xref: /linux/mm/page_alloc.c (revision eb2bce7f5e7ac1ca6da434461217fadf3c688d2c)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/bootmem.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/suspend.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/slab.h>
30 #include <linux/notifier.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mempolicy.h>
39 #include <linux/stop_machine.h>
40 #include <linux/sort.h>
41 #include <linux/pfn.h>
42 #include <linux/backing-dev.h>
43 #include <linux/fault-inject.h>
44 
45 #include <asm/tlbflush.h>
46 #include <asm/div64.h>
47 #include "internal.h"
48 
49 /*
50  * MCD - HACK: Find somewhere to initialize this EARLY, or make this
51  * initializer cleaner
52  */
53 nodemask_t node_online_map __read_mostly = { { [0] = 1UL } };
54 EXPORT_SYMBOL(node_online_map);
55 nodemask_t node_possible_map __read_mostly = NODE_MASK_ALL;
56 EXPORT_SYMBOL(node_possible_map);
57 unsigned long totalram_pages __read_mostly;
58 unsigned long totalreserve_pages __read_mostly;
59 long nr_swap_pages;
60 int percpu_pagelist_fraction;
61 
62 static void __free_pages_ok(struct page *page, unsigned int order);
63 
64 /*
65  * results with 256, 32 in the lowmem_reserve sysctl:
66  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
67  *	1G machine -> (16M dma, 784M normal, 224M high)
68  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
69  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
70  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
71  *
72  * TBD: should special case ZONE_DMA32 machines here - in those we normally
73  * don't need any ZONE_NORMAL reservation
74  */
75 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
76 #ifdef CONFIG_ZONE_DMA
77 	 256,
78 #endif
79 #ifdef CONFIG_ZONE_DMA32
80 	 256,
81 #endif
82 #ifdef CONFIG_HIGHMEM
83 	 32
84 #endif
85 };
86 
87 EXPORT_SYMBOL(totalram_pages);
88 
89 static char * const zone_names[MAX_NR_ZONES] = {
90 #ifdef CONFIG_ZONE_DMA
91 	 "DMA",
92 #endif
93 #ifdef CONFIG_ZONE_DMA32
94 	 "DMA32",
95 #endif
96 	 "Normal",
97 #ifdef CONFIG_HIGHMEM
98 	 "HighMem"
99 #endif
100 };
101 
102 int min_free_kbytes = 1024;
103 
104 unsigned long __meminitdata nr_kernel_pages;
105 unsigned long __meminitdata nr_all_pages;
106 static unsigned long __initdata dma_reserve;
107 
108 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
109   /*
110    * MAX_ACTIVE_REGIONS determines the maxmimum number of distinct
111    * ranges of memory (RAM) that may be registered with add_active_range().
112    * Ranges passed to add_active_range() will be merged if possible
113    * so the number of times add_active_range() can be called is
114    * related to the number of nodes and the number of holes
115    */
116   #ifdef CONFIG_MAX_ACTIVE_REGIONS
117     /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
118     #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
119   #else
120     #if MAX_NUMNODES >= 32
121       /* If there can be many nodes, allow up to 50 holes per node */
122       #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
123     #else
124       /* By default, allow up to 256 distinct regions */
125       #define MAX_ACTIVE_REGIONS 256
126     #endif
127   #endif
128 
129   struct node_active_region __initdata early_node_map[MAX_ACTIVE_REGIONS];
130   int __initdata nr_nodemap_entries;
131   unsigned long __initdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
132   unsigned long __initdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
133 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
134   unsigned long __initdata node_boundary_start_pfn[MAX_NUMNODES];
135   unsigned long __initdata node_boundary_end_pfn[MAX_NUMNODES];
136 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
137 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
138 
139 #ifdef CONFIG_DEBUG_VM
140 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
141 {
142 	int ret = 0;
143 	unsigned seq;
144 	unsigned long pfn = page_to_pfn(page);
145 
146 	do {
147 		seq = zone_span_seqbegin(zone);
148 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
149 			ret = 1;
150 		else if (pfn < zone->zone_start_pfn)
151 			ret = 1;
152 	} while (zone_span_seqretry(zone, seq));
153 
154 	return ret;
155 }
156 
157 static int page_is_consistent(struct zone *zone, struct page *page)
158 {
159 	if (!pfn_valid_within(page_to_pfn(page)))
160 		return 0;
161 	if (zone != page_zone(page))
162 		return 0;
163 
164 	return 1;
165 }
166 /*
167  * Temporary debugging check for pages not lying within a given zone.
168  */
169 static int bad_range(struct zone *zone, struct page *page)
170 {
171 	if (page_outside_zone_boundaries(zone, page))
172 		return 1;
173 	if (!page_is_consistent(zone, page))
174 		return 1;
175 
176 	return 0;
177 }
178 #else
179 static inline int bad_range(struct zone *zone, struct page *page)
180 {
181 	return 0;
182 }
183 #endif
184 
185 static void bad_page(struct page *page)
186 {
187 	printk(KERN_EMERG "Bad page state in process '%s'\n"
188 		KERN_EMERG "page:%p flags:0x%0*lx mapping:%p mapcount:%d count:%d\n"
189 		KERN_EMERG "Trying to fix it up, but a reboot is needed\n"
190 		KERN_EMERG "Backtrace:\n",
191 		current->comm, page, (int)(2*sizeof(unsigned long)),
192 		(unsigned long)page->flags, page->mapping,
193 		page_mapcount(page), page_count(page));
194 	dump_stack();
195 	page->flags &= ~(1 << PG_lru	|
196 			1 << PG_private |
197 			1 << PG_locked	|
198 			1 << PG_active	|
199 			1 << PG_dirty	|
200 			1 << PG_reclaim |
201 			1 << PG_slab    |
202 			1 << PG_swapcache |
203 			1 << PG_writeback |
204 			1 << PG_buddy );
205 	set_page_count(page, 0);
206 	reset_page_mapcount(page);
207 	page->mapping = NULL;
208 	add_taint(TAINT_BAD_PAGE);
209 }
210 
211 /*
212  * Higher-order pages are called "compound pages".  They are structured thusly:
213  *
214  * The first PAGE_SIZE page is called the "head page".
215  *
216  * The remaining PAGE_SIZE pages are called "tail pages".
217  *
218  * All pages have PG_compound set.  All pages have their ->private pointing at
219  * the head page (even the head page has this).
220  *
221  * The first tail page's ->lru.next holds the address of the compound page's
222  * put_page() function.  Its ->lru.prev holds the order of allocation.
223  * This usage means that zero-order pages may not be compound.
224  */
225 
226 static void free_compound_page(struct page *page)
227 {
228 	__free_pages_ok(page, compound_order(page));
229 }
230 
231 static void prep_compound_page(struct page *page, unsigned long order)
232 {
233 	int i;
234 	int nr_pages = 1 << order;
235 
236 	set_compound_page_dtor(page, free_compound_page);
237 	set_compound_order(page, order);
238 	__SetPageHead(page);
239 	for (i = 1; i < nr_pages; i++) {
240 		struct page *p = page + i;
241 
242 		__SetPageTail(p);
243 		p->first_page = page;
244 	}
245 }
246 
247 static void destroy_compound_page(struct page *page, unsigned long order)
248 {
249 	int i;
250 	int nr_pages = 1 << order;
251 
252 	if (unlikely(compound_order(page) != order))
253 		bad_page(page);
254 
255 	if (unlikely(!PageHead(page)))
256 			bad_page(page);
257 	__ClearPageHead(page);
258 	for (i = 1; i < nr_pages; i++) {
259 		struct page *p = page + i;
260 
261 		if (unlikely(!PageTail(p) |
262 				(p->first_page != page)))
263 			bad_page(page);
264 		__ClearPageTail(p);
265 	}
266 }
267 
268 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
269 {
270 	int i;
271 
272 	VM_BUG_ON((gfp_flags & (__GFP_WAIT | __GFP_HIGHMEM)) == __GFP_HIGHMEM);
273 	/*
274 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
275 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
276 	 */
277 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
278 	for (i = 0; i < (1 << order); i++)
279 		clear_highpage(page + i);
280 }
281 
282 /*
283  * function for dealing with page's order in buddy system.
284  * zone->lock is already acquired when we use these.
285  * So, we don't need atomic page->flags operations here.
286  */
287 static inline unsigned long page_order(struct page *page)
288 {
289 	return page_private(page);
290 }
291 
292 static inline void set_page_order(struct page *page, int order)
293 {
294 	set_page_private(page, order);
295 	__SetPageBuddy(page);
296 }
297 
298 static inline void rmv_page_order(struct page *page)
299 {
300 	__ClearPageBuddy(page);
301 	set_page_private(page, 0);
302 }
303 
304 /*
305  * Locate the struct page for both the matching buddy in our
306  * pair (buddy1) and the combined O(n+1) page they form (page).
307  *
308  * 1) Any buddy B1 will have an order O twin B2 which satisfies
309  * the following equation:
310  *     B2 = B1 ^ (1 << O)
311  * For example, if the starting buddy (buddy2) is #8 its order
312  * 1 buddy is #10:
313  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
314  *
315  * 2) Any buddy B will have an order O+1 parent P which
316  * satisfies the following equation:
317  *     P = B & ~(1 << O)
318  *
319  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
320  */
321 static inline struct page *
322 __page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
323 {
324 	unsigned long buddy_idx = page_idx ^ (1 << order);
325 
326 	return page + (buddy_idx - page_idx);
327 }
328 
329 static inline unsigned long
330 __find_combined_index(unsigned long page_idx, unsigned int order)
331 {
332 	return (page_idx & ~(1 << order));
333 }
334 
335 /*
336  * This function checks whether a page is free && is the buddy
337  * we can do coalesce a page and its buddy if
338  * (a) the buddy is not in a hole &&
339  * (b) the buddy is in the buddy system &&
340  * (c) a page and its buddy have the same order &&
341  * (d) a page and its buddy are in the same zone.
342  *
343  * For recording whether a page is in the buddy system, we use PG_buddy.
344  * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
345  *
346  * For recording page's order, we use page_private(page).
347  */
348 static inline int page_is_buddy(struct page *page, struct page *buddy,
349 								int order)
350 {
351 	if (!pfn_valid_within(page_to_pfn(buddy)))
352 		return 0;
353 
354 	if (page_zone_id(page) != page_zone_id(buddy))
355 		return 0;
356 
357 	if (PageBuddy(buddy) && page_order(buddy) == order) {
358 		BUG_ON(page_count(buddy) != 0);
359 		return 1;
360 	}
361 	return 0;
362 }
363 
364 /*
365  * Freeing function for a buddy system allocator.
366  *
367  * The concept of a buddy system is to maintain direct-mapped table
368  * (containing bit values) for memory blocks of various "orders".
369  * The bottom level table contains the map for the smallest allocatable
370  * units of memory (here, pages), and each level above it describes
371  * pairs of units from the levels below, hence, "buddies".
372  * At a high level, all that happens here is marking the table entry
373  * at the bottom level available, and propagating the changes upward
374  * as necessary, plus some accounting needed to play nicely with other
375  * parts of the VM system.
376  * At each level, we keep a list of pages, which are heads of continuous
377  * free pages of length of (1 << order) and marked with PG_buddy. Page's
378  * order is recorded in page_private(page) field.
379  * So when we are allocating or freeing one, we can derive the state of the
380  * other.  That is, if we allocate a small block, and both were
381  * free, the remainder of the region must be split into blocks.
382  * If a block is freed, and its buddy is also free, then this
383  * triggers coalescing into a block of larger size.
