xref: /linux/mm/page_alloc.c (revision ed63b9c873601ca113da5c7b1745e3946493e9f3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 
79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
80 static DEFINE_MUTEX(pcp_batch_high_lock);
81 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
82 
83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
84 DEFINE_PER_CPU(int, numa_node);
85 EXPORT_PER_CPU_SYMBOL(numa_node);
86 #endif
87 
88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
89 
90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
91 /*
92  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
93  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
94  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
95  * defined in <linux/topology.h>.
96  */
97 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
98 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
99 int _node_numa_mem_[MAX_NUMNODES];
100 #endif
101 
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 	struct zone *zone;
105 	struct work_struct work;
106 };
107 DEFINE_MUTEX(pcpu_drain_mutex);
108 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114 
115 /*
116  * Array of node states.
117  */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 	[N_POSSIBLE] = NODE_MASK_ALL,
120 	[N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 	[N_MEMORY] = { { [0] = 1UL } },
127 	[N_CPU] = { { [0] = 1UL } },
128 #endif	/* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131 
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136 
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 
140 /*
141  * A cached value of the page's pageblock's migratetype, used when the page is
142  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
143  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
144  * Also the migratetype set in the page does not necessarily match the pcplist
145  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
146  * other index - this ensures that it will be put on the correct CMA freelist.
147  */
148 static inline int get_pcppage_migratetype(struct page *page)
149 {
150 	return page->index;
151 }
152 
153 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
154 {
155 	page->index = migratetype;
156 }
157 
158 #ifdef CONFIG_PM_SLEEP
159 /*
160  * The following functions are used by the suspend/hibernate code to temporarily
161  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
162  * while devices are suspended.  To avoid races with the suspend/hibernate code,
163  * they should always be called with system_transition_mutex held
164  * (gfp_allowed_mask also should only be modified with system_transition_mutex
165  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
166  * with that modification).
167  */
168 
169 static gfp_t saved_gfp_mask;
170 
171 void pm_restore_gfp_mask(void)
172 {
173 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
174 	if (saved_gfp_mask) {
175 		gfp_allowed_mask = saved_gfp_mask;
176 		saved_gfp_mask = 0;
177 	}
178 }
179 
180 void pm_restrict_gfp_mask(void)
181 {
182 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
183 	WARN_ON(saved_gfp_mask);
184 	saved_gfp_mask = gfp_allowed_mask;
185 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
186 }
187 
188 bool pm_suspended_storage(void)
189 {
190 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
191 		return false;
192 	return true;
193 }
194 #endif /* CONFIG_PM_SLEEP */
195 
196 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
197 unsigned int pageblock_order __read_mostly;
198 #endif
199 
200 static void __free_pages_ok(struct page *page, unsigned int order);
201 
202 /*
203  * results with 256, 32 in the lowmem_reserve sysctl:
204  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
205  *	1G machine -> (16M dma, 784M normal, 224M high)
206  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
207  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
208  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
209  *
210  * TBD: should special case ZONE_DMA32 machines here - in those we normally
211  * don't need any ZONE_NORMAL reservation
212  */
213 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
214 #ifdef CONFIG_ZONE_DMA
215 	[ZONE_DMA] = 256,
216 #endif
217 #ifdef CONFIG_ZONE_DMA32
218 	[ZONE_DMA32] = 256,
219 #endif
220 	[ZONE_NORMAL] = 32,
221 #ifdef CONFIG_HIGHMEM
222 	[ZONE_HIGHMEM] = 0,
223 #endif
224 	[ZONE_MOVABLE] = 0,
225 };
226 
227 EXPORT_SYMBOL(totalram_pages);
228 
229 static char * const zone_names[MAX_NR_ZONES] = {
230 #ifdef CONFIG_ZONE_DMA
231 	 "DMA",
232 #endif
233 #ifdef CONFIG_ZONE_DMA32
234 	 "DMA32",
235 #endif
236 	 "Normal",
237 #ifdef CONFIG_HIGHMEM
238 	 "HighMem",
239 #endif
240 	 "Movable",
241 #ifdef CONFIG_ZONE_DEVICE
242 	 "Device",
243 #endif
244 };
245 
246 const char * const migratetype_names[MIGRATE_TYPES] = {
247 	"Unmovable",
248 	"Movable",
249 	"Reclaimable",
250 	"HighAtomic",
251 #ifdef CONFIG_CMA
252 	"CMA",
253 #endif
254 #ifdef CONFIG_MEMORY_ISOLATION
255 	"Isolate",
256 #endif
257 };
258 
259 compound_page_dtor * const compound_page_dtors[] = {
260 	NULL,
261 	free_compound_page,
262 #ifdef CONFIG_HUGETLB_PAGE
263 	free_huge_page,
264 #endif
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	free_transhuge_page,
267 #endif
268 };
269 
270 int min_free_kbytes = 1024;
271 int user_min_free_kbytes = -1;
272 #ifdef CONFIG_DISCONTIGMEM
273 /*
274  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
275  * are not on separate NUMA nodes. Functionally this works but with
276  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
277  * quite small. By default, do not boost watermarks on discontigmem as in
278  * many cases very high-order allocations like THP are likely to be
279  * unsupported and the premature reclaim offsets the advantage of long-term
280  * fragmentation avoidance.
281  */
282 int watermark_boost_factor __read_mostly;
283 #else
284 int watermark_boost_factor __read_mostly = 15000;
285 #endif
286 int watermark_scale_factor = 10;
287 
288 static unsigned long nr_kernel_pages __initdata;
289 static unsigned long nr_all_pages __initdata;
290 static unsigned long dma_reserve __initdata;
291 
292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
293 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
294 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
295 static unsigned long required_kernelcore __initdata;
296 static unsigned long required_kernelcore_percent __initdata;
297 static unsigned long required_movablecore __initdata;
298 static unsigned long required_movablecore_percent __initdata;
299 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
300 static bool mirrored_kernelcore __meminitdata;
301 
302 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
303 int movable_zone;
304 EXPORT_SYMBOL(movable_zone);
305 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
306 
307 #if MAX_NUMNODES > 1
308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
309 unsigned int nr_online_nodes __read_mostly = 1;
310 EXPORT_SYMBOL(nr_node_ids);
311 EXPORT_SYMBOL(nr_online_nodes);
312 #endif
313 
314 int page_group_by_mobility_disabled __read_mostly;
315 
316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
317 /*
318  * During boot we initialize deferred pages on-demand, as needed, but once
319  * page_alloc_init_late() has finished, the deferred pages are all initialized,
320  * and we can permanently disable that path.
321  */
322 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
323 
324 /*
325  * Calling kasan_free_pages() only after deferred memory initialization
326  * has completed. Poisoning pages during deferred memory init will greatly
327  * lengthen the process and cause problem in large memory systems as the
328  * deferred pages initialization is done with interrupt disabled.
329  *
330  * Assuming that there will be no reference to those newly initialized
331  * pages before they are ever allocated, this should have no effect on
332  * KASAN memory tracking as the poison will be properly inserted at page
333  * allocation time. The only corner case is when pages are allocated by
334  * on-demand allocation and then freed again before the deferred pages
335  * initialization is done, but this is not likely to happen.
336  */
337 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
338 {
339 	if (!static_branch_unlikely(&deferred_pages))
340 		kasan_free_pages(page, order);
341 }
342 
343 /* Returns true if the struct page for the pfn is uninitialised */
344 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
345 {
346 	int nid = early_pfn_to_nid(pfn);
347 
348 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
349 		return true;
350 
351 	return false;
352 }
353 
354 /*
355  * Returns true when the remaining initialisation should be deferred until
356  * later in the boot cycle when it can be parallelised.
357  */
358 static bool __meminit
359 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
360 {
361 	static unsigned long prev_end_pfn, nr_initialised;
362 
363 	/*
364 	 * prev_end_pfn static that contains the end of previous zone
365 	 * No need to protect because called very early in boot before smp_init.
366 	 */
367 	if (prev_end_pfn != end_pfn) {
368 		prev_end_pfn = end_pfn;
369 		nr_initialised = 0;
370 	}
371 
372 	/* Always populate low zones for address-constrained allocations */
373 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
374 		return false;
375 
376 	/*
377 	 * We start only with one section of pages, more pages are added as
378 	 * needed until the rest of deferred pages are initialized.
379 	 */
380 	nr_initialised++;
381 	if ((nr_initialised > PAGES_PER_SECTION) &&
382 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
383 		NODE_DATA(nid)->first_deferred_pfn = pfn;
384 		return true;
385 	}
386 	return false;
387 }
388 #else
389 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
390 
391 static inline bool early_page_uninitialised(unsigned long pfn)
392 {
393 	return false;
394 }
395 
396 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
397 {
398 	return false;
399 }
400 #endif
401 
402 /* Return a pointer to the bitmap storing bits affecting a block of pages */
403 static inline unsigned long *get_pageblock_bitmap(struct page *page,
404 							unsigned long pfn)
405 {
406 #ifdef CONFIG_SPARSEMEM
407 	return __pfn_to_section(pfn)->pageblock_flags;
408 #else
409 	return page_zone(page)->pageblock_flags;
410 #endif /* CONFIG_SPARSEMEM */
411 }
412 
413 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
414 {
415 #ifdef CONFIG_SPARSEMEM
416 	pfn &= (PAGES_PER_SECTION-1);
417 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
418 #else
419 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
420 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
421 #endif /* CONFIG_SPARSEMEM */
422 }
423 
424 /**
425  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
426  * @page: The page within the block of interest
427  * @pfn: The target page frame number
428  * @end_bitidx: The last bit of interest to retrieve
429  * @mask: mask of bits that the caller is interested in
430  *
431  * Return: pageblock_bits flags
432  */
433 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
434 					unsigned long pfn,
435 					unsigned long end_bitidx,
436 					unsigned long mask)
437 {
438 	unsigned long *bitmap;
439 	unsigned long bitidx, word_bitidx;
440 	unsigned long word;
441 
442 	bitmap = get_pageblock_bitmap(page, pfn);
443 	bitidx = pfn_to_bitidx(page, pfn);
444 	word_bitidx = bitidx / BITS_PER_LONG;
445 	bitidx &= (BITS_PER_LONG-1);
446 
447 	word = bitmap[word_bitidx];
448 	bitidx += end_bitidx;
449 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
450 }
451 
452 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
453 					unsigned long end_bitidx,
454 					unsigned long mask)
455 {
456 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
457 }
458 
459 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
460 {
461 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
462 }
463 
464 /**
465  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
466  * @page: The page within the block of interest
467  * @flags: The flags to set
468  * @pfn: The target page frame number
469  * @end_bitidx: The last bit of interest
470  * @mask: mask of bits that the caller is interested in
471  */
472 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
473 					unsigned long pfn,
474 					unsigned long end_bitidx,
475 					unsigned long mask)
476 {
477 	unsigned long *bitmap;
478 	unsigned long bitidx, word_bitidx;
479 	unsigned long old_word, word;
480 
481 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
482 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
483 
484 	bitmap = get_pageblock_bitmap(page, pfn);
485 	bitidx = pfn_to_bitidx(page, pfn);
486 	word_bitidx = bitidx / BITS_PER_LONG;
487 	bitidx &= (BITS_PER_LONG-1);
488 
489 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
490 
491 	bitidx += end_bitidx;
492 	mask <<= (BITS_PER_LONG - bitidx - 1);
493 	flags <<= (BITS_PER_LONG - bitidx - 1);
494 
495 	word = READ_ONCE(bitmap[word_bitidx]);
496 	for (;;) {
497 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
498 		if (word == old_word)
499 			break;
500 		word = old_word;
501 	}
502 }
503 
504 void set_pageblock_migratetype(struct page *page, int migratetype)
505 {
506 	if (unlikely(page_group_by_mobility_disabled &&
507 		     migratetype < MIGRATE_PCPTYPES))
508 		migratetype = MIGRATE_UNMOVABLE;
509 
510 	set_pageblock_flags_group(page, (unsigned long)migratetype,
511 					PB_migrate, PB_migrate_end);
512 }
513 
514 #ifdef CONFIG_DEBUG_VM
515 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
516 {
517 	int ret = 0;
518 	unsigned seq;
519 	unsigned long pfn = page_to_pfn(page);
520 	unsigned long sp, start_pfn;
521 
522 	do {
523 		seq = zone_span_seqbegin(zone);
524 		start_pfn = zone->zone_start_pfn;
525 		sp = zone->spanned_pages;
526 		if (!zone_spans_pfn(zone, pfn))
527 			ret = 1;
528 	} while (zone_span_seqretry(zone, seq));
529 
530 	if (ret)
531 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
532 			pfn, zone_to_nid(zone), zone->name,
533 			start_pfn, start_pfn + sp);
534 
535 	return ret;
536 }
537 
538 static int page_is_consistent(struct zone *zone, struct page *page)
539 {
540 	if (!pfn_valid_within(page_to_pfn(page)))
541 		return 0;
542 	if (zone != page_zone(page))
543 		return 0;
544 
545 	return 1;
546 }
547 /*
548  * Temporary debugging check for pages not lying within a given zone.
549  */
550 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
551 {
552 	if (page_outside_zone_boundaries(zone, page))
553 		return 1;
554 	if (!page_is_consistent(zone, page))
555 		return 1;
556 
557 	return 0;
558 }
559 #else
560 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
561 {
562 	return 0;
563 }
564 #endif
565 
566 static void bad_page(struct page *page, const char *reason,
567 		unsigned long bad_flags)
568 {
569 	static unsigned long resume;
570 	static unsigned long nr_shown;
571 	static unsigned long nr_unshown;
572 
573 	/*
574 	 * Allow a burst of 60 reports, then keep quiet for that minute;
575 	 * or allow a steady drip of one report per second.
576 	 */
577 	if (nr_shown == 60) {
578 		if (time_before(jiffies, resume)) {
579 			nr_unshown++;
580 			goto out;
581 		}
582 		if (nr_unshown) {
583 			pr_alert(
584 			      "BUG: Bad page state: %lu messages suppressed\n",
585 				nr_unshown);
586 			nr_unshown = 0;
587 		}
588 		nr_shown = 0;
589 	}
590 	if (nr_shown++ == 0)
591 		resume = jiffies + 60 * HZ;
592 
593 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
594 		current->comm, page_to_pfn(page));
595 	__dump_page(page, reason);
596 	bad_flags &= page->flags;
597 	if (bad_flags)
598 		pr_alert("bad because of flags: %#lx(%pGp)\n",
599 						bad_flags, &bad_flags);
600 	dump_page_owner(page);
601 
602 	print_modules();
603 	dump_stack();
604 out:
605 	/* Leave bad fields for debug, except PageBuddy could make trouble */
606 	page_mapcount_reset(page); /* remove PageBuddy */
607 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
608 }
609 
610 /*
611  * Higher-order pages are called "compound pages".  They are structured thusly:
612  *
613  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
614  *
615  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
616  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
617  *
618  * The first tail page's ->compound_dtor holds the offset in array of compound
619  * page destructors. See compound_page_dtors.
620  *
621  * The first tail page's ->compound_order holds the order of allocation.
622  * This usage means that zero-order pages may not be compound.
623  */
624 
625 void free_compound_page(struct page *page)
626 {
627 	__free_pages_ok(page, compound_order(page));
628 }
629 
630 void prep_compound_page(struct page *page, unsigned int order)
631 {
632 	int i;
633 	int nr_pages = 1 << order;
634 
635 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
636 	set_compound_order(page, order);
637 	__SetPageHead(page);
638 	for (i = 1; i < nr_pages; i++) {
639 		struct page *p = page + i;
640 		set_page_count(p, 0);
641 		p->mapping = TAIL_MAPPING;
642 		set_compound_head(p, page);
643 	}
644 	atomic_set(compound_mapcount_ptr(page), -1);
645 }
646 
647 #ifdef CONFIG_DEBUG_PAGEALLOC
648 unsigned int _debug_guardpage_minorder;
649 bool _debug_pagealloc_enabled __read_mostly
650 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
651 EXPORT_SYMBOL(_debug_pagealloc_enabled);
652 bool _debug_guardpage_enabled __read_mostly;
653 
654 static int __init early_debug_pagealloc(char *buf)
655 {
656 	if (!buf)
657 		return -EINVAL;
658 	return kstrtobool(buf, &_debug_pagealloc_enabled);
659 }
660 early_param("debug_pagealloc", early_debug_pagealloc);
661 
662 static bool need_debug_guardpage(void)
663 {
664 	/* If we don't use debug_pagealloc, we don't need guard page */
665 	if (!debug_pagealloc_enabled())
666 		return false;
667 
668 	if (!debug_guardpage_minorder())
669 		return false;
670 
671 	return true;
672 }
673 
674 static void init_debug_guardpage(void)
675 {
676 	if (!debug_pagealloc_enabled())
677 		return;
678 
679 	if (!debug_guardpage_minorder())
680 		return;
681 
682 	_debug_guardpage_enabled = true;
683 }
684 
685 struct page_ext_operations debug_guardpage_ops = {
686 	.need = need_debug_guardpage,
687 	.init = init_debug_guardpage,
688 };
689 
690 static int __init debug_guardpage_minorder_setup(char *buf)
691 {
692 	unsigned long res;
693 
694 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
695 		pr_err("Bad debug_guardpage_minorder value\n");
696 		return 0;
697 	}
698 	_debug_guardpage_minorder = res;
699 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
700 	return 0;
701 }
702 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
703 
704 static inline bool set_page_guard(struct zone *zone, struct page *page,
705 				unsigned int order, int migratetype)
706 {
707 	struct page_ext *page_ext;
708 
709 	if (!debug_guardpage_enabled())
710 		return false;
711 
712 	if (order >= debug_guardpage_minorder())
713 		return false;
714 
715 	page_ext = lookup_page_ext(page);
716 	if (unlikely(!page_ext))
717 		return false;
718 
719 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
720 
721 	INIT_LIST_HEAD(&page->lru);
722 	set_page_private(page, order);
723 	/* Guard pages are not available for any usage */
724 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
725 
726 	return true;
727 }
728 
729 static inline void clear_page_guard(struct zone *zone, struct page *page,
730 				unsigned int order, int migratetype)
731 {
732 	struct page_ext *page_ext;
733 
734 	if (!debug_guardpage_enabled())
735 		return;
736 
737 	page_ext = lookup_page_ext(page);
738 	if (unlikely(!page_ext))
739 		return;
740 
741 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
742 
743 	set_page_private(page, 0);
744 	if (!is_migrate_isolate(migratetype))
745 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
746 }
747 #else
748 struct page_ext_operations debug_guardpage_ops;
749 static inline bool set_page_guard(struct zone *zone, struct page *page,
750 			unsigned int order, int migratetype) { return false; }
751 static inline void clear_page_guard(struct zone *zone, struct page *page,
752 				unsigned int order, int migratetype) {}
753 #endif
754 
755 static inline void set_page_order(struct page *page, unsigned int order)
756 {
757 	set_page_private(page, order);
758 	__SetPageBuddy(page);
759 }
760 
761 /*
762  * This function checks whether a page is free && is the buddy
763  * we can coalesce a page and its buddy if
764  * (a) the buddy is not in a hole (check before calling!) &&
765  * (b) the buddy is in the buddy system &&
766  * (c) a page and its buddy have the same order &&
767  * (d) a page and its buddy are in the same zone.
768  *
769  * For recording whether a page is in the buddy system, we set PageBuddy.
770  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
771  *
772  * For recording page's order, we use page_private(page).
773  */
774 static inline int page_is_buddy(struct page *page, struct page *buddy,
775 							unsigned int order)
776 {
777 	if (page_is_guard(buddy) && page_order(buddy) == order) {
778 		if (page_zone_id(page) != page_zone_id(buddy))
779 			return 0;
780 
781 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
782 
783 		return 1;
784 	}
785 
786 	if (PageBuddy(buddy) && page_order(buddy) == order) {
787 		/*
788 		 * zone check is done late to avoid uselessly
789 		 * calculating zone/node ids for pages that could
790 		 * never merge.
791 		 */
792 		if (page_zone_id(page) != page_zone_id(buddy))
793 			return 0;
794 
795 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
796 
797 		return 1;
798 	}
799 	return 0;
800 }
801 
802 #ifdef CONFIG_COMPACTION
803 static inline struct capture_control *task_capc(struct zone *zone)
804 {
805 	struct capture_control *capc = current->capture_control;
806 
807 	return capc &&
808 		!(current->flags & PF_KTHREAD) &&
809 		!capc->page &&
810 		capc->cc->zone == zone &&
811 		capc->cc->direct_compaction ? capc : NULL;
812 }
813 
814 static inline bool
815 compaction_capture(struct capture_control *capc, struct page *page,
816 		   int order, int migratetype)
817 {
818 	if (!capc || order != capc->cc->order)
819 		return false;
820 
821 	/* Do not accidentally pollute CMA or isolated regions*/
822 	if (is_migrate_cma(migratetype) ||
823 	    is_migrate_isolate(migratetype))
824 		return false;
825 
826 	/*
827 	 * Do not let lower order allocations polluate a movable pageblock.
828 	 * This might let an unmovable request use a reclaimable pageblock
829 	 * and vice-versa but no more than normal fallback logic which can
830 	 * have trouble finding a high-order free page.
831 	 */
832 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
833 		return false;
834 
835 	capc->page = page;
836 	return true;
837 }
838 
839 #else
840 static inline struct capture_control *task_capc(struct zone *zone)
841 {
842 	return NULL;
843 }
844 
845 static inline bool
846 compaction_capture(struct capture_control *capc, struct page *page,
847 		   int order, int migratetype)
848 {
849 	return false;
850 }
851 #endif /* CONFIG_COMPACTION */
852 
853 /*
854  * Freeing function for a buddy system allocator.
855  *
856  * The concept of a buddy system is to maintain direct-mapped table
857  * (containing bit values) for memory blocks of various "orders".
858  * The bottom level table contains the map for the smallest allocatable
859  * units of memory (here, pages), and each level above it describes
860  * pairs of units from the levels below, hence, "buddies".
861  * At a high level, all that happens here is marking the table entry
862  * at the bottom level available, and propagating the changes upward
863  * as necessary, plus some accounting needed to play nicely with other
864  * parts of the VM system.
865  * At each level, we keep a list of pages, which are heads of continuous
866  * free pages of length of (1 << order) and marked with PageBuddy.
867  * Page's order is recorded in page_private(page) field.
868  * So when we are allocating or freeing one, we can derive the state of the
869  * other.  That is, if we allocate a small block, and both were
870  * free, the remainder of the region must be split into blocks.
871  * If a block is freed, and its buddy is also free, then this
872  * triggers coalescing into a block of larger size.
873  *
874  * -- nyc
875  */
876 
877 static inline void __free_one_page(struct page *page,
878 		unsigned long pfn,
879 		struct zone *zone, unsigned int order,
880 		int migratetype)
881 {
882 	unsigned long combined_pfn;
883 	unsigned long uninitialized_var(buddy_pfn);
884 	struct page *buddy;
885 	unsigned int max_order;
886 	struct capture_control *capc = task_capc(zone);
887 
888 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
889 
890 	VM_BUG_ON(!zone_is_initialized(zone));
891 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
892 
893 	VM_BUG_ON(migratetype == -1);
894 	if (likely(!is_migrate_isolate(migratetype)))
895 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
896 
897 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
898 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
899 
900 continue_merging:
901 	while (order < max_order - 1) {
902 		if (compaction_capture(capc, page, order, migratetype)) {
903 			__mod_zone_freepage_state(zone, -(1 << order),
904 								migratetype);
905 			return;
906 		}
907 		buddy_pfn = __find_buddy_pfn(pfn, order);
908 		buddy = page + (buddy_pfn - pfn);
909 
910 		if (!pfn_valid_within(buddy_pfn))
911 			goto done_merging;
912 		if (!page_is_buddy(page, buddy, order))
913 			goto done_merging;
914 		/*
915 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
916 		 * merge with it and move up one order.
917 		 */
918 		if (page_is_guard(buddy))
919 			clear_page_guard(zone, buddy, order, migratetype);
920 		else
921 			del_page_from_free_area(buddy, &zone->free_area[order]);
922 		combined_pfn = buddy_pfn & pfn;
923 		page = page + (combined_pfn - pfn);
924 		pfn = combined_pfn;
925 		order++;
926 	}
927 	if (max_order < MAX_ORDER) {
928 		/* If we are here, it means order is >= pageblock_order.
929 		 * We want to prevent merge between freepages on isolate
930 		 * pageblock and normal pageblock. Without this, pageblock
931 		 * isolation could cause incorrect freepage or CMA accounting.
932 		 *
933 		 * We don't want to hit this code for the more frequent
934 		 * low-order merging.
935 		 */
936 		if (unlikely(has_isolate_pageblock(zone))) {
937 			int buddy_mt;
938 
939 			buddy_pfn = __find_buddy_pfn(pfn, order);
940 			buddy = page + (buddy_pfn - pfn);
941 			buddy_mt = get_pageblock_migratetype(buddy);
942 
943 			if (migratetype != buddy_mt
944 					&& (is_migrate_isolate(migratetype) ||
945 						is_migrate_isolate(buddy_mt)))
946 				goto done_merging;
947 		}
948 		max_order++;
949 		goto continue_merging;
950 	}
951 
952 done_merging:
953 	set_page_order(page, order);
954 
955 	/*
956 	 * If this is not the largest possible page, check if the buddy
957 	 * of the next-highest order is free. If it is, it's possible
958 	 * that pages are being freed that will coalesce soon. In case,
959 	 * that is happening, add the free page to the tail of the list
960 	 * so it's less likely to be used soon and more likely to be merged
961 	 * as a higher order page
962 	 */
963 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
964 			&& !is_shuffle_order(order)) {
965 		struct page *higher_page, *higher_buddy;
966 		combined_pfn = buddy_pfn & pfn;
967 		higher_page = page + (combined_pfn - pfn);
968 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
969 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
970 		if (pfn_valid_within(buddy_pfn) &&
971 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
972 			add_to_free_area_tail(page, &zone->free_area[order],
973 					      migratetype);
974 			return;
975 		}
976 	}
977 
978 	if (is_shuffle_order(order))
979 		add_to_free_area_random(page, &zone->free_area[order],
980 				migratetype);
981 	else
982 		add_to_free_area(page, &zone->free_area[order], migratetype);
983 
984 }
985 
986 /*
987  * A bad page could be due to a number of fields. Instead of multiple branches,
988  * try and check multiple fields with one check. The caller must do a detailed
989  * check if necessary.
990  */
991 static inline bool page_expected_state(struct page *page,
992 					unsigned long check_flags)
993 {
994 	if (unlikely(atomic_read(&page->_mapcount) != -1))
995 		return false;
996 
997 	if (unlikely((unsigned long)page->mapping |
998 			page_ref_count(page) |
999 #ifdef CONFIG_MEMCG
1000 			(unsigned long)page->mem_cgroup |
1001 #endif
1002 			(page->flags & check_flags)))
1003 		return false;
1004 
1005 	return true;
1006 }
1007 
1008 static void free_pages_check_bad(struct page *page)
1009 {
1010 	const char *bad_reason;
1011 	unsigned long bad_flags;
1012 
1013 	bad_reason = NULL;
1014 	bad_flags = 0;
1015 
1016 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1017 		bad_reason = "nonzero mapcount";
1018 	if (unlikely(page->mapping != NULL))
1019 		bad_reason = "non-NULL mapping";
1020 	if (unlikely(page_ref_count(page) != 0))
1021 		bad_reason = "nonzero _refcount";
1022 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1023 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1024 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1025 	}
1026 #ifdef CONFIG_MEMCG
1027 	if (unlikely(page->mem_cgroup))
1028 		bad_reason = "page still charged to cgroup";
1029 #endif
1030 	bad_page(page, bad_reason, bad_flags);
1031 }
1032 
1033 static inline int free_pages_check(struct page *page)
1034 {
1035 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1036 		return 0;
1037 
1038 	/* Something has gone sideways, find it */
1039 	free_pages_check_bad(page);
1040 	return 1;
1041 }
1042 
1043 static int free_tail_pages_check(struct page *head_page, struct page *page)
1044 {
1045 	int ret = 1;
1046 
1047 	/*
1048 	 * We rely page->lru.next never has bit 0 set, unless the page
1049 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1050 	 */
1051 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1052 
1053 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1054 		ret = 0;
1055 		goto out;
1056 	}
1057 	switch (page - head_page) {
1058 	case 1:
1059 		/* the first tail page: ->mapping may be compound_mapcount() */
1060 		if (unlikely(compound_mapcount(page))) {
1061 			bad_page(page, "nonzero compound_mapcount", 0);
1062 			goto out;
1063 		}
1064 		break;
1065 	case 2:
1066 		/*
1067 		 * the second tail page: ->mapping is
1068 		 * deferred_list.next -- ignore value.
1069 		 */
1070 		break;
1071 	default:
1072 		if (page->mapping != TAIL_MAPPING) {
1073 			bad_page(page, "corrupted mapping in tail page", 0);
1074 			goto out;
1075 		}
1076 		break;
1077 	}
1078 	if (unlikely(!PageTail(page))) {
1079 		bad_page(page, "PageTail not set", 0);
1080 		goto out;
1081 	}
1082 	if (unlikely(compound_head(page) != head_page)) {
1083 		bad_page(page, "compound_head not consistent", 0);
1084 		goto out;
1085 	}
1086 	ret = 0;
1087 out:
1088 	page->mapping = NULL;
1089 	clear_compound_head(page);
1090 	return ret;
1091 }
1092 
1093 static __always_inline bool free_pages_prepare(struct page *page,
1094 					unsigned int order, bool check_free)
1095 {
1096 	int bad = 0;
1097 
1098 	VM_BUG_ON_PAGE(PageTail(page), page);
1099 
1100 	trace_mm_page_free(page, order);
1101 
1102 	/*
1103 	 * Check tail pages before head page information is cleared to
1104 	 * avoid checking PageCompound for order-0 pages.
1105 	 */
1106 	if (unlikely(order)) {
1107 		bool compound = PageCompound(page);
1108 		int i;
1109 
1110 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1111 
1112 		if (compound)
1113 			ClearPageDoubleMap(page);
1114 		for (i = 1; i < (1 << order); i++) {
1115 			if (compound)
1116 				bad += free_tail_pages_check(page, page + i);
1117 			if (unlikely(free_pages_check(page + i))) {
1118 				bad++;
1119 				continue;
1120 			}
1121 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1122 		}
1123 	}
1124 	if (PageMappingFlags(page))
1125 		page->mapping = NULL;
1126 	if (memcg_kmem_enabled() && PageKmemcg(page))
1127 		__memcg_kmem_uncharge(page, order);
1128 	if (check_free)
1129 		bad += free_pages_check(page);
1130 	if (bad)
1131 		return false;
1132 
1133 	page_cpupid_reset_last(page);
1134 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1135 	reset_page_owner(page, order);
1136 
1137 	if (!PageHighMem(page)) {
1138 		debug_check_no_locks_freed(page_address(page),
1139 					   PAGE_SIZE << order);
1140 		debug_check_no_obj_freed(page_address(page),
1141 					   PAGE_SIZE << order);
1142 	}
1143 	arch_free_page(page, order);
1144 	kernel_poison_pages(page, 1 << order, 0);
1145 	if (debug_pagealloc_enabled())
1146 		kernel_map_pages(page, 1 << order, 0);
1147 
1148 	kasan_free_nondeferred_pages(page, order);
1149 
1150 	return true;
1151 }
1152 
1153 #ifdef CONFIG_DEBUG_VM
1154 static inline bool free_pcp_prepare(struct page *page)
1155 {
1156 	return free_pages_prepare(page, 0, true);
1157 }
1158 
1159 static inline bool bulkfree_pcp_prepare(struct page *page)
1160 {
1161 	return false;
1162 }
1163 #else
1164 static bool free_pcp_prepare(struct page *page)
1165 {
1166 	return free_pages_prepare(page, 0, false);
1167 }
1168 
1169 static bool bulkfree_pcp_prepare(struct page *page)
1170 {
1171 	return free_pages_check(page);
1172 }
1173 #endif /* CONFIG_DEBUG_VM */
1174 
1175 static inline void prefetch_buddy(struct page *page)
1176 {
1177 	unsigned long pfn = page_to_pfn(page);
1178 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1179 	struct page *buddy = page + (buddy_pfn - pfn);
1180 
1181 	prefetch(buddy);
1182 }
1183 
1184 /*
1185  * Frees a number of pages from the PCP lists
1186  * Assumes all pages on list are in same zone, and of same order.
1187  * count is the number of pages to free.
1188  *
1189  * If the zone was previously in an "all pages pinned" state then look to
1190  * see if this freeing clears that state.
1191  *
1192  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1193  * pinned" detection logic.
