1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/page_ext.h> 54 #include <linux/debugobjects.h> 55 #include <linux/kmemleak.h> 56 #include <linux/compaction.h> 57 #include <trace/events/kmem.h> 58 #include <trace/events/oom.h> 59 #include <linux/prefetch.h> 60 #include <linux/mm_inline.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/div64.h> 76 #include "internal.h" 77 #include "shuffle.h" 78 79 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 80 static DEFINE_MUTEX(pcp_batch_high_lock); 81 #define MIN_PERCPU_PAGELIST_FRACTION (8) 82 83 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 84 DEFINE_PER_CPU(int, numa_node); 85 EXPORT_PER_CPU_SYMBOL(numa_node); 86 #endif 87 88 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 89 90 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 91 /* 92 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 93 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 94 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 95 * defined in <linux/topology.h>. 96 */ 97 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 98 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 99 int _node_numa_mem_[MAX_NUMNODES]; 100 #endif 101 102 /* work_structs for global per-cpu drains */ 103 struct pcpu_drain { 104 struct zone *zone; 105 struct work_struct work; 106 }; 107 DEFINE_MUTEX(pcpu_drain_mutex); 108 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 109 110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 111 volatile unsigned long latent_entropy __latent_entropy; 112 EXPORT_SYMBOL(latent_entropy); 113 #endif 114 115 /* 116 * Array of node states. 117 */ 118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 119 [N_POSSIBLE] = NODE_MASK_ALL, 120 [N_ONLINE] = { { [0] = 1UL } }, 121 #ifndef CONFIG_NUMA 122 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 123 #ifdef CONFIG_HIGHMEM 124 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 125 #endif 126 [N_MEMORY] = { { [0] = 1UL } }, 127 [N_CPU] = { { [0] = 1UL } }, 128 #endif /* NUMA */ 129 }; 130 EXPORT_SYMBOL(node_states); 131 132 atomic_long_t _totalram_pages __read_mostly; 133 EXPORT_SYMBOL(_totalram_pages); 134 unsigned long totalreserve_pages __read_mostly; 135 unsigned long totalcma_pages __read_mostly; 136 137 int percpu_pagelist_fraction; 138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 139 140 /* 141 * A cached value of the page's pageblock's migratetype, used when the page is 142 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 143 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 144 * Also the migratetype set in the page does not necessarily match the pcplist 145 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 146 * other index - this ensures that it will be put on the correct CMA freelist. 147 */ 148 static inline int get_pcppage_migratetype(struct page *page) 149 { 150 return page->index; 151 } 152 153 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 154 { 155 page->index = migratetype; 156 } 157 158 #ifdef CONFIG_PM_SLEEP 159 /* 160 * The following functions are used by the suspend/hibernate code to temporarily 161 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 162 * while devices are suspended. To avoid races with the suspend/hibernate code, 163 * they should always be called with system_transition_mutex held 164 * (gfp_allowed_mask also should only be modified with system_transition_mutex 165 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 166 * with that modification). 167 */ 168 169 static gfp_t saved_gfp_mask; 170 171 void pm_restore_gfp_mask(void) 172 { 173 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 174 if (saved_gfp_mask) { 175 gfp_allowed_mask = saved_gfp_mask; 176 saved_gfp_mask = 0; 177 } 178 } 179 180 void pm_restrict_gfp_mask(void) 181 { 182 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 183 WARN_ON(saved_gfp_mask); 184 saved_gfp_mask = gfp_allowed_mask; 185 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 186 } 187 188 bool pm_suspended_storage(void) 189 { 190 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 191 return false; 192 return true; 193 } 194 #endif /* CONFIG_PM_SLEEP */ 195 196 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 197 unsigned int pageblock_order __read_mostly; 198 #endif 199 200 static void __free_pages_ok(struct page *page, unsigned int order); 201 202 /* 203 * results with 256, 32 in the lowmem_reserve sysctl: 204 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 205 * 1G machine -> (16M dma, 784M normal, 224M high) 206 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 207 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 208 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 209 * 210 * TBD: should special case ZONE_DMA32 machines here - in those we normally 211 * don't need any ZONE_NORMAL reservation 212 */ 213 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 214 #ifdef CONFIG_ZONE_DMA 215 [ZONE_DMA] = 256, 216 #endif 217 #ifdef CONFIG_ZONE_DMA32 218 [ZONE_DMA32] = 256, 219 #endif 220 [ZONE_NORMAL] = 32, 221 #ifdef CONFIG_HIGHMEM 222 [ZONE_HIGHMEM] = 0, 223 #endif 224 [ZONE_MOVABLE] = 0, 225 }; 226 227 EXPORT_SYMBOL(totalram_pages); 228 229 static char * const zone_names[MAX_NR_ZONES] = { 230 #ifdef CONFIG_ZONE_DMA 231 "DMA", 232 #endif 233 #ifdef CONFIG_ZONE_DMA32 234 "DMA32", 235 #endif 236 "Normal", 237 #ifdef CONFIG_HIGHMEM 238 "HighMem", 239 #endif 240 "Movable", 241 #ifdef CONFIG_ZONE_DEVICE 242 "Device", 243 #endif 244 }; 245 246 const char * const migratetype_names[MIGRATE_TYPES] = { 247 "Unmovable", 248 "Movable", 249 "Reclaimable", 250 "HighAtomic", 251 #ifdef CONFIG_CMA 252 "CMA", 253 #endif 254 #ifdef CONFIG_MEMORY_ISOLATION 255 "Isolate", 256 #endif 257 }; 258 259 compound_page_dtor * const compound_page_dtors[] = { 260 NULL, 261 free_compound_page, 262 #ifdef CONFIG_HUGETLB_PAGE 263 free_huge_page, 264 #endif 265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 266 free_transhuge_page, 267 #endif 268 }; 269 270 int min_free_kbytes = 1024; 271 int user_min_free_kbytes = -1; 272 #ifdef CONFIG_DISCONTIGMEM 273 /* 274 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 275 * are not on separate NUMA nodes. Functionally this works but with 276 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 277 * quite small. By default, do not boost watermarks on discontigmem as in 278 * many cases very high-order allocations like THP are likely to be 279 * unsupported and the premature reclaim offsets the advantage of long-term 280 * fragmentation avoidance. 281 */ 282 int watermark_boost_factor __read_mostly; 283 #else 284 int watermark_boost_factor __read_mostly = 15000; 285 #endif 286 int watermark_scale_factor = 10; 287 288 static unsigned long nr_kernel_pages __initdata; 289 static unsigned long nr_all_pages __initdata; 290 static unsigned long dma_reserve __initdata; 291 292 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 293 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 294 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 295 static unsigned long required_kernelcore __initdata; 296 static unsigned long required_kernelcore_percent __initdata; 297 static unsigned long required_movablecore __initdata; 298 static unsigned long required_movablecore_percent __initdata; 299 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 300 static bool mirrored_kernelcore __meminitdata; 301 302 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 303 int movable_zone; 304 EXPORT_SYMBOL(movable_zone); 305 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 306 307 #if MAX_NUMNODES > 1 308 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 309 unsigned int nr_online_nodes __read_mostly = 1; 310 EXPORT_SYMBOL(nr_node_ids); 311 EXPORT_SYMBOL(nr_online_nodes); 312 #endif 313 314 int page_group_by_mobility_disabled __read_mostly; 315 316 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 317 /* 318 * During boot we initialize deferred pages on-demand, as needed, but once 319 * page_alloc_init_late() has finished, the deferred pages are all initialized, 320 * and we can permanently disable that path. 321 */ 322 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 323 324 /* 325 * Calling kasan_free_pages() only after deferred memory initialization 326 * has completed. Poisoning pages during deferred memory init will greatly 327 * lengthen the process and cause problem in large memory systems as the 328 * deferred pages initialization is done with interrupt disabled. 329 * 330 * Assuming that there will be no reference to those newly initialized 331 * pages before they are ever allocated, this should have no effect on 332 * KASAN memory tracking as the poison will be properly inserted at page 333 * allocation time. The only corner case is when pages are allocated by 334 * on-demand allocation and then freed again before the deferred pages 335 * initialization is done, but this is not likely to happen. 336 */ 337 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 338 { 339 if (!static_branch_unlikely(&deferred_pages)) 340 kasan_free_pages(page, order); 341 } 342 343 /* Returns true if the struct page for the pfn is uninitialised */ 344 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 345 { 346 int nid = early_pfn_to_nid(pfn); 347 348 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 349 return true; 350 351 return false; 352 } 353 354 /* 355 * Returns true when the remaining initialisation should be deferred until 356 * later in the boot cycle when it can be parallelised. 357 */ 358 static bool __meminit 359 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 360 { 361 static unsigned long prev_end_pfn, nr_initialised; 362 363 /* 364 * prev_end_pfn static that contains the end of previous zone 365 * No need to protect because called very early in boot before smp_init. 366 */ 367 if (prev_end_pfn != end_pfn) { 368 prev_end_pfn = end_pfn; 369 nr_initialised = 0; 370 } 371 372 /* Always populate low zones for address-constrained allocations */ 373 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 374 return false; 375 376 /* 377 * We start only with one section of pages, more pages are added as 378 * needed until the rest of deferred pages are initialized. 379 */ 380 nr_initialised++; 381 if ((nr_initialised > PAGES_PER_SECTION) && 382 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 383 NODE_DATA(nid)->first_deferred_pfn = pfn; 384 return true; 385 } 386 return false; 387 } 388 #else 389 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 390 391 static inline bool early_page_uninitialised(unsigned long pfn) 392 { 393 return false; 394 } 395 396 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 397 { 398 return false; 399 } 400 #endif 401 402 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 403 static inline unsigned long *get_pageblock_bitmap(struct page *page, 404 unsigned long pfn) 405 { 406 #ifdef CONFIG_SPARSEMEM 407 return __pfn_to_section(pfn)->pageblock_flags; 408 #else 409 return page_zone(page)->pageblock_flags; 410 #endif /* CONFIG_SPARSEMEM */ 411 } 412 413 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 414 { 415 #ifdef CONFIG_SPARSEMEM 416 pfn &= (PAGES_PER_SECTION-1); 417 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 418 #else 419 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 420 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 421 #endif /* CONFIG_SPARSEMEM */ 422 } 423 424 /** 425 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 426 * @page: The page within the block of interest 427 * @pfn: The target page frame number 428 * @end_bitidx: The last bit of interest to retrieve 429 * @mask: mask of bits that the caller is interested in 430 * 431 * Return: pageblock_bits flags 432 */ 433 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 434 unsigned long pfn, 435 unsigned long end_bitidx, 436 unsigned long mask) 437 { 438 unsigned long *bitmap; 439 unsigned long bitidx, word_bitidx; 440 unsigned long word; 441 442 bitmap = get_pageblock_bitmap(page, pfn); 443 bitidx = pfn_to_bitidx(page, pfn); 444 word_bitidx = bitidx / BITS_PER_LONG; 445 bitidx &= (BITS_PER_LONG-1); 446 447 word = bitmap[word_bitidx]; 448 bitidx += end_bitidx; 449 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 450 } 451 452 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 453 unsigned long end_bitidx, 454 unsigned long mask) 455 { 456 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 457 } 458 459 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 460 { 461 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 462 } 463 464 /** 465 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 466 * @page: The page within the block of interest 467 * @flags: The flags to set 468 * @pfn: The target page frame number 469 * @end_bitidx: The last bit of interest 470 * @mask: mask of bits that the caller is interested in 471 */ 472 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 473 unsigned long pfn, 474 unsigned long end_bitidx, 475 unsigned long mask) 476 { 477 unsigned long *bitmap; 478 unsigned long bitidx, word_bitidx; 479 unsigned long old_word, word; 480 481 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 482 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 483 484 bitmap = get_pageblock_bitmap(page, pfn); 485 bitidx = pfn_to_bitidx(page, pfn); 486 word_bitidx = bitidx / BITS_PER_LONG; 487 bitidx &= (BITS_PER_LONG-1); 488 489 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 490 491 bitidx += end_bitidx; 492 mask <<= (BITS_PER_LONG - bitidx - 1); 493 flags <<= (BITS_PER_LONG - bitidx - 1); 494 495 word = READ_ONCE(bitmap[word_bitidx]); 496 for (;;) { 497 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 498 if (word == old_word) 499 break; 500 word = old_word; 501 } 502 } 503 504 void set_pageblock_migratetype(struct page *page, int migratetype) 505 { 506 if (unlikely(page_group_by_mobility_disabled && 507 migratetype < MIGRATE_PCPTYPES)) 508 migratetype = MIGRATE_UNMOVABLE; 509 510 set_pageblock_flags_group(page, (unsigned long)migratetype, 511 PB_migrate, PB_migrate_end); 512 } 513 514 #ifdef CONFIG_DEBUG_VM 515 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 516 { 517 int ret = 0; 518 unsigned seq; 519 unsigned long pfn = page_to_pfn(page); 520 unsigned long sp, start_pfn; 521 522 do { 523 seq = zone_span_seqbegin(zone); 524 start_pfn = zone->zone_start_pfn; 525 sp = zone->spanned_pages; 526 if (!zone_spans_pfn(zone, pfn)) 527 ret = 1; 528 } while (zone_span_seqretry(zone, seq)); 529 530 if (ret) 531 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 532 pfn, zone_to_nid(zone), zone->name, 533 start_pfn, start_pfn + sp); 534 535 return ret; 536 } 537 538 static int page_is_consistent(struct zone *zone, struct page *page) 539 { 540 if (!pfn_valid_within(page_to_pfn(page))) 541 return 0; 542 if (zone != page_zone(page)) 543 return 0; 544 545 return 1; 546 } 547 /* 548 * Temporary debugging check for pages not lying within a given zone. 549 */ 550 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 551 { 552 if (page_outside_zone_boundaries(zone, page)) 553 return 1; 554 if (!page_is_consistent(zone, page)) 555 return 1; 556 557 return 0; 558 } 559 #else 560 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 561 { 562 return 0; 563 } 564 #endif 565 566 static void bad_page(struct page *page, const char *reason, 567 unsigned long bad_flags) 568 { 569 static unsigned long resume; 570 static unsigned long nr_shown; 571 static unsigned long nr_unshown; 572 573 /* 574 * Allow a burst of 60 reports, then keep quiet for that minute; 575 * or allow a steady drip of one report per second. 576 */ 577 if (nr_shown == 60) { 578 if (time_before(jiffies, resume)) { 579 nr_unshown++; 580 goto out; 581 } 582 if (nr_unshown) { 583 pr_alert( 584 "BUG: Bad page state: %lu messages suppressed\n", 585 nr_unshown); 586 nr_unshown = 0; 587 } 588 nr_shown = 0; 589 } 590 if (nr_shown++ == 0) 591 resume = jiffies + 60 * HZ; 592 593 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 594 current->comm, page_to_pfn(page)); 595 __dump_page(page, reason); 596 bad_flags &= page->flags; 597 if (bad_flags) 598 pr_alert("bad because of flags: %#lx(%pGp)\n", 599 bad_flags, &bad_flags); 600 dump_page_owner(page); 601 602 print_modules(); 603 dump_stack(); 604 out: 605 /* Leave bad fields for debug, except PageBuddy could make trouble */ 606 page_mapcount_reset(page); /* remove PageBuddy */ 607 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 608 } 609 610 /* 611 * Higher-order pages are called "compound pages". They are structured thusly: 612 * 613 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 614 * 615 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 616 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 617 * 618 * The first tail page's ->compound_dtor holds the offset in array of compound 619 * page destructors. See compound_page_dtors. 620 * 621 * The first tail page's ->compound_order holds the order of allocation. 622 * This usage means that zero-order pages may not be compound. 623 */ 624 625 void free_compound_page(struct page *page) 626 { 627 __free_pages_ok(page, compound_order(page)); 628 } 629 630 void prep_compound_page(struct page *page, unsigned int order) 631 { 632 int i; 633 int nr_pages = 1 << order; 634 635 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 636 set_compound_order(page, order); 637 __SetPageHead(page); 638 for (i = 1; i < nr_pages; i++) { 639 struct page *p = page + i; 640 set_page_count(p, 0); 641 p->mapping = TAIL_MAPPING; 642 set_compound_head(p, page); 643 } 644 atomic_set(compound_mapcount_ptr(page), -1); 645 } 646 647 #ifdef CONFIG_DEBUG_PAGEALLOC 648 unsigned int _debug_guardpage_minorder; 649 bool _debug_pagealloc_enabled __read_mostly 650 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 651 EXPORT_SYMBOL(_debug_pagealloc_enabled); 652 bool _debug_guardpage_enabled __read_mostly; 653 654 static int __init early_debug_pagealloc(char *buf) 655 { 656 if (!buf) 657 return -EINVAL; 658 return kstrtobool(buf, &_debug_pagealloc_enabled); 659 } 660 early_param("debug_pagealloc", early_debug_pagealloc); 661 662 static bool need_debug_guardpage(void) 663 { 664 /* If we don't use debug_pagealloc, we don't need guard page */ 665 if (!debug_pagealloc_enabled()) 666 return false; 667 668 if (!debug_guardpage_minorder()) 669 return false; 670 671 return true; 672 } 673 674 static void init_debug_guardpage(void) 675 { 676 if (!debug_pagealloc_enabled()) 677 return; 678 679 if (!debug_guardpage_minorder()) 680 return; 681 682 _debug_guardpage_enabled = true; 683 } 684 685 struct page_ext_operations debug_guardpage_ops = { 686 .need = need_debug_guardpage, 687 .init = init_debug_guardpage, 688 }; 689 690 static int __init debug_guardpage_minorder_setup(char *buf) 691 { 692 unsigned long res; 693 694 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 695 pr_err("Bad debug_guardpage_minorder value\n"); 696 return 0; 697 } 698 _debug_guardpage_minorder = res; 699 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 700 return 0; 701 } 702 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 703 704 static inline bool set_page_guard(struct zone *zone, struct page *page, 705 unsigned int order, int migratetype) 706 { 707 struct page_ext *page_ext; 708 709 if (!debug_guardpage_enabled()) 710 return false; 711 712 if (order >= debug_guardpage_minorder()) 713 return false; 714 715 page_ext = lookup_page_ext(page); 716 if (unlikely(!page_ext)) 717 return false; 718 719 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 720 721 INIT_LIST_HEAD(&page->lru); 722 set_page_private(page, order); 723 /* Guard pages are not available for any usage */ 724 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 725 726 return true; 727 } 728 729 static inline void clear_page_guard(struct zone *zone, struct page *page, 730 unsigned int order, int migratetype) 731 { 732 struct page_ext *page_ext; 733 734 if (!debug_guardpage_enabled()) 735 return; 736 737 page_ext = lookup_page_ext(page); 738 if (unlikely(!page_ext)) 739 return; 740 741 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 742 743 set_page_private(page, 0); 744 if (!is_migrate_isolate(migratetype)) 745 __mod_zone_freepage_state(zone, (1 << order), migratetype); 746 } 747 #else 748 struct page_ext_operations debug_guardpage_ops; 749 static inline bool set_page_guard(struct zone *zone, struct page *page, 750 unsigned int order, int migratetype) { return false; } 751 static inline void clear_page_guard(struct zone *zone, struct page *page, 752 unsigned int order, int migratetype) {} 753 #endif 754 755 static inline void set_page_order(struct page *page, unsigned int order) 756 { 757 set_page_private(page, order); 758 __SetPageBuddy(page); 759 } 760 761 /* 762 * This function checks whether a page is free && is the buddy 763 * we can coalesce a page and its buddy if 764 * (a) the buddy is not in a hole (check before calling!) && 765 * (b) the buddy is in the buddy system && 766 * (c) a page and its buddy have the same order && 767 * (d) a page and its buddy are in the same zone. 768 * 769 * For recording whether a page is in the buddy system, we set PageBuddy. 770 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 771 * 772 * For recording page's order, we use page_private(page). 773 */ 774 static inline int page_is_buddy(struct page *page, struct page *buddy, 775 unsigned int order) 776 { 777 if (page_is_guard(buddy) && page_order(buddy) == order) { 778 if (page_zone_id(page) != page_zone_id(buddy)) 779 return 0; 780 781 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 782 783 return 1; 784 } 785 786 if (PageBuddy(buddy) && page_order(buddy) == order) { 787 /* 788 * zone check is done late to avoid uselessly 789 * calculating zone/node ids for pages that could 790 * never merge. 791 */ 792 if (page_zone_id(page) != page_zone_id(buddy)) 793 return 0; 794 795 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 796 797 return 1; 798 } 799 return 0; 800 } 801 802 #ifdef CONFIG_COMPACTION 803 static inline struct capture_control *task_capc(struct zone *zone) 804 { 805 struct capture_control *capc = current->capture_control; 806 807 return capc && 808 !(current->flags & PF_KTHREAD) && 809 !capc->page && 810 capc->cc->zone == zone && 811 capc->cc->direct_compaction ? capc : NULL; 812 } 813 814 static inline bool 815 compaction_capture(struct capture_control *capc, struct page *page, 816 int order, int migratetype) 817 { 818 if (!capc || order != capc->cc->order) 819 return false; 820 821 /* Do not accidentally pollute CMA or isolated regions*/ 822 if (is_migrate_cma(migratetype) || 823 is_migrate_isolate(migratetype)) 824 return false; 825 826 /* 827 * Do not let lower order allocations polluate a movable pageblock. 828 * This might let an unmovable request use a reclaimable pageblock 829 * and vice-versa but no more than normal fallback logic which can 830 * have trouble finding a high-order free page. 831 */ 832 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 833 return false; 834 835 capc->page = page; 836 return true; 837 } 838 839 #else 840 static inline struct capture_control *task_capc(struct zone *zone) 841 { 842 return NULL; 843 } 844 845 static inline bool 846 compaction_capture(struct capture_control *capc, struct page *page, 847 int order, int migratetype) 848 { 849 return false; 850 } 851 #endif /* CONFIG_COMPACTION */ 852 853 /* 854 * Freeing function for a buddy system allocator. 855 * 856 * The concept of a buddy system is to maintain direct-mapped table 857 * (containing bit values) for memory blocks of various "orders". 858 * The bottom level table contains the map for the smallest allocatable 859 * units of memory (here, pages), and each level above it describes 860 * pairs of units from the levels below, hence, "buddies". 861 * At a high level, all that happens here is marking the table entry 862 * at the bottom level available, and propagating the changes upward 863 * as necessary, plus some accounting needed to play nicely with other 864 * parts of the VM system. 865 * At each level, we keep a list of pages, which are heads of continuous 866 * free pages of length of (1 << order) and marked with PageBuddy. 867 * Page's order is recorded in page_private(page) field. 868 * So when we are allocating or freeing one, we can derive the state of the 869 * other. That is, if we allocate a small block, and both were 870 * free, the remainder of the region must be split into blocks. 871 * If a block is freed, and its buddy is also free, then this 872 * triggers coalescing into a block of larger size. 873 * 874 * -- nyc 875 */ 876 877 static inline void __free_one_page(struct page *page, 878 unsigned long pfn, 879 struct zone *zone, unsigned int order, 880 int migratetype) 881 { 882 unsigned long combined_pfn; 883 unsigned long uninitialized_var(buddy_pfn); 884 struct page *buddy; 885 unsigned int max_order; 886 struct capture_control *capc = task_capc(zone); 887 888 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 889 890 VM_BUG_ON(!zone_is_initialized(zone)); 891 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 892 893 VM_BUG_ON(migratetype == -1); 894 if (likely(!is_migrate_isolate(migratetype))) 895 __mod_zone_freepage_state(zone, 1 << order, migratetype); 896 897 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 898 VM_BUG_ON_PAGE(bad_range(zone, page), page); 899 900 continue_merging: 901 while (order < max_order - 1) { 902 if (compaction_capture(capc, page, order, migratetype)) { 903 __mod_zone_freepage_state(zone, -(1 << order), 904 migratetype); 905 return; 906 } 907 buddy_pfn = __find_buddy_pfn(pfn, order); 908 buddy = page + (buddy_pfn - pfn); 909 910 if (!pfn_valid_within(buddy_pfn)) 911 goto done_merging; 912 if (!page_is_buddy(page, buddy, order)) 913 goto done_merging; 914 /* 915 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 916 * merge with it and move up one order. 917 */ 918 if (page_is_guard(buddy)) 919 clear_page_guard(zone, buddy, order, migratetype); 920 else 921 del_page_from_free_area(buddy, &zone->free_area[order]); 922 combined_pfn = buddy_pfn & pfn; 923 page = page + (combined_pfn - pfn); 924 pfn = combined_pfn; 925 order++; 926 } 927 if (max_order < MAX_ORDER) { 928 /* If we are here, it means order is >= pageblock_order. 929 * We want to prevent merge between freepages on isolate 930 * pageblock and normal pageblock. Without this, pageblock 931 * isolation could cause incorrect freepage or CMA accounting. 932 * 933 * We don't want to hit this code for the more frequent 934 * low-order merging. 935 */ 936 if (unlikely(has_isolate_pageblock(zone))) { 937 int buddy_mt; 938 939 buddy_pfn = __find_buddy_pfn(pfn, order); 940 buddy = page + (buddy_pfn - pfn); 941 buddy_mt = get_pageblock_migratetype(buddy); 942 943 if (migratetype != buddy_mt 944 && (is_migrate_isolate(migratetype) || 945 is_migrate_isolate(buddy_mt))) 946 goto done_merging; 947 } 948 max_order++; 949 goto continue_merging; 950 } 951 952 done_merging: 953 set_page_order(page, order); 954 955 /* 956 * If this is not the largest possible page, check if the buddy 957 * of the next-highest order is free. If it is, it's possible 958 * that pages are being freed that will coalesce soon. In case, 959 * that is happening, add the free page to the tail of the list 960 * so it's less likely to be used soon and more likely to be merged 961 * as a higher order page 962 */ 963 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 964 && !is_shuffle_order(order)) { 965 struct page *higher_page, *higher_buddy; 966 combined_pfn = buddy_pfn & pfn; 967 higher_page = page + (combined_pfn - pfn); 968 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 969 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 970 if (pfn_valid_within(buddy_pfn) && 971 page_is_buddy(higher_page, higher_buddy, order + 1)) { 972 add_to_free_area_tail(page, &zone->free_area[order], 973 migratetype); 974 return; 975 } 976 } 977 978 if (is_shuffle_order(order)) 979 add_to_free_area_random(page, &zone->free_area[order], 980 migratetype); 981 else 982 add_to_free_area(page, &zone->free_area[order], migratetype); 983 984 } 985 986 /* 987 * A bad page could be due to a number of fields. Instead of multiple branches, 988 * try and check multiple fields with one check. The caller must do a detailed 989 * check if necessary. 990 */ 991 static inline bool page_expected_state(struct page *page, 992 unsigned long check_flags) 993 { 994 if (unlikely(atomic_read(&page->_mapcount) != -1)) 995 return false; 996 997 if (unlikely((unsigned long)page->mapping | 998 page_ref_count(page) | 999 #ifdef CONFIG_MEMCG 1000 (unsigned long)page->mem_cgroup | 1001 #endif 1002 (page->flags & check_flags))) 1003 return false; 1004 1005 return true; 1006 } 1007 1008 static void free_pages_check_bad(struct page *page) 1009 { 1010 const char *bad_reason; 1011 unsigned long bad_flags; 1012 1013 bad_reason = NULL; 1014 bad_flags = 0; 1015 1016 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1017 bad_reason = "nonzero mapcount"; 1018 if (unlikely(page->mapping != NULL)) 1019 bad_reason = "non-NULL mapping"; 1020 if (unlikely(page_ref_count(page) != 0)) 1021 bad_reason = "nonzero _refcount"; 1022 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1023 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1024 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1025 } 1026 #ifdef CONFIG_MEMCG 1027 if (unlikely(page->mem_cgroup)) 1028 bad_reason = "page still charged to cgroup"; 1029 #endif 1030 bad_page(page, bad_reason, bad_flags); 1031 } 1032 1033 static inline int free_pages_check(struct page *page) 1034 { 1035 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1036 return 0; 1037 1038 /* Something has gone sideways, find it */ 1039 free_pages_check_bad(page); 1040 return 1; 1041 } 1042 1043 static int free_tail_pages_check(struct page *head_page, struct page *page) 1044 { 1045 int ret = 1; 1046 1047 /* 1048 * We rely page->lru.next never has bit 0 set, unless the page 1049 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1050 */ 1051 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1052 1053 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1054 ret = 0; 1055 goto out; 1056 } 1057 switch (page - head_page) { 1058 case 1: 1059 /* the first tail page: ->mapping may be compound_mapcount() */ 1060 if (unlikely(compound_mapcount(page))) { 1061 bad_page(page, "nonzero compound_mapcount", 0); 1062 goto out; 1063 } 1064 break; 1065 case 2: 1066 /* 1067 * the second tail page: ->mapping is 1068 * deferred_list.next -- ignore value. 1069 */ 1070 break; 1071 default: 1072 if (page->mapping != TAIL_MAPPING) { 1073 bad_page(page, "corrupted mapping in tail page", 0); 1074 goto out; 1075 } 1076 break; 1077 } 1078 if (unlikely(!PageTail(page))) { 1079 bad_page(page, "PageTail not set", 0); 1080 goto out; 1081 } 1082 if (unlikely(compound_head(page) != head_page)) { 1083 bad_page(page, "compound_head not consistent", 0); 1084 goto out; 1085 } 1086 ret = 0; 1087 out: 1088 page->mapping = NULL; 1089 clear_compound_head(page); 1090 return ret; 1091 } 1092 1093 static __always_inline bool free_pages_prepare(struct page *page, 1094 unsigned int order, bool check_free) 1095 { 1096 int bad = 0; 1097 1098 VM_BUG_ON_PAGE(PageTail(page), page); 1099 1100 trace_mm_page_free(page, order); 1101 1102 /* 1103 * Check tail pages before head page information is cleared to 1104 * avoid checking PageCompound for order-0 pages. 