *zone; 2248 struct zone *node_zones = pgdat->node_zones; 2249 unsigned long flags; 2250 2251 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; zone++) { 2252 int i; 2253 2254 if (!populated_zone(zone)) 2255 continue; 2256 2257 spin_lock_irqsave(&zone->lock, flags); 2258 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name); 2259 seq_printf(m, 2260 "\n pages free %lu" 2261 "\n min %lu" 2262 "\n low %lu" 2263 "\n high %lu" 2264 "\n active %lu" 2265 "\n inactive %lu" 2266 "\n scanned %lu (a: %lu i: %lu)" 2267 "\n spanned %lu" 2268 "\n present %lu", 2269 zone->free_pages, 2270 zone->pages_min, 2271 zone->pages_low, 2272 zone->pages_high, 2273 zone->nr_active, 2274 zone->nr_inactive, 2275 zone->pages_scanned, 2276 zone->nr_scan_active, zone->nr_scan_inactive, 2277 zone->spanned_pages, 2278 zone->present_pages); 2279 seq_printf(m, 2280 "\n protection: (%lu", 2281 zone->lowmem_reserve[0]); 2282 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++) 2283 seq_printf(m, ", %lu", zone->lowmem_reserve[i]); 2284 seq_printf(m, 2285 ")" 2286 "\n pagesets"); 2287 for_each_online_cpu(i) { 2288 struct per_cpu_pageset *pageset; 2289 int j; 2290 2291 pageset = zone_pcp(zone, i); 2292 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2293 if (pageset->pcp[j].count) 2294 break; 2295 } 2296 if (j == ARRAY_SIZE(pageset->pcp)) 2297 continue; 2298 for (j = 0; j < ARRAY_SIZE(pageset->pcp); j++) { 2299 seq_printf(m, 2300 "\n cpu: %i pcp: %i" 2301 "\n count: %i" 2302 "\n high: %i" 2303 "\n batch: %i", 2304 i, j, 2305 pageset->pcp[j].count, 2306 pageset->pcp[j].high, 2307 pageset->pcp[j].batch); 2308 } 2309 #ifdef CONFIG_NUMA 2310 seq_printf(m, 2311 "\n numa_hit: %lu" 2312 "\n numa_miss: %lu" 2313 "\n numa_foreign: %lu" 2314 "\n interleave_hit: %lu" 2315 "\n local_node: %lu" 2316 "\n other_node: %lu", 2317 pageset->numa_hit, 2318 pageset->numa_miss, 2319 pageset->numa_foreign, 2320 pageset->interleave_hit, 2321 pageset->local_node, 2322 pageset->other_node); 2323 #endif 2324 } 2325 seq_printf(m, 2326 "\n all_unreclaimable: %u" 2327 "\n prev_priority: %i" 2328 "\n temp_priority: %i" 2329 "\n start_pfn: %lu", 2330 zone->all_unreclaimable, 2331 zone->prev_priority, 2332 zone->temp_priority, 2333 zone->zone_start_pfn); 2334 spin_unlock_irqrestore(&zone->lock, flags); 2335 seq_putc(m, '\n'); 2336 } 2337 return 0; 2338 } 2339 2340 struct seq_operations zoneinfo_op = { 2341 .start = frag_start, /* iterate over all zones. The same as in 2342 * fragmentation. */ 2343 .next = frag_next, 2344 .stop = frag_stop, 2345 .show = zoneinfo_show, 2346 }; 2347 2348 static char *vmstat_text[] = { 2349 "nr_dirty", 2350 "nr_writeback", 2351 "nr_unstable", 2352 "nr_page_table_pages", 2353 "nr_mapped", 2354 "nr_slab", 2355 2356 "pgpgin", 2357 "pgpgout", 2358 "pswpin", 2359 "pswpout", 2360 2361 "pgalloc_high", 2362 "pgalloc_normal", 2363 "pgalloc_dma32", 2364 "pgalloc_dma", 2365 2366 "pgfree", 2367 "pgactivate", 2368 "pgdeactivate", 2369 2370 "pgfault", 2371 "pgmajfault", 2372 2373 "pgrefill_high", 2374 "pgrefill_normal", 2375 "pgrefill_dma32", 2376 "pgrefill_dma", 2377 2378 "pgsteal_high", 2379 "pgsteal_normal", 2380 "pgsteal_dma32", 2381 "pgsteal_dma", 2382 2383 "pgscan_kswapd_high", 2384 "pgscan_kswapd_normal", 2385 "pgscan_kswapd_dma32", 2386 "pgscan_kswapd_dma", 2387 2388 "pgscan_direct_high", 2389 "pgscan_direct_normal", 2390 "pgscan_direct_dma32", 2391 "pgscan_direct_dma", 2392 2393 "pginodesteal", 2394 "slabs_scanned", 2395 "kswapd_steal", 2396 "kswapd_inodesteal", 2397 "pageoutrun", 2398 "allocstall", 2399 2400 "pgrotated", 2401 "nr_bounce", 2402 }; 2403 2404 static void *vmstat_start(struct seq_file *m, loff_t *pos) 2405 { 2406 struct page_state *ps; 2407 2408 if (*pos >= ARRAY_SIZE(vmstat_text)) 2409 return NULL; 2410 2411 ps = kmalloc(sizeof(*ps), GFP_KERNEL); 2412 m->private = ps; 2413 if (!ps) 2414 return ERR_PTR(-ENOMEM); 2415 get_full_page_state(ps); 2416 ps->pgpgin /= 2; /* sectors -> kbytes */ 2417 ps->pgpgout /= 2; 2418 return (unsigned long *)ps + *pos; 2419 } 2420 2421 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos) 2422 { 2423 (*pos)++; 2424 if (*pos >= ARRAY_SIZE(vmstat_text)) 2425 return NULL; 2426 return (unsigned long *)m->private + *pos; 2427 } 2428 2429 static int vmstat_show(struct seq_file *m, void *arg) 2430 { 2431 unsigned long *l = arg; 2432 unsigned long off = l - (unsigned long *)m->private; 2433 2434 seq_printf(m, "%s %lu\n", vmstat_text[off], *l); 2435 return 0; 2436 } 2437 2438 static void vmstat_stop(struct seq_file *m, void *arg) 2439 { 2440 kfree(m->private); 2441 m->private = NULL; 2442 } 2443 2444 struct seq_operations vmstat_op = { 2445 .start = vmstat_start, 2446 .next = vmstat_next, 2447 .stop = vmstat_stop, 2448 .show = vmstat_show, 2449 }; 2450 2451 #endif /* CONFIG_PROC_FS */ 2452 2453 #ifdef CONFIG_HOTPLUG_CPU 2454 static int page_alloc_cpu_notify(struct notifier_block *self, 2455 unsigned long action, void *hcpu) 2456 { 2457 int cpu = (unsigned long)hcpu; 2458 long *count; 2459 unsigned long *src, *dest; 2460 2461 if (action == CPU_DEAD) { 2462 int i; 2463 2464 /* Drain local pagecache count. */ 2465 count = &per_cpu(nr_pagecache_local, cpu); 2466 atomic_add(*count, &nr_pagecache); 2467 *count = 0; 2468 local_irq_disable(); 2469 __drain_pages(cpu); 2470 2471 /* Add dead cpu's page_states to our own. */ 2472 dest = (unsigned long *)&__get_cpu_var(page_states); 2473 src = (unsigned long *)&per_cpu(page_states, cpu); 2474 2475 for (i = 0; i < sizeof(struct page_state)/sizeof(unsigned long); 2476 i++) { 2477 dest[i] += src[i]; 2478 src[i] = 0; 2479 } 2480 2481 local_irq_enable(); 2482 } 2483 return NOTIFY_OK; 2484 } 2485 #endif /* CONFIG_HOTPLUG_CPU */ 2486 2487 void __init page_alloc_init(void) 2488 { 2489 hotcpu_notifier(page_alloc_cpu_notify, 0); 2490 } 2491 2492 /* 2493 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 2494 * or min_free_kbytes changes. 2495 */ 2496 static void calculate_totalreserve_pages(void) 2497 { 2498 struct pglist_data *pgdat; 2499 unsigned long reserve_pages = 0; 2500 int i, j; 2501 2502 for_each_online_pgdat(pgdat) { 2503 for (i = 0; i < MAX_NR_ZONES; i++) { 2504 struct zone *zone = pgdat->node_zones + i; 2505 unsigned long max = 0; 2506 2507 /* Find valid and maximum lowmem_reserve in the zone */ 2508 for (j = i; j < MAX_NR_ZONES; j++) { 2509 if (zone->lowmem_reserve[j] > max) 2510 max = zone->lowmem_reserve[j]; 2511 } 2512 2513 /* we treat pages_high as reserved pages. */ 2514 max += zone->pages_high; 2515 2516 if (max > zone->present_pages) 2517 max = zone->present_pages; 2518 reserve_pages += max; 2519 } 2520 } 2521 totalreserve_pages = reserve_pages; 2522 } 2523 2524 /* 2525 * setup_per_zone_lowmem_reserve - called whenever 2526 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 2527 * has a correct pages reserved value, so an adequate number of 2528 * pages are left in the zone after a successful __alloc_pages(). 