1194  */
1195 static void free_pcppages_bulk(struct zone *zone, int count,
1196 					struct per_cpu_pages *pcp)
1197 {
1198 	int migratetype = 0;
1199 	int batch_free = 0;
1200 	int prefetch_nr = 0;
1201 	bool isolated_pageblocks;
1202 	struct page *page, *tmp;
1203 	LIST_HEAD(head);
1204 
1205 	while (count) {
1206 		struct list_head *list;
1207 
1208 		/*
1209 		 * Remove pages from lists in a round-robin fashion. A
1210 		 * batch_free count is maintained that is incremented when an
1211 		 * empty list is encountered.  This is so more pages are freed
1212 		 * off fuller lists instead of spinning excessively around empty
1213 		 * lists
1214 		 */
1215 		do {
1216 			batch_free++;
1217 			if (++migratetype == MIGRATE_PCPTYPES)
1218 				migratetype = 0;
1219 			list = &pcp->lists[migratetype];
1220 		} while (list_empty(list));
1221 
1222 		/* This is the only non-empty list. Free them all. */
1223 		if (batch_free == MIGRATE_PCPTYPES)
1224 			batch_free = count;
1225 
1226 		do {
1227 			page = list_last_entry(list, struct page, lru);
1228 			/* must delete to avoid corrupting pcp list */
1229 			list_del(&page->lru);
1230 			pcp->count--;
1231 
1232 			if (bulkfree_pcp_prepare(page))
1233 				continue;
1234 
1235 			list_add_tail(&page->lru, &head);
1236 
1237 			/*
1238 			 * We are going to put the page back to the global
1239 			 * pool, prefetch its buddy to speed up later access
1240 			 * under zone->lock. It is believed the overhead of
1241 			 * an additional test and calculating buddy_pfn here
1242 			 * can be offset by reduced memory latency later. To
1243 			 * avoid excessive prefetching due to large count, only
1244 			 * prefetch buddy for the first pcp->batch nr of pages.
1245 			 */
1246 			if (prefetch_nr++ < pcp->batch)
1247 				prefetch_buddy(page);
1248 		} while (--count && --batch_free && !list_empty(list));
1249 	}
1250 
1251 	spin_lock(&zone->lock);
1252 	isolated_pageblocks = has_isolate_pageblock(zone);
1253 
1254 	/*
1255 	 * Use safe version since after __free_one_page(),
1256 	 * page->lru.next will not point to original list.
1257 	 */
1258 	list_for_each_entry_safe(page, tmp, &head, lru) {
1259 		int mt = get_pcppage_migratetype(page);
1260 		/* MIGRATE_ISOLATE page should not go to pcplists */
1261 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1262 		/* Pageblock could have been isolated meanwhile */
1263 		if (unlikely(isolated_pageblocks))
1264 			mt = get_pageblock_migratetype(page);
1265 
1266 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1267 		trace_mm_page_pcpu_drain(page, 0, mt);
1268 	}
1269 	spin_unlock(&zone->lock);
1270 }
1271 
1272 static void free_one_page(struct zone *zone,
1273 				struct page *page, unsigned long pfn,
1274 				unsigned int order,
1275 				int migratetype)
1276 {
1277 	spin_lock(&zone->lock);
1278 	if (unlikely(has_isolate_pageblock(zone) ||
1279 		is_migrate_isolate(migratetype))) {
1280 		migratetype = get_pfnblock_migratetype(page, pfn);
1281 	}
1282 	__free_one_page(page, pfn, zone, order, migratetype);
1283 	spin_unlock(&zone->lock);
1284 }
1285 
1286 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1287 				unsigned long zone, int nid)
1288 {
1289 	mm_zero_struct_page(page);
1290 	set_page_links(page, zone, nid, pfn);
1291 	init_page_count(page);
1292 	page_mapcount_reset(page);
1293 	page_cpupid_reset_last(page);
1294 	page_kasan_tag_reset(page);
1295 
1296 	INIT_LIST_HEAD(&page->lru);
1297 #ifdef WANT_PAGE_VIRTUAL
1298 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1299 	if (!is_highmem_idx(zone))
1300 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1301 #endif
1302 }
1303 
1304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1305 static void __meminit init_reserved_page(unsigned long pfn)
1306 {
1307 	pg_data_t *pgdat;
1308 	int nid, zid;
1309 
1310 	if (!early_page_uninitialised(pfn))
1311 		return;
1312 
1313 	nid = early_pfn_to_nid(pfn);
1314 	pgdat = NODE_DATA(nid);
1315 
1316 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1317 		struct zone *zone = &pgdat->node_zones[zid];
1318 
1319 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1320 			break;
1321 	}
1322 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1323 }
1324 #else
1325 static inline void init_reserved_page(unsigned long pfn)
1326 {
1327 }
1328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1329 
1330 /*
1331  * Initialised pages do not have PageReserved set. This function is
1332  * called for each range allocated by the bootmem allocator and
1333  * marks the pages PageReserved. The remaining valid pages are later
1334  * sent to the buddy page allocator.
1335  */
1336 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1337 {
1338 	unsigned long start_pfn = PFN_DOWN(start);
1339 	unsigned long end_pfn = PFN_UP(end);
1340 
1341 	for (; start_pfn < end_pfn; start_pfn++) {
1342 		if (pfn_valid(start_pfn)) {
1343 			struct page *page = pfn_to_page(start_pfn);
1344 
1345 			init_reserved_page(start_pfn);
1346 
1347 			/* Avoid false-positive PageTail() */
1348 			INIT_LIST_HEAD(&page->lru);
1349 
1350 			/*
1351 			 * no need for atomic set_bit because the struct
1352 			 * page is not visible yet so nobody should
1353 			 * access it yet.
1354 			 */
1355 			__SetPageReserved(page);
1356 		}
1357 	}
1358 }
1359 
1360 static void __free_pages_ok(struct page *page, unsigned int order)
1361 {
1362 	unsigned long flags;
1363 	int migratetype;
1364 	unsigned long pfn = page_to_pfn(page);
1365 
1366 	if (!free_pages_prepare(page, order, true))
1367 		return;
1368 
1369 	migratetype = get_pfnblock_migratetype(page, pfn);
1370 	local_irq_save(flags);
1371 	__count_vm_events(PGFREE, 1 << order);
1372 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1373 	local_irq_restore(flags);
1374 }
1375 
1376 void __free_pages_core(struct page *page, unsigned int order)
1377 {
1378 	unsigned int nr_pages = 1 << order;
1379 	struct page *p = page;
1380 	unsigned int loop;
1381 
1382 	prefetchw(p);
1383 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1384 		prefetchw(p + 1);
1385 		__ClearPageReserved(p);
1386 		set_page_count(p, 0);
1387 	}
1388 	__ClearPageReserved(p);
1389 	set_page_count(p, 0);
1390 
1391 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1392 	set_page_refcounted(page);
1393 	__free_pages(page, order);
1394 }
1395 
1396 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1397 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1398 
1399 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1400 
1401 int __meminit early_pfn_to_nid(unsigned long pfn)
1402 {
1403 	static DEFINE_SPINLOCK(early_pfn_lock);
1404 	int nid;
1405 
1406 	spin_lock(&early_pfn_lock);
1407 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1408 	if (nid < 0)
1409 		nid = first_online_node;
1410 	spin_unlock(&early_pfn_lock);
1411 
1412 	return nid;
1413 }
1414 #endif
1415 
1416 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1417 /* Only safe to use early in boot when initialisation is single-threaded */
1418 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1419 {
1420 	int nid;
1421 
1422 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1423 	if (nid >= 0 && nid != node)
1424 		return false;
1425 	return true;
1426 }
1427 
1428 #else
1429 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1430 {
1431 	return true;
1432 }
1433 #endif
1434 
1435 
1436 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1437 							unsigned int order)
1438 {
1439 	if (early_page_uninitialised(pfn))
1440 		return;
1441 	__free_pages_core(page, order);
1442 }
1443 
1444 /*
1445  * Check that the whole (or subset of) a pageblock given by the interval of
1446  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1447  * with the migration of free compaction scanner. The scanners then need to
1448  * use only pfn_valid_within() check for arches that allow holes within
1449  * pageblocks.
1450  *
1451  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1452  *
1453  * It's possible on some configurations to have a setup like node0 node1 node0
1454  * i.e. it's possible that all pages within a zones range of pages do not
1455  * belong to a single zone. We assume that a border between node0 and node1
1456  * can occur within a single pageblock, but not a node0 node1 node0
1457  * interleaving within a single pageblock. It is therefore sufficient to check
1458  * the first and last page of a pageblock and avoid checking each individual
1459  * page in a pageblock.
1460  */
1461 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1462 				     unsigned long end_pfn, struct zone *zone)
1463 {
1464 	struct page *start_page;
1465 	struct page *end_page;
1466 
1467 	/* end_pfn is one past the range we are checking */
1468 	end_pfn--;
1469 
1470 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1471 		return NULL;
1472 
1473 	start_page = pfn_to_online_page(start_pfn);
1474 	if (!start_page)
1475 		return NULL;
1476 
1477 	if (page_zone(start_page) != zone)
1478 		return NULL;
1479 
1480 	end_page = pfn_to_page(end_pfn);
1481 
1482 	/* This gives a shorter code than deriving page_zone(end_page) */
1483 	if (page_zone_id(start_page) != page_zone_id(end_page))
1484 		return NULL;
1485 
1486 	return start_page;
1487 }
1488 
1489 void set_zone_contiguous(struct zone *zone)
1490 {
1491 	unsigned long block_start_pfn = zone->zone_start_pfn;
1492 	unsigned long block_end_pfn;
1493 
1494 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1495 	for (; block_start_pfn < zone_end_pfn(zone);
1496 			block_start_pfn = block_end_pfn,
1497 			 block_end_pfn += pageblock_nr_pages) {
1498 
1499 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1500 
1501 		if (!__pageblock_pfn_to_page(block_start_pfn,
1502 					     block_end_pfn, zone))
1503 			return;
1504 	}
1505 
1506 	/* We confirm that there is no hole */
1507 	zone->contiguous = true;
1508 }
1509 
1510 void clear_zone_contiguous(struct zone *zone)
1511 {
1512 	zone->contiguous = false;
1513 }
1514 
1515 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1516 static void __init deferred_free_range(unsigned long pfn,
1517 				       unsigned long nr_pages)
1518 {
1519 	struct page *page;
1520 	unsigned long i;
1521 
1522 	if (!nr_pages)
1523 		return;
1524 
1525 	page = pfn_to_page(pfn);
1526 
1527 	/* Free a large naturally-aligned chunk if possible */
1528 	if (nr_pages == pageblock_nr_pages &&
1529 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1530 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1531 		__free_pages_core(page, pageblock_order);
1532 		return;
1533 	}
1534 
1535 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1536 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1537 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1538 		__free_pages_core(page, 0);
1539 	}
1540 }
1541 
1542 /* Completion tracking for deferred_init_memmap() threads */
1543 static atomic_t pgdat_init_n_undone __initdata;
1544 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1545 
1546 static inline void __init pgdat_init_report_one_done(void)
1547 {
1548 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1549 		complete(&pgdat_init_all_done_comp);
1550 }
1551 
1552 /*
1553  * Returns true if page needs to be initialized or freed to buddy allocator.
1554  *
1555  * First we check if pfn is valid on architectures where it is possible to have
1556  * holes within pageblock_nr_pages. On systems where it is not possible, this
1557  * function is optimized out.
1558  *
1559  * Then, we check if a current large page is valid by only checking the validity
1560  * of the head pfn.
1561  */
1562 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1563 {
1564 	if (!pfn_valid_within(pfn))
1565 		return false;
1566 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1567 		return false;
1568 	return true;
1569 }
1570 
1571 /*
1572  * Free pages to buddy allocator. Try to free aligned pages in
1573  * pageblock_nr_pages sizes.
1574  */
1575 static void __init deferred_free_pages(unsigned long pfn,
1576 				       unsigned long end_pfn)
1577 {
1578 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1579 	unsigned long nr_free = 0;
1580 
1581 	for (; pfn < end_pfn; pfn++) {
1582 		if (!deferred_pfn_valid(pfn)) {
1583 			deferred_free_range(pfn - nr_free, nr_free);
1584 			nr_free = 0;
1585 		} else if (!(pfn & nr_pgmask)) {
1586 			deferred_free_range(pfn - nr_free, nr_free);
1587 			nr_free = 1;
1588 			touch_nmi_watchdog();
1589 		} else {
1590 			nr_free++;
1591 		}
1592 	}
1593 	/* Free the last block of pages to allocator */
1594 	deferred_free_range(pfn - nr_free, nr_free);
1595 }
1596 
1597 /*
1598  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1599  * by performing it only once every pageblock_nr_pages.
1600  * Return number of pages initialized.
1601  */
1602 static unsigned long  __init deferred_init_pages(struct zone *zone,
1603 						 unsigned long pfn,
1604 						 unsigned long end_pfn)
1605 {
1606 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1607 	int nid = zone_to_nid(zone);
1608 	unsigned long nr_pages = 0;
1609 	int zid = zone_idx(zone);
1610 	struct page *page = NULL;
1611 
1612 	for (; pfn < end_pfn; pfn++) {
1613 		if (!deferred_pfn_valid(pfn)) {
1614 			page = NULL;
1615 			continue;
1616 		} else if (!page || !(pfn & nr_pgmask)) {
1617 			page = pfn_to_page(pfn);
1618 			touch_nmi_watchdog();
1619 		} else {
1620 			page++;
1621 		}
1622 		__init_single_page(page, pfn, zid, nid);
1623 		nr_pages++;
1624 	}
1625 	return (nr_pages);
1626 }
1627 
1628 /*
1629  * This function is meant to pre-load the iterator for the zone init.
1630  * Specifically it walks through the ranges until we are caught up to the
1631  * first_init_pfn value and exits there. If we never encounter the value we
1632  * return false indicating there are no valid ranges left.
1633  */
1634 static bool __init
1635 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1636 				    unsigned long *spfn, unsigned long *epfn,
1637 				    unsigned long first_init_pfn)
1638 {
1639 	u64 j;
1640 
1641 	/*
1642 	 * Start out by walking through the ranges in this zone that have
1643 	 * already been initialized. We don't need to do anything with them
1644 	 * so we just need to flush them out of the system.
1645 	 */
1646 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1647 		if (*epfn <= first_init_pfn)
1648 			continue;
1649 		if (*spfn < first_init_pfn)
1650 			*spfn = first_init_pfn;
1651 		*i = j;
1652 		return true;
1653 	}
1654 
1655 	return false;
1656 }
1657 
1658 /*
1659  * Initialize and free pages. We do it in two loops: first we initialize
1660  * struct page, then free to buddy allocator, because while we are
1661  * freeing pages we can access pages that are ahead (computing buddy
1662  * page in __free_one_page()).
1663  *
1664  * In order to try and keep some memory in the cache we have the loop
1665  * broken along max page order boundaries. This way we will not cause
1666  * any issues with the buddy page computation.
1667  */
1668 static unsigned long __init
1669 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1670 		       unsigned long *end_pfn)
1671 {
1672 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1673 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1674 	unsigned long nr_pages = 0;
1675 	u64 j = *i;
1676 
1677 	/* First we loop through and initialize the page values */
1678 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1679 		unsigned long t;
1680 
1681 		if (mo_pfn <= *start_pfn)
1682 			break;
1683 
1684 		t = min(mo_pfn, *end_pfn);
1685 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1686 
1687 		if (mo_pfn < *end_pfn) {
1688 			*start_pfn = mo_pfn;
1689 			break;
1690 		}
1691 	}
1692 
1693 	/* Reset values and now loop through freeing pages as needed */
1694 	swap(j, *i);
1695 
1696 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1697 		unsigned long t;
1698 
1699 		if (mo_pfn <= spfn)
1700 			break;
1701 
1702 		t = min(mo_pfn, epfn);
1703 		deferred_free_pages(spfn, t);
1704 
1705 		if (mo_pfn <= epfn)
1706 			break;
1707 	}
1708 
1709 	return nr_pages;
1710 }
1711 
1712 /* Initialise remaining memory on a node */
1713 static int __init deferred_init_memmap(void *data)
1714 {
1715 	pg_data_t *pgdat = data;
1716 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1717 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1718 	unsigned long first_init_pfn, flags;
1719 	unsigned long start = jiffies;
1720 	struct zone *zone;
1721 	int zid;
1722 	u64 i;
1723 
1724 	/* Bind memory initialisation thread to a local node if possible */
1725 	if (!cpumask_empty(cpumask))
1726 		set_cpus_allowed_ptr(current, cpumask);
1727 
1728 	pgdat_resize_lock(pgdat, &flags);
1729 	first_init_pfn = pgdat->first_deferred_pfn;
1730 	if (first_init_pfn == ULONG_MAX) {
1731 		pgdat_resize_unlock(pgdat, &flags);
1732 		pgdat_init_report_one_done();
1733 		return 0;
1734 	}
1735 
1736 	/* Sanity check boundaries */
1737 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1738 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1739 	pgdat->first_deferred_pfn = ULONG_MAX;
1740 
1741 	/* Only the highest zone is deferred so find it */
1742 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1743 		zone = pgdat->node_zones + zid;
1744 		if (first_init_pfn < zone_end_pfn(zone))
1745 			break;
1746 	}
1747 
1748 	/* If the zone is empty somebody else may have cleared out the zone */
1749 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1750 						 first_init_pfn))
1751 		goto zone_empty;
1752 
1753 	/*
1754 	 * Initialize and free pages in MAX_ORDER sized increments so
1755 	 * that we can avoid introducing any issues with the buddy
1756 	 * allocator.
1757 	 */
1758 	while (spfn < epfn)
1759 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1760 zone_empty:
1761 	pgdat_resize_unlock(pgdat, &flags);
1762 
1763 	/* Sanity check that the next zone really is unpopulated */
1764 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1765 
1766 	pr_info("node %d initialised, %lu pages in %ums\n",
1767 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1768 
1769 	pgdat_init_report_one_done();
1770 	return 0;
1771 }
1772 
1773 /*
1774  * If this zone has deferred pages, try to grow it by initializing enough
1775  * deferred pages to satisfy the allocation specified by order, rounded up to
1776  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1777  * of SECTION_SIZE bytes by initializing struct pages in increments of
1778  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1779  *
1780  * Return true when zone was grown, otherwise return false. We return true even
1781  * when we grow less than requested, to let the caller decide if there are
1782  * enough pages to satisfy the allocation.
1783  *
1784  * Note: We use noinline because this function is needed only during boot, and
1785  * it is called from a __ref function _deferred_grow_zone. This way we are
1786  * making sure that it is not inlined into permanent text section.
1787  */
1788 static noinline bool __init
1789 deferred_grow_zone(struct zone *zone, unsigned int order)
1790 {
1791 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1792 	pg_data_t *pgdat = zone->zone_pgdat;
1793 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1794 	unsigned long spfn, epfn, flags;
1795 	unsigned long nr_pages = 0;
1796 	u64 i;
1797 
1798 	/* Only the last zone may have deferred pages */
1799 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1800 		return false;
1801 
1802 	pgdat_resize_lock(pgdat, &flags);
1803 
1804 	/*
1805 	 * If deferred pages have been initialized while we were waiting for
1806 	 * the lock, return true, as the zone was grown.  The caller will retry
1807 	 * this zone.  We won't return to this function since the caller also
1808 	 * has this static branch.
1809 	 */
1810 	if (!static_branch_unlikely(&deferred_pages)) {
1811 		pgdat_resize_unlock(pgdat, &flags);
1812 		return true;
1813 	}
1814 
1815 	/*
1816 	 * If someone grew this zone while we were waiting for spinlock, return
1817 	 * true, as there might be enough pages already.
1818 	 */
1819 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1820 		pgdat_resize_unlock(pgdat, &flags);
1821 		return true;
1822 	}
1823 
1824 	/* If the zone is empty somebody else may have cleared out the zone */
1825 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1826 						 first_deferred_pfn)) {
1827 		pgdat->first_deferred_pfn = ULONG_MAX;
1828 		pgdat_resize_unlock(pgdat, &flags);
1829 		/* Retry only once. */
1830 		return first_deferred_pfn != ULONG_MAX;
1831 	}
1832 
1833 	/*
1834 	 * Initialize and free pages in MAX_ORDER sized increments so
1835 	 * that we can avoid introducing any issues with the buddy
1836 	 * allocator.
1837 	 */
1838 	while (spfn < epfn) {
1839 		/* update our first deferred PFN for this section */
1840 		first_deferred_pfn = spfn;
1841 
1842 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1843 
1844 		/* We should only stop along section boundaries */
1845 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1846 			continue;
1847 
1848 		/* If our quota has been met we can stop here */
1849 		if (nr_pages >= nr_pages_needed)
1850 			break;
1851 	}
1852 
1853 	pgdat->first_deferred_pfn = spfn;
1854 	pgdat_resize_unlock(pgdat, &flags);
1855 
1856 	return nr_pages > 0;
1857 }
1858 
1859 /*
1860  * deferred_grow_zone() is __init, but it is called from
1861  * get_page_from_freelist() during early boot until deferred_pages permanently
1862  * disables this call. This is why we have refdata wrapper to avoid warning,
1863  * and to ensure that the function body gets unloaded.
1864  */
1865 static bool __ref
1866 _deferred_grow_zone(struct zone *zone, unsigned int order)
1867 {
1868 	return deferred_grow_zone(zone, order);
1869 }
1870 
1871 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1872 
1873 void __init page_alloc_init_late(void)
1874 {
1875 	struct zone *zone;
1876 	int nid;
1877 
1878 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1879 
1880 	/* There will be num_node_state(N_MEMORY) threads */
1881 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1882 	for_each_node_state(nid, N_MEMORY) {
1883 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1884 	}
1885 
1886 	/* Block until all are initialised */
1887 	wait_for_completion(&pgdat_init_all_done_comp);
1888 
1889 	/*
1890 	 * We initialized the rest of the deferred pages.  Permanently disable
1891 	 * on-demand struct page initialization.
1892 	 */
1893 	static_branch_disable(&deferred_pages);
1894 
1895 	/* Reinit limits that are based on free pages after the kernel is up */
1896 	files_maxfiles_init();
1897 #endif
1898 
1899 	/* Discard memblock private memory */
1900 	memblock_discard();
1901 
1902 	for_each_node_state(nid, N_MEMORY)
1903 		shuffle_free_memory(NODE_DATA(nid));
1904 
1905 	for_each_populated_zone(zone)
1906 		set_zone_contiguous(zone);
1907 }
1908 
1909 #ifdef CONFIG_CMA
1910 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1911 void __init init_cma_reserved_pageblock(struct page *page)
1912 {
1913 	unsigned i = pageblock_nr_pages;
1914 	struct page *p = page;
1915 
1916 	do {
1917 		__ClearPageReserved(p);
1918 		set_page_count(p, 0);
1919 	} while (++p, --i);
1920 
1921 	set_pageblock_migratetype(page, MIGRATE_CMA);
1922 
1923 	if (pageblock_order >= MAX_ORDER) {
1924 		i = pageblock_nr_pages;
1925 		p = page;
1926 		do {
1927 			set_page_refcounted(p);
1928 			__free_pages(p, MAX_ORDER - 1);
1929 			p += MAX_ORDER_NR_PAGES;
1930 		} while (i -= MAX_ORDER_NR_PAGES);
1931 	} else {
1932 		set_page_refcounted(page);
1933 		__free_pages(page, pageblock_order);
1934 	}
1935 
1936 	adjust_managed_page_count(page, pageblock_nr_pages);
1937 }
1938 #endif
1939 
1940 /*
1941  * The order of subdivision here is critical for the IO subsystem.
1942  * Please do not alter this order without good reasons and regression
1943  * testing. Specifically, as large blocks of memory are subdivided,
1944  * the order in which smaller blocks are delivered depends on the order
1945  * they're subdivided in this function. This is the primary factor
1946  * influencing the order in which pages are delivered to the IO
1947  * subsystem according to empirical testing, and this is also justified
1948  * by considering the behavior of a buddy system containing a single
1949  * large block of memory acted on by a series of small allocations.
1950  * This behavior is a critical factor in sglist merging's success.
1951  *
1952  * -- nyc
1953  */
1954 static inline void expand(struct zone *zone, struct page *page,
1955 	int low, int high, struct free_area *area,
1956 	int migratetype)
1957 {
1958 	unsigned long size = 1 << high;
1959 
1960 	while (high > low) {
1961 		area--;
1962 		high--;
1963 		size >>= 1;
1964 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1965 
1966 		/*
1967 		 * Mark as guard pages (or page), that will allow to
1968 		 * merge back to allocator when buddy will be freed.
1969 		 * Corresponding page table entries will not be touched,
1970 		 * pages will stay not present in virtual address space
1971 		 */
1972 		if (set_page_guard(zone, &page[size], high, migratetype))
1973 			continue;
1974 
1975 		add_to_free_area(&page[size], area, migratetype);
1976 		set_page_order(&page[size], high);
1977 	}
1978 }
1979 
1980 static void check_new_page_bad(struct page *page)
1981 {
1982 	const char *bad_reason = NULL;
1983 	unsigned long bad_flags = 0;
1984 
1985 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1986 		bad_reason = "nonzero mapcount";
1987 	if (unlikely(page->mapping != NULL))
1988 		bad_reason = "non-NULL mapping";
1989 	if (unlikely(page_ref_count(page) != 0))
1990 		bad_reason = "nonzero _refcount";
1991 	if (unlikely(page->flags & __PG_HWPOISON)) {
1992 		bad_reason = "HWPoisoned (hardware-corrupted)";
1993 		bad_flags = __PG_HWPOISON;
1994 		/* Don't complain about hwpoisoned pages */
1995 		page_mapcount_reset(page); /* remove PageBuddy */
1996 		return;
1997 	}
1998 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1999 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2000 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2001 	}
2002 #ifdef CONFIG_MEMCG
2003 	if (unlikely(page->mem_cgroup))
2004 		bad_reason = "page still charged to cgroup";
2005 #endif
2006 	bad_page(page, bad_reason, bad_flags);
2007 }
2008 
2009 /*
2010  * This page is about to be returned from the page allocator
2011  */
2012 static inline int check_new_page(struct page *page)
2013 {
2014 	if (likely(page_expected_state(page,
2015 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2016 		return 0;
2017 
2018 	check_new_page_bad(page);
2019 	return 1;
2020 }
2021 
2022 static inline bool free_pages_prezeroed(void)
2023 {
2024 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2025 		page_poisoning_enabled();
2026 }
2027 
2028 #ifdef CONFIG_DEBUG_VM
2029 static bool check_pcp_refill(struct page *page)
2030 {
2031 	return false;
2032 }
2033 
2034 static bool check_new_pcp(struct page *page)
2035 {
2036 	return check_new_page(page);
2037 }
2038 #else
2039 static bool check_pcp_refill(struct page *page)
2040 {
2041 	return check_new_page(page);
2042 }
2043 static bool check_new_pcp(struct page *page)
2044 {
2045 	return false;
2046 }
2047 #endif /* CONFIG_DEBUG_VM */
2048 
2049 static bool check_new_pages(struct page *page, unsigned int order)
2050 {
2051 	int i;
2052 	for (i = 0; i < (1 << order); i++) {
2053 		struct page *p = page + i;
2054 
2055 		if (unlikely(check_new_page(p)))
2056 			return true;
2057 	}
2058 
2059 	return false;
2060 }
2061 
2062 inline void post_alloc_hook(struct page *page, unsigned int order,
2063 				gfp_t gfp_flags)
2064 {
2065 	set_page_private(page, 0);
2066 	set_page_refcounted(page);
2067 
2068 	arch_alloc_page(page, order);
2069 	if (debug_pagealloc_enabled())
2070 		kernel_map_pages(page, 1 << order, 1);
2071 	kasan_alloc_pages(page, order);
2072 	kernel_poison_pages(page, 1 << order, 1);
2073 	set_page_owner(page, order, gfp_flags);
2074 }
2075 
2076 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2077 							unsigned int alloc_flags)
2078 {
2079 	int i;
2080 
2081 	post_alloc_hook(page, order, gfp_flags);
2082 
2083 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2084 		for (i = 0; i < (1 << order); i++)
2085 			clear_highpage(page + i);
2086 
2087 	if (order && (gfp_flags & __GFP_COMP))
2088 		prep_compound_page(page, order);
2089 
2090 	/*
2091 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2092 	 * allocate the page. The expectation is that the caller is taking
2093 	 * steps that will free more memory. The caller should avoid the page
2094 	 * being used for !PFMEMALLOC purposes.
2095 	 */
2096 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2097 		set_page_pfmemalloc(page);
2098 	else
2099 		clear_page_pfmemalloc(page);
2100 }
2101 
2102 /*
2103  * Go through the free lists for the given migratetype and remove
2104  * the smallest available page from the freelists
2105  */
2106 static __always_inline
2107 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2108 						int migratetype)
2109 {
2110 	unsigned int current_order;
2111 	struct free_area *area;
2112 	struct page *page;
2113 
2114 	/* Find a page of the appropriate size in the preferred list */
2115 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2116 		area = &(zone->free_area[current_order]);
2117 		page = get_page_from_free_area(area, migratetype);
2118 		if (!page)
2119 			continue;
2120 		del_page_from_free_area(page, area);
2121 		expand(zone, page, order, current_order, area, migratetype);
2122 		set_pcppage_migratetype(page, migratetype);
2123 		return page;
2124 	}
2125 
2126 	return NULL;
2127 }
2128 
2129 
2130 /*
2131  * This array describes the order lists are fallen back to when
2132  * the free lists for the desirable migrate type are depleted
2133  */
2134 static int fallbacks[MIGRATE_TYPES][4] = {
2135 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2136 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2137 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2138 #ifdef CONFIG_CMA
2139 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2140 #endif
2141 #ifdef CONFIG_MEMORY_ISOLATION
2142 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2143 #endif
2144 };
2145 
2146 #ifdef CONFIG_CMA
2147 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2148 					unsigned int order)
2149 {
2150 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2151 }
2152 #else
2153 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2154 					unsigned int order) { return NULL; }
2155 #endif
2156 
2157 /*
2158  * Move the free pages in a range to the free lists of the requested type.
2159  * Note that start_page and end_pages are not aligned on a pageblock
2160  * boundary. If alignment is required, use move_freepages_block()
2161  */
2162 static int move_freepages(struct zone *zone,
2163 			  struct page *start_page, struct page *end_page,
2164 			  int migratetype, int *num_movable)
2165 {
2166 	struct page *page;
2167 	unsigned int order;
2168 	int pages_moved = 0;
2169 
2170 #ifndef CONFIG_HOLES_IN_ZONE
2171 	/*
2172 	 * page_zone is not safe to call in this context when
2173 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2174 	 * anyway as we check zone boundaries in move_freepages_block().
2175 	 * Remove at a later date when no bug reports exist related to
2176 	 * grouping pages by mobility
2177 	 */
2178 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2179 	          pfn_valid(page_to_pfn(end_page)) &&
2180 	          page_zone(start_page) != page_zone(end_page));
2181 #endif
2182 	for (page = start_page; page <= end_page;) {
2183 		if (!pfn_valid_within(page_to_pfn(page))) {
2184 			page++;
2185 			continue;
2186 		}
2187 
2188 		/* Make sure we are not inadvertently changing nodes */
2189 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2190 
2191 		if (!PageBuddy(page)) {
2192 			/*
2193 			 * We assume that pages that could be isolated for
2194 			 * migration are movable. But we don't actually try
2195 			 * isolating, as that would be expensive.
2196 			 */
2197 			if (num_movable &&
2198 					(PageLRU(page) || __PageMovable(page)))
2199 				(*num_movable)++;
2200 
2201 			page++;
2202 			continue;
2203 		}
2204 
2205 		order = page_order(page);
2206 		move_to_free_area(page, &zone->free_area[order], migratetype);
2207 		page += 1 << order;
2208 		pages_moved += 1 << order;
2209 	}
2210 
2211 	return pages_moved;
2212 }
2213 
2214 int move_freepages_block(struct zone *zone, struct page *page,
2215 				int migratetype, int *num_movable)
2216 {
2217 	unsigned long start_pfn, end_pfn;
2218 	struct page *start_page, *end_page;
2219 
2220 	if (num_movable)
2221 		*num_movable = 0;
2222 
2223 	start_pfn = page_to_pfn(page);
2224 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2225 	start_page = pfn_to_page(start_pfn);
2226 	end_page = start_page + pageblock_nr_pages - 1;
2227 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2228 
2229 	/* Do not cross zone boundaries */
2230 	if (!zone_spans_pfn(zone, start_pfn))
2231 		start_page = page;
2232 	if (!zone_spans_pfn(zone, end_pfn))
2233 		return 0;
2234 
2235 	return move_freepages(zone, start_page, end_page, migratetype,
2236 								num_movable);
2237 }
2238 
2239 static void change_pageblock_range(struct page *pageblock_page,
2240 					int start_order, int migratetype)
2241 {
2242 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2243 
2244 	while (nr_pageblocks--) {
2245 		set_pageblock_migratetype(pageblock_page, migratetype);
2246 		pageblock_page += pageblock_nr_pages;
2247 	}
2248 }
2249 
2250 /*
2251  * When we are falling back to another migratetype during allocation, try to
2252  * steal extra free pages from the same pageblocks to satisfy further
2253  * allocations, instead of polluting multiple pageblocks.