384  *
385  * -- wli
386  */
387 
388 static inline void __free_one_page(struct page *page,
389 		struct zone *zone, unsigned int order)
390 {
391 	unsigned long page_idx;
392 	int order_size = 1 << order;
393 
394 	if (unlikely(PageCompound(page)))
395 		destroy_compound_page(page, order);
396 
397 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
398 
399 	VM_BUG_ON(page_idx & (order_size - 1));
400 	VM_BUG_ON(bad_range(zone, page));
401 
402 	__mod_zone_page_state(zone, NR_FREE_PAGES, order_size);
403 	while (order < MAX_ORDER-1) {
404 		unsigned long combined_idx;
405 		struct free_area *area;
406 		struct page *buddy;
407 
408 		buddy = __page_find_buddy(page, page_idx, order);
409 		if (!page_is_buddy(page, buddy, order))
410 			break;		/* Move the buddy up one level. */
411 
412 		list_del(&buddy->lru);
413 		area = zone->free_area + order;
414 		area->nr_free--;
415 		rmv_page_order(buddy);
416 		combined_idx = __find_combined_index(page_idx, order);
417 		page = page + (combined_idx - page_idx);
418 		page_idx = combined_idx;
419 		order++;
420 	}
421 	set_page_order(page, order);
422 	list_add(&page->lru, &zone->free_area[order].free_list);
423 	zone->free_area[order].nr_free++;
424 }
425 
426 static inline int free_pages_check(struct page *page)
427 {
428 	if (unlikely(page_mapcount(page) |
429 		(page->mapping != NULL)  |
430 		(page_count(page) != 0)  |
431 		(page->flags & (
432 			1 << PG_lru	|
433 			1 << PG_private |
434 			1 << PG_locked	|
435 			1 << PG_active	|
436 			1 << PG_slab	|
437 			1 << PG_swapcache |
438 			1 << PG_writeback |
439 			1 << PG_reserved |
440 			1 << PG_buddy ))))
441 		bad_page(page);
442 	/*
443 	 * PageReclaim == PageTail. It is only an error
444 	 * for PageReclaim to be set if PageCompound is clear.
445 	 */
446 	if (unlikely(!PageCompound(page) && PageReclaim(page)))
447 		bad_page(page);
448 	if (PageDirty(page))
449 		__ClearPageDirty(page);
450 	/*
451 	 * For now, we report if PG_reserved was found set, but do not
452 	 * clear it, and do not free the page.  But we shall soon need
453 	 * to do more, for when the ZERO_PAGE count wraps negative.
454 	 */
455 	return PageReserved(page);
456 }
457 
458 /*
459  * Frees a list of pages.
460  * Assumes all pages on list are in same zone, and of same order.
461  * count is the number of pages to free.
462  *
463  * If the zone was previously in an "all pages pinned" state then look to
464  * see if this freeing clears that state.
465  *
466  * And clear the zone's pages_scanned counter, to hold off the "all pages are
467  * pinned" detection logic.
468  */
469 static void free_pages_bulk(struct zone *zone, int count,
470 					struct list_head *list, int order)
471 {
472 	spin_lock(&zone->lock);
473 	zone->all_unreclaimable = 0;
474 	zone->pages_scanned = 0;
475 	while (count--) {
476 		struct page *page;
477 
478 		VM_BUG_ON(list_empty(list));
479 		page = list_entry(list->prev, struct page, lru);
480 		/* have to delete it as __free_one_page list manipulates */
481 		list_del(&page->lru);
482 		__free_one_page(page, zone, order);
483 	}
484 	spin_unlock(&zone->lock);
485 }
486 
487 static void free_one_page(struct zone *zone, struct page *page, int order)
488 {
489 	spin_lock(&zone->lock);
490 	zone->all_unreclaimable = 0;
491 	zone->pages_scanned = 0;
492 	__free_one_page(page, zone, order);
493 	spin_unlock(&zone->lock);
494 }
495 
496 static void __free_pages_ok(struct page *page, unsigned int order)
497 {
498 	unsigned long flags;
499 	int i;
500 	int reserved = 0;
501 
502 	for (i = 0 ; i < (1 << order) ; ++i)
503 		reserved += free_pages_check(page + i);
504 	if (reserved)
505 		return;
506 
507 	if (!PageHighMem(page))
508 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
509 	arch_free_page(page, order);
510 	kernel_map_pages(page, 1 << order, 0);
511 
512 	local_irq_save(flags);
513 	__count_vm_events(PGFREE, 1 << order);
514 	free_one_page(page_zone(page), page, order);
515 	local_irq_restore(flags);
516 }
517 
518 /*
519  * permit the bootmem allocator to evade page validation on high-order frees
520  */
521 void fastcall __init __free_pages_bootmem(struct page *page, unsigned int order)
522 {
523 	if (order == 0) {
524 		__ClearPageReserved(page);
525 		set_page_count(page, 0);
526 		set_page_refcounted(page);
527 		__free_page(page);
528 	} else {
529 		int loop;
530 
531 		prefetchw(page);
532 		for (loop = 0; loop < BITS_PER_LONG; loop++) {
533 			struct page *p = &page[loop];
534 
535 			if (loop + 1 < BITS_PER_LONG)
536 				prefetchw(p + 1);
537 			__ClearPageReserved(p);
538 			set_page_count(p, 0);
539 		}
540 
541 		set_page_refcounted(page);
542 		__free_pages(page, order);
543 	}
544 }
545 
546 
547 /*
548  * The order of subdivision here is critical for the IO subsystem.
549  * Please do not alter this order without good reasons and regression
550  * testing. Specifically, as large blocks of memory are subdivided,
551  * the order in which smaller blocks are delivered depends on the order
552  * they're subdivided in this function. This is the primary factor
553  * influencing the order in which pages are delivered to the IO
554  * subsystem according to empirical testing, and this is also justified
555  * by considering the behavior of a buddy system containing a single
556  * large block of memory acted on by a series of small allocations.
557  * This behavior is a critical factor in sglist merging's success.
558  *
559  * -- wli
560  */
561 static inline void expand(struct zone *zone, struct page *page,
562  	int low, int high, struct free_area *area)
563 {
564 	unsigned long size = 1 << high;
565 
566 	while (high > low) {
567 		area--;
568 		high--;
569 		size >>= 1;
570 		VM_BUG_ON(bad_range(zone, &page[size]));
571 		list_add(&page[size].lru, &area->free_list);
572 		area->nr_free++;
573 		set_page_order(&page[size], high);
574 	}
575 }
576 
577 /*
578  * This page is about to be returned from the page allocator
579  */
580 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
581 {
582 	if (unlikely(page_mapcount(page) |
583 		(page->mapping != NULL)  |
584 		(page_count(page) != 0)  |
585 		(page->flags & (
586 			1 << PG_lru	|
587 			1 << PG_private	|
588 			1 << PG_locked	|
589 			1 << PG_active	|
590 			1 << PG_dirty	|
591 			1 << PG_reclaim	|
592 			1 << PG_slab    |
593 			1 << PG_swapcache |
594 			1 << PG_writeback |
595 			1 << PG_reserved |
596 			1 << PG_buddy ))))
597 		bad_page(page);
598 
599 	/*
600 	 * For now, we report if PG_reserved was found set, but do not
601 	 * clear it, and do not allocate the page: as a safety net.
602 	 */
603 	if (PageReserved(page))
604 		return 1;
605 
606 	page->flags &= ~(1 << PG_uptodate | 1 << PG_error |
607 			1 << PG_referenced | 1 << PG_arch_1 |
608 			1 << PG_owner_priv_1 | 1 << PG_mappedtodisk);
609 	set_page_private(page, 0);
610 	set_page_refcounted(page);
611 
612 	arch_alloc_page(page, order);
613 	kernel_map_pages(page, 1 << order, 1);
614 
615 	if (gfp_flags & __GFP_ZERO)
616 		prep_zero_page(page, order, gfp_flags);
617 
618 	if (order && (gfp_flags & __GFP_COMP))
619 		prep_compound_page(page, order);
620 
621 	return 0;
622 }
623 
624 /*
625  * Do the hard work of removing an element from the buddy allocator.
626  * Call me with the zone->lock already held.
627  */
628 static struct page *__rmqueue(struct zone *zone, unsigned int order)
629 {
630 	struct free_area * area;
631 	unsigned int current_order;
632 	struct page *page;
633 
634 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
635 		area = zone->free_area + current_order;
636 		if (list_empty(&area->free_list))
637 			continue;
638 
639 		page = list_entry(area->free_list.next, struct page, lru);
640 		list_del(&page->lru);
641 		rmv_page_order(page);
642 		area->nr_free--;
643 		__mod_zone_page_state(zone, NR_FREE_PAGES, - (1UL << order));
644 		expand(zone, page, order, current_order, area);
645 		return page;
646 	}
647 
648 	return NULL;
649 }
650 
651 /*
652  * Obtain a specified number of elements from the buddy allocator, all under
653  * a single hold of the lock, for efficiency.  Add them to the supplied list.
654  * Returns the number of new pages which were placed at *list.
655  */
656 static int rmqueue_bulk(struct zone *zone, unsigned int order,
657 			unsigned long count, struct list_head *list)
658 {
659 	int i;
660 
661 	spin_lock(&zone->lock);
662 	for (i = 0; i < count; ++i) {
663 		struct page *page = __rmqueue(zone, order);
664 		if (unlikely(page == NULL))
665 			break;
666 		list_add_tail(&page->lru, list);
667 	}
668 	spin_unlock(&zone->lock);
669 	return i;
670 }
671 
672 #if MAX_NUMNODES > 1
673 int nr_node_ids __read_mostly = MAX_NUMNODES;
674 EXPORT_SYMBOL(nr_node_ids);
675 
676 /*
677  * Figure out the number of possible node ids.
678  */
679 static void __init setup_nr_node_ids(void)
680 {
681 	unsigned int node;
682 	unsigned int highest = 0;
683 
684 	for_each_node_mask(node, node_possible_map)
685 		highest = node;
686 	nr_node_ids = highest + 1;
687 }
688 #else
689 static void __init setup_nr_node_ids(void) {}
690 #endif
691 
692 #ifdef CONFIG_NUMA
693 /*
694  * Called from the slab reaper to drain pagesets on a particular node that
695  * belongs to the currently executing processor.
696  * Note that this function must be called with the thread pinned to
697  * a single processor.
698  */
699 void drain_node_pages(int nodeid)
700 {
701 	int i;
702 	enum zone_type z;
703 	unsigned long flags;
704 
705 	for (z = 0; z < MAX_NR_ZONES; z++) {
706 		struct zone *zone = NODE_DATA(nodeid)->node_zones + z;
707 		struct per_cpu_pageset *pset;
708 
709 		if (!populated_zone(zone))
710 			continue;
711 
712 		pset = zone_pcp(zone, smp_processor_id());
713 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
714 			struct per_cpu_pages *pcp;
715 
716 			pcp = &pset->pcp[i];
717 			if (pcp->count) {
718 				int to_drain;
719 
720 				local_irq_save(flags);
721 				if (pcp->count >= pcp->batch)
722 					to_drain = pcp->batch;
723 				else
724 					to_drain = pcp->count;
725 				free_pages_bulk(zone, to_drain, &pcp->list, 0);
726 				pcp->count -= to_drain;
727 				local_irq_restore(flags);
728 			}
729 		}
730 	}
731 }
732 #endif
733 
734 static void __drain_pages(unsigned int cpu)
735 {
736 	unsigned long flags;
737 	struct zone *zone;
738 	int i;
739 
740 	for_each_zone(zone) {
741 		struct per_cpu_pageset *pset;
742 
743 		if (!populated_zone(zone))
744 			continue;
745 
746 		pset = zone_pcp(zone, cpu);
747 		for (i = 0; i < ARRAY_SIZE(pset->pcp); i++) {
748 			struct per_cpu_pages *pcp;
749 
750 			pcp = &pset->pcp[i];
751 			local_irq_save(flags);
752 			free_pages_bulk(zone, pcp->count, &pcp->list, 0);
753 			pcp->count = 0;
754 			local_irq_restore(flags);
755 		}
756 	}
757 }
758 
759 #ifdef CONFIG_PM
760 
761 void mark_free_pages(struct zone *zone)
762 {
763 	unsigned long pfn, max_zone_pfn;
764 	unsigned long flags;
765 	int order;
766 	struct list_head *curr;
767 
768 	if (!zone->spanned_pages)
769 		return;
770 
771 	spin_lock_irqsave(&zone->lock, flags);
772 
773 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
774 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
775 		if (pfn_valid(pfn)) {
776 			struct page *page = pfn_to_page(pfn);
777 
778 			if (!PageNosave(page))
779 				ClearPageNosaveFree(page);
780 		}
781 
782 	for (order = MAX_ORDER - 1; order >= 0; --order)
783 		list_for_each(curr, &zone->free_area[order].free_list) {
784 			unsigned long i;
785 
786 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
787 			for (i = 0; i < (1UL << order); i++)
788 				SetPageNosaveFree(pfn_to_page(pfn + i));
789 		}
790 
791 	spin_unlock_irqrestore(&zone->lock, flags);
792 }
793 
794 /*
795  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
796  */
797 void drain_local_pages(void)
798 {
799 	unsigned long flags;
800 
801 	local_irq_save(flags);
802 	__drain_pages(smp_processor_id());
803 	local_irq_restore(flags);
804 }
805 #endif /* CONFIG_PM */
806 
807 /*
808  * Free a 0-order page
809  */
810 static void fastcall free_hot_cold_page(struct page *page, int cold)
811 {
812 	struct zone *zone = page_zone(page);
813 	struct per_cpu_pages *pcp;
814 	unsigned long flags;
815 
816 	if (PageAnon(page))
817 		page->mapping = NULL;
818 	if (free_pages_check(page))
819 		return;
820 
821 	if (!PageHighMem(page))
822 		debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
823 	arch_free_page(page, 0);
824 	kernel_map_pages(page, 1, 0);
825 
826 	pcp = &zone_pcp(zone, get_cpu())->pcp[cold];
827 	local_irq_save(flags);
828 	__count_vm_event(PGFREE);
829 	list_add(&page->lru, &pcp->list);
830 	pcp->count++;
831 	if (pcp->count >= pcp->high) {
832 		free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
833 		pcp->count -= pcp->batch;
834 	}
835 	local_irq_restore(flags);
836 	put_cpu();
837 }
838 
839 void fastcall free_hot_page(struct page *page)
840 {
841 	free_hot_cold_page(page, 0);
842 }
843 
844 void fastcall free_cold_page(struct page *page)
845 {
846 	free_hot_cold_page(page, 1);
847 }
848 
849 /*
850  * split_page takes a non-compound higher-order page, and splits it into
851  * n (1<<order) sub-pages: page[0..n]
852  * Each sub-page must be freed individually.