2529 */ 2530 static void setup_per_zone_lowmem_reserve(void) 2531 { 2532 struct pglist_data *pgdat; 2533 int j, idx; 2534 2535 for_each_online_pgdat(pgdat) { 2536 for (j = 0; j < MAX_NR_ZONES; j++) { 2537 struct zone *zone = pgdat->node_zones + j; 2538 unsigned long present_pages = zone->present_pages; 2539 2540 zone->lowmem_reserve[j] = 0; 2541 2542 for (idx = j-1; idx >= 0; idx--) { 2543 struct zone *lower_zone; 2544 2545 if (sysctl_lowmem_reserve_ratio[idx] < 1) 2546 sysctl_lowmem_reserve_ratio[idx] = 1; 2547 2548 lower_zone = pgdat->node_zones + idx; 2549 lower_zone->lowmem_reserve[j] = present_pages / 2550 sysctl_lowmem_reserve_ratio[idx]; 2551 present_pages += lower_zone->present_pages; 2552 } 2553 } 2554 } 2555 2556 /* update totalreserve_pages */ 2557 calculate_totalreserve_pages(); 2558 } 2559 2560 /* 2561 * setup_per_zone_pages_min - called when min_free_kbytes changes. Ensures 2562 * that the pages_{min,low,high} values for each zone are set correctly 2563 * with respect to min_free_kbytes. 2564 */ 2565 void setup_per_zone_pages_min(void) 2566 { 2567 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 2568 unsigned long lowmem_pages = 0; 2569 struct zone *zone; 2570 unsigned long flags; 2571 2572 /* Calculate total number of !ZONE_HIGHMEM pages */ 2573 for_each_zone(zone) { 2574 if (!is_highmem(zone)) 2575 lowmem_pages += zone->present_pages; 2576 } 2577 2578 for_each_zone(zone) { 2579 u64 tmp; 2580 2581 spin_lock_irqsave(&zone->lru_lock, flags); 2582 tmp = (u64)pages_min * zone->present_pages; 2583 do_div(tmp, lowmem_pages); 2584 if (is_highmem(zone)) { 2585 /* 2586 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 2587 * need highmem pages, so cap pages_min to a small 2588 * value here. 2589 * 2590 * The (pages_high-pages_low) and (pages_low-pages_min) 2591 * deltas controls asynch page reclaim, and so should 2592 * not be capped for highmem. 2593 */ 2594 int min_pages; 2595 2596 min_pages = zone->present_pages / 1024; 2597 if (min_pages < SWAP_CLUSTER_MAX) 2598 min_pages = SWAP_CLUSTER_MAX; 2599 if (min_pages > 128) 2600 min_pages = 128; 2601 zone->pages_min = min_pages; 2602 } else { 2603 /* 2604 * If it's a lowmem zone, reserve a number of pages 2605 * proportionate to the zone's size. 2606 */ 2607 zone->pages_min = tmp; 2608 } 2609 2610 zone->pages_low = zone->pages_min + (tmp >> 2); 2611 zone->pages_high = zone->pages_min + (tmp >> 1); 2612 spin_unlock_irqrestore(&zone->lru_lock, flags); 2613 } 2614 2615 /* update totalreserve_pages */ 2616 calculate_totalreserve_pages(); 2617 } 2618 2619 /* 2620 * Initialise min_free_kbytes. 