2254  *
2255  * If we are stealing a relatively large buddy page, it is likely there will
2256  * be more free pages in the pageblock, so try to steal them all. For
2257  * reclaimable and unmovable allocations, we steal regardless of page size,
2258  * as fragmentation caused by those allocations polluting movable pageblocks
2259  * is worse than movable allocations stealing from unmovable and reclaimable
2260  * pageblocks.
2261  */
2262 static bool can_steal_fallback(unsigned int order, int start_mt)
2263 {
2264 	/*
2265 	 * Leaving this order check is intended, although there is
2266 	 * relaxed order check in next check. The reason is that
2267 	 * we can actually steal whole pageblock if this condition met,
2268 	 * but, below check doesn't guarantee it and that is just heuristic
2269 	 * so could be changed anytime.
2270 	 */
2271 	if (order >= pageblock_order)
2272 		return true;
2273 
2274 	if (order >= pageblock_order / 2 ||
2275 		start_mt == MIGRATE_RECLAIMABLE ||
2276 		start_mt == MIGRATE_UNMOVABLE ||
2277 		page_group_by_mobility_disabled)
2278 		return true;
2279 
2280 	return false;
2281 }
2282 
2283 static inline void boost_watermark(struct zone *zone)
2284 {
2285 	unsigned long max_boost;
2286 
2287 	if (!watermark_boost_factor)
2288 		return;
2289 
2290 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2291 			watermark_boost_factor, 10000);
2292 
2293 	/*
2294 	 * high watermark may be uninitialised if fragmentation occurs
2295 	 * very early in boot so do not boost. We do not fall
2296 	 * through and boost by pageblock_nr_pages as failing
2297 	 * allocations that early means that reclaim is not going
2298 	 * to help and it may even be impossible to reclaim the
2299 	 * boosted watermark resulting in a hang.
2300 	 */
2301 	if (!max_boost)
2302 		return;
2303 
2304 	max_boost = max(pageblock_nr_pages, max_boost);
2305 
2306 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2307 		max_boost);
2308 }
2309 
2310 /*
2311  * This function implements actual steal behaviour. If order is large enough,
2312  * we can steal whole pageblock. If not, we first move freepages in this
2313  * pageblock to our migratetype and determine how many already-allocated pages
2314  * are there in the pageblock with a compatible migratetype. If at least half
2315  * of pages are free or compatible, we can change migratetype of the pageblock
2316  * itself, so pages freed in the future will be put on the correct free list.
2317  */
2318 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2319 		unsigned int alloc_flags, int start_type, bool whole_block)
2320 {
2321 	unsigned int current_order = page_order(page);
2322 	struct free_area *area;
2323 	int free_pages, movable_pages, alike_pages;
2324 	int old_block_type;
2325 
2326 	old_block_type = get_pageblock_migratetype(page);
2327 
2328 	/*
2329 	 * This can happen due to races and we want to prevent broken
2330 	 * highatomic accounting.
2331 	 */
2332 	if (is_migrate_highatomic(old_block_type))
2333 		goto single_page;
2334 
2335 	/* Take ownership for orders >= pageblock_order */
2336 	if (current_order >= pageblock_order) {
2337 		change_pageblock_range(page, current_order, start_type);
2338 		goto single_page;
2339 	}
2340 
2341 	/*
2342 	 * Boost watermarks to increase reclaim pressure to reduce the
2343 	 * likelihood of future fallbacks. Wake kswapd now as the node
2344 	 * may be balanced overall and kswapd will not wake naturally.
2345 	 */
2346 	boost_watermark(zone);
2347 	if (alloc_flags & ALLOC_KSWAPD)
2348 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2349 
2350 	/* We are not allowed to try stealing from the whole block */
2351 	if (!whole_block)
2352 		goto single_page;
2353 
2354 	free_pages = move_freepages_block(zone, page, start_type,
2355 						&movable_pages);
2356 	/*
2357 	 * Determine how many pages are compatible with our allocation.
2358 	 * For movable allocation, it's the number of movable pages which
2359 	 * we just obtained. For other types it's a bit more tricky.
2360 	 */
2361 	if (start_type == MIGRATE_MOVABLE) {
2362 		alike_pages = movable_pages;
2363 	} else {
2364 		/*
2365 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2366 		 * to MOVABLE pageblock, consider all non-movable pages as
2367 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2368 		 * vice versa, be conservative since we can't distinguish the
2369 		 * exact migratetype of non-movable pages.
2370 		 */
2371 		if (old_block_type == MIGRATE_MOVABLE)
2372 			alike_pages = pageblock_nr_pages
2373 						- (free_pages + movable_pages);
2374 		else
2375 			alike_pages = 0;
2376 	}
2377 
2378 	/* moving whole block can fail due to zone boundary conditions */
2379 	if (!free_pages)
2380 		goto single_page;
2381 
2382 	/*
2383 	 * If a sufficient number of pages in the block are either free or of
2384 	 * comparable migratability as our allocation, claim the whole block.
2385 	 */
2386 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2387 			page_group_by_mobility_disabled)
2388 		set_pageblock_migratetype(page, start_type);
2389 
2390 	return;
2391 
2392 single_page:
2393 	area = &zone->free_area[current_order];
2394 	move_to_free_area(page, area, start_type);
2395 }
2396 
2397 /*
2398  * Check whether there is a suitable fallback freepage with requested order.
2399  * If only_stealable is true, this function returns fallback_mt only if
2400  * we can steal other freepages all together. This would help to reduce
2401  * fragmentation due to mixed migratetype pages in one pageblock.
2402  */
2403 int find_suitable_fallback(struct free_area *area, unsigned int order,
2404 			int migratetype, bool only_stealable, bool *can_steal)
2405 {
2406 	int i;
2407 	int fallback_mt;
2408 
2409 	if (area->nr_free == 0)
2410 		return -1;
2411 
2412 	*can_steal = false;
2413 	for (i = 0;; i++) {
2414 		fallback_mt = fallbacks[migratetype][i];
2415 		if (fallback_mt == MIGRATE_TYPES)
2416 			break;
2417 
2418 		if (free_area_empty(area, fallback_mt))
2419 			continue;
2420 
2421 		if (can_steal_fallback(order, migratetype))
2422 			*can_steal = true;
2423 
2424 		if (!only_stealable)
2425 			return fallback_mt;
2426 
2427 		if (*can_steal)
2428 			return fallback_mt;
2429 	}
2430 
2431 	return -1;
2432 }
2433 
2434 /*
2435  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2436  * there are no empty page blocks that contain a page with a suitable order
2437  */
2438 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2439 				unsigned int alloc_order)
2440 {
2441 	int mt;
2442 	unsigned long max_managed, flags;
2443 
2444 	/*
2445 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2446 	 * Check is race-prone but harmless.
2447 	 */
2448 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2449 	if (zone->nr_reserved_highatomic >= max_managed)
2450 		return;
2451 
2452 	spin_lock_irqsave(&zone->lock, flags);
2453 
2454 	/* Recheck the nr_reserved_highatomic limit under the lock */
2455 	if (zone->nr_reserved_highatomic >= max_managed)
2456 		goto out_unlock;
2457 
2458 	/* Yoink! */
2459 	mt = get_pageblock_migratetype(page);
2460 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2461 	    && !is_migrate_cma(mt)) {
2462 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2463 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2464 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2465 	}
2466 
2467 out_unlock:
2468 	spin_unlock_irqrestore(&zone->lock, flags);
2469 }
2470 
2471 /*
2472  * Used when an allocation is about to fail under memory pressure. This
2473  * potentially hurts the reliability of high-order allocations when under
2474  * intense memory pressure but failed atomic allocations should be easier
2475  * to recover from than an OOM.
2476  *
2477  * If @force is true, try to unreserve a pageblock even though highatomic
2478  * pageblock is exhausted.
2479  */
2480 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2481 						bool force)
2482 {
2483 	struct zonelist *zonelist = ac->zonelist;
2484 	unsigned long flags;
2485 	struct zoneref *z;
2486 	struct zone *zone;
2487 	struct page *page;
2488 	int order;
2489 	bool ret;
2490 
2491 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2492 								ac->nodemask) {
2493 		/*
2494 		 * Preserve at least one pageblock unless memory pressure
2495 		 * is really high.
2496 		 */
2497 		if (!force && zone->nr_reserved_highatomic <=
2498 					pageblock_nr_pages)
2499 			continue;
2500 
2501 		spin_lock_irqsave(&zone->lock, flags);
2502 		for (order = 0; order < MAX_ORDER; order++) {
2503 			struct free_area *area = &(zone->free_area[order]);
2504 
2505 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2506 			if (!page)
2507 				continue;
2508 
2509 			/*
2510 			 * In page freeing path, migratetype change is racy so
2511 			 * we can counter several free pages in a pageblock
2512 			 * in this loop althoug we changed the pageblock type
2513 			 * from highatomic to ac->migratetype. So we should
2514 			 * adjust the count once.
2515 			 */
2516 			if (is_migrate_highatomic_page(page)) {
2517 				/*
2518 				 * It should never happen but changes to
2519 				 * locking could inadvertently allow a per-cpu
2520 				 * drain to add pages to MIGRATE_HIGHATOMIC
2521 				 * while unreserving so be safe and watch for
2522 				 * underflows.
2523 				 */
2524 				zone->nr_reserved_highatomic -= min(
2525 						pageblock_nr_pages,
2526 						zone->nr_reserved_highatomic);
2527 			}
2528 
2529 			/*
2530 			 * Convert to ac->migratetype and avoid the normal
2531 			 * pageblock stealing heuristics. Minimally, the caller
2532 			 * is doing the work and needs the pages. More
2533 			 * importantly, if the block was always converted to
2534 			 * MIGRATE_UNMOVABLE or another type then the number
2535 			 * of pageblocks that cannot be completely freed
2536 			 * may increase.
2537 			 */
2538 			set_pageblock_migratetype(page, ac->migratetype);
2539 			ret = move_freepages_block(zone, page, ac->migratetype,
2540 									NULL);
2541 			if (ret) {
2542 				spin_unlock_irqrestore(&zone->lock, flags);
2543 				return ret;
2544 			}
2545 		}
2546 		spin_unlock_irqrestore(&zone->lock, flags);
2547 	}
2548 
2549 	return false;
2550 }
2551 
2552 /*
2553  * Try finding a free buddy page on the fallback list and put it on the free
2554  * list of requested migratetype, possibly along with other pages from the same
2555  * block, depending on fragmentation avoidance heuristics. Returns true if
2556  * fallback was found so that __rmqueue_smallest() can grab it.
2557  *
2558  * The use of signed ints for order and current_order is a deliberate
2559  * deviation from the rest of this file, to make the for loop
2560  * condition simpler.
2561  */
2562 static __always_inline bool
2563 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2564 						unsigned int alloc_flags)
2565 {
2566 	struct free_area *area;
2567 	int current_order;
2568 	int min_order = order;
2569 	struct page *page;
2570 	int fallback_mt;
2571 	bool can_steal;
2572 
2573 	/*
2574 	 * Do not steal pages from freelists belonging to other pageblocks
2575 	 * i.e. orders < pageblock_order. If there are no local zones free,
2576 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2577 	 */
2578 	if (alloc_flags & ALLOC_NOFRAGMENT)
2579 		min_order = pageblock_order;
2580 
2581 	/*
2582 	 * Find the largest available free page in the other list. This roughly
2583 	 * approximates finding the pageblock with the most free pages, which
2584 	 * would be too costly to do exactly.
2585 	 */
2586 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2587 				--current_order) {
2588 		area = &(zone->free_area[current_order]);
2589 		fallback_mt = find_suitable_fallback(area, current_order,
2590 				start_migratetype, false, &can_steal);
2591 		if (fallback_mt == -1)
2592 			continue;
2593 
2594 		/*
2595 		 * We cannot steal all free pages from the pageblock and the
2596 		 * requested migratetype is movable. In that case it's better to
2597 		 * steal and split the smallest available page instead of the
2598 		 * largest available page, because even if the next movable
2599 		 * allocation falls back into a different pageblock than this
2600 		 * one, it won't cause permanent fragmentation.
2601 		 */
2602 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2603 					&& current_order > order)
2604 			goto find_smallest;
2605 
2606 		goto do_steal;
2607 	}
2608 
2609 	return false;
2610 
2611 find_smallest:
2612 	for (current_order = order; current_order < MAX_ORDER;
2613 							current_order++) {
2614 		area = &(zone->free_area[current_order]);
2615 		fallback_mt = find_suitable_fallback(area, current_order,
2616 				start_migratetype, false, &can_steal);
2617 		if (fallback_mt != -1)
2618 			break;
2619 	}
2620 
2621 	/*
2622 	 * This should not happen - we already found a suitable fallback
2623 	 * when looking for the largest page.
2624 	 */
2625 	VM_BUG_ON(current_order == MAX_ORDER);
2626 
2627 do_steal:
2628 	page = get_page_from_free_area(area, fallback_mt);
2629 
2630 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2631 								can_steal);
2632 
2633 	trace_mm_page_alloc_extfrag(page, order, current_order,
2634 		start_migratetype, fallback_mt);
2635 
2636 	return true;
2637 
2638 }
2639 
2640 /*
2641  * Do the hard work of removing an element from the buddy allocator.
2642  * Call me with the zone->lock already held.
2643  */
2644 static __always_inline struct page *
2645 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2646 						unsigned int alloc_flags)
2647 {
2648 	struct page *page;
2649 
2650 retry:
2651 	page = __rmqueue_smallest(zone, order, migratetype);
2652 	if (unlikely(!page)) {
2653 		if (migratetype == MIGRATE_MOVABLE)
2654 			page = __rmqueue_cma_fallback(zone, order);
2655 
2656 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2657 								alloc_flags))
2658 			goto retry;
2659 	}
2660 
2661 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2662 	return page;
2663 }
2664 
2665 /*
2666  * Obtain a specified number of elements from the buddy allocator, all under
2667  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2668  * Returns the number of new pages which were placed at *list.
2669  */
2670 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2671 			unsigned long count, struct list_head *list,
2672 			int migratetype, unsigned int alloc_flags)
2673 {
2674 	int i, alloced = 0;
2675 
2676 	spin_lock(&zone->lock);
2677 	for (i = 0; i < count; ++i) {
2678 		struct page *page = __rmqueue(zone, order, migratetype,
2679 								alloc_flags);
2680 		if (unlikely(page == NULL))
2681 			break;
2682 
2683 		if (unlikely(check_pcp_refill(page)))
2684 			continue;
2685 
2686 		/*
2687 		 * Split buddy pages returned by expand() are received here in
2688 		 * physical page order. The page is added to the tail of
2689 		 * caller's list. From the callers perspective, the linked list
2690 		 * is ordered by page number under some conditions. This is
2691 		 * useful for IO devices that can forward direction from the
2692 		 * head, thus also in the physical page order. This is useful
2693 		 * for IO devices that can merge IO requests if the physical
2694 		 * pages are ordered properly.
2695 		 */
2696 		list_add_tail(&page->lru, list);
2697 		alloced++;
2698 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2699 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2700 					      -(1 << order));
2701 	}
2702 
2703 	/*
2704 	 * i pages were removed from the buddy list even if some leak due
2705 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2706 	 * on i. Do not confuse with 'alloced' which is the number of
2707 	 * pages added to the pcp list.
2708 	 */
2709 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2710 	spin_unlock(&zone->lock);
2711 	return alloced;
2712 }
2713 
2714 #ifdef CONFIG_NUMA
2715 /*
2716  * Called from the vmstat counter updater to drain pagesets of this
2717  * currently executing processor on remote nodes after they have
2718  * expired.
2719  *
2720  * Note that this function must be called with the thread pinned to
2721  * a single processor.
2722  */
2723 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2724 {
2725 	unsigned long flags;
2726 	int to_drain, batch;
2727 
2728 	local_irq_save(flags);
2729 	batch = READ_ONCE(pcp->batch);
2730 	to_drain = min(pcp->count, batch);
2731 	if (to_drain > 0)
2732 		free_pcppages_bulk(zone, to_drain, pcp);
2733 	local_irq_restore(flags);
2734 }
2735 #endif
2736 
2737 /*
2738  * Drain pcplists of the indicated processor and zone.
2739  *
2740  * The processor must either be the current processor and the
2741  * thread pinned to the current processor or a processor that
2742  * is not online.
2743  */
2744 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2745 {
2746 	unsigned long flags;
2747 	struct per_cpu_pageset *pset;
2748 	struct per_cpu_pages *pcp;
2749 
2750 	local_irq_save(flags);
2751 	pset = per_cpu_ptr(zone->pageset, cpu);
2752 
2753 	pcp = &pset->pcp;
2754 	if (pcp->count)
2755 		free_pcppages_bulk(zone, pcp->count, pcp);
2756 	local_irq_restore(flags);
2757 }
2758 
2759 /*
2760  * Drain pcplists of all zones on the indicated processor.
2761  *
2762  * The processor must either be the current processor and the
2763  * thread pinned to the current processor or a processor that
2764  * is not online.
2765  */
2766 static void drain_pages(unsigned int cpu)
2767 {
2768 	struct zone *zone;
2769 
2770 	for_each_populated_zone(zone) {
2771 		drain_pages_zone(cpu, zone);
2772 	}
2773 }
2774 
2775 /*
2776  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2777  *
2778  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2779  * the single zone's pages.
2780  */
2781 void drain_local_pages(struct zone *zone)
2782 {
2783 	int cpu = smp_processor_id();
2784 
2785 	if (zone)
2786 		drain_pages_zone(cpu, zone);
2787 	else
2788 		drain_pages(cpu);
2789 }
2790 
2791 static void drain_local_pages_wq(struct work_struct *work)
2792 {
2793 	struct pcpu_drain *drain;
2794 
2795 	drain = container_of(work, struct pcpu_drain, work);
2796 
2797 	/*
2798 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2799 	 * we can race with cpu offline when the WQ can move this from
2800 	 * a cpu pinned worker to an unbound one. We can operate on a different
2801 	 * cpu which is allright but we also have to make sure to not move to
2802 	 * a different one.
2803 	 */
2804 	preempt_disable();
2805 	drain_local_pages(drain->zone);
2806 	preempt_enable();
2807 }
2808 
2809 /*
2810  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2811  *
2812  * When zone parameter is non-NULL, spill just the single zone's pages.
2813  *
2814  * Note that this can be extremely slow as the draining happens in a workqueue.
2815  */
2816 void drain_all_pages(struct zone *zone)
2817 {
2818 	int cpu;
2819 
2820 	/*
2821 	 * Allocate in the BSS so we wont require allocation in
2822 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2823 	 */
2824 	static cpumask_t cpus_with_pcps;
2825 
2826 	/*
2827 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2828 	 * initialized.
2829 	 */
2830 	if (WARN_ON_ONCE(!mm_percpu_wq))
2831 		return;
2832 
2833 	/*
2834 	 * Do not drain if one is already in progress unless it's specific to
2835 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2836 	 * the drain to be complete when the call returns.
2837 	 */
2838 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2839 		if (!zone)
2840 			return;
2841 		mutex_lock(&pcpu_drain_mutex);
2842 	}
2843 
2844 	/*
2845 	 * We don't care about racing with CPU hotplug event
2846 	 * as offline notification will cause the notified
2847 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2848 	 * disables preemption as part of its processing
2849 	 */
2850 	for_each_online_cpu(cpu) {
2851 		struct per_cpu_pageset *pcp;
2852 		struct zone *z;
2853 		bool has_pcps = false;
2854 
2855 		if (zone) {
2856 			pcp = per_cpu_ptr(zone->pageset, cpu);
2857 			if (pcp->pcp.count)
2858 				has_pcps = true;
2859 		} else {
2860 			for_each_populated_zone(z) {
2861 				pcp = per_cpu_ptr(z->pageset, cpu);
2862 				if (pcp->pcp.count) {
2863 					has_pcps = true;
2864 					break;
2865 				}
2866 			}
2867 		}
2868 
2869 		if (has_pcps)
2870 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2871 		else
2872 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2873 	}
2874 
2875 	for_each_cpu(cpu, &cpus_with_pcps) {
2876 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2877 
2878 		drain->zone = zone;
2879 		INIT_WORK(&drain->work, drain_local_pages_wq);
2880 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2881 	}
2882 	for_each_cpu(cpu, &cpus_with_pcps)
2883 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2884 
2885 	mutex_unlock(&pcpu_drain_mutex);
2886 }
2887 
2888 #ifdef CONFIG_HIBERNATION
2889 
2890 /*
2891  * Touch the watchdog for every WD_PAGE_COUNT pages.
2892  */
2893 #define WD_PAGE_COUNT	(128*1024)
2894 
2895 void mark_free_pages(struct zone *zone)
2896 {
2897 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2898 	unsigned long flags;
2899 	unsigned int order, t;
2900 	struct page *page;
2901 
2902 	if (zone_is_empty(zone))
2903 		return;
2904 
2905 	spin_lock_irqsave(&zone->lock, flags);
2906 
2907 	max_zone_pfn = zone_end_pfn(zone);
2908 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2909 		if (pfn_valid(pfn)) {
2910 			page = pfn_to_page(pfn);
2911 
2912 			if (!--page_count) {
2913 				touch_nmi_watchdog();
2914 				page_count = WD_PAGE_COUNT;
2915 			}
2916 
2917 			if (page_zone(page) != zone)
2918 				continue;
2919 
2920 			if (!swsusp_page_is_forbidden(page))
2921 				swsusp_unset_page_free(page);
2922 		}
2923 
2924 	for_each_migratetype_order(order, t) {
2925 		list_for_each_entry(page,
2926 				&zone->free_area[order].free_list[t], lru) {
2927 			unsigned long i;
2928 
2929 			pfn = page_to_pfn(page);
2930 			for (i = 0; i < (1UL << order); i++) {
2931 				if (!--page_count) {
2932 					touch_nmi_watchdog();
2933 					page_count = WD_PAGE_COUNT;
2934 				}
2935 				swsusp_set_page_free(pfn_to_page(pfn + i));
2936 			}
2937 		}
2938 	}
2939 	spin_unlock_irqrestore(&zone->lock, flags);
2940 }
2941 #endif /* CONFIG_PM */
2942 
2943 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2944 {
2945 	int migratetype;
2946 
2947 	if (!free_pcp_prepare(page))
2948 		return false;
2949 
2950 	migratetype = get_pfnblock_migratetype(page, pfn);
2951 	set_pcppage_migratetype(page, migratetype);
2952 	return true;
2953 }
2954 
2955 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2956 {
2957 	struct zone *zone = page_zone(page);
2958 	struct per_cpu_pages *pcp;
2959 	int migratetype;
2960 
2961 	migratetype = get_pcppage_migratetype(page);
2962 	__count_vm_event(PGFREE);
2963 
2964 	/*
2965 	 * We only track unmovable, reclaimable and movable on pcp lists.
2966 	 * Free ISOLATE pages back to the allocator because they are being
2967 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2968 	 * areas back if necessary. Otherwise, we may have to free
2969 	 * excessively into the page allocator
2970 	 */
2971 	if (migratetype >= MIGRATE_PCPTYPES) {
2972 		if (unlikely(is_migrate_isolate(migratetype))) {
2973 			free_one_page(zone, page, pfn, 0, migratetype);
2974 			return;
2975 		}
2976 		migratetype = MIGRATE_MOVABLE;
2977 	}
2978 
2979 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2980 	list_add(&page->lru, &pcp->lists[migratetype]);
2981 	pcp->count++;
2982 	if (pcp->count >= pcp->high) {
2983 		unsigned long batch = READ_ONCE(pcp->batch);
2984 		free_pcppages_bulk(zone, batch, pcp);
2985 	}
2986 }
2987 
2988 /*
2989  * Free a 0-order page
2990  */
2991 void free_unref_page(struct page *page)
2992 {
2993 	unsigned long flags;
2994 	unsigned long pfn = page_to_pfn(page);
2995 
2996 	if (!free_unref_page_prepare(page, pfn))
2997 		return;
2998 
2999 	local_irq_save(flags);
3000 	free_unref_page_commit(page, pfn);
3001 	local_irq_restore(flags);
3002 }
3003 
3004 /*
3005  * Free a list of 0-order pages
3006  */
3007 void free_unref_page_list(struct list_head *list)
3008 {
3009 	struct page *page, *next;
3010 	unsigned long flags, pfn;
3011 	int batch_count = 0;
3012 
3013 	/* Prepare pages for freeing */
3014 	list_for_each_entry_safe(page, next, list, lru) {
3015 		pfn = page_to_pfn(page);
3016 		if (!free_unref_page_prepare(page, pfn))
3017 			list_del(&page->lru);
3018 		set_page_private(page, pfn);
3019 	}
3020 
3021 	local_irq_save(flags);
3022 	list_for_each_entry_safe(page, next, list, lru) {
3023 		unsigned long pfn = page_private(page);
3024 
3025 		set_page_private(page, 0);
3026 		trace_mm_page_free_batched(page);
3027 		free_unref_page_commit(page, pfn);
3028 
3029 		/*
3030 		 * Guard against excessive IRQ disabled times when we get
3031 		 * a large list of pages to free.
3032 		 */
3033 		if (++batch_count == SWAP_CLUSTER_MAX) {
3034 			local_irq_restore(flags);
3035 			batch_count = 0;
3036 			local_irq_save(flags);
3037 		}
3038 	}
3039 	local_irq_restore(flags);
3040 }
3041 
3042 /*
3043  * split_page takes a non-compound higher-order page, and splits it into
3044  * n (1<<order) sub-pages: page[0..n]
3045  * Each sub-page must be freed individually.
3046  *
3047  * Note: this is probably too low level an operation for use in drivers.
3048  * Please consult with lkml before using this in your driver.
3049  */
3050 void split_page(struct page *page, unsigned int order)
3051 {
3052 	int i;
3053 
3054 	VM_BUG_ON_PAGE(PageCompound(page), page);
3055 	VM_BUG_ON_PAGE(!page_count(page), page);
3056 
3057 	for (i = 1; i < (1 << order); i++)
3058 		set_page_refcounted(page + i);
3059 	split_page_owner(page, order);
3060 }
3061 EXPORT_SYMBOL_GPL(split_page);
3062 
3063 int __isolate_free_page(struct page *page, unsigned int order)
3064 {
3065 	struct free_area *area = &page_zone(page)->free_area[order];
3066 	unsigned long watermark;
3067 	struct zone *zone;
3068 	int mt;
3069 
3070 	BUG_ON(!PageBuddy(page));
3071 
3072 	zone = page_zone(page);
3073 	mt = get_pageblock_migratetype(page);
3074 
3075 	if (!is_migrate_isolate(mt)) {
3076 		/*
3077 		 * Obey watermarks as if the page was being allocated. We can
3078 		 * emulate a high-order watermark check with a raised order-0
3079 		 * watermark, because we already know our high-order page
3080 		 * exists.
3081 		 */
3082 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3083 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3084 			return 0;
3085 
3086 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3087 	}
3088 
3089 	/* Remove page from free list */
3090 
3091 	del_page_from_free_area(page, area);
3092 
3093 	/*
3094 	 * Set the pageblock if the isolated page is at least half of a
3095 	 * pageblock
3096 	 */
3097 	if (order >= pageblock_order - 1) {
3098 		struct page *endpage = page + (1 << order) - 1;
3099 		for (; page < endpage; page += pageblock_nr_pages) {
3100 			int mt = get_pageblock_migratetype(page);
3101 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3102 			    && !is_migrate_highatomic(mt))
3103 				set_pageblock_migratetype(page,
3104 							  MIGRATE_MOVABLE);
3105 		}
3106 	}
3107 
3108 
3109 	return 1UL << order;
3110 }
3111 
3112 /*
3113  * Update NUMA hit/miss statistics
3114  *
3115  * Must be called with interrupts disabled.
3116  */
3117 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3118 {
3119 #ifdef CONFIG_NUMA
3120 	enum numa_stat_item local_stat = NUMA_LOCAL;
3121 
3122 	/* skip numa counters update if numa stats is disabled */
3123 	if (!static_branch_likely(&vm_numa_stat_key))
3124 		return;
3125 
3126 	if (zone_to_nid(z) != numa_node_id())
3127 		local_stat = NUMA_OTHER;
3128 
3129 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3130 		__inc_numa_state(z, NUMA_HIT);
3131 	else {
3132 		__inc_numa_state(z, NUMA_MISS);
3133 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3134 	}
3135 	__inc_numa_state(z, local_stat);
3136 #endif
3137 }
3138 
3139 /* Remove page from the per-cpu list, caller must protect the list */
3140 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3141 			unsigned int alloc_flags,
3142 			struct per_cpu_pages *pcp,
3143 			struct list_head *list)
3144 {
3145 	struct page *page;
3146 
3147 	do {
3148 		if (list_empty(list)) {
3149 			pcp->count += rmqueue_bulk(zone, 0,
3150 					pcp->batch, list,
3151 					migratetype, alloc_flags);
3152 			if (unlikely(list_empty(list)))
3153 				return NULL;
3154 		}
3155 
3156 		page = list_first_entry(list, struct page, lru);
3157 		list_del(&page->lru);
3158 		pcp->count--;
3159 	} while (check_new_pcp(page));
3160 
3161 	return page;
3162 }
3163 
3164 /* Lock and remove page from the per-cpu list */
3165 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3166 			struct zone *zone, gfp_t gfp_flags,
3167 			int migratetype, unsigned int alloc_flags)
3168 {
3169 	struct per_cpu_pages *pcp;
3170 	struct list_head *list;
3171 	struct page *page;
3172 	unsigned long flags;
3173 
3174 	local_irq_save(flags);
3175 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3176 	list = &pcp->lists[migratetype];
3177 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3178 	if (page) {
3179 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3180 		zone_statistics(preferred_zone, zone);
3181 	}
3182 	local_irq_restore(flags);
3183 	return page;
3184 }
3185 
3186 /*
3187  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3188  */
3189 static inline
3190 struct page *rmqueue(struct zone *preferred_zone,
3191 			struct zone *zone, unsigned int order,
3192 			gfp_t gfp_flags, unsigned int alloc_flags,
3193 			int migratetype)
3194 {
3195 	unsigned long flags;
3196 	struct page *page;
3197 
3198 	if (likely(order == 0)) {
3199 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3200 					migratetype, alloc_flags);
3201 		goto out;
3202 	}
3203 
3204 	/*
3205 	 * We most definitely don't want callers attempting to
3206 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3207 	 */
3208 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3209 	spin_lock_irqsave(&zone->lock, flags);
3210 
3211 	do {
3212 		page = NULL;
3213 		if (alloc_flags & ALLOC_HARDER) {
3214 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3215 			if (page)
3216 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3217 		}
3218 		if (!page)
3219 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3220 	} while (page && check_new_pages(page, order));
3221 	spin_unlock(&zone->lock);
3222 	if (!page)
3223 		goto failed;
3224 	__mod_zone_freepage_state(zone, -(1 << order),
3225 				  get_pcppage_migratetype(page));
3226 
3227 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3228 	zone_statistics(preferred_zone, zone);
3229 	local_irq_restore(flags);
3230 
3231 out:
3232 	/* Separate test+clear to avoid unnecessary atomics */
3233 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3234 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3235 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3236 	}
3237 
3238 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3239 	return page;
3240 
3241 failed:
3242 	local_irq_restore(flags);
3243 	return NULL;
3244 }
3245 
3246 #ifdef CONFIG_FAIL_PAGE_ALLOC
3247 
3248 static struct {
3249 	struct fault_attr attr;
3250 
3251 	bool ignore_gfp_highmem;
3252 	bool ignore_gfp_reclaim;
3253 	u32 min_order;
3254 } fail_page_alloc = {
3255 	.attr = FAULT_ATTR_INITIALIZER,
3256 	.ignore_gfp_reclaim = true,
3257 	.ignore_gfp_highmem = true,
3258 	.min_order = 1,
3259 };
3260 
3261 static int __init setup_fail_page_alloc(char *str)
3262 {
3263 	return setup_fault_attr(&fail_page_alloc.attr, str);
3264 }
3265 __setup("fail_page_alloc=", setup_fail_page_alloc);
3266 
3267 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3268 {
3269 	if (order < fail_page_alloc.min_order)
3270 		return false;
3271 	if (gfp_mask & __GFP_NOFAIL)
3272 		return false;
3273 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3274 		return false;
3275 	if (fail_page_alloc.ignore_gfp_reclaim &&
3276 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3277 		return false;
3278 
3279 	return should_fail(&fail_page_alloc.attr, 1 << order);
3280 }
3281 
3282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3283 
3284 static int __init fail_page_alloc_debugfs(void)
3285 {
3286 	umode_t mode = S_IFREG | 0600;
3287 	struct dentry *dir;
3288 
3289 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3290 					&fail_page_alloc.attr);
3291 
3292 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3293 			    &fail_page_alloc.ignore_gfp_reclaim);
3294 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3295 			    &fail_page_alloc.ignore_gfp_highmem);
3296 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3297 
3298 	return 0;
3299 }
3300 
3301 late_initcall(fail_page_alloc_debugfs);
3302 
3303 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3304 
3305 #else /* CONFIG_FAIL_PAGE_ALLOC */
3306 
3307 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3308 {
3309 	return false;
3310 }
3311 
3312 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3313 
3314 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3315 {
3316 	return __should_fail_alloc_page(gfp_mask, order);
3317 }
3318 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3319 
3320 /*
3321  * Return true if free base pages are above 'mark'. For high-order checks it
3322  * will return true of the order-0 watermark is reached and there is at least
3323  * one free page of a suitable size. Checking now avoids taking the zone lock
3324  * to check in the allocation paths if no pages are free.