1105 */ 1106 if (unlikely(order)) { 1107 bool compound = PageCompound(page); 1108 int i; 1109 1110 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1111 1112 if (compound) 1113 ClearPageDoubleMap(page); 1114 for (i = 1; i < (1 << order); i++) { 1115 if (compound) 1116 bad += free_tail_pages_check(page, page + i); 1117 if (unlikely(free_pages_check(page + i))) { 1118 bad++; 1119 continue; 1120 } 1121 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1122 } 1123 } 1124 if (PageMappingFlags(page)) 1125 page->mapping = NULL; 1126 if (memcg_kmem_enabled() && PageKmemcg(page)) 1127 __memcg_kmem_uncharge(page, order); 1128 if (check_free) 1129 bad += free_pages_check(page); 1130 if (bad) 1131 return false; 1132 1133 page_cpupid_reset_last(page); 1134 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1135 reset_page_owner(page, order); 1136 1137 if (!PageHighMem(page)) { 1138 debug_check_no_locks_freed(page_address(page), 1139 PAGE_SIZE << order); 1140 debug_check_no_obj_freed(page_address(page), 1141 PAGE_SIZE << order); 1142 } 1143 arch_free_page(page, order); 1144 kernel_poison_pages(page, 1 << order, 0); 1145 if (debug_pagealloc_enabled()) 1146 kernel_map_pages(page, 1 << order, 0); 1147 1148 kasan_free_nondeferred_pages(page, order); 1149 1150 return true; 1151 } 1152 1153 #ifdef CONFIG_DEBUG_VM 1154 static inline bool free_pcp_prepare(struct page *page) 1155 { 1156 return free_pages_prepare(page, 0, true); 1157 } 1158 1159 static inline bool bulkfree_pcp_prepare(struct page *page) 1160 { 1161 return false; 1162 } 1163 #else 1164 static bool free_pcp_prepare(struct page *page) 1165 { 1166 return free_pages_prepare(page, 0, false); 1167 } 1168 1169 static bool bulkfree_pcp_prepare(struct page *page) 1170 { 1171 return free_pages_check(page); 1172 } 1173 #endif /* CONFIG_DEBUG_VM */ 1174 1175 static inline void prefetch_buddy(struct page *page) 1176 { 1177 unsigned long pfn = page_to_pfn(page); 1178 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1179 struct page *buddy = page + (buddy_pfn - pfn); 1180 1181 prefetch(buddy); 1182 } 1183 1184 /* 1185 * Frees a number of pages from the PCP lists 1186 * Assumes all pages on list are in same zone, and of same order. 1187 * count is the number of pages to free. 1188 * 1189 * If the zone was previously in an "all pages pinned" state then look to 1190 * see if this freeing clears that state. 1191 * 1192 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1193 * pinned" detection logic. 1194 */ 1195 static void free_pcppages_bulk(struct zone *zone, int count, 1196 struct per_cpu_pages *pcp) 1197 { 1198 int migratetype = 0; 1199 int batch_free = 0; 1200 int prefetch_nr = 0; 1201 bool isolated_pageblocks; 1202 struct page *page, *tmp; 1203 LIST_HEAD(head); 1204 1205 while (count) { 1206 struct list_head *list; 1207 1208 /* 1209 * Remove pages from lists in a round-robin fashion. A 1210 * batch_free count is maintained that is incremented when an 1211 * empty list is encountered. This is so more pages are freed 1212 * off fuller lists instead of spinning excessively around empty 1213 * lists 1214 */ 1215 do { 1216 batch_free++; 1217 if (++migratetype == MIGRATE_PCPTYPES) 1218 migratetype = 0; 1219 list = &pcp->lists[migratetype]; 1220 } while (list_empty(list)); 1221 1222 /* This is the only non-empty list. Free them all. */ 1223 if (batch_free == MIGRATE_PCPTYPES) 1224 batch_free = count; 1225 1226 do { 1227 page = list_last_entry(list, struct page, lru); 1228 /* must delete to avoid corrupting pcp list */ 1229 list_del(&page->lru); 1230 pcp->count--; 1231 1232 if (bulkfree_pcp_prepare(page)) 1233 continue; 1234 1235 list_add_tail(&page->lru, &head); 1236 1237 /* 1238 * We are going to put the page back to the global 1239 * pool, prefetch its buddy to speed up later access 1240 * under zone->lock. It is believed the overhead of 1241 * an additional test and calculating buddy_pfn here 1242 * can be offset by reduced memory latency later. To 1243 * avoid excessive prefetching due to large count, only 1244 * prefetch buddy for the first pcp->batch nr of pages. 1245 */ 1246 if (prefetch_nr++ < pcp->batch) 1247 prefetch_buddy(page); 1248 } while (--count && --batch_free && !list_empty(list)); 1249 } 1250 1251 spin_lock(&zone->lock); 1252 isolated_pageblocks = has_isolate_pageblock(zone); 1253 1254 /* 1255 * Use safe version since after __free_one_page(), 1256 * page->lru.next will not point to original list. 1257 */ 1258 list_for_each_entry_safe(page, tmp, &head, lru) { 1259 int mt = get_pcppage_migratetype(page); 1260 /* MIGRATE_ISOLATE page should not go to pcplists */ 1261 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1262 /* Pageblock could have been isolated meanwhile */ 1263 if (unlikely(isolated_pageblocks)) 1264 mt = get_pageblock_migratetype(page); 1265 1266 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1267 trace_mm_page_pcpu_drain(page, 0, mt); 1268 } 1269 spin_unlock(&zone->lock); 1270 } 1271 1272 static void free_one_page(struct zone *zone, 1273 struct page *page, unsigned long pfn, 1274 unsigned int order, 1275 int migratetype) 1276 { 1277 spin_lock(&zone->lock); 1278 if (unlikely(has_isolate_pageblock(zone) || 1279 is_migrate_isolate(migratetype))) { 1280 migratetype = get_pfnblock_migratetype(page, pfn); 1281 } 1282 __free_one_page(page, pfn, zone, order, migratetype); 1283 spin_unlock(&zone->lock); 1284 } 1285 1286 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1287 unsigned long zone, int nid) 1288 { 1289 mm_zero_struct_page(page); 1290 set_page_links(page, zone, nid, pfn); 1291 init_page_count(page); 1292 page_mapcount_reset(page); 1293 page_cpupid_reset_last(page); 1294 page_kasan_tag_reset(page); 1295 1296 INIT_LIST_HEAD(&page->lru); 1297 #ifdef WANT_PAGE_VIRTUAL 1298 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1299 if (!is_highmem_idx(zone)) 1300 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1301 #endif 1302 } 1303 1304 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1305 static void __meminit init_reserved_page(unsigned long pfn) 1306 { 1307 pg_data_t *pgdat; 1308 int nid, zid; 1309 1310 if (!early_page_uninitialised(pfn)) 1311 return; 1312 1313 nid = early_pfn_to_nid(pfn); 1314 pgdat = NODE_DATA(nid); 1315 1316 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1317 struct zone *zone = &pgdat->node_zones[zid]; 1318 1319 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1320 break; 1321 } 1322 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1323 } 1324 #else 1325 static inline void init_reserved_page(unsigned long pfn) 1326 { 1327 } 1328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1329 1330 /* 1331 * Initialised pages do not have PageReserved set. This function is 1332 * called for each range allocated by the bootmem allocator and 1333 * marks the pages PageReserved. The remaining valid pages are later 1334 * sent to the buddy page allocator. 1335 */ 1336 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1337 { 1338 unsigned long start_pfn = PFN_DOWN(start); 1339 unsigned long end_pfn = PFN_UP(end); 1340 1341 for (; start_pfn < end_pfn; start_pfn++) { 1342 if (pfn_valid(start_pfn)) { 1343 struct page *page = pfn_to_page(start_pfn); 1344 1345 init_reserved_page(start_pfn); 1346 1347 /* Avoid false-positive PageTail() */ 1348 INIT_LIST_HEAD(&page->lru); 1349 1350 /* 1351 * no need for atomic set_bit because the struct 1352 * page is not visible yet so nobody should 1353 * access it yet. 1354 */ 1355 __SetPageReserved(page); 1356 } 1357 } 1358 } 1359 1360 static void __free_pages_ok(struct page *page, unsigned int order) 1361 { 1362 unsigned long flags; 1363 int migratetype; 1364 unsigned long pfn = page_to_pfn(page); 1365 1366 if (!free_pages_prepare(page, order, true)) 1367 return; 1368 1369 migratetype = get_pfnblock_migratetype(page, pfn); 1370 local_irq_save(flags); 1371 __count_vm_events(PGFREE, 1 << order); 1372 free_one_page(page_zone(page), page, pfn, order, migratetype); 1373 local_irq_restore(flags); 1374 } 1375 1376 void __free_pages_core(struct page *page, unsigned int order) 1377 { 1378 unsigned int nr_pages = 1 << order; 1379 struct page *p = page; 1380 unsigned int loop; 1381 1382 prefetchw(p); 1383 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1384 prefetchw(p + 1); 1385 __ClearPageReserved(p); 1386 set_page_count(p, 0); 1387 } 1388 __ClearPageReserved(p); 1389 set_page_count(p, 0); 1390 1391 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1392 set_page_refcounted(page); 1393 __free_pages(page, order); 1394 } 1395 1396 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1397 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1398 1399 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1400 1401 int __meminit early_pfn_to_nid(unsigned long pfn) 1402 { 1403 static DEFINE_SPINLOCK(early_pfn_lock); 1404 int nid; 1405 1406 spin_lock(&early_pfn_lock); 1407 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1408 if (nid < 0) 1409 nid = first_online_node; 1410 spin_unlock(&early_pfn_lock); 1411 1412 return nid; 1413 } 1414 #endif 1415 1416 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1417 /* Only safe to use early in boot when initialisation is single-threaded */ 1418 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1419 { 1420 int nid; 1421 1422 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1423 if (nid >= 0 && nid != node) 1424 return false; 1425 return true; 1426 } 1427 1428 #else 1429 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1430 { 1431 return true; 1432 } 1433 #endif 1434 1435 1436 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1437 unsigned int order) 1438 { 1439 if (early_page_uninitialised(pfn)) 1440 return; 1441 __free_pages_core(page, order); 1442 } 1443 1444 /* 1445 * Check that the whole (or subset of) a pageblock given by the interval of 1446 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1447 * with the migration of free compaction scanner. The scanners then need to 1448 * use only pfn_valid_within() check for arches that allow holes within 1449 * pageblocks. 1450 * 1451 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1452 * 1453 * It's possible on some configurations to have a setup like node0 node1 node0 1454 * i.e. it's possible that all pages within a zones range of pages do not 1455 * belong to a single zone. We assume that a border between node0 and node1 1456 * can occur within a single pageblock, but not a node0 node1 node0 1457 * interleaving within a single pageblock. It is therefore sufficient to check 1458 * the first and last page of a pageblock and avoid checking each individual 1459 * page in a pageblock. 1460 */ 1461 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1462 unsigned long end_pfn, struct zone *zone) 1463 { 1464 struct page *start_page; 1465 struct page *end_page; 1466 1467 /* end_pfn is one past the range we are checking */ 1468 end_pfn--; 1469 1470 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1471 return NULL; 1472 1473 start_page = pfn_to_online_page(start_pfn); 1474 if (!start_page) 1475 return NULL; 1476 1477 if (page_zone(start_page) != zone) 1478 return NULL; 1479 1480 end_page = pfn_to_page(end_pfn); 1481 1482 /* This gives a shorter code than deriving page_zone(end_page) */ 1483 if (page_zone_id(start_page) != page_zone_id(end_page)) 1484 return NULL; 1485 1486 return start_page; 1487 } 1488 1489 void set_zone_contiguous(struct zone *zone) 1490 { 1491 unsigned long block_start_pfn = zone->zone_start_pfn; 1492 unsigned long block_end_pfn; 1493 1494 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1495 for (; block_start_pfn < zone_end_pfn(zone); 1496 block_start_pfn = block_end_pfn, 1497 block_end_pfn += pageblock_nr_pages) { 1498 1499 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1500 1501 if (!__pageblock_pfn_to_page(block_start_pfn, 1502 block_end_pfn, zone)) 1503 return; 1504 } 1505 1506 /* We confirm that there is no hole */ 1507 zone->contiguous = true; 1508 } 1509 1510 void clear_zone_contiguous(struct zone *zone) 1511 { 1512 zone->contiguous = false; 1513 } 1514 1515 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1516 static void __init deferred_free_range(unsigned long pfn, 1517 unsigned long nr_pages) 1518 { 1519 struct page *page; 1520 unsigned long i; 1521 1522 if (!nr_pages) 1523 return; 1524 1525 page = pfn_to_page(pfn); 1526 1527 /* Free a large naturally-aligned chunk if possible */ 1528 if (nr_pages == pageblock_nr_pages && 1529 (pfn & (pageblock_nr_pages - 1)) == 0) { 1530 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1531 __free_pages_core(page, pageblock_order); 1532 return; 1533 } 1534 1535 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1536 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1537 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1538 __free_pages_core(page, 0); 1539 } 1540 } 1541 1542 /* Completion tracking for deferred_init_memmap() threads */ 1543 static atomic_t pgdat_init_n_undone __initdata; 1544 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1545 1546 static inline void __init pgdat_init_report_one_done(void) 1547 { 1548 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1549 complete(&pgdat_init_all_done_comp); 1550 } 1551 1552 /* 1553 * Returns true if page needs to be initialized or freed to buddy allocator. 1554 * 1555 * First we check if pfn is valid on architectures where it is possible to have 1556 * holes within pageblock_nr_pages. On systems where it is not possible, this 1557 * function is optimized out. 1558 * 1559 * Then, we check if a current large page is valid by only checking the validity 1560 * of the head pfn. 1561 */ 1562 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1563 { 1564 if (!pfn_valid_within(pfn)) 1565 return false; 1566 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1567 return false; 1568 return true; 1569 } 1570 1571 /* 1572 * Free pages to buddy allocator. Try to free aligned pages in 1573 * pageblock_nr_pages sizes. 1574 */ 1575 static void __init deferred_free_pages(unsigned long pfn, 1576 unsigned long end_pfn) 1577 { 1578 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1579 unsigned long nr_free = 0; 1580 1581 for (; pfn < end_pfn; pfn++) { 1582 if (!deferred_pfn_valid(pfn)) { 1583 deferred_free_range(pfn - nr_free, nr_free); 1584 nr_free = 0; 1585 } else if (!(pfn & nr_pgmask)) { 1586 deferred_free_range(pfn - nr_free, nr_free); 1587 nr_free = 1; 1588 touch_nmi_watchdog(); 1589 } else { 1590 nr_free++; 1591 } 1592 } 1593 /* Free the last block of pages to allocator */ 1594 deferred_free_range(pfn - nr_free, nr_free); 1595 } 1596 1597 /* 1598 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1599 * by performing it only once every pageblock_nr_pages. 1600 * Return number of pages initialized. 1601 */ 1602 static unsigned long __init deferred_init_pages(struct zone *zone, 1603 unsigned long pfn, 1604 unsigned long end_pfn) 1605 { 1606 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1607 int nid = zone_to_nid(zone); 1608 unsigned long nr_pages = 0; 1609 int zid = zone_idx(zone); 1610 struct page *page = NULL; 1611 1612 for (; pfn < end_pfn; pfn++) { 1613 if (!deferred_pfn_valid(pfn)) { 1614 page = NULL; 1615 continue; 1616 } else if (!page || !(pfn & nr_pgmask)) { 1617 page = pfn_to_page(pfn); 1618 touch_nmi_watchdog(); 1619 } else { 1620 page++; 1621 } 1622 __init_single_page(page, pfn, zid, nid); 1623 nr_pages++; 1624 } 1625 return (nr_pages); 1626 } 1627 1628 /* 1629 * This function is meant to pre-load the iterator for the zone init. 1630 * Specifically it walks through the ranges until we are caught up to the 1631 * first_init_pfn value and exits there. If we never encounter the value we 1632 * return false indicating there are no valid ranges left. 1633 */ 1634 static bool __init 1635 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1636 unsigned long *spfn, unsigned long *epfn, 1637 unsigned long first_init_pfn) 1638 { 1639 u64 j; 1640 1641 /* 1642 * Start out by walking through the ranges in this zone that have 1643 * already been initialized. We don't need to do anything with them 1644 * so we just need to flush them out of the system. 1645 */ 1646 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1647 if (*epfn <= first_init_pfn) 1648 continue; 1649 if (*spfn < first_init_pfn) 1650 *spfn = first_init_pfn; 1651 *i = j; 1652 return true; 1653 } 1654 1655 return false; 1656 } 1657 1658 /* 1659 * Initialize and free pages. We do it in two loops: first we initialize 1660 * struct page, then free to buddy allocator, because while we are 1661 * freeing pages we can access pages that are ahead (computing buddy 1662 * page in __free_one_page()). 1663 * 1664 * In order to try and keep some memory in the cache we have the loop 1665 * broken along max page order boundaries. This way we will not cause 1666 * any issues with the buddy page computation. 1667 */ 1668 static unsigned long __init 1669 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1670 unsigned long *end_pfn) 1671 { 1672 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1673 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1674 unsigned long nr_pages = 0; 1675 u64 j = *i; 1676 1677 /* First we loop through and initialize the page values */ 1678 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1679 unsigned long t; 1680 1681 if (mo_pfn <= *start_pfn) 1682 break; 1683 1684 t = min(mo_pfn, *end_pfn); 1685 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1686 1687 if (mo_pfn < *end_pfn) { 1688 *start_pfn = mo_pfn; 1689 break; 1690 } 1691 } 1692 1693 /* Reset values and now loop through freeing pages as needed */ 1694 swap(j, *i); 1695 1696 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1697 unsigned long t; 1698 1699 if (mo_pfn <= spfn) 1700 break; 1701 1702 t = min(mo_pfn, epfn); 1703 deferred_free_pages(spfn, t); 1704 1705 if (mo_pfn <= epfn) 1706 break; 1707 } 1708 1709 return nr_pages; 1710 } 1711 1712 /* Initialise remaining memory on a node */ 1713 static int __init deferred_init_memmap(void *data) 1714 { 1715 pg_data_t *pgdat = data; 1716 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1717 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1718 unsigned long first_init_pfn, flags; 1719 unsigned long start = jiffies; 1720 struct zone *zone; 1721 int zid; 1722 u64 i; 1723 1724 /* Bind memory initialisation thread to a local node if possible */ 1725 if (!cpumask_empty(cpumask)) 1726 set_cpus_allowed_ptr(current, cpumask); 1727 1728 pgdat_resize_lock(pgdat, &flags); 1729 first_init_pfn = pgdat->first_deferred_pfn; 1730 if (first_init_pfn == ULONG_MAX) { 1731 pgdat_resize_unlock(pgdat, &flags); 1732 pgdat_init_report_one_done(); 1733 return 0; 1734 } 1735 1736 /* Sanity check boundaries */ 1737 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1738 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1739 pgdat->first_deferred_pfn = ULONG_MAX; 1740 1741 /* Only the highest zone is deferred so find it */ 1742 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1743 zone = pgdat->node_zones + zid; 1744 if (first_init_pfn < zone_end_pfn(zone)) 1745 break; 1746 } 1747 1748 /* If the zone is empty somebody else may have cleared out the zone */ 1749 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1750 first_init_pfn)) 1751 goto zone_empty; 1752 1753 /* 1754 * Initialize and free pages in MAX_ORDER sized increments so 1755 * that we can avoid introducing any issues with the buddy 1756 * allocator. 1757 */ 1758 while (spfn < epfn) 1759 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1760 zone_empty: 1761 pgdat_resize_unlock(pgdat, &flags); 1762 1763 /* Sanity check that the next zone really is unpopulated */ 1764 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1765 1766 pr_info("node %d initialised, %lu pages in %ums\n", 1767 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1768 1769 pgdat_init_report_one_done(); 1770 return 0; 1771 } 1772 1773 /* 1774 * If this zone has deferred pages, try to grow it by initializing enough 1775 * deferred pages to satisfy the allocation specified by order, rounded up to 1776 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1777 * of SECTION_SIZE bytes by initializing struct pages in increments of 1778 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1779 * 1780 * Return true when zone was grown, otherwise return false. We return true even 1781 * when we grow less than requested, to let the caller decide if there are 1782 * enough pages to satisfy the allocation. 1783 * 1784 * Note: We use noinline because this function is needed only during boot, and 1785 * it is called from a __ref function _deferred_grow_zone. This way we are 1786 * making sure that it is not inlined into permanent text section. 1787 */ 1788 static noinline bool __init 1789 deferred_grow_zone(struct zone *zone, unsigned int order) 1790 { 1791 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1792 pg_data_t *pgdat = zone->zone_pgdat; 1793 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1794 unsigned long spfn, epfn, flags; 1795 unsigned long nr_pages = 0; 1796 u64 i; 1797 1798 /* Only the last zone may have deferred pages */ 1799 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1800 return false; 1801 1802 pgdat_resize_lock(pgdat, &flags); 1803 1804 /* 1805 * If deferred pages have been initialized while we were waiting for 1806 * the lock, return true, as the zone was grown. The caller will retry 1807 * this zone. We won't return to this function since the caller also 1808 * has this static branch. 1809 */ 1810 if (!static_branch_unlikely(&deferred_pages)) { 1811 pgdat_resize_unlock(pgdat, &flags); 1812 return true; 1813 } 1814 1815 /* 1816 * If someone grew this zone while we were waiting for spinlock, return 1817 * true, as there might be enough pages already. 1818 */ 1819 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1820 pgdat_resize_unlock(pgdat, &flags); 1821 return true; 1822 } 1823 1824 /* If the zone is empty somebody else may have cleared out the zone */ 1825 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1826 first_deferred_pfn)) { 1827 pgdat->first_deferred_pfn = ULONG_MAX; 1828 pgdat_resize_unlock(pgdat, &flags); 1829 /* Retry only once. */ 1830 return first_deferred_pfn != ULONG_MAX; 1831 } 1832 1833 /* 1834 * Initialize and free pages in MAX_ORDER sized increments so 1835 * that we can avoid introducing any issues with the buddy 1836 * allocator. 1837 */ 1838 while (spfn < epfn) { 1839 /* update our first deferred PFN for this section */ 1840 first_deferred_pfn = spfn; 1841 1842 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1843 1844 /* We should only stop along section boundaries */ 1845 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1846 continue; 1847 1848 /* If our quota has been met we can stop here */ 1849 if (nr_pages >= nr_pages_needed) 1850 break; 1851 } 1852 1853 pgdat->first_deferred_pfn = spfn; 1854 pgdat_resize_unlock(pgdat, &flags); 1855 1856 return nr_pages > 0; 1857 } 1858 1859 /* 1860 * deferred_grow_zone() is __init, but it is called from 1861 * get_page_from_freelist() during early boot until deferred_pages permanently 1862 * disables this call. This is why we have refdata wrapper to avoid warning, 1863 * and to ensure that the function body gets unloaded. 1864 */ 1865 static bool __ref 1866 _deferred_grow_zone(struct zone *zone, unsigned int order) 1867 { 1868 return deferred_grow_zone(zone, order); 1869 } 1870 1871 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1872 1873 void __init page_alloc_init_late(void) 1874 { 1875 struct zone *zone; 1876 int nid; 1877 1878 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1879 1880 /* There will be num_node_state(N_MEMORY) threads */ 1881 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1882 for_each_node_state(nid, N_MEMORY) { 1883 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1884 } 1885 1886 /* Block until all are initialised */ 1887 wait_for_completion(&pgdat_init_all_done_comp); 1888 1889 /* 1890 * We initialized the rest of the deferred pages. Permanently disable 1891 * on-demand struct page initialization. 1892 */ 1893 static_branch_disable(&deferred_pages); 1894 1895 /* Reinit limits that are based on free pages after the kernel is up */ 1896 files_maxfiles_init(); 1897 #endif 1898 1899 /* Discard memblock private memory */ 1900 memblock_discard(); 1901 1902 for_each_node_state(nid, N_MEMORY) 1903 shuffle_free_memory(NODE_DATA(nid)); 1904 1905 for_each_populated_zone(zone) 1906 set_zone_contiguous(zone); 1907 } 1908 1909 #ifdef CONFIG_CMA 1910 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1911 void __init init_cma_reserved_pageblock(struct page *page) 1912 { 1913 unsigned i = pageblock_nr_pages; 1914 struct page *p = page; 1915 1916 do { 1917 __ClearPageReserved(p); 1918 set_page_count(p, 0); 1919 } while (++p, --i); 1920 1921 set_pageblock_migratetype(page, MIGRATE_CMA); 1922 1923 if (pageblock_order >= MAX_ORDER) { 1924 i = pageblock_nr_pages; 1925 p = page; 1926 do { 1927 set_page_refcounted(p); 1928 __free_pages(p, MAX_ORDER - 1); 1929 p += MAX_ORDER_NR_PAGES; 1930 } while (i -= MAX_ORDER_NR_PAGES); 1931 } else { 1932 set_page_refcounted(page); 1933 __free_pages(page, pageblock_order); 1934 } 1935 1936 adjust_managed_page_count(page, pageblock_nr_pages); 1937 } 1938 #endif 1939 1940 /* 1941 * The order of subdivision here is critical for the IO subsystem. 1942 * Please do not alter this order without good reasons and regression 1943 * testing. Specifically, as large blocks of memory are subdivided, 1944 * the order in which smaller blocks are delivered depends on the order 1945 * they're subdivided in this function. This is the primary factor 1946 * influencing the order in which pages are delivered to the IO 1947 * subsystem according to empirical testing, and this is also justified 1948 * by considering the behavior of a buddy system containing a single 1949 * large block of memory acted on by a series of small allocations. 1950 * This behavior is a critical factor in sglist merging's success. 1951 * 1952 * -- nyc 1953 */ 1954 static inline void expand(struct zone *zone, struct page *page, 1955 int low, int high, struct free_area *area, 1956 int migratetype) 1957 { 1958 unsigned long size = 1 << high; 1959 1960 while (high > low) { 1961 area--; 1962 high--; 1963 size >>= 1; 1964 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1965 1966 /* 1967 * Mark as guard pages (or page), that will allow to 1968 * merge back to allocator when buddy will be freed. 1969 * Corresponding page table entries will not be touched, 1970 * pages will stay not present in virtual address space 1971 */ 1972 if (set_page_guard(zone, &page[size], high, migratetype)) 1973 continue; 1974 1975 add_to_free_area(&page[size], area, migratetype); 1976 set_page_order(&page[size], high); 1977 } 1978 } 1979 1980 static void check_new_page_bad(struct page *page) 1981 { 1982 const char *bad_reason = NULL; 1983 unsigned long bad_flags = 0; 1984 1985 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1986 bad_reason = "nonzero mapcount"; 1987 if (unlikely(page->mapping != NULL)) 1988 bad_reason = "non-NULL mapping"; 1989 if (unlikely(page_ref_count(page) != 0)) 1990 bad_reason = "nonzero _refcount"; 1991 if (unlikely(page->flags & __PG_HWPOISON)) { 1992 bad_reason = "HWPoisoned (hardware-corrupted)"; 1993 bad_flags = __PG_HWPOISON; 1994 /* Don't complain about hwpoisoned pages */ 1995 page_mapcount_reset(page); /* remove PageBuddy */ 1996 return; 1997 } 1998 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1999 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2000 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2001 } 2002 #ifdef CONFIG_MEMCG 2003 if (unlikely(page->mem_cgroup)) 2004 bad_reason = "page still charged to cgroup"; 2005 #endif 2006 bad_page(page, bad_reason, bad_flags); 2007 } 2008 2009 /* 2010 * This page is about to be returned from the page allocator 2011 */ 2012 static inline int check_new_page(struct page *page) 2013 { 2014 if (likely(page_expected_state(page, 2015 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2016 return 0; 2017 2018 check_new_page_bad(page); 2019 return 1; 2020 } 2021 2022 static inline bool free_pages_prezeroed(void) 2023 { 2024 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2025 page_poisoning_enabled(); 2026 } 2027 2028 #ifdef CONFIG_DEBUG_VM 2029 static bool check_pcp_refill(struct page *page) 2030 { 2031 return false; 2032 } 2033 2034 static bool check_new_pcp(struct page *page) 2035 { 2036 return check_new_page(page); 2037 } 2038 #else 2039 static bool check_pcp_refill(struct page *page) 2040 { 2041 return check_new_page(page); 2042 } 2043 static bool check_new_pcp(struct page *page) 2044 { 2045 return false; 2046 } 2047 #endif /* CONFIG_DEBUG_VM */ 2048 2049 static bool check_new_pages(struct page *page, unsigned int order) 2050 { 2051 int i; 2052 for (i = 0; i < (1 << order); i++) { 2053 struct page *p = page + i; 2054 2055 if (unlikely(check_new_page(p))) 2056 return true; 2057 } 2058 2059 return false; 2060 } 2061 2062 inline void post_alloc_hook(struct page *page, unsigned int order, 2063 gfp_t gfp_flags) 2064 { 2065 set_page_private(page, 0); 2066 set_page_refcounted(page); 2067 2068 arch_alloc_page(page, order); 2069 if (debug_pagealloc_enabled()) 2070 kernel_map_pages(page, 1 << order, 1); 2071 kasan_alloc_pages(page, order); 2072 kernel_poison_pages(page, 1 << order, 1); 2073 set_page_owner(page, order, gfp_flags); 2074 } 2075 2076 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2077 unsigned int alloc_flags) 2078 { 2079 int i; 2080 2081 post_alloc_hook(page, order, gfp_flags); 2082 2083 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 2084 for (i = 0; i < (1 << order); i++) 2085 clear_highpage(page + i); 2086 2087 if (order && (gfp_flags & __GFP_COMP)) 2088 prep_compound_page(page, order); 2089 2090 /* 2091 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2092 * allocate the page. The expectation is that the caller is taking 2093 * steps that will free more memory. The caller should avoid the page 2094 * being used for !PFMEMALLOC purposes. 2095 */ 2096 if (alloc_flags & ALLOC_NO_WATERMARKS) 2097 set_page_pfmemalloc(page); 2098 else 2099 clear_page_pfmemalloc(page); 2100 } 2101 2102 /* 2103 * Go through the free lists for the given migratetype and remove 2104 * the smallest available page from the freelists 2105 */ 2106 static __always_inline 2107 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2108 int migratetype) 2109 { 2110 unsigned int current_order; 2111 struct free_area *area; 2112 struct page *page; 2113 2114 /* Find a page of the appropriate size in the preferred list */ 2115 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2116 area = &(zone->free_area[current_order]); 2117 page = get_page_from_free_area(area, migratetype); 2118 if (!page) 2119 continue; 2120 del_page_from_free_area(page, area); 2121 expand(zone, page, order, current_order, area, migratetype); 2122 set_pcppage_migratetype(page, migratetype); 2123 return page; 2124 } 2125 2126 return NULL; 2127 } 2128 2129 2130 /* 2131 * This array describes the order lists are fallen back to when 2132 * the free lists for the desirable migrate type are depleted 2133 */ 2134 static int fallbacks[MIGRATE_TYPES][4] = { 2135 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2136 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2137 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2138 #ifdef CONFIG_CMA 2139 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2140 #endif 2141 #ifdef CONFIG_MEMORY_ISOLATION 2142 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2143 #endif 2144 }; 2145 2146 #ifdef CONFIG_CMA 2147 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2148 unsigned int order) 2149 { 2150 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2151 } 2152 #else 2153 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2154 unsigned int order) { return NULL; } 2155 #endif 2156 2157 /* 2158 * Move the free pages in a range to the free lists of the requested type. 2159 * Note that start_page and end_pages are not aligned on a pageblock 2160 * boundary. If alignment is required, use move_freepages_block() 2161 */ 2162 static int move_freepages(struct zone *zone, 2163 struct page *start_page, struct page *end_page, 2164 int migratetype, int *num_movable) 2165 { 2166 struct page *page; 2167 unsigned int order; 2168 int pages_moved = 0; 2169 2170 #ifndef CONFIG_HOLES_IN_ZONE 2171 /* 2172 * page_zone is not safe to call in this context when 2173 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2174 * anyway as we check zone boundaries in move_freepages_block(). 2175 * Remove at a later date when no bug reports exist related to 2176 * grouping pages by mobility 2177 */ 2178 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2179 pfn_valid(page_to_pfn(end_page)) && 2180 page_zone(start_page) != page_zone(end_page)); 2181 #endif 2182 for (page = start_page; page <= end_page;) { 2183 if (!pfn_valid_within(page_to_pfn(page))) { 2184 page++; 2185 continue; 2186 } 2187 2188 /* Make sure we are not inadvertently changing nodes */ 2189 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2190 2191 if (!PageBuddy(page)) { 2192 /* 2193 * We assume that pages that could be isolated for 2194 * migration are movable. But we don't actually try 2195 * isolating, as that would be expensive. 