xref: /linux/mm/page_alloc.c (revision f2ee442115c9b6219083c019939a9cc0c9abb2f8)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
60 
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
63 #include "internal.h"
64 
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node);
67 EXPORT_PER_CPU_SYMBOL(numa_node);
68 #endif
69 
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
71 /*
72  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75  * defined in <linux/topology.h>.
76  */
77 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
79 #endif
80 
81 /*
82  * Array of node states.
83  */
84 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
85 	[N_POSSIBLE] = NODE_MASK_ALL,
86 	[N_ONLINE] = { { [0] = 1UL } },
87 #ifndef CONFIG_NUMA
88 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
89 #ifdef CONFIG_HIGHMEM
90 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
91 #endif
92 	[N_CPU] = { { [0] = 1UL } },
93 #endif	/* NUMA */
94 };
95 EXPORT_SYMBOL(node_states);
96 
97 unsigned long totalram_pages __read_mostly;
98 unsigned long totalreserve_pages __read_mostly;
99 int percpu_pagelist_fraction;
100 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
101 
102 #ifdef CONFIG_PM_SLEEP
103 /*
104  * The following functions are used by the suspend/hibernate code to temporarily
105  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106  * while devices are suspended.  To avoid races with the suspend/hibernate code,
107  * they should always be called with pm_mutex held (gfp_allowed_mask also should
108  * only be modified with pm_mutex held, unless the suspend/hibernate code is
109  * guaranteed not to run in parallel with that modification).
110  */
111 
112 static gfp_t saved_gfp_mask;
113 
114 void pm_restore_gfp_mask(void)
115 {
116 	WARN_ON(!mutex_is_locked(&pm_mutex));
117 	if (saved_gfp_mask) {
118 		gfp_allowed_mask = saved_gfp_mask;
119 		saved_gfp_mask = 0;
120 	}
121 }
122 
123 void pm_restrict_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	WARN_ON(saved_gfp_mask);
127 	saved_gfp_mask = gfp_allowed_mask;
128 	gfp_allowed_mask &= ~GFP_IOFS;
129 }
130 #endif /* CONFIG_PM_SLEEP */
131 
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly;
134 #endif
135 
136 static void __free_pages_ok(struct page *page, unsigned int order);
137 
138 /*
139  * results with 256, 32 in the lowmem_reserve sysctl:
140  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141  *	1G machine -> (16M dma, 784M normal, 224M high)
142  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
145  *
146  * TBD: should special case ZONE_DMA32 machines here - in those we normally
147  * don't need any ZONE_NORMAL reservation
148  */
149 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
150 #ifdef CONFIG_ZONE_DMA
151 	 256,
152 #endif
153 #ifdef CONFIG_ZONE_DMA32
154 	 256,
155 #endif
156 #ifdef CONFIG_HIGHMEM
157 	 32,
158 #endif
159 	 32,
160 };
161 
162 EXPORT_SYMBOL(totalram_pages);
163 
164 static char * const zone_names[MAX_NR_ZONES] = {
165 #ifdef CONFIG_ZONE_DMA
166 	 "DMA",
167 #endif
168 #ifdef CONFIG_ZONE_DMA32
169 	 "DMA32",
170 #endif
171 	 "Normal",
172 #ifdef CONFIG_HIGHMEM
173 	 "HighMem",
174 #endif
175 	 "Movable",
176 };
177 
178 int min_free_kbytes = 1024;
179 
180 static unsigned long __meminitdata nr_kernel_pages;
181 static unsigned long __meminitdata nr_all_pages;
182 static unsigned long __meminitdata dma_reserve;
183 
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
185   /*
186    * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187    * ranges of memory (RAM) that may be registered with add_active_range().
188    * Ranges passed to add_active_range() will be merged if possible
189    * so the number of times add_active_range() can be called is
190    * related to the number of nodes and the number of holes
191    */
192   #ifdef CONFIG_MAX_ACTIVE_REGIONS
193     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
195   #else
196     #if MAX_NUMNODES >= 32
197       /* If there can be many nodes, allow up to 50 holes per node */
198       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
199     #else
200       /* By default, allow up to 256 distinct regions */
201       #define MAX_ACTIVE_REGIONS 256
202     #endif
203   #endif
204 
205   static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
206   static int __meminitdata nr_nodemap_entries;
207   static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
208   static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
209   static unsigned long __initdata required_kernelcore;
210   static unsigned long __initdata required_movablecore;
211   static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
212 
213   /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
214   int movable_zone;
215   EXPORT_SYMBOL(movable_zone);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
217 
218 #if MAX_NUMNODES > 1
219 int nr_node_ids __read_mostly = MAX_NUMNODES;
220 int nr_online_nodes __read_mostly = 1;
221 EXPORT_SYMBOL(nr_node_ids);
222 EXPORT_SYMBOL(nr_online_nodes);
223 #endif
224 
225 int page_group_by_mobility_disabled __read_mostly;
226 
227 static void set_pageblock_migratetype(struct page *page, int migratetype)
228 {
229 
230 	if (unlikely(page_group_by_mobility_disabled))
231 		migratetype = MIGRATE_UNMOVABLE;
232 
233 	set_pageblock_flags_group(page, (unsigned long)migratetype,
234 					PB_migrate, PB_migrate_end);
235 }
236 
237 bool oom_killer_disabled __read_mostly;
238 
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
241 {
242 	int ret = 0;
243 	unsigned seq;
244 	unsigned long pfn = page_to_pfn(page);
245 
246 	do {
247 		seq = zone_span_seqbegin(zone);
248 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
249 			ret = 1;
250 		else if (pfn < zone->zone_start_pfn)
251 			ret = 1;
252 	} while (zone_span_seqretry(zone, seq));
253 
254 	return ret;
255 }
256 
257 static int page_is_consistent(struct zone *zone, struct page *page)
258 {
259 	if (!pfn_valid_within(page_to_pfn(page)))
260 		return 0;
261 	if (zone != page_zone(page))
262 		return 0;
263 
264 	return 1;
265 }
266 /*
267  * Temporary debugging check for pages not lying within a given zone.
268  */
269 static int bad_range(struct zone *zone, struct page *page)
270 {
271 	if (page_outside_zone_boundaries(zone, page))
272 		return 1;
273 	if (!page_is_consistent(zone, page))
274 		return 1;
275 
276 	return 0;
277 }
278 #else
279 static inline int bad_range(struct zone *zone, struct page *page)
280 {
281 	return 0;
282 }
283 #endif
284 
285 static void bad_page(struct page *page)
286 {
287 	static unsigned long resume;
288 	static unsigned long nr_shown;
289 	static unsigned long nr_unshown;
290 
291 	/* Don't complain about poisoned pages */
292 	if (PageHWPoison(page)) {
293 		reset_page_mapcount(page); /* remove PageBuddy */
294 		return;
295 	}
296 
297 	/*
298 	 * Allow a burst of 60 reports, then keep quiet for that minute;
299 	 * or allow a steady drip of one report per second.
300 	 */
301 	if (nr_shown == 60) {
302 		if (time_before(jiffies, resume)) {
303 			nr_unshown++;
304 			goto out;
305 		}
306 		if (nr_unshown) {
307 			printk(KERN_ALERT
308 			      "BUG: Bad page state: %lu messages suppressed\n",
309 				nr_unshown);
310 			nr_unshown = 0;
311 		}
312 		nr_shown = 0;
313 	}
314 	if (nr_shown++ == 0)
315 		resume = jiffies + 60 * HZ;
316 
317 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
318 		current->comm, page_to_pfn(page));
319 	dump_page(page);
320 
321 	print_modules();
322 	dump_stack();
323 out:
324 	/* Leave bad fields for debug, except PageBuddy could make trouble */
325 	reset_page_mapcount(page); /* remove PageBuddy */
326 	add_taint(TAINT_BAD_PAGE);
327 }
328 
329 /*
330  * Higher-order pages are called "compound pages".  They are structured thusly:
331  *
332  * The first PAGE_SIZE page is called the "head page".
333  *
334  * The remaining PAGE_SIZE pages are called "tail pages".
335  *
336  * All pages have PG_compound set.  All pages have their ->private pointing at
337  * the head page (even the head page has this).
338  *
339  * The first tail page's ->lru.next holds the address of the compound page's
340  * put_page() function.  Its ->lru.prev holds the order of allocation.
341  * This usage means that zero-order pages may not be compound.
342  */
343 
344 static void free_compound_page(struct page *page)
345 {
346 	__free_pages_ok(page, compound_order(page));
347 }
348 
349 void prep_compound_page(struct page *page, unsigned long order)
350 {
351 	int i;
352 	int nr_pages = 1 << order;
353 
354 	set_compound_page_dtor(page, free_compound_page);
355 	set_compound_order(page, order);
356 	__SetPageHead(page);
357 	for (i = 1; i < nr_pages; i++) {
358 		struct page *p = page + i;
359 
360 		__SetPageTail(p);
361 		p->first_page = page;
362 	}
363 }
364 
365 /* update __split_huge_page_refcount if you change this function */
366 static int destroy_compound_page(struct page *page, unsigned long order)
367 {
368 	int i;
369 	int nr_pages = 1 << order;
370 	int bad = 0;
371 
372 	if (unlikely(compound_order(page) != order) ||
373 	    unlikely(!PageHead(page))) {
374 		bad_page(page);
375 		bad++;
376 	}
377 
378 	__ClearPageHead(page);
379 
380 	for (i = 1; i < nr_pages; i++) {
381 		struct page *p = page + i;
382 
383 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
384 			bad_page(page);
385 			bad++;
386 		}
387 		__ClearPageTail(p);
388 	}
389 
390 	return bad;
391 }
392 
393 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
394 {
395 	int i;
396 
397 	/*
398 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
399 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 	 */
401 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
402 	for (i = 0; i < (1 << order); i++)
403 		clear_highpage(page + i);
404 }
405 
406 static inline void set_page_order(struct page *page, int order)
407 {
408 	set_page_private(page, order);
409 	__SetPageBuddy(page);
410 }
411 
412 static inline void rmv_page_order(struct page *page)
413 {
414 	__ClearPageBuddy(page);
415 	set_page_private(page, 0);
416 }
417 
418 /*
419  * Locate the struct page for both the matching buddy in our
420  * pair (buddy1) and the combined O(n+1) page they form (page).
421  *
422  * 1) Any buddy B1 will have an order O twin B2 which satisfies
423  * the following equation:
424  *     B2 = B1 ^ (1 << O)
425  * For example, if the starting buddy (buddy2) is #8 its order
426  * 1 buddy is #10:
427  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428  *
429  * 2) Any buddy B will have an order O+1 parent P which
430  * satisfies the following equation:
431  *     P = B & ~(1 << O)
432  *
433  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434  */
435 static inline unsigned long
436 __find_buddy_index(unsigned long page_idx, unsigned int order)
437 {
438 	return page_idx ^ (1 << order);
439 }
440 
441 /*
442  * This function checks whether a page is free && is the buddy
443  * we can do coalesce a page and its buddy if
444  * (a) the buddy is not in a hole &&
445  * (b) the buddy is in the buddy system &&
446  * (c) a page and its buddy have the same order &&
447  * (d) a page and its buddy are in the same zone.
448  *
449  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
450  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451  *
452  * For recording page's order, we use page_private(page).
453  */
454 static inline int page_is_buddy(struct page *page, struct page *buddy,
455 								int order)
456 {
457 	if (!pfn_valid_within(page_to_pfn(buddy)))
458 		return 0;
459 
460 	if (page_zone_id(page) != page_zone_id(buddy))
461 		return 0;
462 
463 	if (PageBuddy(buddy) && page_order(buddy) == order) {
464 		VM_BUG_ON(page_count(buddy) != 0);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 /*
471  * Freeing function for a buddy system allocator.
472  *
473  * The concept of a buddy system is to maintain direct-mapped table
474  * (containing bit values) for memory blocks of various "orders".
475  * The bottom level table contains the map for the smallest allocatable
476  * units of memory (here, pages), and each level above it describes
477  * pairs of units from the levels below, hence, "buddies".
478  * At a high level, all that happens here is marking the table entry
479  * at the bottom level available, and propagating the changes upward
480  * as necessary, plus some accounting needed to play nicely with other
481  * parts of the VM system.
482  * At each level, we keep a list of pages, which are heads of continuous
483  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
484  * order is recorded in page_private(page) field.
485  * So when we are allocating or freeing one, we can derive the state of the
486  * other.  That is, if we allocate a small block, and both were
487  * free, the remainder of the region must be split into blocks.
488  * If a block is freed, and its buddy is also free, then this
489  * triggers coalescing into a block of larger size.
490  *
491  * -- wli
492  */
493 
494 static inline void __free_one_page(struct page *page,
495 		struct zone *zone, unsigned int order,
496 		int migratetype)
497 {
498 	unsigned long page_idx;
499 	unsigned long combined_idx;
500 	unsigned long uninitialized_var(buddy_idx);
501 	struct page *buddy;
502 
503 	if (unlikely(PageCompound(page)))
504 		if (unlikely(destroy_compound_page(page, order)))
505 			return;
506 
507 	VM_BUG_ON(migratetype == -1);
508 
509 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
510 
511 	VM_BUG_ON(page_idx & ((1 << order) - 1));
512 	VM_BUG_ON(bad_range(zone, page));
513 
514 	while (order < MAX_ORDER-1) {
515 		buddy_idx = __find_buddy_index(page_idx, order);
516 		buddy = page + (buddy_idx - page_idx);
517 		if (!page_is_buddy(page, buddy, order))
518 			break;
519 
520 		/* Our buddy is free, merge with it and move up one order. */
521 		list_del(&buddy->lru);
522 		zone->free_area[order].nr_free--;
523 		rmv_page_order(buddy);
524 		combined_idx = buddy_idx & page_idx;
525 		page = page + (combined_idx - page_idx);
526 		page_idx = combined_idx;
527 		order++;
528 	}
529 	set_page_order(page, order);
530 
531 	/*
532 	 * If this is not the largest possible page, check if the buddy
533 	 * of the next-highest order is free. If it is, it's possible
534 	 * that pages are being freed that will coalesce soon. In case,
535 	 * that is happening, add the free page to the tail of the list
536 	 * so it's less likely to be used soon and more likely to be merged
537 	 * as a higher order page
538 	 */
539 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
540 		struct page *higher_page, *higher_buddy;
541 		combined_idx = buddy_idx & page_idx;
542 		higher_page = page + (combined_idx - page_idx);
543 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
544 		higher_buddy = page + (buddy_idx - combined_idx);
545 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
546 			list_add_tail(&page->lru,
547 				&zone->free_area[order].free_list[migratetype]);
548 			goto out;
549 		}
550 	}
551 
552 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
553 out:
554 	zone->free_area[order].nr_free++;
555 }
556 
557 /*
558  * free_page_mlock() -- clean up attempts to free and mlocked() page.
559  * Page should not be on lru, so no need to fix that up.
560  * free_pages_check() will verify...
561  */
562 static inline void free_page_mlock(struct page *page)
563 {
564 	__dec_zone_page_state(page, NR_MLOCK);
565 	__count_vm_event(UNEVICTABLE_MLOCKFREED);
566 }
567 
568 static inline int free_pages_check(struct page *page)
569 {
570 	if (unlikely(page_mapcount(page) |
571 		(page->mapping != NULL)  |
572 		(atomic_read(&page->_count) != 0) |
573 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
574 		(mem_cgroup_bad_page_check(page)))) {
575 		bad_page(page);
576 		return 1;
577 	}
578 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
579 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
580 	return 0;
581 }
582 
583 /*
584  * Frees a number of pages from the PCP lists
585  * Assumes all pages on list are in same zone, and of same order.
586  * count is the number of pages to free.
587  *
588  * If the zone was previously in an "all pages pinned" state then look to
589  * see if this freeing clears that state.
590  *
591  * And clear the zone's pages_scanned counter, to hold off the "all pages are
592  * pinned" detection logic.
593  */
594 static void free_pcppages_bulk(struct zone *zone, int count,
595 					struct per_cpu_pages *pcp)
596 {
597 	int migratetype = 0;
598 	int batch_free = 0;
599 	int to_free = count;
600 
601 	spin_lock(&zone->lock);
602 	zone->all_unreclaimable = 0;
603 	zone->pages_scanned = 0;
604 
605 	while (to_free) {
606 		struct page *page;
607 		struct list_head *list;
608 
609 		/*
610 		 * Remove pages from lists in a round-robin fashion. A
611 		 * batch_free count is maintained that is incremented when an
612 		 * empty list is encountered.  This is so more pages are freed
613 		 * off fuller lists instead of spinning excessively around empty
614 		 * lists
615 		 */
616 		do {
617 			batch_free++;
618 			if (++migratetype == MIGRATE_PCPTYPES)
619 				migratetype = 0;
620 			list = &pcp->lists[migratetype];
621 		} while (list_empty(list));
622 
623 		/* This is the only non-empty list. Free them all. */
624 		if (batch_free == MIGRATE_PCPTYPES)
625 			batch_free = to_free;
626 
627 		do {
628 			page = list_entry(list->prev, struct page, lru);
629 			/* must delete as __free_one_page list manipulates */
630 			list_del(&page->lru);
631 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
632 			__free_one_page(page, zone, 0, page_private(page));
633 			trace_mm_page_pcpu_drain(page, 0, page_private(page));
634 		} while (--to_free && --batch_free && !list_empty(list));
635 	}
636 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
637 	spin_unlock(&zone->lock);
638 }
639 
640 static void free_one_page(struct zone *zone, struct page *page, int order,
641 				int migratetype)
642 {
643 	spin_lock(&zone->lock);
644 	zone->all_unreclaimable = 0;
645 	zone->pages_scanned = 0;
646 
647 	__free_one_page(page, zone, order, migratetype);
648 	__mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
649 	spin_unlock(&zone->lock);
650 }
651 
652 static bool free_pages_prepare(struct page *page, unsigned int order)
653 {
654 	int i;
655 	int bad = 0;
656 
657 	trace_mm_page_free_direct(page, order);
658 	kmemcheck_free_shadow(page, order);
659 
660 	if (PageAnon(page))
661 		page->mapping = NULL;
662 	for (i = 0; i < (1 << order); i++)
663 		bad += free_pages_check(page + i);
664 	if (bad)
665 		return false;
666 
667 	if (!PageHighMem(page)) {
668 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
669 		debug_check_no_obj_freed(page_address(page),
670 					   PAGE_SIZE << order);
671 	}
672 	arch_free_page(page, order);
673 	kernel_map_pages(page, 1 << order, 0);
674 
675 	return true;
676 }
677 
678 static void __free_pages_ok(struct page *page, unsigned int order)
679 {
680 	unsigned long flags;
681 	int wasMlocked = __TestClearPageMlocked(page);
682 
683 	if (!free_pages_prepare(page, order))
684 		return;
685 
686 	local_irq_save(flags);
687 	if (unlikely(wasMlocked))
688 		free_page_mlock(page);
689 	__count_vm_events(PGFREE, 1 << order);
690 	free_one_page(page_zone(page), page, order,
691 					get_pageblock_migratetype(page));
692 	local_irq_restore(flags);
693 }
694 
695 /*
696  * permit the bootmem allocator to evade page validation on high-order frees
697  */
698 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
699 {
700 	if (order == 0) {
701 		__ClearPageReserved(page);
702 		set_page_count(page, 0);
703 		set_page_refcounted(page);
704 		__free_page(page);
705 	} else {
706 		int loop;
707 
708 		prefetchw(page);
709 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
710 			struct page *p = &page[loop];
711 
712 			if (loop + 1 < BITS_PER_LONG)
713 				prefetchw(p + 1);
714 			__ClearPageReserved(p);
715 			set_page_count(p, 0);
716 		}
717 
718 		set_page_refcounted(page);
719 		__free_pages(page, order);
720 	}
721 }
722 
723 
724 /*
725  * The order of subdivision here is critical for the IO subsystem.
726  * Please do not alter this order without good reasons and regression
727  * testing. Specifically, as large blocks of memory are subdivided,
728  * the order in which smaller blocks are delivered depends on the order
729  * they're subdivided in this function. This is the primary factor
730  * influencing the order in which pages are delivered to the IO
731  * subsystem according to empirical testing, and this is also justified
732  * by considering the behavior of a buddy system containing a single
733  * large block of memory acted on by a series of small allocations.
734  * This behavior is a critical factor in sglist merging's success.
735  *
736  * -- wli
737  */
738 static inline void expand(struct zone *zone, struct page *page,
739 	int low, int high, struct free_area *area,
740 	int migratetype)
741 {
742 	unsigned long size = 1 << high;
743 
744 	while (high > low) {
745 		area--;
746 		high--;
747 		size >>= 1;
748 		VM_BUG_ON(bad_range(zone, &page[size]));
749 		list_add(&page[size].lru, &area->free_list[migratetype]);
750 		area->nr_free++;
751 		set_page_order(&page[size], high);
752 	}
753 }
754 
755 /*
756  * This page is about to be returned from the page allocator
757  */
758 static inline int check_new_page(struct page *page)
759 {
760 	if (unlikely(page_mapcount(page) |
761 		(page->mapping != NULL)  |
762 		(atomic_read(&page->_count) != 0)  |
763 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
764 		(mem_cgroup_bad_page_check(page)))) {
765 		bad_page(page);
766 		return 1;
767 	}
768 	return 0;
769 }
770 
771 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
772 {
773 	int i;
774 
775 	for (i = 0; i < (1 << order); i++) {
776 		struct page *p = page + i;
777 		if (unlikely(check_new_page(p)))
778 			return 1;
779 	}
780 
781 	set_page_private(page, 0);
782 	set_page_refcounted(page);
783 
784 	arch_alloc_page(page, order);
785 	kernel_map_pages(page, 1 << order, 1);
786 
787 	if (gfp_flags & __GFP_ZERO)
788 		prep_zero_page(page, order, gfp_flags);
789 
790 	if (order && (gfp_flags & __GFP_COMP))
791 		prep_compound_page(page, order);
792 
793 	return 0;
794 }
795 
796 /*
797  * Go through the free lists for the given migratetype and remove
798  * the smallest available page from the freelists
799  */
800 static inline
801 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
802 						int migratetype)
803 {
804 	unsigned int current_order;
805 	struct free_area * area;
806 	struct page *page;
807 
808 	/* Find a page of the appropriate size in the preferred list */
809 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
810 		area = &(zone->free_area[current_order]);
811 		if (list_empty(&area->free_list[migratetype]))
812 			continue;
813 
814 		page = list_entry(area->free_list[migratetype].next,
815 							struct page, lru);
816 		list_del(&page->lru);
817 		rmv_page_order(page);
818 		area->nr_free--;
819 		expand(zone, page, order, current_order, area, migratetype);
820 		return page;
821 	}
822 
823 	return NULL;
824 }
825 
826 
827 /*
828  * This array describes the order lists are fallen back to when
829  * the free lists for the desirable migrate type are depleted
830  */
831 static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
832 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_RESERVE },
833 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_RESERVE },
834 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
835 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE,     MIGRATE_RESERVE,   MIGRATE_RESERVE }, /* Never used */
836 };
837 
838 /*
839  * Move the free pages in a range to the free lists of the requested type.