3325  */
3326 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3327 			 int classzone_idx, unsigned int alloc_flags,
3328 			 long free_pages)
3329 {
3330 	long min = mark;
3331 	int o;
3332 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3333 
3334 	/* free_pages may go negative - that's OK */
3335 	free_pages -= (1 << order) - 1;
3336 
3337 	if (alloc_flags & ALLOC_HIGH)
3338 		min -= min / 2;
3339 
3340 	/*
3341 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3342 	 * the high-atomic reserves. This will over-estimate the size of the
3343 	 * atomic reserve but it avoids a search.
3344 	 */
3345 	if (likely(!alloc_harder)) {
3346 		free_pages -= z->nr_reserved_highatomic;
3347 	} else {
3348 		/*
3349 		 * OOM victims can try even harder than normal ALLOC_HARDER
3350 		 * users on the grounds that it's definitely going to be in
3351 		 * the exit path shortly and free memory. Any allocation it
3352 		 * makes during the free path will be small and short-lived.
3353 		 */
3354 		if (alloc_flags & ALLOC_OOM)
3355 			min -= min / 2;
3356 		else
3357 			min -= min / 4;
3358 	}
3359 
3360 
3361 #ifdef CONFIG_CMA
3362 	/* If allocation can't use CMA areas don't use free CMA pages */
3363 	if (!(alloc_flags & ALLOC_CMA))
3364 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3365 #endif
3366 
3367 	/*
3368 	 * Check watermarks for an order-0 allocation request. If these
3369 	 * are not met, then a high-order request also cannot go ahead
3370 	 * even if a suitable page happened to be free.
3371 	 */
3372 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3373 		return false;
3374 
3375 	/* If this is an order-0 request then the watermark is fine */
3376 	if (!order)
3377 		return true;
3378 
3379 	/* For a high-order request, check at least one suitable page is free */
3380 	for (o = order; o < MAX_ORDER; o++) {
3381 		struct free_area *area = &z->free_area[o];
3382 		int mt;
3383 
3384 		if (!area->nr_free)
3385 			continue;
3386 
3387 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3388 			if (!free_area_empty(area, mt))
3389 				return true;
3390 		}
3391 
3392 #ifdef CONFIG_CMA
3393 		if ((alloc_flags & ALLOC_CMA) &&
3394 		    !free_area_empty(area, MIGRATE_CMA)) {
3395 			return true;
3396 		}
3397 #endif
3398 		if (alloc_harder &&
3399 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3400 			return true;
3401 	}
3402 	return false;
3403 }
3404 
3405 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3406 		      int classzone_idx, unsigned int alloc_flags)
3407 {
3408 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3409 					zone_page_state(z, NR_FREE_PAGES));
3410 }
3411 
3412 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3413 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3414 {
3415 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3416 	long cma_pages = 0;
3417 
3418 #ifdef CONFIG_CMA
3419 	/* If allocation can't use CMA areas don't use free CMA pages */
3420 	if (!(alloc_flags & ALLOC_CMA))
3421 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3422 #endif
3423 
3424 	/*
3425 	 * Fast check for order-0 only. If this fails then the reserves
3426 	 * need to be calculated. There is a corner case where the check
3427 	 * passes but only the high-order atomic reserve are free. If
3428 	 * the caller is !atomic then it'll uselessly search the free
3429 	 * list. That corner case is then slower but it is harmless.
3430 	 */
3431 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3432 		return true;
3433 
3434 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3435 					free_pages);
3436 }
3437 
3438 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3439 			unsigned long mark, int classzone_idx)
3440 {
3441 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3442 
3443 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3444 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3445 
3446 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3447 								free_pages);
3448 }
3449 
3450 #ifdef CONFIG_NUMA
3451 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3452 {
3453 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3454 				RECLAIM_DISTANCE;
3455 }
3456 #else	/* CONFIG_NUMA */
3457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3458 {
3459 	return true;
3460 }
3461 #endif	/* CONFIG_NUMA */
3462 
3463 /*
3464  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3465  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3466  * premature use of a lower zone may cause lowmem pressure problems that
3467  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3468  * probably too small. It only makes sense to spread allocations to avoid
3469  * fragmentation between the Normal and DMA32 zones.
3470  */
3471 static inline unsigned int
3472 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3473 {
3474 	unsigned int alloc_flags = 0;
3475 
3476 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3477 		alloc_flags |= ALLOC_KSWAPD;
3478 
3479 #ifdef CONFIG_ZONE_DMA32
3480 	if (!zone)
3481 		return alloc_flags;
3482 
3483 	if (zone_idx(zone) != ZONE_NORMAL)
3484 		return alloc_flags;
3485 
3486 	/*
3487 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3488 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3489 	 * on UMA that if Normal is populated then so is DMA32.
3490 	 */
3491 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3492 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3493 		return alloc_flags;
3494 
3495 	alloc_flags |= ALLOC_NOFRAGMENT;
3496 #endif /* CONFIG_ZONE_DMA32 */
3497 	return alloc_flags;
3498 }
3499 
3500 /*
3501  * get_page_from_freelist goes through the zonelist trying to allocate
3502  * a page.
3503  */
3504 static struct page *
3505 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3506 						const struct alloc_context *ac)
3507 {
3508 	struct zoneref *z;
3509 	struct zone *zone;
3510 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3511 	bool no_fallback;
3512 
3513 retry:
3514 	/*
3515 	 * Scan zonelist, looking for a zone with enough free.
3516 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3517 	 */
3518 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3519 	z = ac->preferred_zoneref;
3520 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3521 								ac->nodemask) {
3522 		struct page *page;
3523 		unsigned long mark;
3524 
3525 		if (cpusets_enabled() &&
3526 			(alloc_flags & ALLOC_CPUSET) &&
3527 			!__cpuset_zone_allowed(zone, gfp_mask))
3528 				continue;
3529 		/*
3530 		 * When allocating a page cache page for writing, we
3531 		 * want to get it from a node that is within its dirty
3532 		 * limit, such that no single node holds more than its
3533 		 * proportional share of globally allowed dirty pages.
3534 		 * The dirty limits take into account the node's
3535 		 * lowmem reserves and high watermark so that kswapd
3536 		 * should be able to balance it without having to
3537 		 * write pages from its LRU list.
3538 		 *
3539 		 * XXX: For now, allow allocations to potentially
3540 		 * exceed the per-node dirty limit in the slowpath
3541 		 * (spread_dirty_pages unset) before going into reclaim,
3542 		 * which is important when on a NUMA setup the allowed
3543 		 * nodes are together not big enough to reach the
3544 		 * global limit.  The proper fix for these situations
3545 		 * will require awareness of nodes in the
3546 		 * dirty-throttling and the flusher threads.
3547 		 */
3548 		if (ac->spread_dirty_pages) {
3549 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3550 				continue;
3551 
3552 			if (!node_dirty_ok(zone->zone_pgdat)) {
3553 				last_pgdat_dirty_limit = zone->zone_pgdat;
3554 				continue;
3555 			}
3556 		}
3557 
3558 		if (no_fallback && nr_online_nodes > 1 &&
3559 		    zone != ac->preferred_zoneref->zone) {
3560 			int local_nid;
3561 
3562 			/*
3563 			 * If moving to a remote node, retry but allow
3564 			 * fragmenting fallbacks. Locality is more important
3565 			 * than fragmentation avoidance.
3566 			 */
3567 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3568 			if (zone_to_nid(zone) != local_nid) {
3569 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3570 				goto retry;
3571 			}
3572 		}
3573 
3574 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3575 		if (!zone_watermark_fast(zone, order, mark,
3576 				       ac_classzone_idx(ac), alloc_flags)) {
3577 			int ret;
3578 
3579 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3580 			/*
3581 			 * Watermark failed for this zone, but see if we can
3582 			 * grow this zone if it contains deferred pages.
3583 			 */
3584 			if (static_branch_unlikely(&deferred_pages)) {
3585 				if (_deferred_grow_zone(zone, order))
3586 					goto try_this_zone;
3587 			}
3588 #endif
3589 			/* Checked here to keep the fast path fast */
3590 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3591 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3592 				goto try_this_zone;
3593 
3594 			if (node_reclaim_mode == 0 ||
3595 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3596 				continue;
3597 
3598 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3599 			switch (ret) {
3600 			case NODE_RECLAIM_NOSCAN:
3601 				/* did not scan */
3602 				continue;
3603 			case NODE_RECLAIM_FULL:
3604 				/* scanned but unreclaimable */
3605 				continue;
3606 			default:
3607 				/* did we reclaim enough */
3608 				if (zone_watermark_ok(zone, order, mark,
3609 						ac_classzone_idx(ac), alloc_flags))
3610 					goto try_this_zone;
3611 
3612 				continue;
3613 			}
3614 		}
3615 
3616 try_this_zone:
3617 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3618 				gfp_mask, alloc_flags, ac->migratetype);
3619 		if (page) {
3620 			prep_new_page(page, order, gfp_mask, alloc_flags);
3621 
3622 			/*
3623 			 * If this is a high-order atomic allocation then check
3624 			 * if the pageblock should be reserved for the future
3625 			 */
3626 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3627 				reserve_highatomic_pageblock(page, zone, order);
3628 
3629 			return page;
3630 		} else {
3631 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3632 			/* Try again if zone has deferred pages */
3633 			if (static_branch_unlikely(&deferred_pages)) {
3634 				if (_deferred_grow_zone(zone, order))
3635 					goto try_this_zone;
3636 			}
3637 #endif
3638 		}
3639 	}
3640 
3641 	/*
3642 	 * It's possible on a UMA machine to get through all zones that are
3643 	 * fragmented. If avoiding fragmentation, reset and try again.
3644 	 */
3645 	if (no_fallback) {
3646 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3647 		goto retry;
3648 	}
3649 
3650 	return NULL;
3651 }
3652 
3653 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3654 {
3655 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3656 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3657 
3658 	if (!__ratelimit(&show_mem_rs))
3659 		return;
3660 
3661 	/*
3662 	 * This documents exceptions given to allocations in certain
3663 	 * contexts that are allowed to allocate outside current's set
3664 	 * of allowed nodes.
3665 	 */
3666 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3667 		if (tsk_is_oom_victim(current) ||
3668 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3669 			filter &= ~SHOW_MEM_FILTER_NODES;
3670 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3671 		filter &= ~SHOW_MEM_FILTER_NODES;
3672 
3673 	show_mem(filter, nodemask);
3674 }
3675 
3676 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3677 {
3678 	struct va_format vaf;
3679 	va_list args;
3680 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3681 				      DEFAULT_RATELIMIT_BURST);
3682 
3683 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3684 		return;
3685 
3686 	va_start(args, fmt);
3687 	vaf.fmt = fmt;
3688 	vaf.va = &args;
3689 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3690 			current->comm, &vaf, gfp_mask, &gfp_mask,
3691 			nodemask_pr_args(nodemask));
3692 	va_end(args);
3693 
3694 	cpuset_print_current_mems_allowed();
3695 	pr_cont("\n");
3696 	dump_stack();
3697 	warn_alloc_show_mem(gfp_mask, nodemask);
3698 }
3699 
3700 static inline struct page *
3701 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3702 			      unsigned int alloc_flags,
3703 			      const struct alloc_context *ac)
3704 {
3705 	struct page *page;
3706 
3707 	page = get_page_from_freelist(gfp_mask, order,
3708 			alloc_flags|ALLOC_CPUSET, ac);
3709 	/*
3710 	 * fallback to ignore cpuset restriction if our nodes
3711 	 * are depleted
3712 	 */
3713 	if (!page)
3714 		page = get_page_from_freelist(gfp_mask, order,
3715 				alloc_flags, ac);
3716 
3717 	return page;
3718 }
3719 
3720 static inline struct page *
3721 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3722 	const struct alloc_context *ac, unsigned long *did_some_progress)
3723 {
3724 	struct oom_control oc = {
3725 		.zonelist = ac->zonelist,
3726 		.nodemask = ac->nodemask,
3727 		.memcg = NULL,
3728 		.gfp_mask = gfp_mask,
3729 		.order = order,
3730 	};
3731 	struct page *page;
3732 
3733 	*did_some_progress = 0;
3734 
3735 	/*
3736 	 * Acquire the oom lock.  If that fails, somebody else is
3737 	 * making progress for us.
3738 	 */
3739 	if (!mutex_trylock(&oom_lock)) {
3740 		*did_some_progress = 1;
3741 		schedule_timeout_uninterruptible(1);
3742 		return NULL;
3743 	}
3744 
3745 	/*
3746 	 * Go through the zonelist yet one more time, keep very high watermark
3747 	 * here, this is only to catch a parallel oom killing, we must fail if
3748 	 * we're still under heavy pressure. But make sure that this reclaim
3749 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3750 	 * allocation which will never fail due to oom_lock already held.
3751 	 */
3752 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3753 				      ~__GFP_DIRECT_RECLAIM, order,
3754 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3755 	if (page)
3756 		goto out;
3757 
3758 	/* Coredumps can quickly deplete all memory reserves */
3759 	if (current->flags & PF_DUMPCORE)
3760 		goto out;
3761 	/* The OOM killer will not help higher order allocs */
3762 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3763 		goto out;
3764 	/*
3765 	 * We have already exhausted all our reclaim opportunities without any
3766 	 * success so it is time to admit defeat. We will skip the OOM killer
3767 	 * because it is very likely that the caller has a more reasonable
3768 	 * fallback than shooting a random task.
3769 	 */
3770 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3771 		goto out;
3772 	/* The OOM killer does not needlessly kill tasks for lowmem */
3773 	if (ac->high_zoneidx < ZONE_NORMAL)
3774 		goto out;
3775 	if (pm_suspended_storage())
3776 		goto out;
3777 	/*
3778 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3779 	 * other request to make a forward progress.
3780 	 * We are in an unfortunate situation where out_of_memory cannot
3781 	 * do much for this context but let's try it to at least get
3782 	 * access to memory reserved if the current task is killed (see
3783 	 * out_of_memory). Once filesystems are ready to handle allocation
3784 	 * failures more gracefully we should just bail out here.
3785 	 */
3786 
3787 	/* The OOM killer may not free memory on a specific node */
3788 	if (gfp_mask & __GFP_THISNODE)
3789 		goto out;
3790 
3791 	/* Exhausted what can be done so it's blame time */
3792 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3793 		*did_some_progress = 1;
3794 
3795 		/*
3796 		 * Help non-failing allocations by giving them access to memory
3797 		 * reserves
3798 		 */
3799 		if (gfp_mask & __GFP_NOFAIL)
3800 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3801 					ALLOC_NO_WATERMARKS, ac);
3802 	}
3803 out:
3804 	mutex_unlock(&oom_lock);
3805 	return page;
3806 }
3807 
3808 /*
3809  * Maximum number of compaction retries wit a progress before OOM
3810  * killer is consider as the only way to move forward.
3811  */
3812 #define MAX_COMPACT_RETRIES 16
3813 
3814 #ifdef CONFIG_COMPACTION
3815 /* Try memory compaction for high-order allocations before reclaim */
3816 static struct page *
3817 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3818 		unsigned int alloc_flags, const struct alloc_context *ac,
3819 		enum compact_priority prio, enum compact_result *compact_result)
3820 {
3821 	struct page *page = NULL;
3822 	unsigned long pflags;
3823 	unsigned int noreclaim_flag;
3824 
3825 	if (!order)
3826 		return NULL;
3827 
3828 	psi_memstall_enter(&pflags);
3829 	noreclaim_flag = memalloc_noreclaim_save();
3830 
3831 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3832 								prio, &page);
3833 
3834 	memalloc_noreclaim_restore(noreclaim_flag);
3835 	psi_memstall_leave(&pflags);
3836 
3837 	/*
3838 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3839 	 * count a compaction stall
3840 	 */
3841 	count_vm_event(COMPACTSTALL);
3842 
3843 	/* Prep a captured page if available */
3844 	if (page)
3845 		prep_new_page(page, order, gfp_mask, alloc_flags);
3846 
3847 	/* Try get a page from the freelist if available */
3848 	if (!page)
3849 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3850 
3851 	if (page) {
3852 		struct zone *zone = page_zone(page);
3853 
3854 		zone->compact_blockskip_flush = false;
3855 		compaction_defer_reset(zone, order, true);
3856 		count_vm_event(COMPACTSUCCESS);
3857 		return page;
3858 	}
3859 
3860 	/*
3861 	 * It's bad if compaction run occurs and fails. The most likely reason
3862 	 * is that pages exist, but not enough to satisfy watermarks.
3863 	 */
3864 	count_vm_event(COMPACTFAIL);
3865 
3866 	cond_resched();
3867 
3868 	return NULL;
3869 }
3870 
3871 static inline bool
3872 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3873 		     enum compact_result compact_result,
3874 		     enum compact_priority *compact_priority,
3875 		     int *compaction_retries)
3876 {
3877 	int max_retries = MAX_COMPACT_RETRIES;
3878 	int min_priority;
3879 	bool ret = false;
3880 	int retries = *compaction_retries;
3881 	enum compact_priority priority = *compact_priority;
3882 
3883 	if (!order)
3884 		return false;
3885 
3886 	if (compaction_made_progress(compact_result))
3887 		(*compaction_retries)++;
3888 
3889 	/*
3890 	 * compaction considers all the zone as desperately out of memory
3891 	 * so it doesn't really make much sense to retry except when the
3892 	 * failure could be caused by insufficient priority
3893 	 */
3894 	if (compaction_failed(compact_result))
3895 		goto check_priority;
3896 
3897 	/*
3898 	 * make sure the compaction wasn't deferred or didn't bail out early
3899 	 * due to locks contention before we declare that we should give up.
3900 	 * But do not retry if the given zonelist is not suitable for
3901 	 * compaction.
3902 	 */
3903 	if (compaction_withdrawn(compact_result)) {
3904 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3905 		goto out;
3906 	}
3907 
3908 	/*
3909 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3910 	 * costly ones because they are de facto nofail and invoke OOM
3911 	 * killer to move on while costly can fail and users are ready
3912 	 * to cope with that. 1/4 retries is rather arbitrary but we
3913 	 * would need much more detailed feedback from compaction to
3914 	 * make a better decision.
3915 	 */
3916 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3917 		max_retries /= 4;
3918 	if (*compaction_retries <= max_retries) {
3919 		ret = true;
3920 		goto out;
3921 	}
3922 
3923 	/*
3924 	 * Make sure there are attempts at the highest priority if we exhausted
3925 	 * all retries or failed at the lower priorities.
3926 	 */
3927 check_priority:
3928 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3929 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3930 
3931 	if (*compact_priority > min_priority) {
3932 		(*compact_priority)--;
3933 		*compaction_retries = 0;
3934 		ret = true;
3935 	}
3936 out:
3937 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3938 	return ret;
3939 }
3940 #else
3941 static inline struct page *
3942 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3943 		unsigned int alloc_flags, const struct alloc_context *ac,
3944 		enum compact_priority prio, enum compact_result *compact_result)
3945 {
3946 	*compact_result = COMPACT_SKIPPED;
3947 	return NULL;
3948 }
3949 
3950 static inline bool
3951 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3952 		     enum compact_result compact_result,
3953 		     enum compact_priority *compact_priority,
3954 		     int *compaction_retries)
3955 {
3956 	struct zone *zone;
3957 	struct zoneref *z;
3958 
3959 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3960 		return false;
3961 
3962 	/*
3963 	 * There are setups with compaction disabled which would prefer to loop
3964 	 * inside the allocator rather than hit the oom killer prematurely.
3965 	 * Let's give them a good hope and keep retrying while the order-0
3966 	 * watermarks are OK.
3967 	 */
3968 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3969 					ac->nodemask) {
3970 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3971 					ac_classzone_idx(ac), alloc_flags))
3972 			return true;
3973 	}
3974 	return false;
3975 }
3976 #endif /* CONFIG_COMPACTION */
3977 
3978 #ifdef CONFIG_LOCKDEP
3979 static struct lockdep_map __fs_reclaim_map =
3980 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3981 
3982 static bool __need_fs_reclaim(gfp_t gfp_mask)
3983 {
3984 	gfp_mask = current_gfp_context(gfp_mask);
3985 
3986 	/* no reclaim without waiting on it */
3987 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3988 		return false;
3989 
3990 	/* this guy won't enter reclaim */
3991 	if (current->flags & PF_MEMALLOC)
3992 		return false;
3993 
3994 	/* We're only interested __GFP_FS allocations for now */
3995 	if (!(gfp_mask & __GFP_FS))
3996 		return false;
3997 
3998 	if (gfp_mask & __GFP_NOLOCKDEP)
3999 		return false;
4000 
4001 	return true;
4002 }
4003 
4004 void __fs_reclaim_acquire(void)
4005 {
4006 	lock_map_acquire(&__fs_reclaim_map);
4007 }
4008 
4009 void __fs_reclaim_release(void)
4010 {
4011 	lock_map_release(&__fs_reclaim_map);
4012 }
4013 
4014 void fs_reclaim_acquire(gfp_t gfp_mask)
4015 {
4016 	if (__need_fs_reclaim(gfp_mask))
4017 		__fs_reclaim_acquire();
4018 }
4019 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4020 
4021 void fs_reclaim_release(gfp_t gfp_mask)
4022 {
4023 	if (__need_fs_reclaim(gfp_mask))
4024 		__fs_reclaim_release();
4025 }
4026 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4027 #endif
4028 
4029 /* Perform direct synchronous page reclaim */
4030 static int
4031 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4032 					const struct alloc_context *ac)
4033 {
4034 	struct reclaim_state reclaim_state;
4035 	int progress;
4036 	unsigned int noreclaim_flag;
4037 	unsigned long pflags;
4038 
4039 	cond_resched();
4040 
4041 	/* We now go into synchronous reclaim */
4042 	cpuset_memory_pressure_bump();
4043 	psi_memstall_enter(&pflags);
4044 	fs_reclaim_acquire(gfp_mask);
4045 	noreclaim_flag = memalloc_noreclaim_save();
4046 	reclaim_state.reclaimed_slab = 0;
4047 	current->reclaim_state = &reclaim_state;
4048 
4049 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4050 								ac->nodemask);
4051 
4052 	current->reclaim_state = NULL;
4053 	memalloc_noreclaim_restore(noreclaim_flag);
4054 	fs_reclaim_release(gfp_mask);
4055 	psi_memstall_leave(&pflags);
4056 
4057 	cond_resched();
4058 
4059 	return progress;
4060 }
4061 
4062 /* The really slow allocator path where we enter direct reclaim */
4063 static inline struct page *
4064 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4065 		unsigned int alloc_flags, const struct alloc_context *ac,
4066 		unsigned long *did_some_progress)
4067 {
4068 	struct page *page = NULL;
4069 	bool drained = false;
4070 
4071 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4072 	if (unlikely(!(*did_some_progress)))
4073 		return NULL;
4074 
4075 retry:
4076 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4077 
4078 	/*
4079 	 * If an allocation failed after direct reclaim, it could be because
4080 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4081 	 * Shrink them them and try again
4082 	 */
4083 	if (!page && !drained) {
4084 		unreserve_highatomic_pageblock(ac, false);
4085 		drain_all_pages(NULL);
4086 		drained = true;
4087 		goto retry;
4088 	}
4089 
4090 	return page;
4091 }
4092 
4093 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4094 			     const struct alloc_context *ac)
4095 {
4096 	struct zoneref *z;
4097 	struct zone *zone;
4098 	pg_data_t *last_pgdat = NULL;
4099 	enum zone_type high_zoneidx = ac->high_zoneidx;
4100 
4101 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4102 					ac->nodemask) {
4103 		if (last_pgdat != zone->zone_pgdat)
4104 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4105 		last_pgdat = zone->zone_pgdat;
4106 	}
4107 }
4108 
4109 static inline unsigned int
4110 gfp_to_alloc_flags(gfp_t gfp_mask)
4111 {
4112 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4113 
4114 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4115 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4116 
4117 	/*
4118 	 * The caller may dip into page reserves a bit more if the caller
4119 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4120 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4121 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4122 	 */
4123 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4124 
4125 	if (gfp_mask & __GFP_ATOMIC) {
4126 		/*
4127 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4128 		 * if it can't schedule.
4129 		 */
4130 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4131 			alloc_flags |= ALLOC_HARDER;
4132 		/*
4133 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4134 		 * comment for __cpuset_node_allowed().
4135 		 */
4136 		alloc_flags &= ~ALLOC_CPUSET;
4137 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4138 		alloc_flags |= ALLOC_HARDER;
4139 
4140 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4141 		alloc_flags |= ALLOC_KSWAPD;
4142 
4143 #ifdef CONFIG_CMA
4144 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4145 		alloc_flags |= ALLOC_CMA;
4146 #endif
4147 	return alloc_flags;
4148 }
4149 
4150 static bool oom_reserves_allowed(struct task_struct *tsk)
4151 {
4152 	if (!tsk_is_oom_victim(tsk))
4153 		return false;
4154 
4155 	/*
4156 	 * !MMU doesn't have oom reaper so give access to memory reserves
4157 	 * only to the thread with TIF_MEMDIE set
4158 	 */
4159 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4160 		return false;
4161 
4162 	return true;
4163 }
4164 
4165 /*
4166  * Distinguish requests which really need access to full memory
4167  * reserves from oom victims which can live with a portion of it
4168  */
4169 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4170 {
4171 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4172 		return 0;
4173 	if (gfp_mask & __GFP_MEMALLOC)
4174 		return ALLOC_NO_WATERMARKS;
4175 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4176 		return ALLOC_NO_WATERMARKS;
4177 	if (!in_interrupt()) {
4178 		if (current->flags & PF_MEMALLOC)
4179 			return ALLOC_NO_WATERMARKS;
4180 		else if (oom_reserves_allowed(current))
4181 			return ALLOC_OOM;
4182 	}
4183 
4184 	return 0;
4185 }
4186 
4187 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4188 {
4189 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4190 }
4191 
4192 /*
4193  * Checks whether it makes sense to retry the reclaim to make a forward progress
4194  * for the given allocation request.
4195  *
4196  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4197  * without success, or when we couldn't even meet the watermark if we
4198  * reclaimed all remaining pages on the LRU lists.
4199  *
4200  * Returns true if a retry is viable or false to enter the oom path.
4201  */
4202 static inline bool
4203 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4204 		     struct alloc_context *ac, int alloc_flags,
4205 		     bool did_some_progress, int *no_progress_loops)
4206 {
4207 	struct zone *zone;
4208 	struct zoneref *z;
4209 	bool ret = false;
4210 
4211 	/*
4212 	 * Costly allocations might have made a progress but this doesn't mean
4213 	 * their order will become available due to high fragmentation so
4214 	 * always increment the no progress counter for them
4215 	 */
4216 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4217 		*no_progress_loops = 0;
4218 	else
4219 		(*no_progress_loops)++;
4220 
4221 	/*
4222 	 * Make sure we converge to OOM if we cannot make any progress
4223 	 * several times in the row.
4224 	 */
4225 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4226 		/* Before OOM, exhaust highatomic_reserve */
4227 		return unreserve_highatomic_pageblock(ac, true);
4228 	}
4229 
4230 	/*
4231 	 * Keep reclaiming pages while there is a chance this will lead
4232 	 * somewhere.  If none of the target zones can satisfy our allocation
4233 	 * request even if all reclaimable pages are considered then we are
4234 	 * screwed and have to go OOM.
4235 	 */
4236 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4237 					ac->nodemask) {
4238 		unsigned long available;
4239 		unsigned long reclaimable;
4240 		unsigned long min_wmark = min_wmark_pages(zone);
4241 		bool wmark;
4242 
4243 		available = reclaimable = zone_reclaimable_pages(zone);
4244 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4245 
4246 		/*
4247 		 * Would the allocation succeed if we reclaimed all
4248 		 * reclaimable pages?
4249 		 */
4250 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4251 				ac_classzone_idx(ac), alloc_flags, available);
4252 		trace_reclaim_retry_zone(z, order, reclaimable,
4253 				available, min_wmark, *no_progress_loops, wmark);
4254 		if (wmark) {
4255 			/*
4256 			 * If we didn't make any progress and have a lot of
4257 			 * dirty + writeback pages then we should wait for
4258 			 * an IO to complete to slow down the reclaim and
4259 			 * prevent from pre mature OOM
4260 			 */
4261 			if (!did_some_progress) {
4262 				unsigned long write_pending;
4263 
4264 				write_pending = zone_page_state_snapshot(zone,
4265 							NR_ZONE_WRITE_PENDING);
4266 
4267 				if (2 * write_pending > reclaimable) {
4268 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4269 					return true;
4270 				}
4271 			}
4272 
4273 			ret = true;
4274 			goto out;
4275 		}
4276 	}
4277 
4278 out:
4279 	/*
4280 	 * Memory allocation/reclaim might be called from a WQ context and the
4281 	 * current implementation of the WQ concurrency control doesn't
4282 	 * recognize that a particular WQ is congested if the worker thread is
4283 	 * looping without ever sleeping. Therefore we have to do a short sleep
4284 	 * here rather than calling cond_resched().
4285 	 */
4286 	if (current->flags & PF_WQ_WORKER)
4287 		schedule_timeout_uninterruptible(1);
4288 	else
4289 		cond_resched();
4290 	return ret;
4291 }
4292 
4293 static inline bool
4294 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4295 {
4296 	/*
4297 	 * It's possible that cpuset's mems_allowed and the nodemask from
4298 	 * mempolicy don't intersect. This should be normally dealt with by
4299 	 * policy_nodemask(), but it's possible to race with cpuset update in
4300 	 * such a way the check therein was true, and then it became false
4301 	 * before we got our cpuset_mems_cookie here.
4302 	 * This assumes that for all allocations, ac->nodemask can come only
4303 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4304 	 * when it does not intersect with the cpuset restrictions) or the
4305 	 * caller can deal with a violated nodemask.
4306 	 */
4307 	if (cpusets_enabled() && ac->nodemask &&
4308 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4309 		ac->nodemask = NULL;
4310 		return true;
4311 	}
4312 
4313 	/*
4314 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4315 	 * possible to race with parallel threads in such a way that our
4316 	 * allocation can fail while the mask is being updated. If we are about
4317 	 * to fail, check if the cpuset changed during allocation and if so,
4318 	 * retry.
4319 	 */
4320 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4321 		return true;
4322 
4323 	return false;
4324 }
4325 
4326 static inline struct page *
4327 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4328 						struct alloc_context *ac)
4329 {
4330 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4331 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4332 	struct page *page = NULL;
4333 	unsigned int alloc_flags;
4334 	unsigned long did_some_progress;
4335 	enum compact_priority compact_priority;
4336 	enum compact_result compact_result;
4337 	int compaction_retries;
4338 	int no_progress_loops;
4339 	unsigned int cpuset_mems_cookie;
4340 	int reserve_flags;
4341 
4342 	/*
4343 	 * We also sanity check to catch abuse of atomic reserves being used by
4344 	 * callers that are not in atomic context.
4345 	 */
4346 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4347 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4348 		gfp_mask &= ~__GFP_ATOMIC;
4349 
4350 retry_cpuset:
4351 	compaction_retries = 0;
4352 	no_progress_loops = 0;
4353 	compact_priority = DEF_COMPACT_PRIORITY;
4354 	cpuset_mems_cookie = read_mems_allowed_begin();
4355 
4356 	/*
4357 	 * The fast path uses conservative alloc_flags to succeed only until
4358 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4359 	 * alloc_flags precisely. So we do that now.
4360 	 */
4361 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4362 
4363 	/*
4364 	 * We need to recalculate the starting point for the zonelist iterator
4365 	 * because we might have used different nodemask in the fast path, or
4366 	 * there was a cpuset modification and we are retrying - otherwise we
4367 	 * could end up iterating over non-eligible zones endlessly.
4368 	 */
4369 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4370 					ac->high_zoneidx, ac->nodemask);
4371 	if (!ac->preferred_zoneref->zone)
4372 		goto nopage;
4373 
4374 	if (alloc_flags & ALLOC_KSWAPD)
4375 		wake_all_kswapds(order, gfp_mask, ac);
4376 
4377 	/*
4378 	 * The adjusted alloc_flags might result in immediate success, so try
4379 	 * that first
4380 	 */
4381 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4382 	if (page)
4383 		goto got_pg;
4384 
4385 	/*
4386 	 * For costly allocations, try direct compaction first, as it's likely
4387 	 * that we have enough base pages and don't need to reclaim. For non-
4388 	 * movable high-order allocations, do that as well, as compaction will
4389 	 * try prevent permanent fragmentation by migrating from blocks of the
4390 	 * same migratetype.