2196 */ 2197 if (num_movable && 2198 (PageLRU(page) || __PageMovable(page))) 2199 (*num_movable)++; 2200 2201 page++; 2202 continue; 2203 } 2204 2205 order = page_order(page); 2206 move_to_free_area(page, &zone->free_area[order], migratetype); 2207 page += 1 << order; 2208 pages_moved += 1 << order; 2209 } 2210 2211 return pages_moved; 2212 } 2213 2214 int move_freepages_block(struct zone *zone, struct page *page, 2215 int migratetype, int *num_movable) 2216 { 2217 unsigned long start_pfn, end_pfn; 2218 struct page *start_page, *end_page; 2219 2220 if (num_movable) 2221 *num_movable = 0; 2222 2223 start_pfn = page_to_pfn(page); 2224 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2225 start_page = pfn_to_page(start_pfn); 2226 end_page = start_page + pageblock_nr_pages - 1; 2227 end_pfn = start_pfn + pageblock_nr_pages - 1; 2228 2229 /* Do not cross zone boundaries */ 2230 if (!zone_spans_pfn(zone, start_pfn)) 2231 start_page = page; 2232 if (!zone_spans_pfn(zone, end_pfn)) 2233 return 0; 2234 2235 return move_freepages(zone, start_page, end_page, migratetype, 2236 num_movable); 2237 } 2238 2239 static void change_pageblock_range(struct page *pageblock_page, 2240 int start_order, int migratetype) 2241 { 2242 int nr_pageblocks = 1 << (start_order - pageblock_order); 2243 2244 while (nr_pageblocks--) { 2245 set_pageblock_migratetype(pageblock_page, migratetype); 2246 pageblock_page += pageblock_nr_pages; 2247 } 2248 } 2249 2250 /* 2251 * When we are falling back to another migratetype during allocation, try to 2252 * steal extra free pages from the same pageblocks to satisfy further 2253 * allocations, instead of polluting multiple pageblocks. 2254 * 2255 * If we are stealing a relatively large buddy page, it is likely there will 2256 * be more free pages in the pageblock, so try to steal them all. For 2257 * reclaimable and unmovable allocations, we steal regardless of page size, 2258 * as fragmentation caused by those allocations polluting movable pageblocks 2259 * is worse than movable allocations stealing from unmovable and reclaimable 2260 * pageblocks. 2261 */ 2262 static bool can_steal_fallback(unsigned int order, int start_mt) 2263 { 2264 /* 2265 * Leaving this order check is intended, although there is 2266 * relaxed order check in next check. The reason is that 2267 * we can actually steal whole pageblock if this condition met, 2268 * but, below check doesn't guarantee it and that is just heuristic 2269 * so could be changed anytime. 2270 */ 2271 if (order >= pageblock_order) 2272 return true; 2273 2274 if (order >= pageblock_order / 2 || 2275 start_mt == MIGRATE_RECLAIMABLE || 2276 start_mt == MIGRATE_UNMOVABLE || 2277 page_group_by_mobility_disabled) 2278 return true; 2279 2280 return false; 2281 } 2282 2283 static inline void boost_watermark(struct zone *zone) 2284 { 2285 unsigned long max_boost; 2286 2287 if (!watermark_boost_factor) 2288 return; 2289 2290 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2291 watermark_boost_factor, 10000); 2292 2293 /* 2294 * high watermark may be uninitialised if fragmentation occurs 2295 * very early in boot so do not boost. We do not fall 2296 * through and boost by pageblock_nr_pages as failing 2297 * allocations that early means that reclaim is not going 2298 * to help and it may even be impossible to reclaim the 2299 * boosted watermark resulting in a hang. 2300 */ 2301 if (!max_boost) 2302 return; 2303 2304 max_boost = max(pageblock_nr_pages, max_boost); 2305 2306 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2307 max_boost); 2308 } 2309 2310 /* 2311 * This function implements actual steal behaviour. If order is large enough, 2312 * we can steal whole pageblock. If not, we first move freepages in this 2313 * pageblock to our migratetype and determine how many already-allocated pages 2314 * are there in the pageblock with a compatible migratetype. If at least half 2315 * of pages are free or compatible, we can change migratetype of the pageblock 2316 * itself, so pages freed in the future will be put on the correct free list. 2317 */ 2318 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2319 unsigned int alloc_flags, int start_type, bool whole_block) 2320 { 2321 unsigned int current_order = page_order(page); 2322 struct free_area *area; 2323 int free_pages, movable_pages, alike_pages; 2324 int old_block_type; 2325 2326 old_block_type = get_pageblock_migratetype(page); 2327 2328 /* 2329 * This can happen due to races and we want to prevent broken 2330 * highatomic accounting. 2331 */ 2332 if (is_migrate_highatomic(old_block_type)) 2333 goto single_page; 2334 2335 /* Take ownership for orders >= pageblock_order */ 2336 if (current_order >= pageblock_order) { 2337 change_pageblock_range(page, current_order, start_type); 2338 goto single_page; 2339 } 2340 2341 /* 2342 * Boost watermarks to increase reclaim pressure to reduce the 2343 * likelihood of future fallbacks. Wake kswapd now as the node 2344 * may be balanced overall and kswapd will not wake naturally. 2345 */ 2346 boost_watermark(zone); 2347 if (alloc_flags & ALLOC_KSWAPD) 2348 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2349 2350 /* We are not allowed to try stealing from the whole block */ 2351 if (!whole_block) 2352 goto single_page; 2353 2354 free_pages = move_freepages_block(zone, page, start_type, 2355 &movable_pages); 2356 /* 2357 * Determine how many pages are compatible with our allocation. 2358 * For movable allocation, it's the number of movable pages which 2359 * we just obtained. For other types it's a bit more tricky. 2360 */ 2361 if (start_type == MIGRATE_MOVABLE) { 2362 alike_pages = movable_pages; 2363 } else { 2364 /* 2365 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2366 * to MOVABLE pageblock, consider all non-movable pages as 2367 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2368 * vice versa, be conservative since we can't distinguish the 2369 * exact migratetype of non-movable pages. 2370 */ 2371 if (old_block_type == MIGRATE_MOVABLE) 2372 alike_pages = pageblock_nr_pages 2373 - (free_pages + movable_pages); 2374 else 2375 alike_pages = 0; 2376 } 2377 2378 /* moving whole block can fail due to zone boundary conditions */ 2379 if (!free_pages) 2380 goto single_page; 2381 2382 /* 2383 * If a sufficient number of pages in the block are either free or of 2384 * comparable migratability as our allocation, claim the whole block. 2385 */ 2386 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2387 page_group_by_mobility_disabled) 2388 set_pageblock_migratetype(page, start_type); 2389 2390 return; 2391 2392 single_page: 2393 area = &zone->free_area[current_order]; 2394 move_to_free_area(page, area, start_type); 2395 } 2396 2397 /* 2398 * Check whether there is a suitable fallback freepage with requested order. 2399 * If only_stealable is true, this function returns fallback_mt only if 2400 * we can steal other freepages all together. This would help to reduce 2401 * fragmentation due to mixed migratetype pages in one pageblock. 2402 */ 2403 int find_suitable_fallback(struct free_area *area, unsigned int order, 2404 int migratetype, bool only_stealable, bool *can_steal) 2405 { 2406 int i; 2407 int fallback_mt; 2408 2409 if (area->nr_free == 0) 2410 return -1; 2411 2412 *can_steal = false; 2413 for (i = 0;; i++) { 2414 fallback_mt = fallbacks[migratetype][i]; 2415 if (fallback_mt == MIGRATE_TYPES) 2416 break; 2417 2418 if (free_area_empty(area, fallback_mt)) 2419 continue; 2420 2421 if (can_steal_fallback(order, migratetype)) 2422 *can_steal = true; 2423 2424 if (!only_stealable) 2425 return fallback_mt; 2426 2427 if (*can_steal) 2428 return fallback_mt; 2429 } 2430 2431 return -1; 2432 } 2433 2434 /* 2435 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2436 * there are no empty page blocks that contain a page with a suitable order 2437 */ 2438 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2439 unsigned int alloc_order) 2440 { 2441 int mt; 2442 unsigned long max_managed, flags; 2443 2444 /* 2445 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2446 * Check is race-prone but harmless. 2447 */ 2448 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2449 if (zone->nr_reserved_highatomic >= max_managed) 2450 return; 2451 2452 spin_lock_irqsave(&zone->lock, flags); 2453 2454 /* Recheck the nr_reserved_highatomic limit under the lock */ 2455 if (zone->nr_reserved_highatomic >= max_managed) 2456 goto out_unlock; 2457 2458 /* Yoink! */ 2459 mt = get_pageblock_migratetype(page); 2460 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2461 && !is_migrate_cma(mt)) { 2462 zone->nr_reserved_highatomic += pageblock_nr_pages; 2463 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2464 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2465 } 2466 2467 out_unlock: 2468 spin_unlock_irqrestore(&zone->lock, flags); 2469 } 2470 2471 /* 2472 * Used when an allocation is about to fail under memory pressure. This 2473 * potentially hurts the reliability of high-order allocations when under 2474 * intense memory pressure but failed atomic allocations should be easier 2475 * to recover from than an OOM. 2476 * 2477 * If @force is true, try to unreserve a pageblock even though highatomic 2478 * pageblock is exhausted. 2479 */ 2480 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2481 bool force) 2482 { 2483 struct zonelist *zonelist = ac->zonelist; 2484 unsigned long flags; 2485 struct zoneref *z; 2486 struct zone *zone; 2487 struct page *page; 2488 int order; 2489 bool ret; 2490 2491 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2492 ac->nodemask) { 2493 /* 2494 * Preserve at least one pageblock unless memory pressure 2495 * is really high. 2496 */ 2497 if (!force && zone->nr_reserved_highatomic <= 2498 pageblock_nr_pages) 2499 continue; 2500 2501 spin_lock_irqsave(&zone->lock, flags); 2502 for (order = 0; order < MAX_ORDER; order++) { 2503 struct free_area *area = &(zone->free_area[order]); 2504 2505 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2506 if (!page) 2507 continue; 2508 2509 /* 2510 * In page freeing path, migratetype change is racy so 2511 * we can counter several free pages in a pageblock 2512 * in this loop althoug we changed the pageblock type 2513 * from highatomic to ac->migratetype. So we should 2514 * adjust the count once. 2515 */ 2516 if (is_migrate_highatomic_page(page)) { 2517 /* 2518 * It should never happen but changes to 2519 * locking could inadvertently allow a per-cpu 2520 * drain to add pages to MIGRATE_HIGHATOMIC 2521 * while unreserving so be safe and watch for 2522 * underflows. 2523 */ 2524 zone->nr_reserved_highatomic -= min( 2525 pageblock_nr_pages, 2526 zone->nr_reserved_highatomic); 2527 } 2528 2529 /* 2530 * Convert to ac->migratetype and avoid the normal 2531 * pageblock stealing heuristics. Minimally, the caller 2532 * is doing the work and needs the pages. More 2533 * importantly, if the block was always converted to 2534 * MIGRATE_UNMOVABLE or another type then the number 2535 * of pageblocks that cannot be completely freed 2536 * may increase. 2537 */ 2538 set_pageblock_migratetype(page, ac->migratetype); 2539 ret = move_freepages_block(zone, page, ac->migratetype, 2540 NULL); 2541 if (ret) { 2542 spin_unlock_irqrestore(&zone->lock, flags); 2543 return ret; 2544 } 2545 } 2546 spin_unlock_irqrestore(&zone->lock, flags); 2547 } 2548 2549 return false; 2550 } 2551 2552 /* 2553 * Try finding a free buddy page on the fallback list and put it on the free 2554 * list of requested migratetype, possibly along with other pages from the same 2555 * block, depending on fragmentation avoidance heuristics. Returns true if 2556 * fallback was found so that __rmqueue_smallest() can grab it. 2557 * 2558 * The use of signed ints for order and current_order is a deliberate 2559 * deviation from the rest of this file, to make the for loop 2560 * condition simpler. 2561 */ 2562 static __always_inline bool 2563 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2564 unsigned int alloc_flags) 2565 { 2566 struct free_area *area; 2567 int current_order; 2568 int min_order = order; 2569 struct page *page; 2570 int fallback_mt; 2571 bool can_steal; 2572 2573 /* 2574 * Do not steal pages from freelists belonging to other pageblocks 2575 * i.e. orders < pageblock_order. If there are no local zones free, 2576 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2577 */ 2578 if (alloc_flags & ALLOC_NOFRAGMENT) 2579 min_order = pageblock_order; 2580 2581 /* 2582 * Find the largest available free page in the other list. This roughly 2583 * approximates finding the pageblock with the most free pages, which 2584 * would be too costly to do exactly. 2585 */ 2586 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2587 --current_order) { 2588 area = &(zone->free_area[current_order]); 2589 fallback_mt = find_suitable_fallback(area, current_order, 2590 start_migratetype, false, &can_steal); 2591 if (fallback_mt == -1) 2592 continue; 2593 2594 /* 2595 * We cannot steal all free pages from the pageblock and the 2596 * requested migratetype is movable. In that case it's better to 2597 * steal and split the smallest available page instead of the 2598 * largest available page, because even if the next movable 2599 * allocation falls back into a different pageblock than this 2600 * one, it won't cause permanent fragmentation. 2601 */ 2602 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2603 && current_order > order) 2604 goto find_smallest; 2605 2606 goto do_steal; 2607 } 2608 2609 return false; 2610 2611 find_smallest: 2612 for (current_order = order; current_order < MAX_ORDER; 2613 current_order++) { 2614 area = &(zone->free_area[current_order]); 2615 fallback_mt = find_suitable_fallback(area, current_order, 2616 start_migratetype, false, &can_steal); 2617 if (fallback_mt != -1) 2618 break; 2619 } 2620 2621 /* 2622 * This should not happen - we already found a suitable fallback 2623 * when looking for the largest page. 2624 */ 2625 VM_BUG_ON(current_order == MAX_ORDER); 2626 2627 do_steal: 2628 page = get_page_from_free_area(area, fallback_mt); 2629 2630 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2631 can_steal); 2632 2633 trace_mm_page_alloc_extfrag(page, order, current_order, 2634 start_migratetype, fallback_mt); 2635 2636 return true; 2637 2638 } 2639 2640 /* 2641 * Do the hard work of removing an element from the buddy allocator. 2642 * Call me with the zone->lock already held. 2643 */ 2644 static __always_inline struct page * 2645 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2646 unsigned int alloc_flags) 2647 { 2648 struct page *page; 2649 2650 retry: 2651 page = __rmqueue_smallest(zone, order, migratetype); 2652 if (unlikely(!page)) { 2653 if (migratetype == MIGRATE_MOVABLE) 2654 page = __rmqueue_cma_fallback(zone, order); 2655 2656 if (!page && __rmqueue_fallback(zone, order, migratetype, 2657 alloc_flags)) 2658 goto retry; 2659 } 2660 2661 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2662 return page; 2663 } 2664 2665 /* 2666 * Obtain a specified number of elements from the buddy allocator, all under 2667 * a single hold of the lock, for efficiency. Add them to the supplied list. 2668 * Returns the number of new pages which were placed at *list. 2669 */ 2670 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2671 unsigned long count, struct list_head *list, 2672 int migratetype, unsigned int alloc_flags) 2673 { 2674 int i, alloced = 0; 2675 2676 spin_lock(&zone->lock); 2677 for (i = 0; i < count; ++i) { 2678 struct page *page = __rmqueue(zone, order, migratetype, 2679 alloc_flags); 2680 if (unlikely(page == NULL)) 2681 break; 2682 2683 if (unlikely(check_pcp_refill(page))) 2684 continue; 2685 2686 /* 2687 * Split buddy pages returned by expand() are received here in 2688 * physical page order. The page is added to the tail of 2689 * caller's list. From the callers perspective, the linked list 2690 * is ordered by page number under some conditions. This is 2691 * useful for IO devices that can forward direction from the 2692 * head, thus also in the physical page order. This is useful 2693 * for IO devices that can merge IO requests if the physical 2694 * pages are ordered properly. 2695 */ 2696 list_add_tail(&page->lru, list); 2697 alloced++; 2698 if (is_migrate_cma(get_pcppage_migratetype(page))) 2699 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2700 -(1 << order)); 2701 } 2702 2703 /* 2704 * i pages were removed from the buddy list even if some leak due 2705 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2706 * on i. Do not confuse with 'alloced' which is the number of 2707 * pages added to the pcp list. 2708 */ 2709 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2710 spin_unlock(&zone->lock); 2711 return alloced; 2712 } 2713 2714 #ifdef CONFIG_NUMA 2715 /* 2716 * Called from the vmstat counter updater to drain pagesets of this 2717 * currently executing processor on remote nodes after they have 2718 * expired. 2719 * 2720 * Note that this function must be called with the thread pinned to 2721 * a single processor. 2722 */ 2723 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2724 { 2725 unsigned long flags; 2726 int to_drain, batch; 2727 2728 local_irq_save(flags); 2729 batch = READ_ONCE(pcp->batch); 2730 to_drain = min(pcp->count, batch); 2731 if (to_drain > 0) 2732 free_pcppages_bulk(zone, to_drain, pcp); 2733 local_irq_restore(flags); 2734 } 2735 #endif 2736 2737 /* 2738 * Drain pcplists of the indicated processor and zone. 2739 * 2740 * The processor must either be the current processor and the 2741 * thread pinned to the current processor or a processor that 2742 * is not online. 2743 */ 2744 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2745 { 2746 unsigned long flags; 2747 struct per_cpu_pageset *pset; 2748 struct per_cpu_pages *pcp; 2749 2750 local_irq_save(flags); 2751 pset = per_cpu_ptr(zone->pageset, cpu); 2752 2753 pcp = &pset->pcp; 2754 if (pcp->count) 2755 free_pcppages_bulk(zone, pcp->count, pcp); 2756 local_irq_restore(flags); 2757 } 2758 2759 /* 2760 * Drain pcplists of all zones on the indicated processor. 2761 * 2762 * The processor must either be the current processor and the 2763 * thread pinned to the current processor or a processor that 2764 * is not online. 2765 */ 2766 static void drain_pages(unsigned int cpu) 2767 { 2768 struct zone *zone; 2769 2770 for_each_populated_zone(zone) { 2771 drain_pages_zone(cpu, zone); 2772 } 2773 } 2774 2775 /* 2776 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2777 * 2778 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2779 * the single zone's pages. 2780 */ 2781 void drain_local_pages(struct zone *zone) 2782 { 2783 int cpu = smp_processor_id(); 2784 2785 if (zone) 2786 drain_pages_zone(cpu, zone); 2787 else 2788 drain_pages(cpu); 2789 } 2790 2791 static void drain_local_pages_wq(struct work_struct *work) 2792 { 2793 struct pcpu_drain *drain; 2794 2795 drain = container_of(work, struct pcpu_drain, work); 2796 2797 /* 2798 * drain_all_pages doesn't use proper cpu hotplug protection so 2799 * we can race with cpu offline when the WQ can move this from 2800 * a cpu pinned worker to an unbound one. We can operate on a different 2801 * cpu which is allright but we also have to make sure to not move to 2802 * a different one. 2803 */ 2804 preempt_disable(); 2805 drain_local_pages(drain->zone); 2806 preempt_enable(); 2807 } 2808 2809 /* 2810 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2811 * 2812 * When zone parameter is non-NULL, spill just the single zone's pages. 2813 * 2814 * Note that this can be extremely slow as the draining happens in a workqueue. 2815 */ 2816 void drain_all_pages(struct zone *zone) 2817 { 2818 int cpu; 2819 2820 /* 2821 * Allocate in the BSS so we wont require allocation in 2822 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2823 */ 2824 static cpumask_t cpus_with_pcps; 2825 2826 /* 2827 * Make sure nobody triggers this path before mm_percpu_wq is fully 2828 * initialized. 2829 */ 2830 if (WARN_ON_ONCE(!mm_percpu_wq)) 2831 return; 2832 2833 /* 2834 * Do not drain if one is already in progress unless it's specific to 2835 * a zone. Such callers are primarily CMA and memory hotplug and need 2836 * the drain to be complete when the call returns. 2837 */ 2838 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2839 if (!zone) 2840 return; 2841 mutex_lock(&pcpu_drain_mutex); 2842 } 2843 2844 /* 2845 * We don't care about racing with CPU hotplug event 2846 * as offline notification will cause the notified 2847 * cpu to drain that CPU pcps and on_each_cpu_mask 2848 * disables preemption as part of its processing 2849 */ 2850 for_each_online_cpu(cpu) { 2851 struct per_cpu_pageset *pcp; 2852 struct zone *z; 2853 bool has_pcps = false; 2854 2855 if (zone) { 2856 pcp = per_cpu_ptr(zone->pageset, cpu); 2857 if (pcp->pcp.count) 2858 has_pcps = true; 2859 } else { 2860 for_each_populated_zone(z) { 2861 pcp = per_cpu_ptr(z->pageset, cpu); 2862 if (pcp->pcp.count) { 2863 has_pcps = true; 2864 break; 2865 } 2866 } 2867 } 2868 2869 if (has_pcps) 2870 cpumask_set_cpu(cpu, &cpus_with_pcps); 2871 else 2872 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2873 } 2874 2875 for_each_cpu(cpu, &cpus_with_pcps) { 2876 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2877 2878 drain->zone = zone; 2879 INIT_WORK(&drain->work, drain_local_pages_wq); 2880 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2881 } 2882 for_each_cpu(cpu, &cpus_with_pcps) 2883 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2884 2885 mutex_unlock(&pcpu_drain_mutex); 2886 } 2887 2888 #ifdef CONFIG_HIBERNATION 2889 2890 /* 2891 * Touch the watchdog for every WD_PAGE_COUNT pages. 2892 */ 2893 #define WD_PAGE_COUNT (128*1024) 2894 2895 void mark_free_pages(struct zone *zone) 2896 { 2897 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2898 unsigned long flags; 2899 unsigned int order, t; 2900 struct page *page; 2901 2902 if (zone_is_empty(zone)) 2903 return; 2904 2905 spin_lock_irqsave(&zone->lock, flags); 2906 2907 max_zone_pfn = zone_end_pfn(zone); 2908 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2909 if (pfn_valid(pfn)) { 2910 page = pfn_to_page(pfn); 2911 2912 if (!--page_count) { 2913 touch_nmi_watchdog(); 2914 page_count = WD_PAGE_COUNT; 2915 } 2916 2917 if (page_zone(page) != zone) 2918 continue; 2919 2920 if (!swsusp_page_is_forbidden(page)) 2921 swsusp_unset_page_free(page); 2922 } 2923 2924 for_each_migratetype_order(order, t) { 2925 list_for_each_entry(page, 2926 &zone->free_area[order].free_list[t], lru) { 2927 unsigned long i; 2928 2929 pfn = page_to_pfn(page); 2930 for (i = 0; i < (1UL << order); i++) { 2931 if (!--page_count) { 2932 touch_nmi_watchdog(); 2933 page_count = WD_PAGE_COUNT; 2934 } 2935 swsusp_set_page_free(pfn_to_page(pfn + i)); 2936 } 2937 } 2938 } 2939 spin_unlock_irqrestore(&zone->lock, flags); 2940 } 2941 #endif /* CONFIG_PM */ 2942 2943 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2944 { 2945 int migratetype; 2946 2947 if (!free_pcp_prepare(page)) 2948 return false; 2949 2950 migratetype = get_pfnblock_migratetype(page, pfn); 2951 set_pcppage_migratetype(page, migratetype); 2952 return true; 2953 } 2954 2955 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2956 { 2957 struct zone *zone = page_zone(page); 2958 struct per_cpu_pages *pcp; 2959 int migratetype; 2960 2961 migratetype = get_pcppage_migratetype(page); 2962 __count_vm_event(PGFREE); 2963 2964 /* 2965 * We only track unmovable, reclaimable and movable on pcp lists. 2966 * Free ISOLATE pages back to the allocator because they are being 2967 * offlined but treat HIGHATOMIC as movable pages so we can get those 2968 * areas back if necessary. Otherwise, we may have to free 2969 * excessively into the page allocator 2970 */ 2971 if (migratetype >= MIGRATE_PCPTYPES) { 2972 if (unlikely(is_migrate_isolate(migratetype))) { 2973 free_one_page(zone, page, pfn, 0, migratetype); 2974 return; 2975 } 2976 migratetype = MIGRATE_MOVABLE; 2977 } 2978 2979 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2980 list_add(&page->lru, &pcp->lists[migratetype]); 2981 pcp->count++; 2982 if (pcp->count >= pcp->high) { 2983 unsigned long batch = READ_ONCE(pcp->batch); 2984 free_pcppages_bulk(zone, batch, pcp); 2985 } 2986 } 2987 2988 /* 2989 * Free a 0-order page 2990 */ 2991 void free_unref_page(struct page *page) 2992 { 2993 unsigned long flags; 2994 unsigned long pfn = page_to_pfn(page); 2995 2996 if (!free_unref_page_prepare(page, pfn)) 2997 return; 2998 2999 local_irq_save(flags); 3000 free_unref_page_commit(page, pfn); 3001 local_irq_restore(flags); 3002 } 3003 3004 /* 3005 * Free a list of 0-order pages 3006 */ 3007 void free_unref_page_list(struct list_head *list) 3008 { 3009 struct page *page, *next; 3010 unsigned long flags, pfn; 3011 int batch_count = 0; 3012 3013 /* Prepare pages for freeing */ 3014 list_for_each_entry_safe(page, next, list, lru) { 3015 pfn = page_to_pfn(page); 3016 if (!free_unref_page_prepare(page, pfn)) 3017 list_del(&page->lru); 3018 set_page_private(page, pfn); 3019 } 3020 3021 local_irq_save(flags); 3022 list_for_each_entry_safe(page, next, list, lru) { 3023 unsigned long pfn = page_private(page); 3024 3025 set_page_private(page, 0); 3026 trace_mm_page_free_batched(page); 3027 free_unref_page_commit(page, pfn); 3028 3029 /* 3030 * Guard against excessive IRQ disabled times when we get 3031 * a large list of pages to free. 3032 */ 3033 if (++batch_count == SWAP_CLUSTER_MAX) { 3034 local_irq_restore(flags); 3035 batch_count = 0; 3036 local_irq_save(flags); 3037 } 3038 } 3039 local_irq_restore(flags); 3040 } 3041 3042 /* 3043 * split_page takes a non-compound higher-order page, and splits it into 3044 * n (1<<order) sub-pages: page[0..n] 3045 * Each sub-page must be freed individually. 3046 * 3047 * Note: this is probably too low level an operation for use in drivers. 3048 * Please consult with lkml before using this in your driver. 3049 */ 3050 void split_page(struct page *page, unsigned int order) 3051 { 3052 int i; 3053 3054 VM_BUG_ON_PAGE(PageCompound(page), page); 3055 VM_BUG_ON_PAGE(!page_count(page), page); 3056 3057 for (i = 1; i < (1 << order); i++) 3058 set_page_refcounted(page + i); 3059 split_page_owner(page, order); 3060 } 3061 EXPORT_SYMBOL_GPL(split_page); 3062 3063 int __isolate_free_page(struct page *page, unsigned int order) 3064 { 3065 struct free_area *area = &page_zone(page)->free_area[order]; 3066 unsigned long watermark; 3067 struct zone *zone; 3068 int mt; 3069 3070 BUG_ON(!PageBuddy(page)); 3071 3072 zone = page_zone(page); 3073 mt = get_pageblock_migratetype(page); 3074 3075 if (!is_migrate_isolate(mt)) { 3076 /* 3077 * Obey watermarks as if the page was being allocated. We can 3078 * emulate a high-order watermark check with a raised order-0 3079 * watermark, because we already know our high-order page 3080 * exists. 3081 */ 3082 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3083 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3084 return 0; 3085 3086 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3087 } 3088 3089 /* Remove page from free list */ 3090 3091 del_page_from_free_area(page, area); 3092 3093 /* 3094 * Set the pageblock if the isolated page is at least half of a 3095 * pageblock 3096 */ 3097 if (order >= pageblock_order - 1) { 3098 struct page *endpage = page + (1 << order) - 1; 3099 for (; page < endpage; page += pageblock_nr_pages) { 3100 int mt = get_pageblock_migratetype(page); 3101 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3102 && !is_migrate_highatomic(mt)) 3103 set_pageblock_migratetype(page, 3104 MIGRATE_MOVABLE); 3105 } 3106 } 3107 3108 3109 return 1UL << order; 3110 } 3111 3112 /* 3113 * Update NUMA hit/miss statistics 3114 * 3115 * Must be called with interrupts disabled. 3116 */ 3117 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3118 { 3119 #ifdef CONFIG_NUMA 3120 enum numa_stat_item local_stat = NUMA_LOCAL; 3121 3122 /* skip numa counters update if numa stats is disabled */ 3123 if (!static_branch_likely(&vm_numa_stat_key)) 3124 return; 3125 3126 if (zone_to_nid(z) != numa_node_id()) 3127 local_stat = NUMA_OTHER; 3128 3129 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3130 __inc_numa_state(z, NUMA_HIT); 3131 else { 3132 __inc_numa_state(z, NUMA_MISS); 3133 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3134 } 3135 __inc_numa_state(z, local_stat); 3136 #endif 3137 } 3138 3139 /* Remove page from the per-cpu list, caller must protect the list */ 3140 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3141 unsigned int alloc_flags, 3142 struct per_cpu_pages *pcp, 3143 struct list_head *list) 3144 { 3145 struct page *page; 3146 3147 do { 3148 if (list_empty(list)) { 3149 pcp->count += rmqueue_bulk(zone, 0, 3150 pcp->batch, list, 3151 migratetype, alloc_flags); 3152 if (unlikely(list_empty(list))) 3153 return NULL; 3154 } 3155 3156 page = list_first_entry(list, struct page, lru); 3157 list_del(&page->lru); 3158 pcp->count--; 3159 } while (check_new_pcp(page)); 3160 3161 return page; 3162 } 3163 3164 /* Lock and remove page from the per-cpu list */ 3165 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3166 struct zone *zone, gfp_t gfp_flags, 3167 int migratetype, unsigned int alloc_flags) 3168 { 3169 struct per_cpu_pages *pcp; 3170 struct list_head *list; 3171 struct page *page; 3172 unsigned long flags; 3173 3174 local_irq_save(flags); 3175 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3176 list = &pcp->lists[migratetype]; 3177 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3178 if (page) { 3179 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3180 zone_statistics(preferred_zone, zone); 3181 } 3182 local_irq_restore(flags); 3183 return page; 3184 } 3185 3186 /* 3187 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3188 */ 3189 static inline 3190 struct page *rmqueue(struct zone *preferred_zone, 3191 struct zone *zone, unsigned int order, 3192 gfp_t gfp_flags, unsigned int alloc_flags, 3193 int migratetype) 3194 { 3195 unsigned long flags; 3196 struct page *page; 3197 3198 if (likely(order == 0)) { 3199 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3200 migratetype, alloc_flags); 3201 goto out; 3202 } 3203 3204 /* 3205 * We most definitely don't want callers attempting to 3206 * allocate greater than order-1 page units with __GFP_NOFAIL. 3207 */ 3208 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3209 spin_lock_irqsave(&zone->lock, flags); 3210 3211 do { 3212 page = NULL; 3213 if (alloc_flags & ALLOC_HARDER) { 3214 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3215 if (page) 3216 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3217 } 3218 if (!page) 3219 page = __rmqueue(zone, order, migratetype, alloc_flags); 3220 } while (page && check_new_pages(page, order)); 3221 spin_unlock(&zone->lock); 3222 if (!page) 3223 goto failed; 3224 __mod_zone_freepage_state(zone, -(1 << order), 3225 get_pcppage_migratetype(page)); 3226 3227 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3228 zone_statistics(preferred_zone, zone); 3229 local_irq_restore(flags); 3230 3231 out: 3232 /* Separate test+clear to avoid unnecessary atomics */ 3233 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3234 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3235 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3236 } 3237 3238 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3239 return page; 3240 3241 failed: 3242 local_irq_restore(flags); 3243 return NULL; 3244 } 3245 3246 #ifdef CONFIG_FAIL_PAGE_ALLOC 3247 3248 static struct { 3249 struct fault_attr attr; 3250 3251 bool ignore_gfp_highmem; 3252 bool ignore_gfp_reclaim; 3253 u32 min_order; 3254 } fail_page_alloc = { 3255 .attr = FAULT_ATTR_INITIALIZER, 3256 .ignore_gfp_reclaim = true, 3257 .ignore_gfp_highmem = true, 3258 .min_order = 1, 3259 }; 3260 3261 static int __init setup_fail_page_alloc(char *str) 3262 { 3263 return setup_fault_attr(&fail_page_alloc.attr, str); 3264 } 3265 __setup("fail_page_alloc=", setup_fail_page_alloc); 3266 3267 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3268 { 3269 if (order < fail_page_alloc.min_order) 3270 return false; 3271 if (gfp_mask & __GFP_NOFAIL) 3272 return false; 3273 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3274 return false; 3275 if (fail_page_alloc.ignore_gfp_reclaim && 3276 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3277 return false; 3278 3279 return should_fail(&fail_page_alloc.attr, 1 << order); 3280 } 3281 3282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3283 3284 static int __init fail_page_alloc_debugfs(void) 3285 { 3286 umode_t mode = S_IFREG | 0600; 3287 struct dentry *dir; 3288 3289 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3290 &fail_page_alloc.attr); 3291 3292 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3293 &fail_page_alloc.ignore_gfp_reclaim); 3294 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3295 &fail_page_alloc.ignore_gfp_highmem); 3296 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3297 3298 return 0; 3299 } 3300 3301 late_initcall(fail_page_alloc_debugfs); 3302 3303 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3304 3305 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3306 3307 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3308 { 3309 return false; 3310 } 3311 3312 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3313 3314 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3315 { 3316 return __should_fail_alloc_page(gfp_mask, order); 3317 } 3318 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3319 3320 /* 3321 * Return true if free base pages are above 'mark'. For high-order checks it 3322 * will return true of the order-0 watermark is reached and there is at least 3323 * one free page of a suitable size. Checking now avoids taking the zone lock 3324 * to check in the allocation paths if no pages are free. 3325 */ 3326 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3327 int classzone_idx, unsigned int alloc_flags, 3328 long free_pages) 3329 { 3330 long min = mark; 3331 int o; 3332 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3333 3334 /* free_pages may go negative - that's OK */ 3335 free_pages -= (1 << order) - 1; 3336 3337 if (alloc_flags & ALLOC_HIGH) 3338 min -= min / 2; 3339 3340 /* 3341 * If the caller does not have rights to ALLOC_HARDER then subtract 3342 * the high-atomic reserves. This will over-estimate the size of the 3343 * atomic reserve but it avoids a search. 