853  *
854  * Note: this is probably too low level an operation for use in drivers.
855  * Please consult with lkml before using this in your driver.
856  */
857 void split_page(struct page *page, unsigned int order)
858 {
859 	int i;
860 
861 	VM_BUG_ON(PageCompound(page));
862 	VM_BUG_ON(!page_count(page));
863 	for (i = 1; i < (1 << order); i++)
864 		set_page_refcounted(page + i);
865 }
866 
867 /*
868  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
869  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
870  * or two.
871  */
872 static struct page *buffered_rmqueue(struct zonelist *zonelist,
873 			struct zone *zone, int order, gfp_t gfp_flags)
874 {
875 	unsigned long flags;
876 	struct page *page;
877 	int cold = !!(gfp_flags & __GFP_COLD);
878 	int cpu;
879 
880 again:
881 	cpu  = get_cpu();
882 	if (likely(order == 0)) {
883 		struct per_cpu_pages *pcp;
884 
885 		pcp = &zone_pcp(zone, cpu)->pcp[cold];
886 		local_irq_save(flags);
887 		if (!pcp->count) {
888 			pcp->count = rmqueue_bulk(zone, 0,
889 						pcp->batch, &pcp->list);
890 			if (unlikely(!pcp->count))
891 				goto failed;
892 		}
893 		page = list_entry(pcp->list.next, struct page, lru);
894 		list_del(&page->lru);
895 		pcp->count--;
896 	} else {
897 		spin_lock_irqsave(&zone->lock, flags);
898 		page = __rmqueue(zone, order);
899 		spin_unlock(&zone->lock);
900 		if (!page)
901 			goto failed;
902 	}
903 
904 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
905 	zone_statistics(zonelist, zone);
906 	local_irq_restore(flags);
907 	put_cpu();
908 
909 	VM_BUG_ON(bad_range(zone, page));
910 	if (prep_new_page(page, order, gfp_flags))
911 		goto again;
912 	return page;
913 
914 failed:
915 	local_irq_restore(flags);
916 	put_cpu();
917 	return NULL;
918 }
919 
920 #define ALLOC_NO_WATERMARKS	0x01 /* don't check watermarks at all */
921 #define ALLOC_WMARK_MIN		0x02 /* use pages_min watermark */
922 #define ALLOC_WMARK_LOW		0x04 /* use pages_low watermark */
923 #define ALLOC_WMARK_HIGH	0x08 /* use pages_high watermark */
924 #define ALLOC_HARDER		0x10 /* try to alloc harder */
925 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
926 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
927 
928 #ifdef CONFIG_FAIL_PAGE_ALLOC
929 
930 static struct fail_page_alloc_attr {
931 	struct fault_attr attr;
932 
933 	u32 ignore_gfp_highmem;
934 	u32 ignore_gfp_wait;
935 
936 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
937 
938 	struct dentry *ignore_gfp_highmem_file;
939 	struct dentry *ignore_gfp_wait_file;
940 
941 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
942 
943 } fail_page_alloc = {
944 	.attr = FAULT_ATTR_INITIALIZER,
945 	.ignore_gfp_wait = 1,
946 	.ignore_gfp_highmem = 1,
947 };
948 
949 static int __init setup_fail_page_alloc(char *str)
950 {
951 	return setup_fault_attr(&fail_page_alloc.attr, str);
952 }
953 __setup("fail_page_alloc=", setup_fail_page_alloc);
954 
955 static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
956 {
957 	if (gfp_mask & __GFP_NOFAIL)
958 		return 0;
959 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
960 		return 0;
961 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
962 		return 0;
963 
964 	return should_fail(&fail_page_alloc.attr, 1 << order);
965 }
966 
967 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
968 
969 static int __init fail_page_alloc_debugfs(void)
970 {
971 	mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
972 	struct dentry *dir;
973 	int err;
974 
975 	err = init_fault_attr_dentries(&fail_page_alloc.attr,
976 				       "fail_page_alloc");
977 	if (err)
978 		return err;
979 	dir = fail_page_alloc.attr.dentries.dir;
980 
981 	fail_page_alloc.ignore_gfp_wait_file =
982 		debugfs_create_bool("ignore-gfp-wait", mode, dir,
983 				      &fail_page_alloc.ignore_gfp_wait);
984 
985 	fail_page_alloc.ignore_gfp_highmem_file =
986 		debugfs_create_bool("ignore-gfp-highmem", mode, dir,
987 				      &fail_page_alloc.ignore_gfp_highmem);
988 
989 	if (!fail_page_alloc.ignore_gfp_wait_file ||
990 			!fail_page_alloc.ignore_gfp_highmem_file) {
991 		err = -ENOMEM;
992 		debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
993 		debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
994 		cleanup_fault_attr_dentries(&fail_page_alloc.attr);
995 	}
996 
997 	return err;
998 }
999 
1000 late_initcall(fail_page_alloc_debugfs);
1001 
1002 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1003 
1004 #else /* CONFIG_FAIL_PAGE_ALLOC */
1005 
1006 static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1007 {
1008 	return 0;
1009 }
1010 
1011 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1012 
1013 /*
1014  * Return 1 if free pages are above 'mark'. This takes into account the order
1015  * of the allocation.
1016  */
1017 int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1018 		      int classzone_idx, int alloc_flags)
1019 {
1020 	/* free_pages my go negative - that's OK */
1021 	long min = mark;
1022 	long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1023 	int o;
1024 
1025 	if (alloc_flags & ALLOC_HIGH)
1026 		min -= min / 2;
1027 	if (alloc_flags & ALLOC_HARDER)
1028 		min -= min / 4;
1029 
1030 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1031 		return 0;
1032 	for (o = 0; o < order; o++) {
1033 		/* At the next order, this order's pages become unavailable */
1034 		free_pages -= z->free_area[o].nr_free << o;
1035 
1036 		/* Require fewer higher order pages to be free */
1037 		min >>= 1;
1038 
1039 		if (free_pages <= min)
1040 			return 0;
1041 	}
1042 	return 1;
1043 }
1044 
1045 #ifdef CONFIG_NUMA
1046 /*
1047  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1048  * skip over zones that are not allowed by the cpuset, or that have
1049  * been recently (in last second) found to be nearly full.  See further
1050  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1051  * that have to skip over alot of full or unallowed zones.
1052  *
1053  * If the zonelist cache is present in the passed in zonelist, then
1054  * returns a pointer to the allowed node mask (either the current
1055  * tasks mems_allowed, or node_online_map.)
1056  *
1057  * If the zonelist cache is not available for this zonelist, does
1058  * nothing and returns NULL.
1059  *
1060  * If the fullzones BITMAP in the zonelist cache is stale (more than
1061  * a second since last zap'd) then we zap it out (clear its bits.)
1062  *
1063  * We hold off even calling zlc_setup, until after we've checked the
1064  * first zone in the zonelist, on the theory that most allocations will
1065  * be satisfied from that first zone, so best to examine that zone as
1066  * quickly as we can.
1067  */
1068 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1069 {
1070 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1071 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1072 
1073 	zlc = zonelist->zlcache_ptr;
1074 	if (!zlc)
1075 		return NULL;
1076 
1077 	if (jiffies - zlc->last_full_zap > 1 * HZ) {
1078 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1079 		zlc->last_full_zap = jiffies;
1080 	}
1081 
1082 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1083 					&cpuset_current_mems_allowed :
1084 					&node_online_map;
1085 	return allowednodes;
1086 }
1087 
1088 /*
1089  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1090  * if it is worth looking at further for free memory:
1091  *  1) Check that the zone isn't thought to be full (doesn't have its
1092  *     bit set in the zonelist_cache fullzones BITMAP).
1093  *  2) Check that the zones node (obtained from the zonelist_cache
1094  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1095  * Return true (non-zero) if zone is worth looking at further, or
1096  * else return false (zero) if it is not.
1097  *
1098  * This check -ignores- the distinction between various watermarks,
1099  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1100  * found to be full for any variation of these watermarks, it will
1101  * be considered full for up to one second by all requests, unless
1102  * we are so low on memory on all allowed nodes that we are forced
1103  * into the second scan of the zonelist.
1104  *
1105  * In the second scan we ignore this zonelist cache and exactly
1106  * apply the watermarks to all zones, even it is slower to do so.
1107  * We are low on memory in the second scan, and should leave no stone
1108  * unturned looking for a free page.
1109  */
1110 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1111 						nodemask_t *allowednodes)
1112 {
1113 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1114 	int i;				/* index of *z in zonelist zones */
1115 	int n;				/* node that zone *z is on */
1116 
1117 	zlc = zonelist->zlcache_ptr;
1118 	if (!zlc)
1119 		return 1;
1120 
1121 	i = z - zonelist->zones;
1122 	n = zlc->z_to_n[i];
1123 
1124 	/* This zone is worth trying if it is allowed but not full */
1125 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1126 }
1127 
1128 /*
1129  * Given 'z' scanning a zonelist, set the corresponding bit in
1130  * zlc->fullzones, so that subsequent attempts to allocate a page
1131  * from that zone don't waste time re-examining it.
1132  */
1133 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1134 {
1135 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1136 	int i;				/* index of *z in zonelist zones */
1137 
1138 	zlc = zonelist->zlcache_ptr;
1139 	if (!zlc)
1140 		return;
1141 
1142 	i = z - zonelist->zones;
1143 
1144 	set_bit(i, zlc->fullzones);
1145 }
1146 
1147 #else	/* CONFIG_NUMA */
1148 
1149 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1150 {
1151 	return NULL;
1152 }
1153 
1154 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zone **z,
1155 				nodemask_t *allowednodes)
1156 {
1157 	return 1;
1158 }
1159 
1160 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zone **z)
1161 {
1162 }
1163 #endif	/* CONFIG_NUMA */
1164 
1165 /*
1166  * get_page_from_freelist goes through the zonelist trying to allocate
1167  * a page.
1168  */
1169 static struct page *
1170 get_page_from_freelist(gfp_t gfp_mask, unsigned int order,
1171 		struct zonelist *zonelist, int alloc_flags)
1172 {
1173 	struct zone **z;
1174 	struct page *page = NULL;
1175 	int classzone_idx = zone_idx(zonelist->zones[0]);
1176 	struct zone *zone;
1177 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1178 	int zlc_active = 0;		/* set if using zonelist_cache */
1179 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1180 
1181 zonelist_scan:
1182 	/*
1183 	 * Scan zonelist, looking for a zone with enough free.