4391 	 * Don't try this for allocations that are allowed to ignore
4392 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4393 	 */
4394 	if (can_direct_reclaim &&
4395 			(costly_order ||
4396 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4397 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4398 		page = __alloc_pages_direct_compact(gfp_mask, order,
4399 						alloc_flags, ac,
4400 						INIT_COMPACT_PRIORITY,
4401 						&compact_result);
4402 		if (page)
4403 			goto got_pg;
4404 
4405 		/*
4406 		 * Checks for costly allocations with __GFP_NORETRY, which
4407 		 * includes THP page fault allocations
4408 		 */
4409 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4410 			/*
4411 			 * If compaction is deferred for high-order allocations,
4412 			 * it is because sync compaction recently failed. If
4413 			 * this is the case and the caller requested a THP
4414 			 * allocation, we do not want to heavily disrupt the
4415 			 * system, so we fail the allocation instead of entering
4416 			 * direct reclaim.
4417 			 */
4418 			if (compact_result == COMPACT_DEFERRED)
4419 				goto nopage;
4420 
4421 			/*
4422 			 * Looks like reclaim/compaction is worth trying, but
4423 			 * sync compaction could be very expensive, so keep
4424 			 * using async compaction.
4425 			 */
4426 			compact_priority = INIT_COMPACT_PRIORITY;
4427 		}
4428 	}
4429 
4430 retry:
4431 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4432 	if (alloc_flags & ALLOC_KSWAPD)
4433 		wake_all_kswapds(order, gfp_mask, ac);
4434 
4435 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4436 	if (reserve_flags)
4437 		alloc_flags = reserve_flags;
4438 
4439 	/*
4440 	 * Reset the nodemask and zonelist iterators if memory policies can be
4441 	 * ignored. These allocations are high priority and system rather than
4442 	 * user oriented.
4443 	 */
4444 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4445 		ac->nodemask = NULL;
4446 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4447 					ac->high_zoneidx, ac->nodemask);
4448 	}
4449 
4450 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4451 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4452 	if (page)
4453 		goto got_pg;
4454 
4455 	/* Caller is not willing to reclaim, we can't balance anything */
4456 	if (!can_direct_reclaim)
4457 		goto nopage;
4458 
4459 	/* Avoid recursion of direct reclaim */
4460 	if (current->flags & PF_MEMALLOC)
4461 		goto nopage;
4462 
4463 	/* Try direct reclaim and then allocating */
4464 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4465 							&did_some_progress);
4466 	if (page)
4467 		goto got_pg;
4468 
4469 	/* Try direct compaction and then allocating */
4470 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4471 					compact_priority, &compact_result);
4472 	if (page)
4473 		goto got_pg;
4474 
4475 	/* Do not loop if specifically requested */
4476 	if (gfp_mask & __GFP_NORETRY)
4477 		goto nopage;
4478 
4479 	/*
4480 	 * Do not retry costly high order allocations unless they are
4481 	 * __GFP_RETRY_MAYFAIL
4482 	 */
4483 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4484 		goto nopage;
4485 
4486 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4487 				 did_some_progress > 0, &no_progress_loops))
4488 		goto retry;
4489 
4490 	/*
4491 	 * It doesn't make any sense to retry for the compaction if the order-0
4492 	 * reclaim is not able to make any progress because the current
4493 	 * implementation of the compaction depends on the sufficient amount
4494 	 * of free memory (see __compaction_suitable)
4495 	 */
4496 	if (did_some_progress > 0 &&
4497 			should_compact_retry(ac, order, alloc_flags,
4498 				compact_result, &compact_priority,
4499 				&compaction_retries))
4500 		goto retry;
4501 
4502 
4503 	/* Deal with possible cpuset update races before we start OOM killing */
4504 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4505 		goto retry_cpuset;
4506 
4507 	/* Reclaim has failed us, start killing things */
4508 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4509 	if (page)
4510 		goto got_pg;
4511 
4512 	/* Avoid allocations with no watermarks from looping endlessly */
4513 	if (tsk_is_oom_victim(current) &&
4514 	    (alloc_flags == ALLOC_OOM ||
4515 	     (gfp_mask & __GFP_NOMEMALLOC)))
4516 		goto nopage;
4517 
4518 	/* Retry as long as the OOM killer is making progress */
4519 	if (did_some_progress) {
4520 		no_progress_loops = 0;
4521 		goto retry;
4522 	}
4523 
4524 nopage:
4525 	/* Deal with possible cpuset update races before we fail */
4526 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4527 		goto retry_cpuset;
4528 
4529 	/*
4530 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4531 	 * we always retry
4532 	 */
4533 	if (gfp_mask & __GFP_NOFAIL) {
4534 		/*
4535 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4536 		 * of any new users that actually require GFP_NOWAIT
4537 		 */
4538 		if (WARN_ON_ONCE(!can_direct_reclaim))
4539 			goto fail;
4540 
4541 		/*
4542 		 * PF_MEMALLOC request from this context is rather bizarre
4543 		 * because we cannot reclaim anything and only can loop waiting
4544 		 * for somebody to do a work for us
4545 		 */
4546 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4547 
4548 		/*
4549 		 * non failing costly orders are a hard requirement which we
4550 		 * are not prepared for much so let's warn about these users
4551 		 * so that we can identify them and convert them to something
4552 		 * else.
4553 		 */
4554 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4555 
4556 		/*
4557 		 * Help non-failing allocations by giving them access to memory
4558 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4559 		 * could deplete whole memory reserves which would just make
4560 		 * the situation worse
4561 		 */
4562 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4563 		if (page)
4564 			goto got_pg;
4565 
4566 		cond_resched();
4567 		goto retry;
4568 	}
4569 fail:
4570 	warn_alloc(gfp_mask, ac->nodemask,
4571 			"page allocation failure: order:%u", order);
4572 got_pg:
4573 	return page;
4574 }
4575 
4576 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4577 		int preferred_nid, nodemask_t *nodemask,
4578 		struct alloc_context *ac, gfp_t *alloc_mask,
4579 		unsigned int *alloc_flags)
4580 {
4581 	ac->high_zoneidx = gfp_zone(gfp_mask);
4582 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4583 	ac->nodemask = nodemask;
4584 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4585 
4586 	if (cpusets_enabled()) {
4587 		*alloc_mask |= __GFP_HARDWALL;
4588 		if (!ac->nodemask)
4589 			ac->nodemask = &cpuset_current_mems_allowed;
4590 		else
4591 			*alloc_flags |= ALLOC_CPUSET;
4592 	}
4593 
4594 	fs_reclaim_acquire(gfp_mask);
4595 	fs_reclaim_release(gfp_mask);
4596 
4597 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4598 
4599 	if (should_fail_alloc_page(gfp_mask, order))
4600 		return false;
4601 
4602 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4603 		*alloc_flags |= ALLOC_CMA;
4604 
4605 	return true;
4606 }
4607 
4608 /* Determine whether to spread dirty pages and what the first usable zone */
4609 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4610 {
4611 	/* Dirty zone balancing only done in the fast path */
4612 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4613 
4614 	/*
4615 	 * The preferred zone is used for statistics but crucially it is
4616 	 * also used as the starting point for the zonelist iterator. It
4617 	 * may get reset for allocations that ignore memory policies.
4618 	 */
4619 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4620 					ac->high_zoneidx, ac->nodemask);
4621 }
4622 
4623 /*
4624  * This is the 'heart' of the zoned buddy allocator.
4625  */
4626 struct page *
4627 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4628 							nodemask_t *nodemask)
4629 {
4630 	struct page *page;
4631 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4632 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4633 	struct alloc_context ac = { };
4634 
4635 	/*
4636 	 * There are several places where we assume that the order value is sane
4637 	 * so bail out early if the request is out of bound.
4638 	 */
4639 	if (unlikely(order >= MAX_ORDER)) {
4640 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4641 		return NULL;
4642 	}
4643 
4644 	gfp_mask &= gfp_allowed_mask;
4645 	alloc_mask = gfp_mask;
4646 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4647 		return NULL;
4648 
4649 	finalise_ac(gfp_mask, &ac);
4650 
4651 	/*
4652 	 * Forbid the first pass from falling back to types that fragment
4653 	 * memory until all local zones are considered.
4654 	 */
4655 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4656 
4657 	/* First allocation attempt */
4658 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4659 	if (likely(page))
4660 		goto out;
4661 
4662 	/*
4663 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4664 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4665 	 * from a particular context which has been marked by
4666 	 * memalloc_no{fs,io}_{save,restore}.
4667 	 */
4668 	alloc_mask = current_gfp_context(gfp_mask);
4669 	ac.spread_dirty_pages = false;
4670 
4671 	/*
4672 	 * Restore the original nodemask if it was potentially replaced with
4673 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4674 	 */
4675 	if (unlikely(ac.nodemask != nodemask))
4676 		ac.nodemask = nodemask;
4677 
4678 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4679 
4680 out:
4681 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4682 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4683 		__free_pages(page, order);
4684 		page = NULL;
4685 	}
4686 
4687 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4688 
4689 	return page;
4690 }
4691 EXPORT_SYMBOL(__alloc_pages_nodemask);
4692 
4693 /*
4694  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4695  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4696  * you need to access high mem.
4697  */
4698 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4699 {
4700 	struct page *page;
4701 
4702 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4703 	if (!page)
4704 		return 0;
4705 	return (unsigned long) page_address(page);
4706 }
4707 EXPORT_SYMBOL(__get_free_pages);
4708 
4709 unsigned long get_zeroed_page(gfp_t gfp_mask)
4710 {
4711 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4712 }
4713 EXPORT_SYMBOL(get_zeroed_page);
4714 
4715 static inline void free_the_page(struct page *page, unsigned int order)
4716 {
4717 	if (order == 0)		/* Via pcp? */
4718 		free_unref_page(page);
4719 	else
4720 		__free_pages_ok(page, order);
4721 }
4722 
4723 void __free_pages(struct page *page, unsigned int order)
4724 {
4725 	if (put_page_testzero(page))
4726 		free_the_page(page, order);
4727 }
4728 EXPORT_SYMBOL(__free_pages);
4729 
4730 void free_pages(unsigned long addr, unsigned int order)
4731 {
4732 	if (addr != 0) {
4733 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4734 		__free_pages(virt_to_page((void *)addr), order);
4735 	}
4736 }
4737 
4738 EXPORT_SYMBOL(free_pages);
4739 
4740 /*
4741  * Page Fragment:
4742  *  An arbitrary-length arbitrary-offset area of memory which resides
4743  *  within a 0 or higher order page.  Multiple fragments within that page
4744  *  are individually refcounted, in the page's reference counter.
4745  *
4746  * The page_frag functions below provide a simple allocation framework for
4747  * page fragments.  This is used by the network stack and network device
4748  * drivers to provide a backing region of memory for use as either an
4749  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4750  */
4751 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4752 					     gfp_t gfp_mask)
4753 {
4754 	struct page *page = NULL;
4755 	gfp_t gfp = gfp_mask;
4756 
4757 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4758 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4759 		    __GFP_NOMEMALLOC;
4760 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4761 				PAGE_FRAG_CACHE_MAX_ORDER);
4762 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4763 #endif
4764 	if (unlikely(!page))
4765 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4766 
4767 	nc->va = page ? page_address(page) : NULL;
4768 
4769 	return page;
4770 }
4771 
4772 void __page_frag_cache_drain(struct page *page, unsigned int count)
4773 {
4774 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4775 
4776 	if (page_ref_sub_and_test(page, count))
4777 		free_the_page(page, compound_order(page));
4778 }
4779 EXPORT_SYMBOL(__page_frag_cache_drain);
4780 
4781 void *page_frag_alloc(struct page_frag_cache *nc,
4782 		      unsigned int fragsz, gfp_t gfp_mask)
4783 {
4784 	unsigned int size = PAGE_SIZE;
4785 	struct page *page;
4786 	int offset;
4787 
4788 	if (unlikely(!nc->va)) {
4789 refill:
4790 		page = __page_frag_cache_refill(nc, gfp_mask);
4791 		if (!page)
4792 			return NULL;
4793 
4794 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4795 		/* if size can vary use size else just use PAGE_SIZE */
4796 		size = nc->size;
4797 #endif
4798 		/* Even if we own the page, we do not use atomic_set().
4799 		 * This would break get_page_unless_zero() users.
4800 		 */
4801 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4802 
4803 		/* reset page count bias and offset to start of new frag */
4804 		nc->pfmemalloc = page_is_pfmemalloc(page);
4805 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4806 		nc->offset = size;
4807 	}
4808 
4809 	offset = nc->offset - fragsz;
4810 	if (unlikely(offset < 0)) {
4811 		page = virt_to_page(nc->va);
4812 
4813 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4814 			goto refill;
4815 
4816 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4817 		/* if size can vary use size else just use PAGE_SIZE */
4818 		size = nc->size;
4819 #endif
4820 		/* OK, page count is 0, we can safely set it */
4821 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4822 
4823 		/* reset page count bias and offset to start of new frag */
4824 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4825 		offset = size - fragsz;
4826 	}
4827 
4828 	nc->pagecnt_bias--;
4829 	nc->offset = offset;
4830 
4831 	return nc->va + offset;
4832 }
4833 EXPORT_SYMBOL(page_frag_alloc);
4834 
4835 /*
4836  * Frees a page fragment allocated out of either a compound or order 0 page.
4837  */
4838 void page_frag_free(void *addr)
4839 {
4840 	struct page *page = virt_to_head_page(addr);
4841 
4842 	if (unlikely(put_page_testzero(page)))
4843 		free_the_page(page, compound_order(page));
4844 }
4845 EXPORT_SYMBOL(page_frag_free);
4846 
4847 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4848 		size_t size)
4849 {
4850 	if (addr) {
4851 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4852 		unsigned long used = addr + PAGE_ALIGN(size);
4853 
4854 		split_page(virt_to_page((void *)addr), order);
4855 		while (used < alloc_end) {
4856 			free_page(used);
4857 			used += PAGE_SIZE;
4858 		}
4859 	}
4860 	return (void *)addr;
4861 }
4862 
4863 /**
4864  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4865  * @size: the number of bytes to allocate
4866  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4867  *
4868  * This function is similar to alloc_pages(), except that it allocates the
4869  * minimum number of pages to satisfy the request.  alloc_pages() can only
4870  * allocate memory in power-of-two pages.
4871  *
4872  * This function is also limited by MAX_ORDER.
4873  *
4874  * Memory allocated by this function must be released by free_pages_exact().
4875  *
4876  * Return: pointer to the allocated area or %NULL in case of error.
4877  */
4878 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4879 {
4880 	unsigned int order = get_order(size);
4881 	unsigned long addr;
4882 
4883 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4884 		gfp_mask &= ~__GFP_COMP;
4885 
4886 	addr = __get_free_pages(gfp_mask, order);
4887 	return make_alloc_exact(addr, order, size);
4888 }
4889 EXPORT_SYMBOL(alloc_pages_exact);
4890 
4891 /**
4892  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4893  *			   pages on a node.
4894  * @nid: the preferred node ID where memory should be allocated
4895  * @size: the number of bytes to allocate
4896  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4897  *
4898  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4899  * back.
4900  *
4901  * Return: pointer to the allocated area or %NULL in case of error.
4902  */
4903 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4904 {
4905 	unsigned int order = get_order(size);
4906 	struct page *p;
4907 
4908 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4909 		gfp_mask &= ~__GFP_COMP;
4910 
4911 	p = alloc_pages_node(nid, gfp_mask, order);
4912 	if (!p)
4913 		return NULL;
4914 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4915 }
4916 
4917 /**
4918  * free_pages_exact - release memory allocated via alloc_pages_exact()
4919  * @virt: the value returned by alloc_pages_exact.
4920  * @size: size of allocation, same value as passed to alloc_pages_exact().
4921  *
4922  * Release the memory allocated by a previous call to alloc_pages_exact.
4923  */
4924 void free_pages_exact(void *virt, size_t size)
4925 {
4926 	unsigned long addr = (unsigned long)virt;
4927 	unsigned long end = addr + PAGE_ALIGN(size);
4928 
4929 	while (addr < end) {
4930 		free_page(addr);
4931 		addr += PAGE_SIZE;
4932 	}
4933 }
4934 EXPORT_SYMBOL(free_pages_exact);
4935 
4936 /**
4937  * nr_free_zone_pages - count number of pages beyond high watermark
4938  * @offset: The zone index of the highest zone
4939  *
4940  * nr_free_zone_pages() counts the number of pages which are beyond the
4941  * high watermark within all zones at or below a given zone index.  For each
4942  * zone, the number of pages is calculated as:
4943  *
4944  *     nr_free_zone_pages = managed_pages - high_pages
4945  *
4946  * Return: number of pages beyond high watermark.
4947  */
4948 static unsigned long nr_free_zone_pages(int offset)
4949 {
4950 	struct zoneref *z;
4951 	struct zone *zone;
4952 
4953 	/* Just pick one node, since fallback list is circular */
4954 	unsigned long sum = 0;
4955 
4956 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4957 
4958 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4959 		unsigned long size = zone_managed_pages(zone);
4960 		unsigned long high = high_wmark_pages(zone);
4961 		if (size > high)
4962 			sum += size - high;
4963 	}
4964 
4965 	return sum;
4966 }
4967 
4968 /**
4969  * nr_free_buffer_pages - count number of pages beyond high watermark
4970  *
4971  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4972  * watermark within ZONE_DMA and ZONE_NORMAL.
4973  *
4974  * Return: number of pages beyond high watermark within ZONE_DMA and
4975  * ZONE_NORMAL.
4976  */
4977 unsigned long nr_free_buffer_pages(void)
4978 {
4979 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4980 }
4981 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4982 
4983 /**
4984  * nr_free_pagecache_pages - count number of pages beyond high watermark
4985  *
4986  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4987  * high watermark within all zones.
4988  *
4989  * Return: number of pages beyond high watermark within all zones.
4990  */
4991 unsigned long nr_free_pagecache_pages(void)
4992 {
4993 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4994 }
4995 
4996 static inline void show_node(struct zone *zone)
4997 {
4998 	if (IS_ENABLED(CONFIG_NUMA))
4999 		printk("Node %d ", zone_to_nid(zone));
5000 }
5001 
5002 long si_mem_available(void)
5003 {
5004 	long available;
5005 	unsigned long pagecache;
5006 	unsigned long wmark_low = 0;
5007 	unsigned long pages[NR_LRU_LISTS];
5008 	unsigned long reclaimable;
5009 	struct zone *zone;
5010 	int lru;
5011 
5012 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5013 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5014 
5015 	for_each_zone(zone)
5016 		wmark_low += low_wmark_pages(zone);
5017 
5018 	/*
5019 	 * Estimate the amount of memory available for userspace allocations,
5020 	 * without causing swapping.
5021 	 */
5022 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5023 
5024 	/*
5025 	 * Not all the page cache can be freed, otherwise the system will
5026 	 * start swapping. Assume at least half of the page cache, or the
5027 	 * low watermark worth of cache, needs to stay.
5028 	 */
5029 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5030 	pagecache -= min(pagecache / 2, wmark_low);
5031 	available += pagecache;
5032 
5033 	/*
5034 	 * Part of the reclaimable slab and other kernel memory consists of
5035 	 * items that are in use, and cannot be freed. Cap this estimate at the
5036 	 * low watermark.
5037 	 */
5038 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5039 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5040 	available += reclaimable - min(reclaimable / 2, wmark_low);
5041 
5042 	if (available < 0)
5043 		available = 0;
5044 	return available;
5045 }
5046 EXPORT_SYMBOL_GPL(si_mem_available);
5047 
5048 void si_meminfo(struct sysinfo *val)
5049 {
5050 	val->totalram = totalram_pages();
5051 	val->sharedram = global_node_page_state(NR_SHMEM);
5052 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5053 	val->bufferram = nr_blockdev_pages();
5054 	val->totalhigh = totalhigh_pages();
5055 	val->freehigh = nr_free_highpages();
5056 	val->mem_unit = PAGE_SIZE;
5057 }
5058 
5059 EXPORT_SYMBOL(si_meminfo);
5060 
5061 #ifdef CONFIG_NUMA
5062 void si_meminfo_node(struct sysinfo *val, int nid)
5063 {
5064 	int zone_type;		/* needs to be signed */
5065 	unsigned long managed_pages = 0;
5066 	unsigned long managed_highpages = 0;
5067 	unsigned long free_highpages = 0;
5068 	pg_data_t *pgdat = NODE_DATA(nid);
5069 
5070 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5071 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5072 	val->totalram = managed_pages;
5073 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5074 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5075 #ifdef CONFIG_HIGHMEM
5076 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5077 		struct zone *zone = &pgdat->node_zones[zone_type];
5078 
5079 		if (is_highmem(zone)) {
5080 			managed_highpages += zone_managed_pages(zone);
5081 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5082 		}
5083 	}
5084 	val->totalhigh = managed_highpages;
5085 	val->freehigh = free_highpages;
5086 #else
5087 	val->totalhigh = managed_highpages;
5088 	val->freehigh = free_highpages;
5089 #endif
5090 	val->mem_unit = PAGE_SIZE;
5091 }
5092 #endif
5093 
5094 /*
5095  * Determine whether the node should be displayed or not, depending on whether
5096  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5097  */
5098 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5099 {
5100 	if (!(flags & SHOW_MEM_FILTER_NODES))
5101 		return false;
5102 
5103 	/*
5104 	 * no node mask - aka implicit memory numa policy. Do not bother with
5105 	 * the synchronization - read_mems_allowed_begin - because we do not
5106 	 * have to be precise here.
5107 	 */
5108 	if (!nodemask)
5109 		nodemask = &cpuset_current_mems_allowed;
5110 
5111 	return !node_isset(nid, *nodemask);
5112 }
5113 
5114 #define K(x) ((x) << (PAGE_SHIFT-10))
5115 
5116 static void show_migration_types(unsigned char type)
5117 {
5118 	static const char types[MIGRATE_TYPES] = {
5119 		[MIGRATE_UNMOVABLE]	= 'U',
5120 		[MIGRATE_MOVABLE]	= 'M',
5121 		[MIGRATE_RECLAIMABLE]	= 'E',
5122 		[MIGRATE_HIGHATOMIC]	= 'H',
5123 #ifdef CONFIG_CMA
5124 		[MIGRATE_CMA]		= 'C',
5125 #endif
5126 #ifdef CONFIG_MEMORY_ISOLATION
5127 		[MIGRATE_ISOLATE]	= 'I',
5128 #endif
5129 	};
5130 	char tmp[MIGRATE_TYPES + 1];
5131 	char *p = tmp;
5132 	int i;
5133 
5134 	for (i = 0; i < MIGRATE_TYPES; i++) {
5135 		if (type & (1 << i))
5136 			*p++ = types[i];
5137 	}
5138 
5139 	*p = '\0';
5140 	printk(KERN_CONT "(%s) ", tmp);
5141 }
5142 
5143 /*
5144  * Show free area list (used inside shift_scroll-lock stuff)
5145  * We also calculate the percentage fragmentation. We do this by counting the
5146  * memory on each free list with the exception of the first item on the list.
5147  *
5148  * Bits in @filter:
5149  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5150  *   cpuset.
5151  */
5152 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5153 {
5154 	unsigned long free_pcp = 0;
5155 	int cpu;
5156 	struct zone *zone;
5157 	pg_data_t *pgdat;
5158 
5159 	for_each_populated_zone(zone) {
5160 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5161 			continue;
5162 
5163 		for_each_online_cpu(cpu)
5164 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5165 	}
5166 
5167 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5168 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5169 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5170 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5171 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5172 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5173 		global_node_page_state(NR_ACTIVE_ANON),
5174 		global_node_page_state(NR_INACTIVE_ANON),
5175 		global_node_page_state(NR_ISOLATED_ANON),
5176 		global_node_page_state(NR_ACTIVE_FILE),
5177 		global_node_page_state(NR_INACTIVE_FILE),
5178 		global_node_page_state(NR_ISOLATED_FILE),
5179 		global_node_page_state(NR_UNEVICTABLE),
5180 		global_node_page_state(NR_FILE_DIRTY),
5181 		global_node_page_state(NR_WRITEBACK),
5182 		global_node_page_state(NR_UNSTABLE_NFS),
5183 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5184 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5185 		global_node_page_state(NR_FILE_MAPPED),
5186 		global_node_page_state(NR_SHMEM),
5187 		global_zone_page_state(NR_PAGETABLE),
5188 		global_zone_page_state(NR_BOUNCE),
5189 		global_zone_page_state(NR_FREE_PAGES),
5190 		free_pcp,
5191 		global_zone_page_state(NR_FREE_CMA_PAGES));
5192 
5193 	for_each_online_pgdat(pgdat) {
5194 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5195 			continue;
5196 
5197 		printk("Node %d"
5198 			" active_anon:%lukB"
5199 			" inactive_anon:%lukB"
5200 			" active_file:%lukB"
5201 			" inactive_file:%lukB"
5202 			" unevictable:%lukB"
5203 			" isolated(anon):%lukB"
5204 			" isolated(file):%lukB"
5205 			" mapped:%lukB"
5206 			" dirty:%lukB"
5207 			" writeback:%lukB"
5208 			" shmem:%lukB"
5209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5210 			" shmem_thp: %lukB"
5211 			" shmem_pmdmapped: %lukB"
5212 			" anon_thp: %lukB"
5213 #endif
5214 			" writeback_tmp:%lukB"
5215 			" unstable:%lukB"
5216 			" all_unreclaimable? %s"
5217 			"\n",
5218 			pgdat->node_id,
5219 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5220 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5221 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5222 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5223 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5224 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5225 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5226 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5227 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5228 			K(node_page_state(pgdat, NR_WRITEBACK)),
5229 			K(node_page_state(pgdat, NR_SHMEM)),
5230 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5231 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5232 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5233 					* HPAGE_PMD_NR),
5234 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5235 #endif
5236 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5237 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5238 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5239 				"yes" : "no");
5240 	}
5241 
5242 	for_each_populated_zone(zone) {
5243 		int i;
5244 
5245 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5246 			continue;
5247 
5248 		free_pcp = 0;
5249 		for_each_online_cpu(cpu)
5250 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5251 
5252 		show_node(zone);
5253 		printk(KERN_CONT
5254 			"%s"
5255 			" free:%lukB"
5256 			" min:%lukB"
5257 			" low:%lukB"
5258 			" high:%lukB"
5259 			" active_anon:%lukB"
5260 			" inactive_anon:%lukB"
5261 			" active_file:%lukB"
5262 			" inactive_file:%lukB"
5263 			" unevictable:%lukB"
5264 			" writepending:%lukB"
5265 			" present:%lukB"
5266 			" managed:%lukB"
5267 			" mlocked:%lukB"
5268 			" kernel_stack:%lukB"
5269 			" pagetables:%lukB"
5270 			" bounce:%lukB"
5271 			" free_pcp:%lukB"
5272 			" local_pcp:%ukB"
5273 			" free_cma:%lukB"
5274 			"\n",
5275 			zone->name,
5276 			K(zone_page_state(zone, NR_FREE_PAGES)),
5277 			K(min_wmark_pages(zone)),
5278 			K(low_wmark_pages(zone)),
5279 			K(high_wmark_pages(zone)),
5280 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5281 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5282 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5283 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5284 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5285 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5286 			K(zone->present_pages),
5287 			K(zone_managed_pages(zone)),
5288 			K(zone_page_state(zone, NR_MLOCK)),
5289 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5290 			K(zone_page_state(zone, NR_PAGETABLE)),
5291 			K(zone_page_state(zone, NR_BOUNCE)),
5292 			K(free_pcp),
5293 			K(this_cpu_read(zone->pageset->pcp.count)),
5294 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5295 		printk("lowmem_reserve[]:");
5296 		for (i = 0; i < MAX_NR_ZONES; i++)
5297 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5298 		printk(KERN_CONT "\n");
5299 	}
5300 
5301 	for_each_populated_zone(zone) {
5302 		unsigned int order;
5303 		unsigned long nr[MAX_ORDER], flags, total = 0;
5304 		unsigned char types[MAX_ORDER];
5305 
5306 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5307 			continue;
5308 		show_node(zone);
5309 		printk(KERN_CONT "%s: ", zone->name);
5310 
5311 		spin_lock_irqsave(&zone->lock, flags);
5312 		for (order = 0; order < MAX_ORDER; order++) {
5313 			struct free_area *area = &zone->free_area[order];
5314 			int type;
5315 
5316 			nr[order] = area->nr_free;
5317 			total += nr[order] << order;
5318 
5319 			types[order] = 0;
5320 			for (type = 0; type < MIGRATE_TYPES; type++) {
5321 				if (!free_area_empty(area, type))
5322 					types[order] |= 1 << type;
5323 			}
5324 		}
5325 		spin_unlock_irqrestore(&zone->lock, flags);
5326 		for (order = 0; order < MAX_ORDER; order++) {
5327 			printk(KERN_CONT "%lu*%lukB ",
5328 			       nr[order], K(1UL) << order);
5329 			if (nr[order])
5330 				show_migration_types(types[order]);
5331 		}
5332 		printk(KERN_CONT "= %lukB\n", K(total));
5333 	}
5334 
5335 	hugetlb_show_meminfo();
5336 
5337 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5338 
5339 	show_swap_cache_info();
5340 }
5341 
5342 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5343 {
5344 	zoneref->zone = zone;
5345 	zoneref->zone_idx = zone_idx(zone);
5346 }
5347 
5348 /*
5349  * Builds allocation fallback zone lists.
5350  *
5351  * Add all populated zones of a node to the zonelist.
5352  */
5353 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5354 {
5355 	struct zone *zone;
5356 	enum zone_type zone_type = MAX_NR_ZONES;
5357 	int nr_zones = 0;
5358 
5359 	do {
5360 		zone_type--;
5361 		zone = pgdat->node_zones + zone_type;
5362 		if (managed_zone(zone)) {
5363 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5364 			check_highest_zone(zone_type);
5365 		}
5366 	} while (zone_type);
5367 
5368 	return nr_zones;
5369 }
5370 
5371 #ifdef CONFIG_NUMA
5372 
5373 static int __parse_numa_zonelist_order(char *s)
5374 {
5375 	/*
5376 	 * We used to support different zonlists modes but they turned
5377 	 * out to be just not useful. Let's keep the warning in place
5378 	 * if somebody still use the cmd line parameter so that we do
5379 	 * not fail it silently
5380 	 */
5381 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5382 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5383 		return -EINVAL;
5384 	}
5385 	return 0;
5386 }
5387 
5388 static __init int setup_numa_zonelist_order(char *s)
5389 {
5390 	if (!s)
5391 		return 0;
5392 
5393 	return __parse_numa_zonelist_order(s);
5394 }
5395 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5396 
5397 char numa_zonelist_order[] = "Node";
5398 
5399 /*
5400  * sysctl handler for numa_zonelist_order
5401  */
5402 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5403 		void __user *buffer, size_t *length,
5404 		loff_t *ppos)
5405 {
5406 	char *str;
5407 	int ret;
5408 
5409 	if (!write)
5410 		return proc_dostring(table, write, buffer, length, ppos);
5411 	str = memdup_user_nul(buffer, 16);
5412 	if (IS_ERR(str))
5413 		return PTR_ERR(str);
5414 
5415 	ret = __parse_numa_zonelist_order(str);
5416 	kfree(str);
5417 	return ret;
5418 }
5419 
5420 
5421 #define MAX_NODE_LOAD (nr_online_nodes)
5422 static int node_load[MAX_NUMNODES];
5423 
5424 /**
5425  * find_next_best_node - find the next node that should appear in a given node's fallback list
5426  * @node: node whose fallback list we're appending
5427  * @used_node_mask: nodemask_t of already used nodes
5428  *
5429  * We use a number of factors to determine which is the next node that should
5430  * appear on a given node's fallback list.  The node should not have appeared
5431  * already in @node's fallback list, and it should be the next closest node
5432  * according to the distance array (which contains arbitrary distance values
5433  * from each node to each node in the system), and should also prefer nodes
5434  * with no CPUs, since presumably they'll have very little allocation pressure
5435  * on them otherwise.
5436  *
5437  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5438  */
5439 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5440 {
5441 	int n, val;
5442 	int min_val = INT_MAX;
5443 	int best_node = NUMA_NO_NODE;
5444 	const struct cpumask *tmp = cpumask_of_node(0);
5445 
5446 	/* Use the local node if we haven't already */
5447 	if (!node_isset(node, *used_node_mask)) {
5448 		node_set(node, *used_node_mask);
5449 		return node;
5450 	}
5451 
5452 	for_each_node_state(n, N_MEMORY) {
5453 
5454 		/* Don't want a node to appear more than once */
5455 		if (node_isset(n, *used_node_mask))
5456 			continue;
5457 
5458 		/* Use the distance array to find the distance */
5459 		val = node_distance(node, n);
5460 
5461 		/* Penalize nodes under us ("prefer the next node") */
5462 		val += (n < node);
5463 
5464 		/* Give preference to headless and unused nodes */
5465 		tmp = cpumask_of_node(n);
5466 		if (!cpumask_empty(tmp))
5467 			val += PENALTY_FOR_NODE_WITH_CPUS;
5468 
5469 		/* Slight preference for less loaded node */
5470 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5471 		val += node_load[n];
5472 
5473 		if (val < min_val) {
5474 			min_val = val;
5475 			best_node = n;
5476 		}
5477 	}
5478 
5479 	if (best_node >= 0)
5480 		node_set(best_node, *used_node_mask);
5481 
5482 	return best_node;
5483 }
5484 
5485 
5486 /*
5487  * Build zonelists ordered by node and zones within node.