2621 * 2622 * For small machines we want it small (128k min). For large machines 2623 * we want it large (64MB max). But it is not linear, because network 2624 * bandwidth does not increase linearly with machine size. We use 2625 * 2626 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 2627 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 2628 * 2629 * which yields 2630 * 2631 * 16MB: 512k 2632 * 32MB: 724k 2633 * 64MB: 1024k 2634 * 128MB: 1448k 2635 * 256MB: 2048k 2636 * 512MB: 2896k 2637 * 1024MB: 4096k 2638 * 2048MB: 5792k 2639 * 4096MB: 8192k 2640 * 8192MB: 11584k 2641 * 16384MB: 16384k 2642 */ 2643 static int __init init_per_zone_pages_min(void) 2644 { 2645 unsigned long lowmem_kbytes; 2646 2647 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 2648 2649 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 2650 if (min_free_kbytes < 128) 2651 min_free_kbytes = 128; 2652 if (min_free_kbytes > 65536) 2653 min_free_kbytes = 65536; 2654 setup_per_zone_pages_min(); 2655 setup_per_zone_lowmem_reserve(); 2656 return 0; 2657 } 2658 module_init(init_per_zone_pages_min) 2659 2660 /* 2661 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 2662 * that we can call two helper functions whenever min_free_kbytes 2663 * changes. 2664 */ 2665 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 2666 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2667 { 2668 proc_dointvec(table, write, file, buffer, length, ppos); 2669 setup_per_zone_pages_min(); 2670 return 0; 2671 } 2672 2673 /* 2674 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 2675 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 2676 * whenever sysctl_lowmem_reserve_ratio changes. 2677 * 2678 * The reserve ratio obviously has absolutely no relation with the 2679 * pages_min watermarks. The lowmem reserve ratio can only make sense 2680 * if in function of the boot time zone sizes. 2681 */ 2682 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 2683 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2684 { 2685 proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2686 setup_per_zone_lowmem_reserve(); 2687 return 0; 2688 } 2689 2690 /* 2691 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 2692 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 2693 * can have before it gets flushed back to buddy allocator. 2694 */ 2695 2696 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 2697 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 2698 { 2699 struct zone *zone; 2700 unsigned int cpu; 2701 int ret; 2702 2703 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos); 2704 if (!write || (ret == -EINVAL)) 2705 return ret; 2706 for_each_zone(zone) { 2707 for_each_online_cpu(cpu) { 2708 unsigned long high; 2709 high = zone->present_pages / percpu_pagelist_fraction; 2710 setup_pagelist_highmark(zone_pcp(zone, cpu), high); 2711 } 2712 } 2713 return 0; 2714 } 2715 2716 __initdata int hashdist = HASHDIST_DEFAULT; 2717 2718 #ifdef CONFIG_NUMA 2719 static int __init set_hashdist(char *str) 2720 { 2721 if (!str) 2722 return 0; 2723 hashdist = simple_strtoul(str, &str, 0); 2724 return 1; 2725 } 2726 __setup("hashdist=", set_hashdist); 2727 #endif 2728 2729 /* 2730 * allocate a large system hash table from bootmem 2731 * - it is assumed that the hash table must contain an exact power-of-2 2732 * quantity of entries 2733 * - limit is the number of hash buckets, not the total allocation size 2734 */ 2735 void *__init alloc_large_system_hash(const char *tablename, 2736 unsigned long bucketsize, 2737 unsigned long numentries, 2738 int scale, 2739 int