840  * Note that start_page and end_pages are not aligned on a pageblock
841  * boundary. If alignment is required, use move_freepages_block()
842  */
843 static int move_freepages(struct zone *zone,
844 			  struct page *start_page, struct page *end_page,
845 			  int migratetype)
846 {
847 	struct page *page;
848 	unsigned long order;
849 	int pages_moved = 0;
850 
851 #ifndef CONFIG_HOLES_IN_ZONE
852 	/*
853 	 * page_zone is not safe to call in this context when
854 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
855 	 * anyway as we check zone boundaries in move_freepages_block().
856 	 * Remove at a later date when no bug reports exist related to
857 	 * grouping pages by mobility
858 	 */
859 	BUG_ON(page_zone(start_page) != page_zone(end_page));
860 #endif
861 
862 	for (page = start_page; page <= end_page;) {
863 		/* Make sure we are not inadvertently changing nodes */
864 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
865 
866 		if (!pfn_valid_within(page_to_pfn(page))) {
867 			page++;
868 			continue;
869 		}
870 
871 		if (!PageBuddy(page)) {
872 			page++;
873 			continue;
874 		}
875 
876 		order = page_order(page);
877 		list_move(&page->lru,
878 			  &zone->free_area[order].free_list[migratetype]);
879 		page += 1 << order;
880 		pages_moved += 1 << order;
881 	}
882 
883 	return pages_moved;
884 }
885 
886 static int move_freepages_block(struct zone *zone, struct page *page,
887 				int migratetype)
888 {
889 	unsigned long start_pfn, end_pfn;
890 	struct page *start_page, *end_page;
891 
892 	start_pfn = page_to_pfn(page);
893 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
894 	start_page = pfn_to_page(start_pfn);
895 	end_page = start_page + pageblock_nr_pages - 1;
896 	end_pfn = start_pfn + pageblock_nr_pages - 1;
897 
898 	/* Do not cross zone boundaries */
899 	if (start_pfn < zone->zone_start_pfn)
900 		start_page = page;
901 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
902 		return 0;
903 
904 	return move_freepages(zone, start_page, end_page, migratetype);
905 }
906 
907 static void change_pageblock_range(struct page *pageblock_page,
908 					int start_order, int migratetype)
909 {
910 	int nr_pageblocks = 1 << (start_order - pageblock_order);
911 
912 	while (nr_pageblocks--) {
913 		set_pageblock_migratetype(pageblock_page, migratetype);
914 		pageblock_page += pageblock_nr_pages;
915 	}
916 }
917 
918 /* Remove an element from the buddy allocator from the fallback list */
919 static inline struct page *
920 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
921 {
922 	struct free_area * area;
923 	int current_order;
924 	struct page *page;
925 	int migratetype, i;
926 
927 	/* Find the largest possible block of pages in the other list */
928 	for (current_order = MAX_ORDER-1; current_order >= order;
929 						--current_order) {
930 		for (i = 0; i < MIGRATE_TYPES - 1; i++) {
931 			migratetype = fallbacks[start_migratetype][i];
932 
933 			/* MIGRATE_RESERVE handled later if necessary */
934 			if (migratetype == MIGRATE_RESERVE)
935 				continue;
936 
937 			area = &(zone->free_area[current_order]);
938 			if (list_empty(&area->free_list[migratetype]))
939 				continue;
940 
941 			page = list_entry(area->free_list[migratetype].next,
942 					struct page, lru);
943 			area->nr_free--;
944 
945 			/*
946 			 * If breaking a large block of pages, move all free
947 			 * pages to the preferred allocation list. If falling
948 			 * back for a reclaimable kernel allocation, be more
949 			 * aggressive about taking ownership of free pages
950 			 */
951 			if (unlikely(current_order >= (pageblock_order >> 1)) ||
952 					start_migratetype == MIGRATE_RECLAIMABLE ||
953 					page_group_by_mobility_disabled) {
954 				unsigned long pages;
955 				pages = move_freepages_block(zone, page,
956 								start_migratetype);
957 
958 				/* Claim the whole block if over half of it is free */
959 				if (pages >= (1 << (pageblock_order-1)) ||
960 						page_group_by_mobility_disabled)
961 					set_pageblock_migratetype(page,
962 								start_migratetype);
963 
964 				migratetype = start_migratetype;
965 			}
966 
967 			/* Remove the page from the freelists */
968 			list_del(&page->lru);
969 			rmv_page_order(page);
970 
971 			/* Take ownership for orders >= pageblock_order */
972 			if (current_order >= pageblock_order)
973 				change_pageblock_range(page, current_order,
974 							start_migratetype);
975 
976 			expand(zone, page, order, current_order, area, migratetype);
977 
978 			trace_mm_page_alloc_extfrag(page, order, current_order,
979 				start_migratetype, migratetype);
980 
981 			return page;
982 		}
983 	}
984 
985 	return NULL;
986 }
987 
988 /*
989  * Do the hard work of removing an element from the buddy allocator.
990  * Call me with the zone->lock already held.
991  */
992 static struct page *__rmqueue(struct zone *zone, unsigned int order,
993 						int migratetype)
994 {
995 	struct page *page;
996 
997 retry_reserve:
998 	page = __rmqueue_smallest(zone, order, migratetype);
999 
1000 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1001 		page = __rmqueue_fallback(zone, order, migratetype);
1002 
1003 		/*
1004 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1005 		 * is used because __rmqueue_smallest is an inline function
1006 		 * and we want just one call site
1007 		 */
1008 		if (!page) {
1009 			migratetype = MIGRATE_RESERVE;
1010 			goto retry_reserve;
1011 		}
1012 	}
1013 
1014 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1015 	return page;
1016 }
1017 
1018 /*
1019  * Obtain a specified number of elements from the buddy allocator, all under
1020  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1021  * Returns the number of new pages which were placed at *list.
1022  */
1023 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1024 			unsigned long count, struct list_head *list,
1025 			int migratetype, int cold)
1026 {
1027 	int i;
1028 
1029 	spin_lock(&zone->lock);
1030 	for (i = 0; i < count; ++i) {
1031 		struct page *page = __rmqueue(zone, order, migratetype);
1032 		if (unlikely(page == NULL))
1033 			break;
1034 
1035 		/*
1036 		 * Split buddy pages returned by expand() are received here
1037 		 * in physical page order. The page is added to the callers and
1038 		 * list and the list head then moves forward. From the callers
1039 		 * perspective, the linked list is ordered by page number in
1040 		 * some conditions. This is useful for IO devices that can
1041 		 * merge IO requests if the physical pages are ordered
1042 		 * properly.
1043 		 */
1044 		if (likely(cold == 0))
1045 			list_add(&page->lru, list);
1046 		else
1047 			list_add_tail(&page->lru, list);
1048 		set_page_private(page, migratetype);
1049 		list = &page->lru;
1050 	}
1051 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1052 	spin_unlock(&zone->lock);
1053 	return i;
1054 }
1055 
1056 #ifdef CONFIG_NUMA
1057 /*
1058  * Called from the vmstat counter updater to drain pagesets of this
1059  * currently executing processor on remote nodes after they have
1060  * expired.
1061  *
1062  * Note that this function must be called with the thread pinned to
1063  * a single processor.
1064  */
1065 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1066 {
1067 	unsigned long flags;
1068 	int to_drain;
1069 
1070 	local_irq_save(flags);
1071 	if (pcp->count >= pcp->batch)
1072 		to_drain = pcp->batch;
1073 	else
1074 		to_drain = pcp->count;
1075 	free_pcppages_bulk(zone, to_drain, pcp);
1076 	pcp->count -= to_drain;
1077 	local_irq_restore(flags);
1078 }
1079 #endif
1080 
1081 /*
1082  * Drain pages of the indicated processor.
1083  *
1084  * The processor must either be the current processor and the
1085  * thread pinned to the current processor or a processor that
1086  * is not online.
1087  */
1088 static void drain_pages(unsigned int cpu)
1089 {
1090 	unsigned long flags;
1091 	struct zone *zone;
1092 
1093 	for_each_populated_zone(zone) {
1094 		struct per_cpu_pageset *pset;
1095 		struct per_cpu_pages *pcp;
1096 
1097 		local_irq_save(flags);
1098 		pset = per_cpu_ptr(zone->pageset, cpu);
1099 
1100 		pcp = &pset->pcp;
1101 		if (pcp->count) {
1102 			free_pcppages_bulk(zone, pcp->count, pcp);
1103 			pcp->count = 0;
1104 		}
1105 		local_irq_restore(flags);
1106 	}
1107 }
1108 
1109 /*
1110  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111  */
1112 void drain_local_pages(void *arg)
1113 {
1114 	drain_pages(smp_processor_id());
1115 }
1116 
1117 /*
1118  * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119  */
1120 void drain_all_pages(void)
1121 {
1122 	on_each_cpu(drain_local_pages, NULL, 1);
1123 }
1124 
1125 #ifdef CONFIG_HIBERNATION
1126 
1127 void mark_free_pages(struct zone *zone)
1128 {
1129 	unsigned long pfn, max_zone_pfn;
1130 	unsigned long flags;
1131 	int order, t;
1132 	struct list_head *curr;
1133 
1134 	if (!zone->spanned_pages)
1135 		return;
1136 
1137 	spin_lock_irqsave(&zone->lock, flags);
1138 
1139 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1140 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1141 		if (pfn_valid(pfn)) {
1142 			struct page *page = pfn_to_page(pfn);
1143 
1144 			if (!swsusp_page_is_forbidden(page))
1145 				swsusp_unset_page_free(page);
1146 		}
1147 
1148 	for_each_migratetype_order(order, t) {
1149 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1150 			unsigned long i;
1151 
1152 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1153 			for (i = 0; i < (1UL << order); i++)
1154 				swsusp_set_page_free(pfn_to_page(pfn + i));
1155 		}
1156 	}
1157 	spin_unlock_irqrestore(&zone->lock, flags);
1158 }
1159 #endif /* CONFIG_PM */
1160 
1161 /*
1162  * Free a 0-order page
1163  * cold == 1 ? free a cold page : free a hot page
1164  */
1165 void free_hot_cold_page(struct page *page, int cold)
1166 {
1167 	struct zone *zone = page_zone(page);
1168 	struct per_cpu_pages *pcp;
1169 	unsigned long flags;
1170 	int migratetype;
1171 	int wasMlocked = __TestClearPageMlocked(page);
1172 
1173 	if (!free_pages_prepare(page, 0))
1174 		return;
1175 
1176 	migratetype = get_pageblock_migratetype(page);
1177 	set_page_private(page, migratetype);
1178 	local_irq_save(flags);
1179 	if (unlikely(wasMlocked))
1180 		free_page_mlock(page);
1181 	__count_vm_event(PGFREE);
1182 
1183 	/*
1184 	 * We only track unmovable, reclaimable and movable on pcp lists.
1185 	 * Free ISOLATE pages back to the allocator because they are being
1186 	 * offlined but treat RESERVE as movable pages so we can get those
1187 	 * areas back if necessary. Otherwise, we may have to free
1188 	 * excessively into the page allocator
1189 	 */
1190 	if (migratetype >= MIGRATE_PCPTYPES) {
1191 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1192 			free_one_page(zone, page, 0, migratetype);
1193 			goto out;
1194 		}
1195 		migratetype = MIGRATE_MOVABLE;
1196 	}
1197 
1198 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1199 	if (cold)
1200 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1201 	else
1202 		list_add(&page->lru, &pcp->lists[migratetype]);
1203 	pcp->count++;
1204 	if (pcp->count >= pcp->high) {
1205 		free_pcppages_bulk(zone, pcp->batch, pcp);
1206 		pcp->count -= pcp->batch;
1207 	}
1208 
1209 out:
1210 	local_irq_restore(flags);
1211 }
1212 
1213 /*
1214  * split_page takes a non-compound higher-order page, and splits it into
1215  * n (1<<order) sub-pages: page[0..n]
1216  * Each sub-page must be freed individually.
1217  *
1218  * Note: this is probably too low level an operation for use in drivers.
1219  * Please consult with lkml before using this in your driver.
1220  */
1221 void split_page(struct page *page, unsigned int order)
1222 {
1223 	int i;
1224 
1225 	VM_BUG_ON(PageCompound(page));
1226 	VM_BUG_ON(!page_count(page));
1227 
1228 #ifdef CONFIG_KMEMCHECK
1229 	/*
1230 	 * Split shadow pages too, because free(page[0]) would
1231 	 * otherwise free the whole shadow.
1232 	 */
1233 	if (kmemcheck_page_is_tracked(page))
1234 		split_page(virt_to_page(page[0].shadow), order);
1235 #endif
1236 
1237 	for (i = 1; i < (1 << order); i++)
1238 		set_page_refcounted(page + i);
1239 }
1240 
1241 /*
1242  * Similar to split_page except the page is already free. As this is only
1243  * being used for migration, the migratetype of the block also changes.
1244  * As this is called with interrupts disabled, the caller is responsible
1245  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1246  * are enabled.
1247  *
1248  * Note: this is probably too low level an operation for use in drivers.
1249  * Please consult with lkml before using this in your driver.
1250  */
1251 int split_free_page(struct page *page)
1252 {
1253 	unsigned int order;
1254 	unsigned long watermark;
1255 	struct zone *zone;
1256 
1257 	BUG_ON(!PageBuddy(page));
1258 
1259 	zone = page_zone(page);
1260 	order = page_order(page);
1261 
1262 	/* Obey watermarks as if the page was being allocated */
1263 	watermark = low_wmark_pages(zone) + (1 << order);
1264 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1265 		return 0;
1266 
1267 	/* Remove page from free list */
1268 	list_del(&page->lru);
1269 	zone->free_area[order].nr_free--;
1270 	rmv_page_order(page);
1271 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1272 
1273 	/* Split into individual pages */
1274 	set_page_refcounted(page);
1275 	split_page(page, order);
1276 
1277 	if (order >= pageblock_order - 1) {
1278 		struct page *endpage = page + (1 << order) - 1;
1279 		for (; page < endpage; page += pageblock_nr_pages)
1280 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1281 	}
1282 
1283 	return 1 << order;
1284 }
1285 
1286 /*
1287  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1288  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1289  * or two.
1290  */
1291 static inline
1292 struct page *buffered_rmqueue(struct zone *preferred_zone,
1293 			struct zone *zone, int order, gfp_t gfp_flags,
1294 			int migratetype)
1295 {
1296 	unsigned long flags;
1297 	struct page *page;
1298 	int cold = !!(gfp_flags & __GFP_COLD);
1299 
1300 again:
1301 	if (likely(order == 0)) {
1302 		struct per_cpu_pages *pcp;
1303 		struct list_head *list;
1304 
1305 		local_irq_save(flags);
1306 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1307 		list = &pcp->lists[migratetype];
1308 		if (list_empty(list)) {
1309 			pcp->count += rmqueue_bulk(zone, 0,
1310 					pcp->batch, list,
1311 					migratetype, cold);
1312 			if (unlikely(list_empty(list)))
1313 				goto failed;
1314 		}
1315 
1316 		if (cold)
1317 			page = list_entry(list->prev, struct page, lru);
1318 		else
1319 			page = list_entry(list->next, struct page, lru);
1320 
1321 		list_del(&page->lru);
1322 		pcp->count--;
1323 	} else {
1324 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1325 			/*
1326 			 * __GFP_NOFAIL is not to be used in new code.
1327 			 *
1328 			 * All __GFP_NOFAIL callers should be fixed so that they
1329 			 * properly detect and handle allocation failures.
1330 			 *
1331 			 * We most definitely don't want callers attempting to
1332 			 * allocate greater than order-1 page units with
1333 			 * __GFP_NOFAIL.
1334 			 */
1335 			WARN_ON_ONCE(order > 1);
1336 		}
1337 		spin_lock_irqsave(&zone->lock, flags);
1338 		page = __rmqueue(zone, order, migratetype);
1339 		spin_unlock(&zone->lock);
1340 		if (!page)
1341 			goto failed;
1342 		__mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1343 	}
1344 
1345 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1346 	zone_statistics(preferred_zone, zone, gfp_flags);
1347 	local_irq_restore(flags);
1348 
1349 	VM_BUG_ON(bad_range(zone, page));
1350 	if (prep_new_page(page, order, gfp_flags))
1351 		goto again;
1352 	return page;
1353 
1354 failed:
1355 	local_irq_restore(flags);
1356 	return NULL;
1357 }
1358 
1359 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1360 #define ALLOC_WMARK_MIN		WMARK_MIN
1361 #define ALLOC_WMARK_LOW		WMARK_LOW
1362 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1363 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1364 
1365 /* Mask to get the watermark bits */
1366 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1367 
1368 #define ALLOC_HARDER		0x10 /* try to alloc harder */
1369 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
1370 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
1371 
1372 #ifdef CONFIG_FAIL_PAGE_ALLOC
1373 
1374 static struct {
1375 	struct fault_attr attr;
1376 
1377 	u32 ignore_gfp_highmem;
1378 	u32 ignore_gfp_wait;
1379 	u32 min_order;
1380 } fail_page_alloc = {
1381 	.attr = FAULT_ATTR_INITIALIZER,
1382 	.ignore_gfp_wait = 1,
1383 	.ignore_gfp_highmem = 1,
1384 	.min_order = 1,
1385 };
1386 
1387 static int __init setup_fail_page_alloc(char *str)
1388 {
1389 	return setup_fault_attr(&fail_page_alloc.attr, str);
1390 }
1391 __setup("fail_page_alloc=", setup_fail_page_alloc);
1392 
1393 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1394 {
1395 	if (order < fail_page_alloc.min_order)
1396 		return 0;
1397 	if (gfp_mask & __GFP_NOFAIL)
1398 		return 0;
1399 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1400 		return 0;
1401 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1402 		return 0;
1403 
1404 	return should_fail(&fail_page_alloc.attr, 1 << order);
1405 }
1406 
1407 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408 
1409 static int __init fail_page_alloc_debugfs(void)
1410 {
1411 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1412 	struct dentry *dir;
1413 
1414 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1415 					&fail_page_alloc.attr);
1416 	if (IS_ERR(dir))
1417 		return PTR_ERR(dir);
1418 
1419 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1420 				&fail_page_alloc.ignore_gfp_wait))
1421 		goto fail;
1422 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1423 				&fail_page_alloc.ignore_gfp_highmem))
1424 		goto fail;
1425 	if (!debugfs_create_u32("min-order", mode, dir,
1426 				&fail_page_alloc.min_order))
1427 		goto fail;
1428 
1429 	return 0;
1430 fail:
1431 	debugfs_remove_recursive(dir);
1432 
1433 	return -ENOMEM;
1434 }
1435 
1436 late_initcall(fail_page_alloc_debugfs);
1437 
1438 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1439 
1440 #else /* CONFIG_FAIL_PAGE_ALLOC */
1441 
1442 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1443 {
1444 	return 0;
1445 }
1446 
1447 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1448 
1449 /*
1450  * Return true if free pages are above 'mark'. This takes into account the order
1451  * of the allocation.
1452  */
1453 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1454 		      int classzone_idx, int alloc_flags, long free_pages)
1455 {
1456 	/* free_pages my go negative - that's OK */
1457 	long min = mark;
1458 	int o;
1459 
1460 	free_pages -= (1 << order) + 1;
1461 	if (alloc_flags & ALLOC_HIGH)
1462 		min -= min / 2;
1463 	if (alloc_flags & ALLOC_HARDER)
1464 		min -= min / 4;
1465 
1466 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1467 		return false;
1468 	for (o = 0; o < order; o++) {
1469 		/* At the next order, this order's pages become unavailable */
1470 		free_pages -= z->free_area[o].nr_free << o;
1471 
1472 		/* Require fewer higher order pages to be free */
1473 		min >>= 1;
1474 
1475 		if (free_pages <= min)
1476 			return false;
1477 	}
1478 	return true;
1479 }
1480 
1481 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1482 		      int classzone_idx, int alloc_flags)
1483 {
1484 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1485 					zone_page_state(z, NR_FREE_PAGES));
1486 }
1487 
1488 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1489 		      int classzone_idx, int alloc_flags)
1490 {
1491 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1492 
1493 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1494 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1495 
1496 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1497 								free_pages);
1498 }
1499 
1500 #ifdef CONFIG_NUMA
1501 /*
1502  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1503  * skip over zones that are not allowed by the cpuset, or that have
1504  * been recently (in last second) found to be nearly full.  See further
1505  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1506  * that have to skip over a lot of full or unallowed zones.
1507  *
1508  * If the zonelist cache is present in the passed in zonelist, then
1509  * returns a pointer to the allowed node mask (either the current
1510  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1511  *
1512  * If the zonelist cache is not available for this zonelist, does
1513  * nothing and returns NULL.
1514  *
1515  * If the fullzones BITMAP in the zonelist cache is stale (more than
1516  * a second since last zap'd) then we zap it out (clear its bits.)
1517  *
1518  * We hold off even calling zlc_setup, until after we've checked the
1519  * first zone in the zonelist, on the theory that most allocations will
1520  * be satisfied from that first zone, so best to examine that zone as
1521  * quickly as we can.
1522  */
1523 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1524 {
1525 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1526 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1527 
1528 	zlc = zonelist->zlcache_ptr;
1529 	if (!zlc)
1530 		return NULL;
1531 
1532 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1533 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1534 		zlc->last_full_zap = jiffies;
1535 	}
1536 
1537 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1538 					&cpuset_current_mems_allowed :
1539 					&node_states[N_HIGH_MEMORY];
1540 	return allowednodes;
1541 }
1542 
1543 /*
1544  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1545  * if it is worth looking at further for free memory:
1546  *  1) Check that the zone isn't thought to be full (doesn't have its
1547  *     bit set in the zonelist_cache fullzones BITMAP).
1548  *  2) Check that the zones node (obtained from the zonelist_cache
1549  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1550  * Return true (non-zero) if zone is worth looking at further, or
1551  * else return false (zero) if it is not.
1552  *
1553  * This check -ignores- the distinction between various watermarks,
1554  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1555  * found to be full for any variation of these watermarks, it will
1556  * be considered full for up to one second by all requests, unless
1557  * we are so low on memory on all allowed nodes that we are forced
1558  * into the second scan of the zonelist.
1559  *
1560  * In the second scan we ignore this zonelist cache and exactly
1561  * apply the watermarks to all zones, even it is slower to do so.
1562  * We are low on memory in the second scan, and should leave no stone
1563  * unturned looking for a free page.
1564  */
1565 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1566 						nodemask_t *allowednodes)
1567 {
1568 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1569 	int i;				/* index of *z in zonelist zones */
1570 	int n;				/* node that zone *z is on */
1571 
1572 	zlc = zonelist->zlcache_ptr;
1573 	if (!zlc)
1574 		return 1;
1575 
1576 	i = z - zonelist->_zonerefs;
1577 	n = zlc->z_to_n[i];
1578 
1579 	/* This zone is worth trying if it is allowed but not full */
1580 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1581 }
1582 
1583 /*
1584  * Given 'z' scanning a zonelist, set the corresponding bit in
1585  * zlc->fullzones, so that subsequent attempts to allocate a page
1586  * from that zone don't waste time re-examining it.