1184 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1185 	 */
1186 	z = zonelist->zones;
1187 
1188 	do {
1189 		if (NUMA_BUILD && zlc_active &&
1190 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1191 				continue;
1192 		zone = *z;
1193 		if (unlikely(NUMA_BUILD && (gfp_mask & __GFP_THISNODE) &&
1194 			zone->zone_pgdat != zonelist->zones[0]->zone_pgdat))
1195 				break;
1196 		if ((alloc_flags & ALLOC_CPUSET) &&
1197 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1198 				goto try_next_zone;
1199 
1200 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1201 			unsigned long mark;
1202 			if (alloc_flags & ALLOC_WMARK_MIN)
1203 				mark = zone->pages_min;
1204 			else if (alloc_flags & ALLOC_WMARK_LOW)
1205 				mark = zone->pages_low;
1206 			else
1207 				mark = zone->pages_high;
1208 			if (!zone_watermark_ok(zone, order, mark,
1209 				    classzone_idx, alloc_flags)) {
1210 				if (!zone_reclaim_mode ||
1211 				    !zone_reclaim(zone, gfp_mask, order))
1212 					goto this_zone_full;
1213 			}
1214 		}
1215 
1216 		page = buffered_rmqueue(zonelist, zone, order, gfp_mask);
1217 		if (page)
1218 			break;
1219 this_zone_full:
1220 		if (NUMA_BUILD)
1221 			zlc_mark_zone_full(zonelist, z);
1222 try_next_zone:
1223 		if (NUMA_BUILD && !did_zlc_setup) {
1224 			/* we do zlc_setup after the first zone is tried */
1225 			allowednodes = zlc_setup(zonelist, alloc_flags);
1226 			zlc_active = 1;
1227 			did_zlc_setup = 1;
1228 		}
1229 	} while (*(++z) != NULL);
1230 
1231 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1232 		/* Disable zlc cache for second zonelist scan */
1233 		zlc_active = 0;
1234 		goto zonelist_scan;
1235 	}
1236 	return page;
1237 }
1238 
1239 /*
1240  * This is the 'heart' of the zoned buddy allocator.
1241  */
1242 struct page * fastcall
1243 __alloc_pages(gfp_t gfp_mask, unsigned int order,
1244 		struct zonelist *zonelist)
1245 {
1246 	const gfp_t wait = gfp_mask & __GFP_WAIT;
1247 	struct zone **z;
1248 	struct page *page;
1249 	struct reclaim_state reclaim_state;
1250 	struct task_struct *p = current;
1251 	int do_retry;
1252 	int alloc_flags;
1253 	int did_some_progress;
1254 
1255 	might_sleep_if(wait);
1256 
1257 	if (should_fail_alloc_page(gfp_mask, order))
1258 		return NULL;
1259 
1260 restart:
1261 	z = zonelist->zones;  /* the list of zones suitable for gfp_mask */
1262 
1263 	if (unlikely(*z == NULL)) {
1264 		/* Should this ever happen?? */
1265 		return NULL;
1266 	}
1267 
1268 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1269 				zonelist, ALLOC_WMARK_LOW|ALLOC_CPUSET);
1270 	if (page)
1271 		goto got_pg;
1272 
1273 	/*
1274 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1275 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1276 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1277 	 * using a larger set of nodes after it has established that the
1278 	 * allowed per node queues are empty and that nodes are
1279 	 * over allocated.
1280 	 */
1281 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1282 		goto nopage;
1283 
1284 	for (z = zonelist->zones; *z; z++)
1285 		wakeup_kswapd(*z, order);
1286 
1287 	/*
1288 	 * OK, we're below the kswapd watermark and have kicked background
1289 	 * reclaim. Now things get more complex, so set up alloc_flags according
1290 	 * to how we want to proceed.
1291 	 *
1292 	 * The caller may dip into page reserves a bit more if the caller
1293 	 * cannot run direct reclaim, or if the caller has realtime scheduling
1294 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
1295 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1296 	 */
1297 	alloc_flags = ALLOC_WMARK_MIN;
1298 	if ((unlikely(rt_task(p)) && !in_interrupt()) || !wait)
1299 		alloc_flags |= ALLOC_HARDER;
1300 	if (gfp_mask & __GFP_HIGH)
1301 		alloc_flags |= ALLOC_HIGH;
1302 	if (wait)
1303 		alloc_flags |= ALLOC_CPUSET;
1304 
1305 	/*
1306 	 * Go through the zonelist again. Let __GFP_HIGH and allocations
1307 	 * coming from realtime tasks go deeper into reserves.
1308 	 *
1309 	 * This is the last chance, in general, before the goto nopage.
1310 	 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1311 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1312 	 */
1313 	page = get_page_from_freelist(gfp_mask, order, zonelist, alloc_flags);
1314 	if (page)
1315 		goto got_pg;
1316 
1317 	/* This allocation should allow future memory freeing. */
1318 
1319 rebalance:
1320 	if (((p->flags & PF_MEMALLOC) || unlikely(test_thread_flag(TIF_MEMDIE)))
1321 			&& !in_interrupt()) {
1322 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
1323 nofail_alloc:
1324 			/* go through the zonelist yet again, ignoring mins */
1325 			page = get_page_from_freelist(gfp_mask, order,
1326 				zonelist, ALLOC_NO_WATERMARKS);
1327 			if (page)
1328 				goto got_pg;
1329 			if (gfp_mask & __GFP_NOFAIL) {
1330 				congestion_wait(WRITE, HZ/50);
1331 				goto nofail_alloc;
1332 			}
1333 		}
1334 		goto nopage;
1335 	}
1336 
1337 	/* Atomic allocations - we can't balance anything */
1338 	if (!wait)
1339 		goto nopage;
1340 
1341 	cond_resched();
1342 
1343 	/* We now go into synchronous reclaim */
1344 	cpuset_memory_pressure_bump();
1345 	p->flags |= PF_MEMALLOC;
1346 	reclaim_state.reclaimed_slab = 0;
1347 	p->reclaim_state = &reclaim_state;
1348 
1349 	did_some_progress = try_to_free_pages(zonelist->zones, gfp_mask);
1350 
1351 	p->reclaim_state = NULL;
1352 	p->flags &= ~PF_MEMALLOC;
1353 
1354 	cond_resched();
1355 
1356 	if (likely(did_some_progress)) {
1357 		page = get_page_from_freelist(gfp_mask, order,
1358 						zonelist, alloc_flags);
1359 		if (page)
1360 			goto got_pg;
1361 	} else if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
1362 		/*
1363 		 * Go through the zonelist yet one more time, keep
1364 		 * very high watermark here, this is only to catch
1365 		 * a parallel oom killing, we must fail if we're still
1366 		 * under heavy pressure.
1367 		 */
1368 		page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, order,
1369 				zonelist, ALLOC_WMARK_HIGH|ALLOC_CPUSET);
1370 		if (page)
1371 			goto got_pg;
1372 
1373 		out_of_memory(zonelist, gfp_mask, order);
1374 		goto restart;
1375 	}
1376 
1377 	/*
1378 	 * Don't let big-order allocations loop unless the caller explicitly
1379 	 * requests that.  Wait for some write requests to complete then retry.
1380 	 *
1381 	 * In this implementation, __GFP_REPEAT means __GFP_NOFAIL for order
1382 	 * <= 3, but that may not be true in other implementations.
1383 	 */
1384 	do_retry = 0;
1385 	if (!(gfp_mask & __GFP_NORETRY)) {
1386 		if ((order <= 3) || (gfp_mask & __GFP_REPEAT))
1387 			do_retry = 1;
1388 		if (gfp_mask & __GFP_NOFAIL)
1389 			do_retry = 1;
1390 	}
1391 	if (do_retry) {
1392 		congestion_wait(WRITE, HZ/50);
1393 		goto rebalance;
1394 	}
1395 
1396 nopage:
1397 	if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1398 		printk(KERN_WARNING "%s: page allocation failure."
1399 			" order:%d, mode:0x%x\n",
1400 			p->comm, order, gfp_mask);
1401 		dump_stack();
1402 		show_mem();
1403 	}
1404 got_pg:
1405 	return page;
1406 }
1407 
1408 EXPORT_SYMBOL(__alloc_pages);
1409 
1410 /*
1411  * Common helper functions.
1412  */
1413 fastcall unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1414 {
1415 	struct page * page;
1416 	page = alloc_pages(gfp_mask, order);
1417 	if (!page)
1418 		return 0;
1419 	return (unsigned long) page_address(page);
1420 }
1421 
1422 EXPORT_SYMBOL(__get_free_pages);
1423 
1424 fastcall unsigned long get_zeroed_page(gfp_t gfp_mask)
1425 {
1426 	struct page * page;
1427 
1428 	/*
1429 	 * get_zeroed_page() returns a 32-bit address, which cannot represent
1430 	 * a highmem page
1431 	 */
1432 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1433 
1434 	page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1435 	if (page)
1436 		return (unsigned long) page_address(page);
1437 	return 0;
1438 }
1439 
1440 EXPORT_SYMBOL(get_zeroed_page);
1441 
1442 void __pagevec_free(struct pagevec *pvec)
1443 {
1444 	int i = pagevec_count(pvec);
1445 
1446 	while (--i >= 0)
1447 		free_hot_cold_page(pvec->pages[i], pvec->cold);
1448 }
1449 
1450 fastcall void __free_pages(struct page *page, unsigned int order)
1451 {
1452 	if (put_page_testzero(page)) {
1453 		if (order == 0)
1454 			free_hot_page(page);
1455 		else
1456 			__free_pages_ok(page, order);
1457 	}
1458 }
1459 
1460 EXPORT_SYMBOL(__free_pages);
1461 
1462 fastcall void free_pages(unsigned long addr, unsigned int order)
1463 {
1464 	if (addr != 0) {
1465 		VM_BUG_ON(!virt_addr_valid((void *)addr));
1466 		__free_pages(virt_to_page((void *)addr), order);
1467 	}
1468 }
1469 
1470 EXPORT_SYMBOL(free_pages);
1471 
1472 static unsigned int nr_free_zone_pages(int offset)
1473 {
1474 	/* Just pick one node, since fallback list is circular */
1475 	pg_data_t *pgdat = NODE_DATA(numa_node_id());
1476 	unsigned int sum = 0;
1477 
1478 	struct zonelist *zonelist = pgdat->node_zonelists + offset;
1479 	struct zone **zonep = zonelist->zones;
1480 	struct zone *zone;
1481 
1482 	for (zone = *zonep++; zone; zone = *zonep++) {
1483 		unsigned long size = zone->present_pages;
1484 		unsigned long high = zone->pages_high;
1485 		if (size > high)
1486 			sum += size - high;
1487 	}
1488 
1489 	return sum;
1490 }
1491 
1492 /*
1493  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1494  */
1495 unsigned int nr_free_buffer_pages(void)
1496 {
1497 	return nr_free_zone_pages(gfp_zone(GFP_USER));
1498 }
1499 
1500 /*
1501  * Amount of free RAM allocatable within all zones
1502  */
1503 unsigned int nr_free_pagecache_pages(void)
1504 {
1505 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER));
1506 }
1507 
1508 static inline void show_node(struct zone *zone)
1509 {
1510 	if (NUMA_BUILD)
1511 		printk("Node %d ", zone_to_nid(zone));
1512 }
1513 
1514 void si_meminfo(struct sysinfo *val)
1515 {
1516 	val->totalram = totalram_pages;
1517 	val->sharedram = 0;
1518 	val->freeram = global_page_state(NR_FREE_PAGES);
1519 	val->bufferram = nr_blockdev_pages();
1520 	val->totalhigh = totalhigh_pages;
1521 	val->freehigh = nr_free_highpages();
1522 	val->mem_unit = PAGE_SIZE;
1523 }
1524 
1525 EXPORT_SYMBOL(si_meminfo);
1526 
1527 #ifdef CONFIG_NUMA
1528 void si_meminfo_node(struct sysinfo *val, int nid)
1529 {
1530 	pg_data_t *pgdat = NODE_DATA(nid);
1531 
1532 	val->totalram = pgdat->node_present_pages;
1533 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
1534 #ifdef CONFIG_HIGHMEM
1535 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
1536 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
1537 			NR_FREE_PAGES);
1538 #else
1539 	val->totalhigh = 0;
1540 	val->freehigh = 0;
1541 #endif
1542 	val->mem_unit = PAGE_SIZE;
1543 }
1544 #endif
1545 
1546 #define K(x) ((x) << (PAGE_SHIFT-10))
1547 
1548 /*
1549  * Show free area list (used inside shift_scroll-lock stuff)
1550  * We also calculate the percentage fragmentation. We do this by counting the
1551  * memory on each free list with the exception of the first item on the list.