flags, 2740 unsigned int *_hash_shift, 2741 unsigned int *_hash_mask, 2742 unsigned long limit) 2743 { 2744 unsigned long long max = limit; 2745 unsigned long log2qty, size; 2746 void *table = NULL; 2747 2748 /* allow the kernel cmdline to have a say */ 2749 if (!numentries) { 2750 /* round applicable memory size up to nearest megabyte */ 2751 numentries = (flags & HASH_HIGHMEM) ? nr_all_pages : nr_kernel_pages; 2752 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 2753 numentries >>= 20 - PAGE_SHIFT; 2754 numentries <<= 20 - PAGE_SHIFT; 2755 2756 /* limit to 1 bucket per 2^scale bytes of low memory */ 2757 if (scale > PAGE_SHIFT) 2758 numentries >>= (scale - PAGE_SHIFT); 2759 else 2760 numentries <<= (PAGE_SHIFT - scale); 2761 } 2762 numentries = roundup_pow_of_two(numentries); 2763 2764 /* limit allocation size to 1/16 total memory by default */ 2765 if (max == 0) { 2766 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 2767 do_div(max, bucketsize); 2768 } 2769 2770 if (numentries > max) 2771 numentries = max; 2772 2773 log2qty = long_log2(numentries); 2774 2775 do { 2776 size = bucketsize << log2qty; 2777 if (flags & HASH_EARLY) 2778 table = alloc_bootmem(size); 2779 else if (hashdist) 2780 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 2781 else { 2782 unsigned long order; 2783 for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++) 2784 ; 2785 table = (void*) __get_free_pages(GFP_ATOMIC, order); 2786 } 2787 } while (!table && size > PAGE_SIZE && --log2qty); 2788 2789 if (!table) 2790 panic("Failed to allocate %s hash table\n", tablename); 2791 2792 printk("%s hash table entries: %d (order: %d, %lu bytes)\n", 2793 tablename, 2794 (1U << log2qty), 2795 long_log2(size) - PAGE_SHIFT, 2796 size); 2797 2798 if (_hash_shift) 2799 *_hash_shift = log2qty; 2800 if (_hash_mask) 2801 *_hash_mask = (1 << log2qty) - 1; 2802 2803 return table; 2804 } 2805 2806 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE 2807 /* 2808 * pfn <-> page translation. out-of-line version. 2809 * (see asm-generic/memory_model.h) 2810 */ 2811 #if defined(CONFIG_FLATMEM) 2812 struct page *pfn_to_page(unsigned long pfn) 2813 { 2814 return mem_map + (pfn - ARCH_PFN_OFFSET); 2815 } 2816 unsigned long page_to_pfn(struct page *page) 2817 { 2818 return (page - mem_map) + ARCH_PFN_OFFSET; 2819 } 2820 #elif defined(CONFIG_DISCONTIGMEM) 2821 struct page *pfn_to_page(unsigned long pfn) 2822 { 2823 int nid = arch_pfn_to_nid(pfn); 2824 return NODE_DATA(nid)->node_mem_map + arch_local_page_offset(pfn,nid); 2825 } 2826 unsigned long page_to_pfn(struct page *page) 2827 { 2828 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page)); 2829 return (page - pgdat->node_mem_map) + pgdat->node_start_pfn; 2830 } 2831 #elif defined(CONFIG_SPARSEMEM) 2832 struct page *pfn_to_page(unsigned long pfn) 2833 { 2834 return __section_mem_map_addr(__pfn_to_section(pfn)) + pfn; 2835 } 2836 2837 unsigned long page_to_pfn(struct page *page) 2838 { 2839 long section_id = page_to_section(page); 2840 return page - __section_mem_map_addr(__nr_to_section(section_id)); 2841 } 2842 #endif /* CONFIG_FLATMEM/DISCONTIGMME/SPARSEMEM */ 2843 EXPORT_SYMBOL(pfn_to_page); 2844 EXPORT_SYMBOL(page_to_pfn); 2845 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */ 2846