1587  */
1588 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1589 {
1590 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1591 	int i;				/* index of *z in zonelist zones */
1592 
1593 	zlc = zonelist->zlcache_ptr;
1594 	if (!zlc)
1595 		return;
1596 
1597 	i = z - zonelist->_zonerefs;
1598 
1599 	set_bit(i, zlc->fullzones);
1600 }
1601 
1602 /*
1603  * clear all zones full, called after direct reclaim makes progress so that
1604  * a zone that was recently full is not skipped over for up to a second
1605  */
1606 static void zlc_clear_zones_full(struct zonelist *zonelist)
1607 {
1608 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1609 
1610 	zlc = zonelist->zlcache_ptr;
1611 	if (!zlc)
1612 		return;
1613 
1614 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1615 }
1616 
1617 #else	/* CONFIG_NUMA */
1618 
1619 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1620 {
1621 	return NULL;
1622 }
1623 
1624 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1625 				nodemask_t *allowednodes)
1626 {
1627 	return 1;
1628 }
1629 
1630 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1631 {
1632 }
1633 
1634 static void zlc_clear_zones_full(struct zonelist *zonelist)
1635 {
1636 }
1637 #endif	/* CONFIG_NUMA */
1638 
1639 /*
1640  * get_page_from_freelist goes through the zonelist trying to allocate
1641  * a page.
1642  */
1643 static struct page *
1644 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1645 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1646 		struct zone *preferred_zone, int migratetype)
1647 {
1648 	struct zoneref *z;
1649 	struct page *page = NULL;
1650 	int classzone_idx;
1651 	struct zone *zone;
1652 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1653 	int zlc_active = 0;		/* set if using zonelist_cache */
1654 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1655 
1656 	classzone_idx = zone_idx(preferred_zone);
1657 zonelist_scan:
1658 	/*
1659 	 * Scan zonelist, looking for a zone with enough free.
1660 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1661 	 */
1662 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1663 						high_zoneidx, nodemask) {
1664 		if (NUMA_BUILD && zlc_active &&
1665 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1666 				continue;
1667 		if ((alloc_flags & ALLOC_CPUSET) &&
1668 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1669 				continue;
1670 
1671 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1672 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1673 			unsigned long mark;
1674 			int ret;
1675 
1676 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1677 			if (zone_watermark_ok(zone, order, mark,
1678 				    classzone_idx, alloc_flags))
1679 				goto try_this_zone;
1680 
1681 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1682 				/*
1683 				 * we do zlc_setup if there are multiple nodes
1684 				 * and before considering the first zone allowed
1685 				 * by the cpuset.
1686 				 */
1687 				allowednodes = zlc_setup(zonelist, alloc_flags);
1688 				zlc_active = 1;
1689 				did_zlc_setup = 1;
1690 			}
1691 
1692 			if (zone_reclaim_mode == 0)
1693 				goto this_zone_full;
1694 
1695 			/*
1696 			 * As we may have just activated ZLC, check if the first
1697 			 * eligible zone has failed zone_reclaim recently.
1698 			 */
1699 			if (NUMA_BUILD && zlc_active &&
1700 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1701 				continue;
1702 
1703 			ret = zone_reclaim(zone, gfp_mask, order);
1704 			switch (ret) {
1705 			case ZONE_RECLAIM_NOSCAN:
1706 				/* did not scan */
1707 				continue;
1708 			case ZONE_RECLAIM_FULL:
1709 				/* scanned but unreclaimable */
1710 				continue;
1711 			default:
1712 				/* did we reclaim enough */
1713 				if (!zone_watermark_ok(zone, order, mark,
1714 						classzone_idx, alloc_flags))
1715 					goto this_zone_full;
1716 			}
1717 		}
1718 
1719 try_this_zone:
1720 		page = buffered_rmqueue(preferred_zone, zone, order,
1721 						gfp_mask, migratetype);
1722 		if (page)
1723 			break;
1724 this_zone_full:
1725 		if (NUMA_BUILD)
1726 			zlc_mark_zone_full(zonelist, z);
1727 	}
1728 
1729 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1730 		/* Disable zlc cache for second zonelist scan */
1731 		zlc_active = 0;
1732 		goto zonelist_scan;
1733 	}
1734 	return page;
1735 }
1736 
1737 /*
1738  * Large machines with many possible nodes should not always dump per-node
1739  * meminfo in irq context.
1740  */
1741 static inline bool should_suppress_show_mem(void)
1742 {
1743 	bool ret = false;
1744 
1745 #if NODES_SHIFT > 8
1746 	ret = in_interrupt();
1747 #endif
1748 	return ret;
1749 }
1750 
1751 static DEFINE_RATELIMIT_STATE(nopage_rs,
1752 		DEFAULT_RATELIMIT_INTERVAL,
1753 		DEFAULT_RATELIMIT_BURST);
1754 
1755 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1756 {
1757 	unsigned int filter = SHOW_MEM_FILTER_NODES;
1758 
1759 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
1760 		return;
1761 
1762 	/*
1763 	 * This documents exceptions given to allocations in certain
1764 	 * contexts that are allowed to allocate outside current's set
1765 	 * of allowed nodes.
1766 	 */
1767 	if (!(gfp_mask & __GFP_NOMEMALLOC))
1768 		if (test_thread_flag(TIF_MEMDIE) ||
1769 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
1770 			filter &= ~SHOW_MEM_FILTER_NODES;
1771 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
1772 		filter &= ~SHOW_MEM_FILTER_NODES;
1773 
1774 	if (fmt) {
1775 		struct va_format vaf;
1776 		va_list args;
1777 
1778 		va_start(args, fmt);
1779 
1780 		vaf.fmt = fmt;
1781 		vaf.va = &args;
1782 
1783 		pr_warn("%pV", &vaf);
1784 
1785 		va_end(args);
1786 	}
1787 
1788 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
1789 		current->comm, order, gfp_mask);
1790 
1791 	dump_stack();
1792 	if (!should_suppress_show_mem())
1793 		show_mem(filter);
1794 }
1795 
1796 static inline int
1797 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1798 				unsigned long pages_reclaimed)
1799 {
1800 	/* Do not loop if specifically requested */
1801 	if (gfp_mask & __GFP_NORETRY)
1802 		return 0;
1803 
1804 	/*
1805 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1806 	 * means __GFP_NOFAIL, but that may not be true in other
1807 	 * implementations.
1808 	 */
1809 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
1810 		return 1;
1811 
1812 	/*
1813 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1814 	 * specified, then we retry until we no longer reclaim any pages
1815 	 * (above), or we've reclaimed an order of pages at least as
1816 	 * large as the allocation's order. In both cases, if the
1817 	 * allocation still fails, we stop retrying.
1818 	 */
1819 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1820 		return 1;
1821 
1822 	/*
1823 	 * Don't let big-order allocations loop unless the caller
1824 	 * explicitly requests that.
1825 	 */
1826 	if (gfp_mask & __GFP_NOFAIL)
1827 		return 1;
1828 
1829 	return 0;
1830 }
1831 
1832 static inline struct page *
1833 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1834 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1835 	nodemask_t *nodemask, struct zone *preferred_zone,
1836 	int migratetype)
1837 {
1838 	struct page *page;
1839 
1840 	/* Acquire the OOM killer lock for the zones in zonelist */
1841 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
1842 		schedule_timeout_uninterruptible(1);
1843 		return NULL;
1844 	}
1845 
1846 	/*
1847 	 * Go through the zonelist yet one more time, keep very high watermark
1848 	 * here, this is only to catch a parallel oom killing, we must fail if
1849 	 * we're still under heavy pressure.
1850 	 */
1851 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1852 		order, zonelist, high_zoneidx,
1853 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
1854 		preferred_zone, migratetype);
1855 	if (page)
1856 		goto out;
1857 
1858 	if (!(gfp_mask & __GFP_NOFAIL)) {
1859 		/* The OOM killer will not help higher order allocs */
1860 		if (order > PAGE_ALLOC_COSTLY_ORDER)
1861 			goto out;
1862 		/* The OOM killer does not needlessly kill tasks for lowmem */
1863 		if (high_zoneidx < ZONE_NORMAL)
1864 			goto out;
1865 		/*
1866 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1867 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1868 		 * The caller should handle page allocation failure by itself if
1869 		 * it specifies __GFP_THISNODE.
1870 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1871 		 */
1872 		if (gfp_mask & __GFP_THISNODE)
1873 			goto out;
1874 	}
1875 	/* Exhausted what can be done so it's blamo time */
1876 	out_of_memory(zonelist, gfp_mask, order, nodemask);
1877 
1878 out:
1879 	clear_zonelist_oom(zonelist, gfp_mask);
1880 	return page;
1881 }
1882 
1883 #ifdef CONFIG_COMPACTION
1884 /* Try memory compaction for high-order allocations before reclaim */
1885 static struct page *
1886 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1887 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1888 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1889 	int migratetype, unsigned long *did_some_progress,
1890 	bool sync_migration)
1891 {
1892 	struct page *page;
1893 
1894 	if (!order || compaction_deferred(preferred_zone))
1895 		return NULL;
1896 
1897 	current->flags |= PF_MEMALLOC;
1898 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
1899 						nodemask, sync_migration);
1900 	current->flags &= ~PF_MEMALLOC;
1901 	if (*did_some_progress != COMPACT_SKIPPED) {
1902 
1903 		/* Page migration frees to the PCP lists but we want merging */
1904 		drain_pages(get_cpu());
1905 		put_cpu();
1906 
1907 		page = get_page_from_freelist(gfp_mask, nodemask,
1908 				order, zonelist, high_zoneidx,
1909 				alloc_flags, preferred_zone,
1910 				migratetype);
1911 		if (page) {
1912 			preferred_zone->compact_considered = 0;
1913 			preferred_zone->compact_defer_shift = 0;
1914 			count_vm_event(COMPACTSUCCESS);
1915 			return page;
1916 		}
1917 
1918 		/*
1919 		 * It's bad if compaction run occurs and fails.
1920 		 * The most likely reason is that pages exist,
1921 		 * but not enough to satisfy watermarks.
1922 		 */
1923 		count_vm_event(COMPACTFAIL);
1924 		defer_compaction(preferred_zone);
1925 
1926 		cond_resched();
1927 	}
1928 
1929 	return NULL;
1930 }
1931 #else
1932 static inline struct page *
1933 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1934 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1935 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1936 	int migratetype, unsigned long *did_some_progress,
1937 	bool sync_migration)
1938 {
1939 	return NULL;
1940 }
1941 #endif /* CONFIG_COMPACTION */
1942 
1943 /* The really slow allocator path where we enter direct reclaim */
1944 static inline struct page *
1945 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1946 	struct zonelist *zonelist, enum zone_type high_zoneidx,
1947 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
1948 	int migratetype, unsigned long *did_some_progress)
1949 {
1950 	struct page *page = NULL;
1951 	struct reclaim_state reclaim_state;
1952 	bool drained = false;
1953 
1954 	cond_resched();
1955 
1956 	/* We now go into synchronous reclaim */
1957 	cpuset_memory_pressure_bump();
1958 	current->flags |= PF_MEMALLOC;
1959 	lockdep_set_current_reclaim_state(gfp_mask);
1960 	reclaim_state.reclaimed_slab = 0;
1961 	current->reclaim_state = &reclaim_state;
1962 
1963 	*did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1964 
1965 	current->reclaim_state = NULL;
1966 	lockdep_clear_current_reclaim_state();
1967 	current->flags &= ~PF_MEMALLOC;
1968 
1969 	cond_resched();
1970 
1971 	if (unlikely(!(*did_some_progress)))
1972 		return NULL;
1973 
1974 	/* After successful reclaim, reconsider all zones for allocation */
1975 	if (NUMA_BUILD)
1976 		zlc_clear_zones_full(zonelist);
1977 
1978 retry:
1979 	page = get_page_from_freelist(gfp_mask, nodemask, order,
1980 					zonelist, high_zoneidx,
1981 					alloc_flags, preferred_zone,
1982 					migratetype);
1983 
1984 	/*
1985 	 * If an allocation failed after direct reclaim, it could be because
1986 	 * pages are pinned on the per-cpu lists. Drain them and try again
1987 	 */
1988 	if (!page && !drained) {
1989 		drain_all_pages();
1990 		drained = true;
1991 		goto retry;
1992 	}
1993 
1994 	return page;
1995 }
1996 
1997 /*
1998  * This is called in the allocator slow-path if the allocation request is of
1999  * sufficient urgency to ignore watermarks and take other desperate measures
2000  */
2001 static inline struct page *
2002 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2003 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2004 	nodemask_t *nodemask, struct zone *preferred_zone,
2005 	int migratetype)
2006 {
2007 	struct page *page;
2008 
2009 	do {
2010 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2011 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2012 			preferred_zone, migratetype);
2013 
2014 		if (!page && gfp_mask & __GFP_NOFAIL)
2015 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2016 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2017 
2018 	return page;
2019 }
2020 
2021 static inline
2022 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2023 						enum zone_type high_zoneidx,
2024 						enum zone_type classzone_idx)
2025 {
2026 	struct zoneref *z;
2027 	struct zone *zone;
2028 
2029 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2030 		wakeup_kswapd(zone, order, classzone_idx);
2031 }
2032 
2033 static inline int
2034 gfp_to_alloc_flags(gfp_t gfp_mask)
2035 {
2036 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2037 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2038 
2039 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2040 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2041 
2042 	/*
2043 	 * The caller may dip into page reserves a bit more if the caller
2044 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2045 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2046 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2047 	 */
2048 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2049 
2050 	if (!wait) {
2051 		/*
2052 		 * Not worth trying to allocate harder for
2053 		 * __GFP_NOMEMALLOC even if it can't schedule.
2054 		 */
2055 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2056 			alloc_flags |= ALLOC_HARDER;
2057 		/*
2058 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2059 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2060 		 */
2061 		alloc_flags &= ~ALLOC_CPUSET;
2062 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2063 		alloc_flags |= ALLOC_HARDER;
2064 
2065 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2066 		if (!in_interrupt() &&
2067 		    ((current->flags & PF_MEMALLOC) ||
2068 		     unlikely(test_thread_flag(TIF_MEMDIE))))
2069 			alloc_flags |= ALLOC_NO_WATERMARKS;
2070 	}
2071 
2072 	return alloc_flags;
2073 }
2074 
2075 static inline struct page *
2076 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2077 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2078 	nodemask_t *nodemask, struct zone *preferred_zone,
2079 	int migratetype)
2080 {
2081 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2082 	struct page *page = NULL;
2083 	int alloc_flags;
2084 	unsigned long pages_reclaimed = 0;
2085 	unsigned long did_some_progress;
2086 	bool sync_migration = false;
2087 
2088 	/*
2089 	 * In the slowpath, we sanity check order to avoid ever trying to
2090 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2091 	 * be using allocators in order of preference for an area that is
2092 	 * too large.
2093 	 */
2094 	if (order >= MAX_ORDER) {
2095 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2096 		return NULL;
2097 	}
2098 
2099 	/*
2100 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2101 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2102 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2103 	 * using a larger set of nodes after it has established that the
2104 	 * allowed per node queues are empty and that nodes are
2105 	 * over allocated.
2106 	 */
2107 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2108 		goto nopage;
2109 
2110 restart:
2111 	if (!(gfp_mask & __GFP_NO_KSWAPD))
2112 		wake_all_kswapd(order, zonelist, high_zoneidx,
2113 						zone_idx(preferred_zone));
2114 
2115 	/*
2116 	 * OK, we're below the kswapd watermark and have kicked background
2117 	 * reclaim. Now things get more complex, so set up alloc_flags according
2118 	 * to how we want to proceed.
2119 	 */
2120 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2121 
2122 	/*
2123 	 * Find the true preferred zone if the allocation is unconstrained by
2124 	 * cpusets.
2125 	 */
2126 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2127 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2128 					&preferred_zone);
2129 
2130 rebalance:
2131 	/* This is the last chance, in general, before the goto nopage. */
2132 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2133 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2134 			preferred_zone, migratetype);
2135 	if (page)
2136 		goto got_pg;
2137 
2138 	/* Allocate without watermarks if the context allows */
2139 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2140 		page = __alloc_pages_high_priority(gfp_mask, order,
2141 				zonelist, high_zoneidx, nodemask,
2142 				preferred_zone, migratetype);
2143 		if (page)
2144 			goto got_pg;
2145 	}
2146 
2147 	/* Atomic allocations - we can't balance anything */
2148 	if (!wait)
2149 		goto nopage;
2150 
2151 	/* Avoid recursion of direct reclaim */
2152 	if (current->flags & PF_MEMALLOC)
2153 		goto nopage;
2154 
2155 	/* Avoid allocations with no watermarks from looping endlessly */
2156 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2157 		goto nopage;
2158 
2159 	/*
2160 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2161 	 * attempts after direct reclaim are synchronous
2162 	 */
2163 	page = __alloc_pages_direct_compact(gfp_mask, order,
2164 					zonelist, high_zoneidx,
2165 					nodemask,
2166 					alloc_flags, preferred_zone,
2167 					migratetype, &did_some_progress,
2168 					sync_migration);
2169 	if (page)
2170 		goto got_pg;
2171 	sync_migration = true;
2172 
2173 	/* Try direct reclaim and then allocating */
2174 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2175 					zonelist, high_zoneidx,
2176 					nodemask,
2177 					alloc_flags, preferred_zone,
2178 					migratetype, &did_some_progress);
2179 	if (page)
2180 		goto got_pg;
2181 
2182 	/*
2183 	 * If we failed to make any progress reclaiming, then we are
2184 	 * running out of options and have to consider going OOM
2185 	 */
2186 	if (!did_some_progress) {
2187 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2188 			if (oom_killer_disabled)
2189 				goto nopage;
2190 			page = __alloc_pages_may_oom(gfp_mask, order,
2191 					zonelist, high_zoneidx,
2192 					nodemask, preferred_zone,
2193 					migratetype);
2194 			if (page)
2195 				goto got_pg;
2196 
2197 			if (!(gfp_mask & __GFP_NOFAIL)) {
2198 				/*
2199 				 * The oom killer is not called for high-order
2200 				 * allocations that may fail, so if no progress
2201 				 * is being made, there are no other options and
2202 				 * retrying is unlikely to help.
2203 				 */
2204 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2205 					goto nopage;
2206 				/*
2207 				 * The oom killer is not called for lowmem
2208 				 * allocations to prevent needlessly killing
2209 				 * innocent tasks.
2210 				 */
2211 				if (high_zoneidx < ZONE_NORMAL)
2212 					goto nopage;
2213 			}
2214 
2215 			goto restart;
2216 		}
2217 	}
2218 
2219 	/* Check if we should retry the allocation */
2220 	pages_reclaimed += did_some_progress;
2221 	if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2222 		/* Wait for some write requests to complete then retry */
2223 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2224 		goto rebalance;
2225 	} else {
2226 		/*
2227 		 * High-order allocations do not necessarily loop after
2228 		 * direct reclaim and reclaim/compaction depends on compaction
2229 		 * being called after reclaim so call directly if necessary
2230 		 */
2231 		page = __alloc_pages_direct_compact(gfp_mask, order,
2232 					zonelist, high_zoneidx,
2233 					nodemask,
2234 					alloc_flags, preferred_zone,
2235 					migratetype, &did_some_progress,
2236 					sync_migration);
2237 		if (page)
2238 			goto got_pg;
2239 	}
2240 
2241 nopage:
2242 	warn_alloc_failed(gfp_mask, order, NULL);
2243 	return page;
2244 got_pg:
2245 	if (kmemcheck_enabled)
2246 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2247 	return page;
2248 
2249 }
2250 
2251 /*
2252  * This is the 'heart' of the zoned buddy allocator.
2253  */
2254 struct page *
2255 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2256 			struct zonelist *zonelist, nodemask_t *nodemask)
2257 {
2258 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2259 	struct zone *preferred_zone;
2260 	struct page *page;
2261 	int migratetype = allocflags_to_migratetype(gfp_mask);
2262 
2263 	gfp_mask &= gfp_allowed_mask;
2264 
2265 	lockdep_trace_alloc(gfp_mask);
2266 
2267 	might_sleep_if(gfp_mask & __GFP_WAIT);
2268 
2269 	if (should_fail_alloc_page(gfp_mask, order))
2270 		return NULL;
2271 
2272 	/*
2273 	 * Check the zones suitable for the gfp_mask contain at least one
2274 	 * valid zone. It's possible to have an empty zonelist as a result
2275 	 * of GFP_THISNODE and a memoryless node
2276 	 */
2277 	if (unlikely(!zonelist->_zonerefs->zone))
2278 		return NULL;
2279 
2280 	get_mems_allowed();
2281 	/* The preferred zone is used for statistics later */
2282 	first_zones_zonelist(zonelist, high_zoneidx,
2283 				nodemask ? : &cpuset_current_mems_allowed,
2284 				&preferred_zone);
2285 	if (!preferred_zone) {
2286 		put_mems_allowed();
2287 		return NULL;
2288 	}
2289 
2290 	/* First allocation attempt */
2291 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2292 			zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
2293 			preferred_zone, migratetype);
2294 	if (unlikely(!page))
2295 		page = __alloc_pages_slowpath(gfp_mask, order,
2296 				zonelist, high_zoneidx, nodemask,
2297 				preferred_zone, migratetype);
2298 	put_mems_allowed();
2299 
2300 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2301 	return page;
2302 }
2303 EXPORT_SYMBOL(__alloc_pages_nodemask);
2304 
2305 /*
2306  * Common helper functions.
2307  */
2308 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2309 {
2310 	struct page *page;
2311 
2312 	/*
2313 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2314 	 * a highmem page
2315 	 */
2316 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2317 
2318 	page = alloc_pages(gfp_mask, order);
2319 	if (!page)
2320 		return 0;
2321 	return (unsigned long) page_address(page);
2322 }
2323 EXPORT_SYMBOL(__get_free_pages);
2324 
2325 unsigned long get_zeroed_page(gfp_t gfp_mask)
2326 {
2327 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2328 }
2329 EXPORT_SYMBOL(get_zeroed_page);
2330 
2331 void __pagevec_free(struct pagevec *pvec)
2332 {
2333 	int i = pagevec_count(pvec);
2334 
2335 	while (--i >= 0) {
2336 		trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
2337 		free_hot_cold_page(pvec->pages[i], pvec->cold);
2338 	}
2339 }
2340 
2341 void __free_pages(struct page *page, unsigned int order)
2342 {
2343 	if (put_page_testzero(page)) {
2344 		if (order == 0)
2345 			free_hot_cold_page(page, 0);
2346 		else
2347 			__free_pages_ok(page, order);
2348 	}
2349 }
2350 
2351 EXPORT_SYMBOL(__free_pages);
2352 
2353 void free_pages(unsigned long addr, unsigned int order)
2354 {
2355 	if (addr != 0) {
2356 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2357 		__free_pages(virt_to_page((void *)addr), order);
2358 	}
2359 }
2360 
2361 EXPORT_SYMBOL(free_pages);
2362 
2363 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2364 {
2365 	if (addr) {
2366 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2367 		unsigned long used = addr + PAGE_ALIGN(size);
2368 
2369 		split_page(virt_to_page((void *)addr), order);
2370 		while (used < alloc_end) {
2371 			free_page(used);
2372 			used += PAGE_SIZE;
2373 		}
2374 	}
2375 	return (void *)addr;
2376 }
2377 
2378 /**
2379  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2380  * @size: the number of bytes to allocate
2381  * @gfp_mask: GFP flags for the allocation
2382  *
2383  * This function is similar to alloc_pages(), except that it allocates the
2384  * minimum number of pages to satisfy the request.  alloc_pages() can only
2385  * allocate memory in power-of-two pages.