3344 */ 3345 if (likely(!alloc_harder)) { 3346 free_pages -= z->nr_reserved_highatomic; 3347 } else { 3348 /* 3349 * OOM victims can try even harder than normal ALLOC_HARDER 3350 * users on the grounds that it's definitely going to be in 3351 * the exit path shortly and free memory. Any allocation it 3352 * makes during the free path will be small and short-lived. 3353 */ 3354 if (alloc_flags & ALLOC_OOM) 3355 min -= min / 2; 3356 else 3357 min -= min / 4; 3358 } 3359 3360 3361 #ifdef CONFIG_CMA 3362 /* If allocation can't use CMA areas don't use free CMA pages */ 3363 if (!(alloc_flags & ALLOC_CMA)) 3364 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3365 #endif 3366 3367 /* 3368 * Check watermarks for an order-0 allocation request. If these 3369 * are not met, then a high-order request also cannot go ahead 3370 * even if a suitable page happened to be free. 3371 */ 3372 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3373 return false; 3374 3375 /* If this is an order-0 request then the watermark is fine */ 3376 if (!order) 3377 return true; 3378 3379 /* For a high-order request, check at least one suitable page is free */ 3380 for (o = order; o < MAX_ORDER; o++) { 3381 struct free_area *area = &z->free_area[o]; 3382 int mt; 3383 3384 if (!area->nr_free) 3385 continue; 3386 3387 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3388 if (!free_area_empty(area, mt)) 3389 return true; 3390 } 3391 3392 #ifdef CONFIG_CMA 3393 if ((alloc_flags & ALLOC_CMA) && 3394 !free_area_empty(area, MIGRATE_CMA)) { 3395 return true; 3396 } 3397 #endif 3398 if (alloc_harder && 3399 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3400 return true; 3401 } 3402 return false; 3403 } 3404 3405 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3406 int classzone_idx, unsigned int alloc_flags) 3407 { 3408 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3409 zone_page_state(z, NR_FREE_PAGES)); 3410 } 3411 3412 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3413 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3414 { 3415 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3416 long cma_pages = 0; 3417 3418 #ifdef CONFIG_CMA 3419 /* If allocation can't use CMA areas don't use free CMA pages */ 3420 if (!(alloc_flags & ALLOC_CMA)) 3421 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3422 #endif 3423 3424 /* 3425 * Fast check for order-0 only. If this fails then the reserves 3426 * need to be calculated. There is a corner case where the check 3427 * passes but only the high-order atomic reserve are free. If 3428 * the caller is !atomic then it'll uselessly search the free 3429 * list. That corner case is then slower but it is harmless. 3430 */ 3431 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3432 return true; 3433 3434 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3435 free_pages); 3436 } 3437 3438 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3439 unsigned long mark, int classzone_idx) 3440 { 3441 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3442 3443 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3444 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3445 3446 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3447 free_pages); 3448 } 3449 3450 #ifdef CONFIG_NUMA 3451 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3452 { 3453 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3454 RECLAIM_DISTANCE; 3455 } 3456 #else /* CONFIG_NUMA */ 3457 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3458 { 3459 return true; 3460 } 3461 #endif /* CONFIG_NUMA */ 3462 3463 /* 3464 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3465 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3466 * premature use of a lower zone may cause lowmem pressure problems that 3467 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3468 * probably too small. It only makes sense to spread allocations to avoid 3469 * fragmentation between the Normal and DMA32 zones. 3470 */ 3471 static inline unsigned int 3472 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3473 { 3474 unsigned int alloc_flags = 0; 3475 3476 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3477 alloc_flags |= ALLOC_KSWAPD; 3478 3479 #ifdef CONFIG_ZONE_DMA32 3480 if (!zone) 3481 return alloc_flags; 3482 3483 if (zone_idx(zone) != ZONE_NORMAL) 3484 return alloc_flags; 3485 3486 /* 3487 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3488 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3489 * on UMA that if Normal is populated then so is DMA32. 3490 */ 3491 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3492 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3493 return alloc_flags; 3494 3495 alloc_flags |= ALLOC_NOFRAGMENT; 3496 #endif /* CONFIG_ZONE_DMA32 */ 3497 return alloc_flags; 3498 } 3499 3500 /* 3501 * get_page_from_freelist goes through the zonelist trying to allocate 3502 * a page. 3503 */ 3504 static struct page * 3505 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3506 const struct alloc_context *ac) 3507 { 3508 struct zoneref *z; 3509 struct zone *zone; 3510 struct pglist_data *last_pgdat_dirty_limit = NULL; 3511 bool no_fallback; 3512 3513 retry: 3514 /* 3515 * Scan zonelist, looking for a zone with enough free. 3516 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3517 */ 3518 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3519 z = ac->preferred_zoneref; 3520 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3521 ac->nodemask) { 3522 struct page *page; 3523 unsigned long mark; 3524 3525 if (cpusets_enabled() && 3526 (alloc_flags & ALLOC_CPUSET) && 3527 !__cpuset_zone_allowed(zone, gfp_mask)) 3528 continue; 3529 /* 3530 * When allocating a page cache page for writing, we 3531 * want to get it from a node that is within its dirty 3532 * limit, such that no single node holds more than its 3533 * proportional share of globally allowed dirty pages. 3534 * The dirty limits take into account the node's 3535 * lowmem reserves and high watermark so that kswapd 3536 * should be able to balance it without having to 3537 * write pages from its LRU list. 3538 * 3539 * XXX: For now, allow allocations to potentially 3540 * exceed the per-node dirty limit in the slowpath 3541 * (spread_dirty_pages unset) before going into reclaim, 3542 * which is important when on a NUMA setup the allowed 3543 * nodes are together not big enough to reach the 3544 * global limit. The proper fix for these situations 3545 * will require awareness of nodes in the 3546 * dirty-throttling and the flusher threads. 3547 */ 3548 if (ac->spread_dirty_pages) { 3549 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3550 continue; 3551 3552 if (!node_dirty_ok(zone->zone_pgdat)) { 3553 last_pgdat_dirty_limit = zone->zone_pgdat; 3554 continue; 3555 } 3556 } 3557 3558 if (no_fallback && nr_online_nodes > 1 && 3559 zone != ac->preferred_zoneref->zone) { 3560 int local_nid; 3561 3562 /* 3563 * If moving to a remote node, retry but allow 3564 * fragmenting fallbacks. Locality is more important 3565 * than fragmentation avoidance. 3566 */ 3567 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3568 if (zone_to_nid(zone) != local_nid) { 3569 alloc_flags &= ~ALLOC_NOFRAGMENT; 3570 goto retry; 3571 } 3572 } 3573 3574 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3575 if (!zone_watermark_fast(zone, order, mark, 3576 ac_classzone_idx(ac), alloc_flags)) { 3577 int ret; 3578 3579 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3580 /* 3581 * Watermark failed for this zone, but see if we can 3582 * grow this zone if it contains deferred pages. 3583 */ 3584 if (static_branch_unlikely(&deferred_pages)) { 3585 if (_deferred_grow_zone(zone, order)) 3586 goto try_this_zone; 3587 } 3588 #endif 3589 /* Checked here to keep the fast path fast */ 3590 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3591 if (alloc_flags & ALLOC_NO_WATERMARKS) 3592 goto try_this_zone; 3593 3594 if (node_reclaim_mode == 0 || 3595 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3596 continue; 3597 3598 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3599 switch (ret) { 3600 case NODE_RECLAIM_NOSCAN: 3601 /* did not scan */ 3602 continue; 3603 case NODE_RECLAIM_FULL: 3604 /* scanned but unreclaimable */ 3605 continue; 3606 default: 3607 /* did we reclaim enough */ 3608 if (zone_watermark_ok(zone, order, mark, 3609 ac_classzone_idx(ac), alloc_flags)) 3610 goto try_this_zone; 3611 3612 continue; 3613 } 3614 } 3615 3616 try_this_zone: 3617 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3618 gfp_mask, alloc_flags, ac->migratetype); 3619 if (page) { 3620 prep_new_page(page, order, gfp_mask, alloc_flags); 3621 3622 /* 3623 * If this is a high-order atomic allocation then check 3624 * if the pageblock should be reserved for the future 3625 */ 3626 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3627 reserve_highatomic_pageblock(page, zone, order); 3628 3629 return page; 3630 } else { 3631 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3632 /* Try again if zone has deferred pages */ 3633 if (static_branch_unlikely(&deferred_pages)) { 3634 if (_deferred_grow_zone(zone, order)) 3635 goto try_this_zone; 3636 } 3637 #endif 3638 } 3639 } 3640 3641 /* 3642 * It's possible on a UMA machine to get through all zones that are 3643 * fragmented. If avoiding fragmentation, reset and try again. 3644 */ 3645 if (no_fallback) { 3646 alloc_flags &= ~ALLOC_NOFRAGMENT; 3647 goto retry; 3648 } 3649 3650 return NULL; 3651 } 3652 3653 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3654 { 3655 unsigned int filter = SHOW_MEM_FILTER_NODES; 3656 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3657 3658 if (!__ratelimit(&show_mem_rs)) 3659 return; 3660 3661 /* 3662 * This documents exceptions given to allocations in certain 3663 * contexts that are allowed to allocate outside current's set 3664 * of allowed nodes. 3665 */ 3666 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3667 if (tsk_is_oom_victim(current) || 3668 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3669 filter &= ~SHOW_MEM_FILTER_NODES; 3670 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3671 filter &= ~SHOW_MEM_FILTER_NODES; 3672 3673 show_mem(filter, nodemask); 3674 } 3675 3676 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3677 { 3678 struct va_format vaf; 3679 va_list args; 3680 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3681 DEFAULT_RATELIMIT_BURST); 3682 3683 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3684 return; 3685 3686 va_start(args, fmt); 3687 vaf.fmt = fmt; 3688 vaf.va = &args; 3689 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3690 current->comm, &vaf, gfp_mask, &gfp_mask, 3691 nodemask_pr_args(nodemask)); 3692 va_end(args); 3693 3694 cpuset_print_current_mems_allowed(); 3695 pr_cont("\n"); 3696 dump_stack(); 3697 warn_alloc_show_mem(gfp_mask, nodemask); 3698 } 3699 3700 static inline struct page * 3701 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3702 unsigned int alloc_flags, 3703 const struct alloc_context *ac) 3704 { 3705 struct page *page; 3706 3707 page = get_page_from_freelist(gfp_mask, order, 3708 alloc_flags|ALLOC_CPUSET, ac); 3709 /* 3710 * fallback to ignore cpuset restriction if our nodes 3711 * are depleted 3712 */ 3713 if (!page) 3714 page = get_page_from_freelist(gfp_mask, order, 3715 alloc_flags, ac); 3716 3717 return page; 3718 } 3719 3720 static inline struct page * 3721 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3722 const struct alloc_context *ac, unsigned long *did_some_progress) 3723 { 3724 struct oom_control oc = { 3725 .zonelist = ac->zonelist, 3726 .nodemask = ac->nodemask, 3727 .memcg = NULL, 3728 .gfp_mask = gfp_mask, 3729 .order = order, 3730 }; 3731 struct page *page; 3732 3733 *did_some_progress = 0; 3734 3735 /* 3736 * Acquire the oom lock. If that fails, somebody else is 3737 * making progress for us. 3738 */ 3739 if (!mutex_trylock(&oom_lock)) { 3740 *did_some_progress = 1; 3741 schedule_timeout_uninterruptible(1); 3742 return NULL; 3743 } 3744 3745 /* 3746 * Go through the zonelist yet one more time, keep very high watermark 3747 * here, this is only to catch a parallel oom killing, we must fail if 3748 * we're still under heavy pressure. But make sure that this reclaim 3749 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3750 * allocation which will never fail due to oom_lock already held. 3751 */ 3752 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3753 ~__GFP_DIRECT_RECLAIM, order, 3754 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3755 if (page) 3756 goto out; 3757 3758 /* Coredumps can quickly deplete all memory reserves */ 3759 if (current->flags & PF_DUMPCORE) 3760 goto out; 3761 /* The OOM killer will not help higher order allocs */ 3762 if (order > PAGE_ALLOC_COSTLY_ORDER) 3763 goto out; 3764 /* 3765 * We have already exhausted all our reclaim opportunities without any 3766 * success so it is time to admit defeat. We will skip the OOM killer 3767 * because it is very likely that the caller has a more reasonable 3768 * fallback than shooting a random task. 3769 */ 3770 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3771 goto out; 3772 /* The OOM killer does not needlessly kill tasks for lowmem */ 3773 if (ac->high_zoneidx < ZONE_NORMAL) 3774 goto out; 3775 if (pm_suspended_storage()) 3776 goto out; 3777 /* 3778 * XXX: GFP_NOFS allocations should rather fail than rely on 3779 * other request to make a forward progress. 3780 * We are in an unfortunate situation where out_of_memory cannot 3781 * do much for this context but let's try it to at least get 3782 * access to memory reserved if the current task is killed (see 3783 * out_of_memory). Once filesystems are ready to handle allocation 3784 * failures more gracefully we should just bail out here. 3785 */ 3786 3787 /* The OOM killer may not free memory on a specific node */ 3788 if (gfp_mask & __GFP_THISNODE) 3789 goto out; 3790 3791 /* Exhausted what can be done so it's blame time */ 3792 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3793 *did_some_progress = 1; 3794 3795 /* 3796 * Help non-failing allocations by giving them access to memory 3797 * reserves 3798 */ 3799 if (gfp_mask & __GFP_NOFAIL) 3800 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3801 ALLOC_NO_WATERMARKS, ac); 3802 } 3803 out: 3804 mutex_unlock(&oom_lock); 3805 return page; 3806 } 3807 3808 /* 3809 * Maximum number of compaction retries wit a progress before OOM 3810 * killer is consider as the only way to move forward. 3811 */ 3812 #define MAX_COMPACT_RETRIES 16 3813 3814 #ifdef CONFIG_COMPACTION 3815 /* Try memory compaction for high-order allocations before reclaim */ 3816 static struct page * 3817 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3818 unsigned int alloc_flags, const struct alloc_context *ac, 3819 enum compact_priority prio, enum compact_result *compact_result) 3820 { 3821 struct page *page = NULL; 3822 unsigned long pflags; 3823 unsigned int noreclaim_flag; 3824 3825 if (!order) 3826 return NULL; 3827 3828 psi_memstall_enter(&pflags); 3829 noreclaim_flag = memalloc_noreclaim_save(); 3830 3831 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3832 prio, &page); 3833 3834 memalloc_noreclaim_restore(noreclaim_flag); 3835 psi_memstall_leave(&pflags); 3836 3837 /* 3838 * At least in one zone compaction wasn't deferred or skipped, so let's 3839 * count a compaction stall 3840 */ 3841 count_vm_event(COMPACTSTALL); 3842 3843 /* Prep a captured page if available */ 3844 if (page) 3845 prep_new_page(page, order, gfp_mask, alloc_flags); 3846 3847 /* Try get a page from the freelist if available */ 3848 if (!page) 3849 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3850 3851 if (page) { 3852 struct zone *zone = page_zone(page); 3853 3854 zone->compact_blockskip_flush = false; 3855 compaction_defer_reset(zone, order, true); 3856 count_vm_event(COMPACTSUCCESS); 3857 return page; 3858 } 3859 3860 /* 3861 * It's bad if compaction run occurs and fails. The most likely reason 3862 * is that pages exist, but not enough to satisfy watermarks. 3863 */ 3864 count_vm_event(COMPACTFAIL); 3865 3866 cond_resched(); 3867 3868 return NULL; 3869 } 3870 3871 static inline bool 3872 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3873 enum compact_result compact_result, 3874 enum compact_priority *compact_priority, 3875 int *compaction_retries) 3876 { 3877 int max_retries = MAX_COMPACT_RETRIES; 3878 int min_priority; 3879 bool ret = false; 3880 int retries = *compaction_retries; 3881 enum compact_priority priority = *compact_priority; 3882 3883 if (!order) 3884 return false; 3885 3886 if (compaction_made_progress(compact_result)) 3887 (*compaction_retries)++; 3888 3889 /* 3890 * compaction considers all the zone as desperately out of memory 3891 * so it doesn't really make much sense to retry except when the 3892 * failure could be caused by insufficient priority 3893 */ 3894 if (compaction_failed(compact_result)) 3895 goto check_priority; 3896 3897 /* 3898 * make sure the compaction wasn't deferred or didn't bail out early 3899 * due to locks contention before we declare that we should give up. 3900 * But do not retry if the given zonelist is not suitable for 3901 * compaction. 3902 */ 3903 if (compaction_withdrawn(compact_result)) { 3904 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3905 goto out; 3906 } 3907 3908 /* 3909 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3910 * costly ones because they are de facto nofail and invoke OOM 3911 * killer to move on while costly can fail and users are ready 3912 * to cope with that. 1/4 retries is rather arbitrary but we 3913 * would need much more detailed feedback from compaction to 3914 * make a better decision. 3915 */ 3916 if (order > PAGE_ALLOC_COSTLY_ORDER) 3917 max_retries /= 4; 3918 if (*compaction_retries <= max_retries) { 3919 ret = true; 3920 goto out; 3921 } 3922 3923 /* 3924 * Make sure there are attempts at the highest priority if we exhausted 3925 * all retries or failed at the lower priorities. 3926 */ 3927 check_priority: 3928 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3929 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3930 3931 if (*compact_priority > min_priority) { 3932 (*compact_priority)--; 3933 *compaction_retries = 0; 3934 ret = true; 3935 } 3936 out: 3937 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3938 return ret; 3939 } 3940 #else 3941 static inline struct page * 3942 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3943 unsigned int alloc_flags, const struct alloc_context *ac, 3944 enum compact_priority prio, enum compact_result *compact_result) 3945 { 3946 *compact_result = COMPACT_SKIPPED; 3947 return NULL; 3948 } 3949 3950 static inline bool 3951 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3952 enum compact_result compact_result, 3953 enum compact_priority *compact_priority, 3954 int *compaction_retries) 3955 { 3956 struct zone *zone; 3957 struct zoneref *z; 3958 3959 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3960 return false; 3961 3962 /* 3963 * There are setups with compaction disabled which would prefer to loop 3964 * inside the allocator rather than hit the oom killer prematurely. 3965 * Let's give them a good hope and keep retrying while the order-0 3966 * watermarks are OK. 3967 */ 3968 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3969 ac->nodemask) { 3970 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3971 ac_classzone_idx(ac), alloc_flags)) 3972 return true; 3973 } 3974 return false; 3975 } 3976 #endif /* CONFIG_COMPACTION */ 3977 3978 #ifdef CONFIG_LOCKDEP 3979 static struct lockdep_map __fs_reclaim_map = 3980 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3981 3982 static bool __need_fs_reclaim(gfp_t gfp_mask) 3983 { 3984 gfp_mask = current_gfp_context(gfp_mask); 3985 3986 /* no reclaim without waiting on it */ 3987 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3988 return false; 3989 3990 /* this guy won't enter reclaim */ 3991 if (current->flags & PF_MEMALLOC) 3992 return false; 3993 3994 /* We're only interested __GFP_FS allocations for now */ 3995 if (!(gfp_mask & __GFP_FS)) 3996 return false; 3997 3998 if (gfp_mask & __GFP_NOLOCKDEP) 3999 return false; 4000 4001 return true; 4002 } 4003 4004 void __fs_reclaim_acquire(void) 4005 { 4006 lock_map_acquire(&__fs_reclaim_map); 4007 } 4008 4009 void __fs_reclaim_release(void) 4010 { 4011 lock_map_release(&__fs_reclaim_map); 4012 } 4013 4014 void fs_reclaim_acquire(gfp_t gfp_mask) 4015 { 4016 if (__need_fs_reclaim(gfp_mask)) 4017 __fs_reclaim_acquire(); 4018 } 4019 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4020 4021 void fs_reclaim_release(gfp_t gfp_mask) 4022 { 4023 if (__need_fs_reclaim(gfp_mask)) 4024 __fs_reclaim_release(); 4025 } 4026 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4027 #endif 4028 4029 /* Perform direct synchronous page reclaim */ 4030 static int 4031 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4032 const struct alloc_context *ac) 4033 { 4034 struct reclaim_state reclaim_state; 4035 int progress; 4036 unsigned int noreclaim_flag; 4037 unsigned long pflags; 4038 4039 cond_resched(); 4040 4041 /* We now go into synchronous reclaim */ 4042 cpuset_memory_pressure_bump(); 4043 psi_memstall_enter(&pflags); 4044 fs_reclaim_acquire(gfp_mask); 4045 noreclaim_flag = memalloc_noreclaim_save(); 4046 reclaim_state.reclaimed_slab = 0; 4047 current->reclaim_state = &reclaim_state; 4048 4049 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4050 ac->nodemask); 4051 4052 current->reclaim_state = NULL; 4053 memalloc_noreclaim_restore(noreclaim_flag); 4054 fs_reclaim_release(gfp_mask); 4055 psi_memstall_leave(&pflags); 4056 4057 cond_resched(); 4058 4059 return progress; 4060 } 4061 4062 /* The really slow allocator path where we enter direct reclaim */ 4063 static inline struct page * 4064 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4065 unsigned int alloc_flags, const struct alloc_context *ac, 4066 unsigned long *did_some_progress) 4067 { 4068 struct page *page = NULL; 4069 bool drained = false; 4070 4071 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4072 if (unlikely(!(*did_some_progress))) 4073 return NULL; 4074 4075 retry: 4076 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4077 4078 /* 4079 * If an allocation failed after direct reclaim, it could be because 4080 * pages are pinned on the per-cpu lists or in high alloc reserves. 4081 * Shrink them them and try again 4082 */ 4083 if (!page && !drained) { 4084 unreserve_highatomic_pageblock(ac, false); 4085 drain_all_pages(NULL); 4086 drained = true; 4087 goto retry; 4088 } 4089 4090 return page; 4091 } 4092 4093 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4094 const struct alloc_context *ac) 4095 { 4096 struct zoneref *z; 4097 struct zone *zone; 4098 pg_data_t *last_pgdat = NULL; 4099 enum zone_type high_zoneidx = ac->high_zoneidx; 4100 4101 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4102 ac->nodemask) { 4103 if (last_pgdat != zone->zone_pgdat) 4104 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4105 last_pgdat = zone->zone_pgdat; 4106 } 4107 } 4108 4109 static inline unsigned int 4110 gfp_to_alloc_flags(gfp_t gfp_mask) 4111 { 4112 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4113 4114 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4115 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4116 4117 /* 4118 * The caller may dip into page reserves a bit more if the caller 4119 * cannot run direct reclaim, or if the caller has realtime scheduling 4120 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4121 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4122 */ 4123 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4124 4125 if (gfp_mask & __GFP_ATOMIC) { 4126 /* 4127 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4128 * if it can't schedule. 4129 */ 4130 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4131 alloc_flags |= ALLOC_HARDER; 4132 /* 4133 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4134 * comment for __cpuset_node_allowed(). 4135 */ 4136 alloc_flags &= ~ALLOC_CPUSET; 4137 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4138 alloc_flags |= ALLOC_HARDER; 4139 4140 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4141 alloc_flags |= ALLOC_KSWAPD; 4142 4143 #ifdef CONFIG_CMA 4144 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4145 alloc_flags |= ALLOC_CMA; 4146 #endif 4147 return alloc_flags; 4148 } 4149 4150 static bool oom_reserves_allowed(struct task_struct *tsk) 4151 { 4152 if (!tsk_is_oom_victim(tsk)) 4153 return false; 4154 4155 /* 4156 * !MMU doesn't have oom reaper so give access to memory reserves 4157 * only to the thread with TIF_MEMDIE set 4158 */ 4159 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4160 return false; 4161 4162 return true; 4163 } 4164 4165 /* 4166 * Distinguish requests which really need access to full memory 4167 * reserves from oom victims which can live with a portion of it 4168 */ 4169 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4170 { 4171 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4172 return 0; 4173 if (gfp_mask & __GFP_MEMALLOC) 4174 return ALLOC_NO_WATERMARKS; 4175 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4176 return ALLOC_NO_WATERMARKS; 4177 if (!in_interrupt()) { 4178 if (current->flags & PF_MEMALLOC) 4179 return ALLOC_NO_WATERMARKS; 4180 else if (oom_reserves_allowed(current)) 4181 return ALLOC_OOM; 4182 } 4183 4184 return 0; 4185 } 4186 4187 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4188 { 4189 return !!__gfp_pfmemalloc_flags(gfp_mask); 4190 } 4191 4192 /* 4193 * Checks whether it makes sense to retry the reclaim to make a forward progress 4194 * for the given allocation request. 4195 * 4196 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4197 * without success, or when we couldn't even meet the watermark if we 4198 * reclaimed all remaining pages on the LRU lists. 4199 * 4200 * Returns true if a retry is viable or false to enter the oom path. 4201 */ 4202 static inline bool 4203 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4204 struct alloc_context *ac, int alloc_flags, 4205 bool did_some_progress, int *no_progress_loops) 4206 { 4207 struct zone *zone; 4208 struct zoneref *z; 4209 bool ret = false; 4210 4211 /* 4212 * Costly allocations might have made a progress but this doesn't mean 4213 * their order will become available due to high fragmentation so 4214 * always increment the no progress counter for them 4215 */ 4216 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4217 *no_progress_loops = 0; 4218 else 4219 (*no_progress_loops)++; 4220 4221 /* 4222 * Make sure we converge to OOM if we cannot make any progress 4223 * several times in the row. 4224 */ 4225 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4226 /* Before OOM, exhaust highatomic_reserve */ 4227 return unreserve_highatomic_pageblock(ac, true); 4228 } 4229 4230 /* 4231 * Keep reclaiming pages while there is a chance this will lead 4232 * somewhere. If none of the target zones can satisfy our allocation 4233 * request even if all reclaimable pages are considered then we are 4234 * screwed and have to go OOM. 4235 */ 4236 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4237 ac->nodemask) { 4238 unsigned long available; 4239 unsigned long reclaimable; 4240 unsigned long min_wmark = min_wmark_pages(zone); 4241 bool wmark; 4242 4243 available = reclaimable = zone_reclaimable_pages(zone); 4244 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4245 4246 /* 4247 * Would the allocation succeed if we reclaimed all 4248 * reclaimable pages? 4249 */ 4250 wmark = __zone_watermark_ok(zone, order, min_wmark, 4251 ac_classzone_idx(ac), alloc_flags, available); 4252 trace_reclaim_retry_zone(z, order, reclaimable, 4253 available, min_wmark, *no_progress_loops, wmark); 4254 if (wmark) { 4255 /* 4256 * If we didn't make any progress and have a lot of 4257 * dirty + writeback pages then we should wait for 4258 * an IO to complete to slow down the reclaim and 4259 * prevent from pre mature OOM 4260 */ 4261 if (!did_some_progress) { 4262 unsigned long write_pending; 4263 4264 write_pending = zone_page_state_snapshot(zone, 4265 NR_ZONE_WRITE_PENDING); 4266 4267 if (2 * write_pending > reclaimable) { 4268 congestion_wait(BLK_RW_ASYNC, HZ/10); 4269 return true; 4270 } 4271 } 4272 4273 ret = true; 4274 goto out; 4275 } 4276 } 4277 4278 out: 4279 /* 4280 * Memory allocation/reclaim might be called from a WQ context and the 4281 * current implementation of the WQ concurrency control doesn't 4282 * recognize that a particular WQ is congested if the worker thread is 4283 * looping without ever sleeping. Therefore we have to do a short sleep 4284 * here rather than calling cond_resched(). 4285 */ 4286 if (current->flags & PF_WQ_WORKER) 4287 schedule_timeout_uninterruptible(1); 4288 else 4289 cond_resched(); 4290 return ret; 4291 } 4292 4293 static inline bool 4294 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4295 { 4296 /* 4297 * It's possible that cpuset's mems_allowed and the nodemask from 4298 * mempolicy don't intersect. This should be normally dealt with by 4299 * policy_nodemask(), but it's possible to race with cpuset update in 4300 * such a way the check therein was true, and then it became false 4301 * before we got our cpuset_mems_cookie here. 4302 * This assumes that for all allocations, ac->nodemask can come only 4303 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4304 * when it does not intersect with the cpuset restrictions) or the 4305 * caller can deal with a violated nodemask. 4306 */ 4307 if (cpusets_enabled() && ac->nodemask && 4308 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4309 ac->nodemask = NULL; 4310 return true; 4311 } 4312 4313 /* 4314 * When updating a task's mems_allowed or mempolicy nodemask, it is 4315 * possible to race with parallel threads in such a way that our 4316 * allocation can fail while the mask is being updated. If we are about 4317 * to fail, check if the cpuset changed during allocation and if so, 4318 * retry. 4319 */ 4320 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4321 return true; 4322 4323 return false; 4324 } 4325 4326 static inline struct page * 4327 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4328 struct alloc_context *ac) 4329 { 4330 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4331 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4332 struct page *page = NULL; 4333 unsigned int alloc_flags; 4334 unsigned long did_some_progress; 4335 enum compact_priority compact_priority; 4336 enum compact_result compact_result; 4337 int compaction_retries; 4338 int no_progress_loops; 4339 unsigned int cpuset_mems_cookie; 4340 int reserve_flags; 4341 4342 /* 4343 * We also sanity check to catch abuse of atomic reserves being used by 4344 * callers that are not in atomic context. 