1552  */
1553 void show_free_areas(void)
1554 {
1555 	int cpu;
1556 	struct zone *zone;
1557 
1558 	for_each_zone(zone) {
1559 		if (!populated_zone(zone))
1560 			continue;
1561 
1562 		show_node(zone);
1563 		printk("%s per-cpu:\n", zone->name);
1564 
1565 		for_each_online_cpu(cpu) {
1566 			struct per_cpu_pageset *pageset;
1567 
1568 			pageset = zone_pcp(zone, cpu);
1569 
1570 			printk("CPU %4d: Hot: hi:%5d, btch:%4d usd:%4d   "
1571 			       "Cold: hi:%5d, btch:%4d usd:%4d\n",
1572 			       cpu, pageset->pcp[0].high,
1573 			       pageset->pcp[0].batch, pageset->pcp[0].count,
1574 			       pageset->pcp[1].high, pageset->pcp[1].batch,
1575 			       pageset->pcp[1].count);
1576 		}
1577 	}
1578 
1579 	printk("Active:%lu inactive:%lu dirty:%lu writeback:%lu unstable:%lu\n"
1580 		" free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
1581 		global_page_state(NR_ACTIVE),
1582 		global_page_state(NR_INACTIVE),
1583 		global_page_state(NR_FILE_DIRTY),
1584 		global_page_state(NR_WRITEBACK),
1585 		global_page_state(NR_UNSTABLE_NFS),
1586 		global_page_state(NR_FREE_PAGES),
1587 		global_page_state(NR_SLAB_RECLAIMABLE) +
1588 			global_page_state(NR_SLAB_UNRECLAIMABLE),
1589 		global_page_state(NR_FILE_MAPPED),
1590 		global_page_state(NR_PAGETABLE),
1591 		global_page_state(NR_BOUNCE));
1592 
1593 	for_each_zone(zone) {
1594 		int i;
1595 
1596 		if (!populated_zone(zone))
1597 			continue;
1598 
1599 		show_node(zone);
1600 		printk("%s"
1601 			" free:%lukB"
1602 			" min:%lukB"
1603 			" low:%lukB"
1604 			" high:%lukB"
1605 			" active:%lukB"
1606 			" inactive:%lukB"
1607 			" present:%lukB"
1608 			" pages_scanned:%lu"
1609 			" all_unreclaimable? %s"
1610 			"\n",
1611 			zone->name,
1612 			K(zone_page_state(zone, NR_FREE_PAGES)),
1613 			K(zone->pages_min),
1614 			K(zone->pages_low),
1615 			K(zone->pages_high),
1616 			K(zone_page_state(zone, NR_ACTIVE)),
1617 			K(zone_page_state(zone, NR_INACTIVE)),
1618 			K(zone->present_pages),
1619 			zone->pages_scanned,
1620 			(zone->all_unreclaimable ? "yes" : "no")
1621 			);
1622 		printk("lowmem_reserve[]:");
1623 		for (i = 0; i < MAX_NR_ZONES; i++)
1624 			printk(" %lu", zone->lowmem_reserve[i]);
1625 		printk("\n");
1626 	}
1627 
1628 	for_each_zone(zone) {
1629  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
1630 
1631 		if (!populated_zone(zone))
1632 			continue;
1633 
1634 		show_node(zone);
1635 		printk("%s: ", zone->name);
1636 
1637 		spin_lock_irqsave(&zone->lock, flags);
1638 		for (order = 0; order < MAX_ORDER; order++) {
1639 			nr[order] = zone->free_area[order].nr_free;
1640 			total += nr[order] << order;
1641 		}
1642 		spin_unlock_irqrestore(&zone->lock, flags);
1643 		for (order = 0; order < MAX_ORDER; order++)
1644 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
1645 		printk("= %lukB\n", K(total));
1646 	}
1647 
1648 	show_swap_cache_info();
1649 }
1650 
1651 /*
1652  * Builds allocation fallback zone lists.
1653  *
1654  * Add all populated zones of a node to the zonelist.
1655  */
1656 static int __meminit build_zonelists_node(pg_data_t *pgdat,
1657 			struct zonelist *zonelist, int nr_zones, enum zone_type zone_type)
1658 {
1659 	struct zone *zone;
1660 
1661 	BUG_ON(zone_type >= MAX_NR_ZONES);
1662 	zone_type++;
1663 
1664 	do {
1665 		zone_type--;
1666 		zone = pgdat->node_zones + zone_type;
1667 		if (populated_zone(zone)) {
1668 			zonelist->zones[nr_zones++] = zone;
1669 			check_highest_zone(zone_type);
1670 		}
1671 
1672 	} while (zone_type);
1673 	return nr_zones;
1674 }
1675 
1676 #ifdef CONFIG_NUMA
1677 #define MAX_NODE_LOAD (num_online_nodes())
1678 static int __meminitdata node_load[MAX_NUMNODES];
1679 /**
1680  * find_next_best_node - find the next node that should appear in a given node's fallback list
1681  * @node: node whose fallback list we're appending
1682  * @used_node_mask: nodemask_t of already used nodes
1683  *
1684  * We use a number of factors to determine which is the next node that should
1685  * appear on a given node's fallback list.  The node should not have appeared
1686  * already in @node's fallback list, and it should be the next closest node
1687  * according to the distance array (which contains arbitrary distance values
1688  * from each node to each node in the system), and should also prefer nodes
1689  * with no CPUs, since presumably they'll have very little allocation pressure
1690  * on them otherwise.
1691  * It returns -1 if no node is found.
1692  */
1693 static int __meminit find_next_best_node(int node, nodemask_t *used_node_mask)
1694 {
1695 	int n, val;
1696 	int min_val = INT_MAX;
1697 	int best_node = -1;
1698 
1699 	/* Use the local node if we haven't already */
1700 	if (!node_isset(node, *used_node_mask)) {
1701 		node_set(node, *used_node_mask);
1702 		return node;
1703 	}
1704 
1705 	for_each_online_node(n) {
1706 		cpumask_t tmp;
1707 
1708 		/* Don't want a node to appear more than once */
1709 		if (node_isset(n, *used_node_mask))
1710 			continue;
1711 
1712 		/* Use the distance array to find the distance */
1713 		val = node_distance(node, n);
1714 
1715 		/* Penalize nodes under us ("prefer the next node") */
1716 		val += (n < node);
1717 
1718 		/* Give preference to headless and unused nodes */
1719 		tmp = node_to_cpumask(n);
1720 		if (!cpus_empty(tmp))
1721 			val += PENALTY_FOR_NODE_WITH_CPUS;
1722 
1723 		/* Slight preference for less loaded node */
1724 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
1725 		val += node_load[n];
1726 
1727 		if (val < min_val) {
1728 			min_val = val;
1729 			best_node = n;
1730 		}
1731 	}
1732 
1733 	if (best_node >= 0)
1734 		node_set(best_node, *used_node_mask);
1735 
1736 	return best_node;
1737 }
1738 
1739 static void __meminit build_zonelists(pg_data_t *pgdat)
1740 {
1741 	int j, node, local_node;
1742 	enum zone_type i;
1743 	int prev_node, load;
1744 	struct zonelist *zonelist;
1745 	nodemask_t used_mask;
1746 
1747 	/* initialize zonelists */
1748 	for (i = 0; i < MAX_NR_ZONES; i++) {
1749 		zonelist = pgdat->node_zonelists + i;
1750 		zonelist->zones[0] = NULL;
1751 	}
1752 
1753 	/* NUMA-aware ordering of nodes */
1754 	local_node = pgdat->node_id;
1755 	load = num_online_nodes();
1756 	prev_node = local_node;
1757 	nodes_clear(used_mask);
1758 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
1759 		int distance = node_distance(local_node, node);
1760 
1761 		/*
1762 		 * If another node is sufficiently far away then it is better
1763 		 * to reclaim pages in a zone before going off node.
1764 		 */
1765 		if (distance > RECLAIM_DISTANCE)
1766 			zone_reclaim_mode = 1;
1767 
1768 		/*
1769 		 * We don't want to pressure a particular node.
1770 		 * So adding penalty to the first node in same
1771 		 * distance group to make it round-robin.
1772 		 */
1773 
1774 		if (distance != node_distance(local_node, prev_node))
1775 			node_load[node] += load;
1776 		prev_node = node;
1777 		load--;
1778 		for (i = 0; i < MAX_NR_ZONES; i++) {
1779 			zonelist = pgdat->node_zonelists + i;
1780 			for (j = 0; zonelist->zones[j] != NULL; j++);
1781 
1782 	 		j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1783 			zonelist->zones[j] = NULL;
1784 		}
1785 	}
1786 }
1787 
1788 /* Construct the zonelist performance cache - see further mmzone.h */
1789 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1790 {
1791 	int i;
1792 
1793 	for (i = 0; i < MAX_NR_ZONES; i++) {
1794 		struct zonelist *zonelist;
1795 		struct zonelist_cache *zlc;
1796 		struct zone **z;
1797 
1798 		zonelist = pgdat->node_zonelists + i;
1799 		zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
1800 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1801 		for (z = zonelist->zones; *z; z++)
1802 			zlc->z_to_n[z - zonelist->zones] = zone_to_nid(*z);
1803 	}
1804 }
1805 
1806 #else	/* CONFIG_NUMA */
1807 
1808 static void __meminit build_zonelists(pg_data_t *pgdat)
1809 {
1810 	int node, local_node;
1811 	enum zone_type i,j;
1812 
1813 	local_node = pgdat->node_id;
1814 	for (i = 0; i < MAX_NR_ZONES; i++) {
1815 		struct zonelist *zonelist;
1816 
1817 		zonelist = pgdat->node_zonelists + i;
1818 
1819  		j = build_zonelists_node(pgdat, zonelist, 0, i);
1820  		/*
1821  		 * Now we build the zonelist so that it contains the zones
1822  		 * of all the other nodes.
1823  		 * We don't want to pressure a particular node, so when
1824  		 * building the zones for node N, we make sure that the
1825  		 * zones coming right after the local ones are those from
1826  		 * node N+1 (modulo N)
1827  		 */
1828 		for (node = local_node + 1; node < MAX_NUMNODES; node++) {
1829 			if (!node_online(node))
1830 				continue;
1831 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1832 		}
1833 		for (node = 0; node < local_node; node++) {
1834 			if (!node_online(node))
1835 				continue;
1836 			j = build_zonelists_node(NODE_DATA(node), zonelist, j, i);
1837 		}
1838 
1839 		zonelist->zones[j] = NULL;
1840 	}
1841 }
1842 
1843 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
1844 static void __meminit build_zonelist_cache(pg_data_t *pgdat)
1845 {
1846 	int i;
1847 
1848 	for (i = 0; i < MAX_NR_ZONES; i++)
1849 		pgdat->node_zonelists[i].zlcache_ptr = NULL;
1850 }
1851 
1852 #endif	/* CONFIG_NUMA */
1853 
1854 /* return values int ....just for stop_machine_run() */
1855 static int __meminit __build_all_zonelists(void *dummy)
1856 {
1857 	int nid;
1858 
1859 	for_each_online_node(nid) {
1860 		build_zonelists(NODE_DATA(nid));
1861 		build_zonelist_cache(NODE_DATA(nid));
1862 	}
1863 	return 0;
1864 }
1865 
1866 void __meminit build_all_zonelists(void)
1867 {
1868 	if (system_state == SYSTEM_BOOTING) {
1869 		__build_all_zonelists(NULL);
1870 		cpuset_init_current_mems_allowed();
1871 	} else {
1872 		/* we have to stop all cpus to guaranntee there is no user
1873 		   of zonelist */
1874 		stop_machine_run(__build_all_zonelists, NULL, NR_CPUS);
1875 		/* cpuset refresh routine should be here */
1876 	}
1877 	vm_total_pages = nr_free_pagecache_pages();
1878 	printk("Built %i zonelists.  Total pages: %ld\n",
1879 			num_online_nodes(), vm_total_pages);
1880 }
1881 
1882 /*
1883  * Helper functions to size the waitqueue hash table.
1884  * Essentially these want to choose hash table sizes sufficiently
1885  * large so that collisions trying to wait on pages are rare.
1886  * But in fact, the number of active page waitqueues on typical
1887  * systems is ridiculously low, less than 200. So this is even
1888  * conservative, even though it seems large.
1889  *
1890  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
1891  * waitqueues, i.e. the size of the waitq table given the number of pages.
1892  */
1893 #define PAGES_PER_WAITQUEUE	256
1894 
1895 #ifndef CONFIG_MEMORY_HOTPLUG
1896 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1897 {
1898 	unsigned long size = 1;
1899 
1900 	pages /= PAGES_PER_WAITQUEUE;
1901 
1902 	while (size < pages)
1903 		size <<= 1;
1904 
1905 	/*
1906 	 * Once we have dozens or even hundreds of threads sleeping
1907 	 * on IO we've got bigger problems than wait queue collision.
1908 	 * Limit the size of the wait table to a reasonable size.
1909 	 */
1910 	size = min(size, 4096UL);
1911 
1912 	return max(size, 4UL);
1913 }
1914 #else
1915 /*
1916  * A zone's size might be changed by hot-add, so it is not possible to determine
1917  * a suitable size for its wait_table.  So we use the maximum size now.