5488  * This results in maximum locality--normal zone overflows into local
5489  * DMA zone, if any--but risks exhausting DMA zone.
5490  */
5491 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5492 		unsigned nr_nodes)
5493 {
5494 	struct zoneref *zonerefs;
5495 	int i;
5496 
5497 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5498 
5499 	for (i = 0; i < nr_nodes; i++) {
5500 		int nr_zones;
5501 
5502 		pg_data_t *node = NODE_DATA(node_order[i]);
5503 
5504 		nr_zones = build_zonerefs_node(node, zonerefs);
5505 		zonerefs += nr_zones;
5506 	}
5507 	zonerefs->zone = NULL;
5508 	zonerefs->zone_idx = 0;
5509 }
5510 
5511 /*
5512  * Build gfp_thisnode zonelists
5513  */
5514 static void build_thisnode_zonelists(pg_data_t *pgdat)
5515 {
5516 	struct zoneref *zonerefs;
5517 	int nr_zones;
5518 
5519 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5520 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5521 	zonerefs += nr_zones;
5522 	zonerefs->zone = NULL;
5523 	zonerefs->zone_idx = 0;
5524 }
5525 
5526 /*
5527  * Build zonelists ordered by zone and nodes within zones.
5528  * This results in conserving DMA zone[s] until all Normal memory is
5529  * exhausted, but results in overflowing to remote node while memory
5530  * may still exist in local DMA zone.
5531  */
5532 
5533 static void build_zonelists(pg_data_t *pgdat)
5534 {
5535 	static int node_order[MAX_NUMNODES];
5536 	int node, load, nr_nodes = 0;
5537 	nodemask_t used_mask;
5538 	int local_node, prev_node;
5539 
5540 	/* NUMA-aware ordering of nodes */
5541 	local_node = pgdat->node_id;
5542 	load = nr_online_nodes;
5543 	prev_node = local_node;
5544 	nodes_clear(used_mask);
5545 
5546 	memset(node_order, 0, sizeof(node_order));
5547 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5548 		/*
5549 		 * We don't want to pressure a particular node.
5550 		 * So adding penalty to the first node in same
5551 		 * distance group to make it round-robin.
5552 		 */
5553 		if (node_distance(local_node, node) !=
5554 		    node_distance(local_node, prev_node))
5555 			node_load[node] = load;
5556 
5557 		node_order[nr_nodes++] = node;
5558 		prev_node = node;
5559 		load--;
5560 	}
5561 
5562 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5563 	build_thisnode_zonelists(pgdat);
5564 }
5565 
5566 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5567 /*
5568  * Return node id of node used for "local" allocations.
5569  * I.e., first node id of first zone in arg node's generic zonelist.
5570  * Used for initializing percpu 'numa_mem', which is used primarily
5571  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5572  */
5573 int local_memory_node(int node)
5574 {
5575 	struct zoneref *z;
5576 
5577 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5578 				   gfp_zone(GFP_KERNEL),
5579 				   NULL);
5580 	return zone_to_nid(z->zone);
5581 }
5582 #endif
5583 
5584 static void setup_min_unmapped_ratio(void);
5585 static void setup_min_slab_ratio(void);
5586 #else	/* CONFIG_NUMA */
5587 
5588 static void build_zonelists(pg_data_t *pgdat)
5589 {
5590 	int node, local_node;
5591 	struct zoneref *zonerefs;
5592 	int nr_zones;
5593 
5594 	local_node = pgdat->node_id;
5595 
5596 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5597 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5598 	zonerefs += nr_zones;
5599 
5600 	/*
5601 	 * Now we build the zonelist so that it contains the zones
5602 	 * of all the other nodes.
5603 	 * We don't want to pressure a particular node, so when
5604 	 * building the zones for node N, we make sure that the
5605 	 * zones coming right after the local ones are those from
5606 	 * node N+1 (modulo N)
5607 	 */
5608 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5609 		if (!node_online(node))
5610 			continue;
5611 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5612 		zonerefs += nr_zones;
5613 	}
5614 	for (node = 0; node < local_node; node++) {
5615 		if (!node_online(node))
5616 			continue;
5617 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5618 		zonerefs += nr_zones;
5619 	}
5620 
5621 	zonerefs->zone = NULL;
5622 	zonerefs->zone_idx = 0;
5623 }
5624 
5625 #endif	/* CONFIG_NUMA */
5626 
5627 /*
5628  * Boot pageset table. One per cpu which is going to be used for all
5629  * zones and all nodes. The parameters will be set in such a way
5630  * that an item put on a list will immediately be handed over to
5631  * the buddy list. This is safe since pageset manipulation is done
5632  * with interrupts disabled.
5633  *
5634  * The boot_pagesets must be kept even after bootup is complete for
5635  * unused processors and/or zones. They do play a role for bootstrapping
5636  * hotplugged processors.
5637  *
5638  * zoneinfo_show() and maybe other functions do
5639  * not check if the processor is online before following the pageset pointer.
5640  * Other parts of the kernel may not check if the zone is available.
5641  */
5642 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5643 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5644 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5645 
5646 static void __build_all_zonelists(void *data)
5647 {
5648 	int nid;
5649 	int __maybe_unused cpu;
5650 	pg_data_t *self = data;
5651 	static DEFINE_SPINLOCK(lock);
5652 
5653 	spin_lock(&lock);
5654 
5655 #ifdef CONFIG_NUMA
5656 	memset(node_load, 0, sizeof(node_load));
5657 #endif
5658 
5659 	/*
5660 	 * This node is hotadded and no memory is yet present.   So just
5661 	 * building zonelists is fine - no need to touch other nodes.
5662 	 */
5663 	if (self && !node_online(self->node_id)) {
5664 		build_zonelists(self);
5665 	} else {
5666 		for_each_online_node(nid) {
5667 			pg_data_t *pgdat = NODE_DATA(nid);
5668 
5669 			build_zonelists(pgdat);
5670 		}
5671 
5672 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5673 		/*
5674 		 * We now know the "local memory node" for each node--
5675 		 * i.e., the node of the first zone in the generic zonelist.
5676 		 * Set up numa_mem percpu variable for on-line cpus.  During
5677 		 * boot, only the boot cpu should be on-line;  we'll init the
5678 		 * secondary cpus' numa_mem as they come on-line.  During
5679 		 * node/memory hotplug, we'll fixup all on-line cpus.
5680 		 */
5681 		for_each_online_cpu(cpu)
5682 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5683 #endif
5684 	}
5685 
5686 	spin_unlock(&lock);
5687 }
5688 
5689 static noinline void __init
5690 build_all_zonelists_init(void)
5691 {
5692 	int cpu;
5693 
5694 	__build_all_zonelists(NULL);
5695 
5696 	/*
5697 	 * Initialize the boot_pagesets that are going to be used
5698 	 * for bootstrapping processors. The real pagesets for
5699 	 * each zone will be allocated later when the per cpu
5700 	 * allocator is available.
5701 	 *
5702 	 * boot_pagesets are used also for bootstrapping offline
5703 	 * cpus if the system is already booted because the pagesets
5704 	 * are needed to initialize allocators on a specific cpu too.
5705 	 * F.e. the percpu allocator needs the page allocator which
5706 	 * needs the percpu allocator in order to allocate its pagesets
5707 	 * (a chicken-egg dilemma).
5708 	 */
5709 	for_each_possible_cpu(cpu)
5710 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5711 
5712 	mminit_verify_zonelist();
5713 	cpuset_init_current_mems_allowed();
5714 }
5715 
5716 /*
5717  * unless system_state == SYSTEM_BOOTING.
5718  *
5719  * __ref due to call of __init annotated helper build_all_zonelists_init
5720  * [protected by SYSTEM_BOOTING].
5721  */
5722 void __ref build_all_zonelists(pg_data_t *pgdat)
5723 {
5724 	if (system_state == SYSTEM_BOOTING) {
5725 		build_all_zonelists_init();
5726 	} else {
5727 		__build_all_zonelists(pgdat);
5728 		/* cpuset refresh routine should be here */
5729 	}
5730 	vm_total_pages = nr_free_pagecache_pages();
5731 	/*
5732 	 * Disable grouping by mobility if the number of pages in the
5733 	 * system is too low to allow the mechanism to work. It would be
5734 	 * more accurate, but expensive to check per-zone. This check is
5735 	 * made on memory-hotadd so a system can start with mobility
5736 	 * disabled and enable it later
5737 	 */
5738 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5739 		page_group_by_mobility_disabled = 1;
5740 	else
5741 		page_group_by_mobility_disabled = 0;
5742 
5743 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5744 		nr_online_nodes,
5745 		page_group_by_mobility_disabled ? "off" : "on",
5746 		vm_total_pages);
5747 #ifdef CONFIG_NUMA
5748 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5749 #endif
5750 }
5751 
5752 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5753 static bool __meminit
5754 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5755 {
5756 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5757 	static struct memblock_region *r;
5758 
5759 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5760 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5761 			for_each_memblock(memory, r) {
5762 				if (*pfn < memblock_region_memory_end_pfn(r))
5763 					break;
5764 			}
5765 		}
5766 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5767 		    memblock_is_mirror(r)) {
5768 			*pfn = memblock_region_memory_end_pfn(r);
5769 			return true;
5770 		}
5771 	}
5772 #endif
5773 	return false;
5774 }
5775 
5776 /*
5777  * Initially all pages are reserved - free ones are freed
5778  * up by memblock_free_all() once the early boot process is
5779  * done. Non-atomic initialization, single-pass.
5780  */
5781 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5782 		unsigned long start_pfn, enum memmap_context context,
5783 		struct vmem_altmap *altmap)
5784 {
5785 	unsigned long pfn, end_pfn = start_pfn + size;
5786 	struct page *page;
5787 
5788 	if (highest_memmap_pfn < end_pfn - 1)
5789 		highest_memmap_pfn = end_pfn - 1;
5790 
5791 #ifdef CONFIG_ZONE_DEVICE
5792 	/*
5793 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5794 	 * memory. We limit the total number of pages to initialize to just
5795 	 * those that might contain the memory mapping. We will defer the
5796 	 * ZONE_DEVICE page initialization until after we have released
5797 	 * the hotplug lock.
5798 	 */
5799 	if (zone == ZONE_DEVICE) {
5800 		if (!altmap)
5801 			return;
5802 
5803 		if (start_pfn == altmap->base_pfn)
5804 			start_pfn += altmap->reserve;
5805 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5806 	}
5807 #endif
5808 
5809 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5810 		/*
5811 		 * There can be holes in boot-time mem_map[]s handed to this
5812 		 * function.  They do not exist on hotplugged memory.
5813 		 */
5814 		if (context == MEMMAP_EARLY) {
5815 			if (!early_pfn_valid(pfn))
5816 				continue;
5817 			if (!early_pfn_in_nid(pfn, nid))
5818 				continue;
5819 			if (overlap_memmap_init(zone, &pfn))
5820 				continue;
5821 			if (defer_init(nid, pfn, end_pfn))
5822 				break;
5823 		}
5824 
5825 		page = pfn_to_page(pfn);
5826 		__init_single_page(page, pfn, zone, nid);
5827 		if (context == MEMMAP_HOTPLUG)
5828 			__SetPageReserved(page);
5829 
5830 		/*
5831 		 * Mark the block movable so that blocks are reserved for
5832 		 * movable at startup. This will force kernel allocations
5833 		 * to reserve their blocks rather than leaking throughout
5834 		 * the address space during boot when many long-lived
5835 		 * kernel allocations are made.
5836 		 *
5837 		 * bitmap is created for zone's valid pfn range. but memmap
5838 		 * can be created for invalid pages (for alignment)
5839 		 * check here not to call set_pageblock_migratetype() against
5840 		 * pfn out of zone.
5841 		 */
5842 		if (!(pfn & (pageblock_nr_pages - 1))) {
5843 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5844 			cond_resched();
5845 		}
5846 	}
5847 }
5848 
5849 #ifdef CONFIG_ZONE_DEVICE
5850 void __ref memmap_init_zone_device(struct zone *zone,
5851 				   unsigned long start_pfn,
5852 				   unsigned long size,
5853 				   struct dev_pagemap *pgmap)
5854 {
5855 	unsigned long pfn, end_pfn = start_pfn + size;
5856 	struct pglist_data *pgdat = zone->zone_pgdat;
5857 	unsigned long zone_idx = zone_idx(zone);
5858 	unsigned long start = jiffies;
5859 	int nid = pgdat->node_id;
5860 
5861 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5862 		return;
5863 
5864 	/*
5865 	 * The call to memmap_init_zone should have already taken care
5866 	 * of the pages reserved for the memmap, so we can just jump to
5867 	 * the end of that region and start processing the device pages.
5868 	 */
5869 	if (pgmap->altmap_valid) {
5870 		struct vmem_altmap *altmap = &pgmap->altmap;
5871 
5872 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5873 		size = end_pfn - start_pfn;
5874 	}
5875 
5876 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5877 		struct page *page = pfn_to_page(pfn);
5878 
5879 		__init_single_page(page, pfn, zone_idx, nid);
5880 
5881 		/*
5882 		 * Mark page reserved as it will need to wait for onlining
5883 		 * phase for it to be fully associated with a zone.
5884 		 *
5885 		 * We can use the non-atomic __set_bit operation for setting
5886 		 * the flag as we are still initializing the pages.
5887 		 */
5888 		__SetPageReserved(page);
5889 
5890 		/*
5891 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5892 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5893 		 * page is ever freed or placed on a driver-private list.
5894 		 */
5895 		page->pgmap = pgmap;
5896 		page->hmm_data = 0;
5897 
5898 		/*
5899 		 * Mark the block movable so that blocks are reserved for
5900 		 * movable at startup. This will force kernel allocations
5901 		 * to reserve their blocks rather than leaking throughout
5902 		 * the address space during boot when many long-lived
5903 		 * kernel allocations are made.
5904 		 *
5905 		 * bitmap is created for zone's valid pfn range. but memmap
5906 		 * can be created for invalid pages (for alignment)
5907 		 * check here not to call set_pageblock_migratetype() against
5908 		 * pfn out of zone.
5909 		 *
5910 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5911 		 * because this is done early in sparse_add_one_section
5912 		 */
5913 		if (!(pfn & (pageblock_nr_pages - 1))) {
5914 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5915 			cond_resched();
5916 		}
5917 	}
5918 
5919 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5920 		size, jiffies_to_msecs(jiffies - start));
5921 }
5922 
5923 #endif
5924 static void __meminit zone_init_free_lists(struct zone *zone)
5925 {
5926 	unsigned int order, t;
5927 	for_each_migratetype_order(order, t) {
5928 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5929 		zone->free_area[order].nr_free = 0;
5930 	}
5931 }
5932 
5933 void __meminit __weak memmap_init(unsigned long size, int nid,
5934 				  unsigned long zone, unsigned long start_pfn)
5935 {
5936 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5937 }
5938 
5939 static int zone_batchsize(struct zone *zone)
5940 {
5941 #ifdef CONFIG_MMU
5942 	int batch;
5943 
5944 	/*
5945 	 * The per-cpu-pages pools are set to around 1000th of the
5946 	 * size of the zone.
5947 	 */
5948 	batch = zone_managed_pages(zone) / 1024;
5949 	/* But no more than a meg. */
5950 	if (batch * PAGE_SIZE > 1024 * 1024)
5951 		batch = (1024 * 1024) / PAGE_SIZE;
5952 	batch /= 4;		/* We effectively *= 4 below */
5953 	if (batch < 1)
5954 		batch = 1;
5955 
5956 	/*
5957 	 * Clamp the batch to a 2^n - 1 value. Having a power
5958 	 * of 2 value was found to be more likely to have
5959 	 * suboptimal cache aliasing properties in some cases.
5960 	 *
5961 	 * For example if 2 tasks are alternately allocating
5962 	 * batches of pages, one task can end up with a lot
5963 	 * of pages of one half of the possible page colors
5964 	 * and the other with pages of the other colors.
5965 	 */
5966 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5967 
5968 	return batch;
5969 
5970 #else
5971 	/* The deferral and batching of frees should be suppressed under NOMMU
5972 	 * conditions.
5973 	 *
5974 	 * The problem is that NOMMU needs to be able to allocate large chunks
5975 	 * of contiguous memory as there's no hardware page translation to
5976 	 * assemble apparent contiguous memory from discontiguous pages.
5977 	 *
5978 	 * Queueing large contiguous runs of pages for batching, however,
5979 	 * causes the pages to actually be freed in smaller chunks.  As there
5980 	 * can be a significant delay between the individual batches being
5981 	 * recycled, this leads to the once large chunks of space being
5982 	 * fragmented and becoming unavailable for high-order allocations.
5983 	 */
5984 	return 0;
5985 #endif
5986 }
5987 
5988 /*
5989  * pcp->high and pcp->batch values are related and dependent on one another:
5990  * ->batch must never be higher then ->high.
5991  * The following function updates them in a safe manner without read side
5992  * locking.
5993  *
5994  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5995  * those fields changing asynchronously (acording the the above rule).
5996  *
5997  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5998  * outside of boot time (or some other assurance that no concurrent updaters
5999  * exist).
6000  */
6001 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6002 		unsigned long batch)
6003 {
6004        /* start with a fail safe value for batch */
6005 	pcp->batch = 1;
6006 	smp_wmb();
6007 
6008        /* Update high, then batch, in order */
6009 	pcp->high = high;
6010 	smp_wmb();
6011 
6012 	pcp->batch = batch;
6013 }
6014 
6015 /* a companion to pageset_set_high() */
6016 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6017 {
6018 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6019 }
6020 
6021 static void pageset_init(struct per_cpu_pageset *p)
6022 {
6023 	struct per_cpu_pages *pcp;
6024 	int migratetype;
6025 
6026 	memset(p, 0, sizeof(*p));
6027 
6028 	pcp = &p->pcp;
6029 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6030 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6031 }
6032 
6033 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6034 {
6035 	pageset_init(p);
6036 	pageset_set_batch(p, batch);
6037 }
6038 
6039 /*
6040  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6041  * to the value high for the pageset p.
6042  */
6043 static void pageset_set_high(struct per_cpu_pageset *p,
6044 				unsigned long high)
6045 {
6046 	unsigned long batch = max(1UL, high / 4);
6047 	if ((high / 4) > (PAGE_SHIFT * 8))
6048 		batch = PAGE_SHIFT * 8;
6049 
6050 	pageset_update(&p->pcp, high, batch);
6051 }
6052 
6053 static void pageset_set_high_and_batch(struct zone *zone,
6054 				       struct per_cpu_pageset *pcp)
6055 {
6056 	if (percpu_pagelist_fraction)
6057 		pageset_set_high(pcp,
6058 			(zone_managed_pages(zone) /
6059 				percpu_pagelist_fraction));
6060 	else
6061 		pageset_set_batch(pcp, zone_batchsize(zone));
6062 }
6063 
6064 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6065 {
6066 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6067 
6068 	pageset_init(pcp);
6069 	pageset_set_high_and_batch(zone, pcp);
6070 }
6071 
6072 void __meminit setup_zone_pageset(struct zone *zone)
6073 {
6074 	int cpu;
6075 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6076 	for_each_possible_cpu(cpu)
6077 		zone_pageset_init(zone, cpu);
6078 }
6079 
6080 /*
6081  * Allocate per cpu pagesets and initialize them.
6082  * Before this call only boot pagesets were available.
6083  */
6084 void __init setup_per_cpu_pageset(void)
6085 {
6086 	struct pglist_data *pgdat;
6087 	struct zone *zone;
6088 
6089 	for_each_populated_zone(zone)
6090 		setup_zone_pageset(zone);
6091 
6092 	for_each_online_pgdat(pgdat)
6093 		pgdat->per_cpu_nodestats =
6094 			alloc_percpu(struct per_cpu_nodestat);
6095 }
6096 
6097 static __meminit void zone_pcp_init(struct zone *zone)
6098 {
6099 	/*
6100 	 * per cpu subsystem is not up at this point. The following code
6101 	 * relies on the ability of the linker to provide the
6102 	 * offset of a (static) per cpu variable into the per cpu area.
6103 	 */
6104 	zone->pageset = &boot_pageset;
6105 
6106 	if (populated_zone(zone))
6107 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6108 			zone->name, zone->present_pages,
6109 					 zone_batchsize(zone));
6110 }
6111 
6112 void __meminit init_currently_empty_zone(struct zone *zone,
6113 					unsigned long zone_start_pfn,
6114 					unsigned long size)
6115 {
6116 	struct pglist_data *pgdat = zone->zone_pgdat;
6117 	int zone_idx = zone_idx(zone) + 1;
6118 
6119 	if (zone_idx > pgdat->nr_zones)
6120 		pgdat->nr_zones = zone_idx;
6121 
6122 	zone->zone_start_pfn = zone_start_pfn;
6123 
6124 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6125 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6126 			pgdat->node_id,
6127 			(unsigned long)zone_idx(zone),
6128 			zone_start_pfn, (zone_start_pfn + size));
6129 
6130 	zone_init_free_lists(zone);
6131 	zone->initialized = 1;
6132 }
6133 
6134 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6135 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6136 
6137 /*
6138  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6139  */
6140 int __meminit __early_pfn_to_nid(unsigned long pfn,
6141 					struct mminit_pfnnid_cache *state)
6142 {
6143 	unsigned long start_pfn, end_pfn;
6144 	int nid;
6145 
6146 	if (state->last_start <= pfn && pfn < state->last_end)
6147 		return state->last_nid;
6148 
6149 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6150 	if (nid != NUMA_NO_NODE) {
6151 		state->last_start = start_pfn;
6152 		state->last_end = end_pfn;
6153 		state->last_nid = nid;
6154 	}
6155 
6156 	return nid;
6157 }
6158 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6159 
6160 /**
6161  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6162  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6163  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6164  *
6165  * If an architecture guarantees that all ranges registered contain no holes
6166  * and may be freed, this this function may be used instead of calling
6167  * memblock_free_early_nid() manually.
6168  */
6169 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6170 {
6171 	unsigned long start_pfn, end_pfn;
6172 	int i, this_nid;
6173 
6174 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6175 		start_pfn = min(start_pfn, max_low_pfn);
6176 		end_pfn = min(end_pfn, max_low_pfn);
6177 
6178 		if (start_pfn < end_pfn)
6179 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6180 					(end_pfn - start_pfn) << PAGE_SHIFT,
6181 					this_nid);
6182 	}
6183 }
6184 
6185 /**
6186  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6187  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6188  *
6189  * If an architecture guarantees that all ranges registered contain no holes and may
6190  * be freed, this function may be used instead of calling memory_present() manually.
6191  */
6192 void __init sparse_memory_present_with_active_regions(int nid)
6193 {
6194 	unsigned long start_pfn, end_pfn;
6195 	int i, this_nid;
6196 
6197 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6198 		memory_present(this_nid, start_pfn, end_pfn);
6199 }
6200 
6201 /**
6202  * get_pfn_range_for_nid - Return the start and end page frames for a node
6203  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6204  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6205  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6206  *
6207  * It returns the start and end page frame of a node based on information
6208  * provided by memblock_set_node(). If called for a node
6209  * with no available memory, a warning is printed and the start and end
6210  * PFNs will be 0.
6211  */
6212 void __init get_pfn_range_for_nid(unsigned int nid,
6213 			unsigned long *start_pfn, unsigned long *end_pfn)
6214 {
6215 	unsigned long this_start_pfn, this_end_pfn;
6216 	int i;
6217 
6218 	*start_pfn = -1UL;
6219 	*end_pfn = 0;
6220 
6221 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6222 		*start_pfn = min(*start_pfn, this_start_pfn);
6223 		*end_pfn = max(*end_pfn, this_end_pfn);
6224 	}
6225 
6226 	if (*start_pfn == -1UL)
6227 		*start_pfn = 0;
6228 }
6229 
6230 /*
6231  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6232  * assumption is made that zones within a node are ordered in monotonic
6233  * increasing memory addresses so that the "highest" populated zone is used
6234  */
6235 static void __init find_usable_zone_for_movable(void)
6236 {
6237 	int zone_index;
6238 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6239 		if (zone_index == ZONE_MOVABLE)
6240 			continue;
6241 
6242 		if (arch_zone_highest_possible_pfn[zone_index] >
6243 				arch_zone_lowest_possible_pfn[zone_index])
6244 			break;
6245 	}
6246 
6247 	VM_BUG_ON(zone_index == -1);
6248 	movable_zone = zone_index;
6249 }
6250 
6251 /*
6252  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6253  * because it is sized independent of architecture. Unlike the other zones,
6254  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6255  * in each node depending on the size of each node and how evenly kernelcore
6256  * is distributed. This helper function adjusts the zone ranges
6257  * provided by the architecture for a given node by using the end of the
6258  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6259  * zones within a node are in order of monotonic increases memory addresses
6260  */
6261 static void __init adjust_zone_range_for_zone_movable(int nid,
6262 					unsigned long zone_type,
6263 					unsigned long node_start_pfn,
6264 					unsigned long node_end_pfn,
6265 					unsigned long *zone_start_pfn,
6266 					unsigned long *zone_end_pfn)
6267 {
6268 	/* Only adjust if ZONE_MOVABLE is on this node */
6269 	if (zone_movable_pfn[nid]) {
6270 		/* Size ZONE_MOVABLE */
6271 		if (zone_type == ZONE_MOVABLE) {
6272 			*zone_start_pfn = zone_movable_pfn[nid];
6273 			*zone_end_pfn = min(node_end_pfn,
6274 				arch_zone_highest_possible_pfn[movable_zone]);
6275 
6276 		/* Adjust for ZONE_MOVABLE starting within this range */
6277 		} else if (!mirrored_kernelcore &&
6278 			*zone_start_pfn < zone_movable_pfn[nid] &&
6279 			*zone_end_pfn > zone_movable_pfn[nid]) {
6280 			*zone_end_pfn = zone_movable_pfn[nid];
6281 
6282 		/* Check if this whole range is within ZONE_MOVABLE */
6283 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6284 			*zone_start_pfn = *zone_end_pfn;
6285 	}
6286 }
6287 
6288 /*
6289  * Return the number of pages a zone spans in a node, including holes
6290  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6291  */
6292 static unsigned long __init zone_spanned_pages_in_node(int nid,
6293 					unsigned long zone_type,
6294 					unsigned long node_start_pfn,
6295 					unsigned long node_end_pfn,
6296 					unsigned long *zone_start_pfn,
6297 					unsigned long *zone_end_pfn,
6298 					unsigned long *ignored)
6299 {
6300 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6301 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6302 	/* When hotadd a new node from cpu_up(), the node should be empty */
6303 	if (!node_start_pfn && !node_end_pfn)
6304 		return 0;
6305 
6306 	/* Get the start and end of the zone */
6307 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6308 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6309 	adjust_zone_range_for_zone_movable(nid, zone_type,
6310 				node_start_pfn, node_end_pfn,
6311 				zone_start_pfn, zone_end_pfn);
6312 
6313 	/* Check that this node has pages within the zone's required range */
6314 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6315 		return 0;
6316 
6317 	/* Move the zone boundaries inside the node if necessary */
6318 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6319 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6320 
6321 	/* Return the spanned pages */
6322 	return *zone_end_pfn - *zone_start_pfn;
6323 }
6324 
6325 /*
6326  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6327  * then all holes in the requested range will be accounted for.
6328  */
6329 unsigned long __init __absent_pages_in_range(int nid,
6330 				unsigned long range_start_pfn,
6331 				unsigned long range_end_pfn)
6332 {
6333 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6334 	unsigned long start_pfn, end_pfn;
6335 	int i;
6336 
6337 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6338 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6339 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6340 		nr_absent -= end_pfn - start_pfn;
6341 	}
6342 	return nr_absent;
6343 }
6344 
6345 /**
6346  * absent_pages_in_range - Return number of page frames in holes within a range
6347  * @start_pfn: The start PFN to start searching for holes
6348  * @end_pfn: The end PFN to stop searching for holes
6349  *
6350  * Return: the number of pages frames in memory holes within a range.
6351  */
6352 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6353 							unsigned long end_pfn)
6354 {
6355 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6356 }
6357 
6358 /* Return the number of page frames in holes in a zone on a node */
6359 static unsigned long __init zone_absent_pages_in_node(int nid,
6360 					unsigned long zone_type,
6361 					unsigned long node_start_pfn,
6362 					unsigned long node_end_pfn,
6363 					unsigned long *ignored)
6364 {
6365 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6366 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6367 	unsigned long zone_start_pfn, zone_end_pfn;
6368 	unsigned long nr_absent;
6369 
6370 	/* When hotadd a new node from cpu_up(), the node should be empty */
6371 	if (!node_start_pfn && !node_end_pfn)
6372 		return 0;
6373 
6374 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6375 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6376 
6377 	adjust_zone_range_for_zone_movable(nid, zone_type,
6378 			node_start_pfn, node_end_pfn,
6379 			&zone_start_pfn, &zone_end_pfn);
6380 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6381 
6382 	/*
6383 	 * ZONE_MOVABLE handling.
6384 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6385 	 * and vice versa.
6386 	 */
6387 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6388 		unsigned long start_pfn, end_pfn;
6389 		struct memblock_region *r;
6390 
6391 		for_each_memblock(memory, r) {
6392 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6393 					  zone_start_pfn, zone_end_pfn);
6394 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6395 					zone_start_pfn, zone_end_pfn);
6396 
6397 			if (zone_type == ZONE_MOVABLE &&
6398 			    memblock_is_mirror(r))
6399 				nr_absent += end_pfn - start_pfn;
6400 
6401 			if (zone_type == ZONE_NORMAL &&
6402 			    !memblock_is_mirror(r))
6403 				nr_absent += end_pfn - start_pfn;
6404 		}
6405 	}
6406 
6407 	return nr_absent;
6408 }
6409 
6410 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6411 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6412 					unsigned long zone_type,
6413 					unsigned long node_start_pfn,
6414 					unsigned long node_end_pfn,
6415 					unsigned long *zone_start_pfn,
6416 					unsigned long *zone_end_pfn,
6417 					unsigned long *zones_size)
6418 {
6419 	unsigned int zone;
6420 
6421 	*zone_start_pfn = node_start_pfn;
6422 	for (zone = 0; zone < zone_type; zone++)
6423 		*zone_start_pfn += zones_size[zone];
6424 
6425 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6426 
6427 	return zones_size[zone_type];
6428 }
6429 
6430 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6431 						unsigned long zone_type,
6432 						unsigned long node_start_pfn,
6433 						unsigned long node_end_pfn,
6434 						unsigned long *zholes_size)
6435 {
6436 	if (!zholes_size)
6437 		return 0;
6438 
6439 	return zholes_size[zone_type];
6440 }
6441 
6442 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6443 
6444 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6445 						unsigned long node_start_pfn,
6446 						unsigned long node_end_pfn,
6447 						unsigned long *zones_size,
6448 						unsigned long *zholes_size)
6449 {
6450 	unsigned long realtotalpages = 0, totalpages = 0;
6451 	enum zone_type i;
6452 
6453 	for (i = 0; i < MAX_NR_ZONES; i++) {
6454 		struct zone *zone = pgdat->node_zones + i;
6455 		unsigned long zone_start_pfn, zone_end_pfn;
6456 		unsigned long size, real_size;
6457 
6458 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6459 						  node_start_pfn,
6460 						  node_end_pfn,
6461 						  &zone_start_pfn,
6462 						  &zone_end_pfn,
6463 						  zones_size);
6464 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6465 						  node_start_pfn, node_end_pfn,
6466 						  zholes_size);
6467 		if (size)
6468 			zone->zone_start_pfn = zone_start_pfn;
6469 		else
6470 			zone->zone_start_pfn = 0;
6471 		zone->spanned_pages = size;
6472 		zone->present_pages = real_size;
6473 
6474 		totalpages += size;
6475 		realtotalpages += real_size;
6476 	}
6477 
6478 	pgdat->node_spanned_pages = totalpages;
6479 	pgdat->node_present_pages = realtotalpages;
6480 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6481 							realtotalpages);
6482 }
6483 
6484 #ifndef CONFIG_SPARSEMEM
6485 /*
6486  * Calculate the size of the zone->blockflags rounded to an unsigned long
6487  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6488  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6489  * round what is now in bits to nearest long in bits, then return it in
6490  * bytes.