4345 */ 4346 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4347 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4348 gfp_mask &= ~__GFP_ATOMIC; 4349 4350 retry_cpuset: 4351 compaction_retries = 0; 4352 no_progress_loops = 0; 4353 compact_priority = DEF_COMPACT_PRIORITY; 4354 cpuset_mems_cookie = read_mems_allowed_begin(); 4355 4356 /* 4357 * The fast path uses conservative alloc_flags to succeed only until 4358 * kswapd needs to be woken up, and to avoid the cost of setting up 4359 * alloc_flags precisely. So we do that now. 4360 */ 4361 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4362 4363 /* 4364 * We need to recalculate the starting point for the zonelist iterator 4365 * because we might have used different nodemask in the fast path, or 4366 * there was a cpuset modification and we are retrying - otherwise we 4367 * could end up iterating over non-eligible zones endlessly. 4368 */ 4369 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4370 ac->high_zoneidx, ac->nodemask); 4371 if (!ac->preferred_zoneref->zone) 4372 goto nopage; 4373 4374 if (alloc_flags & ALLOC_KSWAPD) 4375 wake_all_kswapds(order, gfp_mask, ac); 4376 4377 /* 4378 * The adjusted alloc_flags might result in immediate success, so try 4379 * that first 4380 */ 4381 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4382 if (page) 4383 goto got_pg; 4384 4385 /* 4386 * For costly allocations, try direct compaction first, as it's likely 4387 * that we have enough base pages and don't need to reclaim. For non- 4388 * movable high-order allocations, do that as well, as compaction will 4389 * try prevent permanent fragmentation by migrating from blocks of the 4390 * same migratetype. 4391 * Don't try this for allocations that are allowed to ignore 4392 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4393 */ 4394 if (can_direct_reclaim && 4395 (costly_order || 4396 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4397 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4398 page = __alloc_pages_direct_compact(gfp_mask, order, 4399 alloc_flags, ac, 4400 INIT_COMPACT_PRIORITY, 4401 &compact_result); 4402 if (page) 4403 goto got_pg; 4404 4405 /* 4406 * Checks for costly allocations with __GFP_NORETRY, which 4407 * includes THP page fault allocations 4408 */ 4409 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4410 /* 4411 * If compaction is deferred for high-order allocations, 4412 * it is because sync compaction recently failed. If 4413 * this is the case and the caller requested a THP 4414 * allocation, we do not want to heavily disrupt the 4415 * system, so we fail the allocation instead of entering 4416 * direct reclaim. 4417 */ 4418 if (compact_result == COMPACT_DEFERRED) 4419 goto nopage; 4420 4421 /* 4422 * Looks like reclaim/compaction is worth trying, but 4423 * sync compaction could be very expensive, so keep 4424 * using async compaction. 4425 */ 4426 compact_priority = INIT_COMPACT_PRIORITY; 4427 } 4428 } 4429 4430 retry: 4431 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4432 if (alloc_flags & ALLOC_KSWAPD) 4433 wake_all_kswapds(order, gfp_mask, ac); 4434 4435 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4436 if (reserve_flags) 4437 alloc_flags = reserve_flags; 4438 4439 /* 4440 * Reset the nodemask and zonelist iterators if memory policies can be 4441 * ignored. These allocations are high priority and system rather than 4442 * user oriented. 4443 */ 4444 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4445 ac->nodemask = NULL; 4446 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4447 ac->high_zoneidx, ac->nodemask); 4448 } 4449 4450 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4451 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4452 if (page) 4453 goto got_pg; 4454 4455 /* Caller is not willing to reclaim, we can't balance anything */ 4456 if (!can_direct_reclaim) 4457 goto nopage; 4458 4459 /* Avoid recursion of direct reclaim */ 4460 if (current->flags & PF_MEMALLOC) 4461 goto nopage; 4462 4463 /* Try direct reclaim and then allocating */ 4464 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4465 &did_some_progress); 4466 if (page) 4467 goto got_pg; 4468 4469 /* Try direct compaction and then allocating */ 4470 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4471 compact_priority, &compact_result); 4472 if (page) 4473 goto got_pg; 4474 4475 /* Do not loop if specifically requested */ 4476 if (gfp_mask & __GFP_NORETRY) 4477 goto nopage; 4478 4479 /* 4480 * Do not retry costly high order allocations unless they are 4481 * __GFP_RETRY_MAYFAIL 4482 */ 4483 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4484 goto nopage; 4485 4486 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4487 did_some_progress > 0, &no_progress_loops)) 4488 goto retry; 4489 4490 /* 4491 * It doesn't make any sense to retry for the compaction if the order-0 4492 * reclaim is not able to make any progress because the current 4493 * implementation of the compaction depends on the sufficient amount 4494 * of free memory (see __compaction_suitable) 4495 */ 4496 if (did_some_progress > 0 && 4497 should_compact_retry(ac, order, alloc_flags, 4498 compact_result, &compact_priority, 4499 &compaction_retries)) 4500 goto retry; 4501 4502 4503 /* Deal with possible cpuset update races before we start OOM killing */ 4504 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4505 goto retry_cpuset; 4506 4507 /* Reclaim has failed us, start killing things */ 4508 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4509 if (page) 4510 goto got_pg; 4511 4512 /* Avoid allocations with no watermarks from looping endlessly */ 4513 if (tsk_is_oom_victim(current) && 4514 (alloc_flags == ALLOC_OOM || 4515 (gfp_mask & __GFP_NOMEMALLOC))) 4516 goto nopage; 4517 4518 /* Retry as long as the OOM killer is making progress */ 4519 if (did_some_progress) { 4520 no_progress_loops = 0; 4521 goto retry; 4522 } 4523 4524 nopage: 4525 /* Deal with possible cpuset update races before we fail */ 4526 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4527 goto retry_cpuset; 4528 4529 /* 4530 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4531 * we always retry 4532 */ 4533 if (gfp_mask & __GFP_NOFAIL) { 4534 /* 4535 * All existing users of the __GFP_NOFAIL are blockable, so warn 4536 * of any new users that actually require GFP_NOWAIT 4537 */ 4538 if (WARN_ON_ONCE(!can_direct_reclaim)) 4539 goto fail; 4540 4541 /* 4542 * PF_MEMALLOC request from this context is rather bizarre 4543 * because we cannot reclaim anything and only can loop waiting 4544 * for somebody to do a work for us 4545 */ 4546 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4547 4548 /* 4549 * non failing costly orders are a hard requirement which we 4550 * are not prepared for much so let's warn about these users 4551 * so that we can identify them and convert them to something 4552 * else. 4553 */ 4554 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4555 4556 /* 4557 * Help non-failing allocations by giving them access to memory 4558 * reserves but do not use ALLOC_NO_WATERMARKS because this 4559 * could deplete whole memory reserves which would just make 4560 * the situation worse 4561 */ 4562 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4563 if (page) 4564 goto got_pg; 4565 4566 cond_resched(); 4567 goto retry; 4568 } 4569 fail: 4570 warn_alloc(gfp_mask, ac->nodemask, 4571 "page allocation failure: order:%u", order); 4572 got_pg: 4573 return page; 4574 } 4575 4576 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4577 int preferred_nid, nodemask_t *nodemask, 4578 struct alloc_context *ac, gfp_t *alloc_mask, 4579 unsigned int *alloc_flags) 4580 { 4581 ac->high_zoneidx = gfp_zone(gfp_mask); 4582 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4583 ac->nodemask = nodemask; 4584 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4585 4586 if (cpusets_enabled()) { 4587 *alloc_mask |= __GFP_HARDWALL; 4588 if (!ac->nodemask) 4589 ac->nodemask = &cpuset_current_mems_allowed; 4590 else 4591 *alloc_flags |= ALLOC_CPUSET; 4592 } 4593 4594 fs_reclaim_acquire(gfp_mask); 4595 fs_reclaim_release(gfp_mask); 4596 4597 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4598 4599 if (should_fail_alloc_page(gfp_mask, order)) 4600 return false; 4601 4602 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4603 *alloc_flags |= ALLOC_CMA; 4604 4605 return true; 4606 } 4607 4608 /* Determine whether to spread dirty pages and what the first usable zone */ 4609 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4610 { 4611 /* Dirty zone balancing only done in the fast path */ 4612 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4613 4614 /* 4615 * The preferred zone is used for statistics but crucially it is 4616 * also used as the starting point for the zonelist iterator. It 4617 * may get reset for allocations that ignore memory policies. 4618 */ 4619 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4620 ac->high_zoneidx, ac->nodemask); 4621 } 4622 4623 /* 4624 * This is the 'heart' of the zoned buddy allocator. 4625 */ 4626 struct page * 4627 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4628 nodemask_t *nodemask) 4629 { 4630 struct page *page; 4631 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4632 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4633 struct alloc_context ac = { }; 4634 4635 /* 4636 * There are several places where we assume that the order value is sane 4637 * so bail out early if the request is out of bound. 4638 */ 4639 if (unlikely(order >= MAX_ORDER)) { 4640 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4641 return NULL; 4642 } 4643 4644 gfp_mask &= gfp_allowed_mask; 4645 alloc_mask = gfp_mask; 4646 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4647 return NULL; 4648 4649 finalise_ac(gfp_mask, &ac); 4650 4651 /* 4652 * Forbid the first pass from falling back to types that fragment 4653 * memory until all local zones are considered. 4654 */ 4655 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4656 4657 /* First allocation attempt */ 4658 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4659 if (likely(page)) 4660 goto out; 4661 4662 /* 4663 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4664 * resp. GFP_NOIO which has to be inherited for all allocation requests 4665 * from a particular context which has been marked by 4666 * memalloc_no{fs,io}_{save,restore}. 4667 */ 4668 alloc_mask = current_gfp_context(gfp_mask); 4669 ac.spread_dirty_pages = false; 4670 4671 /* 4672 * Restore the original nodemask if it was potentially replaced with 4673 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4674 */ 4675 if (unlikely(ac.nodemask != nodemask)) 4676 ac.nodemask = nodemask; 4677 4678 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4679 4680 out: 4681 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4682 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4683 __free_pages(page, order); 4684 page = NULL; 4685 } 4686 4687 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4688 4689 return page; 4690 } 4691 EXPORT_SYMBOL(__alloc_pages_nodemask); 4692 4693 /* 4694 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4695 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4696 * you need to access high mem. 4697 */ 4698 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4699 { 4700 struct page *page; 4701 4702 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4703 if (!page) 4704 return 0; 4705 return (unsigned long) page_address(page); 4706 } 4707 EXPORT_SYMBOL(__get_free_pages); 4708 4709 unsigned long get_zeroed_page(gfp_t gfp_mask) 4710 { 4711 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4712 } 4713 EXPORT_SYMBOL(get_zeroed_page); 4714 4715 static inline void free_the_page(struct page *page, unsigned int order) 4716 { 4717 if (order == 0) /* Via pcp? */ 4718 free_unref_page(page); 4719 else 4720 __free_pages_ok(page, order); 4721 } 4722 4723 void __free_pages(struct page *page, unsigned int order) 4724 { 4725 if (put_page_testzero(page)) 4726 free_the_page(page, order); 4727 } 4728 EXPORT_SYMBOL(__free_pages); 4729 4730 void free_pages(unsigned long addr, unsigned int order) 4731 { 4732 if (addr != 0) { 4733 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4734 __free_pages(virt_to_page((void *)addr), order); 4735 } 4736 } 4737 4738 EXPORT_SYMBOL(free_pages); 4739 4740 /* 4741 * Page Fragment: 4742 * An arbitrary-length arbitrary-offset area of memory which resides 4743 * within a 0 or higher order page. Multiple fragments within that page 4744 * are individually refcounted, in the page's reference counter. 4745 * 4746 * The page_frag functions below provide a simple allocation framework for 4747 * page fragments. This is used by the network stack and network device 4748 * drivers to provide a backing region of memory for use as either an 4749 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4750 */ 4751 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4752 gfp_t gfp_mask) 4753 { 4754 struct page *page = NULL; 4755 gfp_t gfp = gfp_mask; 4756 4757 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4758 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4759 __GFP_NOMEMALLOC; 4760 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4761 PAGE_FRAG_CACHE_MAX_ORDER); 4762 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4763 #endif 4764 if (unlikely(!page)) 4765 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4766 4767 nc->va = page ? page_address(page) : NULL; 4768 4769 return page; 4770 } 4771 4772 void __page_frag_cache_drain(struct page *page, unsigned int count) 4773 { 4774 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4775 4776 if (page_ref_sub_and_test(page, count)) 4777 free_the_page(page, compound_order(page)); 4778 } 4779 EXPORT_SYMBOL(__page_frag_cache_drain); 4780 4781 void *page_frag_alloc(struct page_frag_cache *nc, 4782 unsigned int fragsz, gfp_t gfp_mask) 4783 { 4784 unsigned int size = PAGE_SIZE; 4785 struct page *page; 4786 int offset; 4787 4788 if (unlikely(!nc->va)) { 4789 refill: 4790 page = __page_frag_cache_refill(nc, gfp_mask); 4791 if (!page) 4792 return NULL; 4793 4794 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4795 /* if size can vary use size else just use PAGE_SIZE */ 4796 size = nc->size; 4797 #endif 4798 /* Even if we own the page, we do not use atomic_set(). 4799 * This would break get_page_unless_zero() users. 4800 */ 4801 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4802 4803 /* reset page count bias and offset to start of new frag */ 4804 nc->pfmemalloc = page_is_pfmemalloc(page); 4805 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4806 nc->offset = size; 4807 } 4808 4809 offset = nc->offset - fragsz; 4810 if (unlikely(offset < 0)) { 4811 page = virt_to_page(nc->va); 4812 4813 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4814 goto refill; 4815 4816 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4817 /* if size can vary use size else just use PAGE_SIZE */ 4818 size = nc->size; 4819 #endif 4820 /* OK, page count is 0, we can safely set it */ 4821 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4822 4823 /* reset page count bias and offset to start of new frag */ 4824 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4825 offset = size - fragsz; 4826 } 4827 4828 nc->pagecnt_bias--; 4829 nc->offset = offset; 4830 4831 return nc->va + offset; 4832 } 4833 EXPORT_SYMBOL(page_frag_alloc); 4834 4835 /* 4836 * Frees a page fragment allocated out of either a compound or order 0 page. 4837 */ 4838 void page_frag_free(void *addr) 4839 { 4840 struct page *page = virt_to_head_page(addr); 4841 4842 if (unlikely(put_page_testzero(page))) 4843 free_the_page(page, compound_order(page)); 4844 } 4845 EXPORT_SYMBOL(page_frag_free); 4846 4847 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4848 size_t size) 4849 { 4850 if (addr) { 4851 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4852 unsigned long used = addr + PAGE_ALIGN(size); 4853 4854 split_page(virt_to_page((void *)addr), order); 4855 while (used < alloc_end) { 4856 free_page(used); 4857 used += PAGE_SIZE; 4858 } 4859 } 4860 return (void *)addr; 4861 } 4862 4863 /** 4864 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4865 * @size: the number of bytes to allocate 4866 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4867 * 4868 * This function is similar to alloc_pages(), except that it allocates the 4869 * minimum number of pages to satisfy the request. alloc_pages() can only 4870 * allocate memory in power-of-two pages. 4871 * 4872 * This function is also limited by MAX_ORDER. 4873 * 4874 * Memory allocated by this function must be released by free_pages_exact(). 4875 * 4876 * Return: pointer to the allocated area or %NULL in case of error. 4877 */ 4878 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4879 { 4880 unsigned int order = get_order(size); 4881 unsigned long addr; 4882 4883 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4884 gfp_mask &= ~__GFP_COMP; 4885 4886 addr = __get_free_pages(gfp_mask, order); 4887 return make_alloc_exact(addr, order, size); 4888 } 4889 EXPORT_SYMBOL(alloc_pages_exact); 4890 4891 /** 4892 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4893 * pages on a node. 4894 * @nid: the preferred node ID where memory should be allocated 4895 * @size: the number of bytes to allocate 4896 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4897 * 4898 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4899 * back. 4900 * 4901 * Return: pointer to the allocated area or %NULL in case of error. 4902 */ 4903 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4904 { 4905 unsigned int order = get_order(size); 4906 struct page *p; 4907 4908 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4909 gfp_mask &= ~__GFP_COMP; 4910 4911 p = alloc_pages_node(nid, gfp_mask, order); 4912 if (!p) 4913 return NULL; 4914 return make_alloc_exact((unsigned long)page_address(p), order, size); 4915 } 4916 4917 /** 4918 * free_pages_exact - release memory allocated via alloc_pages_exact() 4919 * @virt: the value returned by alloc_pages_exact. 4920 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4921 * 4922 * Release the memory allocated by a previous call to alloc_pages_exact. 4923 */ 4924 void free_pages_exact(void *virt, size_t size) 4925 { 4926 unsigned long addr = (unsigned long)virt; 4927 unsigned long end = addr + PAGE_ALIGN(size); 4928 4929 while (addr < end) { 4930 free_page(addr); 4931 addr += PAGE_SIZE; 4932 } 4933 } 4934 EXPORT_SYMBOL(free_pages_exact); 4935 4936 /** 4937 * nr_free_zone_pages - count number of pages beyond high watermark 4938 * @offset: The zone index of the highest zone 4939 * 4940 * nr_free_zone_pages() counts the number of pages which are beyond the 4941 * high watermark within all zones at or below a given zone index. For each 4942 * zone, the number of pages is calculated as: 4943 * 4944 * nr_free_zone_pages = managed_pages - high_pages 4945 * 4946 * Return: number of pages beyond high watermark. 4947 */ 4948 static unsigned long nr_free_zone_pages(int offset) 4949 { 4950 struct zoneref *z; 4951 struct zone *zone; 4952 4953 /* Just pick one node, since fallback list is circular */ 4954 unsigned long sum = 0; 4955 4956 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4957 4958 for_each_zone_zonelist(zone, z, zonelist, offset) { 4959 unsigned long size = zone_managed_pages(zone); 4960 unsigned long high = high_wmark_pages(zone); 4961 if (size > high) 4962 sum += size - high; 4963 } 4964 4965 return sum; 4966 } 4967 4968 /** 4969 * nr_free_buffer_pages - count number of pages beyond high watermark 4970 * 4971 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4972 * watermark within ZONE_DMA and ZONE_NORMAL. 4973 * 4974 * Return: number of pages beyond high watermark within ZONE_DMA and 4975 * ZONE_NORMAL. 4976 */ 4977 unsigned long nr_free_buffer_pages(void) 4978 { 4979 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4980 } 4981 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4982 4983 /** 4984 * nr_free_pagecache_pages - count number of pages beyond high watermark 4985 * 4986 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4987 * high watermark within all zones. 4988 * 4989 * Return: number of pages beyond high watermark within all zones. 4990 */ 4991 unsigned long nr_free_pagecache_pages(void) 4992 { 4993 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4994 } 4995 4996 static inline void show_node(struct zone *zone) 4997 { 4998 if (IS_ENABLED(CONFIG_NUMA)) 4999 printk("Node %d ", zone_to_nid(zone)); 5000 } 5001 5002 long si_mem_available(void) 5003 { 5004 long available; 5005 unsigned long pagecache; 5006 unsigned long wmark_low = 0; 5007 unsigned long pages[NR_LRU_LISTS]; 5008 unsigned long reclaimable; 5009 struct zone *zone; 5010 int lru; 5011 5012 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5013 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5014 5015 for_each_zone(zone) 5016 wmark_low += low_wmark_pages(zone); 5017 5018 /* 5019 * Estimate the amount of memory available for userspace allocations, 5020 * without causing swapping. 5021 */ 5022 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5023 5024 /* 5025 * Not all the page cache can be freed, otherwise the system will 5026 * start swapping. Assume at least half of the page cache, or the 5027 * low watermark worth of cache, needs to stay. 5028 */ 5029 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5030 pagecache -= min(pagecache / 2, wmark_low); 5031 available += pagecache; 5032 5033 /* 5034 * Part of the reclaimable slab and other kernel memory consists of 5035 * items that are in use, and cannot be freed. Cap this estimate at the 5036 * low watermark. 5037 */ 5038 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5039 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5040 available += reclaimable - min(reclaimable / 2, wmark_low); 5041 5042 if (available < 0) 5043 available = 0; 5044 return available; 5045 } 5046 EXPORT_SYMBOL_GPL(si_mem_available); 5047 5048 void si_meminfo(struct sysinfo *val) 5049 { 5050 val->totalram = totalram_pages(); 5051 val->sharedram = global_node_page_state(NR_SHMEM); 5052 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5053 val->bufferram = nr_blockdev_pages(); 5054 val->totalhigh = totalhigh_pages(); 5055 val->freehigh = nr_free_highpages(); 5056 val->mem_unit = PAGE_SIZE; 5057 } 5058 5059 EXPORT_SYMBOL(si_meminfo); 5060 5061 #ifdef CONFIG_NUMA 5062 void si_meminfo_node(struct sysinfo *val, int nid) 5063 { 5064 int zone_type; /* needs to be signed */ 5065 unsigned long managed_pages = 0; 5066 unsigned long managed_highpages = 0; 5067 unsigned long free_highpages = 0; 5068 pg_data_t *pgdat = NODE_DATA(nid); 5069 5070 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5071 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5072 val->totalram = managed_pages; 5073 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5074 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5075 #ifdef CONFIG_HIGHMEM 5076 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5077 struct zone *zone = &pgdat->node_zones[zone_type]; 5078 5079 if (is_highmem(zone)) { 5080 managed_highpages += zone_managed_pages(zone); 5081 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5082 } 5083 } 5084 val->totalhigh = managed_highpages; 5085 val->freehigh = free_highpages; 5086 #else 5087 val->totalhigh = managed_highpages; 5088 val->freehigh = free_highpages; 5089 #endif 5090 val->mem_unit = PAGE_SIZE; 5091 } 5092 #endif 5093 5094 /* 5095 * Determine whether the node should be displayed or not, depending on whether 5096 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5097 */ 5098 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5099 { 5100 if (!(flags & SHOW_MEM_FILTER_NODES)) 5101 return false; 5102 5103 /* 5104 * no node mask - aka implicit memory numa policy. Do not bother with 5105 * the synchronization - read_mems_allowed_begin - because we do not 5106 * have to be precise here. 5107 */ 5108 if (!nodemask) 5109 nodemask = &cpuset_current_mems_allowed; 5110 5111 return !node_isset(nid, *nodemask); 5112 } 5113 5114 #define K(x) ((x) << (PAGE_SHIFT-10)) 5115 5116 static void show_migration_types(unsigned char type) 5117 { 5118 static const char types[MIGRATE_TYPES] = { 5119 [MIGRATE_UNMOVABLE] = 'U', 5120 [MIGRATE_MOVABLE] = 'M', 5121 [MIGRATE_RECLAIMABLE] = 'E', 5122 [MIGRATE_HIGHATOMIC] = 'H', 5123 #ifdef CONFIG_CMA 5124 [MIGRATE_CMA] = 'C', 5125 #endif 5126 #ifdef CONFIG_MEMORY_ISOLATION 5127 [MIGRATE_ISOLATE] = 'I', 5128 #endif 5129 }; 5130 char tmp[MIGRATE_TYPES + 1]; 5131 char *p = tmp; 5132 int i; 5133 5134 for (i = 0; i < MIGRATE_TYPES; i++) { 5135 if (type & (1 << i)) 5136 *p++ = types[i]; 5137 } 5138 5139 *p = '\0'; 5140 printk(KERN_CONT "(%s) ", tmp); 5141 } 5142 5143 /* 5144 * Show free area list (used inside shift_scroll-lock stuff) 5145 * We also calculate the percentage fragmentation. We do this by counting the 5146 * memory on each free list with the exception of the first item on the list. 5147 * 5148 * Bits in @filter: 5149 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5150 * cpuset. 5151 */ 5152 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5153 { 5154 unsigned long free_pcp = 0; 5155 int cpu; 5156 struct zone *zone; 5157 pg_data_t *pgdat; 5158 5159 for_each_populated_zone(zone) { 5160 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5161 continue; 5162 5163 for_each_online_cpu(cpu) 5164 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5165 } 5166 5167 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5168 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5169 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5170 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5171 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5172 " free:%lu free_pcp:%lu free_cma:%lu\n", 5173 global_node_page_state(NR_ACTIVE_ANON), 5174 global_node_page_state(NR_INACTIVE_ANON), 5175 global_node_page_state(NR_ISOLATED_ANON), 5176 global_node_page_state(NR_ACTIVE_FILE), 5177 global_node_page_state(NR_INACTIVE_FILE), 5178 global_node_page_state(NR_ISOLATED_FILE), 5179 global_node_page_state(NR_UNEVICTABLE), 5180 global_node_page_state(NR_FILE_DIRTY), 5181 global_node_page_state(NR_WRITEBACK), 5182 global_node_page_state(NR_UNSTABLE_NFS), 5183 global_node_page_state(NR_SLAB_RECLAIMABLE), 5184 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5185 global_node_page_state(NR_FILE_MAPPED), 5186 global_node_page_state(NR_SHMEM), 5187 global_zone_page_state(NR_PAGETABLE), 5188 global_zone_page_state(NR_BOUNCE), 5189 global_zone_page_state(NR_FREE_PAGES), 5190 free_pcp, 5191 global_zone_page_state(NR_FREE_CMA_PAGES)); 5192 5193 for_each_online_pgdat(pgdat) { 5194 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5195 continue; 5196 5197 printk("Node %d" 5198 " active_anon:%lukB" 5199 " inactive_anon:%lukB" 5200 " active_file:%lukB" 5201 " inactive_file:%lukB" 5202 " unevictable:%lukB" 5203 " isolated(anon):%lukB" 5204 " isolated(file):%lukB" 5205 " mapped:%lukB" 5206 " dirty:%lukB" 5207 " writeback:%lukB" 5208 " shmem:%lukB" 5209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5210 " shmem_thp: %lukB" 5211 " shmem_pmdmapped: %lukB" 5212 " anon_thp: %lukB" 5213 #endif 5214 " writeback_tmp:%lukB" 5215 " unstable:%lukB" 5216 " all_unreclaimable? %s" 5217 "\n", 5218 pgdat->node_id, 5219 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5220 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5221 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5222 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5223 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5224 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5225 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5226 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5227 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5228 K(node_page_state(pgdat, NR_WRITEBACK)), 5229 K(node_page_state(pgdat, NR_SHMEM)), 5230 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5231 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5232 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5233 * HPAGE_PMD_NR), 5234 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5235 #endif 5236 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5237 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5238 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5239 "yes" : "no"); 5240 } 5241 5242 for_each_populated_zone(zone) { 5243 int i; 5244 5245 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5246 continue; 5247 5248 free_pcp = 0; 5249 for_each_online_cpu(cpu) 5250 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5251 5252 show_node(zone); 5253 printk(KERN_CONT 5254 "%s" 5255 " free:%lukB" 5256 " min:%lukB" 5257 " low:%lukB" 5258 " high:%lukB" 5259 " active_anon:%lukB" 5260 " inactive_anon:%lukB" 5261 " active_file:%lukB" 5262 " inactive_file:%lukB" 5263 " unevictable:%lukB" 5264 " writepending:%lukB" 5265 " present:%lukB" 5266 " managed:%lukB" 5267 " mlocked:%lukB" 5268 " kernel_stack:%lukB" 5269 " pagetables:%lukB" 5270 " bounce:%lukB" 5271 " free_pcp:%lukB" 5272 " local_pcp:%ukB" 5273 " free_cma:%lukB" 5274 "\n", 5275 zone->name, 5276 K(zone_page_state(zone, NR_FREE_PAGES)), 5277 K(min_wmark_pages(zone)), 5278 K(low_wmark_pages(zone)), 5279 K(high_wmark_pages(zone)), 5280 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5281 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5282 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5283 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5284 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5285 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5286 K(zone->present_pages), 5287 K(zone_managed_pages(zone)), 5288 K(zone_page_state(zone, NR_MLOCK)), 5289 zone_page_state(zone, NR_KERNEL_STACK_KB), 5290 K(zone_page_state(zone, NR_PAGETABLE)), 5291 K(zone_page_state(zone, NR_BOUNCE)), 5292 K(free_pcp), 5293 K(this_cpu_read(zone->pageset->pcp.count)), 5294 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5295 printk("lowmem_reserve[]:"); 5296 for (i = 0; i < MAX_NR_ZONES; i++) 5297 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5298 printk(KERN_CONT "\n"); 5299 } 5300 5301 for_each_populated_zone(zone) { 5302 unsigned int order; 5303 unsigned long nr[MAX_ORDER], flags, total = 0; 5304 unsigned char types[MAX_ORDER]; 5305 5306 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5307 continue; 5308 show_node(zone); 5309 printk(KERN_CONT "%s: ", zone->name); 5310 5311 spin_lock_irqsave(&zone->lock, flags); 5312 for (order = 0; order < MAX_ORDER; order++) { 5313 struct free_area *area = &zone->free_area[order]; 5314 int type; 5315 5316 nr[order] = area->nr_free; 5317 total += nr[order] << order; 5318 5319 types[order] = 0; 5320 for (type = 0; type < MIGRATE_TYPES; type++) { 5321 if (!free_area_empty(area, type)) 5322 types[order] |= 1 << type; 5323 } 5324 } 5325 spin_unlock_irqrestore(&zone->lock, flags); 5326 for (order = 0; order < MAX_ORDER; order++) { 5327 printk(KERN_CONT "%lu*%lukB ", 5328 nr[order], K(1UL) << order); 5329 if (nr[order]) 5330 show_migration_types(types[order]); 5331 } 5332 printk(KERN_CONT "= %lukB\n", K(total)); 5333 } 5334 5335 hugetlb_show_meminfo(); 5336 5337 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5338 5339 show_swap_cache_info(); 5340 } 5341 5342 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5343 { 5344 zoneref->zone = zone; 5345 zoneref->zone_idx = zone_idx(zone); 5346 } 5347 5348 /* 5349 * Builds allocation fallback zone lists. 5350 * 5351 * Add all populated zones of a node to the zonelist. 