2386  *
2387  * This function is also limited by MAX_ORDER.
2388  *
2389  * Memory allocated by this function must be released by free_pages_exact().
2390  */
2391 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2392 {
2393 	unsigned int order = get_order(size);
2394 	unsigned long addr;
2395 
2396 	addr = __get_free_pages(gfp_mask, order);
2397 	return make_alloc_exact(addr, order, size);
2398 }
2399 EXPORT_SYMBOL(alloc_pages_exact);
2400 
2401 /**
2402  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2403  *			   pages on a node.
2404  * @nid: the preferred node ID where memory should be allocated
2405  * @size: the number of bytes to allocate
2406  * @gfp_mask: GFP flags for the allocation
2407  *
2408  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2409  * back.
2410  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2411  * but is not exact.
2412  */
2413 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2414 {
2415 	unsigned order = get_order(size);
2416 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2417 	if (!p)
2418 		return NULL;
2419 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2420 }
2421 EXPORT_SYMBOL(alloc_pages_exact_nid);
2422 
2423 /**
2424  * free_pages_exact - release memory allocated via alloc_pages_exact()
2425  * @virt: the value returned by alloc_pages_exact.
2426  * @size: size of allocation, same value as passed to alloc_pages_exact().
2427  *
2428  * Release the memory allocated by a previous call to alloc_pages_exact.
2429  */
2430 void free_pages_exact(void *virt, size_t size)
2431 {
2432 	unsigned long addr = (unsigned long)virt;
2433 	unsigned long end = addr + PAGE_ALIGN(size);
2434 
2435 	while (addr < end) {
2436 		free_page(addr);
2437 		addr += PAGE_SIZE;
2438 	}
2439 }
2440 EXPORT_SYMBOL(free_pages_exact);
2441 
2442 static unsigned int nr_free_zone_pages(int offset)
2443 {
2444 	struct zoneref *z;
2445 	struct zone *zone;
2446 
2447 	/* Just pick one node, since fallback list is circular */
2448 	unsigned int sum = 0;
2449 
2450 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2451 
2452 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2453 		unsigned long size = zone->present_pages;
2454 		unsigned long high = high_wmark_pages(zone);
2455 		if (size > high)
2456 			sum += size - high;
2457 	}
2458 
2459 	return sum;
2460 }
2461 
2462 /*
2463  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2464  */
2465 unsigned int nr_free_buffer_pages(void)
2466 {
2467 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2468 }
2469 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2470 
2471 /*
2472  * Amount of free RAM allocatable within all zones
2473  */
2474 unsigned int nr_free_pagecache_pages(void)
2475 {
2476 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2477 }
2478 
2479 static inline void show_node(struct zone *zone)
2480 {
2481 	if (NUMA_BUILD)
2482 		printk("Node %d ", zone_to_nid(zone));
2483 }
2484 
2485 void si_meminfo(struct sysinfo *val)
2486 {
2487 	val->totalram = totalram_pages;
2488 	val->sharedram = 0;
2489 	val->freeram = global_page_state(NR_FREE_PAGES);
2490 	val->bufferram = nr_blockdev_pages();
2491 	val->totalhigh = totalhigh_pages;
2492 	val->freehigh = nr_free_highpages();
2493 	val->mem_unit = PAGE_SIZE;
2494 }
2495 
2496 EXPORT_SYMBOL(si_meminfo);
2497 
2498 #ifdef CONFIG_NUMA
2499 void si_meminfo_node(struct sysinfo *val, int nid)
2500 {
2501 	pg_data_t *pgdat = NODE_DATA(nid);
2502 
2503 	val->totalram = pgdat->node_present_pages;
2504 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2505 #ifdef CONFIG_HIGHMEM
2506 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2507 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2508 			NR_FREE_PAGES);
2509 #else
2510 	val->totalhigh = 0;
2511 	val->freehigh = 0;
2512 #endif
2513 	val->mem_unit = PAGE_SIZE;
2514 }
2515 #endif
2516 
2517 /*
2518  * Determine whether the node should be displayed or not, depending on whether
2519  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2520  */
2521 bool skip_free_areas_node(unsigned int flags, int nid)
2522 {
2523 	bool ret = false;
2524 
2525 	if (!(flags & SHOW_MEM_FILTER_NODES))
2526 		goto out;
2527 
2528 	get_mems_allowed();
2529 	ret = !node_isset(nid, cpuset_current_mems_allowed);
2530 	put_mems_allowed();
2531 out:
2532 	return ret;
2533 }
2534 
2535 #define K(x) ((x) << (PAGE_SHIFT-10))
2536 
2537 /*
2538  * Show free area list (used inside shift_scroll-lock stuff)
2539  * We also calculate the percentage fragmentation. We do this by counting the
2540  * memory on each free list with the exception of the first item on the list.
2541  * Suppresses nodes that are not allowed by current's cpuset if
2542  * SHOW_MEM_FILTER_NODES is passed.
2543  */
2544 void show_free_areas(unsigned int filter)
2545 {
2546 	int cpu;
2547 	struct zone *zone;
2548 
2549 	for_each_populated_zone(zone) {
2550 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2551 			continue;
2552 		show_node(zone);
2553 		printk("%s per-cpu:\n", zone->name);
2554 
2555 		for_each_online_cpu(cpu) {
2556 			struct per_cpu_pageset *pageset;
2557 
2558 			pageset = per_cpu_ptr(zone->pageset, cpu);
2559 
2560 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2561 			       cpu, pageset->pcp.high,
2562 			       pageset->pcp.batch, pageset->pcp.count);
2563 		}
2564 	}
2565 
2566 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2567 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2568 		" unevictable:%lu"
2569 		" dirty:%lu writeback:%lu unstable:%lu\n"
2570 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2571 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2572 		global_page_state(NR_ACTIVE_ANON),
2573 		global_page_state(NR_INACTIVE_ANON),
2574 		global_page_state(NR_ISOLATED_ANON),
2575 		global_page_state(NR_ACTIVE_FILE),
2576 		global_page_state(NR_INACTIVE_FILE),
2577 		global_page_state(NR_ISOLATED_FILE),
2578 		global_page_state(NR_UNEVICTABLE),
2579 		global_page_state(NR_FILE_DIRTY),
2580 		global_page_state(NR_WRITEBACK),
2581 		global_page_state(NR_UNSTABLE_NFS),
2582 		global_page_state(NR_FREE_PAGES),
2583 		global_page_state(NR_SLAB_RECLAIMABLE),
2584 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2585 		global_page_state(NR_FILE_MAPPED),
2586 		global_page_state(NR_SHMEM),
2587 		global_page_state(NR_PAGETABLE),
2588 		global_page_state(NR_BOUNCE));
2589 
2590 	for_each_populated_zone(zone) {
2591 		int i;
2592 
2593 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2594 			continue;
2595 		show_node(zone);
2596 		printk("%s"
2597 			" free:%lukB"
2598 			" min:%lukB"
2599 			" low:%lukB"
2600 			" high:%lukB"
2601 			" active_anon:%lukB"
2602 			" inactive_anon:%lukB"
2603 			" active_file:%lukB"
2604 			" inactive_file:%lukB"
2605 			" unevictable:%lukB"
2606 			" isolated(anon):%lukB"
2607 			" isolated(file):%lukB"
2608 			" present:%lukB"
2609 			" mlocked:%lukB"
2610 			" dirty:%lukB"
2611 			" writeback:%lukB"
2612 			" mapped:%lukB"
2613 			" shmem:%lukB"
2614 			" slab_reclaimable:%lukB"
2615 			" slab_unreclaimable:%lukB"
2616 			" kernel_stack:%lukB"
2617 			" pagetables:%lukB"
2618 			" unstable:%lukB"
2619 			" bounce:%lukB"
2620 			" writeback_tmp:%lukB"
2621 			" pages_scanned:%lu"
2622 			" all_unreclaimable? %s"
2623 			"\n",
2624 			zone->name,
2625 			K(zone_page_state(zone, NR_FREE_PAGES)),
2626 			K(min_wmark_pages(zone)),
2627 			K(low_wmark_pages(zone)),
2628 			K(high_wmark_pages(zone)),
2629 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2630 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2631 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2632 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2633 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2634 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2635 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2636 			K(zone->present_pages),
2637 			K(zone_page_state(zone, NR_MLOCK)),
2638 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2639 			K(zone_page_state(zone, NR_WRITEBACK)),
2640 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2641 			K(zone_page_state(zone, NR_SHMEM)),
2642 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2643 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2644 			zone_page_state(zone, NR_KERNEL_STACK) *
2645 				THREAD_SIZE / 1024,
2646 			K(zone_page_state(zone, NR_PAGETABLE)),
2647 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2648 			K(zone_page_state(zone, NR_BOUNCE)),
2649 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2650 			zone->pages_scanned,
2651 			(zone->all_unreclaimable ? "yes" : "no")
2652 			);
2653 		printk("lowmem_reserve[]:");
2654 		for (i = 0; i < MAX_NR_ZONES; i++)
2655 			printk(" %lu", zone->lowmem_reserve[i]);
2656 		printk("\n");
2657 	}
2658 
2659 	for_each_populated_zone(zone) {
2660  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
2661 
2662 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2663 			continue;
2664 		show_node(zone);
2665 		printk("%s: ", zone->name);
2666 
2667 		spin_lock_irqsave(&zone->lock, flags);
2668 		for (order = 0; order < MAX_ORDER; order++) {
2669 			nr[order] = zone->free_area[order].nr_free;
2670 			total += nr[order] << order;
2671 		}
2672 		spin_unlock_irqrestore(&zone->lock, flags);
2673 		for (order = 0; order < MAX_ORDER; order++)
2674 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
2675 		printk("= %lukB\n", K(total));
2676 	}
2677 
2678 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2679 
2680 	show_swap_cache_info();
2681 }
2682 
2683 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2684 {
2685 	zoneref->zone = zone;
2686 	zoneref->zone_idx = zone_idx(zone);
2687 }
2688 
2689 /*
2690  * Builds allocation fallback zone lists.
2691  *
2692  * Add all populated zones of a node to the zonelist.
2693  */
2694 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2695 				int nr_zones, enum zone_type zone_type)
2696 {
2697 	struct zone *zone;
2698 
2699 	BUG_ON(zone_type >= MAX_NR_ZONES);
2700 	zone_type++;
2701 
2702 	do {
2703 		zone_type--;
2704 		zone = pgdat->node_zones + zone_type;
2705 		if (populated_zone(zone)) {
2706 			zoneref_set_zone(zone,
2707 				&zonelist->_zonerefs[nr_zones++]);
2708 			check_highest_zone(zone_type);
2709 		}
2710 
2711 	} while (zone_type);
2712 	return nr_zones;
2713 }
2714 
2715 
2716 /*
2717  *  zonelist_order:
2718  *  0 = automatic detection of better ordering.
2719  *  1 = order by ([node] distance, -zonetype)
2720  *  2 = order by (-zonetype, [node] distance)
2721  *
2722  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2723  *  the same zonelist. So only NUMA can configure this param.
2724  */
2725 #define ZONELIST_ORDER_DEFAULT  0
2726 #define ZONELIST_ORDER_NODE     1
2727 #define ZONELIST_ORDER_ZONE     2
2728 
2729 /* zonelist order in the kernel.
2730  * set_zonelist_order() will set this to NODE or ZONE.
2731  */
2732 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2733 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2734 
2735 
2736 #ifdef CONFIG_NUMA
2737 /* The value user specified ....changed by config */
2738 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2739 /* string for sysctl */
2740 #define NUMA_ZONELIST_ORDER_LEN	16
2741 char numa_zonelist_order[16] = "default";
2742 
2743 /*
2744  * interface for configure zonelist ordering.
2745  * command line option "numa_zonelist_order"
2746  *	= "[dD]efault	- default, automatic configuration.
2747  *	= "[nN]ode 	- order by node locality, then by zone within node
2748  *	= "[zZ]one      - order by zone, then by locality within zone
2749  */
2750 
2751 static int __parse_numa_zonelist_order(char *s)
2752 {
2753 	if (*s == 'd' || *s == 'D') {
2754 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2755 	} else if (*s == 'n' || *s == 'N') {
2756 		user_zonelist_order = ZONELIST_ORDER_NODE;
2757 	} else if (*s == 'z' || *s == 'Z') {
2758 		user_zonelist_order = ZONELIST_ORDER_ZONE;
2759 	} else {
2760 		printk(KERN_WARNING
2761 			"Ignoring invalid numa_zonelist_order value:  "
2762 			"%s\n", s);
2763 		return -EINVAL;
2764 	}
2765 	return 0;
2766 }
2767 
2768 static __init int setup_numa_zonelist_order(char *s)
2769 {
2770 	int ret;
2771 
2772 	if (!s)
2773 		return 0;
2774 
2775 	ret = __parse_numa_zonelist_order(s);
2776 	if (ret == 0)
2777 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
2778 
2779 	return ret;
2780 }
2781 early_param("numa_zonelist_order", setup_numa_zonelist_order);
2782 
2783 /*
2784  * sysctl handler for numa_zonelist_order
2785  */
2786 int numa_zonelist_order_handler(ctl_table *table, int write,
2787 		void __user *buffer, size_t *length,
2788 		loff_t *ppos)
2789 {
2790 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
2791 	int ret;
2792 	static DEFINE_MUTEX(zl_order_mutex);
2793 
2794 	mutex_lock(&zl_order_mutex);
2795 	if (write)
2796 		strcpy(saved_string, (char*)table->data);
2797 	ret = proc_dostring(table, write, buffer, length, ppos);
2798 	if (ret)
2799 		goto out;
2800 	if (write) {
2801 		int oldval = user_zonelist_order;
2802 		if (__parse_numa_zonelist_order((char*)table->data)) {
2803 			/*
2804 			 * bogus value.  restore saved string
2805 			 */
2806 			strncpy((char*)table->data, saved_string,
2807 				NUMA_ZONELIST_ORDER_LEN);
2808 			user_zonelist_order = oldval;
2809 		} else if (oldval != user_zonelist_order) {
2810 			mutex_lock(&zonelists_mutex);
2811 			build_all_zonelists(NULL);
2812 			mutex_unlock(&zonelists_mutex);
2813 		}
2814 	}
2815 out:
2816 	mutex_unlock(&zl_order_mutex);
2817 	return ret;
2818 }
2819 
2820 
2821 #define MAX_NODE_LOAD (nr_online_nodes)
2822 static int node_load[MAX_NUMNODES];
2823 
2824 /**
2825  * find_next_best_node - find the next node that should appear in a given node's fallback list
2826  * @node: node whose fallback list we're appending
2827  * @used_node_mask: nodemask_t of already used nodes
2828  *
2829  * We use a number of factors to determine which is the next node that should
2830  * appear on a given node's fallback list.  The node should not have appeared
2831  * already in @node's fallback list, and it should be the next closest node
2832  * according to the distance array (which contains arbitrary distance values
2833  * from each node to each node in the system), and should also prefer nodes
2834  * with no CPUs, since presumably they'll have very little allocation pressure
2835  * on them otherwise.
2836  * It returns -1 if no node is found.
2837  */
2838 static int find_next_best_node(int node, nodemask_t *used_node_mask)
2839 {
2840 	int n, val;
2841 	int min_val = INT_MAX;
2842 	int best_node = -1;
2843 	const struct cpumask *tmp = cpumask_of_node(0);
2844 
2845 	/* Use the local node if we haven't already */
2846 	if (!node_isset(node, *used_node_mask)) {
2847 		node_set(node, *used_node_mask);
2848 		return node;
2849 	}
2850 
2851 	for_each_node_state(n, N_HIGH_MEMORY) {
2852 
2853 		/* Don't want a node to appear more than once */
2854 		if (node_isset(n, *used_node_mask))
2855 			continue;
2856 
2857 		/* Use the distance array to find the distance */
2858 		val = node_distance(node, n);
2859 
2860 		/* Penalize nodes under us ("prefer the next node") */
2861 		val += (n < node);
2862 
2863 		/* Give preference to headless and unused nodes */
2864 		tmp = cpumask_of_node(n);
2865 		if (!cpumask_empty(tmp))
2866 			val += PENALTY_FOR_NODE_WITH_CPUS;
2867 
2868 		/* Slight preference for less loaded node */
2869 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2870 		val += node_load[n];
2871 
2872 		if (val < min_val) {
2873 			min_val = val;
2874 			best_node = n;
2875 		}
2876 	}
2877 
2878 	if (best_node >= 0)
2879 		node_set(best_node, *used_node_mask);
2880 
2881 	return best_node;
2882 }
2883 
2884 
2885 /*
2886  * Build zonelists ordered by node and zones within node.
2887  * This results in maximum locality--normal zone overflows into local
2888  * DMA zone, if any--but risks exhausting DMA zone.
2889  */
2890 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
2891 {
2892 	int j;
2893 	struct zonelist *zonelist;
2894 
2895 	zonelist = &pgdat->node_zonelists[0];
2896 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
2897 		;
2898 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2899 							MAX_NR_ZONES - 1);
2900 	zonelist->_zonerefs[j].zone = NULL;
2901 	zonelist->_zonerefs[j].zone_idx = 0;
2902 }
2903 
2904 /*
2905  * Build gfp_thisnode zonelists
2906  */
2907 static void build_thisnode_zonelists(pg_data_t *pgdat)
2908 {
2909 	int j;
2910 	struct zonelist *zonelist;
2911 
2912 	zonelist = &pgdat->node_zonelists[1];
2913 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
2914 	zonelist->_zonerefs[j].zone = NULL;
2915 	zonelist->_zonerefs[j].zone_idx = 0;
2916 }
2917 
2918 /*
2919  * Build zonelists ordered by zone and nodes within zones.
2920  * This results in conserving DMA zone[s] until all Normal memory is
2921  * exhausted, but results in overflowing to remote node while memory
2922  * may still exist in local DMA zone.
2923  */
2924 static int node_order[MAX_NUMNODES];
2925 
2926 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2927 {
2928 	int pos, j, node;
2929 	int zone_type;		/* needs to be signed */
2930 	struct zone *z;
2931 	struct zonelist *zonelist;
2932 
2933 	zonelist = &pgdat->node_zonelists[0];
2934 	pos = 0;
2935 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2936 		for (j = 0; j < nr_nodes; j++) {
2937 			node = node_order[j];
2938 			z = &NODE_DATA(node)->node_zones[zone_type];
2939 			if (populated_zone(z)) {
2940 				zoneref_set_zone(z,
2941 					&zonelist->_zonerefs[pos++]);
2942 				check_highest_zone(zone_type);
2943 			}
2944 		}
2945 	}
2946 	zonelist->_zonerefs[pos].zone = NULL;
2947 	zonelist->_zonerefs[pos].zone_idx = 0;
2948 }
2949 
2950 static int default_zonelist_order(void)
2951 {
2952 	int nid, zone_type;
2953 	unsigned long low_kmem_size,total_size;
2954 	struct zone *z;
2955 	int average_size;
2956 	/*
2957          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2958 	 * If they are really small and used heavily, the system can fall
2959 	 * into OOM very easily.
2960 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2961 	 */
2962 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2963 	low_kmem_size = 0;
2964 	total_size = 0;
2965 	for_each_online_node(nid) {
2966 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2967 			z = &NODE_DATA(nid)->node_zones[zone_type];
2968 			if (populated_zone(z)) {
2969 				if (zone_type < ZONE_NORMAL)
2970 					low_kmem_size += z->present_pages;
2971 				total_size += z->present_pages;
2972 			} else if (zone_type == ZONE_NORMAL) {
2973 				/*
2974 				 * If any node has only lowmem, then node order
2975 				 * is preferred to allow kernel allocations
2976 				 * locally; otherwise, they can easily infringe
2977 				 * on other nodes when there is an abundance of
2978 				 * lowmem available to allocate from.
2979 				 */
2980 				return ZONELIST_ORDER_NODE;
2981 			}
2982 		}
2983 	}
2984 	if (!low_kmem_size ||  /* there are no DMA area. */
2985 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2986 		return ZONELIST_ORDER_NODE;
2987 	/*
2988 	 * look into each node's config.
2989   	 * If there is a node whose DMA/DMA32 memory is very big area on
2990  	 * local memory, NODE_ORDER may be suitable.
2991          */
2992 	average_size = total_size /
2993 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
2994 	for_each_online_node(nid) {
2995 		low_kmem_size = 0;
2996 		total_size = 0;
2997 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2998 			z = &NODE_DATA(nid)->node_zones[zone_type];
2999 			if (populated_zone(z)) {
3000 				if (zone_type < ZONE_NORMAL)
3001 					low_kmem_size += z->present_pages;
3002 				total_size += z->present_pages;
3003 			}
3004 		}
3005 		if (low_kmem_size &&
3006 		    total_size > average_size && /* ignore small node */
3007 		    low_kmem_size > total_size * 70/100)
3008 			return ZONELIST_ORDER_NODE;
3009 	}
3010 	return ZONELIST_ORDER_ZONE;
3011 }
3012 
3013 static void set_zonelist_order(void)
3014 {
3015 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3016 		current_zonelist_order = default_zonelist_order();
3017 	else
3018 		current_zonelist_order = user_zonelist_order;
3019 }
3020 
3021 static void build_zonelists(pg_data_t *pgdat)
3022 {
3023 	int j, node, load;
3024 	enum zone_type i;
3025 	nodemask_t used_mask;
3026 	int local_node, prev_node;
3027 	struct zonelist *zonelist;
3028 	int order = current_zonelist_order;
3029 
3030 	/* initialize zonelists */
3031 	for (i = 0; i < MAX_ZONELISTS; i++) {
3032 		zonelist = pgdat->node_zonelists + i;
3033 		zonelist->_zonerefs[0].zone = NULL;
3034 		zonelist->_zonerefs[0].zone_idx = 0;
3035 	}
3036 
3037 	/* NUMA-aware ordering of nodes */
3038 	local_node = pgdat->node_id;
3039 	load = nr_online_nodes;
3040 	prev_node = local_node;
3041 	nodes_clear(used_mask);
3042 
3043 	memset(node_order, 0, sizeof(node_order));
3044 	j = 0;
3045 
3046 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3047 		int distance = node_distance(local_node, node);
3048 
3049 		/*
3050 		 * If another node is sufficiently far away then it is better
3051 		 * to reclaim pages in a zone before going off node.