6491  */
6492 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6493 {
6494 	unsigned long usemapsize;
6495 
6496 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6497 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6498 	usemapsize = usemapsize >> pageblock_order;
6499 	usemapsize *= NR_PAGEBLOCK_BITS;
6500 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6501 
6502 	return usemapsize / 8;
6503 }
6504 
6505 static void __ref setup_usemap(struct pglist_data *pgdat,
6506 				struct zone *zone,
6507 				unsigned long zone_start_pfn,
6508 				unsigned long zonesize)
6509 {
6510 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6511 	zone->pageblock_flags = NULL;
6512 	if (usemapsize) {
6513 		zone->pageblock_flags =
6514 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6515 					    pgdat->node_id);
6516 		if (!zone->pageblock_flags)
6517 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6518 			      usemapsize, zone->name, pgdat->node_id);
6519 	}
6520 }
6521 #else
6522 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6523 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6524 #endif /* CONFIG_SPARSEMEM */
6525 
6526 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6527 
6528 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6529 void __init set_pageblock_order(void)
6530 {
6531 	unsigned int order;
6532 
6533 	/* Check that pageblock_nr_pages has not already been setup */
6534 	if (pageblock_order)
6535 		return;
6536 
6537 	if (HPAGE_SHIFT > PAGE_SHIFT)
6538 		order = HUGETLB_PAGE_ORDER;
6539 	else
6540 		order = MAX_ORDER - 1;
6541 
6542 	/*
6543 	 * Assume the largest contiguous order of interest is a huge page.
6544 	 * This value may be variable depending on boot parameters on IA64 and
6545 	 * powerpc.
6546 	 */
6547 	pageblock_order = order;
6548 }
6549 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6550 
6551 /*
6552  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6553  * is unused as pageblock_order is set at compile-time. See
6554  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6555  * the kernel config
6556  */
6557 void __init set_pageblock_order(void)
6558 {
6559 }
6560 
6561 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6562 
6563 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6564 						unsigned long present_pages)
6565 {
6566 	unsigned long pages = spanned_pages;
6567 
6568 	/*
6569 	 * Provide a more accurate estimation if there are holes within
6570 	 * the zone and SPARSEMEM is in use. If there are holes within the
6571 	 * zone, each populated memory region may cost us one or two extra
6572 	 * memmap pages due to alignment because memmap pages for each
6573 	 * populated regions may not be naturally aligned on page boundary.
6574 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6575 	 */
6576 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6577 	    IS_ENABLED(CONFIG_SPARSEMEM))
6578 		pages = present_pages;
6579 
6580 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6581 }
6582 
6583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6584 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6585 {
6586 	spin_lock_init(&pgdat->split_queue_lock);
6587 	INIT_LIST_HEAD(&pgdat->split_queue);
6588 	pgdat->split_queue_len = 0;
6589 }
6590 #else
6591 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6592 #endif
6593 
6594 #ifdef CONFIG_COMPACTION
6595 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6596 {
6597 	init_waitqueue_head(&pgdat->kcompactd_wait);
6598 }
6599 #else
6600 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6601 #endif
6602 
6603 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6604 {
6605 	pgdat_resize_init(pgdat);
6606 
6607 	pgdat_init_split_queue(pgdat);
6608 	pgdat_init_kcompactd(pgdat);
6609 
6610 	init_waitqueue_head(&pgdat->kswapd_wait);
6611 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6612 
6613 	pgdat_page_ext_init(pgdat);
6614 	spin_lock_init(&pgdat->lru_lock);
6615 	lruvec_init(node_lruvec(pgdat));
6616 }
6617 
6618 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6619 							unsigned long remaining_pages)
6620 {
6621 	atomic_long_set(&zone->managed_pages, remaining_pages);
6622 	zone_set_nid(zone, nid);
6623 	zone->name = zone_names[idx];
6624 	zone->zone_pgdat = NODE_DATA(nid);
6625 	spin_lock_init(&zone->lock);
6626 	zone_seqlock_init(zone);
6627 	zone_pcp_init(zone);
6628 }
6629 
6630 /*
6631  * Set up the zone data structures
6632  * - init pgdat internals
6633  * - init all zones belonging to this node
6634  *
6635  * NOTE: this function is only called during memory hotplug
6636  */
6637 #ifdef CONFIG_MEMORY_HOTPLUG
6638 void __ref free_area_init_core_hotplug(int nid)
6639 {
6640 	enum zone_type z;
6641 	pg_data_t *pgdat = NODE_DATA(nid);
6642 
6643 	pgdat_init_internals(pgdat);
6644 	for (z = 0; z < MAX_NR_ZONES; z++)
6645 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6646 }
6647 #endif
6648 
6649 /*
6650  * Set up the zone data structures:
6651  *   - mark all pages reserved
6652  *   - mark all memory queues empty
6653  *   - clear the memory bitmaps
6654  *
6655  * NOTE: pgdat should get zeroed by caller.
6656  * NOTE: this function is only called during early init.
6657  */
6658 static void __init free_area_init_core(struct pglist_data *pgdat)
6659 {
6660 	enum zone_type j;
6661 	int nid = pgdat->node_id;
6662 
6663 	pgdat_init_internals(pgdat);
6664 	pgdat->per_cpu_nodestats = &boot_nodestats;
6665 
6666 	for (j = 0; j < MAX_NR_ZONES; j++) {
6667 		struct zone *zone = pgdat->node_zones + j;
6668 		unsigned long size, freesize, memmap_pages;
6669 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6670 
6671 		size = zone->spanned_pages;
6672 		freesize = zone->present_pages;
6673 
6674 		/*
6675 		 * Adjust freesize so that it accounts for how much memory
6676 		 * is used by this zone for memmap. This affects the watermark
6677 		 * and per-cpu initialisations
6678 		 */
6679 		memmap_pages = calc_memmap_size(size, freesize);
6680 		if (!is_highmem_idx(j)) {
6681 			if (freesize >= memmap_pages) {
6682 				freesize -= memmap_pages;
6683 				if (memmap_pages)
6684 					printk(KERN_DEBUG
6685 					       "  %s zone: %lu pages used for memmap\n",
6686 					       zone_names[j], memmap_pages);
6687 			} else
6688 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6689 					zone_names[j], memmap_pages, freesize);
6690 		}
6691 
6692 		/* Account for reserved pages */
6693 		if (j == 0 && freesize > dma_reserve) {
6694 			freesize -= dma_reserve;
6695 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6696 					zone_names[0], dma_reserve);
6697 		}
6698 
6699 		if (!is_highmem_idx(j))
6700 			nr_kernel_pages += freesize;
6701 		/* Charge for highmem memmap if there are enough kernel pages */
6702 		else if (nr_kernel_pages > memmap_pages * 2)
6703 			nr_kernel_pages -= memmap_pages;
6704 		nr_all_pages += freesize;
6705 
6706 		/*
6707 		 * Set an approximate value for lowmem here, it will be adjusted
6708 		 * when the bootmem allocator frees pages into the buddy system.
6709 		 * And all highmem pages will be managed by the buddy system.
6710 		 */
6711 		zone_init_internals(zone, j, nid, freesize);
6712 
6713 		if (!size)
6714 			continue;
6715 
6716 		set_pageblock_order();
6717 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6718 		init_currently_empty_zone(zone, zone_start_pfn, size);
6719 		memmap_init(size, nid, j, zone_start_pfn);
6720 	}
6721 }
6722 
6723 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6724 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6725 {
6726 	unsigned long __maybe_unused start = 0;
6727 	unsigned long __maybe_unused offset = 0;
6728 
6729 	/* Skip empty nodes */
6730 	if (!pgdat->node_spanned_pages)
6731 		return;
6732 
6733 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6734 	offset = pgdat->node_start_pfn - start;
6735 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6736 	if (!pgdat->node_mem_map) {
6737 		unsigned long size, end;
6738 		struct page *map;
6739 
6740 		/*
6741 		 * The zone's endpoints aren't required to be MAX_ORDER
6742 		 * aligned but the node_mem_map endpoints must be in order
6743 		 * for the buddy allocator to function correctly.
6744 		 */
6745 		end = pgdat_end_pfn(pgdat);
6746 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6747 		size =  (end - start) * sizeof(struct page);
6748 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6749 					  pgdat->node_id);
6750 		if (!map)
6751 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6752 			      size, pgdat->node_id);
6753 		pgdat->node_mem_map = map + offset;
6754 	}
6755 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6756 				__func__, pgdat->node_id, (unsigned long)pgdat,
6757 				(unsigned long)pgdat->node_mem_map);
6758 #ifndef CONFIG_NEED_MULTIPLE_NODES
6759 	/*
6760 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6761 	 */
6762 	if (pgdat == NODE_DATA(0)) {
6763 		mem_map = NODE_DATA(0)->node_mem_map;
6764 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6765 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6766 			mem_map -= offset;
6767 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6768 	}
6769 #endif
6770 }
6771 #else
6772 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6773 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6774 
6775 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6776 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6777 {
6778 	pgdat->first_deferred_pfn = ULONG_MAX;
6779 }
6780 #else
6781 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6782 #endif
6783 
6784 void __init free_area_init_node(int nid, unsigned long *zones_size,
6785 				   unsigned long node_start_pfn,
6786 				   unsigned long *zholes_size)
6787 {
6788 	pg_data_t *pgdat = NODE_DATA(nid);
6789 	unsigned long start_pfn = 0;
6790 	unsigned long end_pfn = 0;
6791 
6792 	/* pg_data_t should be reset to zero when it's allocated */
6793 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6794 
6795 	pgdat->node_id = nid;
6796 	pgdat->node_start_pfn = node_start_pfn;
6797 	pgdat->per_cpu_nodestats = NULL;
6798 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6799 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6800 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6801 		(u64)start_pfn << PAGE_SHIFT,
6802 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6803 #else
6804 	start_pfn = node_start_pfn;
6805 #endif
6806 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6807 				  zones_size, zholes_size);
6808 
6809 	alloc_node_mem_map(pgdat);
6810 	pgdat_set_deferred_range(pgdat);
6811 
6812 	free_area_init_core(pgdat);
6813 }
6814 
6815 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6816 /*
6817  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6818  * pages zeroed
6819  */
6820 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6821 {
6822 	unsigned long pfn;
6823 	u64 pgcnt = 0;
6824 
6825 	for (pfn = spfn; pfn < epfn; pfn++) {
6826 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6827 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6828 				+ pageblock_nr_pages - 1;
6829 			continue;
6830 		}
6831 		mm_zero_struct_page(pfn_to_page(pfn));
6832 		pgcnt++;
6833 	}
6834 
6835 	return pgcnt;
6836 }
6837 
6838 /*
6839  * Only struct pages that are backed by physical memory are zeroed and
6840  * initialized by going through __init_single_page(). But, there are some
6841  * struct pages which are reserved in memblock allocator and their fields
6842  * may be accessed (for example page_to_pfn() on some configuration accesses
6843  * flags). We must explicitly zero those struct pages.
6844  *
6845  * This function also addresses a similar issue where struct pages are left
6846  * uninitialized because the physical address range is not covered by
6847  * memblock.memory or memblock.reserved. That could happen when memblock
6848  * layout is manually configured via memmap=.
6849  */
6850 void __init zero_resv_unavail(void)
6851 {
6852 	phys_addr_t start, end;
6853 	u64 i, pgcnt;
6854 	phys_addr_t next = 0;
6855 
6856 	/*
6857 	 * Loop through unavailable ranges not covered by memblock.memory.
6858 	 */
6859 	pgcnt = 0;
6860 	for_each_mem_range(i, &memblock.memory, NULL,
6861 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6862 		if (next < start)
6863 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6864 		next = end;
6865 	}
6866 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6867 
6868 	/*
6869 	 * Struct pages that do not have backing memory. This could be because
6870 	 * firmware is using some of this memory, or for some other reasons.
6871 	 */
6872 	if (pgcnt)
6873 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6874 }
6875 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6876 
6877 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6878 
6879 #if MAX_NUMNODES > 1
6880 /*
6881  * Figure out the number of possible node ids.
6882  */
6883 void __init setup_nr_node_ids(void)
6884 {
6885 	unsigned int highest;
6886 
6887 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6888 	nr_node_ids = highest + 1;
6889 }
6890 #endif
6891 
6892 /**
6893  * node_map_pfn_alignment - determine the maximum internode alignment
6894  *
6895  * This function should be called after node map is populated and sorted.
6896  * It calculates the maximum power of two alignment which can distinguish
6897  * all the nodes.
6898  *
6899  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6900  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6901  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6902  * shifted, 1GiB is enough and this function will indicate so.
6903  *
6904  * This is used to test whether pfn -> nid mapping of the chosen memory
6905  * model has fine enough granularity to avoid incorrect mapping for the
6906  * populated node map.
6907  *
6908  * Return: the determined alignment in pfn's.  0 if there is no alignment
6909  * requirement (single node).
6910  */
6911 unsigned long __init node_map_pfn_alignment(void)
6912 {
6913 	unsigned long accl_mask = 0, last_end = 0;
6914 	unsigned long start, end, mask;
6915 	int last_nid = NUMA_NO_NODE;
6916 	int i, nid;
6917 
6918 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6919 		if (!start || last_nid < 0 || last_nid == nid) {
6920 			last_nid = nid;
6921 			last_end = end;
6922 			continue;
6923 		}
6924 
6925 		/*
6926 		 * Start with a mask granular enough to pin-point to the
6927 		 * start pfn and tick off bits one-by-one until it becomes
6928 		 * too coarse to separate the current node from the last.
6929 		 */
6930 		mask = ~((1 << __ffs(start)) - 1);
6931 		while (mask && last_end <= (start & (mask << 1)))
6932 			mask <<= 1;
6933 
6934 		/* accumulate all internode masks */
6935 		accl_mask |= mask;
6936 	}
6937 
6938 	/* convert mask to number of pages */
6939 	return ~accl_mask + 1;
6940 }
6941 
6942 /* Find the lowest pfn for a node */
6943 static unsigned long __init find_min_pfn_for_node(int nid)
6944 {
6945 	unsigned long min_pfn = ULONG_MAX;
6946 	unsigned long start_pfn;
6947 	int i;
6948 
6949 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6950 		min_pfn = min(min_pfn, start_pfn);
6951 
6952 	if (min_pfn == ULONG_MAX) {
6953 		pr_warn("Could not find start_pfn for node %d\n", nid);
6954 		return 0;
6955 	}
6956 
6957 	return min_pfn;
6958 }
6959 
6960 /**
6961  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6962  *
6963  * Return: the minimum PFN based on information provided via
6964  * memblock_set_node().
6965  */
6966 unsigned long __init find_min_pfn_with_active_regions(void)
6967 {
6968 	return find_min_pfn_for_node(MAX_NUMNODES);
6969 }
6970 
6971 /*
6972  * early_calculate_totalpages()
6973  * Sum pages in active regions for movable zone.
6974  * Populate N_MEMORY for calculating usable_nodes.
6975  */
6976 static unsigned long __init early_calculate_totalpages(void)
6977 {
6978 	unsigned long totalpages = 0;
6979 	unsigned long start_pfn, end_pfn;
6980 	int i, nid;
6981 
6982 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6983 		unsigned long pages = end_pfn - start_pfn;
6984 
6985 		totalpages += pages;
6986 		if (pages)
6987 			node_set_state(nid, N_MEMORY);
6988 	}
6989 	return totalpages;
6990 }
6991 
6992 /*
6993  * Find the PFN the Movable zone begins in each node. Kernel memory
6994  * is spread evenly between nodes as long as the nodes have enough
6995  * memory. When they don't, some nodes will have more kernelcore than
6996  * others
6997  */
6998 static void __init find_zone_movable_pfns_for_nodes(void)
6999 {
7000 	int i, nid;
7001 	unsigned long usable_startpfn;
7002 	unsigned long kernelcore_node, kernelcore_remaining;
7003 	/* save the state before borrow the nodemask */
7004 	nodemask_t saved_node_state = node_states[N_MEMORY];
7005 	unsigned long totalpages = early_calculate_totalpages();
7006 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7007 	struct memblock_region *r;
7008 
7009 	/* Need to find movable_zone earlier when movable_node is specified. */
7010 	find_usable_zone_for_movable();
7011 
7012 	/*
7013 	 * If movable_node is specified, ignore kernelcore and movablecore
7014 	 * options.
7015 	 */
7016 	if (movable_node_is_enabled()) {
7017 		for_each_memblock(memory, r) {
7018 			if (!memblock_is_hotpluggable(r))
7019 				continue;
7020 
7021 			nid = r->nid;
7022 
7023 			usable_startpfn = PFN_DOWN(r->base);
7024 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7025 				min(usable_startpfn, zone_movable_pfn[nid]) :
7026 				usable_startpfn;
7027 		}
7028 
7029 		goto out2;
7030 	}
7031 
7032 	/*
7033 	 * If kernelcore=mirror is specified, ignore movablecore option
7034 	 */
7035 	if (mirrored_kernelcore) {
7036 		bool mem_below_4gb_not_mirrored = false;
7037 
7038 		for_each_memblock(memory, r) {
7039 			if (memblock_is_mirror(r))
7040 				continue;
7041 
7042 			nid = r->nid;
7043 
7044 			usable_startpfn = memblock_region_memory_base_pfn(r);
7045 
7046 			if (usable_startpfn < 0x100000) {
7047 				mem_below_4gb_not_mirrored = true;
7048 				continue;
7049 			}
7050 
7051 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7052 				min(usable_startpfn, zone_movable_pfn[nid]) :
7053 				usable_startpfn;
7054 		}
7055 
7056 		if (mem_below_4gb_not_mirrored)
7057 			pr_warn("This configuration results in unmirrored kernel memory.");
7058 
7059 		goto out2;
7060 	}
7061 
7062 	/*
7063 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7064 	 * amount of necessary memory.
7065 	 */
7066 	if (required_kernelcore_percent)
7067 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7068 				       10000UL;
7069 	if (required_movablecore_percent)
7070 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7071 					10000UL;
7072 
7073 	/*
7074 	 * If movablecore= was specified, calculate what size of
7075 	 * kernelcore that corresponds so that memory usable for
7076 	 * any allocation type is evenly spread. If both kernelcore
7077 	 * and movablecore are specified, then the value of kernelcore
7078 	 * will be used for required_kernelcore if it's greater than
7079 	 * what movablecore would have allowed.
7080 	 */
7081 	if (required_movablecore) {
7082 		unsigned long corepages;
7083 
7084 		/*
7085 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7086 		 * was requested by the user
7087 		 */
7088 		required_movablecore =
7089 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7090 		required_movablecore = min(totalpages, required_movablecore);
7091 		corepages = totalpages - required_movablecore;
7092 
7093 		required_kernelcore = max(required_kernelcore, corepages);
7094 	}
7095 
7096 	/*
7097 	 * If kernelcore was not specified or kernelcore size is larger
7098 	 * than totalpages, there is no ZONE_MOVABLE.
7099 	 */
7100 	if (!required_kernelcore || required_kernelcore >= totalpages)
7101 		goto out;
7102 
7103 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7104 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7105 
7106 restart:
7107 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7108 	kernelcore_node = required_kernelcore / usable_nodes;
7109 	for_each_node_state(nid, N_MEMORY) {
7110 		unsigned long start_pfn, end_pfn;
7111 
7112 		/*
7113 		 * Recalculate kernelcore_node if the division per node
7114 		 * now exceeds what is necessary to satisfy the requested
7115 		 * amount of memory for the kernel
7116 		 */
7117 		if (required_kernelcore < kernelcore_node)
7118 			kernelcore_node = required_kernelcore / usable_nodes;
7119 
7120 		/*
7121 		 * As the map is walked, we track how much memory is usable
7122 		 * by the kernel using kernelcore_remaining. When it is
7123 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7124 		 */
7125 		kernelcore_remaining = kernelcore_node;
7126 
7127 		/* Go through each range of PFNs within this node */
7128 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7129 			unsigned long size_pages;
7130 
7131 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7132 			if (start_pfn >= end_pfn)
7133 				continue;
7134 
7135 			/* Account for what is only usable for kernelcore */
7136 			if (start_pfn < usable_startpfn) {
7137 				unsigned long kernel_pages;
7138 				kernel_pages = min(end_pfn, usable_startpfn)
7139 								- start_pfn;
7140 
7141 				kernelcore_remaining -= min(kernel_pages,
7142 							kernelcore_remaining);
7143 				required_kernelcore -= min(kernel_pages,
7144 							required_kernelcore);
7145 
7146 				/* Continue if range is now fully accounted */
7147 				if (end_pfn <= usable_startpfn) {
7148 
7149 					/*
7150 					 * Push zone_movable_pfn to the end so
7151 					 * that if we have to rebalance
7152 					 * kernelcore across nodes, we will
7153 					 * not double account here
7154 					 */
7155 					zone_movable_pfn[nid] = end_pfn;
7156 					continue;
7157 				}
7158 				start_pfn = usable_startpfn;
7159 			}
7160 
7161 			/*
7162 			 * The usable PFN range for ZONE_MOVABLE is from
7163 			 * start_pfn->end_pfn. Calculate size_pages as the
7164 			 * number of pages used as kernelcore
7165 			 */
7166 			size_pages = end_pfn - start_pfn;
7167 			if (size_pages > kernelcore_remaining)
7168 				size_pages = kernelcore_remaining;
7169 			zone_movable_pfn[nid] = start_pfn + size_pages;
7170 
7171 			/*
7172 			 * Some kernelcore has been met, update counts and
7173 			 * break if the kernelcore for this node has been
7174 			 * satisfied
7175 			 */
7176 			required_kernelcore -= min(required_kernelcore,
7177 								size_pages);
7178 			kernelcore_remaining -= size_pages;
7179 			if (!kernelcore_remaining)
7180 				break;
7181 		}
7182 	}
7183 
7184 	/*
7185 	 * If there is still required_kernelcore, we do another pass with one
7186 	 * less node in the count. This will push zone_movable_pfn[nid] further
7187 	 * along on the nodes that still have memory until kernelcore is
7188 	 * satisfied
7189 	 */
7190 	usable_nodes--;
7191 	if (usable_nodes && required_kernelcore > usable_nodes)
7192 		goto restart;
7193 
7194 out2:
7195 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7196 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7197 		zone_movable_pfn[nid] =
7198 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7199 
7200 out:
7201 	/* restore the node_state */
7202 	node_states[N_MEMORY] = saved_node_state;
7203 }
7204 
7205 /* Any regular or high memory on that node ? */
7206 static void check_for_memory(pg_data_t *pgdat, int nid)
7207 {
7208 	enum zone_type zone_type;
7209 
7210 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7211 		struct zone *zone = &pgdat->node_zones[zone_type];
7212 		if (populated_zone(zone)) {
7213 			if (IS_ENABLED(CONFIG_HIGHMEM))
7214 				node_set_state(nid, N_HIGH_MEMORY);
7215 			if (zone_type <= ZONE_NORMAL)
7216 				node_set_state(nid, N_NORMAL_MEMORY);
7217 			break;
7218 		}
7219 	}
7220 }
7221 
7222 /**
7223  * free_area_init_nodes - Initialise all pg_data_t and zone data
7224  * @max_zone_pfn: an array of max PFNs for each zone
7225  *
7226  * This will call free_area_init_node() for each active node in the system.
7227  * Using the page ranges provided by memblock_set_node(), the size of each
7228  * zone in each node and their holes is calculated. If the maximum PFN
7229  * between two adjacent zones match, it is assumed that the zone is empty.
7230  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7231  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7232  * starts where the previous one ended. For example, ZONE_DMA32 starts
7233  * at arch_max_dma_pfn.
7234  */
7235 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7236 {
7237 	unsigned long start_pfn, end_pfn;
7238 	int i, nid;
7239 
7240 	/* Record where the zone boundaries are */
7241 	memset(arch_zone_lowest_possible_pfn, 0,
7242 				sizeof(arch_zone_lowest_possible_pfn));
7243 	memset(arch_zone_highest_possible_pfn, 0,
7244 				sizeof(arch_zone_highest_possible_pfn));
7245 
7246 	start_pfn = find_min_pfn_with_active_regions();
7247 
7248 	for (i = 0; i < MAX_NR_ZONES; i++) {
7249 		if (i == ZONE_MOVABLE)
7250 			continue;
7251 
7252 		end_pfn = max(max_zone_pfn[i], start_pfn);
7253 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7254 		arch_zone_highest_possible_pfn[i] = end_pfn;
7255 
7256 		start_pfn = end_pfn;
7257 	}
7258 
7259 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7260 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7261 	find_zone_movable_pfns_for_nodes();
7262 
7263 	/* Print out the zone ranges */
7264 	pr_info("Zone ranges:\n");
7265 	for (i = 0; i < MAX_NR_ZONES; i++) {
7266 		if (i == ZONE_MOVABLE)
7267 			continue;
7268 		pr_info("  %-8s ", zone_names[i]);
7269 		if (arch_zone_lowest_possible_pfn[i] ==
7270 				arch_zone_highest_possible_pfn[i])
7271 			pr_cont("empty\n");
7272 		else
7273 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7274 				(u64)arch_zone_lowest_possible_pfn[i]
7275 					<< PAGE_SHIFT,
7276 				((u64)arch_zone_highest_possible_pfn[i]
7277 					<< PAGE_SHIFT) - 1);
7278 	}
7279 
7280 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7281 	pr_info("Movable zone start for each node\n");
7282 	for (i = 0; i < MAX_NUMNODES; i++) {
7283 		if (zone_movable_pfn[i])
7284 			pr_info("  Node %d: %#018Lx\n", i,
7285 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7286 	}
7287 
7288 	/* Print out the early node map */
7289 	pr_info("Early memory node ranges\n");
7290 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7291 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7292 			(u64)start_pfn << PAGE_SHIFT,
7293 			((u64)end_pfn << PAGE_SHIFT) - 1);
7294 
7295 	/* Initialise every node */
7296 	mminit_verify_pageflags_layout();
7297 	setup_nr_node_ids();
7298 	zero_resv_unavail();
7299 	for_each_online_node(nid) {
7300 		pg_data_t *pgdat = NODE_DATA(nid);
7301 		free_area_init_node(nid, NULL,
7302 				find_min_pfn_for_node(nid), NULL);
7303 
7304 		/* Any memory on that node */
7305 		if (pgdat->node_present_pages)
7306 			node_set_state(nid, N_MEMORY);
7307 		check_for_memory(pgdat, nid);
7308 	}
7309 }
7310 
7311 static int __init cmdline_parse_core(char *p, unsigned long *core,
7312 				     unsigned long *percent)
7313 {
7314 	unsigned long long coremem;
7315 	char *endptr;
7316 
7317 	if (!p)
7318 		return -EINVAL;
7319 
7320 	/* Value may be a percentage of total memory, otherwise bytes */
7321 	coremem = simple_strtoull(p, &endptr, 0);
7322 	if (*endptr == '%') {
7323 		/* Paranoid check for percent values greater than 100 */
7324 		WARN_ON(coremem > 100);
7325 
7326 		*percent = coremem;
7327 	} else {
7328 		coremem = memparse(p, &p);
7329 		/* Paranoid check that UL is enough for the coremem value */
7330 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7331 
7332 		*core = coremem >> PAGE_SHIFT;
7333 		*percent = 0UL;
7334 	}
7335 	return 0;
7336 }
7337 
7338 /*
7339  * kernelcore=size sets the amount of memory for use for allocations that
7340  * cannot be reclaimed or migrated.
7341  */
7342 static int __init cmdline_parse_kernelcore(char *p)
7343 {
7344 	/* parse kernelcore=mirror */
7345 	if (parse_option_str(p, "mirror")) {
7346 		mirrored_kernelcore = true;
7347 		return 0;
7348 	}
7349 
7350 	return cmdline_parse_core(p, &required_kernelcore,
7351 				  &required_kernelcore_percent);
7352 }
7353 
7354 /*
7355  * movablecore=size sets the amount of memory for use for allocations that
7356  * can be reclaimed or migrated.
7357  */
7358 static int __init cmdline_parse_movablecore(char *p)
7359 {
7360 	return cmdline_parse_core(p, &required_movablecore,
7361 				  &required_movablecore_percent);
7362 }
7363 
7364 early_param("kernelcore", cmdline_parse_kernelcore);
7365 early_param("movablecore", cmdline_parse_movablecore);
7366 
7367 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7368 
7369 void adjust_managed_page_count(struct page *page, long count)
7370 {
7371 	atomic_long_add(count, &page_zone(page)->managed_pages);
7372 	totalram_pages_add(count);
7373 #ifdef CONFIG_HIGHMEM
7374 	if (PageHighMem(page))
7375 		totalhigh_pages_add(count);
7376 #endif
7377 }
7378 EXPORT_SYMBOL(adjust_managed_page_count);
7379 
7380 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7381 {
7382 	void *pos;
7383 	unsigned long pages = 0;
7384 
7385 	start = (void *)PAGE_ALIGN((unsigned long)start);
7386 	end = (void *)((unsigned long)end & PAGE_MASK);
7387 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7388 		struct page *page = virt_to_page(pos);
7389 		void *direct_map_addr;
7390 
7391 		/*
7392 		 * 'direct_map_addr' might be different from 'pos'
7393 		 * because some architectures' virt_to_page()
7394 		 * work with aliases.  Getting the direct map
7395 		 * address ensures that we get a _writeable_
7396 		 * alias for the memset().
7397 		 */
7398 		direct_map_addr = page_address(page);
7399 		if ((unsigned int)poison <= 0xFF)
7400 			memset(direct_map_addr, poison, PAGE_SIZE);
7401 
7402 		free_reserved_page(page);
7403 	}
7404 
7405 	if (pages && s)
7406 		pr_info("Freeing %s memory: %ldK\n",
7407 			s, pages << (PAGE_SHIFT - 10));
7408 
7409 	return pages;
7410 }
7411 
7412 #ifdef	CONFIG_HIGHMEM
7413 void free_highmem_page(struct page *page)
7414 {
7415 	__free_reserved_page(page);
7416 	totalram_pages_inc();
7417 	atomic_long_inc(&page_zone(page)->managed_pages);
7418 	totalhigh_pages_inc();
7419 }
7420 #endif
7421 
7422 
7423 void __init mem_init_print_info(const char *str)
7424 {
7425 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7426 	unsigned long init_code_size, init_data_size;
7427 
7428 	physpages = get_num_physpages();
7429 	codesize = _etext - _stext;
7430 	datasize = _edata - _sdata;
7431 	rosize = __end_rodata - __start_rodata;
7432 	bss_size = __bss_stop - __bss_start;
7433 	init_data_size = __init_end - __init_begin;
7434 	init_code_size = _einittext - _sinittext;
7435 
7436 	/*
7437 	 * Detect special cases and adjust section sizes accordingly:
7438 	 * 1) .init.* may be embedded into .data sections
7439 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7440 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7441 	 * 3) .rodata.* may be embedded into .text or .data sections.
7442 	 */
7443 #define adj_init_size(start, end, size, pos, adj) \
7444 	do { \
7445 		if (start <= pos && pos < end && size > adj) \
7446 			size -= adj; \
7447 	} while (0)
7448 
7449 	adj_init_size(__init_begin, __init_end, init_data_size,
7450 		     _sinittext, init_code_size);
7451 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7452 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7453 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7454 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7455 
7456 #undef	adj_init_size
7457 
7458 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7459 #ifdef	CONFIG_HIGHMEM
7460 		", %luK highmem"
7461 #endif
7462 		"%s%s)\n",
7463 		nr_free_pages() << (PAGE_SHIFT - 10),
7464 		physpages << (PAGE_SHIFT - 10),
7465 		codesize >> 10, datasize >> 10, rosize >> 10,
7466 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7467 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7468 		totalcma_pages << (PAGE_SHIFT - 10),
7469 #ifdef	CONFIG_HIGHMEM
7470 		totalhigh_pages() << (PAGE_SHIFT - 10),
7471 #endif
7472 		str ? ", " : "", str ? str : "");
7473 }
7474 
7475 /**
7476  * set_dma_reserve - set the specified number of pages reserved in the first zone
7477  * @new_dma_reserve: The number of pages to mark reserved
7478  *
7479  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7480  * In the DMA zone, a significant percentage may be consumed by kernel image
7481  * and other unfreeable allocations which can skew the watermarks badly. This
7482  * function may optionally be used to account for unfreeable pages in the
7483  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7484  * smaller per-cpu batchsize.
7485  */
7486 void __init set_dma_reserve(unsigned long new_dma_reserve)
7487 {
7488 	dma_reserve = new_dma_reserve;
7489 }
7490 
7491 void __init free_area_init(unsigned long *zones_size)
7492 {
7493 	zero_resv_unavail();
7494 	free_area_init_node(0, zones_size,
7495 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7496 }
7497 
7498 static int page_alloc_cpu_dead(unsigned int cpu)
7499 {
7500 
7501 	lru_add_drain_cpu(cpu);
7502 	drain_pages(cpu);
7503 
7504 	/*
7505 	 * Spill the event counters of the dead processor
7506 	 * into the current processors event counters.
7507 	 * This artificially elevates the count of the current
7508 	 * processor.
7509 	 */
7510 	vm_events_fold_cpu(cpu);
7511 
7512 	/*
7513 	 * Zero the differential counters of the dead processor
7514 	 * so that the vm statistics are consistent.
7515 	 *
7516 	 * This is only okay since the processor is dead and cannot
7517 	 * race with what we are doing.