5352 */ 5353 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5354 { 5355 struct zone *zone; 5356 enum zone_type zone_type = MAX_NR_ZONES; 5357 int nr_zones = 0; 5358 5359 do { 5360 zone_type--; 5361 zone = pgdat->node_zones + zone_type; 5362 if (managed_zone(zone)) { 5363 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5364 check_highest_zone(zone_type); 5365 } 5366 } while (zone_type); 5367 5368 return nr_zones; 5369 } 5370 5371 #ifdef CONFIG_NUMA 5372 5373 static int __parse_numa_zonelist_order(char *s) 5374 { 5375 /* 5376 * We used to support different zonlists modes but they turned 5377 * out to be just not useful. Let's keep the warning in place 5378 * if somebody still use the cmd line parameter so that we do 5379 * not fail it silently 5380 */ 5381 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5382 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5383 return -EINVAL; 5384 } 5385 return 0; 5386 } 5387 5388 static __init int setup_numa_zonelist_order(char *s) 5389 { 5390 if (!s) 5391 return 0; 5392 5393 return __parse_numa_zonelist_order(s); 5394 } 5395 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5396 5397 char numa_zonelist_order[] = "Node"; 5398 5399 /* 5400 * sysctl handler for numa_zonelist_order 5401 */ 5402 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5403 void __user *buffer, size_t *length, 5404 loff_t *ppos) 5405 { 5406 char *str; 5407 int ret; 5408 5409 if (!write) 5410 return proc_dostring(table, write, buffer, length, ppos); 5411 str = memdup_user_nul(buffer, 16); 5412 if (IS_ERR(str)) 5413 return PTR_ERR(str); 5414 5415 ret = __parse_numa_zonelist_order(str); 5416 kfree(str); 5417 return ret; 5418 } 5419 5420 5421 #define MAX_NODE_LOAD (nr_online_nodes) 5422 static int node_load[MAX_NUMNODES]; 5423 5424 /** 5425 * find_next_best_node - find the next node that should appear in a given node's fallback list 5426 * @node: node whose fallback list we're appending 5427 * @used_node_mask: nodemask_t of already used nodes 5428 * 5429 * We use a number of factors to determine which is the next node that should 5430 * appear on a given node's fallback list. The node should not have appeared 5431 * already in @node's fallback list, and it should be the next closest node 5432 * according to the distance array (which contains arbitrary distance values 5433 * from each node to each node in the system), and should also prefer nodes 5434 * with no CPUs, since presumably they'll have very little allocation pressure 5435 * on them otherwise. 5436 * 5437 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5438 */ 5439 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5440 { 5441 int n, val; 5442 int min_val = INT_MAX; 5443 int best_node = NUMA_NO_NODE; 5444 const struct cpumask *tmp = cpumask_of_node(0); 5445 5446 /* Use the local node if we haven't already */ 5447 if (!node_isset(node, *used_node_mask)) { 5448 node_set(node, *used_node_mask); 5449 return node; 5450 } 5451 5452 for_each_node_state(n, N_MEMORY) { 5453 5454 /* Don't want a node to appear more than once */ 5455 if (node_isset(n, *used_node_mask)) 5456 continue; 5457 5458 /* Use the distance array to find the distance */ 5459 val = node_distance(node, n); 5460 5461 /* Penalize nodes under us ("prefer the next node") */ 5462 val += (n < node); 5463 5464 /* Give preference to headless and unused nodes */ 5465 tmp = cpumask_of_node(n); 5466 if (!cpumask_empty(tmp)) 5467 val += PENALTY_FOR_NODE_WITH_CPUS; 5468 5469 /* Slight preference for less loaded node */ 5470 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5471 val += node_load[n]; 5472 5473 if (val < min_val) { 5474 min_val = val; 5475 best_node = n; 5476 } 5477 } 5478 5479 if (best_node >= 0) 5480 node_set(best_node, *used_node_mask); 5481 5482 return best_node; 5483 } 5484 5485 5486 /* 5487 * Build zonelists ordered by node and zones within node. 5488 * This results in maximum locality--normal zone overflows into local 5489 * DMA zone, if any--but risks exhausting DMA zone. 5490 */ 5491 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5492 unsigned nr_nodes) 5493 { 5494 struct zoneref *zonerefs; 5495 int i; 5496 5497 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5498 5499 for (i = 0; i < nr_nodes; i++) { 5500 int nr_zones; 5501 5502 pg_data_t *node = NODE_DATA(node_order[i]); 5503 5504 nr_zones = build_zonerefs_node(node, zonerefs); 5505 zonerefs += nr_zones; 5506 } 5507 zonerefs->zone = NULL; 5508 zonerefs->zone_idx = 0; 5509 } 5510 5511 /* 5512 * Build gfp_thisnode zonelists 5513 */ 5514 static void build_thisnode_zonelists(pg_data_t *pgdat) 5515 { 5516 struct zoneref *zonerefs; 5517 int nr_zones; 5518 5519 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5520 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5521 zonerefs += nr_zones; 5522 zonerefs->zone = NULL; 5523 zonerefs->zone_idx = 0; 5524 } 5525 5526 /* 5527 * Build zonelists ordered by zone and nodes within zones. 5528 * This results in conserving DMA zone[s] until all Normal memory is 5529 * exhausted, but results in overflowing to remote node while memory 5530 * may still exist in local DMA zone. 5531 */ 5532 5533 static void build_zonelists(pg_data_t *pgdat) 5534 { 5535 static int node_order[MAX_NUMNODES]; 5536 int node, load, nr_nodes = 0; 5537 nodemask_t used_mask; 5538 int local_node, prev_node; 5539 5540 /* NUMA-aware ordering of nodes */ 5541 local_node = pgdat->node_id; 5542 load = nr_online_nodes; 5543 prev_node = local_node; 5544 nodes_clear(used_mask); 5545 5546 memset(node_order, 0, sizeof(node_order)); 5547 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5548 /* 5549 * We don't want to pressure a particular node. 5550 * So adding penalty to the first node in same 5551 * distance group to make it round-robin. 5552 */ 5553 if (node_distance(local_node, node) != 5554 node_distance(local_node, prev_node)) 5555 node_load[node] = load; 5556 5557 node_order[nr_nodes++] = node; 5558 prev_node = node; 5559 load--; 5560 } 5561 5562 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5563 build_thisnode_zonelists(pgdat); 5564 } 5565 5566 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5567 /* 5568 * Return node id of node used for "local" allocations. 5569 * I.e., first node id of first zone in arg node's generic zonelist. 5570 * Used for initializing percpu 'numa_mem', which is used primarily 5571 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5572 */ 5573 int local_memory_node(int node) 5574 { 5575 struct zoneref *z; 5576 5577 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5578 gfp_zone(GFP_KERNEL), 5579 NULL); 5580 return zone_to_nid(z->zone); 5581 } 5582 #endif 5583 5584 static void setup_min_unmapped_ratio(void); 5585 static void setup_min_slab_ratio(void); 5586 #else /* CONFIG_NUMA */ 5587 5588 static void build_zonelists(pg_data_t *pgdat) 5589 { 5590 int node, local_node; 5591 struct zoneref *zonerefs; 5592 int nr_zones; 5593 5594 local_node = pgdat->node_id; 5595 5596 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5597 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5598 zonerefs += nr_zones; 5599 5600 /* 5601 * Now we build the zonelist so that it contains the zones 5602 * of all the other nodes. 5603 * We don't want to pressure a particular node, so when 5604 * building the zones for node N, we make sure that the 5605 * zones coming right after the local ones are those from 5606 * node N+1 (modulo N) 5607 */ 5608 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5609 if (!node_online(node)) 5610 continue; 5611 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5612 zonerefs += nr_zones; 5613 } 5614 for (node = 0; node < local_node; node++) { 5615 if (!node_online(node)) 5616 continue; 5617 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5618 zonerefs += nr_zones; 5619 } 5620 5621 zonerefs->zone = NULL; 5622 zonerefs->zone_idx = 0; 5623 } 5624 5625 #endif /* CONFIG_NUMA */ 5626 5627 /* 5628 * Boot pageset table. One per cpu which is going to be used for all 5629 * zones and all nodes. The parameters will be set in such a way 5630 * that an item put on a list will immediately be handed over to 5631 * the buddy list. This is safe since pageset manipulation is done 5632 * with interrupts disabled. 5633 * 5634 * The boot_pagesets must be kept even after bootup is complete for 5635 * unused processors and/or zones. They do play a role for bootstrapping 5636 * hotplugged processors. 5637 * 5638 * zoneinfo_show() and maybe other functions do 5639 * not check if the processor is online before following the pageset pointer. 5640 * Other parts of the kernel may not check if the zone is available. 5641 */ 5642 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5643 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5644 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5645 5646 static void __build_all_zonelists(void *data) 5647 { 5648 int nid; 5649 int __maybe_unused cpu; 5650 pg_data_t *self = data; 5651 static DEFINE_SPINLOCK(lock); 5652 5653 spin_lock(&lock); 5654 5655 #ifdef CONFIG_NUMA 5656 memset(node_load, 0, sizeof(node_load)); 5657 #endif 5658 5659 /* 5660 * This node is hotadded and no memory is yet present. So just 5661 * building zonelists is fine - no need to touch other nodes. 5662 */ 5663 if (self && !node_online(self->node_id)) { 5664 build_zonelists(self); 5665 } else { 5666 for_each_online_node(nid) { 5667 pg_data_t *pgdat = NODE_DATA(nid); 5668 5669 build_zonelists(pgdat); 5670 } 5671 5672 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5673 /* 5674 * We now know the "local memory node" for each node-- 5675 * i.e., the node of the first zone in the generic zonelist. 5676 * Set up numa_mem percpu variable for on-line cpus. During 5677 * boot, only the boot cpu should be on-line; we'll init the 5678 * secondary cpus' numa_mem as they come on-line. During 5679 * node/memory hotplug, we'll fixup all on-line cpus. 5680 */ 5681 for_each_online_cpu(cpu) 5682 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5683 #endif 5684 } 5685 5686 spin_unlock(&lock); 5687 } 5688 5689 static noinline void __init 5690 build_all_zonelists_init(void) 5691 { 5692 int cpu; 5693 5694 __build_all_zonelists(NULL); 5695 5696 /* 5697 * Initialize the boot_pagesets that are going to be used 5698 * for bootstrapping processors. The real pagesets for 5699 * each zone will be allocated later when the per cpu 5700 * allocator is available. 5701 * 5702 * boot_pagesets are used also for bootstrapping offline 5703 * cpus if the system is already booted because the pagesets 5704 * are needed to initialize allocators on a specific cpu too. 5705 * F.e. the percpu allocator needs the page allocator which 5706 * needs the percpu allocator in order to allocate its pagesets 5707 * (a chicken-egg dilemma). 5708 */ 5709 for_each_possible_cpu(cpu) 5710 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5711 5712 mminit_verify_zonelist(); 5713 cpuset_init_current_mems_allowed(); 5714 } 5715 5716 /* 5717 * unless system_state == SYSTEM_BOOTING. 5718 * 5719 * __ref due to call of __init annotated helper build_all_zonelists_init 5720 * [protected by SYSTEM_BOOTING]. 5721 */ 5722 void __ref build_all_zonelists(pg_data_t *pgdat) 5723 { 5724 if (system_state == SYSTEM_BOOTING) { 5725 build_all_zonelists_init(); 5726 } else { 5727 __build_all_zonelists(pgdat); 5728 /* cpuset refresh routine should be here */ 5729 } 5730 vm_total_pages = nr_free_pagecache_pages(); 5731 /* 5732 * Disable grouping by mobility if the number of pages in the 5733 * system is too low to allow the mechanism to work. It would be 5734 * more accurate, but expensive to check per-zone. This check is 5735 * made on memory-hotadd so a system can start with mobility 5736 * disabled and enable it later 5737 */ 5738 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5739 page_group_by_mobility_disabled = 1; 5740 else 5741 page_group_by_mobility_disabled = 0; 5742 5743 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5744 nr_online_nodes, 5745 page_group_by_mobility_disabled ? "off" : "on", 5746 vm_total_pages); 5747 #ifdef CONFIG_NUMA 5748 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5749 #endif 5750 } 5751 5752 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5753 static bool __meminit 5754 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5755 { 5756 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5757 static struct memblock_region *r; 5758 5759 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5760 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5761 for_each_memblock(memory, r) { 5762 if (*pfn < memblock_region_memory_end_pfn(r)) 5763 break; 5764 } 5765 } 5766 if (*pfn >= memblock_region_memory_base_pfn(r) && 5767 memblock_is_mirror(r)) { 5768 *pfn = memblock_region_memory_end_pfn(r); 5769 return true; 5770 } 5771 } 5772 #endif 5773 return false; 5774 } 5775 5776 /* 5777 * Initially all pages are reserved - free ones are freed 5778 * up by memblock_free_all() once the early boot process is 5779 * done. Non-atomic initialization, single-pass. 5780 */ 5781 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5782 unsigned long start_pfn, enum memmap_context context, 5783 struct vmem_altmap *altmap) 5784 { 5785 unsigned long pfn, end_pfn = start_pfn + size; 5786 struct page *page; 5787 5788 if (highest_memmap_pfn < end_pfn - 1) 5789 highest_memmap_pfn = end_pfn - 1; 5790 5791 #ifdef CONFIG_ZONE_DEVICE 5792 /* 5793 * Honor reservation requested by the driver for this ZONE_DEVICE 5794 * memory. We limit the total number of pages to initialize to just 5795 * those that might contain the memory mapping. We will defer the 5796 * ZONE_DEVICE page initialization until after we have released 5797 * the hotplug lock. 5798 */ 5799 if (zone == ZONE_DEVICE) { 5800 if (!altmap) 5801 return; 5802 5803 if (start_pfn == altmap->base_pfn) 5804 start_pfn += altmap->reserve; 5805 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5806 } 5807 #endif 5808 5809 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5810 /* 5811 * There can be holes in boot-time mem_map[]s handed to this 5812 * function. They do not exist on hotplugged memory. 5813 */ 5814 if (context == MEMMAP_EARLY) { 5815 if (!early_pfn_valid(pfn)) 5816 continue; 5817 if (!early_pfn_in_nid(pfn, nid)) 5818 continue; 5819 if (overlap_memmap_init(zone, &pfn)) 5820 continue; 5821 if (defer_init(nid, pfn, end_pfn)) 5822 break; 5823 } 5824 5825 page = pfn_to_page(pfn); 5826 __init_single_page(page, pfn, zone, nid); 5827 if (context == MEMMAP_HOTPLUG) 5828 __SetPageReserved(page); 5829 5830 /* 5831 * Mark the block movable so that blocks are reserved for 5832 * movable at startup. This will force kernel allocations 5833 * to reserve their blocks rather than leaking throughout 5834 * the address space during boot when many long-lived 5835 * kernel allocations are made. 5836 * 5837 * bitmap is created for zone's valid pfn range. but memmap 5838 * can be created for invalid pages (for alignment) 5839 * check here not to call set_pageblock_migratetype() against 5840 * pfn out of zone. 5841 */ 5842 if (!(pfn & (pageblock_nr_pages - 1))) { 5843 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5844 cond_resched(); 5845 } 5846 } 5847 } 5848 5849 #ifdef CONFIG_ZONE_DEVICE 5850 void __ref memmap_init_zone_device(struct zone *zone, 5851 unsigned long start_pfn, 5852 unsigned long size, 5853 struct dev_pagemap *pgmap) 5854 { 5855 unsigned long pfn, end_pfn = start_pfn + size; 5856 struct pglist_data *pgdat = zone->zone_pgdat; 5857 unsigned long zone_idx = zone_idx(zone); 5858 unsigned long start = jiffies; 5859 int nid = pgdat->node_id; 5860 5861 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5862 return; 5863 5864 /* 5865 * The call to memmap_init_zone should have already taken care 5866 * of the pages reserved for the memmap, so we can just jump to 5867 * the end of that region and start processing the device pages. 5868 */ 5869 if (pgmap->altmap_valid) { 5870 struct vmem_altmap *altmap = &pgmap->altmap; 5871 5872 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5873 size = end_pfn - start_pfn; 5874 } 5875 5876 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5877 struct page *page = pfn_to_page(pfn); 5878 5879 __init_single_page(page, pfn, zone_idx, nid); 5880 5881 /* 5882 * Mark page reserved as it will need to wait for onlining 5883 * phase for it to be fully associated with a zone. 5884 * 5885 * We can use the non-atomic __set_bit operation for setting 5886 * the flag as we are still initializing the pages. 5887 */ 5888 __SetPageReserved(page); 5889 5890 /* 5891 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5892 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5893 * page is ever freed or placed on a driver-private list. 5894 */ 5895 page->pgmap = pgmap; 5896 page->hmm_data = 0; 5897 5898 /* 5899 * Mark the block movable so that blocks are reserved for 5900 * movable at startup. This will force kernel allocations 5901 * to reserve their blocks rather than leaking throughout 5902 * the address space during boot when many long-lived 5903 * kernel allocations are made. 5904 * 5905 * bitmap is created for zone's valid pfn range. but memmap 5906 * can be created for invalid pages (for alignment) 5907 * check here not to call set_pageblock_migratetype() against 5908 * pfn out of zone. 5909 * 5910 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5911 * because this is done early in sparse_add_one_section 5912 */ 5913 if (!(pfn & (pageblock_nr_pages - 1))) { 5914 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5915 cond_resched(); 5916 } 5917 } 5918 5919 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5920 size, jiffies_to_msecs(jiffies - start)); 5921 } 5922 5923 #endif 5924 static void __meminit zone_init_free_lists(struct zone *zone) 5925 { 5926 unsigned int order, t; 5927 for_each_migratetype_order(order, t) { 5928 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5929 zone->free_area[order].nr_free = 0; 5930 } 5931 } 5932 5933 void __meminit __weak memmap_init(unsigned long size, int nid, 5934 unsigned long zone, unsigned long start_pfn) 5935 { 5936 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5937 } 5938 5939 static int zone_batchsize(struct zone *zone) 5940 { 5941 #ifdef CONFIG_MMU 5942 int batch; 5943 5944 /* 5945 * The per-cpu-pages pools are set to around 1000th of the 5946 * size of the zone. 5947 */ 5948 batch = zone_managed_pages(zone) / 1024; 5949 /* But no more than a meg. */ 5950 if (batch * PAGE_SIZE > 1024 * 1024) 5951 batch = (1024 * 1024) / PAGE_SIZE; 5952 batch /= 4; /* We effectively *= 4 below */ 5953 if (batch < 1) 5954 batch = 1; 5955 5956 /* 5957 * Clamp the batch to a 2^n - 1 value. Having a power 5958 * of 2 value was found to be more likely to have 5959 * suboptimal cache aliasing properties in some cases. 5960 * 5961 * For example if 2 tasks are alternately allocating 5962 * batches of pages, one task can end up with a lot 5963 * of pages of one half of the possible page colors 5964 * and the other with pages of the other colors. 5965 */ 5966 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5967 5968 return batch; 5969 5970 #else 5971 /* The deferral and batching of frees should be suppressed under NOMMU 5972 * conditions. 5973 * 5974 * The problem is that NOMMU needs to be able to allocate large chunks 5975 * of contiguous memory as there's no hardware page translation to 5976 * assemble apparent contiguous memory from discontiguous pages. 5977 * 5978 * Queueing large contiguous runs of pages for batching, however, 5979 * causes the pages to actually be freed in smaller chunks. As there 5980 * can be a significant delay between the individual batches being 5981 * recycled, this leads to the once large chunks of space being 5982 * fragmented and becoming unavailable for high-order allocations. 5983 */ 5984 return 0; 5985 #endif 5986 } 5987 5988 /* 5989 * pcp->high and pcp->batch values are related and dependent on one another: 5990 * ->batch must never be higher then ->high. 5991 * The following function updates them in a safe manner without read side 5992 * locking. 5993 * 5994 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5995 * those fields changing asynchronously (acording the the above rule). 5996 * 5997 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5998 * outside of boot time (or some other assurance that no concurrent updaters 5999 * exist). 6000 */ 6001 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6002 unsigned long batch) 6003 { 6004 /* start with a fail safe value for batch */ 6005 pcp->batch = 1; 6006 smp_wmb(); 6007 6008 /* Update high, then batch, in order */ 6009 pcp->high = high; 6010 smp_wmb(); 6011 6012 pcp->batch = batch; 6013 } 6014 6015 /* a companion to pageset_set_high() */ 6016 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6017 { 6018 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6019 } 6020 6021 static void pageset_init(struct per_cpu_pageset *p) 6022 { 6023 struct per_cpu_pages *pcp; 6024 int migratetype; 6025 6026 memset(p, 0, sizeof(*p)); 6027 6028 pcp = &p->pcp; 6029 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6030 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6031 } 6032 6033 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6034 { 6035 pageset_init(p); 6036 pageset_set_batch(p, batch); 6037 } 6038 6039 /* 6040 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6041 * to the value high for the pageset p. 6042 */ 6043 static void pageset_set_high(struct per_cpu_pageset *p, 6044 unsigned long high) 6045 { 6046 unsigned long batch = max(1UL, high / 4); 6047 if ((high / 4) > (PAGE_SHIFT * 8)) 6048 batch = PAGE_SHIFT * 8; 6049 6050 pageset_update(&p->pcp, high, batch); 6051 } 6052 6053 static void pageset_set_high_and_batch(struct zone *zone, 6054 struct per_cpu_pageset *pcp) 6055 { 6056 if (percpu_pagelist_fraction) 6057 pageset_set_high(pcp, 6058 (zone_managed_pages(zone) / 6059 percpu_pagelist_fraction)); 6060 else 6061 pageset_set_batch(pcp, zone_batchsize(zone)); 6062 } 6063 6064 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6065 { 6066 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6067 6068 pageset_init(pcp); 6069 pageset_set_high_and_batch(zone, pcp); 6070 } 6071 6072 void __meminit setup_zone_pageset(struct zone *zone) 6073 { 6074 int cpu; 6075 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6076 for_each_possible_cpu(cpu) 6077 zone_pageset_init(zone, cpu); 6078 } 6079 6080 /* 6081 * Allocate per cpu pagesets and initialize them. 6082 * Before this call only boot pagesets were available. 6083 */ 6084 void __init setup_per_cpu_pageset(void) 6085 { 6086 struct pglist_data *pgdat; 6087 struct zone *zone; 6088 6089 for_each_populated_zone(zone) 6090 setup_zone_pageset(zone); 6091 6092 for_each_online_pgdat(pgdat) 6093 pgdat->per_cpu_nodestats = 6094 alloc_percpu(struct per_cpu_nodestat); 6095 } 6096 6097 static __meminit void zone_pcp_init(struct zone *zone) 6098 { 6099 /* 6100 * per cpu subsystem is not up at this point. The following code 6101 * relies on the ability of the linker to provide the 6102 * offset of a (static) per cpu variable into the per cpu area. 6103 */ 6104 zone->pageset = &boot_pageset; 6105 6106 if (populated_zone(zone)) 6107 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6108 zone->name, zone->present_pages, 6109 zone_batchsize(zone)); 6110 } 6111 6112 void __meminit init_currently_empty_zone(struct zone *zone, 6113 unsigned long zone_start_pfn, 6114 unsigned long size) 6115 { 6116 struct pglist_data *pgdat = zone->zone_pgdat; 6117 int zone_idx = zone_idx(zone) + 1; 6118 6119 if (zone_idx > pgdat->nr_zones) 6120 pgdat->nr_zones = zone_idx; 6121 6122 zone->zone_start_pfn = zone_start_pfn; 6123 6124 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6125 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6126 pgdat->node_id, 6127 (unsigned long)zone_idx(zone), 6128 zone_start_pfn, (zone_start_pfn + size)); 6129 6130 zone_init_free_lists(zone); 6131 zone->initialized = 1; 6132 } 6133 6134 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6135 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6136 6137 /* 6138 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6139 */ 6140 int __meminit __early_pfn_to_nid(unsigned long pfn, 6141 struct mminit_pfnnid_cache *state) 6142 { 6143 unsigned long start_pfn, end_pfn; 6144 int nid; 6145 6146 if (state->last_start <= pfn && pfn < state->last_end) 6147 return state->last_nid; 6148 6149 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6150 if (nid != NUMA_NO_NODE) { 6151 state->last_start = start_pfn; 6152 state->last_end = end_pfn; 6153 state->last_nid = nid; 6154 } 6155 6156 return nid; 6157 } 6158 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6159 6160 /** 6161 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6162 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6163 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6164 * 6165 * If an architecture guarantees that all ranges registered contain no holes 6166 * and may be freed, this this function may be used instead of calling 6167 * memblock_free_early_nid() manually. 6168 */ 6169 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6170 { 6171 unsigned long start_pfn, end_pfn; 6172 int i, this_nid; 6173 6174 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6175 start_pfn = min(start_pfn, max_low_pfn); 6176 end_pfn = min(end_pfn, max_low_pfn); 6177 6178 if (start_pfn < end_pfn) 6179 memblock_free_early_nid(PFN_PHYS(start_pfn), 6180 (end_pfn - start_pfn) << PAGE_SHIFT, 6181 this_nid); 6182 } 6183 } 6184 6185 /** 6186 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6187 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6188 * 6189 * If an architecture guarantees that all ranges registered contain no holes and may 6190 * be freed, this function may be used instead of calling memory_present() manually. 6191 */ 6192 void __init sparse_memory_present_with_active_regions(int nid) 6193 { 6194 unsigned long start_pfn, end_pfn; 6195 int i, this_nid; 6196 6197 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6198 memory_present(this_nid, start_pfn, end_pfn); 6199 } 6200 6201 /** 6202 * get_pfn_range_for_nid - Return the start and end page frames for a node 6203 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6204 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6205 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6206 * 6207 * It returns the start and end page frame of a node based on information 6208 * provided by memblock_set_node(). If called for a node 6209 * with no available memory, a warning is printed and the start and end 6210 * PFNs will be 0. 6211 */ 6212 void __init get_pfn_range_for_nid(unsigned int nid, 6213 unsigned long *start_pfn, unsigned long *end_pfn) 6214 { 6215 unsigned long this_start_pfn, this_end_pfn; 6216 int i; 6217 6218 *start_pfn = -1UL; 6219 *end_pfn = 0; 6220 6221 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6222 *start_pfn = min(*start_pfn, this_start_pfn); 6223 *end_pfn = max(*end_pfn, this_end_pfn); 6224 } 6225 6226 if (*start_pfn == -1UL) 6227 *start_pfn = 0; 6228 } 6229 6230 /* 6231 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6232 * assumption is made that zones within a node are ordered in monotonic 6233 * increasing memory addresses so that the "highest" populated zone is used 6234 */ 6235 static void __init find_usable_zone_for_movable(void) 6236 { 6237 int zone_index; 6238 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6239 if (zone_index == ZONE_MOVABLE) 6240 continue; 6241 6242 if (arch_zone_highest_possible_pfn[zone_index] > 6243 arch_zone_lowest_possible_pfn[zone_index]) 6244 break; 6245 } 6246 6247 VM_BUG_ON(zone_index == -1); 6248 movable_zone = zone_index; 6249 } 6250 6251 /* 6252 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6253 * because it is sized independent of architecture. Unlike the other zones, 6254 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6255 * in each node depending on the size of each node and how evenly kernelcore 6256 * is distributed. This helper function adjusts the zone ranges 6257 * provided by the architecture for a given node by using the end of the 6258 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6259 * zones within a node are in order of monotonic increases memory addresses 6260 */ 6261 static void __init adjust_zone_range_for_zone_movable(int nid, 6262 unsigned long zone_type, 6263 unsigned long node_start_pfn, 6264 unsigned long node_end_pfn, 6265 unsigned long *zone_start_pfn, 6266 unsigned long *zone_end_pfn) 6267 { 6268 /* Only adjust if ZONE_MOVABLE is on this node */ 6269 if (zone_movable_pfn[nid]) { 6270 /* Size ZONE_MOVABLE */ 6271 if (zone_type == ZONE_MOVABLE) { 6272 *zone_start_pfn = zone_movable_pfn[nid]; 6273 *zone_end_pfn = min(node_end_pfn, 6274 arch_zone_highest_possible_pfn[movable_zone]); 6275 6276 /* Adjust for ZONE_MOVABLE starting within this range */ 6277 } else if (!mirrored_kernelcore && 6278 *zone_start_pfn < zone_movable_pfn[nid] && 6279 *zone_end_pfn > zone_movable_pfn[nid]) { 6280 *zone_end_pfn = zone_movable_pfn[nid]; 6281 6282 /* Check if this whole range is within ZONE_MOVABLE */ 6283 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6284 *zone_start_pfn = *zone_end_pfn; 6285 } 6286 } 6287 6288 /* 6289 * Return the number of pages a zone spans in a node, including holes 6290 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6291 */ 6292 static unsigned long __init zone_spanned_pages_in_node(int nid, 6293 unsigned long zone_type, 6294 unsigned long node_start_pfn, 6295 unsigned long node_end_pfn, 6296 unsigned long *zone_start_pfn, 6297 unsigned long *zone_end_pfn, 6298 unsigned long *ignored) 6299 { 6300 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6301 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6302 /* When hotadd a new node from cpu_up(), the node should be empty */ 6303 if (!node_start_pfn && !node_end_pfn) 6304 return 0; 6305 6306 /* Get the start and end of the zone */ 6307 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6308 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6309 adjust_zone_range_for_zone_movable(nid, zone_type, 6310 node_start_pfn, node_end_pfn, 6311 zone_start_pfn, zone_end_pfn); 6312 6313 /* Check that this node has pages within the zone's required range */ 6314 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6315 return 0; 6316 6317 /* Move the zone boundaries inside the node if necessary */ 6318 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6319 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6320 6321 /* Return the spanned pages */ 6322 return *zone_end_pfn - *zone_start_pfn; 6323 } 6324 6325 /* 6326 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6327 * then all holes in the requested range will be accounted for. 6328 */ 6329 unsigned long __init __absent_pages_in_range(int nid, 6330 unsigned long range_start_pfn, 6331 unsigned long range_end_pfn) 6332 { 6333 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6334 unsigned long start_pfn, end_pfn; 6335 int i; 6336 6337 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6338 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6339 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6340 nr_absent -= end_pfn - start_pfn; 6341 } 6342 return nr_absent; 6343 } 6344 6345 /** 6346 * absent_pages_in_range - Return number of page frames in holes within a range 6347 * @start_pfn: The start PFN to start searching for holes 6348 * @end_pfn: The end PFN to stop searching for holes 6349 * 6350 * Return: the number of pages frames in memory holes within a range. 6351 */ 6352 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6353 unsigned long end_pfn) 6354 { 6355 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6356 } 6357 6358 /* Return the number of page frames in holes in a zone on a node */ 6359 static unsigned long __init zone_absent_pages_in_node(int nid, 6360 unsigned long zone_type, 6361 unsigned long node_start_pfn, 6362 unsigned long node_end_pfn, 6363 unsigned long *ignored) 6364 { 6365 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6366 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6367 unsigned long zone_start_pfn, zone_end_pfn; 6368 unsigned long nr_absent; 6369 6370 /* When hotadd a new node from cpu_up(), the node should be empty */ 6371 if (!node_start_pfn && !node_end_pfn) 6372 return 0; 6373 6374 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6375 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6376 6377 adjust_zone_range_for_zone_movable(nid, zone_type, 6378 node_start_pfn, node_end_pfn, 6379 &zone_start_pfn, &zone_end_pfn); 6380 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6381 6382 /* 6383 * ZONE_MOVABLE handling. 6384 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6385 * and vice versa. 