3052 		 */
3053 		if (distance > RECLAIM_DISTANCE)
3054 			zone_reclaim_mode = 1;
3055 
3056 		/*
3057 		 * We don't want to pressure a particular node.
3058 		 * So adding penalty to the first node in same
3059 		 * distance group to make it round-robin.
3060 		 */
3061 		if (distance != node_distance(local_node, prev_node))
3062 			node_load[node] = load;
3063 
3064 		prev_node = node;
3065 		load--;
3066 		if (order == ZONELIST_ORDER_NODE)
3067 			build_zonelists_in_node_order(pgdat, node);
3068 		else
3069 			node_order[j++] = node;	/* remember order */
3070 	}
3071 
3072 	if (order == ZONELIST_ORDER_ZONE) {
3073 		/* calculate node order -- i.e., DMA last! */
3074 		build_zonelists_in_zone_order(pgdat, j);
3075 	}
3076 
3077 	build_thisnode_zonelists(pgdat);
3078 }
3079 
3080 /* Construct the zonelist performance cache - see further mmzone.h */
3081 static void build_zonelist_cache(pg_data_t *pgdat)
3082 {
3083 	struct zonelist *zonelist;
3084 	struct zonelist_cache *zlc;
3085 	struct zoneref *z;
3086 
3087 	zonelist = &pgdat->node_zonelists[0];
3088 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3089 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3090 	for (z = zonelist->_zonerefs; z->zone; z++)
3091 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3092 }
3093 
3094 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3095 /*
3096  * Return node id of node used for "local" allocations.
3097  * I.e., first node id of first zone in arg node's generic zonelist.
3098  * Used for initializing percpu 'numa_mem', which is used primarily
3099  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3100  */
3101 int local_memory_node(int node)
3102 {
3103 	struct zone *zone;
3104 
3105 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3106 				   gfp_zone(GFP_KERNEL),
3107 				   NULL,
3108 				   &zone);
3109 	return zone->node;
3110 }
3111 #endif
3112 
3113 #else	/* CONFIG_NUMA */
3114 
3115 static void set_zonelist_order(void)
3116 {
3117 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3118 }
3119 
3120 static void build_zonelists(pg_data_t *pgdat)
3121 {
3122 	int node, local_node;
3123 	enum zone_type j;
3124 	struct zonelist *zonelist;
3125 
3126 	local_node = pgdat->node_id;
3127 
3128 	zonelist = &pgdat->node_zonelists[0];
3129 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3130 
3131 	/*
3132 	 * Now we build the zonelist so that it contains the zones
3133 	 * of all the other nodes.
3134 	 * We don't want to pressure a particular node, so when
3135 	 * building the zones for node N, we make sure that the
3136 	 * zones coming right after the local ones are those from
3137 	 * node N+1 (modulo N)
3138 	 */
3139 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3140 		if (!node_online(node))
3141 			continue;
3142 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3143 							MAX_NR_ZONES - 1);
3144 	}
3145 	for (node = 0; node < local_node; node++) {
3146 		if (!node_online(node))
3147 			continue;
3148 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3149 							MAX_NR_ZONES - 1);
3150 	}
3151 
3152 	zonelist->_zonerefs[j].zone = NULL;
3153 	zonelist->_zonerefs[j].zone_idx = 0;
3154 }
3155 
3156 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3157 static void build_zonelist_cache(pg_data_t *pgdat)
3158 {
3159 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3160 }
3161 
3162 #endif	/* CONFIG_NUMA */
3163 
3164 /*
3165  * Boot pageset table. One per cpu which is going to be used for all
3166  * zones and all nodes. The parameters will be set in such a way
3167  * that an item put on a list will immediately be handed over to
3168  * the buddy list. This is safe since pageset manipulation is done
3169  * with interrupts disabled.
3170  *
3171  * The boot_pagesets must be kept even after bootup is complete for
3172  * unused processors and/or zones. They do play a role for bootstrapping
3173  * hotplugged processors.
3174  *
3175  * zoneinfo_show() and maybe other functions do
3176  * not check if the processor is online before following the pageset pointer.
3177  * Other parts of the kernel may not check if the zone is available.
3178  */
3179 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3180 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3181 static void setup_zone_pageset(struct zone *zone);
3182 
3183 /*
3184  * Global mutex to protect against size modification of zonelists
3185  * as well as to serialize pageset setup for the new populated zone.
3186  */
3187 DEFINE_MUTEX(zonelists_mutex);
3188 
3189 /* return values int ....just for stop_machine() */
3190 static __init_refok int __build_all_zonelists(void *data)
3191 {
3192 	int nid;
3193 	int cpu;
3194 
3195 #ifdef CONFIG_NUMA
3196 	memset(node_load, 0, sizeof(node_load));
3197 #endif
3198 	for_each_online_node(nid) {
3199 		pg_data_t *pgdat = NODE_DATA(nid);
3200 
3201 		build_zonelists(pgdat);
3202 		build_zonelist_cache(pgdat);
3203 	}
3204 
3205 	/*
3206 	 * Initialize the boot_pagesets that are going to be used
3207 	 * for bootstrapping processors. The real pagesets for
3208 	 * each zone will be allocated later when the per cpu
3209 	 * allocator is available.
3210 	 *
3211 	 * boot_pagesets are used also for bootstrapping offline
3212 	 * cpus if the system is already booted because the pagesets
3213 	 * are needed to initialize allocators on a specific cpu too.
3214 	 * F.e. the percpu allocator needs the page allocator which
3215 	 * needs the percpu allocator in order to allocate its pagesets
3216 	 * (a chicken-egg dilemma).
3217 	 */
3218 	for_each_possible_cpu(cpu) {
3219 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3220 
3221 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3222 		/*
3223 		 * We now know the "local memory node" for each node--
3224 		 * i.e., the node of the first zone in the generic zonelist.
3225 		 * Set up numa_mem percpu variable for on-line cpus.  During
3226 		 * boot, only the boot cpu should be on-line;  we'll init the
3227 		 * secondary cpus' numa_mem as they come on-line.  During
3228 		 * node/memory hotplug, we'll fixup all on-line cpus.
3229 		 */
3230 		if (cpu_online(cpu))
3231 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3232 #endif
3233 	}
3234 
3235 	return 0;
3236 }
3237 
3238 /*
3239  * Called with zonelists_mutex held always
3240  * unless system_state == SYSTEM_BOOTING.
3241  */
3242 void __ref build_all_zonelists(void *data)
3243 {
3244 	set_zonelist_order();
3245 
3246 	if (system_state == SYSTEM_BOOTING) {
3247 		__build_all_zonelists(NULL);
3248 		mminit_verify_zonelist();
3249 		cpuset_init_current_mems_allowed();
3250 	} else {
3251 		/* we have to stop all cpus to guarantee there is no user
3252 		   of zonelist */
3253 #ifdef CONFIG_MEMORY_HOTPLUG
3254 		if (data)
3255 			setup_zone_pageset((struct zone *)data);
3256 #endif
3257 		stop_machine(__build_all_zonelists, NULL, NULL);
3258 		/* cpuset refresh routine should be here */
3259 	}
3260 	vm_total_pages = nr_free_pagecache_pages();
3261 	/*
3262 	 * Disable grouping by mobility if the number of pages in the
3263 	 * system is too low to allow the mechanism to work. It would be
3264 	 * more accurate, but expensive to check per-zone. This check is
3265 	 * made on memory-hotadd so a system can start with mobility
3266 	 * disabled and enable it later
3267 	 */
3268 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3269 		page_group_by_mobility_disabled = 1;
3270 	else
3271 		page_group_by_mobility_disabled = 0;
3272 
3273 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3274 		"Total pages: %ld\n",
3275 			nr_online_nodes,
3276 			zonelist_order_name[current_zonelist_order],
3277 			page_group_by_mobility_disabled ? "off" : "on",
3278 			vm_total_pages);
3279 #ifdef CONFIG_NUMA
3280 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3281 #endif
3282 }
3283 
3284 /*
3285  * Helper functions to size the waitqueue hash table.
3286  * Essentially these want to choose hash table sizes sufficiently
3287  * large so that collisions trying to wait on pages are rare.
3288  * But in fact, the number of active page waitqueues on typical
3289  * systems is ridiculously low, less than 200. So this is even
3290  * conservative, even though it seems large.
3291  *
3292  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3293  * waitqueues, i.e. the size of the waitq table given the number of pages.
3294  */
3295 #define PAGES_PER_WAITQUEUE	256
3296 
3297 #ifndef CONFIG_MEMORY_HOTPLUG
3298 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3299 {
3300 	unsigned long size = 1;
3301 
3302 	pages /= PAGES_PER_WAITQUEUE;
3303 
3304 	while (size < pages)
3305 		size <<= 1;
3306 
3307 	/*
3308 	 * Once we have dozens or even hundreds of threads sleeping
3309 	 * on IO we've got bigger problems than wait queue collision.
3310 	 * Limit the size of the wait table to a reasonable size.
3311 	 */
3312 	size = min(size, 4096UL);
3313 
3314 	return max(size, 4UL);
3315 }
3316 #else
3317 /*
3318  * A zone's size might be changed by hot-add, so it is not possible to determine
3319  * a suitable size for its wait_table.  So we use the maximum size now.
3320  *
3321  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3322  *
3323  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3324  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3325  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3326  *
3327  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3328  * or more by the traditional way. (See above).  It equals:
3329  *
3330  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3331  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3332  *    powerpc (64K page size)             : =  (32G +16M)byte.
3333  */
3334 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3335 {
3336 	return 4096UL;
3337 }
3338 #endif
3339 
3340 /*
3341  * This is an integer logarithm so that shifts can be used later
3342  * to extract the more random high bits from the multiplicative
3343  * hash function before the remainder is taken.
3344  */
3345 static inline unsigned long wait_table_bits(unsigned long size)
3346 {
3347 	return ffz(~size);
3348 }
3349 
3350 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3351 
3352 /*
3353  * Check if a pageblock contains reserved pages
3354  */
3355 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3356 {
3357 	unsigned long pfn;
3358 
3359 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3360 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3361 			return 1;
3362 	}
3363 	return 0;
3364 }
3365 
3366 /*
3367  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3368  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3369  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3370  * higher will lead to a bigger reserve which will get freed as contiguous
3371  * blocks as reclaim kicks in
3372  */
3373 static void setup_zone_migrate_reserve(struct zone *zone)
3374 {
3375 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3376 	struct page *page;
3377 	unsigned long block_migratetype;
3378 	int reserve;
3379 
3380 	/* Get the start pfn, end pfn and the number of blocks to reserve */
3381 	start_pfn = zone->zone_start_pfn;
3382 	end_pfn = start_pfn + zone->spanned_pages;
3383 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3384 							pageblock_order;
3385 
3386 	/*
3387 	 * Reserve blocks are generally in place to help high-order atomic
3388 	 * allocations that are short-lived. A min_free_kbytes value that
3389 	 * would result in more than 2 reserve blocks for atomic allocations
3390 	 * is assumed to be in place to help anti-fragmentation for the
3391 	 * future allocation of hugepages at runtime.
3392 	 */
3393 	reserve = min(2, reserve);
3394 
3395 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3396 		if (!pfn_valid(pfn))
3397 			continue;
3398 		page = pfn_to_page(pfn);
3399 
3400 		/* Watch out for overlapping nodes */
3401 		if (page_to_nid(page) != zone_to_nid(zone))
3402 			continue;
3403 
3404 		/* Blocks with reserved pages will never free, skip them. */
3405 		block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3406 		if (pageblock_is_reserved(pfn, block_end_pfn))
3407 			continue;
3408 
3409 		block_migratetype = get_pageblock_migratetype(page);
3410 
3411 		/* If this block is reserved, account for it */
3412 		if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3413 			reserve--;
3414 			continue;
3415 		}
3416 
3417 		/* Suitable for reserving if this block is movable */
3418 		if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3419 			set_pageblock_migratetype(page, MIGRATE_RESERVE);
3420 			move_freepages_block(zone, page, MIGRATE_RESERVE);
3421 			reserve--;
3422 			continue;
3423 		}
3424 
3425 		/*
3426 		 * If the reserve is met and this is a previous reserved block,
3427 		 * take it back
3428 		 */
3429 		if (block_migratetype == MIGRATE_RESERVE) {
3430 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3431 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3432 		}
3433 	}
3434 }
3435 
3436 /*
3437  * Initially all pages are reserved - free ones are freed
3438  * up by free_all_bootmem() once the early boot process is
3439  * done. Non-atomic initialization, single-pass.
3440  */
3441 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3442 		unsigned long start_pfn, enum memmap_context context)
3443 {
3444 	struct page *page;
3445 	unsigned long end_pfn = start_pfn + size;
3446 	unsigned long pfn;
3447 	struct zone *z;
3448 
3449 	if (highest_memmap_pfn < end_pfn - 1)
3450 		highest_memmap_pfn = end_pfn - 1;
3451 
3452 	z = &NODE_DATA(nid)->node_zones[zone];
3453 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3454 		/*
3455 		 * There can be holes in boot-time mem_map[]s
3456 		 * handed to this function.  They do not
3457 		 * exist on hotplugged memory.
3458 		 */
3459 		if (context == MEMMAP_EARLY) {
3460 			if (!early_pfn_valid(pfn))
3461 				continue;
3462 			if (!early_pfn_in_nid(pfn, nid))
3463 				continue;
3464 		}
3465 		page = pfn_to_page(pfn);
3466 		set_page_links(page, zone, nid, pfn);
3467 		mminit_verify_page_links(page, zone, nid, pfn);
3468 		init_page_count(page);
3469 		reset_page_mapcount(page);
3470 		SetPageReserved(page);
3471 		/*
3472 		 * Mark the block movable so that blocks are reserved for
3473 		 * movable at startup. This will force kernel allocations
3474 		 * to reserve their blocks rather than leaking throughout
3475 		 * the address space during boot when many long-lived
3476 		 * kernel allocations are made. Later some blocks near
3477 		 * the start are marked MIGRATE_RESERVE by
3478 		 * setup_zone_migrate_reserve()
3479 		 *
3480 		 * bitmap is created for zone's valid pfn range. but memmap
3481 		 * can be created for invalid pages (for alignment)
3482 		 * check here not to call set_pageblock_migratetype() against
3483 		 * pfn out of zone.
3484 		 */
3485 		if ((z->zone_start_pfn <= pfn)
3486 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3487 		    && !(pfn & (pageblock_nr_pages - 1)))
3488 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3489 
3490 		INIT_LIST_HEAD(&page->lru);
3491 #ifdef WANT_PAGE_VIRTUAL
3492 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3493 		if (!is_highmem_idx(zone))
3494 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3495 #endif
3496 	}
3497 }
3498 
3499 static void __meminit zone_init_free_lists(struct zone *zone)
3500 {
3501 	int order, t;
3502 	for_each_migratetype_order(order, t) {
3503 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3504 		zone->free_area[order].nr_free = 0;
3505 	}
3506 }
3507 
3508 #ifndef __HAVE_ARCH_MEMMAP_INIT
3509 #define memmap_init(size, nid, zone, start_pfn) \
3510 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3511 #endif
3512 
3513 static int zone_batchsize(struct zone *zone)
3514 {
3515 #ifdef CONFIG_MMU
3516 	int batch;
3517 
3518 	/*
3519 	 * The per-cpu-pages pools are set to around 1000th of the
3520 	 * size of the zone.  But no more than 1/2 of a meg.
3521 	 *
3522 	 * OK, so we don't know how big the cache is.  So guess.
3523 	 */
3524 	batch = zone->present_pages / 1024;
3525 	if (batch * PAGE_SIZE > 512 * 1024)
3526 		batch = (512 * 1024) / PAGE_SIZE;
3527 	batch /= 4;		/* We effectively *= 4 below */
3528 	if (batch < 1)
3529 		batch = 1;
3530 
3531 	/*
3532 	 * Clamp the batch to a 2^n - 1 value. Having a power
3533 	 * of 2 value was found to be more likely to have
3534 	 * suboptimal cache aliasing properties in some cases.
3535 	 *
3536 	 * For example if 2 tasks are alternately allocating
3537 	 * batches of pages, one task can end up with a lot
3538 	 * of pages of one half of the possible page colors
3539 	 * and the other with pages of the other colors.
3540 	 */
3541 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3542 
3543 	return batch;
3544 
3545 #else
3546 	/* The deferral and batching of frees should be suppressed under NOMMU
3547 	 * conditions.
3548 	 *
3549 	 * The problem is that NOMMU needs to be able to allocate large chunks
3550 	 * of contiguous memory as there's no hardware page translation to
3551 	 * assemble apparent contiguous memory from discontiguous pages.
3552 	 *
3553 	 * Queueing large contiguous runs of pages for batching, however,
3554 	 * causes the pages to actually be freed in smaller chunks.  As there
3555 	 * can be a significant delay between the individual batches being
3556 	 * recycled, this leads to the once large chunks of space being
3557 	 * fragmented and becoming unavailable for high-order allocations.
3558 	 */
3559 	return 0;
3560 #endif
3561 }
3562 
3563 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3564 {
3565 	struct per_cpu_pages *pcp;
3566 	int migratetype;
3567 
3568 	memset(p, 0, sizeof(*p));
3569 
3570 	pcp = &p->pcp;
3571 	pcp->count = 0;
3572 	pcp->high = 6 * batch;
3573 	pcp->batch = max(1UL, 1 * batch);
3574 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3575 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3576 }
3577 
3578 /*
3579  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3580  * to the value high for the pageset p.
3581  */
3582 
3583 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3584 				unsigned long high)
3585 {
3586 	struct per_cpu_pages *pcp;
3587 
3588 	pcp = &p->pcp;
3589 	pcp->high = high;
3590 	pcp->batch = max(1UL, high/4);
3591 	if ((high/4) > (PAGE_SHIFT * 8))
3592 		pcp->batch = PAGE_SHIFT * 8;
3593 }
3594 
3595 static void setup_zone_pageset(struct zone *zone)
3596 {
3597 	int cpu;
3598 
3599 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3600 
3601 	for_each_possible_cpu(cpu) {
3602 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3603 
3604 		setup_pageset(pcp, zone_batchsize(zone));
3605 
3606 		if (percpu_pagelist_fraction)
3607 			setup_pagelist_highmark(pcp,
3608 				(zone->present_pages /
3609 					percpu_pagelist_fraction));
3610 	}
3611 }
3612 
3613 /*
3614  * Allocate per cpu pagesets and initialize them.
3615  * Before this call only boot pagesets were available.
3616  */
3617 void __init setup_per_cpu_pageset(void)
3618 {
3619 	struct zone *zone;
3620 
3621 	for_each_populated_zone(zone)
3622 		setup_zone_pageset(zone);
3623 }
3624 
3625 static noinline __init_refok
3626 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3627 {
3628 	int i;
3629 	struct pglist_data *pgdat = zone->zone_pgdat;
3630 	size_t alloc_size;
3631 
3632 	/*
3633 	 * The per-page waitqueue mechanism uses hashed waitqueues
3634 	 * per zone.
3635 	 */
3636 	zone->wait_table_hash_nr_entries =
3637 		 wait_table_hash_nr_entries(zone_size_pages);
3638 	zone->wait_table_bits =
3639 		wait_table_bits(zone->wait_table_hash_nr_entries);
3640 	alloc_size = zone->wait_table_hash_nr_entries
3641 					* sizeof(wait_queue_head_t);
3642 
3643 	if (!slab_is_available()) {
3644 		zone->wait_table = (wait_queue_head_t *)
3645 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
3646 	} else {
3647 		/*
3648 		 * This case means that a zone whose size was 0 gets new memory
3649 		 * via memory hot-add.
3650 		 * But it may be the case that a new node was hot-added.  In
3651 		 * this case vmalloc() will not be able to use this new node's
3652 		 * memory - this wait_table must be initialized to use this new
3653 		 * node itself as well.
3654 		 * To use this new node's memory, further consideration will be
3655 		 * necessary.
3656 		 */
3657 		zone->wait_table = vmalloc(alloc_size);
3658 	}
3659 	if (!zone->wait_table)
3660 		return -ENOMEM;
3661 
3662 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
3663 		init_waitqueue_head(zone->wait_table + i);
3664 
3665 	return 0;
3666 }
3667 
3668 static int __zone_pcp_update(void *data)
3669 {
3670 	struct zone *zone = data;
3671 	int cpu;
3672 	unsigned long batch = zone_batchsize(zone), flags;
3673 
3674 	for_each_possible_cpu(cpu) {
3675 		struct per_cpu_pageset *pset;
3676 		struct per_cpu_pages *pcp;
3677 
3678 		pset = per_cpu_ptr(zone->pageset, cpu);
3679 		pcp = &pset->pcp;
3680 
3681 		local_irq_save(flags);
3682 		free_pcppages_bulk(zone, pcp->count, pcp);
3683 		setup_pageset(pset, batch);
3684 		local_irq_restore(flags);
3685 	}
3686 	return 0;
3687 }
3688 
3689 void zone_pcp_update(struct zone *zone)
3690 {
3691 	stop_machine(__zone_pcp_update, zone, NULL);
3692 }
3693 
3694 static __meminit void zone_pcp_init(struct zone *zone)
3695 {
3696 	/*
3697 	 * per cpu subsystem is not up at this point. The following code
3698 	 * relies on the ability of the linker to provide the
3699 	 * offset of a (static) per cpu variable into the per cpu area.