1918  *
1919  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
1920  *
1921  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
1922  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
1923  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
1924  *
1925  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
1926  * or more by the traditional way. (See above).  It equals:
1927  *
1928  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
1929  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
1930  *    powerpc (64K page size)             : =  (32G +16M)byte.
1931  */
1932 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1933 {
1934 	return 4096UL;
1935 }
1936 #endif
1937 
1938 /*
1939  * This is an integer logarithm so that shifts can be used later
1940  * to extract the more random high bits from the multiplicative
1941  * hash function before the remainder is taken.
1942  */
1943 static inline unsigned long wait_table_bits(unsigned long size)
1944 {
1945 	return ffz(~size);
1946 }
1947 
1948 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
1949 
1950 /*
1951  * Initially all pages are reserved - free ones are freed
1952  * up by free_all_bootmem() once the early boot process is
1953  * done. Non-atomic initialization, single-pass.
1954  */
1955 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
1956 		unsigned long start_pfn, enum memmap_context context)
1957 {
1958 	struct page *page;
1959 	unsigned long end_pfn = start_pfn + size;
1960 	unsigned long pfn;
1961 
1962 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1963 		/*
1964 		 * There can be holes in boot-time mem_map[]s
1965 		 * handed to this function.  They do not
1966 		 * exist on hotplugged memory.
1967 		 */
1968 		if (context == MEMMAP_EARLY) {
1969 			if (!early_pfn_valid(pfn))
1970 				continue;
1971 			if (!early_pfn_in_nid(pfn, nid))
1972 				continue;
1973 		}
1974 		page = pfn_to_page(pfn);
1975 		set_page_links(page, zone, nid, pfn);
1976 		init_page_count(page);
1977 		reset_page_mapcount(page);
1978 		SetPageReserved(page);
1979 		INIT_LIST_HEAD(&page->lru);
1980 #ifdef WANT_PAGE_VIRTUAL
1981 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1982 		if (!is_highmem_idx(zone))
1983 			set_page_address(page, __va(pfn << PAGE_SHIFT));
1984 #endif
1985 	}
1986 }
1987 
1988 void zone_init_free_lists(struct pglist_data *pgdat, struct zone *zone,
1989 				unsigned long size)
1990 {
1991 	int order;
1992 	for (order = 0; order < MAX_ORDER ; order++) {
1993 		INIT_LIST_HEAD(&zone->free_area[order].free_list);
1994 		zone->free_area[order].nr_free = 0;
1995 	}
1996 }
1997 
1998 #ifndef __HAVE_ARCH_MEMMAP_INIT
1999 #define memmap_init(size, nid, zone, start_pfn) \
2000 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
2001 #endif
2002 
2003 static int __cpuinit zone_batchsize(struct zone *zone)
2004 {
2005 	int batch;
2006 
2007 	/*
2008 	 * The per-cpu-pages pools are set to around 1000th of the
2009 	 * size of the zone.  But no more than 1/2 of a meg.
2010 	 *
2011 	 * OK, so we don't know how big the cache is.  So guess.
2012 	 */
2013 	batch = zone->present_pages / 1024;
2014 	if (batch * PAGE_SIZE > 512 * 1024)
2015 		batch = (512 * 1024) / PAGE_SIZE;
2016 	batch /= 4;		/* We effectively *= 4 below */
2017 	if (batch < 1)
2018 		batch = 1;
2019 
2020 	/*
2021 	 * Clamp the batch to a 2^n - 1 value. Having a power
2022 	 * of 2 value was found to be more likely to have
2023 	 * suboptimal cache aliasing properties in some cases.
2024 	 *
2025 	 * For example if 2 tasks are alternately allocating
2026 	 * batches of pages, one task can end up with a lot
2027 	 * of pages of one half of the possible page colors
2028 	 * and the other with pages of the other colors.
2029 	 */
2030 	batch = (1 << (fls(batch + batch/2)-1)) - 1;
2031 
2032 	return batch;
2033 }
2034 
2035 inline void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2036 {
2037 	struct per_cpu_pages *pcp;
2038 
2039 	memset(p, 0, sizeof(*p));
2040 
2041 	pcp = &p->pcp[0];		/* hot */
2042 	pcp->count = 0;
2043 	pcp->high = 6 * batch;
2044 	pcp->batch = max(1UL, 1 * batch);
2045 	INIT_LIST_HEAD(&pcp->list);
2046 
2047 	pcp = &p->pcp[1];		/* cold*/
2048 	pcp->count = 0;
2049 	pcp->high = 2 * batch;
2050 	pcp->batch = max(1UL, batch/2);
2051 	INIT_LIST_HEAD(&pcp->list);
2052 }
2053 
2054 /*
2055  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2056  * to the value high for the pageset p.
2057  */
2058 
2059 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2060 				unsigned long high)
2061 {
2062 	struct per_cpu_pages *pcp;
2063 
2064 	pcp = &p->pcp[0]; /* hot list */
2065 	pcp->high = high;
2066 	pcp->batch = max(1UL, high/4);
2067 	if ((high/4) > (PAGE_SHIFT * 8))
2068 		pcp->batch = PAGE_SHIFT * 8;
2069 }
2070 
2071 
2072 #ifdef CONFIG_NUMA
2073 /*
2074  * Boot pageset table. One per cpu which is going to be used for all
2075  * zones and all nodes. The parameters will be set in such a way
2076  * that an item put on a list will immediately be handed over to
2077  * the buddy list. This is safe since pageset manipulation is done
2078  * with interrupts disabled.
2079  *
2080  * Some NUMA counter updates may also be caught by the boot pagesets.
2081  *
2082  * The boot_pagesets must be kept even after bootup is complete for
2083  * unused processors and/or zones. They do play a role for bootstrapping
2084  * hotplugged processors.
2085  *
2086  * zoneinfo_show() and maybe other functions do
2087  * not check if the processor is online before following the pageset pointer.
2088  * Other parts of the kernel may not check if the zone is available.
2089  */
2090 static struct per_cpu_pageset boot_pageset[NR_CPUS];
2091 
2092 /*
2093  * Dynamically allocate memory for the
2094  * per cpu pageset array in struct zone.
2095  */
2096 static int __cpuinit process_zones(int cpu)
2097 {
2098 	struct zone *zone, *dzone;
2099 
2100 	for_each_zone(zone) {
2101 
2102 		if (!populated_zone(zone))
2103 			continue;
2104 
2105 		zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
2106 					 GFP_KERNEL, cpu_to_node(cpu));
2107 		if (!zone_pcp(zone, cpu))
2108 			goto bad;
2109 
2110 		setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
2111 
2112 		if (percpu_pagelist_fraction)
2113 			setup_pagelist_highmark(zone_pcp(zone, cpu),
2114 			 	(zone->present_pages / percpu_pagelist_fraction));
2115 	}
2116 
2117 	return 0;
2118 bad:
2119 	for_each_zone(dzone) {
2120 		if (dzone == zone)
2121 			break;
2122 		kfree(zone_pcp(dzone, cpu));
2123 		zone_pcp(dzone, cpu) = NULL;
2124 	}
2125 	return -ENOMEM;
2126 }
2127 
2128 static inline void free_zone_pagesets(int cpu)
2129 {
2130 	struct zone *zone;
2131 
2132 	for_each_zone(zone) {
2133 		struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
2134 
2135 		/* Free per_cpu_pageset if it is slab allocated */
2136 		if (pset != &boot_pageset[cpu])
2137 			kfree(pset);
2138 		zone_pcp(zone, cpu) = NULL;
2139 	}
2140 }
2141 
2142 static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
2143 		unsigned long action,
2144 		void *hcpu)
2145 {
2146 	int cpu = (long)hcpu;
2147 	int ret = NOTIFY_OK;
2148 
2149 	switch (action) {
2150 	case CPU_UP_PREPARE:
2151 		if (process_zones(cpu))
2152 			ret = NOTIFY_BAD;
2153 		break;
2154 	case CPU_UP_CANCELED:
2155 	case CPU_DEAD:
2156 		free_zone_pagesets(cpu);
2157 		break;
2158 	default:
2159 		break;
2160 	}
2161 	return ret;
2162 }
2163 
2164 static struct notifier_block __cpuinitdata pageset_notifier =
2165 	{ &pageset_cpuup_callback, NULL, 0 };
2166 
2167 void __init setup_per_cpu_pageset(void)
2168 {
2169 	int err;
2170 
2171 	/* Initialize per_cpu_pageset for cpu 0.
2172 	 * A cpuup callback will do this for every cpu
2173 	 * as it comes online
2174 	 */
2175 	err = process_zones(smp_processor_id());
2176 	BUG_ON(err);
2177 	register_cpu_notifier(&pageset_notifier);
2178 }
2179 
2180 #endif
2181 
2182 static __meminit
2183 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
2184 {
2185 	int i;
2186 	struct pglist_data *pgdat = zone->zone_pgdat;
2187 	size_t alloc_size;
2188 
2189 	/*
2190 	 * The per-page waitqueue mechanism uses hashed waitqueues
2191 	 * per zone.
2192 	 */
2193 	zone->wait_table_hash_nr_entries =
2194 		 wait_table_hash_nr_entries(zone_size_pages);
2195 	zone->wait_table_bits =
2196 		wait_table_bits(zone->wait_table_hash_nr_entries);
2197 	alloc_size = zone->wait_table_hash_nr_entries
2198 					* sizeof(wait_queue_head_t);
2199 
2200  	if (system_state == SYSTEM_BOOTING) {
2201 		zone->wait_table = (wait_queue_head_t *)
2202 			alloc_bootmem_node(pgdat, alloc_size);
2203 	} else {
2204 		/*
2205 		 * This case means that a zone whose size was 0 gets new memory
2206 		 * via memory hot-add.
2207 		 * But it may be the case that a new node was hot-added.  In
2208 		 * this case vmalloc() will not be able to use this new node's
2209 		 * memory - this wait_table must be initialized to use this new
2210 		 * node itself as well.
2211 		 * To use this new node's memory, further consideration will be
2212 		 * necessary.
2213 		 */
2214 		zone->wait_table = (wait_queue_head_t *)vmalloc(alloc_size);
2215 	}
2216 	if (!zone->wait_table)
2217 		return -ENOMEM;
2218 
2219 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
2220 		init_waitqueue_head(zone->wait_table + i);
2221 
2222 	return 0;
2223 }
2224 
2225 static __meminit void zone_pcp_init(struct zone *zone)
2226 {
2227 	int cpu;
2228 	unsigned long batch = zone_batchsize(zone);
2229 
2230 	for (cpu = 0; cpu < NR_CPUS; cpu++) {
2231 #ifdef CONFIG_NUMA
2232 		/* Early boot. Slab allocator not functional yet */
2233 		zone_pcp(zone, cpu) = &boot_pageset[cpu];
2234 		setup_pageset(&boot_pageset[cpu],0);
2235 #else
2236 		setup_pageset(zone_pcp(zone,cpu), batch);
2237 #endif
2238 	}
2239 	if (zone->present_pages)
2240 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%lu\n",
2241 			zone->name, zone->present_pages, batch);
2242 }
2243 
2244 __meminit int init_currently_empty_zone(struct zone *zone,
2245 					unsigned long zone_start_pfn,
2246 					unsigned long size,
2247 					enum memmap_context context)
2248 {
2249 	struct pglist_data *pgdat = zone->zone_pgdat;
2250 	int ret;
2251 	ret = zone_wait_table_init(zone, size);
2252 	if (ret)
2253 		return ret;
2254 	pgdat->nr_zones = zone_idx(zone) + 1;
2255 
2256 	zone->zone_start_pfn = zone_start_pfn;
2257 
2258 	memmap_init(size, pgdat->node_id, zone_idx(zone), zone_start_pfn);
2259 
2260 	zone_init_free_lists(pgdat, zone, zone->spanned_pages);
2261 
2262 	return 0;
2263 }
2264 
2265 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2266 /*
2267  * Basic iterator support. Return the first range of PFNs for a node
2268  * Note: nid == MAX_NUMNODES returns first region regardless of node
2269  */
2270 static int __init first_active_region_index_in_nid(int nid)
2271 {
2272 	int i;
2273 
2274 	for (i = 0; i < nr_nodemap_entries; i++)
2275 		if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
2276 			return i;
2277 
2278 	return -1;
2279 }
2280 
2281 /*
2282  * Basic iterator support. Return the next active range of PFNs for a node
2283  * Note: nid == MAX_NUMNODES returns next region regardles of node
2284  */
2285 static int __init next_active_region_index_in_nid(int index, int nid)
2286 {
2287 	for (index = index + 1; index < nr_nodemap_entries; index++)
2288 		if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
2289 			return index;
2290 
2291 	return -1;
2292 }
2293 
2294 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
2295 /*
2296  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
2297  * Architectures may implement their own version but if add_active_range()
2298  * was used and there are no special requirements, this is a convenient
2299  * alternative
2300  */
2301 int __init early_pfn_to_nid(unsigned long pfn)
2302 {
2303 	int i;
2304 
2305 	for (i = 0; i < nr_nodemap_entries; i++) {
2306 		unsigned long start_pfn = early_node_map[i].start_pfn;
2307 		unsigned long end_pfn = early_node_map[i].end_pfn;
2308 
2309 		if (start_pfn <= pfn && pfn < end_pfn)
2310 			return early_node_map[i].nid;
2311 	}
2312 
2313 	return 0;
2314 }
2315 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
2316 
2317 /* Basic iterator support to walk early_node_map[] */
2318 #define for_each_active_range_index_in_nid(i, nid) \
2319 	for (i = first_active_region_index_in_nid(nid); i != -1; \
2320 				i = next_active_region_index_in_nid(i, nid))
2321 
2322 /**
2323  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
2324  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
2325  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
2326  *
2327  * If an architecture guarantees that all ranges registered with
2328  * add_active_ranges() contain no holes and may be freed, this
2329  * this function may be used instead of calling free_bootmem() manually.