7518 	 */
7519 	cpu_vm_stats_fold(cpu);
7520 	return 0;
7521 }
7522 
7523 void __init page_alloc_init(void)
7524 {
7525 	int ret;
7526 
7527 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7528 					"mm/page_alloc:dead", NULL,
7529 					page_alloc_cpu_dead);
7530 	WARN_ON(ret < 0);
7531 }
7532 
7533 /*
7534  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7535  *	or min_free_kbytes changes.
7536  */
7537 static void calculate_totalreserve_pages(void)
7538 {
7539 	struct pglist_data *pgdat;
7540 	unsigned long reserve_pages = 0;
7541 	enum zone_type i, j;
7542 
7543 	for_each_online_pgdat(pgdat) {
7544 
7545 		pgdat->totalreserve_pages = 0;
7546 
7547 		for (i = 0; i < MAX_NR_ZONES; i++) {
7548 			struct zone *zone = pgdat->node_zones + i;
7549 			long max = 0;
7550 			unsigned long managed_pages = zone_managed_pages(zone);
7551 
7552 			/* Find valid and maximum lowmem_reserve in the zone */
7553 			for (j = i; j < MAX_NR_ZONES; j++) {
7554 				if (zone->lowmem_reserve[j] > max)
7555 					max = zone->lowmem_reserve[j];
7556 			}
7557 
7558 			/* we treat the high watermark as reserved pages. */
7559 			max += high_wmark_pages(zone);
7560 
7561 			if (max > managed_pages)
7562 				max = managed_pages;
7563 
7564 			pgdat->totalreserve_pages += max;
7565 
7566 			reserve_pages += max;
7567 		}
7568 	}
7569 	totalreserve_pages = reserve_pages;
7570 }
7571 
7572 /*
7573  * setup_per_zone_lowmem_reserve - called whenever
7574  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7575  *	has a correct pages reserved value, so an adequate number of
7576  *	pages are left in the zone after a successful __alloc_pages().
7577  */
7578 static void setup_per_zone_lowmem_reserve(void)
7579 {
7580 	struct pglist_data *pgdat;
7581 	enum zone_type j, idx;
7582 
7583 	for_each_online_pgdat(pgdat) {
7584 		for (j = 0; j < MAX_NR_ZONES; j++) {
7585 			struct zone *zone = pgdat->node_zones + j;
7586 			unsigned long managed_pages = zone_managed_pages(zone);
7587 
7588 			zone->lowmem_reserve[j] = 0;
7589 
7590 			idx = j;
7591 			while (idx) {
7592 				struct zone *lower_zone;
7593 
7594 				idx--;
7595 				lower_zone = pgdat->node_zones + idx;
7596 
7597 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7598 					sysctl_lowmem_reserve_ratio[idx] = 0;
7599 					lower_zone->lowmem_reserve[j] = 0;
7600 				} else {
7601 					lower_zone->lowmem_reserve[j] =
7602 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7603 				}
7604 				managed_pages += zone_managed_pages(lower_zone);
7605 			}
7606 		}
7607 	}
7608 
7609 	/* update totalreserve_pages */
7610 	calculate_totalreserve_pages();
7611 }
7612 
7613 static void __setup_per_zone_wmarks(void)
7614 {
7615 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7616 	unsigned long lowmem_pages = 0;
7617 	struct zone *zone;
7618 	unsigned long flags;
7619 
7620 	/* Calculate total number of !ZONE_HIGHMEM pages */
7621 	for_each_zone(zone) {
7622 		if (!is_highmem(zone))
7623 			lowmem_pages += zone_managed_pages(zone);
7624 	}
7625 
7626 	for_each_zone(zone) {
7627 		u64 tmp;
7628 
7629 		spin_lock_irqsave(&zone->lock, flags);
7630 		tmp = (u64)pages_min * zone_managed_pages(zone);
7631 		do_div(tmp, lowmem_pages);
7632 		if (is_highmem(zone)) {
7633 			/*
7634 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7635 			 * need highmem pages, so cap pages_min to a small
7636 			 * value here.
7637 			 *
7638 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7639 			 * deltas control async page reclaim, and so should
7640 			 * not be capped for highmem.
7641 			 */
7642 			unsigned long min_pages;
7643 
7644 			min_pages = zone_managed_pages(zone) / 1024;
7645 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7646 			zone->_watermark[WMARK_MIN] = min_pages;
7647 		} else {
7648 			/*
7649 			 * If it's a lowmem zone, reserve a number of pages
7650 			 * proportionate to the zone's size.
7651 			 */
7652 			zone->_watermark[WMARK_MIN] = tmp;
7653 		}
7654 
7655 		/*
7656 		 * Set the kswapd watermarks distance according to the
7657 		 * scale factor in proportion to available memory, but
7658 		 * ensure a minimum size on small systems.
7659 		 */
7660 		tmp = max_t(u64, tmp >> 2,
7661 			    mult_frac(zone_managed_pages(zone),
7662 				      watermark_scale_factor, 10000));
7663 
7664 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7665 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7666 		zone->watermark_boost = 0;
7667 
7668 		spin_unlock_irqrestore(&zone->lock, flags);
7669 	}
7670 
7671 	/* update totalreserve_pages */
7672 	calculate_totalreserve_pages();
7673 }
7674 
7675 /**
7676  * setup_per_zone_wmarks - called when min_free_kbytes changes
7677  * or when memory is hot-{added|removed}
7678  *
7679  * Ensures that the watermark[min,low,high] values for each zone are set
7680  * correctly with respect to min_free_kbytes.
7681  */
7682 void setup_per_zone_wmarks(void)
7683 {
7684 	static DEFINE_SPINLOCK(lock);
7685 
7686 	spin_lock(&lock);
7687 	__setup_per_zone_wmarks();
7688 	spin_unlock(&lock);
7689 }
7690 
7691 /*
7692  * Initialise min_free_kbytes.
7693  *
7694  * For small machines we want it small (128k min).  For large machines
7695  * we want it large (64MB max).  But it is not linear, because network
7696  * bandwidth does not increase linearly with machine size.  We use
7697  *
7698  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7699  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7700  *
7701  * which yields
7702  *
7703  * 16MB:	512k
7704  * 32MB:	724k
7705  * 64MB:	1024k
7706  * 128MB:	1448k
7707  * 256MB:	2048k
7708  * 512MB:	2896k
7709  * 1024MB:	4096k
7710  * 2048MB:	5792k
7711  * 4096MB:	8192k
7712  * 8192MB:	11584k
7713  * 16384MB:	16384k
7714  */
7715 int __meminit init_per_zone_wmark_min(void)
7716 {
7717 	unsigned long lowmem_kbytes;
7718 	int new_min_free_kbytes;
7719 
7720 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7721 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7722 
7723 	if (new_min_free_kbytes > user_min_free_kbytes) {
7724 		min_free_kbytes = new_min_free_kbytes;
7725 		if (min_free_kbytes < 128)
7726 			min_free_kbytes = 128;
7727 		if (min_free_kbytes > 65536)
7728 			min_free_kbytes = 65536;
7729 	} else {
7730 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7731 				new_min_free_kbytes, user_min_free_kbytes);
7732 	}
7733 	setup_per_zone_wmarks();
7734 	refresh_zone_stat_thresholds();
7735 	setup_per_zone_lowmem_reserve();
7736 
7737 #ifdef CONFIG_NUMA
7738 	setup_min_unmapped_ratio();
7739 	setup_min_slab_ratio();
7740 #endif
7741 
7742 	return 0;
7743 }
7744 core_initcall(init_per_zone_wmark_min)
7745 
7746 /*
7747  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7748  *	that we can call two helper functions whenever min_free_kbytes
7749  *	changes.
7750  */
7751 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7752 	void __user *buffer, size_t *length, loff_t *ppos)
7753 {
7754 	int rc;
7755 
7756 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7757 	if (rc)
7758 		return rc;
7759 
7760 	if (write) {
7761 		user_min_free_kbytes = min_free_kbytes;
7762 		setup_per_zone_wmarks();
7763 	}
7764 	return 0;
7765 }
7766 
7767 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7768 	void __user *buffer, size_t *length, loff_t *ppos)
7769 {
7770 	int rc;
7771 
7772 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7773 	if (rc)
7774 		return rc;
7775 
7776 	return 0;
7777 }
7778 
7779 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7780 	void __user *buffer, size_t *length, loff_t *ppos)
7781 {
7782 	int rc;
7783 
7784 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7785 	if (rc)
7786 		return rc;
7787 
7788 	if (write)
7789 		setup_per_zone_wmarks();
7790 
7791 	return 0;
7792 }
7793 
7794 #ifdef CONFIG_NUMA
7795 static void setup_min_unmapped_ratio(void)
7796 {
7797 	pg_data_t *pgdat;
7798 	struct zone *zone;
7799 
7800 	for_each_online_pgdat(pgdat)
7801 		pgdat->min_unmapped_pages = 0;
7802 
7803 	for_each_zone(zone)
7804 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7805 						         sysctl_min_unmapped_ratio) / 100;
7806 }
7807 
7808 
7809 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7810 	void __user *buffer, size_t *length, loff_t *ppos)
7811 {
7812 	int rc;
7813 
7814 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7815 	if (rc)
7816 		return rc;
7817 
7818 	setup_min_unmapped_ratio();
7819 
7820 	return 0;
7821 }
7822 
7823 static void setup_min_slab_ratio(void)
7824 {
7825 	pg_data_t *pgdat;
7826 	struct zone *zone;
7827 
7828 	for_each_online_pgdat(pgdat)
7829 		pgdat->min_slab_pages = 0;
7830 
7831 	for_each_zone(zone)
7832 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7833 						     sysctl_min_slab_ratio) / 100;
7834 }
7835 
7836 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7837 	void __user *buffer, size_t *length, loff_t *ppos)
7838 {
7839 	int rc;
7840 
7841 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7842 	if (rc)
7843 		return rc;
7844 
7845 	setup_min_slab_ratio();
7846 
7847 	return 0;
7848 }
7849 #endif
7850 
7851 /*
7852  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7853  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7854  *	whenever sysctl_lowmem_reserve_ratio changes.
7855  *
7856  * The reserve ratio obviously has absolutely no relation with the
7857  * minimum watermarks. The lowmem reserve ratio can only make sense
7858  * if in function of the boot time zone sizes.
7859  */
7860 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7861 	void __user *buffer, size_t *length, loff_t *ppos)
7862 {
7863 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7864 	setup_per_zone_lowmem_reserve();
7865 	return 0;
7866 }
7867 
7868 /*
7869  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7870  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7871  * pagelist can have before it gets flushed back to buddy allocator.
7872  */
7873 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7874 	void __user *buffer, size_t *length, loff_t *ppos)
7875 {
7876 	struct zone *zone;
7877 	int old_percpu_pagelist_fraction;
7878 	int ret;
7879 
7880 	mutex_lock(&pcp_batch_high_lock);
7881 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7882 
7883 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7884 	if (!write || ret < 0)
7885 		goto out;
7886 
7887 	/* Sanity checking to avoid pcp imbalance */
7888 	if (percpu_pagelist_fraction &&
7889 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7890 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7891 		ret = -EINVAL;
7892 		goto out;
7893 	}
7894 
7895 	/* No change? */
7896 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7897 		goto out;
7898 
7899 	for_each_populated_zone(zone) {
7900 		unsigned int cpu;
7901 
7902 		for_each_possible_cpu(cpu)
7903 			pageset_set_high_and_batch(zone,
7904 					per_cpu_ptr(zone->pageset, cpu));
7905 	}
7906 out:
7907 	mutex_unlock(&pcp_batch_high_lock);
7908 	return ret;
7909 }
7910 
7911 #ifdef CONFIG_NUMA
7912 int hashdist = HASHDIST_DEFAULT;
7913 
7914 static int __init set_hashdist(char *str)
7915 {
7916 	if (!str)
7917 		return 0;
7918 	hashdist = simple_strtoul(str, &str, 0);
7919 	return 1;
7920 }
7921 __setup("hashdist=", set_hashdist);
7922 #endif
7923 
7924 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7925 /*
7926  * Returns the number of pages that arch has reserved but
7927  * is not known to alloc_large_system_hash().
7928  */
7929 static unsigned long __init arch_reserved_kernel_pages(void)
7930 {
7931 	return 0;
7932 }
7933 #endif
7934 
7935 /*
7936  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7937  * machines. As memory size is increased the scale is also increased but at
7938  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7939  * quadruples the scale is increased by one, which means the size of hash table
7940  * only doubles, instead of quadrupling as well.
7941  * Because 32-bit systems cannot have large physical memory, where this scaling
7942  * makes sense, it is disabled on such platforms.
7943  */
7944 #if __BITS_PER_LONG > 32
7945 #define ADAPT_SCALE_BASE	(64ul << 30)
7946 #define ADAPT_SCALE_SHIFT	2
7947 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7948 #endif
7949 
7950 /*
7951  * allocate a large system hash table from bootmem
7952  * - it is assumed that the hash table must contain an exact power-of-2
7953  *   quantity of entries
7954  * - limit is the number of hash buckets, not the total allocation size
7955  */
7956 void *__init alloc_large_system_hash(const char *tablename,
7957 				     unsigned long bucketsize,
7958 				     unsigned long numentries,
7959 				     int scale,
7960 				     int flags,
7961 				     unsigned int *_hash_shift,
7962 				     unsigned int *_hash_mask,
7963 				     unsigned long low_limit,
7964 				     unsigned long high_limit)
7965 {
7966 	unsigned long long max = high_limit;
7967 	unsigned long log2qty, size;
7968 	void *table = NULL;
7969 	gfp_t gfp_flags;
7970 
7971 	/* allow the kernel cmdline to have a say */
7972 	if (!numentries) {
7973 		/* round applicable memory size up to nearest megabyte */
7974 		numentries = nr_kernel_pages;
7975 		numentries -= arch_reserved_kernel_pages();
7976 
7977 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7978 		if (PAGE_SHIFT < 20)
7979 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7980 
7981 #if __BITS_PER_LONG > 32
7982 		if (!high_limit) {
7983 			unsigned long adapt;
7984 
7985 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7986 			     adapt <<= ADAPT_SCALE_SHIFT)
7987 				scale++;
7988 		}
7989 #endif
7990 
7991 		/* limit to 1 bucket per 2^scale bytes of low memory */
7992 		if (scale > PAGE_SHIFT)
7993 			numentries >>= (scale - PAGE_SHIFT);
7994 		else
7995 			numentries <<= (PAGE_SHIFT - scale);
7996 
7997 		/* Make sure we've got at least a 0-order allocation.. */
7998 		if (unlikely(flags & HASH_SMALL)) {
7999 			/* Makes no sense without HASH_EARLY */
8000 			WARN_ON(!(flags & HASH_EARLY));
8001 			if (!(numentries >> *_hash_shift)) {
8002 				numentries = 1UL << *_hash_shift;
8003 				BUG_ON(!numentries);
8004 			}
8005 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8006 			numentries = PAGE_SIZE / bucketsize;
8007 	}
8008 	numentries = roundup_pow_of_two(numentries);
8009 
8010 	/* limit allocation size to 1/16 total memory by default */
8011 	if (max == 0) {
8012 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8013 		do_div(max, bucketsize);
8014 	}
8015 	max = min(max, 0x80000000ULL);
8016 
8017 	if (numentries < low_limit)
8018 		numentries = low_limit;
8019 	if (numentries > max)
8020 		numentries = max;
8021 
8022 	log2qty = ilog2(numentries);
8023 
8024 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8025 	do {
8026 		size = bucketsize << log2qty;
8027 		if (flags & HASH_EARLY) {
8028 			if (flags & HASH_ZERO)
8029 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8030 			else
8031 				table = memblock_alloc_raw(size,
8032 							   SMP_CACHE_BYTES);
8033 		} else if (hashdist) {
8034 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8035 		} else {
8036 			/*
8037 			 * If bucketsize is not a power-of-two, we may free
8038 			 * some pages at the end of hash table which
8039 			 * alloc_pages_exact() automatically does
8040 			 */
8041 			if (get_order(size) < MAX_ORDER) {
8042 				table = alloc_pages_exact(size, gfp_flags);
8043 				kmemleak_alloc(table, size, 1, gfp_flags);
8044 			}
8045 		}
8046 	} while (!table && size > PAGE_SIZE && --log2qty);
8047 
8048 	if (!table)
8049 		panic("Failed to allocate %s hash table\n", tablename);
8050 
8051 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8052 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8053 
8054 	if (_hash_shift)
8055 		*_hash_shift = log2qty;
8056 	if (_hash_mask)
8057 		*_hash_mask = (1 << log2qty) - 1;
8058 
8059 	return table;
8060 }
8061 
8062 /*
8063  * This function checks whether pageblock includes unmovable pages or not.
8064  * If @count is not zero, it is okay to include less @count unmovable pages
8065  *
8066  * PageLRU check without isolation or lru_lock could race so that
8067  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8068  * check without lock_page also may miss some movable non-lru pages at
8069  * race condition. So you can't expect this function should be exact.
8070  */
8071 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8072 			 int migratetype, int flags)
8073 {
8074 	unsigned long found;
8075 	unsigned long iter = 0;
8076 	unsigned long pfn = page_to_pfn(page);
8077 	const char *reason = "unmovable page";
8078 
8079 	/*
8080 	 * TODO we could make this much more efficient by not checking every
8081 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8082 	 * that the movable zone guarantees that pages are migratable but
8083 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8084 	 * can still lead to having bootmem allocations in zone_movable.
8085 	 */
8086 
8087 	if (is_migrate_cma_page(page)) {
8088 		/*
8089 		 * CMA allocations (alloc_contig_range) really need to mark
8090 		 * isolate CMA pageblocks even when they are not movable in fact
8091 		 * so consider them movable here.
8092 		 */
8093 		if (is_migrate_cma(migratetype))
8094 			return false;
8095 
8096 		reason = "CMA page";
8097 		goto unmovable;
8098 	}
8099 
8100 	for (found = 0; iter < pageblock_nr_pages; iter++) {
8101 		unsigned long check = pfn + iter;
8102 
8103 		if (!pfn_valid_within(check))
8104 			continue;
8105 
8106 		page = pfn_to_page(check);
8107 
8108 		if (PageReserved(page))
8109 			goto unmovable;
8110 
8111 		/*
8112 		 * If the zone is movable and we have ruled out all reserved
8113 		 * pages then it should be reasonably safe to assume the rest
8114 		 * is movable.
8115 		 */
8116 		if (zone_idx(zone) == ZONE_MOVABLE)
8117 			continue;
8118 
8119 		/*
8120 		 * Hugepages are not in LRU lists, but they're movable.
8121 		 * We need not scan over tail pages because we don't
8122 		 * handle each tail page individually in migration.
8123 		 */
8124 		if (PageHuge(page)) {
8125 			struct page *head = compound_head(page);
8126 			unsigned int skip_pages;
8127 
8128 			if (!hugepage_migration_supported(page_hstate(head)))
8129 				goto unmovable;
8130 
8131 			skip_pages = (1 << compound_order(head)) - (page - head);
8132 			iter += skip_pages - 1;
8133 			continue;
8134 		}
8135 
8136 		/*
8137 		 * We can't use page_count without pin a page
8138 		 * because another CPU can free compound page.
8139 		 * This check already skips compound tails of THP
8140 		 * because their page->_refcount is zero at all time.
8141 		 */
8142 		if (!page_ref_count(page)) {
8143 			if (PageBuddy(page))
8144 				iter += (1 << page_order(page)) - 1;
8145 			continue;
8146 		}
8147 
8148 		/*
8149 		 * The HWPoisoned page may be not in buddy system, and
8150 		 * page_count() is not 0.
8151 		 */
8152 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8153 			continue;
8154 
8155 		if (__PageMovable(page))
8156 			continue;
8157 
8158 		if (!PageLRU(page))
8159 			found++;
8160 		/*
8161 		 * If there are RECLAIMABLE pages, we need to check
8162 		 * it.  But now, memory offline itself doesn't call
8163 		 * shrink_node_slabs() and it still to be fixed.
8164 		 */
8165 		/*
8166 		 * If the page is not RAM, page_count()should be 0.
8167 		 * we don't need more check. This is an _used_ not-movable page.
8168 		 *
8169 		 * The problematic thing here is PG_reserved pages. PG_reserved
8170 		 * is set to both of a memory hole page and a _used_ kernel
8171 		 * page at boot.
8172 		 */
8173 		if (found > count)
8174 			goto unmovable;
8175 	}
8176 	return false;
8177 unmovable:
8178 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8179 	if (flags & REPORT_FAILURE)
8180 		dump_page(pfn_to_page(pfn + iter), reason);
8181 	return true;
8182 }
8183 
8184 #ifdef CONFIG_CONTIG_ALLOC
8185 static unsigned long pfn_max_align_down(unsigned long pfn)
8186 {
8187 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8188 			     pageblock_nr_pages) - 1);
8189 }
8190 
8191 static unsigned long pfn_max_align_up(unsigned long pfn)
8192 {
8193 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8194 				pageblock_nr_pages));
8195 }
8196 
8197 /* [start, end) must belong to a single zone. */
8198 static int __alloc_contig_migrate_range(struct compact_control *cc,
8199 					unsigned long start, unsigned long end)
8200 {
8201 	/* This function is based on compact_zone() from compaction.c. */
8202 	unsigned long nr_reclaimed;
8203 	unsigned long pfn = start;
8204 	unsigned int tries = 0;
8205 	int ret = 0;
8206 
8207 	migrate_prep();
8208 
8209 	while (pfn < end || !list_empty(&cc->migratepages)) {
8210 		if (fatal_signal_pending(current)) {
8211 			ret = -EINTR;
8212 			break;
8213 		}
8214 
8215 		if (list_empty(&cc->migratepages)) {
8216 			cc->nr_migratepages = 0;
8217 			pfn = isolate_migratepages_range(cc, pfn, end);
8218 			if (!pfn) {
8219 				ret = -EINTR;
8220 				break;
8221 			}
8222 			tries = 0;
8223 		} else if (++tries == 5) {
8224 			ret = ret < 0 ? ret : -EBUSY;
8225 			break;
8226 		}
8227 
8228 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8229 							&cc->migratepages);
8230 		cc->nr_migratepages -= nr_reclaimed;
8231 
8232 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8233 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8234 	}
8235 	if (ret < 0) {
8236 		putback_movable_pages(&cc->migratepages);
8237 		return ret;
8238 	}
8239 	return 0;
8240 }
8241 
8242 /**
8243  * alloc_contig_range() -- tries to allocate given range of pages
8244  * @start:	start PFN to allocate
8245  * @end:	one-past-the-last PFN to allocate
8246  * @migratetype:	migratetype of the underlaying pageblocks (either
8247  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8248  *			in range must have the same migratetype and it must
8249  *			be either of the two.
8250  * @gfp_mask:	GFP mask to use during compaction
8251  *
8252  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8253  * aligned.  The PFN range must belong to a single zone.
8254  *
8255  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8256  * pageblocks in the range.  Once isolated, the pageblocks should not
8257  * be modified by others.
8258  *
8259  * Return: zero on success or negative error code.  On success all
8260  * pages which PFN is in [start, end) are allocated for the caller and
8261  * need to be freed with free_contig_range().
8262  */
8263 int alloc_contig_range(unsigned long start, unsigned long end,
8264 		       unsigned migratetype, gfp_t gfp_mask)
8265 {
8266 	unsigned long outer_start, outer_end;
8267 	unsigned int order;
8268 	int ret = 0;
8269 
8270 	struct compact_control cc = {
8271 		.nr_migratepages = 0,
8272 		.order = -1,
8273 		.zone = page_zone(pfn_to_page(start)),
8274 		.mode = MIGRATE_SYNC,
8275 		.ignore_skip_hint = true,
8276 		.no_set_skip_hint = true,
8277 		.gfp_mask = current_gfp_context(gfp_mask),
8278 	};
8279 	INIT_LIST_HEAD(&cc.migratepages);
8280 
8281 	/*
8282 	 * What we do here is we mark all pageblocks in range as
8283 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8284 	 * have different sizes, and due to the way page allocator
8285 	 * work, we align the range to biggest of the two pages so
8286 	 * that page allocator won't try to merge buddies from
8287 	 * different pageblocks and change MIGRATE_ISOLATE to some
8288 	 * other migration type.
8289 	 *
8290 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8291 	 * migrate the pages from an unaligned range (ie. pages that
8292 	 * we are interested in).  This will put all the pages in
8293 	 * range back to page allocator as MIGRATE_ISOLATE.
8294 	 *
8295 	 * When this is done, we take the pages in range from page
8296 	 * allocator removing them from the buddy system.  This way
8297 	 * page allocator will never consider using them.
8298 	 *
8299 	 * This lets us mark the pageblocks back as
8300 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8301 	 * aligned range but not in the unaligned, original range are
8302 	 * put back to page allocator so that buddy can use them.
8303 	 */
8304 
8305 	ret = start_isolate_page_range(pfn_max_align_down(start),
8306 				       pfn_max_align_up(end), migratetype, 0);
8307 	if (ret < 0)
8308 		return ret;
8309 
8310 	/*
8311 	 * In case of -EBUSY, we'd like to know which page causes problem.
8312 	 * So, just fall through. test_pages_isolated() has a tracepoint
8313 	 * which will report the busy page.
8314 	 *
8315 	 * It is possible that busy pages could become available before
8316 	 * the call to test_pages_isolated, and the range will actually be
8317 	 * allocated.  So, if we fall through be sure to clear ret so that
8318 	 * -EBUSY is not accidentally used or returned to caller.
8319 	 */
8320 	ret = __alloc_contig_migrate_range(&cc, start, end);
8321 	if (ret && ret != -EBUSY)
8322 		goto done;
8323 	ret =0;
8324 
8325 	/*
8326 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8327 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8328 	 * more, all pages in [start, end) are free in page allocator.
8329 	 * What we are going to do is to allocate all pages from
8330 	 * [start, end) (that is remove them from page allocator).
8331 	 *
8332 	 * The only problem is that pages at the beginning and at the
8333 	 * end of interesting range may be not aligned with pages that
8334 	 * page allocator holds, ie. they can be part of higher order
8335 	 * pages.  Because of this, we reserve the bigger range and
8336 	 * once this is done free the pages we are not interested in.
8337 	 *
8338 	 * We don't have to hold zone->lock here because the pages are
8339 	 * isolated thus they won't get removed from buddy.
8340 	 */
8341 
8342 	lru_add_drain_all();
8343 
8344 	order = 0;
8345 	outer_start = start;
8346 	while (!PageBuddy(pfn_to_page(outer_start))) {
8347 		if (++order >= MAX_ORDER) {
8348 			outer_start = start;
8349 			break;
8350 		}
8351 		outer_start &= ~0UL << order;
8352 	}
8353 
8354 	if (outer_start != start) {
8355 		order = page_order(pfn_to_page(outer_start));
8356 
8357 		/*
8358 		 * outer_start page could be small order buddy page and
8359 		 * it doesn't include start page. Adjust outer_start
8360 		 * in this case to report failed page properly
8361 		 * on tracepoint in test_pages_isolated()
8362 		 */
8363 		if (outer_start + (1UL << order) <= start)
8364 			outer_start = start;
8365 	}
8366 
8367 	/* Make sure the range is really isolated. */
8368 	if (test_pages_isolated(outer_start, end, false)) {
8369 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8370 			__func__, outer_start, end);
8371 		ret = -EBUSY;
8372 		goto done;
8373 	}
8374 
8375 	/* Grab isolated pages from freelists. */
8376 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8377 	if (!outer_end) {
8378 		ret = -EBUSY;
8379 		goto done;
8380 	}
8381 
8382 	/* Free head and tail (if any) */
8383 	if (start != outer_start)
8384 		free_contig_range(outer_start, start - outer_start);
8385 	if (end != outer_end)
8386 		free_contig_range(end, outer_end - end);
8387 
8388 done:
8389 	undo_isolate_page_range(pfn_max_align_down(start),
8390 				pfn_max_align_up(end), migratetype);
8391 	return ret;
8392 }
8393 #endif /* CONFIG_CONTIG_ALLOC */
8394 
8395 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8396 {
8397 	unsigned int count = 0;
8398 
8399 	for (; nr_pages--; pfn++) {
8400 		struct page *page = pfn_to_page(pfn);
8401 
8402 		count += page_count(page) != 1;
8403 		__free_page(page);
8404 	}
8405 	WARN(count != 0, "%d pages are still in use!\n", count);
8406 }
8407 
8408 #ifdef CONFIG_MEMORY_HOTPLUG
8409 /*
8410  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8411  * page high values need to be recalulated.
8412  */
8413 void __meminit zone_pcp_update(struct zone *zone)
8414 {
8415 	unsigned cpu;
8416 	mutex_lock(&pcp_batch_high_lock);
8417 	for_each_possible_cpu(cpu)
8418 		pageset_set_high_and_batch(zone,
8419 				per_cpu_ptr(zone->pageset, cpu));
8420 	mutex_unlock(&pcp_batch_high_lock);
8421 }
8422 #endif
8423 
8424 void zone_pcp_reset(struct zone *zone)
8425 {
8426 	unsigned long flags;
8427 	int cpu;
8428 	struct per_cpu_pageset *pset;
8429 
8430 	/* avoid races with drain_pages()  */
8431 	local_irq_save(flags);
8432 	if (zone->pageset != &boot_pageset) {
8433 		for_each_online_cpu(cpu) {
8434 			pset = per_cpu_ptr(zone->pageset, cpu);
8435 			drain_zonestat(zone, pset);
8436 		}
8437 		free_percpu(zone->pageset);
8438 		zone->pageset = &boot_pageset;
8439 	}
8440 	local_irq_restore(flags);
8441 }
8442 
8443 #ifdef CONFIG_MEMORY_HOTREMOVE
8444 /*
8445  * All pages in the range must be in a single zone and isolated
8446  * before calling this.
8447  */
8448 unsigned long
8449 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8450 {
8451 	struct page *page;
8452 	struct zone *zone;
8453 	unsigned int order, i;
8454 	unsigned long pfn;
8455 	unsigned long flags;
8456 	unsigned long offlined_pages = 0;
8457 
8458 	/* find the first valid pfn */
8459 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8460 		if (pfn_valid(pfn))
8461 			break;
8462 	if (pfn == end_pfn)
8463 		return offlined_pages;
8464 
8465 	offline_mem_sections(pfn, end_pfn);
8466 	zone = page_zone(pfn_to_page(pfn));
8467 	spin_lock_irqsave(&zone->lock, flags);
8468 	pfn = start_pfn;
8469 	while (pfn < end_pfn) {
8470 		if (!pfn_valid(pfn)) {
8471 			pfn++;
8472 			continue;
8473 		}
8474 		page = pfn_to_page(pfn);
8475 		/*
8476 		 * The HWPoisoned page may be not in buddy system, and
8477 		 * page_count() is not 0.
8478 		 */
8479 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8480 			pfn++;
8481 			SetPageReserved(page);
8482 			offlined_pages++;
8483 			continue;
8484 		}
8485 
8486 		BUG_ON(page_count(page));
8487 		BUG_ON(!PageBuddy(page));
8488 		order = page_order(page);
8489 		offlined_pages += 1 << order;
8490 #ifdef CONFIG_DEBUG_VM
8491 		pr_info("remove from free list %lx %d %lx\n",
8492 			pfn, 1 << order, end_pfn);
8493 #endif
8494 		del_page_from_free_area(page, &zone->free_area[order]);
8495 		for (i = 0; i < (1 << order); i++)
8496 			SetPageReserved((page+i));
8497 		pfn += (1 << order);
8498 	}
8499 	spin_unlock_irqrestore(&zone->lock, flags);
8500 
8501 	return offlined_pages;
8502 }
8503 #endif
8504 
8505 bool is_free_buddy_page(struct page *page)
8506 {
8507 	struct zone *zone = page_zone(page);
8508 	unsigned long pfn = page_to_pfn(page);
8509 	unsigned long flags;
8510 	unsigned int order;
8511 
8512 	spin_lock_irqsave(&zone->lock, flags);
8513 	for (order = 0; order < MAX_ORDER; order++) {
8514 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8515 
8516 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8517 			break;
8518 	}
8519 	spin_unlock_irqrestore(&zone->lock, flags);
8520 
8521 	return order < MAX_ORDER;
8522 }
8523 
8524 #ifdef CONFIG_MEMORY_FAILURE
8525 /*
8526  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8527  * test is performed under the zone lock to prevent a race against page
8528  * allocation.
8529  */
8530 bool set_hwpoison_free_buddy_page(struct page *page)
8531 {
8532 	struct zone *zone = page_zone(page);
8533 	unsigned long pfn = page_to_pfn(page);
8534 	unsigned long flags;
8535 	unsigned int order;
8536 	bool hwpoisoned = false;
8537 
8538 	spin_lock_irqsave(&zone->lock, flags);
8539 	for (order = 0; order < MAX_ORDER; order++) {
8540 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8541 
8542 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8543 			if (!TestSetPageHWPoison(page))
8544 				hwpoisoned = true;
8545 			break;
8546 		}
8547 	}
8548 	spin_unlock_irqrestore(&zone->lock, flags);
8549 
8550 	return hwpoisoned;
8551 }
8552 #endif
8553