3700 	 */
3701 	zone->pageset = &boot_pageset;
3702 
3703 	if (zone->present_pages)
3704 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
3705 			zone->name, zone->present_pages,
3706 					 zone_batchsize(zone));
3707 }
3708 
3709 __meminit int init_currently_empty_zone(struct zone *zone,
3710 					unsigned long zone_start_pfn,
3711 					unsigned long size,
3712 					enum memmap_context context)
3713 {
3714 	struct pglist_data *pgdat = zone->zone_pgdat;
3715 	int ret;
3716 	ret = zone_wait_table_init(zone, size);
3717 	if (ret)
3718 		return ret;
3719 	pgdat->nr_zones = zone_idx(zone) + 1;
3720 
3721 	zone->zone_start_pfn = zone_start_pfn;
3722 
3723 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
3724 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
3725 			pgdat->node_id,
3726 			(unsigned long)zone_idx(zone),
3727 			zone_start_pfn, (zone_start_pfn + size));
3728 
3729 	zone_init_free_lists(zone);
3730 
3731 	return 0;
3732 }
3733 
3734 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3735 /*
3736  * Basic iterator support. Return the first range of PFNs for a node
3737  * Note: nid == MAX_NUMNODES returns first region regardless of node
3738  */
3739 static int __meminit first_active_region_index_in_nid(int nid)
3740 {
3741 	int i;
3742 
3743 	for (i = 0; i < nr_nodemap_entries; i++)
3744 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3745 			return i;
3746 
3747 	return -1;
3748 }
3749 
3750 /*
3751  * Basic iterator support. Return the next active range of PFNs for a node
3752  * Note: nid == MAX_NUMNODES returns next region regardless of node
3753  */
3754 static int __meminit next_active_region_index_in_nid(int index, int nid)
3755 {
3756 	for (index = index + 1; index < nr_nodemap_entries; index++)
3757 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3758 			return index;
3759 
3760 	return -1;
3761 }
3762 
3763 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3764 /*
3765  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3766  * Architectures may implement their own version but if add_active_range()
3767  * was used and there are no special requirements, this is a convenient
3768  * alternative
3769  */
3770 int __meminit __early_pfn_to_nid(unsigned long pfn)
3771 {
3772 	int i;
3773 
3774 	for (i = 0; i < nr_nodemap_entries; i++) {
3775 		unsigned long start_pfn = early_node_map[i].start_pfn;
3776 		unsigned long end_pfn = early_node_map[i].end_pfn;
3777 
3778 		if (start_pfn <= pfn && pfn < end_pfn)
3779 			return early_node_map[i].nid;
3780 	}
3781 	/* This is a memory hole */
3782 	return -1;
3783 }
3784 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3785 
3786 int __meminit early_pfn_to_nid(unsigned long pfn)
3787 {
3788 	int nid;
3789 
3790 	nid = __early_pfn_to_nid(pfn);
3791 	if (nid >= 0)
3792 		return nid;
3793 	/* just returns 0 */
3794 	return 0;
3795 }
3796 
3797 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3798 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3799 {
3800 	int nid;
3801 
3802 	nid = __early_pfn_to_nid(pfn);
3803 	if (nid >= 0 && nid != node)
3804 		return false;
3805 	return true;
3806 }
3807 #endif
3808 
3809 /* Basic iterator support to walk early_node_map[] */
3810 #define for_each_active_range_index_in_nid(i, nid) \
3811 	for (i = first_active_region_index_in_nid(nid); i != -1; \
3812 				i = next_active_region_index_in_nid(i, nid))
3813 
3814 /**
3815  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3816  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3817  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3818  *
3819  * If an architecture guarantees that all ranges registered with
3820  * add_active_ranges() contain no holes and may be freed, this
3821  * this function may be used instead of calling free_bootmem() manually.
3822  */
3823 void __init free_bootmem_with_active_regions(int nid,
3824 						unsigned long max_low_pfn)
3825 {
3826 	int i;
3827 
3828 	for_each_active_range_index_in_nid(i, nid) {
3829 		unsigned long size_pages = 0;
3830 		unsigned long end_pfn = early_node_map[i].end_pfn;
3831 
3832 		if (early_node_map[i].start_pfn >= max_low_pfn)
3833 			continue;
3834 
3835 		if (end_pfn > max_low_pfn)
3836 			end_pfn = max_low_pfn;
3837 
3838 		size_pages = end_pfn - early_node_map[i].start_pfn;
3839 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3840 				PFN_PHYS(early_node_map[i].start_pfn),
3841 				size_pages << PAGE_SHIFT);
3842 	}
3843 }
3844 
3845 #ifdef CONFIG_HAVE_MEMBLOCK
3846 /*
3847  * Basic iterator support. Return the last range of PFNs for a node
3848  * Note: nid == MAX_NUMNODES returns last region regardless of node
3849  */
3850 static int __meminit last_active_region_index_in_nid(int nid)
3851 {
3852 	int i;
3853 
3854 	for (i = nr_nodemap_entries - 1; i >= 0; i--)
3855 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3856 			return i;
3857 
3858 	return -1;
3859 }
3860 
3861 /*
3862  * Basic iterator support. Return the previous active range of PFNs for a node
3863  * Note: nid == MAX_NUMNODES returns next region regardless of node
3864  */
3865 static int __meminit previous_active_region_index_in_nid(int index, int nid)
3866 {
3867 	for (index = index - 1; index >= 0; index--)
3868 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3869 			return index;
3870 
3871 	return -1;
3872 }
3873 
3874 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3875 	for (i = last_active_region_index_in_nid(nid); i != -1; \
3876 				i = previous_active_region_index_in_nid(i, nid))
3877 
3878 u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3879 					u64 goal, u64 limit)
3880 {
3881 	int i;
3882 
3883 	/* Need to go over early_node_map to find out good range for node */
3884 	for_each_active_range_index_in_nid_reverse(i, nid) {
3885 		u64 addr;
3886 		u64 ei_start, ei_last;
3887 		u64 final_start, final_end;
3888 
3889 		ei_last = early_node_map[i].end_pfn;
3890 		ei_last <<= PAGE_SHIFT;
3891 		ei_start = early_node_map[i].start_pfn;
3892 		ei_start <<= PAGE_SHIFT;
3893 
3894 		final_start = max(ei_start, goal);
3895 		final_end = min(ei_last, limit);
3896 
3897 		if (final_start >= final_end)
3898 			continue;
3899 
3900 		addr = memblock_find_in_range(final_start, final_end, size, align);
3901 
3902 		if (addr == MEMBLOCK_ERROR)
3903 			continue;
3904 
3905 		return addr;
3906 	}
3907 
3908 	return MEMBLOCK_ERROR;
3909 }
3910 #endif
3911 
3912 int __init add_from_early_node_map(struct range *range, int az,
3913 				   int nr_range, int nid)
3914 {
3915 	int i;
3916 	u64 start, end;
3917 
3918 	/* need to go over early_node_map to find out good range for node */
3919 	for_each_active_range_index_in_nid(i, nid) {
3920 		start = early_node_map[i].start_pfn;
3921 		end = early_node_map[i].end_pfn;
3922 		nr_range = add_range(range, az, nr_range, start, end);
3923 	}
3924 	return nr_range;
3925 }
3926 
3927 void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3928 {
3929 	int i;
3930 	int ret;
3931 
3932 	for_each_active_range_index_in_nid(i, nid) {
3933 		ret = work_fn(early_node_map[i].start_pfn,
3934 			      early_node_map[i].end_pfn, data);
3935 		if (ret)
3936 			break;
3937 	}
3938 }
3939 /**
3940  * sparse_memory_present_with_active_regions - Call memory_present for each active range
3941  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3942  *
3943  * If an architecture guarantees that all ranges registered with
3944  * add_active_ranges() contain no holes and may be freed, this
3945  * function may be used instead of calling memory_present() manually.
3946  */
3947 void __init sparse_memory_present_with_active_regions(int nid)
3948 {
3949 	int i;
3950 
3951 	for_each_active_range_index_in_nid(i, nid)
3952 		memory_present(early_node_map[i].nid,
3953 				early_node_map[i].start_pfn,
3954 				early_node_map[i].end_pfn);
3955 }
3956 
3957 /**
3958  * get_pfn_range_for_nid - Return the start and end page frames for a node
3959  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3960  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3961  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3962  *
3963  * It returns the start and end page frame of a node based on information
3964  * provided by an arch calling add_active_range(). If called for a node
3965  * with no available memory, a warning is printed and the start and end
3966  * PFNs will be 0.
3967  */
3968 void __meminit get_pfn_range_for_nid(unsigned int nid,
3969 			unsigned long *start_pfn, unsigned long *end_pfn)
3970 {
3971 	int i;
3972 	*start_pfn = -1UL;
3973 	*end_pfn = 0;
3974 
3975 	for_each_active_range_index_in_nid(i, nid) {
3976 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3977 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3978 	}
3979 
3980 	if (*start_pfn == -1UL)
3981 		*start_pfn = 0;
3982 }
3983 
3984 /*
3985  * This finds a zone that can be used for ZONE_MOVABLE pages. The
3986  * assumption is made that zones within a node are ordered in monotonic
3987  * increasing memory addresses so that the "highest" populated zone is used
3988  */
3989 static void __init find_usable_zone_for_movable(void)
3990 {
3991 	int zone_index;
3992 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3993 		if (zone_index == ZONE_MOVABLE)
3994 			continue;
3995 
3996 		if (arch_zone_highest_possible_pfn[zone_index] >
3997 				arch_zone_lowest_possible_pfn[zone_index])
3998 			break;
3999 	}
4000 
4001 	VM_BUG_ON(zone_index == -1);
4002 	movable_zone = zone_index;
4003 }
4004 
4005 /*
4006  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4007  * because it is sized independent of architecture. Unlike the other zones,
4008  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4009  * in each node depending on the size of each node and how evenly kernelcore
4010  * is distributed. This helper function adjusts the zone ranges
4011  * provided by the architecture for a given node by using the end of the
4012  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4013  * zones within a node are in order of monotonic increases memory addresses
4014  */
4015 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4016 					unsigned long zone_type,
4017 					unsigned long node_start_pfn,
4018 					unsigned long node_end_pfn,
4019 					unsigned long *zone_start_pfn,
4020 					unsigned long *zone_end_pfn)
4021 {
4022 	/* Only adjust if ZONE_MOVABLE is on this node */
4023 	if (zone_movable_pfn[nid]) {
4024 		/* Size ZONE_MOVABLE */
4025 		if (zone_type == ZONE_MOVABLE) {
4026 			*zone_start_pfn = zone_movable_pfn[nid];
4027 			*zone_end_pfn = min(node_end_pfn,
4028 				arch_zone_highest_possible_pfn[movable_zone]);
4029 
4030 		/* Adjust for ZONE_MOVABLE starting within this range */
4031 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4032 				*zone_end_pfn > zone_movable_pfn[nid]) {
4033 			*zone_end_pfn = zone_movable_pfn[nid];
4034 
4035 		/* Check if this whole range is within ZONE_MOVABLE */
4036 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4037 			*zone_start_pfn = *zone_end_pfn;
4038 	}
4039 }
4040 
4041 /*
4042  * Return the number of pages a zone spans in a node, including holes
4043  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4044  */
4045 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4046 					unsigned long zone_type,
4047 					unsigned long *ignored)
4048 {
4049 	unsigned long node_start_pfn, node_end_pfn;
4050 	unsigned long zone_start_pfn, zone_end_pfn;
4051 
4052 	/* Get the start and end of the node and zone */
4053 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4054 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4055 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4056 	adjust_zone_range_for_zone_movable(nid, zone_type,
4057 				node_start_pfn, node_end_pfn,
4058 				&zone_start_pfn, &zone_end_pfn);
4059 
4060 	/* Check that this node has pages within the zone's required range */
4061 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4062 		return 0;
4063 
4064 	/* Move the zone boundaries inside the node if necessary */
4065 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4066 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4067 
4068 	/* Return the spanned pages */
4069 	return zone_end_pfn - zone_start_pfn;
4070 }
4071 
4072 /*
4073  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4074  * then all holes in the requested range will be accounted for.
4075  */
4076 unsigned long __meminit __absent_pages_in_range(int nid,
4077 				unsigned long range_start_pfn,
4078 				unsigned long range_end_pfn)
4079 {
4080 	int i = 0;
4081 	unsigned long prev_end_pfn = 0, hole_pages = 0;
4082 	unsigned long start_pfn;
4083 
4084 	/* Find the end_pfn of the first active range of pfns in the node */
4085 	i = first_active_region_index_in_nid(nid);
4086 	if (i == -1)
4087 		return 0;
4088 
4089 	prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4090 
4091 	/* Account for ranges before physical memory on this node */
4092 	if (early_node_map[i].start_pfn > range_start_pfn)
4093 		hole_pages = prev_end_pfn - range_start_pfn;
4094 
4095 	/* Find all holes for the zone within the node */
4096 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
4097 
4098 		/* No need to continue if prev_end_pfn is outside the zone */
4099 		if (prev_end_pfn >= range_end_pfn)
4100 			break;
4101 
4102 		/* Make sure the end of the zone is not within the hole */
4103 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
4104 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
4105 
4106 		/* Update the hole size cound and move on */
4107 		if (start_pfn > range_start_pfn) {
4108 			BUG_ON(prev_end_pfn > start_pfn);
4109 			hole_pages += start_pfn - prev_end_pfn;
4110 		}
4111 		prev_end_pfn = early_node_map[i].end_pfn;
4112 	}
4113 
4114 	/* Account for ranges past physical memory on this node */
4115 	if (range_end_pfn > prev_end_pfn)
4116 		hole_pages += range_end_pfn -
4117 				max(range_start_pfn, prev_end_pfn);
4118 
4119 	return hole_pages;
4120 }
4121 
4122 /**
4123  * absent_pages_in_range - Return number of page frames in holes within a range
4124  * @start_pfn: The start PFN to start searching for holes
4125  * @end_pfn: The end PFN to stop searching for holes
4126  *
4127  * It returns the number of pages frames in memory holes within a range.
4128  */
4129 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4130 							unsigned long end_pfn)
4131 {
4132 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4133 }
4134 
4135 /* Return the number of page frames in holes in a zone on a node */
4136 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4137 					unsigned long zone_type,
4138 					unsigned long *ignored)
4139 {
4140 	unsigned long node_start_pfn, node_end_pfn;
4141 	unsigned long zone_start_pfn, zone_end_pfn;
4142 
4143 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4144 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
4145 							node_start_pfn);
4146 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
4147 							node_end_pfn);
4148 
4149 	adjust_zone_range_for_zone_movable(nid, zone_type,
4150 			node_start_pfn, node_end_pfn,
4151 			&zone_start_pfn, &zone_end_pfn);
4152 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4153 }
4154 
4155 #else
4156 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4157 					unsigned long zone_type,
4158 					unsigned long *zones_size)
4159 {
4160 	return zones_size[zone_type];
4161 }
4162 
4163 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4164 						unsigned long zone_type,
4165 						unsigned long *zholes_size)
4166 {
4167 	if (!zholes_size)
4168 		return 0;
4169 
4170 	return zholes_size[zone_type];
4171 }
4172 
4173 #endif
4174 
4175 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4176 		unsigned long *zones_size, unsigned long *zholes_size)
4177 {
4178 	unsigned long realtotalpages, totalpages = 0;
4179 	enum zone_type i;
4180 
4181 	for (i = 0; i < MAX_NR_ZONES; i++)
4182 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4183 								zones_size);
4184 	pgdat->node_spanned_pages = totalpages;
4185 
4186 	realtotalpages = totalpages;
4187 	for (i = 0; i < MAX_NR_ZONES; i++)
4188 		realtotalpages -=
4189 			zone_absent_pages_in_node(pgdat->node_id, i,
4190 								zholes_size);
4191 	pgdat->node_present_pages = realtotalpages;
4192 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4193 							realtotalpages);
4194 }
4195 
4196 #ifndef CONFIG_SPARSEMEM
4197 /*
4198  * Calculate the size of the zone->blockflags rounded to an unsigned long
4199  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4200  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4201  * round what is now in bits to nearest long in bits, then return it in
4202  * bytes.
4203  */
4204 static unsigned long __init usemap_size(unsigned long zonesize)
4205 {
4206 	unsigned long usemapsize;
4207 
4208 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4209 	usemapsize = usemapsize >> pageblock_order;
4210 	usemapsize *= NR_PAGEBLOCK_BITS;
4211 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4212 
4213 	return usemapsize / 8;
4214 }
4215 
4216 static void __init setup_usemap(struct pglist_data *pgdat,
4217 				struct zone *zone, unsigned long zonesize)
4218 {
4219 	unsigned long usemapsize = usemap_size(zonesize);
4220 	zone->pageblock_flags = NULL;
4221 	if (usemapsize)
4222 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4223 								   usemapsize);
4224 }
4225 #else
4226 static inline void setup_usemap(struct pglist_data *pgdat,
4227 				struct zone *zone, unsigned long zonesize) {}
4228 #endif /* CONFIG_SPARSEMEM */
4229 
4230 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4231 
4232 /* Return a sensible default order for the pageblock size. */
4233 static inline int pageblock_default_order(void)
4234 {
4235 	if (HPAGE_SHIFT > PAGE_SHIFT)
4236 		return HUGETLB_PAGE_ORDER;
4237 
4238 	return MAX_ORDER-1;
4239 }
4240 
4241 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4242 static inline void __init set_pageblock_order(unsigned int order)
4243 {
4244 	/* Check that pageblock_nr_pages has not already been setup */
4245 	if (pageblock_order)
4246 		return;
4247 
4248 	/*
4249 	 * Assume the largest contiguous order of interest is a huge page.
4250 	 * This value may be variable depending on boot parameters on IA64
4251 	 */
4252 	pageblock_order = order;
4253 }
4254 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4255 
4256 /*
4257  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4258  * and pageblock_default_order() are unused as pageblock_order is set
4259  * at compile-time. See include/linux/pageblock-flags.h for the values of
4260  * pageblock_order based on the kernel config
4261  */
4262 static inline int pageblock_default_order(unsigned int order)
4263 {
4264 	return MAX_ORDER-1;
4265 }
4266 #define set_pageblock_order(x)	do {} while (0)
4267 
4268 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4269 
4270 /*
4271  * Set up the zone data structures:
4272  *   - mark all pages reserved
4273  *   - mark all memory queues empty
4274  *   - clear the memory bitmaps
4275  */
4276 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4277 		unsigned long *zones_size, unsigned long *zholes_size)
4278 {
4279 	enum zone_type j;
4280 	int nid = pgdat->node_id;
4281 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4282 	int ret;
4283 
4284 	pgdat_resize_init(pgdat);
4285 	pgdat->nr_zones = 0;
4286 	init_waitqueue_head(&pgdat->kswapd_wait);
4287 	pgdat->kswapd_max_order = 0;
4288 	pgdat_page_cgroup_init(pgdat);
4289 
4290 	for (j = 0; j < MAX_NR_ZONES; j++) {
4291 		struct zone *zone = pgdat->node_zones + j;
4292 		unsigned long size, realsize, memmap_pages;
4293 		enum lru_list l;
4294 
4295 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4296 		realsize = size - zone_absent_pages_in_node(nid, j,
4297 								zholes_size);
4298 
4299 		/*
4300 		 * Adjust realsize so that it accounts for how much memory
4301 		 * is used by this zone for memmap. This affects the watermark
4302 		 * and per-cpu initialisations
4303 		 */
4304 		memmap_pages =
4305 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4306 		if (realsize >= memmap_pages) {
4307 			realsize -= memmap_pages;
4308 			if (memmap_pages)
4309 				printk(KERN_DEBUG
4310 				       "  %s zone: %lu pages used for memmap\n",
4311 				       zone_names[j], memmap_pages);
4312 		} else
4313 			printk(KERN_WARNING
4314 				"  %s zone: %lu pages exceeds realsize %lu\n",
4315 				zone_names[j], memmap_pages, realsize);
4316 
4317 		/* Account for reserved pages */
4318 		if (j == 0 && realsize > dma_reserve) {
4319 			realsize -= dma_reserve;
4320 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4321 					zone_names[0], dma_reserve);
4322 		}
4323 
4324 		if (!is_highmem_idx(j))
4325 			nr_kernel_pages += realsize;
4326 		nr_all_pages += realsize;
4327 
4328 		zone->spanned_pages = size;
4329 		zone->present_pages = realsize;
4330 #ifdef CONFIG_NUMA
4331 		zone->node = nid;
4332 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4333 						/ 100;
4334 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4335 #endif
4336 		zone->name = zone_names[j];
4337 		spin_lock_init(&zone->lock);
4338 		spin_lock_init(&zone->lru_lock);
4339 		zone_seqlock_init(zone);
4340 		zone->zone_pgdat = pgdat;
4341 
4342 		zone_pcp_init(zone);
4343 		for_each_lru(l)
4344 			INIT_LIST_HEAD(&zone->lru[l].list);
4345 		zone->reclaim_stat.recent_rotated[0] = 0;
4346 		zone->reclaim_stat.recent_rotated[1] = 0;
4347 		zone->reclaim_stat.recent_scanned[0] = 0;
4348 		zone->reclaim_stat.recent_scanned[1] = 0;
4349 		zap_zone_vm_stats(zone);
4350 		zone->flags = 0;
4351 		if (!size)
4352 			continue;
4353 
4354 		set_pageblock_order(pageblock_default_order());
4355 		setup_usemap(pgdat, zone, size);
4356 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4357 						size, MEMMAP_EARLY);
4358 		BUG_ON(ret);
4359 		memmap_init(size, nid, j, zone_start_pfn);
4360 		zone_start_pfn += size;
4361 	}
4362 }
4363 
4364 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4365 {
4366 	/* Skip empty nodes */
4367 	if (!pgdat->node_spanned_pages)
4368 		return;
4369 
4370 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4371 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4372 	if (!pgdat->node_mem_map) {
4373 		unsigned long size, start, end;
4374 		struct page *map;
4375 
4376 		/*
4377 		 * The zone's endpoints aren't required to be MAX_ORDER
4378 		 * aligned but the node_mem_map endpoints must be in order
4379 		 * for the buddy allocator to function correctly.
4380 		 */
4381 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4382 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4383 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4384 		size =  (end - start) * sizeof(struct page);
4385 		map = alloc_remap(pgdat->node_id, size);
4386 		if (!map)
4387 			map = alloc_bootmem_node_nopanic(pgdat, size);
4388 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4389 	}
4390 #ifndef CONFIG_NEED_MULTIPLE_NODES
4391 	/*
4392 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4393 	 */
4394 	if (pgdat == NODE_DATA(0)) {
4395 		mem_map = NODE_DATA(0)->node_mem_map;
4396 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4397 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4398 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4399 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4400 	}
4401 #endif
4402 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4403 }
4404 
4405 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4406 		unsigned long node_start_pfn, unsigned long *zholes_size)
4407 {
4408 	pg_data_t *pgdat = NODE_DATA(nid);
4409 
4410 	pgdat->node_id = nid;
4411 	pgdat->node_start_pfn = node_start_pfn;
4412 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4413 
4414 	alloc_node_mem_map(pgdat);
4415 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4416 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4417 		nid, (unsigned long)pgdat,
4418 		(unsigned long)pgdat->node_mem_map);
4419 #endif
4420 
4421 	free_area_init_core(pgdat, zones_size, zholes_size);
4422 }
4423 
4424 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4425 
4426 #if MAX_NUMNODES > 1
4427 /*
4428  * Figure out the number of possible node ids.
4429  */
4430 static void __init setup_nr_node_ids(void)
4431 {
4432 	unsigned int node;
4433 	unsigned int highest = 0;
4434 
4435 	for_each_node_mask(node, node_possible_map)
4436 		highest = node;
4437 	nr_node_ids = highest + 1;
4438 }
4439 #else
4440 static inline void setup_nr_node_ids(void)
4441 {
4442 }
4443 #endif
4444 
4445 /**
4446  * add_active_range - Register a range of PFNs backed by physical memory
4447  * @nid: The node ID the range resides on
4448  * @start_pfn: The start PFN of the available physical memory
4449  * @end_pfn: The end PFN of the available physical memory
4450  *
4451  * These ranges are stored in an early_node_map[] and later used by
4452  * free_area_init_nodes() to calculate zone sizes and holes. If the
4453  * range spans a memory hole, it is up to the architecture to ensure
4454  * the memory is not freed by the bootmem allocator. If possible
4455  * the range being registered will be merged with existing ranges.