6386 */ 6387 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6388 unsigned long start_pfn, end_pfn; 6389 struct memblock_region *r; 6390 6391 for_each_memblock(memory, r) { 6392 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6393 zone_start_pfn, zone_end_pfn); 6394 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6395 zone_start_pfn, zone_end_pfn); 6396 6397 if (zone_type == ZONE_MOVABLE && 6398 memblock_is_mirror(r)) 6399 nr_absent += end_pfn - start_pfn; 6400 6401 if (zone_type == ZONE_NORMAL && 6402 !memblock_is_mirror(r)) 6403 nr_absent += end_pfn - start_pfn; 6404 } 6405 } 6406 6407 return nr_absent; 6408 } 6409 6410 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6411 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6412 unsigned long zone_type, 6413 unsigned long node_start_pfn, 6414 unsigned long node_end_pfn, 6415 unsigned long *zone_start_pfn, 6416 unsigned long *zone_end_pfn, 6417 unsigned long *zones_size) 6418 { 6419 unsigned int zone; 6420 6421 *zone_start_pfn = node_start_pfn; 6422 for (zone = 0; zone < zone_type; zone++) 6423 *zone_start_pfn += zones_size[zone]; 6424 6425 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6426 6427 return zones_size[zone_type]; 6428 } 6429 6430 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6431 unsigned long zone_type, 6432 unsigned long node_start_pfn, 6433 unsigned long node_end_pfn, 6434 unsigned long *zholes_size) 6435 { 6436 if (!zholes_size) 6437 return 0; 6438 6439 return zholes_size[zone_type]; 6440 } 6441 6442 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6443 6444 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6445 unsigned long node_start_pfn, 6446 unsigned long node_end_pfn, 6447 unsigned long *zones_size, 6448 unsigned long *zholes_size) 6449 { 6450 unsigned long realtotalpages = 0, totalpages = 0; 6451 enum zone_type i; 6452 6453 for (i = 0; i < MAX_NR_ZONES; i++) { 6454 struct zone *zone = pgdat->node_zones + i; 6455 unsigned long zone_start_pfn, zone_end_pfn; 6456 unsigned long size, real_size; 6457 6458 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6459 node_start_pfn, 6460 node_end_pfn, 6461 &zone_start_pfn, 6462 &zone_end_pfn, 6463 zones_size); 6464 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6465 node_start_pfn, node_end_pfn, 6466 zholes_size); 6467 if (size) 6468 zone->zone_start_pfn = zone_start_pfn; 6469 else 6470 zone->zone_start_pfn = 0; 6471 zone->spanned_pages = size; 6472 zone->present_pages = real_size; 6473 6474 totalpages += size; 6475 realtotalpages += real_size; 6476 } 6477 6478 pgdat->node_spanned_pages = totalpages; 6479 pgdat->node_present_pages = realtotalpages; 6480 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6481 realtotalpages); 6482 } 6483 6484 #ifndef CONFIG_SPARSEMEM 6485 /* 6486 * Calculate the size of the zone->blockflags rounded to an unsigned long 6487 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6488 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6489 * round what is now in bits to nearest long in bits, then return it in 6490 * bytes. 6491 */ 6492 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6493 { 6494 unsigned long usemapsize; 6495 6496 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6497 usemapsize = roundup(zonesize, pageblock_nr_pages); 6498 usemapsize = usemapsize >> pageblock_order; 6499 usemapsize *= NR_PAGEBLOCK_BITS; 6500 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6501 6502 return usemapsize / 8; 6503 } 6504 6505 static void __ref setup_usemap(struct pglist_data *pgdat, 6506 struct zone *zone, 6507 unsigned long zone_start_pfn, 6508 unsigned long zonesize) 6509 { 6510 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6511 zone->pageblock_flags = NULL; 6512 if (usemapsize) { 6513 zone->pageblock_flags = 6514 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6515 pgdat->node_id); 6516 if (!zone->pageblock_flags) 6517 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6518 usemapsize, zone->name, pgdat->node_id); 6519 } 6520 } 6521 #else 6522 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6523 unsigned long zone_start_pfn, unsigned long zonesize) {} 6524 #endif /* CONFIG_SPARSEMEM */ 6525 6526 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6527 6528 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6529 void __init set_pageblock_order(void) 6530 { 6531 unsigned int order; 6532 6533 /* Check that pageblock_nr_pages has not already been setup */ 6534 if (pageblock_order) 6535 return; 6536 6537 if (HPAGE_SHIFT > PAGE_SHIFT) 6538 order = HUGETLB_PAGE_ORDER; 6539 else 6540 order = MAX_ORDER - 1; 6541 6542 /* 6543 * Assume the largest contiguous order of interest is a huge page. 6544 * This value may be variable depending on boot parameters on IA64 and 6545 * powerpc. 6546 */ 6547 pageblock_order = order; 6548 } 6549 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6550 6551 /* 6552 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6553 * is unused as pageblock_order is set at compile-time. See 6554 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6555 * the kernel config 6556 */ 6557 void __init set_pageblock_order(void) 6558 { 6559 } 6560 6561 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6562 6563 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6564 unsigned long present_pages) 6565 { 6566 unsigned long pages = spanned_pages; 6567 6568 /* 6569 * Provide a more accurate estimation if there are holes within 6570 * the zone and SPARSEMEM is in use. If there are holes within the 6571 * zone, each populated memory region may cost us one or two extra 6572 * memmap pages due to alignment because memmap pages for each 6573 * populated regions may not be naturally aligned on page boundary. 6574 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6575 */ 6576 if (spanned_pages > present_pages + (present_pages >> 4) && 6577 IS_ENABLED(CONFIG_SPARSEMEM)) 6578 pages = present_pages; 6579 6580 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6581 } 6582 6583 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6584 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6585 { 6586 spin_lock_init(&pgdat->split_queue_lock); 6587 INIT_LIST_HEAD(&pgdat->split_queue); 6588 pgdat->split_queue_len = 0; 6589 } 6590 #else 6591 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6592 #endif 6593 6594 #ifdef CONFIG_COMPACTION 6595 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6596 { 6597 init_waitqueue_head(&pgdat->kcompactd_wait); 6598 } 6599 #else 6600 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6601 #endif 6602 6603 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6604 { 6605 pgdat_resize_init(pgdat); 6606 6607 pgdat_init_split_queue(pgdat); 6608 pgdat_init_kcompactd(pgdat); 6609 6610 init_waitqueue_head(&pgdat->kswapd_wait); 6611 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6612 6613 pgdat_page_ext_init(pgdat); 6614 spin_lock_init(&pgdat->lru_lock); 6615 lruvec_init(node_lruvec(pgdat)); 6616 } 6617 6618 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6619 unsigned long remaining_pages) 6620 { 6621 atomic_long_set(&zone->managed_pages, remaining_pages); 6622 zone_set_nid(zone, nid); 6623 zone->name = zone_names[idx]; 6624 zone->zone_pgdat = NODE_DATA(nid); 6625 spin_lock_init(&zone->lock); 6626 zone_seqlock_init(zone); 6627 zone_pcp_init(zone); 6628 } 6629 6630 /* 6631 * Set up the zone data structures 6632 * - init pgdat internals 6633 * - init all zones belonging to this node 6634 * 6635 * NOTE: this function is only called during memory hotplug 6636 */ 6637 #ifdef CONFIG_MEMORY_HOTPLUG 6638 void __ref free_area_init_core_hotplug(int nid) 6639 { 6640 enum zone_type z; 6641 pg_data_t *pgdat = NODE_DATA(nid); 6642 6643 pgdat_init_internals(pgdat); 6644 for (z = 0; z < MAX_NR_ZONES; z++) 6645 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6646 } 6647 #endif 6648 6649 /* 6650 * Set up the zone data structures: 6651 * - mark all pages reserved 6652 * - mark all memory queues empty 6653 * - clear the memory bitmaps 6654 * 6655 * NOTE: pgdat should get zeroed by caller. 6656 * NOTE: this function is only called during early init. 6657 */ 6658 static void __init free_area_init_core(struct pglist_data *pgdat) 6659 { 6660 enum zone_type j; 6661 int nid = pgdat->node_id; 6662 6663 pgdat_init_internals(pgdat); 6664 pgdat->per_cpu_nodestats = &boot_nodestats; 6665 6666 for (j = 0; j < MAX_NR_ZONES; j++) { 6667 struct zone *zone = pgdat->node_zones + j; 6668 unsigned long size, freesize, memmap_pages; 6669 unsigned long zone_start_pfn = zone->zone_start_pfn; 6670 6671 size = zone->spanned_pages; 6672 freesize = zone->present_pages; 6673 6674 /* 6675 * Adjust freesize so that it accounts for how much memory 6676 * is used by this zone for memmap. This affects the watermark 6677 * and per-cpu initialisations 6678 */ 6679 memmap_pages = calc_memmap_size(size, freesize); 6680 if (!is_highmem_idx(j)) { 6681 if (freesize >= memmap_pages) { 6682 freesize -= memmap_pages; 6683 if (memmap_pages) 6684 printk(KERN_DEBUG 6685 " %s zone: %lu pages used for memmap\n", 6686 zone_names[j], memmap_pages); 6687 } else 6688 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6689 zone_names[j], memmap_pages, freesize); 6690 } 6691 6692 /* Account for reserved pages */ 6693 if (j == 0 && freesize > dma_reserve) { 6694 freesize -= dma_reserve; 6695 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6696 zone_names[0], dma_reserve); 6697 } 6698 6699 if (!is_highmem_idx(j)) 6700 nr_kernel_pages += freesize; 6701 /* Charge for highmem memmap if there are enough kernel pages */ 6702 else if (nr_kernel_pages > memmap_pages * 2) 6703 nr_kernel_pages -= memmap_pages; 6704 nr_all_pages += freesize; 6705 6706 /* 6707 * Set an approximate value for lowmem here, it will be adjusted 6708 * when the bootmem allocator frees pages into the buddy system. 6709 * And all highmem pages will be managed by the buddy system. 6710 */ 6711 zone_init_internals(zone, j, nid, freesize); 6712 6713 if (!size) 6714 continue; 6715 6716 set_pageblock_order(); 6717 setup_usemap(pgdat, zone, zone_start_pfn, size); 6718 init_currently_empty_zone(zone, zone_start_pfn, size); 6719 memmap_init(size, nid, j, zone_start_pfn); 6720 } 6721 } 6722 6723 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6724 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6725 { 6726 unsigned long __maybe_unused start = 0; 6727 unsigned long __maybe_unused offset = 0; 6728 6729 /* Skip empty nodes */ 6730 if (!pgdat->node_spanned_pages) 6731 return; 6732 6733 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6734 offset = pgdat->node_start_pfn - start; 6735 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6736 if (!pgdat->node_mem_map) { 6737 unsigned long size, end; 6738 struct page *map; 6739 6740 /* 6741 * The zone's endpoints aren't required to be MAX_ORDER 6742 * aligned but the node_mem_map endpoints must be in order 6743 * for the buddy allocator to function correctly. 6744 */ 6745 end = pgdat_end_pfn(pgdat); 6746 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6747 size = (end - start) * sizeof(struct page); 6748 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6749 pgdat->node_id); 6750 if (!map) 6751 panic("Failed to allocate %ld bytes for node %d memory map\n", 6752 size, pgdat->node_id); 6753 pgdat->node_mem_map = map + offset; 6754 } 6755 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6756 __func__, pgdat->node_id, (unsigned long)pgdat, 6757 (unsigned long)pgdat->node_mem_map); 6758 #ifndef CONFIG_NEED_MULTIPLE_NODES 6759 /* 6760 * With no DISCONTIG, the global mem_map is just set as node 0's 6761 */ 6762 if (pgdat == NODE_DATA(0)) { 6763 mem_map = NODE_DATA(0)->node_mem_map; 6764 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6765 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6766 mem_map -= offset; 6767 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6768 } 6769 #endif 6770 } 6771 #else 6772 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6773 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6774 6775 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6776 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6777 { 6778 pgdat->first_deferred_pfn = ULONG_MAX; 6779 } 6780 #else 6781 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6782 #endif 6783 6784 void __init free_area_init_node(int nid, unsigned long *zones_size, 6785 unsigned long node_start_pfn, 6786 unsigned long *zholes_size) 6787 { 6788 pg_data_t *pgdat = NODE_DATA(nid); 6789 unsigned long start_pfn = 0; 6790 unsigned long end_pfn = 0; 6791 6792 /* pg_data_t should be reset to zero when it's allocated */ 6793 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6794 6795 pgdat->node_id = nid; 6796 pgdat->node_start_pfn = node_start_pfn; 6797 pgdat->per_cpu_nodestats = NULL; 6798 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6799 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6800 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6801 (u64)start_pfn << PAGE_SHIFT, 6802 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6803 #else 6804 start_pfn = node_start_pfn; 6805 #endif 6806 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6807 zones_size, zholes_size); 6808 6809 alloc_node_mem_map(pgdat); 6810 pgdat_set_deferred_range(pgdat); 6811 6812 free_area_init_core(pgdat); 6813 } 6814 6815 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6816 /* 6817 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6818 * pages zeroed 6819 */ 6820 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6821 { 6822 unsigned long pfn; 6823 u64 pgcnt = 0; 6824 6825 for (pfn = spfn; pfn < epfn; pfn++) { 6826 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6827 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6828 + pageblock_nr_pages - 1; 6829 continue; 6830 } 6831 mm_zero_struct_page(pfn_to_page(pfn)); 6832 pgcnt++; 6833 } 6834 6835 return pgcnt; 6836 } 6837 6838 /* 6839 * Only struct pages that are backed by physical memory are zeroed and 6840 * initialized by going through __init_single_page(). But, there are some 6841 * struct pages which are reserved in memblock allocator and their fields 6842 * may be accessed (for example page_to_pfn() on some configuration accesses 6843 * flags). We must explicitly zero those struct pages. 6844 * 6845 * This function also addresses a similar issue where struct pages are left 6846 * uninitialized because the physical address range is not covered by 6847 * memblock.memory or memblock.reserved. That could happen when memblock 6848 * layout is manually configured via memmap=. 6849 */ 6850 void __init zero_resv_unavail(void) 6851 { 6852 phys_addr_t start, end; 6853 u64 i, pgcnt; 6854 phys_addr_t next = 0; 6855 6856 /* 6857 * Loop through unavailable ranges not covered by memblock.memory. 6858 */ 6859 pgcnt = 0; 6860 for_each_mem_range(i, &memblock.memory, NULL, 6861 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6862 if (next < start) 6863 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6864 next = end; 6865 } 6866 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6867 6868 /* 6869 * Struct pages that do not have backing memory. This could be because 6870 * firmware is using some of this memory, or for some other reasons. 6871 */ 6872 if (pgcnt) 6873 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6874 } 6875 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6876 6877 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6878 6879 #if MAX_NUMNODES > 1 6880 /* 6881 * Figure out the number of possible node ids. 6882 */ 6883 void __init setup_nr_node_ids(void) 6884 { 6885 unsigned int highest; 6886 6887 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6888 nr_node_ids = highest + 1; 6889 } 6890 #endif 6891 6892 /** 6893 * node_map_pfn_alignment - determine the maximum internode alignment 6894 * 6895 * This function should be called after node map is populated and sorted. 6896 * It calculates the maximum power of two alignment which can distinguish 6897 * all the nodes. 6898 * 6899 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6900 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6901 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6902 * shifted, 1GiB is enough and this function will indicate so. 6903 * 6904 * This is used to test whether pfn -> nid mapping of the chosen memory 6905 * model has fine enough granularity to avoid incorrect mapping for the 6906 * populated node map. 6907 * 6908 * Return: the determined alignment in pfn's. 0 if there is no alignment 6909 * requirement (single node). 6910 */ 6911 unsigned long __init node_map_pfn_alignment(void) 6912 { 6913 unsigned long accl_mask = 0, last_end = 0; 6914 unsigned long start, end, mask; 6915 int last_nid = NUMA_NO_NODE; 6916 int i, nid; 6917 6918 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6919 if (!start || last_nid < 0 || last_nid == nid) { 6920 last_nid = nid; 6921 last_end = end; 6922 continue; 6923 } 6924 6925 /* 6926 * Start with a mask granular enough to pin-point to the 6927 * start pfn and tick off bits one-by-one until it becomes 6928 * too coarse to separate the current node from the last. 6929 */ 6930 mask = ~((1 << __ffs(start)) - 1); 6931 while (mask && last_end <= (start & (mask << 1))) 6932 mask <<= 1; 6933 6934 /* accumulate all internode masks */ 6935 accl_mask |= mask; 6936 } 6937 6938 /* convert mask to number of pages */ 6939 return ~accl_mask + 1; 6940 } 6941 6942 /* Find the lowest pfn for a node */ 6943 static unsigned long __init find_min_pfn_for_node(int nid) 6944 { 6945 unsigned long min_pfn = ULONG_MAX; 6946 unsigned long start_pfn; 6947 int i; 6948 6949 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6950 min_pfn = min(min_pfn, start_pfn); 6951 6952 if (min_pfn == ULONG_MAX) { 6953 pr_warn("Could not find start_pfn for node %d\n", nid); 6954 return 0; 6955 } 6956 6957 return min_pfn; 6958 } 6959 6960 /** 6961 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6962 * 6963 * Return: the minimum PFN based on information provided via 6964 * memblock_set_node(). 6965 */ 6966 unsigned long __init find_min_pfn_with_active_regions(void) 6967 { 6968 return find_min_pfn_for_node(MAX_NUMNODES); 6969 } 6970 6971 /* 6972 * early_calculate_totalpages() 6973 * Sum pages in active regions for movable zone. 6974 * Populate N_MEMORY for calculating usable_nodes. 6975 */ 6976 static unsigned long __init early_calculate_totalpages(void) 6977 { 6978 unsigned long totalpages = 0; 6979 unsigned long start_pfn, end_pfn; 6980 int i, nid; 6981 6982 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6983 unsigned long pages = end_pfn - start_pfn; 6984 6985 totalpages += pages; 6986 if (pages) 6987 node_set_state(nid, N_MEMORY); 6988 } 6989 return totalpages; 6990 } 6991 6992 /* 6993 * Find the PFN the Movable zone begins in each node. Kernel memory 6994 * is spread evenly between nodes as long as the nodes have enough 6995 * memory. When they don't, some nodes will have more kernelcore than 6996 * others 6997 */ 6998 static void __init find_zone_movable_pfns_for_nodes(void) 6999 { 7000 int i, nid; 7001 unsigned long usable_startpfn; 7002 unsigned long kernelcore_node, kernelcore_remaining; 7003 /* save the state before borrow the nodemask */ 7004 nodemask_t saved_node_state = node_states[N_MEMORY]; 7005 unsigned long totalpages = early_calculate_totalpages(); 7006 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7007 struct memblock_region *r; 7008 7009 /* Need to find movable_zone earlier when movable_node is specified. */ 7010 find_usable_zone_for_movable(); 7011 7012 /* 7013 * If movable_node is specified, ignore kernelcore and movablecore 7014 * options. 7015 */ 7016 if (movable_node_is_enabled()) { 7017 for_each_memblock(memory, r) { 7018 if (!memblock_is_hotpluggable(r)) 7019 continue; 7020 7021 nid = r->nid; 7022 7023 usable_startpfn = PFN_DOWN(r->base); 7024 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7025 min(usable_startpfn, zone_movable_pfn[nid]) : 7026 usable_startpfn; 7027 } 7028 7029 goto out2; 7030 } 7031 7032 /* 7033 * If kernelcore=mirror is specified, ignore movablecore option 7034 */ 7035 if (mirrored_kernelcore) { 7036 bool mem_below_4gb_not_mirrored = false; 7037 7038 for_each_memblock(memory, r) { 7039 if (memblock_is_mirror(r)) 7040 continue; 7041 7042 nid = r->nid; 7043 7044 usable_startpfn = memblock_region_memory_base_pfn(r); 7045 7046 if (usable_startpfn < 0x100000) { 7047 mem_below_4gb_not_mirrored = true; 7048 continue; 7049 } 7050 7051 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7052 min(usable_startpfn, zone_movable_pfn[nid]) : 7053 usable_startpfn; 7054 } 7055 7056 if (mem_below_4gb_not_mirrored) 7057 pr_warn("This configuration results in unmirrored kernel memory."); 7058 7059 goto out2; 7060 } 7061 7062 /* 7063 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7064 * amount of necessary memory. 7065 */ 7066 if (required_kernelcore_percent) 7067 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7068 10000UL; 7069 if (required_movablecore_percent) 7070 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7071 10000UL; 7072 7073 /* 7074 * If movablecore= was specified, calculate what size of 7075 * kernelcore that corresponds so that memory usable for 7076 * any allocation type is evenly spread. If both kernelcore 7077 * and movablecore are specified, then the value of kernelcore 7078 * will be used for required_kernelcore if it's greater than 7079 * what movablecore would have allowed. 7080 */ 7081 if (required_movablecore) { 7082 unsigned long corepages; 7083 7084 /* 7085 * Round-up so that ZONE_MOVABLE is at least as large as what 7086 * was requested by the user 7087 */ 7088 required_movablecore = 7089 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7090 required_movablecore = min(totalpages, required_movablecore); 7091 corepages = totalpages - required_movablecore; 7092 7093 required_kernelcore = max(required_kernelcore, corepages); 7094 } 7095 7096 /* 7097 * If kernelcore was not specified or kernelcore size is larger 7098 * than totalpages, there is no ZONE_MOVABLE. 7099 */ 7100 if (!required_kernelcore || required_kernelcore >= totalpages) 7101 goto out; 7102 7103 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7104 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7105 7106 restart: 7107 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7108 kernelcore_node = required_kernelcore / usable_nodes; 7109 for_each_node_state(nid, N_MEMORY) { 7110 unsigned long start_pfn, end_pfn; 7111 7112 /* 7113 * Recalculate kernelcore_node if the division per node 7114 * now exceeds what is necessary to satisfy the requested 7115 * amount of memory for the kernel 7116 */ 7117 if (required_kernelcore < kernelcore_node) 7118 kernelcore_node = required_kernelcore / usable_nodes; 7119 7120 /* 7121 * As the map is walked, we track how much memory is usable 7122 * by the kernel using kernelcore_remaining. When it is 7123 * 0, the rest of the node is usable by ZONE_MOVABLE 7124 */ 7125 kernelcore_remaining = kernelcore_node; 7126 7127 /* Go through each range of PFNs within this node */ 7128 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7129 unsigned long size_pages; 7130 7131 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7132 if (start_pfn >= end_pfn) 7133 continue; 7134 7135 /* Account for what is only usable for kernelcore */ 7136 if (start_pfn < usable_startpfn) { 7137 unsigned long kernel_pages; 7138 kernel_pages = min(end_pfn, usable_startpfn) 7139 - start_pfn; 7140 7141 kernelcore_remaining -= min(kernel_pages, 7142 kernelcore_remaining); 7143 required_kernelcore -= min(kernel_pages, 7144 required_kernelcore); 7145 7146 /* Continue if range is now fully accounted */ 7147 if (end_pfn <= usable_startpfn) { 7148 7149 /* 7150 * Push zone_movable_pfn to the end so 7151 * that if we have to rebalance 7152 * kernelcore across nodes, we will 7153 * not double account here 7154 */ 7155 zone_movable_pfn[nid] = end_pfn; 7156 continue; 7157 } 7158 start_pfn = usable_startpfn; 7159 } 7160 7161 /* 7162 * The usable PFN range for ZONE_MOVABLE is from 7163 * start_pfn->end_pfn. Calculate size_pages as the 7164 * number of pages used as kernelcore 7165 */ 7166 size_pages = end_pfn - start_pfn; 7167 if (size_pages > kernelcore_remaining) 7168 size_pages = kernelcore_remaining; 7169 zone_movable_pfn[nid] = start_pfn + size_pages; 7170 7171 /* 7172 * Some kernelcore has been met, update counts and 7173 * break if the kernelcore for this node has been 7174 * satisfied 7175 */ 7176 required_kernelcore -= min(required_kernelcore, 7177 size_pages); 7178 kernelcore_remaining -= size_pages; 7179 if (!kernelcore_remaining) 7180 break; 7181 } 7182 } 7183 7184 /* 7185 * If there is still required_kernelcore, we do another pass with one 7186 * less node in the count. This will push zone_movable_pfn[nid] further 7187 * along on the nodes that still have memory until kernelcore is 7188 * satisfied 7189 */ 7190 usable_nodes--; 7191 if (usable_nodes && required_kernelcore > usable_nodes) 7192 goto restart; 7193 7194 out2: 7195 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7196 for (nid = 0; nid < MAX_NUMNODES; nid++) 7197 zone_movable_pfn[nid] = 7198 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7199 7200 out: 7201 /* restore the node_state */ 7202 node_states[N_MEMORY] = saved_node_state; 7203 } 7204 7205 /* Any regular or high memory on that node ? */ 7206 static void check_for_memory(pg_data_t *pgdat, int nid) 7207 { 7208 enum zone_type zone_type; 7209 7210 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7211 struct zone *zone = &pgdat->node_zones[zone_type]; 7212 if (populated_zone(zone)) { 7213 if (IS_ENABLED(CONFIG_HIGHMEM)) 7214 node_set_state(nid, N_HIGH_MEMORY); 7215 if (zone_type <= ZONE_NORMAL) 7216 node_set_state(nid, N_NORMAL_MEMORY); 7217 break; 7218 } 7219 } 7220 } 7221 7222 /** 7223 * free_area_init_nodes - Initialise all pg_data_t and zone data 7224 * @max_zone_pfn: an array of max PFNs for each zone 7225 * 7226 * This will call free_area_init_node() for each active node in the system. 7227 * Using the page ranges provided by memblock_set_node(), the size of each 7228 * zone in each node and their holes is calculated. If the maximum PFN 7229 * between two adjacent zones match, it is assumed that the zone is empty. 7230 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7231 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7232 * starts where the previous one ended. For example, ZONE_DMA32 starts 7233 * at arch_max_dma_pfn. 7234 */ 7235 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7236 { 7237 unsigned long start_pfn, end_pfn; 7238 int i, nid; 7239 7240 /* Record where the zone boundaries are */ 7241 memset(arch_zone_lowest_possible_pfn, 0, 7242 sizeof(arch_zone_lowest_possible_pfn)); 7243 memset(arch_zone_highest_possible_pfn, 0, 7244 sizeof(arch_zone_highest_possible_pfn)); 7245 7246 start_pfn = find_min_pfn_with_active_regions(); 7247 7248 for (i = 0; i < MAX_NR_ZONES; i++) { 7249 if (i == ZONE_MOVABLE) 7250 continue; 7251 7252 end_pfn = max(max_zone_pfn[i], start_pfn); 7253 arch_zone_lowest_possible_pfn[i] = start_pfn; 7254 arch_zone_highest_possible_pfn[i] = end_pfn; 7255 7256 start_pfn = end_pfn; 7257 } 7258 7259 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7260 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7261 find_zone_movable_pfns_for_nodes(); 7262 7263 /* Print out the zone ranges */ 7264 pr_info("Zone ranges:\n"); 7265 for (i = 0; i < MAX_NR_ZONES; i++) { 7266 if (i == ZONE_MOVABLE) 7267 continue; 7268 pr_info(" %-8s ", zone_names[i]); 7269 if (arch_zone_lowest_possible_pfn[i] == 7270 arch_zone_highest_possible_pfn[i]) 7271 pr_cont("empty\n"); 7272 else 7273 pr_cont("[mem %#018Lx-%#018Lx]\n", 7274 (u64)arch_zone_lowest_possible_pfn[i] 7275 << PAGE_SHIFT, 7276 ((u64)arch_zone_highest_possible_pfn[i] 7277 << PAGE_SHIFT) - 1); 7278 } 7279 7280 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7281 pr_info("Movable zone start for each node\n"); 7282 for (i = 0; i < MAX_NUMNODES; i++) { 7283 if (zone_movable_pfn[i]) 7284 pr_info(" Node %d: %#018Lx\n", i, 7285 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7286 } 7287 7288 /* Print out the early node map */ 7289 pr_info("Early memory node ranges\n"); 7290 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7291 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7292 (u64)start_pfn << PAGE_SHIFT, 7293 ((u64)end_pfn << PAGE_SHIFT) - 1); 7294 7295 /* Initialise every node */ 7296 mminit_verify_pageflags_layout(); 7297 setup_nr_node_ids(); 7298 zero_resv_unavail(); 7299 for_each_online_node(nid) { 7300 pg_data_t *pgdat = NODE_DATA(nid); 7301 free_area_init_node(nid, NULL, 7302 find_min_pfn_for_node(nid), NULL); 7303 7304 /* Any memory on that node */ 7305 if (pgdat->node_present_pages) 7306 node_set_state(nid, N_MEMORY); 7307 check_for_memory(pgdat, nid); 7308 } 7309 } 7310 7311 static int __init cmdline_parse_core(char *p, unsigned long *core, 7312 unsigned long *percent) 7313 { 7314 unsigned long long coremem; 7315 char *endptr; 7316 7317 if (!p) 7318 return -EINVAL; 7319 7320 /* Value may be a percentage of total memory, otherwise bytes */ 7321 coremem = simple_strtoull(p, &endptr, 0); 7322 if (*endptr == '%') { 7323 /* Paranoid check for percent values greater than 100 */ 7324 WARN_ON(coremem > 100); 7325 7326 *percent = coremem; 7327 } else { 7328 coremem = memparse(p, &p); 7329 /* Paranoid check that UL is enough for the coremem value */ 7330 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7331 7332 *core = coremem >> PAGE_SHIFT; 7333 *percent = 0UL; 7334 } 7335 return 0; 7336 } 7337 7338 /* 7339 * kernelcore=size sets the amount of memory for use for allocations that 7340 * cannot be reclaimed or migrated. 7341 */ 7342 static int __init cmdline_parse_kernelcore(char *p) 7343 { 7344 /* parse kernelcore=mirror */ 7345 if (parse_option_str(p, "mirror")) { 7346 mirrored_kernelcore = true; 7347 return 0; 7348 } 7349 7350 return cmdline_parse_core(p, &required_kernelcore, 7351 &required_kernelcore_percent); 7352 } 7353 7354 /* 7355 * movablecore=size sets the amount of memory for use for allocations that 7356 * can be reclaimed or migrated. 7357 */ 7358 static int __init cmdline_parse_movablecore(char *p) 7359 { 7360 return cmdline_parse_core(p, &required_movablecore, 7361 &required_movablecore_percent); 7362 } 7363 7364 early_param("kernelcore", cmdline_parse_kernelcore); 7365 early_param("movablecore", cmdline_parse_movablecore); 7366 7367 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7368 7369 void adjust_managed_page_count(struct page *page, long count) 7370 { 7371 atomic_long_add(count, &page_zone(page)->managed_pages); 7372 totalram_pages_add(count); 7373 #ifdef CONFIG_HIGHMEM 7374 if (PageHighMem(page)) 7375 totalhigh_pages_add(count); 7376 #endif 7377 } 7378 EXPORT_SYMBOL(adjust_managed_page_count); 7379 7380 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7381 { 7382 void *pos; 7383 unsigned long pages = 0; 7384 7385 start = (void *)PAGE_ALIGN((unsigned long)start); 7386 end = (void *)((unsigned long)end & PAGE_MASK); 7387 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7388 struct page *page = virt_to_page(pos); 7389 void *direct_map_addr; 7390 7391 /* 7392 * 'direct_map_addr' might be different from 'pos' 7393 * because some architectures' virt_to_page() 7394 * work with aliases. Getting the direct map 7395 * address ensures that we get a _writeable_ 7396 * alias for the memset(). 7397 */ 7398 direct_map_addr = page_address(page); 7399 if ((unsigned int)poison <= 0xFF) 7400 memset(direct_map_addr, poison, PAGE_SIZE); 7401 7402 free_reserved_page(page); 7403 } 7404 7405 if (pages && s) 7406 pr_info("Freeing %s memory: %ldK\n", 7407 s, pages << (PAGE_SHIFT - 10)); 7408 7409 return pages; 7410 } 7411 7412 #ifdef CONFIG_HIGHMEM 7413 void free_highmem_page(struct page *page) 7414 { 7415 __free_reserved_page(page); 7416 totalram_pages_inc(); 7417 atomic_long_inc(&page_zone(page)->managed_pages); 7418 totalhigh_pages_inc(); 7419 } 7420 #endif 7421 7422 7423 void __init mem_init_print_info(const char *str) 7424 { 7425 unsigned long physpages, codesize, datasize, rosize, bss_size; 7426 unsigned long init_code_size, init_data_size; 7427 7428 physpages = get_num_physpages(); 7429 codesize = _etext - _stext; 7430 datasize = _edata - _sdata; 7431 rosize = __end_rodata - __start_rodata; 7432 bss_size = __bss_stop - __bss_start; 7433 init_data_size = __init_end - __init_begin; 7434 init_code_size = _einittext - _sinittext; 7435 7436 /* 7437 * Detect special cases and adjust section sizes accordingly: 7438 * 1) .init.* may be embedded into .data sections 7439 * 2) .init.text.* may be out of [__init_begin, __init_end], 7440 * please refer to arch/tile/kernel/vmlinux.lds.S. 7441 * 3) .rodata.* may be embedded into .text or .data sections. 