2330  */
2331 void __init free_bootmem_with_active_regions(int nid,
2332 						unsigned long max_low_pfn)
2333 {
2334 	int i;
2335 
2336 	for_each_active_range_index_in_nid(i, nid) {
2337 		unsigned long size_pages = 0;
2338 		unsigned long end_pfn = early_node_map[i].end_pfn;
2339 
2340 		if (early_node_map[i].start_pfn >= max_low_pfn)
2341 			continue;
2342 
2343 		if (end_pfn > max_low_pfn)
2344 			end_pfn = max_low_pfn;
2345 
2346 		size_pages = end_pfn - early_node_map[i].start_pfn;
2347 		free_bootmem_node(NODE_DATA(early_node_map[i].nid),
2348 				PFN_PHYS(early_node_map[i].start_pfn),
2349 				size_pages << PAGE_SHIFT);
2350 	}
2351 }
2352 
2353 /**
2354  * sparse_memory_present_with_active_regions - Call memory_present for each active range
2355  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
2356  *
2357  * If an architecture guarantees that all ranges registered with
2358  * add_active_ranges() contain no holes and may be freed, this
2359  * function may be used instead of calling memory_present() manually.
2360  */
2361 void __init sparse_memory_present_with_active_regions(int nid)
2362 {
2363 	int i;
2364 
2365 	for_each_active_range_index_in_nid(i, nid)
2366 		memory_present(early_node_map[i].nid,
2367 				early_node_map[i].start_pfn,
2368 				early_node_map[i].end_pfn);
2369 }
2370 
2371 /**
2372  * push_node_boundaries - Push node boundaries to at least the requested boundary
2373  * @nid: The nid of the node to push the boundary for
2374  * @start_pfn: The start pfn of the node
2375  * @end_pfn: The end pfn of the node
2376  *
2377  * In reserve-based hot-add, mem_map is allocated that is unused until hotadd
2378  * time. Specifically, on x86_64, SRAT will report ranges that can potentially
2379  * be hotplugged even though no physical memory exists. This function allows
2380  * an arch to push out the node boundaries so mem_map is allocated that can
2381  * be used later.
2382  */
2383 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2384 void __init push_node_boundaries(unsigned int nid,
2385 		unsigned long start_pfn, unsigned long end_pfn)
2386 {
2387 	printk(KERN_DEBUG "Entering push_node_boundaries(%u, %lu, %lu)\n",
2388 			nid, start_pfn, end_pfn);
2389 
2390 	/* Initialise the boundary for this node if necessary */
2391 	if (node_boundary_end_pfn[nid] == 0)
2392 		node_boundary_start_pfn[nid] = -1UL;
2393 
2394 	/* Update the boundaries */
2395 	if (node_boundary_start_pfn[nid] > start_pfn)
2396 		node_boundary_start_pfn[nid] = start_pfn;
2397 	if (node_boundary_end_pfn[nid] < end_pfn)
2398 		node_boundary_end_pfn[nid] = end_pfn;
2399 }
2400 
2401 /* If necessary, push the node boundary out for reserve hotadd */
2402 static void __init account_node_boundary(unsigned int nid,
2403 		unsigned long *start_pfn, unsigned long *end_pfn)
2404 {
2405 	printk(KERN_DEBUG "Entering account_node_boundary(%u, %lu, %lu)\n",
2406 			nid, *start_pfn, *end_pfn);
2407 
2408 	/* Return if boundary information has not been provided */
2409 	if (node_boundary_end_pfn[nid] == 0)
2410 		return;
2411 
2412 	/* Check the boundaries and update if necessary */
2413 	if (node_boundary_start_pfn[nid] < *start_pfn)
2414 		*start_pfn = node_boundary_start_pfn[nid];
2415 	if (node_boundary_end_pfn[nid] > *end_pfn)
2416 		*end_pfn = node_boundary_end_pfn[nid];
2417 }
2418 #else
2419 void __init push_node_boundaries(unsigned int nid,
2420 		unsigned long start_pfn, unsigned long end_pfn) {}
2421 
2422 static void __init account_node_boundary(unsigned int nid,
2423 		unsigned long *start_pfn, unsigned long *end_pfn) {}
2424 #endif
2425 
2426 
2427 /**
2428  * get_pfn_range_for_nid - Return the start and end page frames for a node
2429  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
2430  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
2431  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
2432  *
2433  * It returns the start and end page frame of a node based on information
2434  * provided by an arch calling add_active_range(). If called for a node
2435  * with no available memory, a warning is printed and the start and end
2436  * PFNs will be 0.
2437  */
2438 void __init get_pfn_range_for_nid(unsigned int nid,
2439 			unsigned long *start_pfn, unsigned long *end_pfn)
2440 {
2441 	int i;
2442 	*start_pfn = -1UL;
2443 	*end_pfn = 0;
2444 
2445 	for_each_active_range_index_in_nid(i, nid) {
2446 		*start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
2447 		*end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
2448 	}
2449 
2450 	if (*start_pfn == -1UL) {
2451 		printk(KERN_WARNING "Node %u active with no memory\n", nid);
2452 		*start_pfn = 0;
2453 	}
2454 
2455 	/* Push the node boundaries out if requested */
2456 	account_node_boundary(nid, start_pfn, end_pfn);
2457 }
2458 
2459 /*
2460  * Return the number of pages a zone spans in a node, including holes
2461  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
2462  */
2463 unsigned long __init zone_spanned_pages_in_node(int nid,
2464 					unsigned long zone_type,
2465 					unsigned long *ignored)
2466 {
2467 	unsigned long node_start_pfn, node_end_pfn;
2468 	unsigned long zone_start_pfn, zone_end_pfn;
2469 
2470 	/* Get the start and end of the node and zone */
2471 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2472 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
2473 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2474 
2475 	/* Check that this node has pages within the zone's required range */
2476 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
2477 		return 0;
2478 
2479 	/* Move the zone boundaries inside the node if necessary */
2480 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
2481 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
2482 
2483 	/* Return the spanned pages */
2484 	return zone_end_pfn - zone_start_pfn;
2485 }
2486 
2487 /*
2488  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
2489  * then all holes in the requested range will be accounted for.
2490  */
2491 unsigned long __init __absent_pages_in_range(int nid,
2492 				unsigned long range_start_pfn,
2493 				unsigned long range_end_pfn)
2494 {
2495 	int i = 0;
2496 	unsigned long prev_end_pfn = 0, hole_pages = 0;
2497 	unsigned long start_pfn;
2498 
2499 	/* Find the end_pfn of the first active range of pfns in the node */
2500 	i = first_active_region_index_in_nid(nid);
2501 	if (i == -1)
2502 		return 0;
2503 
2504 	/* Account for ranges before physical memory on this node */
2505 	if (early_node_map[i].start_pfn > range_start_pfn)
2506 		hole_pages = early_node_map[i].start_pfn - range_start_pfn;
2507 
2508 	prev_end_pfn = early_node_map[i].start_pfn;
2509 
2510 	/* Find all holes for the zone within the node */
2511 	for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
2512 
2513 		/* No need to continue if prev_end_pfn is outside the zone */
2514 		if (prev_end_pfn >= range_end_pfn)
2515 			break;
2516 
2517 		/* Make sure the end of the zone is not within the hole */
2518 		start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
2519 		prev_end_pfn = max(prev_end_pfn, range_start_pfn);
2520 
2521 		/* Update the hole size cound and move on */
2522 		if (start_pfn > range_start_pfn) {
2523 			BUG_ON(prev_end_pfn > start_pfn);
2524 			hole_pages += start_pfn - prev_end_pfn;
2525 		}
2526 		prev_end_pfn = early_node_map[i].end_pfn;
2527 	}
2528 
2529 	/* Account for ranges past physical memory on this node */
2530 	if (range_end_pfn > prev_end_pfn)
2531 		hole_pages += range_end_pfn -
2532 				max(range_start_pfn, prev_end_pfn);
2533 
2534 	return hole_pages;
2535 }
2536 
2537 /**
2538  * absent_pages_in_range - Return number of page frames in holes within a range
2539  * @start_pfn: The start PFN to start searching for holes
2540  * @end_pfn: The end PFN to stop searching for holes
2541  *
2542  * It returns the number of pages frames in memory holes within a range.