4456  */
4457 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4458 						unsigned long end_pfn)
4459 {
4460 	int i;
4461 
4462 	mminit_dprintk(MMINIT_TRACE, "memory_register",
4463 			"Entering add_active_range(%d, %#lx, %#lx) "
4464 			"%d entries of %d used\n",
4465 			nid, start_pfn, end_pfn,
4466 			nr_nodemap_entries, MAX_ACTIVE_REGIONS);
4467 
4468 	mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4469 
4470 	/* Merge with existing active regions if possible */
4471 	for (i = 0; i < nr_nodemap_entries; i++) {
4472 		if (early_node_map[i].nid != nid)
4473 			continue;
4474 
4475 		/* Skip if an existing region covers this new one */
4476 		if (start_pfn >= early_node_map[i].start_pfn &&
4477 				end_pfn <= early_node_map[i].end_pfn)
4478 			return;
4479 
4480 		/* Merge forward if suitable */
4481 		if (start_pfn <= early_node_map[i].end_pfn &&
4482 				end_pfn > early_node_map[i].end_pfn) {
4483 			early_node_map[i].end_pfn = end_pfn;
4484 			return;
4485 		}
4486 
4487 		/* Merge backward if suitable */
4488 		if (start_pfn < early_node_map[i].start_pfn &&
4489 				end_pfn >= early_node_map[i].start_pfn) {
4490 			early_node_map[i].start_pfn = start_pfn;
4491 			return;
4492 		}
4493 	}
4494 
4495 	/* Check that early_node_map is large enough */
4496 	if (i >= MAX_ACTIVE_REGIONS) {
4497 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
4498 							MAX_ACTIVE_REGIONS);
4499 		return;
4500 	}
4501 
4502 	early_node_map[i].nid = nid;
4503 	early_node_map[i].start_pfn = start_pfn;
4504 	early_node_map[i].end_pfn = end_pfn;
4505 	nr_nodemap_entries = i + 1;
4506 }
4507 
4508 /**
4509  * remove_active_range - Shrink an existing registered range of PFNs
4510  * @nid: The node id the range is on that should be shrunk
4511  * @start_pfn: The new PFN of the range
4512  * @end_pfn: The new PFN of the range
4513  *
4514  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4515  * The map is kept near the end physical page range that has already been
4516  * registered. This function allows an arch to shrink an existing registered
4517  * range.
4518  */
4519 void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4520 				unsigned long end_pfn)
4521 {
4522 	int i, j;
4523 	int removed = 0;
4524 
4525 	printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4526 			  nid, start_pfn, end_pfn);
4527 
4528 	/* Find the old active region end and shrink */
4529 	for_each_active_range_index_in_nid(i, nid) {
4530 		if (early_node_map[i].start_pfn >= start_pfn &&
4531 		    early_node_map[i].end_pfn <= end_pfn) {
4532 			/* clear it */
4533 			early_node_map[i].start_pfn = 0;
4534 			early_node_map[i].end_pfn = 0;
4535 			removed = 1;
4536 			continue;
4537 		}
4538 		if (early_node_map[i].start_pfn < start_pfn &&
4539 		    early_node_map[i].end_pfn > start_pfn) {
4540 			unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4541 			early_node_map[i].end_pfn = start_pfn;
4542 			if (temp_end_pfn > end_pfn)
4543 				add_active_range(nid, end_pfn, temp_end_pfn);
4544 			continue;
4545 		}
4546 		if (early_node_map[i].start_pfn >= start_pfn &&
4547 		    early_node_map[i].end_pfn > end_pfn &&
4548 		    early_node_map[i].start_pfn < end_pfn) {
4549 			early_node_map[i].start_pfn = end_pfn;
4550 			continue;
4551 		}
4552 	}
4553 
4554 	if (!removed)
4555 		return;
4556 
4557 	/* remove the blank ones */
4558 	for (i = nr_nodemap_entries - 1; i > 0; i--) {
4559 		if (early_node_map[i].nid != nid)
4560 			continue;
4561 		if (early_node_map[i].end_pfn)
4562 			continue;
4563 		/* we found it, get rid of it */
4564 		for (j = i; j < nr_nodemap_entries - 1; j++)
4565 			memcpy(&early_node_map[j], &early_node_map[j+1],
4566 				sizeof(early_node_map[j]));
4567 		j = nr_nodemap_entries - 1;
4568 		memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4569 		nr_nodemap_entries--;
4570 	}
4571 }
4572 
4573 /**
4574  * remove_all_active_ranges - Remove all currently registered regions
4575  *
4576  * During discovery, it may be found that a table like SRAT is invalid
4577  * and an alternative discovery method must be used. This function removes
4578  * all currently registered regions.
4579  */
4580 void __init remove_all_active_ranges(void)
4581 {
4582 	memset(early_node_map, 0, sizeof(early_node_map));
4583 	nr_nodemap_entries = 0;
4584 }
4585 
4586 /* Compare two active node_active_regions */
4587 static int __init cmp_node_active_region(const void *a, const void *b)
4588 {
4589 	struct node_active_region *arange = (struct node_active_region *)a;
4590 	struct node_active_region *brange = (struct node_active_region *)b;
4591 
4592 	/* Done this way to avoid overflows */
4593 	if (arange->start_pfn > brange->start_pfn)
4594 		return 1;
4595 	if (arange->start_pfn < brange->start_pfn)
4596 		return -1;
4597 
4598 	return 0;
4599 }
4600 
4601 /* sort the node_map by start_pfn */
4602 void __init sort_node_map(void)
4603 {
4604 	sort(early_node_map, (size_t)nr_nodemap_entries,
4605 			sizeof(struct node_active_region),
4606 			cmp_node_active_region, NULL);
4607 }
4608 
4609 /**
4610  * node_map_pfn_alignment - determine the maximum internode alignment
4611  *
4612  * This function should be called after node map is populated and sorted.
4613  * It calculates the maximum power of two alignment which can distinguish
4614  * all the nodes.
4615  *
4616  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4617  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4618  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4619  * shifted, 1GiB is enough and this function will indicate so.
4620  *
4621  * This is used to test whether pfn -> nid mapping of the chosen memory
4622  * model has fine enough granularity to avoid incorrect mapping for the
4623  * populated node map.
4624  *
4625  * Returns the determined alignment in pfn's.  0 if there is no alignment
4626  * requirement (single node).
4627  */
4628 unsigned long __init node_map_pfn_alignment(void)
4629 {
4630 	unsigned long accl_mask = 0, last_end = 0;
4631 	int last_nid = -1;
4632 	int i;
4633 
4634 	for_each_active_range_index_in_nid(i, MAX_NUMNODES) {
4635 		int nid = early_node_map[i].nid;
4636 		unsigned long start = early_node_map[i].start_pfn;
4637 		unsigned long end = early_node_map[i].end_pfn;
4638 		unsigned long mask;
4639 
4640 		if (!start || last_nid < 0 || last_nid == nid) {
4641 			last_nid = nid;
4642 			last_end = end;
4643 			continue;
4644 		}
4645 
4646 		/*
4647 		 * Start with a mask granular enough to pin-point to the
4648 		 * start pfn and tick off bits one-by-one until it becomes
4649 		 * too coarse to separate the current node from the last.
4650 		 */
4651 		mask = ~((1 << __ffs(start)) - 1);
4652 		while (mask && last_end <= (start & (mask << 1)))
4653 			mask <<= 1;
4654 
4655 		/* accumulate all internode masks */
4656 		accl_mask |= mask;
4657 	}
4658 
4659 	/* convert mask to number of pages */
4660 	return ~accl_mask + 1;
4661 }
4662 
4663 /* Find the lowest pfn for a node */
4664 static unsigned long __init find_min_pfn_for_node(int nid)
4665 {
4666 	int i;
4667 	unsigned long min_pfn = ULONG_MAX;
4668 
4669 	/* Assuming a sorted map, the first range found has the starting pfn */
4670 	for_each_active_range_index_in_nid(i, nid)
4671 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
4672 
4673 	if (min_pfn == ULONG_MAX) {
4674 		printk(KERN_WARNING
4675 			"Could not find start_pfn for node %d\n", nid);
4676 		return 0;
4677 	}
4678 
4679 	return min_pfn;
4680 }
4681 
4682 /**
4683  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4684  *
4685  * It returns the minimum PFN based on information provided via
4686  * add_active_range().
4687  */
4688 unsigned long __init find_min_pfn_with_active_regions(void)
4689 {
4690 	return find_min_pfn_for_node(MAX_NUMNODES);
4691 }
4692 
4693 /*
4694  * early_calculate_totalpages()
4695  * Sum pages in active regions for movable zone.
4696  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4697  */
4698 static unsigned long __init early_calculate_totalpages(void)
4699 {
4700 	int i;
4701 	unsigned long totalpages = 0;
4702 
4703 	for (i = 0; i < nr_nodemap_entries; i++) {
4704 		unsigned long pages = early_node_map[i].end_pfn -
4705 						early_node_map[i].start_pfn;
4706 		totalpages += pages;
4707 		if (pages)
4708 			node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4709 	}
4710   	return totalpages;
4711 }
4712 
4713 /*
4714  * Find the PFN the Movable zone begins in each node. Kernel memory
4715  * is spread evenly between nodes as long as the nodes have enough
4716  * memory. When they don't, some nodes will have more kernelcore than
4717  * others
4718  */
4719 static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
4720 {
4721 	int i, nid;
4722 	unsigned long usable_startpfn;
4723 	unsigned long kernelcore_node, kernelcore_remaining;
4724 	/* save the state before borrow the nodemask */
4725 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4726 	unsigned long totalpages = early_calculate_totalpages();
4727 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4728 
4729 	/*
4730 	 * If movablecore was specified, calculate what size of
4731 	 * kernelcore that corresponds so that memory usable for
4732 	 * any allocation type is evenly spread. If both kernelcore
4733 	 * and movablecore are specified, then the value of kernelcore
4734 	 * will be used for required_kernelcore if it's greater than
4735 	 * what movablecore would have allowed.
4736 	 */
4737 	if (required_movablecore) {
4738 		unsigned long corepages;
4739 
4740 		/*
4741 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4742 		 * was requested by the user
4743 		 */
4744 		required_movablecore =
4745 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4746 		corepages = totalpages - required_movablecore;
4747 
4748 		required_kernelcore = max(required_kernelcore, corepages);
4749 	}
4750 
4751 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4752 	if (!required_kernelcore)
4753 		goto out;
4754 
4755 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4756 	find_usable_zone_for_movable();
4757 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4758 
4759 restart:
4760 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4761 	kernelcore_node = required_kernelcore / usable_nodes;
4762 	for_each_node_state(nid, N_HIGH_MEMORY) {
4763 		/*
4764 		 * Recalculate kernelcore_node if the division per node
4765 		 * now exceeds what is necessary to satisfy the requested
4766 		 * amount of memory for the kernel
4767 		 */
4768 		if (required_kernelcore < kernelcore_node)
4769 			kernelcore_node = required_kernelcore / usable_nodes;
4770 
4771 		/*
4772 		 * As the map is walked, we track how much memory is usable
4773 		 * by the kernel using kernelcore_remaining. When it is
4774 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4775 		 */
4776 		kernelcore_remaining = kernelcore_node;
4777 
4778 		/* Go through each range of PFNs within this node */
4779 		for_each_active_range_index_in_nid(i, nid) {
4780 			unsigned long start_pfn, end_pfn;
4781 			unsigned long size_pages;
4782 
4783 			start_pfn = max(early_node_map[i].start_pfn,
4784 						zone_movable_pfn[nid]);
4785 			end_pfn = early_node_map[i].end_pfn;
4786 			if (start_pfn >= end_pfn)
4787 				continue;
4788 
4789 			/* Account for what is only usable for kernelcore */
4790 			if (start_pfn < usable_startpfn) {
4791 				unsigned long kernel_pages;
4792 				kernel_pages = min(end_pfn, usable_startpfn)
4793 								- start_pfn;
4794 
4795 				kernelcore_remaining -= min(kernel_pages,
4796 							kernelcore_remaining);
4797 				required_kernelcore -= min(kernel_pages,
4798 							required_kernelcore);
4799 
4800 				/* Continue if range is now fully accounted */
4801 				if (end_pfn <= usable_startpfn) {
4802 
4803 					/*
4804 					 * Push zone_movable_pfn to the end so
4805 					 * that if we have to rebalance
4806 					 * kernelcore across nodes, we will
4807 					 * not double account here
4808 					 */
4809 					zone_movable_pfn[nid] = end_pfn;
4810 					continue;
4811 				}
4812 				start_pfn = usable_startpfn;
4813 			}
4814 
4815 			/*
4816 			 * The usable PFN range for ZONE_MOVABLE is from
4817 			 * start_pfn->end_pfn. Calculate size_pages as the
4818 			 * number of pages used as kernelcore
4819 			 */
4820 			size_pages = end_pfn - start_pfn;
4821 			if (size_pages > kernelcore_remaining)
4822 				size_pages = kernelcore_remaining;
4823 			zone_movable_pfn[nid] = start_pfn + size_pages;
4824 
4825 			/*
4826 			 * Some kernelcore has been met, update counts and
4827 			 * break if the kernelcore for this node has been
4828 			 * satisified
4829 			 */
4830 			required_kernelcore -= min(required_kernelcore,
4831 								size_pages);
4832 			kernelcore_remaining -= size_pages;
4833 			if (!kernelcore_remaining)
4834 				break;
4835 		}
4836 	}
4837 
4838 	/*
4839 	 * If there is still required_kernelcore, we do another pass with one
4840 	 * less node in the count. This will push zone_movable_pfn[nid] further
4841 	 * along on the nodes that still have memory until kernelcore is
4842 	 * satisified
4843 	 */
4844 	usable_nodes--;
4845 	if (usable_nodes && required_kernelcore > usable_nodes)
4846 		goto restart;
4847 
4848 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4849 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4850 		zone_movable_pfn[nid] =
4851 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4852 
4853 out:
4854 	/* restore the node_state */
4855 	node_states[N_HIGH_MEMORY] = saved_node_state;
4856 }
4857 
4858 /* Any regular memory on that node ? */
4859 static void check_for_regular_memory(pg_data_t *pgdat)
4860 {
4861 #ifdef CONFIG_HIGHMEM
4862 	enum zone_type zone_type;
4863 
4864 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4865 		struct zone *zone = &pgdat->node_zones[zone_type];
4866 		if (zone->present_pages)
4867 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4868 	}
4869 #endif
4870 }
4871 
4872 /**
4873  * free_area_init_nodes - Initialise all pg_data_t and zone data
4874  * @max_zone_pfn: an array of max PFNs for each zone
4875  *
4876  * This will call free_area_init_node() for each active node in the system.
4877  * Using the page ranges provided by add_active_range(), the size of each
4878  * zone in each node and their holes is calculated. If the maximum PFN
4879  * between two adjacent zones match, it is assumed that the zone is empty.
4880  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4881  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4882  * starts where the previous one ended. For example, ZONE_DMA32 starts
4883  * at arch_max_dma_pfn.
4884  */
4885 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4886 {
4887 	unsigned long nid;
4888 	int i;
4889 
4890 	/* Sort early_node_map as initialisation assumes it is sorted */
4891 	sort_node_map();
4892 
4893 	/* Record where the zone boundaries are */
4894 	memset(arch_zone_lowest_possible_pfn, 0,
4895 				sizeof(arch_zone_lowest_possible_pfn));
4896 	memset(arch_zone_highest_possible_pfn, 0,
4897 				sizeof(arch_zone_highest_possible_pfn));
4898 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4899 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4900 	for (i = 1; i < MAX_NR_ZONES; i++) {
4901 		if (i == ZONE_MOVABLE)
4902 			continue;
4903 		arch_zone_lowest_possible_pfn[i] =
4904 			arch_zone_highest_possible_pfn[i-1];
4905 		arch_zone_highest_possible_pfn[i] =
4906 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4907 	}
4908 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4909 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4910 
4911 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4912 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4913 	find_zone_movable_pfns_for_nodes(zone_movable_pfn);
4914 
4915 	/* Print out the zone ranges */
4916 	printk("Zone PFN ranges:\n");
4917 	for (i = 0; i < MAX_NR_ZONES; i++) {
4918 		if (i == ZONE_MOVABLE)
4919 			continue;
4920 		printk("  %-8s ", zone_names[i]);
4921 		if (arch_zone_lowest_possible_pfn[i] ==
4922 				arch_zone_highest_possible_pfn[i])
4923 			printk("empty\n");
4924 		else
4925 			printk("%0#10lx -> %0#10lx\n",
4926 				arch_zone_lowest_possible_pfn[i],
4927 				arch_zone_highest_possible_pfn[i]);
4928 	}
4929 
4930 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4931 	printk("Movable zone start PFN for each node\n");
4932 	for (i = 0; i < MAX_NUMNODES; i++) {
4933 		if (zone_movable_pfn[i])
4934 			printk("  Node %d: %lu\n", i, zone_movable_pfn[i]);
4935 	}
4936 
4937 	/* Print out the early_node_map[] */
4938 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4939 	for (i = 0; i < nr_nodemap_entries; i++)
4940 		printk("  %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
4941 						early_node_map[i].start_pfn,
4942 						early_node_map[i].end_pfn);
4943 
4944 	/* Initialise every node */
4945 	mminit_verify_pageflags_layout();
4946 	setup_nr_node_ids();
4947 	for_each_online_node(nid) {
4948 		pg_data_t *pgdat = NODE_DATA(nid);
4949 		free_area_init_node(nid, NULL,
4950 				find_min_pfn_for_node(nid), NULL);
4951 
4952 		/* Any memory on that node */
4953 		if (pgdat->node_present_pages)
4954 			node_set_state(nid, N_HIGH_MEMORY);
4955 		check_for_regular_memory(pgdat);
4956 	}
4957 }
4958 
4959 static int __init cmdline_parse_core(char *p, unsigned long *core)
4960 {
4961 	unsigned long long coremem;
4962 	if (!p)
4963 		return -EINVAL;
4964 
4965 	coremem = memparse(p, &p);
4966 	*core = coremem >> PAGE_SHIFT;
4967 
4968 	/* Paranoid check that UL is enough for the coremem value */
4969 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4970 
4971 	return 0;
4972 }
4973 
4974 /*
4975  * kernelcore=size sets the amount of memory for use for allocations that
4976  * cannot be reclaimed or migrated.
4977  */
4978 static int __init cmdline_parse_kernelcore(char *p)
4979 {
4980 	return cmdline_parse_core(p, &required_kernelcore);
4981 }
4982 
4983 /*
4984  * movablecore=size sets the amount of memory for use for allocations that
4985  * can be reclaimed or migrated.
4986  */
4987 static int __init cmdline_parse_movablecore(char *p)
4988 {
4989 	return cmdline_parse_core(p, &required_movablecore);
4990 }
4991 
4992 early_param("kernelcore", cmdline_parse_kernelcore);
4993 early_param("movablecore", cmdline_parse_movablecore);
4994 
4995 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4996 
4997 /**
4998  * set_dma_reserve - set the specified number of pages reserved in the first zone
4999  * @new_dma_reserve: The number of pages to mark reserved
5000  *
5001  * The per-cpu batchsize and zone watermarks are determined by present_pages.
5002  * In the DMA zone, a significant percentage may be consumed by kernel image
5003  * and other unfreeable allocations which can skew the watermarks badly. This
5004  * function may optionally be used to account for unfreeable pages in the
5005  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5006  * smaller per-cpu batchsize.
5007  */
5008 void __init set_dma_reserve(unsigned long new_dma_reserve)
5009 {
5010 	dma_reserve = new_dma_reserve;
5011 }
5012 
5013 void __init free_area_init(unsigned long *zones_size)
5014 {
5015 	free_area_init_node(0, zones_size,
5016 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5017 }
5018 
5019 static int page_alloc_cpu_notify(struct notifier_block *self,
5020 				 unsigned long action, void *hcpu)
5021 {
5022 	int cpu = (unsigned long)hcpu;
5023 
5024 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5025 		drain_pages(cpu);
5026 
5027 		/*
5028 		 * Spill the event counters of the dead processor
5029 		 * into the current processors event counters.
5030 		 * This artificially elevates the count of the current
5031 		 * processor.
5032 		 */
5033 		vm_events_fold_cpu(cpu);
5034 
5035 		/*
5036 		 * Zero the differential counters of the dead processor
5037 		 * so that the vm statistics are consistent.
5038 		 *
5039 		 * This is only okay since the processor is dead and cannot
5040 		 * race with what we are doing.
5041 		 */
5042 		refresh_cpu_vm_stats(cpu);
5043 	}
5044 	return NOTIFY_OK;
5045 }
5046 
5047 void __init page_alloc_init(void)
5048 {
5049 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5050 }
5051 
5052 /*
5053  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5054  *	or min_free_kbytes changes.
5055  */
5056 static void calculate_totalreserve_pages(void)
5057 {
5058 	struct pglist_data *pgdat;
5059 	unsigned long reserve_pages = 0;
5060 	enum zone_type i, j;
5061 
5062 	for_each_online_pgdat(pgdat) {
5063 		for (i = 0; i < MAX_NR_ZONES; i++) {
5064 			struct zone *zone = pgdat->node_zones + i;
5065 			unsigned long max = 0;
5066 
5067 			/* Find valid and maximum lowmem_reserve in the zone */
5068 			for (j = i; j < MAX_NR_ZONES; j++) {
5069 				if (zone->lowmem_reserve[j] > max)
5070 					max = zone->lowmem_reserve[j];
5071 			}
5072 
5073 			/* we treat the high watermark as reserved pages. */
5074 			max += high_wmark_pages(zone);
5075 
5076 			if (max > zone->present_pages)
5077 				max = zone->present_pages;
5078 			reserve_pages += max;
5079 		}
5080 	}
5081 	totalreserve_pages = reserve_pages;
5082 }
5083 
5084 /*
5085  * setup_per_zone_lowmem_reserve - called whenever
5086  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5087  *	has a correct pages reserved value, so an adequate number of
5088  *	pages are left in the zone after a successful __alloc_pages().
5089  */
5090 static void setup_per_zone_lowmem_reserve(void)
5091 {
5092 	struct pglist_data *pgdat;
5093 	enum zone_type j, idx;
5094 
5095 	for_each_online_pgdat(pgdat) {
5096 		for (j = 0; j < MAX_NR_ZONES; j++) {
5097 			struct zone *zone = pgdat->node_zones + j;
5098 			unsigned long present_pages = zone->present_pages;
5099 
5100 			zone->lowmem_reserve[j] = 0;
5101 
5102 			idx = j;
5103 			while (idx) {
5104 				struct zone *lower_zone;
5105 
5106 				idx--;
5107 
5108 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5109 					sysctl_lowmem_reserve_ratio[idx] = 1;
5110 
5111 				lower_zone = pgdat->node_zones + idx;
5112 				lower_zone->lowmem_reserve[j] = present_pages /
5113 					sysctl_lowmem_reserve_ratio[idx];
5114 				present_pages += lower_zone->present_pages;
5115 			}
5116 		}
5117 	}
5118 
5119 	/* update totalreserve_pages */
5120 	calculate_totalreserve_pages();
5121 }
5122 
5123 /**
5124  * setup_per_zone_wmarks - called when min_free_kbytes changes
5125  * or when memory is hot-{added|removed}
5126  *
5127  * Ensures that the watermark[min,low,high] values for each zone are set
5128  * correctly with respect to min_free_kbytes.