7442 */ 7443 #define adj_init_size(start, end, size, pos, adj) \ 7444 do { \ 7445 if (start <= pos && pos < end && size > adj) \ 7446 size -= adj; \ 7447 } while (0) 7448 7449 adj_init_size(__init_begin, __init_end, init_data_size, 7450 _sinittext, init_code_size); 7451 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7452 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7453 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7454 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7455 7456 #undef adj_init_size 7457 7458 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7459 #ifdef CONFIG_HIGHMEM 7460 ", %luK highmem" 7461 #endif 7462 "%s%s)\n", 7463 nr_free_pages() << (PAGE_SHIFT - 10), 7464 physpages << (PAGE_SHIFT - 10), 7465 codesize >> 10, datasize >> 10, rosize >> 10, 7466 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7467 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7468 totalcma_pages << (PAGE_SHIFT - 10), 7469 #ifdef CONFIG_HIGHMEM 7470 totalhigh_pages() << (PAGE_SHIFT - 10), 7471 #endif 7472 str ? ", " : "", str ? str : ""); 7473 } 7474 7475 /** 7476 * set_dma_reserve - set the specified number of pages reserved in the first zone 7477 * @new_dma_reserve: The number of pages to mark reserved 7478 * 7479 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7480 * In the DMA zone, a significant percentage may be consumed by kernel image 7481 * and other unfreeable allocations which can skew the watermarks badly. This 7482 * function may optionally be used to account for unfreeable pages in the 7483 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7484 * smaller per-cpu batchsize. 7485 */ 7486 void __init set_dma_reserve(unsigned long new_dma_reserve) 7487 { 7488 dma_reserve = new_dma_reserve; 7489 } 7490 7491 void __init free_area_init(unsigned long *zones_size) 7492 { 7493 zero_resv_unavail(); 7494 free_area_init_node(0, zones_size, 7495 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7496 } 7497 7498 static int page_alloc_cpu_dead(unsigned int cpu) 7499 { 7500 7501 lru_add_drain_cpu(cpu); 7502 drain_pages(cpu); 7503 7504 /* 7505 * Spill the event counters of the dead processor 7506 * into the current processors event counters. 7507 * This artificially elevates the count of the current 7508 * processor. 7509 */ 7510 vm_events_fold_cpu(cpu); 7511 7512 /* 7513 * Zero the differential counters of the dead processor 7514 * so that the vm statistics are consistent. 7515 * 7516 * This is only okay since the processor is dead and cannot 7517 * race with what we are doing. 7518 */ 7519 cpu_vm_stats_fold(cpu); 7520 return 0; 7521 } 7522 7523 void __init page_alloc_init(void) 7524 { 7525 int ret; 7526 7527 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7528 "mm/page_alloc:dead", NULL, 7529 page_alloc_cpu_dead); 7530 WARN_ON(ret < 0); 7531 } 7532 7533 /* 7534 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7535 * or min_free_kbytes changes. 7536 */ 7537 static void calculate_totalreserve_pages(void) 7538 { 7539 struct pglist_data *pgdat; 7540 unsigned long reserve_pages = 0; 7541 enum zone_type i, j; 7542 7543 for_each_online_pgdat(pgdat) { 7544 7545 pgdat->totalreserve_pages = 0; 7546 7547 for (i = 0; i < MAX_NR_ZONES; i++) { 7548 struct zone *zone = pgdat->node_zones + i; 7549 long max = 0; 7550 unsigned long managed_pages = zone_managed_pages(zone); 7551 7552 /* Find valid and maximum lowmem_reserve in the zone */ 7553 for (j = i; j < MAX_NR_ZONES; j++) { 7554 if (zone->lowmem_reserve[j] > max) 7555 max = zone->lowmem_reserve[j]; 7556 } 7557 7558 /* we treat the high watermark as reserved pages. */ 7559 max += high_wmark_pages(zone); 7560 7561 if (max > managed_pages) 7562 max = managed_pages; 7563 7564 pgdat->totalreserve_pages += max; 7565 7566 reserve_pages += max; 7567 } 7568 } 7569 totalreserve_pages = reserve_pages; 7570 } 7571 7572 /* 7573 * setup_per_zone_lowmem_reserve - called whenever 7574 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7575 * has a correct pages reserved value, so an adequate number of 7576 * pages are left in the zone after a successful __alloc_pages(). 7577 */ 7578 static void setup_per_zone_lowmem_reserve(void) 7579 { 7580 struct pglist_data *pgdat; 7581 enum zone_type j, idx; 7582 7583 for_each_online_pgdat(pgdat) { 7584 for (j = 0; j < MAX_NR_ZONES; j++) { 7585 struct zone *zone = pgdat->node_zones + j; 7586 unsigned long managed_pages = zone_managed_pages(zone); 7587 7588 zone->lowmem_reserve[j] = 0; 7589 7590 idx = j; 7591 while (idx) { 7592 struct zone *lower_zone; 7593 7594 idx--; 7595 lower_zone = pgdat->node_zones + idx; 7596 7597 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7598 sysctl_lowmem_reserve_ratio[idx] = 0; 7599 lower_zone->lowmem_reserve[j] = 0; 7600 } else { 7601 lower_zone->lowmem_reserve[j] = 7602 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7603 } 7604 managed_pages += zone_managed_pages(lower_zone); 7605 } 7606 } 7607 } 7608 7609 /* update totalreserve_pages */ 7610 calculate_totalreserve_pages(); 7611 } 7612 7613 static void __setup_per_zone_wmarks(void) 7614 { 7615 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7616 unsigned long lowmem_pages = 0; 7617 struct zone *zone; 7618 unsigned long flags; 7619 7620 /* Calculate total number of !ZONE_HIGHMEM pages */ 7621 for_each_zone(zone) { 7622 if (!is_highmem(zone)) 7623 lowmem_pages += zone_managed_pages(zone); 7624 } 7625 7626 for_each_zone(zone) { 7627 u64 tmp; 7628 7629 spin_lock_irqsave(&zone->lock, flags); 7630 tmp = (u64)pages_min * zone_managed_pages(zone); 7631 do_div(tmp, lowmem_pages); 7632 if (is_highmem(zone)) { 7633 /* 7634 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7635 * need highmem pages, so cap pages_min to a small 7636 * value here. 7637 * 7638 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7639 * deltas control async page reclaim, and so should 7640 * not be capped for highmem. 7641 */ 7642 unsigned long min_pages; 7643 7644 min_pages = zone_managed_pages(zone) / 1024; 7645 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7646 zone->_watermark[WMARK_MIN] = min_pages; 7647 } else { 7648 /* 7649 * If it's a lowmem zone, reserve a number of pages 7650 * proportionate to the zone's size. 7651 */ 7652 zone->_watermark[WMARK_MIN] = tmp; 7653 } 7654 7655 /* 7656 * Set the kswapd watermarks distance according to the 7657 * scale factor in proportion to available memory, but 7658 * ensure a minimum size on small systems. 7659 */ 7660 tmp = max_t(u64, tmp >> 2, 7661 mult_frac(zone_managed_pages(zone), 7662 watermark_scale_factor, 10000)); 7663 7664 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7665 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7666 zone->watermark_boost = 0; 7667 7668 spin_unlock_irqrestore(&zone->lock, flags); 7669 } 7670 7671 /* update totalreserve_pages */ 7672 calculate_totalreserve_pages(); 7673 } 7674 7675 /** 7676 * setup_per_zone_wmarks - called when min_free_kbytes changes 7677 * or when memory is hot-{added|removed} 7678 * 7679 * Ensures that the watermark[min,low,high] values for each zone are set 7680 * correctly with respect to min_free_kbytes. 7681 */ 7682 void setup_per_zone_wmarks(void) 7683 { 7684 static DEFINE_SPINLOCK(lock); 7685 7686 spin_lock(&lock); 7687 __setup_per_zone_wmarks(); 7688 spin_unlock(&lock); 7689 } 7690 7691 /* 7692 * Initialise min_free_kbytes. 7693 * 7694 * For small machines we want it small (128k min). For large machines 7695 * we want it large (64MB max). But it is not linear, because network 7696 * bandwidth does not increase linearly with machine size. We use 7697 * 7698 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7699 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7700 * 7701 * which yields 7702 * 7703 * 16MB: 512k 7704 * 32MB: 724k 7705 * 64MB: 1024k 7706 * 128MB: 1448k 7707 * 256MB: 2048k 7708 * 512MB: 2896k 7709 * 1024MB: 4096k 7710 * 2048MB: 5792k 7711 * 4096MB: 8192k 7712 * 8192MB: 11584k 7713 * 16384MB: 16384k 7714 */ 7715 int __meminit init_per_zone_wmark_min(void) 7716 { 7717 unsigned long lowmem_kbytes; 7718 int new_min_free_kbytes; 7719 7720 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7721 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7722 7723 if (new_min_free_kbytes > user_min_free_kbytes) { 7724 min_free_kbytes = new_min_free_kbytes; 7725 if (min_free_kbytes < 128) 7726 min_free_kbytes = 128; 7727 if (min_free_kbytes > 65536) 7728 min_free_kbytes = 65536; 7729 } else { 7730 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7731 new_min_free_kbytes, user_min_free_kbytes); 7732 } 7733 setup_per_zone_wmarks(); 7734 refresh_zone_stat_thresholds(); 7735 setup_per_zone_lowmem_reserve(); 7736 7737 #ifdef CONFIG_NUMA 7738 setup_min_unmapped_ratio(); 7739 setup_min_slab_ratio(); 7740 #endif 7741 7742 return 0; 7743 } 7744 core_initcall(init_per_zone_wmark_min) 7745 7746 /* 7747 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7748 * that we can call two helper functions whenever min_free_kbytes 7749 * changes. 7750 */ 7751 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7752 void __user *buffer, size_t *length, loff_t *ppos) 7753 { 7754 int rc; 7755 7756 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7757 if (rc) 7758 return rc; 7759 7760 if (write) { 7761 user_min_free_kbytes = min_free_kbytes; 7762 setup_per_zone_wmarks(); 7763 } 7764 return 0; 7765 } 7766 7767 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7768 void __user *buffer, size_t *length, loff_t *ppos) 7769 { 7770 int rc; 7771 7772 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7773 if (rc) 7774 return rc; 7775 7776 return 0; 7777 } 7778 7779 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7780 void __user *buffer, size_t *length, loff_t *ppos) 7781 { 7782 int rc; 7783 7784 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7785 if (rc) 7786 return rc; 7787 7788 if (write) 7789 setup_per_zone_wmarks(); 7790 7791 return 0; 7792 } 7793 7794 #ifdef CONFIG_NUMA 7795 static void setup_min_unmapped_ratio(void) 7796 { 7797 pg_data_t *pgdat; 7798 struct zone *zone; 7799 7800 for_each_online_pgdat(pgdat) 7801 pgdat->min_unmapped_pages = 0; 7802 7803 for_each_zone(zone) 7804 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7805 sysctl_min_unmapped_ratio) / 100; 7806 } 7807 7808 7809 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7810 void __user *buffer, size_t *length, loff_t *ppos) 7811 { 7812 int rc; 7813 7814 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7815 if (rc) 7816 return rc; 7817 7818 setup_min_unmapped_ratio(); 7819 7820 return 0; 7821 } 7822 7823 static void setup_min_slab_ratio(void) 7824 { 7825 pg_data_t *pgdat; 7826 struct zone *zone; 7827 7828 for_each_online_pgdat(pgdat) 7829 pgdat->min_slab_pages = 0; 7830 7831 for_each_zone(zone) 7832 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7833 sysctl_min_slab_ratio) / 100; 7834 } 7835 7836 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7837 void __user *buffer, size_t *length, loff_t *ppos) 7838 { 7839 int rc; 7840 7841 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7842 if (rc) 7843 return rc; 7844 7845 setup_min_slab_ratio(); 7846 7847 return 0; 7848 } 7849 #endif 7850 7851 /* 7852 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7853 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7854 * whenever sysctl_lowmem_reserve_ratio changes. 7855 * 7856 * The reserve ratio obviously has absolutely no relation with the 7857 * minimum watermarks. The lowmem reserve ratio can only make sense 7858 * if in function of the boot time zone sizes. 7859 */ 7860 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7861 void __user *buffer, size_t *length, loff_t *ppos) 7862 { 7863 proc_dointvec_minmax(table, write, buffer, length, ppos); 7864 setup_per_zone_lowmem_reserve(); 7865 return 0; 7866 } 7867 7868 /* 7869 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7870 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7871 * pagelist can have before it gets flushed back to buddy allocator. 7872 */ 7873 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7874 void __user *buffer, size_t *length, loff_t *ppos) 7875 { 7876 struct zone *zone; 7877 int old_percpu_pagelist_fraction; 7878 int ret; 7879 7880 mutex_lock(&pcp_batch_high_lock); 7881 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7882 7883 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7884 if (!write || ret < 0) 7885 goto out; 7886 7887 /* Sanity checking to avoid pcp imbalance */ 7888 if (percpu_pagelist_fraction && 7889 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7890 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7891 ret = -EINVAL; 7892 goto out; 7893 } 7894 7895 /* No change? */ 7896 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7897 goto out; 7898 7899 for_each_populated_zone(zone) { 7900 unsigned int cpu; 7901 7902 for_each_possible_cpu(cpu) 7903 pageset_set_high_and_batch(zone, 7904 per_cpu_ptr(zone->pageset, cpu)); 7905 } 7906 out: 7907 mutex_unlock(&pcp_batch_high_lock); 7908 return ret; 7909 } 7910 7911 #ifdef CONFIG_NUMA 7912 int hashdist = HASHDIST_DEFAULT; 7913 7914 static int __init set_hashdist(char *str) 7915 { 7916 if (!str) 7917 return 0; 7918 hashdist = simple_strtoul(str, &str, 0); 7919 return 1; 7920 } 7921 __setup("hashdist=", set_hashdist); 7922 #endif 7923 7924 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7925 /* 7926 * Returns the number of pages that arch has reserved but 7927 * is not known to alloc_large_system_hash(). 7928 */ 7929 static unsigned long __init arch_reserved_kernel_pages(void) 7930 { 7931 return 0; 7932 } 7933 #endif 7934 7935 /* 7936 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7937 * machines. As memory size is increased the scale is also increased but at 7938 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7939 * quadruples the scale is increased by one, which means the size of hash table 7940 * only doubles, instead of quadrupling as well. 7941 * Because 32-bit systems cannot have large physical memory, where this scaling 7942 * makes sense, it is disabled on such platforms. 7943 */ 7944 #if __BITS_PER_LONG > 32 7945 #define ADAPT_SCALE_BASE (64ul << 30) 7946 #define ADAPT_SCALE_SHIFT 2 7947 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7948 #endif 7949 7950 /* 7951 * allocate a large system hash table from bootmem 7952 * - it is assumed that the hash table must contain an exact power-of-2 7953 * quantity of entries 7954 * - limit is the number of hash buckets, not the total allocation size 7955 */ 7956 void *__init alloc_large_system_hash(const char *tablename, 7957 unsigned long bucketsize, 7958 unsigned long numentries, 7959 int scale, 7960 int flags, 7961 unsigned int *_hash_shift, 7962 unsigned int *_hash_mask, 7963 unsigned long low_limit, 7964 unsigned long high_limit) 7965 { 7966 unsigned long long max = high_limit; 7967 unsigned long log2qty, size; 7968 void *table = NULL; 7969 gfp_t gfp_flags; 7970 7971 /* allow the kernel cmdline to have a say */ 7972 if (!numentries) { 7973 /* round applicable memory size up to nearest megabyte */ 7974 numentries = nr_kernel_pages; 7975 numentries -= arch_reserved_kernel_pages(); 7976 7977 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7978 if (PAGE_SHIFT < 20) 7979 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7980 7981 #if __BITS_PER_LONG > 32 7982 if (!high_limit) { 7983 unsigned long adapt; 7984 7985 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7986 adapt <<= ADAPT_SCALE_SHIFT) 7987 scale++; 7988 } 7989 #endif 7990 7991 /* limit to 1 bucket per 2^scale bytes of low memory */ 7992 if (scale > PAGE_SHIFT) 7993 numentries >>= (scale - PAGE_SHIFT); 7994 else 7995 numentries <<= (PAGE_SHIFT - scale); 7996 7997 /* Make sure we've got at least a 0-order allocation.. */ 7998 if (unlikely(flags & HASH_SMALL)) { 7999 /* Makes no sense without HASH_EARLY */ 8000 WARN_ON(!(flags & HASH_EARLY)); 8001 if (!(numentries >> *_hash_shift)) { 8002 numentries = 1UL << *_hash_shift; 8003 BUG_ON(!numentries); 8004 } 8005 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8006 numentries = PAGE_SIZE / bucketsize; 8007 } 8008 numentries = roundup_pow_of_two(numentries); 8009 8010 /* limit allocation size to 1/16 total memory by default */ 8011 if (max == 0) { 8012 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8013 do_div(max, bucketsize); 8014 } 8015 max = min(max, 0x80000000ULL); 8016 8017 if (numentries < low_limit) 8018 numentries = low_limit; 8019 if (numentries > max) 8020 numentries = max; 8021 8022 log2qty = ilog2(numentries); 8023 8024 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8025 do { 8026 size = bucketsize << log2qty; 8027 if (flags & HASH_EARLY) { 8028 if (flags & HASH_ZERO) 8029 table = memblock_alloc(size, SMP_CACHE_BYTES); 8030 else 8031 table = memblock_alloc_raw(size, 8032 SMP_CACHE_BYTES); 8033 } else if (hashdist) { 8034 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8035 } else { 8036 /* 8037 * If bucketsize is not a power-of-two, we may free 8038 * some pages at the end of hash table which 8039 * alloc_pages_exact() automatically does 8040 */ 8041 if (get_order(size) < MAX_ORDER) { 8042 table = alloc_pages_exact(size, gfp_flags); 8043 kmemleak_alloc(table, size, 1, gfp_flags); 8044 } 8045 } 8046 } while (!table && size > PAGE_SIZE && --log2qty); 8047 8048 if (!table) 8049 panic("Failed to allocate %s hash table\n", tablename); 8050 8051 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 8052 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 8053 8054 if (_hash_shift) 8055 *_hash_shift = log2qty; 8056 if (_hash_mask) 8057 *_hash_mask = (1 << log2qty) - 1; 8058 8059 return table; 8060 } 8061 8062 /* 8063 * This function checks whether pageblock includes unmovable pages or not. 8064 * If @count is not zero, it is okay to include less @count unmovable pages 8065 * 8066 * PageLRU check without isolation or lru_lock could race so that 8067 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8068 * check without lock_page also may miss some movable non-lru pages at 8069 * race condition. So you can't expect this function should be exact. 8070 */ 8071 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8072 int migratetype, int flags) 8073 { 8074 unsigned long found; 8075 unsigned long iter = 0; 8076 unsigned long pfn = page_to_pfn(page); 8077 const char *reason = "unmovable page"; 8078 8079 /* 8080 * TODO we could make this much more efficient by not checking every 8081 * page in the range if we know all of them are in MOVABLE_ZONE and 8082 * that the movable zone guarantees that pages are migratable but 8083 * the later is not the case right now unfortunatelly. E.g. movablecore 8084 * can still lead to having bootmem allocations in zone_movable. 8085 */ 8086 8087 if (is_migrate_cma_page(page)) { 8088 /* 8089 * CMA allocations (alloc_contig_range) really need to mark 8090 * isolate CMA pageblocks even when they are not movable in fact 8091 * so consider them movable here. 8092 */ 8093 if (is_migrate_cma(migratetype)) 8094 return false; 8095 8096 reason = "CMA page"; 8097 goto unmovable; 8098 } 8099 8100 for (found = 0; iter < pageblock_nr_pages; iter++) { 8101 unsigned long check = pfn + iter; 8102 8103 if (!pfn_valid_within(check)) 8104 continue; 8105 8106 page = pfn_to_page(check); 8107 8108 if (PageReserved(page)) 8109 goto unmovable; 8110 8111 /* 8112 * If the zone is movable and we have ruled out all reserved 8113 * pages then it should be reasonably safe to assume the rest 8114 * is movable. 8115 */ 8116 if (zone_idx(zone) == ZONE_MOVABLE) 8117 continue; 8118 8119 /* 8120 * Hugepages are not in LRU lists, but they're movable. 8121 * We need not scan over tail pages because we don't 8122 * handle each tail page individually in migration. 8123 */ 8124 if (PageHuge(page)) { 8125 struct page *head = compound_head(page); 8126 unsigned int skip_pages; 8127 8128 if (!hugepage_migration_supported(page_hstate(head))) 8129 goto unmovable; 8130 8131 skip_pages = (1 << compound_order(head)) - (page - head); 8132 iter += skip_pages - 1; 8133 continue; 8134 } 8135 8136 /* 8137 * We can't use page_count without pin a page 8138 * because another CPU can free compound page. 8139 * This check already skips compound tails of THP 8140 * because their page->_refcount is zero at all time. 8141 */ 8142 if (!page_ref_count(page)) { 8143 if (PageBuddy(page)) 8144 iter += (1 << page_order(page)) - 1; 8145 continue; 8146 } 8147 8148 /* 8149 * The HWPoisoned page may be not in buddy system, and 8150 * page_count() is not 0. 8151 */ 8152 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8153 continue; 8154 8155 if (__PageMovable(page)) 8156 continue; 8157 8158 if (!PageLRU(page)) 8159 found++; 8160 /* 8161 * If there are RECLAIMABLE pages, we need to check 8162 * it. But now, memory offline itself doesn't call 8163 * shrink_node_slabs() and it still to be fixed. 8164 */ 8165 /* 8166 * If the page is not RAM, page_count()should be 0. 8167 * we don't need more check. This is an _used_ not-movable page. 8168 * 8169 * The problematic thing here is PG_reserved pages. PG_reserved 8170 * is set to both of a memory hole page and a _used_ kernel 8171 * page at boot. 8172 */ 8173 if (found > count) 8174 goto unmovable; 8175 } 8176 return false; 8177 unmovable: 8178 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8179 if (flags & REPORT_FAILURE) 8180 dump_page(pfn_to_page(pfn + iter), reason); 8181 return true; 8182 } 8183 8184 #ifdef CONFIG_CONTIG_ALLOC 8185 static unsigned long pfn_max_align_down(unsigned long pfn) 8186 { 8187 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8188 pageblock_nr_pages) - 1); 8189 } 8190 8191 static unsigned long pfn_max_align_up(unsigned long pfn) 8192 { 8193 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8194 pageblock_nr_pages)); 8195 } 8196 8197 /* [start, end) must belong to a single zone. */ 8198 static int __alloc_contig_migrate_range(struct compact_control *cc, 8199 unsigned long start, unsigned long end) 8200 { 8201 /* This function is based on compact_zone() from compaction.c. */ 8202 unsigned long nr_reclaimed; 8203 unsigned long pfn = start; 8204 unsigned int tries = 0; 8205 int ret = 0; 8206 8207 migrate_prep(); 8208 8209 while (pfn < end || !list_empty(&cc->migratepages)) { 8210 if (fatal_signal_pending(current)) { 8211 ret = -EINTR; 8212 break; 8213 } 8214 8215 if (list_empty(&cc->migratepages)) { 8216 cc->nr_migratepages = 0; 8217 pfn = isolate_migratepages_range(cc, pfn, end); 8218 if (!pfn) { 8219 ret = -EINTR; 8220 break; 8221 } 8222 tries = 0; 8223 } else if (++tries == 5) { 8224 ret = ret < 0 ? ret : -EBUSY; 8225 break; 8226 } 8227 8228 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8229 &cc->migratepages); 8230 cc->nr_migratepages -= nr_reclaimed; 8231 8232 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8233 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8234 } 8235 if (ret < 0) { 8236 putback_movable_pages(&cc->migratepages); 8237 return ret; 8238 } 8239 return 0; 8240 } 8241 8242 /** 8243 * alloc_contig_range() -- tries to allocate given range of pages 8244 * @start: start PFN to allocate 8245 * @end: one-past-the-last PFN to allocate 8246 * @migratetype: migratetype of the underlaying pageblocks (either 8247 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8248 * in range must have the same migratetype and it must 8249 * be either of the two. 8250 * @gfp_mask: GFP mask to use during compaction 8251 * 8252 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8253 * aligned. The PFN range must belong to a single zone. 8254 * 8255 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8256 * pageblocks in the range. Once isolated, the pageblocks should not 8257 * be modified by others. 8258 * 8259 * Return: zero on success or negative error code. On success all 8260 * pages which PFN is in [start, end) are allocated for the caller and 8261 * need to be freed with free_contig_range(). 8262 */ 8263 int alloc_contig_range(unsigned long start, unsigned long end, 8264 unsigned migratetype, gfp_t gfp_mask) 8265 { 8266 unsigned long outer_start, outer_end; 8267 unsigned int order; 8268 int ret = 0; 8269 8270 struct compact_control cc = { 8271 .nr_migratepages = 0, 8272 .order = -1, 8273 .zone = page_zone(pfn_to_page(start)), 8274 .mode = MIGRATE_SYNC, 8275 .ignore_skip_hint = true, 8276 .no_set_skip_hint = true, 8277 .gfp_mask = current_gfp_context(gfp_mask), 8278 }; 8279 INIT_LIST_HEAD(&cc.migratepages); 8280 8281 /* 8282 * What we do here is we mark all pageblocks in range as 8283 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8284 * have different sizes, and due to the way page allocator 8285 * work, we align the range to biggest of the two pages so 8286 * that page allocator won't try to merge buddies from 8287 * different pageblocks and change MIGRATE_ISOLATE to some 8288 * other migration type. 8289 * 8290 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8291 * migrate the pages from an unaligned range (ie. pages that 8292 * we are interested in). This will put all the pages in 8293 * range back to page allocator as MIGRATE_ISOLATE. 8294 * 8295 * When this is done, we take the pages in range from page 8296 * allocator removing them from the buddy system. This way 8297 * page allocator will never consider using them. 8298 * 8299 * This lets us mark the pageblocks back as 8300 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8301 * aligned range but not in the unaligned, original range are 8302 * put back to page allocator so that buddy can use them. 8303 */ 8304 8305 ret = start_isolate_page_range(pfn_max_align_down(start), 8306 pfn_max_align_up(end), migratetype, 0); 8307 if (ret < 0) 8308 return ret; 8309 8310 /* 8311 * In case of -EBUSY, we'd like to know which page causes problem. 8312 * So, just fall through. test_pages_isolated() has a tracepoint 8313 * which will report the busy page. 8314 * 8315 * It is possible that busy pages could become available before 8316 * the call to test_pages_isolated, and the range will actually be 8317 * allocated. So, if we fall through be sure to clear ret so that 8318 * -EBUSY is not accidentally used or returned to caller. 8319 */ 8320 ret = __alloc_contig_migrate_range(&cc, start, end); 8321 if (ret && ret != -EBUSY) 8322 goto done; 8323 ret =0; 8324 8325 /* 8326 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8327 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8328 * more, all pages in [start, end) are free in page allocator. 8329 * What we are going to do is to allocate all pages from 8330 * [start, end) (that is remove them from page allocator). 8331 * 8332 * The only problem is that pages at the beginning and at the 8333 * end of interesting range may be not aligned with pages that 8334 * page allocator holds, ie. they can be part of higher order 8335 * pages. Because of this, we reserve the bigger range and 8336 * once this is done free the pages we are not interested in. 8337 * 8338 * We don't have to hold zone->lock here because the pages are 8339 * isolated thus they won't get removed from buddy. 8340 */ 8341 8342 lru_add_drain_all(); 8343 8344 order = 0; 8345 outer_start = start; 8346 while (!PageBuddy(pfn_to_page(outer_start))) { 8347 if (++order >= MAX_ORDER) { 8348 outer_start = start; 8349 break; 8350 } 8351 outer_start &= ~0UL << order; 8352 } 8353 8354 if (outer_start != start) { 8355 order = page_order(pfn_to_page(outer_start)); 8356 8357 /* 8358 * outer_start page could be small order buddy page and 8359 * it doesn't include start page. Adjust outer_start 8360 * in this case to report failed page properly 8361 * on tracepoint in test_pages_isolated() 8362 */ 8363 if (outer_start + (1UL << order) <= start) 8364 outer_start = start; 8365 } 8366 8367 /* Make sure the range is really isolated. */ 8368 if (test_pages_isolated(outer_start, end, false)) { 8369 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8370 __func__, outer_start, end); 8371 ret = -EBUSY; 8372 goto done; 8373 } 8374 8375 /* Grab isolated pages from freelists. */ 8376 outer_end = isolate_freepages_range(&cc, outer_start, end); 8377 if (!outer_end) { 8378 ret = -EBUSY; 8379 goto done; 8380 } 8381 8382 /* Free head and tail (if any) */ 8383 if (start != outer_start) 8384 free_contig_range(outer_start, start - outer_start); 8385 if (end != outer_end) 8386 free_contig_range(end, outer_end - end); 8387 8388 done: 8389 undo_isolate_page_range(pfn_max_align_down(start), 8390 pfn_max_align_up(end), migratetype); 8391 return ret; 8392 } 8393 #endif /* CONFIG_CONTIG_ALLOC */ 8394 8395 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8396 { 8397 unsigned int count = 0; 8398 8399 for (; nr_pages--; pfn++) { 8400 struct page *page = pfn_to_page(pfn); 8401 8402 count += page_count(page) != 1; 8403 __free_page(page); 8404 } 8405 WARN(count != 0, "%d pages are still in use!\n", count); 8406 } 8407 8408 #ifdef CONFIG_MEMORY_HOTPLUG 8409 /* 8410 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8411 * page high values need to be recalulated. 8412 */ 8413 void __meminit zone_pcp_update(struct zone *zone) 8414 { 8415 unsigned cpu; 8416 mutex_lock(&pcp_batch_high_lock); 8417 for_each_possible_cpu(cpu) 8418 pageset_set_high_and_batch(zone, 8419 per_cpu_ptr(zone->pageset, cpu)); 8420 mutex_unlock(&pcp_batch_high_lock); 8421 } 8422 #endif 8423 8424 void zone_pcp_reset(struct zone *zone) 8425 { 8426 unsigned long flags; 8427 int cpu; 8428 struct per_cpu_pageset *pset; 8429 8430 /* avoid races with drain_pages() */ 8431 local_irq_save(flags); 8432 if (zone->pageset != &boot_pageset) { 8433 for_each_online_cpu(cpu) { 8434 pset = per_cpu_ptr(zone->pageset, cpu); 8435 drain_zonestat(zone, pset); 8436 } 8437 free_percpu(zone->pageset); 8438 zone->pageset = &boot_pageset; 8439 } 8440 local_irq_restore(flags); 8441 } 8442 8443 #ifdef CONFIG_MEMORY_HOTREMOVE 8444 /* 8445 * All pages in the range must be in a single zone and isolated 8446 * before calling this. 8447 */ 8448 unsigned long 8449 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8450 { 8451 struct page *page; 8452 struct zone *zone; 8453 unsigned int order, i; 8454 unsigned long pfn; 8455 unsigned long flags; 8456 unsigned long offlined_pages = 0; 8457 8458 /* find the first valid pfn */ 8459 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8460 if (pfn_valid(pfn)) 8461 break; 8462 if (pfn == end_pfn) 8463 return offlined_pages; 8464 8465 offline_mem_sections(pfn, end_pfn); 8466 zone = page_zone(pfn_to_page(pfn)); 8467 spin_lock_irqsave(&zone->lock, flags); 8468 pfn = start_pfn; 8469 while (pfn < end_pfn) { 8470 if (!pfn_valid(pfn)) { 8471 pfn++; 8472 continue; 8473 } 8474 page = pfn_to_page(pfn); 8475 /* 8476 * The HWPoisoned page may be not in buddy system, and 8477 * page_count() is not 0. 8478 */ 8479 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8480 pfn++; 8481 SetPageReserved(page); 8482 offlined_pages++; 8483 continue; 8484 } 8485 8486 BUG_ON(page_count(page)); 8487 BUG_ON(!PageBuddy(page)); 8488 order = page_order(page); 8489 offlined_pages += 1 << order; 8490 #ifdef CONFIG_DEBUG_VM 8491 pr_info("remove from free list %lx %d %lx\n", 8492 pfn, 1 << order, end_pfn); 8493 #endif 8494 del_page_from_free_area(page, &zone->free_area[order]); 8495 for (i = 0; i < (1 << order); i++) 8496 SetPageReserved((page+i)); 8497 pfn += (1 << order); 8498 } 8499 spin_unlock_irqrestore(&zone->lock, flags); 8500 8501 return offlined_pages; 8502 } 8503 #endif 8504 8505 bool is_free_buddy_page(struct page *page) 8506 { 8507 struct zone *zone = page_zone(page); 8508 unsigned long pfn = page_to_pfn(page); 8509 unsigned long flags; 8510 unsigned int order; 8511 8512 spin_lock_irqsave(&zone->lock, flags); 8513 for (order = 0; order < MAX_ORDER; order++) { 8514 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8515 8516 if (PageBuddy(page_head) && page_order(page_head) >= order) 8517 break; 8518 } 8519 spin_unlock_irqrestore(&zone->lock, flags); 8520 8521 return order < MAX_ORDER; 8522 } 8523 8524 #ifdef CONFIG_MEMORY_FAILURE 8525 /* 8526 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8527 * test is performed under the zone lock to prevent a race against page 8528 * allocation. 8529 */ 8530 bool set_hwpoison_free_buddy_page(struct page *page) 8531 { 8532 struct zone *zone = page_zone(page); 8533 unsigned long pfn = page_to_pfn(page); 8534 unsigned long flags; 8535 unsigned int order; 8536 bool hwpoisoned = false; 8537 8538 spin_lock_irqsave(&zone->lock, flags); 8539 for (order = 0; order < MAX_ORDER; order++) { 8540 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8541 8542 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8543 if (!TestSetPageHWPoison(page)) 8544 hwpoisoned = true; 8545 break; 8546 } 8547 } 8548 spin_unlock_irqrestore(&zone->lock, flags); 8549 8550 return hwpoisoned; 8551 } 8552 #endif 8553