5129  */
5130 void setup_per_zone_wmarks(void)
5131 {
5132 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5133 	unsigned long lowmem_pages = 0;
5134 	struct zone *zone;
5135 	unsigned long flags;
5136 
5137 	/* Calculate total number of !ZONE_HIGHMEM pages */
5138 	for_each_zone(zone) {
5139 		if (!is_highmem(zone))
5140 			lowmem_pages += zone->present_pages;
5141 	}
5142 
5143 	for_each_zone(zone) {
5144 		u64 tmp;
5145 
5146 		spin_lock_irqsave(&zone->lock, flags);
5147 		tmp = (u64)pages_min * zone->present_pages;
5148 		do_div(tmp, lowmem_pages);
5149 		if (is_highmem(zone)) {
5150 			/*
5151 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5152 			 * need highmem pages, so cap pages_min to a small
5153 			 * value here.
5154 			 *
5155 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5156 			 * deltas controls asynch page reclaim, and so should
5157 			 * not be capped for highmem.
5158 			 */
5159 			int min_pages;
5160 
5161 			min_pages = zone->present_pages / 1024;
5162 			if (min_pages < SWAP_CLUSTER_MAX)
5163 				min_pages = SWAP_CLUSTER_MAX;
5164 			if (min_pages > 128)
5165 				min_pages = 128;
5166 			zone->watermark[WMARK_MIN] = min_pages;
5167 		} else {
5168 			/*
5169 			 * If it's a lowmem zone, reserve a number of pages
5170 			 * proportionate to the zone's size.
5171 			 */
5172 			zone->watermark[WMARK_MIN] = tmp;
5173 		}
5174 
5175 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5176 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5177 		setup_zone_migrate_reserve(zone);
5178 		spin_unlock_irqrestore(&zone->lock, flags);
5179 	}
5180 
5181 	/* update totalreserve_pages */
5182 	calculate_totalreserve_pages();
5183 }
5184 
5185 /*
5186  * The inactive anon list should be small enough that the VM never has to
5187  * do too much work, but large enough that each inactive page has a chance
5188  * to be referenced again before it is swapped out.
5189  *
5190  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5191  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5192  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5193  * the anonymous pages are kept on the inactive list.
5194  *
5195  * total     target    max
5196  * memory    ratio     inactive anon
5197  * -------------------------------------
5198  *   10MB       1         5MB
5199  *  100MB       1        50MB
5200  *    1GB       3       250MB
5201  *   10GB      10       0.9GB
5202  *  100GB      31         3GB
5203  *    1TB     101        10GB
5204  *   10TB     320        32GB
5205  */
5206 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5207 {
5208 	unsigned int gb, ratio;
5209 
5210 	/* Zone size in gigabytes */
5211 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5212 	if (gb)
5213 		ratio = int_sqrt(10 * gb);
5214 	else
5215 		ratio = 1;
5216 
5217 	zone->inactive_ratio = ratio;
5218 }
5219 
5220 static void __meminit setup_per_zone_inactive_ratio(void)
5221 {
5222 	struct zone *zone;
5223 
5224 	for_each_zone(zone)
5225 		calculate_zone_inactive_ratio(zone);
5226 }
5227 
5228 /*
5229  * Initialise min_free_kbytes.
5230  *
5231  * For small machines we want it small (128k min).  For large machines
5232  * we want it large (64MB max).  But it is not linear, because network
5233  * bandwidth does not increase linearly with machine size.  We use
5234  *
5235  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5236  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5237  *
5238  * which yields
5239  *
5240  * 16MB:	512k
5241  * 32MB:	724k
5242  * 64MB:	1024k
5243  * 128MB:	1448k
5244  * 256MB:	2048k
5245  * 512MB:	2896k
5246  * 1024MB:	4096k
5247  * 2048MB:	5792k
5248  * 4096MB:	8192k
5249  * 8192MB:	11584k
5250  * 16384MB:	16384k
5251  */
5252 int __meminit init_per_zone_wmark_min(void)
5253 {
5254 	unsigned long lowmem_kbytes;
5255 
5256 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5257 
5258 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5259 	if (min_free_kbytes < 128)
5260 		min_free_kbytes = 128;
5261 	if (min_free_kbytes > 65536)
5262 		min_free_kbytes = 65536;
5263 	setup_per_zone_wmarks();
5264 	refresh_zone_stat_thresholds();
5265 	setup_per_zone_lowmem_reserve();
5266 	setup_per_zone_inactive_ratio();
5267 	return 0;
5268 }
5269 module_init(init_per_zone_wmark_min)
5270 
5271 /*
5272  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5273  *	that we can call two helper functions whenever min_free_kbytes
5274  *	changes.
5275  */
5276 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5277 	void __user *buffer, size_t *length, loff_t *ppos)
5278 {
5279 	proc_dointvec(table, write, buffer, length, ppos);
5280 	if (write)
5281 		setup_per_zone_wmarks();
5282 	return 0;
5283 }
5284 
5285 #ifdef CONFIG_NUMA
5286 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5287 	void __user *buffer, size_t *length, loff_t *ppos)
5288 {
5289 	struct zone *zone;
5290 	int rc;
5291 
5292 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5293 	if (rc)
5294 		return rc;
5295 
5296 	for_each_zone(zone)
5297 		zone->min_unmapped_pages = (zone->present_pages *
5298 				sysctl_min_unmapped_ratio) / 100;
5299 	return 0;
5300 }
5301 
5302 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5303 	void __user *buffer, size_t *length, loff_t *ppos)
5304 {
5305 	struct zone *zone;
5306 	int rc;
5307 
5308 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5309 	if (rc)
5310 		return rc;
5311 
5312 	for_each_zone(zone)
5313 		zone->min_slab_pages = (zone->present_pages *
5314 				sysctl_min_slab_ratio) / 100;
5315 	return 0;
5316 }
5317 #endif
5318 
5319 /*
5320  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5321  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5322  *	whenever sysctl_lowmem_reserve_ratio changes.
5323  *
5324  * The reserve ratio obviously has absolutely no relation with the
5325  * minimum watermarks. The lowmem reserve ratio can only make sense
5326  * if in function of the boot time zone sizes.
5327  */
5328 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5329 	void __user *buffer, size_t *length, loff_t *ppos)
5330 {
5331 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5332 	setup_per_zone_lowmem_reserve();
5333 	return 0;
5334 }
5335 
5336 /*
5337  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5338  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5339  * can have before it gets flushed back to buddy allocator.
5340  */
5341 
5342 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5343 	void __user *buffer, size_t *length, loff_t *ppos)
5344 {
5345 	struct zone *zone;
5346 	unsigned int cpu;
5347 	int ret;
5348 
5349 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5350 	if (!write || (ret == -EINVAL))
5351 		return ret;
5352 	for_each_populated_zone(zone) {
5353 		for_each_possible_cpu(cpu) {
5354 			unsigned long  high;
5355 			high = zone->present_pages / percpu_pagelist_fraction;
5356 			setup_pagelist_highmark(
5357 				per_cpu_ptr(zone->pageset, cpu), high);
5358 		}
5359 	}
5360 	return 0;
5361 }
5362 
5363 int hashdist = HASHDIST_DEFAULT;
5364 
5365 #ifdef CONFIG_NUMA
5366 static int __init set_hashdist(char *str)
5367 {
5368 	if (!str)
5369 		return 0;
5370 	hashdist = simple_strtoul(str, &str, 0);
5371 	return 1;
5372 }
5373 __setup("hashdist=", set_hashdist);
5374 #endif
5375 
5376 /*
5377  * allocate a large system hash table from bootmem
5378  * - it is assumed that the hash table must contain an exact power-of-2
5379  *   quantity of entries
5380  * - limit is the number of hash buckets, not the total allocation size
5381  */
5382 void *__init alloc_large_system_hash(const char *tablename,
5383 				     unsigned long bucketsize,
5384 				     unsigned long numentries,
5385 				     int scale,
5386 				     int flags,
5387 				     unsigned int *_hash_shift,
5388 				     unsigned int *_hash_mask,
5389 				     unsigned long limit)
5390 {
5391 	unsigned long long max = limit;
5392 	unsigned long log2qty, size;
5393 	void *table = NULL;
5394 
5395 	/* allow the kernel cmdline to have a say */
5396 	if (!numentries) {
5397 		/* round applicable memory size up to nearest megabyte */
5398 		numentries = nr_kernel_pages;
5399 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5400 		numentries >>= 20 - PAGE_SHIFT;
5401 		numentries <<= 20 - PAGE_SHIFT;
5402 
5403 		/* limit to 1 bucket per 2^scale bytes of low memory */
5404 		if (scale > PAGE_SHIFT)
5405 			numentries >>= (scale - PAGE_SHIFT);
5406 		else
5407 			numentries <<= (PAGE_SHIFT - scale);
5408 
5409 		/* Make sure we've got at least a 0-order allocation.. */
5410 		if (unlikely(flags & HASH_SMALL)) {
5411 			/* Makes no sense without HASH_EARLY */
5412 			WARN_ON(!(flags & HASH_EARLY));
5413 			if (!(numentries >> *_hash_shift)) {
5414 				numentries = 1UL << *_hash_shift;
5415 				BUG_ON(!numentries);
5416 			}
5417 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5418 			numentries = PAGE_SIZE / bucketsize;
5419 	}
5420 	numentries = roundup_pow_of_two(numentries);
5421 
5422 	/* limit allocation size to 1/16 total memory by default */
5423 	if (max == 0) {
5424 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5425 		do_div(max, bucketsize);
5426 	}
5427 
5428 	if (numentries > max)
5429 		numentries = max;
5430 
5431 	log2qty = ilog2(numentries);
5432 
5433 	do {
5434 		size = bucketsize << log2qty;
5435 		if (flags & HASH_EARLY)
5436 			table = alloc_bootmem_nopanic(size);
5437 		else if (hashdist)
5438 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5439 		else {
5440 			/*
5441 			 * If bucketsize is not a power-of-two, we may free
5442 			 * some pages at the end of hash table which
5443 			 * alloc_pages_exact() automatically does
5444 			 */
5445 			if (get_order(size) < MAX_ORDER) {
5446 				table = alloc_pages_exact(size, GFP_ATOMIC);
5447 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5448 			}
5449 		}
5450 	} while (!table && size > PAGE_SIZE && --log2qty);
5451 
5452 	if (!table)
5453 		panic("Failed to allocate %s hash table\n", tablename);
5454 
5455 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5456 	       tablename,
5457 	       (1UL << log2qty),
5458 	       ilog2(size) - PAGE_SHIFT,
5459 	       size);
5460 
5461 	if (_hash_shift)
5462 		*_hash_shift = log2qty;
5463 	if (_hash_mask)
5464 		*_hash_mask = (1 << log2qty) - 1;
5465 
5466 	return table;
5467 }
5468 
5469 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5470 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5471 							unsigned long pfn)
5472 {
5473 #ifdef CONFIG_SPARSEMEM
5474 	return __pfn_to_section(pfn)->pageblock_flags;
5475 #else
5476 	return zone->pageblock_flags;
5477 #endif /* CONFIG_SPARSEMEM */
5478 }
5479 
5480 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5481 {
5482 #ifdef CONFIG_SPARSEMEM
5483 	pfn &= (PAGES_PER_SECTION-1);
5484 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5485 #else
5486 	pfn = pfn - zone->zone_start_pfn;
5487 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5488 #endif /* CONFIG_SPARSEMEM */
5489 }
5490 
5491 /**
5492  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5493  * @page: The page within the block of interest
5494  * @start_bitidx: The first bit of interest to retrieve
5495  * @end_bitidx: The last bit of interest
5496  * returns pageblock_bits flags
5497  */
5498 unsigned long get_pageblock_flags_group(struct page *page,
5499 					int start_bitidx, int end_bitidx)
5500 {
5501 	struct zone *zone;
5502 	unsigned long *bitmap;
5503 	unsigned long pfn, bitidx;
5504 	unsigned long flags = 0;
5505 	unsigned long value = 1;
5506 
5507 	zone = page_zone(page);
5508 	pfn = page_to_pfn(page);
5509 	bitmap = get_pageblock_bitmap(zone, pfn);
5510 	bitidx = pfn_to_bitidx(zone, pfn);
5511 
5512 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5513 		if (test_bit(bitidx + start_bitidx, bitmap))
5514 			flags |= value;
5515 
5516 	return flags;
5517 }
5518 
5519 /**
5520  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5521  * @page: The page within the block of interest
5522  * @start_bitidx: The first bit of interest
5523  * @end_bitidx: The last bit of interest
5524  * @flags: The flags to set
5525  */
5526 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5527 					int start_bitidx, int end_bitidx)
5528 {
5529 	struct zone *zone;
5530 	unsigned long *bitmap;
5531 	unsigned long pfn, bitidx;
5532 	unsigned long value = 1;
5533 
5534 	zone = page_zone(page);
5535 	pfn = page_to_pfn(page);
5536 	bitmap = get_pageblock_bitmap(zone, pfn);
5537 	bitidx = pfn_to_bitidx(zone, pfn);
5538 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5539 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5540 
5541 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5542 		if (flags & value)
5543 			__set_bit(bitidx + start_bitidx, bitmap);
5544 		else
5545 			__clear_bit(bitidx + start_bitidx, bitmap);
5546 }
5547 
5548 /*
5549  * This is designed as sub function...plz see page_isolation.c also.
5550  * set/clear page block's type to be ISOLATE.
5551  * page allocater never alloc memory from ISOLATE block.
5552  */
5553 
5554 static int
5555 __count_immobile_pages(struct zone *zone, struct page *page, int count)
5556 {
5557 	unsigned long pfn, iter, found;
5558 	/*
5559 	 * For avoiding noise data, lru_add_drain_all() should be called
5560 	 * If ZONE_MOVABLE, the zone never contains immobile pages
5561 	 */
5562 	if (zone_idx(zone) == ZONE_MOVABLE)
5563 		return true;
5564 
5565 	if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5566 		return true;
5567 
5568 	pfn = page_to_pfn(page);
5569 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5570 		unsigned long check = pfn + iter;
5571 
5572 		if (!pfn_valid_within(check))
5573 			continue;
5574 
5575 		page = pfn_to_page(check);
5576 		if (!page_count(page)) {
5577 			if (PageBuddy(page))
5578 				iter += (1 << page_order(page)) - 1;
5579 			continue;
5580 		}
5581 		if (!PageLRU(page))
5582 			found++;
5583 		/*
5584 		 * If there are RECLAIMABLE pages, we need to check it.
5585 		 * But now, memory offline itself doesn't call shrink_slab()
5586 		 * and it still to be fixed.
5587 		 */
5588 		/*
5589 		 * If the page is not RAM, page_count()should be 0.
5590 		 * we don't need more check. This is an _used_ not-movable page.
5591 		 *
5592 		 * The problematic thing here is PG_reserved pages. PG_reserved
5593 		 * is set to both of a memory hole page and a _used_ kernel
5594 		 * page at boot.
5595 		 */
5596 		if (found > count)
5597 			return false;
5598 	}
5599 	return true;
5600 }
5601 
5602 bool is_pageblock_removable_nolock(struct page *page)
5603 {
5604 	struct zone *zone = page_zone(page);
5605 	return __count_immobile_pages(zone, page, 0);
5606 }
5607 
5608 int set_migratetype_isolate(struct page *page)
5609 {
5610 	struct zone *zone;
5611 	unsigned long flags, pfn;
5612 	struct memory_isolate_notify arg;
5613 	int notifier_ret;
5614 	int ret = -EBUSY;
5615 
5616 	zone = page_zone(page);
5617 
5618 	spin_lock_irqsave(&zone->lock, flags);
5619 
5620 	pfn = page_to_pfn(page);
5621 	arg.start_pfn = pfn;
5622 	arg.nr_pages = pageblock_nr_pages;
5623 	arg.pages_found = 0;
5624 
5625 	/*
5626 	 * It may be possible to isolate a pageblock even if the
5627 	 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5628 	 * notifier chain is used by balloon drivers to return the
5629 	 * number of pages in a range that are held by the balloon
5630 	 * driver to shrink memory. If all the pages are accounted for
5631 	 * by balloons, are free, or on the LRU, isolation can continue.
5632 	 * Later, for example, when memory hotplug notifier runs, these
5633 	 * pages reported as "can be isolated" should be isolated(freed)
5634 	 * by the balloon driver through the memory notifier chain.
5635 	 */
5636 	notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5637 	notifier_ret = notifier_to_errno(notifier_ret);
5638 	if (notifier_ret)
5639 		goto out;
5640 	/*
5641 	 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5642 	 * We just check MOVABLE pages.
5643 	 */
5644 	if (__count_immobile_pages(zone, page, arg.pages_found))
5645 		ret = 0;
5646 
5647 	/*
5648 	 * immobile means "not-on-lru" paes. If immobile is larger than
5649 	 * removable-by-driver pages reported by notifier, we'll fail.
5650 	 */
5651 
5652 out:
5653 	if (!ret) {
5654 		set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5655 		move_freepages_block(zone, page, MIGRATE_ISOLATE);
5656 	}
5657 
5658 	spin_unlock_irqrestore(&zone->lock, flags);
5659 	if (!ret)
5660 		drain_all_pages();
5661 	return ret;
5662 }
5663 
5664 void unset_migratetype_isolate(struct page *page)
5665 {
5666 	struct zone *zone;
5667 	unsigned long flags;
5668 	zone = page_zone(page);
5669 	spin_lock_irqsave(&zone->lock, flags);
5670 	if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5671 		goto out;
5672 	set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5673 	move_freepages_block(zone, page, MIGRATE_MOVABLE);
5674 out:
5675 	spin_unlock_irqrestore(&zone->lock, flags);
5676 }
5677 
5678 #ifdef CONFIG_MEMORY_HOTREMOVE
5679 /*
5680  * All pages in the range must be isolated before calling this.
5681  */
5682 void
5683 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5684 {
5685 	struct page *page;
5686 	struct zone *zone;
5687 	int order, i;
5688 	unsigned long pfn;
5689 	unsigned long flags;
5690 	/* find the first valid pfn */
5691 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5692 		if (pfn_valid(pfn))
5693 			break;
5694 	if (pfn == end_pfn)
5695 		return;
5696 	zone = page_zone(pfn_to_page(pfn));
5697 	spin_lock_irqsave(&zone->lock, flags);
5698 	pfn = start_pfn;
5699 	while (pfn < end_pfn) {
5700 		if (!pfn_valid(pfn)) {
5701 			pfn++;
5702 			continue;
5703 		}
5704 		page = pfn_to_page(pfn);
5705 		BUG_ON(page_count(page));
5706 		BUG_ON(!PageBuddy(page));
5707 		order = page_order(page);
5708 #ifdef CONFIG_DEBUG_VM
5709 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5710 		       pfn, 1 << order, end_pfn);
5711 #endif
5712 		list_del(&page->lru);
5713 		rmv_page_order(page);
5714 		zone->free_area[order].nr_free--;
5715 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5716 				      - (1UL << order));
5717 		for (i = 0; i < (1 << order); i++)
5718 			SetPageReserved((page+i));
5719 		pfn += (1 << order);
5720 	}
5721 	spin_unlock_irqrestore(&zone->lock, flags);
5722 }
5723 #endif
5724 
5725 #ifdef CONFIG_MEMORY_FAILURE
5726 bool is_free_buddy_page(struct page *page)
5727 {
5728 	struct zone *zone = page_zone(page);
5729 	unsigned long pfn = page_to_pfn(page);
5730 	unsigned long flags;
5731 	int order;
5732 
5733 	spin_lock_irqsave(&zone->lock, flags);
5734 	for (order = 0; order < MAX_ORDER; order++) {
5735 		struct page *page_head = page - (pfn & ((1 << order) - 1));
5736 
5737 		if (PageBuddy(page_head) && page_order(page_head) >= order)
5738 			break;
5739 	}
5740 	spin_unlock_irqrestore(&zone->lock, flags);
5741 
5742 	return order < MAX_ORDER;
5743 }
5744 #endif
5745 
5746 static struct trace_print_flags pageflag_names[] = {
5747 	{1UL << PG_locked,		"locked"	},
5748 	{1UL << PG_error,		"error"		},
5749 	{1UL << PG_referenced,		"referenced"	},
5750 	{1UL << PG_uptodate,		"uptodate"	},
5751 	{1UL << PG_dirty,		"dirty"		},
5752 	{1UL << PG_lru,			"lru"		},
5753 	{1UL << PG_active,		"active"	},
5754 	{1UL << PG_slab,		"slab"		},
5755 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
5756 	{1UL << PG_arch_1,		"arch_1"	},
5757 	{1UL << PG_reserved,		"reserved"	},
5758 	{1UL << PG_private,		"private"	},
5759 	{1UL << PG_private_2,		"private_2"	},
5760 	{1UL << PG_writeback,		"writeback"	},
5761 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5762 	{1UL << PG_head,		"head"		},
5763 	{1UL << PG_tail,		"tail"		},
5764 #else
5765 	{1UL << PG_compound,		"compound"	},
5766 #endif
5767 	{1UL << PG_swapcache,		"swapcache"	},
5768 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
5769 	{1UL << PG_reclaim,		"reclaim"	},
5770 	{1UL << PG_swapbacked,		"swapbacked"	},
5771 	{1UL << PG_unevictable,		"unevictable"	},
5772 #ifdef CONFIG_MMU
5773 	{1UL << PG_mlocked,		"mlocked"	},
5774 #endif
5775 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5776 	{1UL << PG_uncached,		"uncached"	},
5777 #endif
5778 #ifdef CONFIG_MEMORY_FAILURE
5779 	{1UL << PG_hwpoison,		"hwpoison"	},
5780 #endif
5781 	{-1UL,				NULL		},
5782 };
5783 
5784 static void dump_page_flags(unsigned long flags)
5785 {
5786 	const char *delim = "";
5787 	unsigned long mask;
5788 	int i;
5789 
5790 	printk(KERN_ALERT "page flags: %#lx(", flags);
5791 
5792 	/* remove zone id */
5793 	flags &= (1UL << NR_PAGEFLAGS) - 1;
5794 
5795 	for (i = 0; pageflag_names[i].name && flags; i++) {
5796 
5797 		mask = pageflag_names[i].mask;
5798 		if ((flags & mask) != mask)
5799 			continue;
5800 
5801 		flags &= ~mask;
5802 		printk("%s%s", delim, pageflag_names[i].name);
5803 		delim = "|";
5804 	}
5805 
5806 	/* check for left over flags */
5807 	if (flags)
5808 		printk("%s%#lx", delim, flags);
5809 
5810 	printk(")\n");
5811 }
5812 
5813 void dump_page(struct page *page)
5814 {
5815 	printk(KERN_ALERT
5816 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5817 		page, atomic_read(&page->_count), page_mapcount(page),
5818 		page->mapping, page->index);
5819 	dump_page_flags(page->flags);
5820 	mem_cgroup_print_bad_page(page);
5821 }
5822