2543  */
2544 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
2545 							unsigned long end_pfn)
2546 {
2547 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
2548 }
2549 
2550 /* Return the number of page frames in holes in a zone on a node */
2551 unsigned long __init zone_absent_pages_in_node(int nid,
2552 					unsigned long zone_type,
2553 					unsigned long *ignored)
2554 {
2555 	unsigned long node_start_pfn, node_end_pfn;
2556 	unsigned long zone_start_pfn, zone_end_pfn;
2557 
2558 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
2559 	zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
2560 							node_start_pfn);
2561 	zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
2562 							node_end_pfn);
2563 
2564 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
2565 }
2566 
2567 #else
2568 static inline unsigned long zone_spanned_pages_in_node(int nid,
2569 					unsigned long zone_type,
2570 					unsigned long *zones_size)
2571 {
2572 	return zones_size[zone_type];
2573 }
2574 
2575 static inline unsigned long zone_absent_pages_in_node(int nid,
2576 						unsigned long zone_type,
2577 						unsigned long *zholes_size)
2578 {
2579 	if (!zholes_size)
2580 		return 0;
2581 
2582 	return zholes_size[zone_type];
2583 }
2584 
2585 #endif
2586 
2587 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
2588 		unsigned long *zones_size, unsigned long *zholes_size)
2589 {
2590 	unsigned long realtotalpages, totalpages = 0;
2591 	enum zone_type i;
2592 
2593 	for (i = 0; i < MAX_NR_ZONES; i++)
2594 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
2595 								zones_size);
2596 	pgdat->node_spanned_pages = totalpages;
2597 
2598 	realtotalpages = totalpages;
2599 	for (i = 0; i < MAX_NR_ZONES; i++)
2600 		realtotalpages -=
2601 			zone_absent_pages_in_node(pgdat->node_id, i,
2602 								zholes_size);
2603 	pgdat->node_present_pages = realtotalpages;
2604 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
2605 							realtotalpages);
2606 }
2607 
2608 /*
2609  * Set up the zone data structures:
2610  *   - mark all pages reserved
2611  *   - mark all memory queues empty
2612  *   - clear the memory bitmaps
2613  */
2614 static void __meminit free_area_init_core(struct pglist_data *pgdat,
2615 		unsigned long *zones_size, unsigned long *zholes_size)
2616 {
2617 	enum zone_type j;
2618 	int nid = pgdat->node_id;
2619 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
2620 	int ret;
2621 
2622 	pgdat_resize_init(pgdat);
2623 	pgdat->nr_zones = 0;
2624 	init_waitqueue_head(&pgdat->kswapd_wait);
2625 	pgdat->kswapd_max_order = 0;
2626 
2627 	for (j = 0; j < MAX_NR_ZONES; j++) {
2628 		struct zone *zone = pgdat->node_zones + j;
2629 		unsigned long size, realsize, memmap_pages;
2630 
2631 		size = zone_spanned_pages_in_node(nid, j, zones_size);
2632 		realsize = size - zone_absent_pages_in_node(nid, j,
2633 								zholes_size);
2634 
2635 		/*
2636 		 * Adjust realsize so that it accounts for how much memory
2637 		 * is used by this zone for memmap. This affects the watermark
2638 		 * and per-cpu initialisations
2639 		 */
2640 		memmap_pages = (size * sizeof(struct page)) >> PAGE_SHIFT;
2641 		if (realsize >= memmap_pages) {
2642 			realsize -= memmap_pages;
2643 			printk(KERN_DEBUG
2644 				"  %s zone: %lu pages used for memmap\n",
2645 				zone_names[j], memmap_pages);
2646 		} else
2647 			printk(KERN_WARNING
2648 				"  %s zone: %lu pages exceeds realsize %lu\n",
2649 				zone_names[j], memmap_pages, realsize);
2650 
2651 		/* Account for reserved pages */
2652 		if (j == 0 && realsize > dma_reserve) {
2653 			realsize -= dma_reserve;
2654 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
2655 					zone_names[0], dma_reserve);
2656 		}
2657 
2658 		if (!is_highmem_idx(j))
2659 			nr_kernel_pages += realsize;
2660 		nr_all_pages += realsize;
2661 
2662 		zone->spanned_pages = size;
2663 		zone->present_pages = realsize;
2664 #ifdef CONFIG_NUMA
2665 		zone->node = nid;
2666 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
2667 						/ 100;
2668 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
2669 #endif
2670 		zone->name = zone_names[j];
2671 		spin_lock_init(&zone->lock);
2672 		spin_lock_init(&zone->lru_lock);
2673 		zone_seqlock_init(zone);
2674 		zone->zone_pgdat = pgdat;
2675 
2676 		zone->prev_priority = DEF_PRIORITY;
2677 
2678 		zone_pcp_init(zone);
2679 		INIT_LIST_HEAD(&zone->active_list);
2680 		INIT_LIST_HEAD(&zone->inactive_list);
2681 		zone->nr_scan_active = 0;
2682 		zone->nr_scan_inactive = 0;
2683 		zap_zone_vm_stats(zone);
2684 		atomic_set(&zone->reclaim_in_progress, 0);
2685 		if (!size)
2686 			continue;
2687 
2688 		ret = init_currently_empty_zone(zone, zone_start_pfn,
2689 						size, MEMMAP_EARLY);
2690 		BUG_ON(ret);
2691 		zone_start_pfn += size;
2692 	}
2693 }
2694 
2695 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
2696 {
2697 	/* Skip empty nodes */
2698 	if (!pgdat->node_spanned_pages)
2699 		return;
2700 
2701 #ifdef CONFIG_FLAT_NODE_MEM_MAP
2702 	/* ia64 gets its own node_mem_map, before this, without bootmem */
2703 	if (!pgdat->node_mem_map) {
2704 		unsigned long size, start, end;
2705 		struct page *map;
2706 
2707 		/*
2708 		 * The zone's endpoints aren't required to be MAX_ORDER
2709 		 * aligned but the node_mem_map endpoints must be in order
2710 		 * for the buddy allocator to function correctly.
2711 		 */
2712 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
2713 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
2714 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
2715 		size =  (end - start) * sizeof(struct page);
2716 		map = alloc_remap(pgdat->node_id, size);
2717 		if (!map)
2718 			map = alloc_bootmem_node(pgdat, size);
2719 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
2720 	}
2721 #ifdef CONFIG_FLATMEM
2722 	/*
2723 	 * With no DISCONTIG, the global mem_map is just set as node 0's
2724 	 */
2725 	if (pgdat == NODE_DATA(0)) {
2726 		mem_map = NODE_DATA(0)->node_mem_map;
2727 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2728 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
2729 			mem_map -= pgdat->node_start_pfn;
2730 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2731 	}
2732 #endif
2733 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
2734 }
2735 
2736 void __meminit free_area_init_node(int nid, struct pglist_data *pgdat,
2737 		unsigned long *zones_size, unsigned long node_start_pfn,
2738 		unsigned long *zholes_size)
2739 {
2740 	pgdat->node_id = nid;
2741 	pgdat->node_start_pfn = node_start_pfn;
2742 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
2743 
2744 	alloc_node_mem_map(pgdat);
2745 
2746 	free_area_init_core(pgdat, zones_size, zholes_size);
2747 }
2748 
2749 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
2750 /**
2751  * add_active_range - Register a range of PFNs backed by physical memory
2752  * @nid: The node ID the range resides on
2753  * @start_pfn: The start PFN of the available physical memory
2754  * @end_pfn: The end PFN of the available physical memory
2755  *
2756  * These ranges are stored in an early_node_map[] and later used by
2757  * free_area_init_nodes() to calculate zone sizes and holes. If the
2758  * range spans a memory hole, it is up to the architecture to ensure
2759  * the memory is not freed by the bootmem allocator. If possible
2760  * the range being registered will be merged with existing ranges.
2761  */
2762 void __init add_active_range(unsigned int nid, unsigned long start_pfn,
2763 						unsigned long end_pfn)
2764 {
2765 	int i;
2766 
2767 	printk(KERN_DEBUG "Entering add_active_range(%d, %lu, %lu) "
2768 			  "%d entries of %d used\n",
2769 			  nid, start_pfn, end_pfn,
2770 			  nr_nodemap_entries, MAX_ACTIVE_REGIONS);
2771 
2772 	/* Merge with existing active regions if possible */
2773 	for (i = 0; i < nr_nodemap_entries; i++) {
2774 		if (early_node_map[i].nid != nid)
2775 			continue;
2776 
2777 		/* Skip if an existing region covers this new one */
2778 		if (start_pfn >= early_node_map[i].start_pfn &&
2779 				end_pfn <= early_node_map[i].end_pfn)
2780 			return;
2781 
2782 		/* Merge forward if suitable */
2783 		if (start_pfn <= early_node_map[i].end_pfn &&
2784 				end_pfn > early_node_map[i].end_pfn) {
2785 			early_node_map[i].end_pfn = end_pfn;
2786 			return;
2787 		}
2788 
2789 		/* Merge backward if suitable */
2790 		if (start_pfn < early_node_map[i].end_pfn &&
2791 				end_pfn >= early_node_map[i].start_pfn) {
2792 			early_node_map[i].start_pfn = start_pfn;
2793 			return;
2794 		}
2795 	}
2796 
2797 	/* Check that early_node_map is large enough */
2798 	if (i >= MAX_ACTIVE_REGIONS) {
2799 		printk(KERN_CRIT "More than %d memory regions, truncating\n",
2800 							MAX_ACTIVE_REGIONS);
2801 		return;
2802 	}
2803 
2804 	early_node_map[i].nid = nid;
2805 	early_node_map[i].start_pfn = start_pfn;
2806 	early_node_map[i].end_pfn = end_pfn;
2807 	nr_nodemap_entries = i + 1;
2808 }
2809 
2810 /**
2811  * shrink_active_range - Shrink an existing registered range of PFNs
2812  * @nid: The node id the range is on that should be shrunk
2813  * @old_end_pfn: The old end PFN of the range
2814  * @new_end_pfn: The new PFN of the range
2815  *
2816  * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
2817  * The map is kept at the end physical page range that has already been
2818  * registered with add_active_range(). This function allows an arch to shrink
2819  * an existing registered range.
2820  */
2821 void __init shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
2822 						unsigned long new_end_pfn)
2823 {
2824 	int i;
2825 
2826 	/* Find the old active region end and shrink */
2827 	for_each_active_range_index_in_nid(i, nid)
2828 		if (early_node_map[i].end_pfn == old_end_pfn) {
2829 			early_node_map[i].end_pfn = new_end_pfn;
2830 			break;
2831 		}
2832 }
2833 
2834 /**
2835  * remove_all_active_ranges - Remove all currently registered regions
2836  *
2837  * During discovery, it may be found that a table like SRAT is invalid
2838  * and an alternative discovery method must be used. This function removes
2839  * all currently registered regions.
2840  */
2841 void __init remove_all_active_ranges(void)
2842 {
2843 	memset(early_node_map, 0, sizeof(early_node_map));
2844 	nr_nodemap_entries = 0;
2845 #ifdef CONFIG_MEMORY_HOTPLUG_RESERVE
2846 	memset(node_boundary_start_pfn, 0, sizeof(node_boundary_start_pfn));
2847 	memset(node_boundary_end_pfn, 0, sizeof(node_boundary_end_pfn));
2848 #endif /* CONFIG_MEMORY_HOTPLUG_RESERVE */
2849 }
2850 
2851 /* Compare two active node_active_regions */
2852 static int __init cmp_node_active_region(const void *a, const void *b)
2853 {
2854 	struct node_active_region *arange = (struct node_active_region *)a;
2855 	struct node_active_region *brange = (struct node_active_region *)b;
2856 
2857 	/* Done this way to avoid overflows */
2858 	if (arange->start_pfn > brange->start_pfn)
2859 		return 1;
2860 	if (arange->start_pfn < brange->start_pfn)
2861 		return -1;
2862 
2863 	return 0;
2864 }
2865 
2866 /* sort the node_map by start_pfn */
2867 static void __init sort_node_map(void)
2868 {
2869 	sort(early_node_map, (size_t)nr_nodemap_entries,
2870 			sizeof(struct node_active_region),
2871 			cmp_node_active_region, NULL);
2872 }
2873 
2874 /* Find the lowest pfn for a node */
2875 unsigned long __init find_min_pfn_for_node(unsigned long nid)
2876 {
2877 	int i;
2878 	unsigned long min_pfn = ULONG_MAX;
2879 
2880 	/* Assuming a sorted map, the first range found has the starting pfn */
2881 	for_each_active_range_index_in_nid(i, nid)
2882 		min_pfn = min(min_pfn, early_node_map[i].start_pfn);
2883 
2884 	if (min_pfn == ULONG_MAX) {
2885 		printk(KERN_WARNING
2886 			"Could not find start_pfn for node %lu\n", nid);
2887 		return 0;
2888 	}
2889 
2890 	return min_pfn;
2891 }
2892 
2893 /**
2894  * find_min_pfn_with_active_regions - Find the minimum PFN registered
2895  *
2896  * It returns the minimum PFN based on information provided via
2897  * add_active_range().
2898  */
2899 unsigned long __init find_min_pfn_with_active_regions(void)
2900 {
2901 	return find_min_pfn_for_node(MAX_NUMNODES);
2902 }
2903 
2904 /**
2905  * find_max_pfn_with_active_regions - Find the maximum PFN registered
2906  *
2907  * It returns the maximum PFN based on information provided via
2908  * add_active_range().
2909  */
2910 unsigned long __init find_max_pfn_with_active_regions(void)
2911 {
2912 	int i;
2913 	unsigned long max_pfn = 0;
2914 
2915 	for (i = 0; i < nr_nodemap_entries; i++)
2916 		max_pfn = max(max_pfn, early_node_map[i].end_pfn);
2917 
2918 	return max_pfn;
2919 }
2920 
2921 /**
2922  * free_area_init_nodes - Initialise all pg_data_t and zone data
2923  * @max_zone_pfn: an array of max PFNs for each zone
2924  *
2925  * This will call free_area_init_node() for each active node in the system.
2926  * Using the page ranges provided by add_active_range(), the size of each
2927  * zone in each node and their holes is calculated. If the maximum PFN
2928  * between two adjacent zones match, it is assumed that the zone is empty.
2929  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
2930  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
2931  * starts where the previous one ended. For example, ZONE_DMA32 starts
2932  * at arch_max_dma_pfn.
2933  */
2934 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
2935 {
2936 	unsigned long nid;
2937 	enum zone_type i;
2938 
2939 	/* Sort early_node_map as initialisation assumes it is sorted */
2940 	sort_node_map();
2941 
2942 	/* Record where the zone boundaries are */
2943 	memset(arch_zone_lowest_possible_pfn, 0,
2944 				sizeof(arch_zone_lowest_possible_pfn));
2945 	memset(arch_zone_highest_possible_pfn, 0,
2946 				sizeof(arch_zone_highest_possible_pfn));
2947 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
2948 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
2949 	for (i = 1; i < MAX_NR_ZONES; i++) {
2950 		arch_zone_lowest_possible_pfn[i] =
2951 			arch_zone_highest_possible_pfn[i-1];
2952 		arch_zone_highest_possible_pfn[i] =
2953 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
2954 	}
2955 
2956 	/* Print out the zone ranges */
2957 	printk("Zone PFN ranges:\n");
2958 	for (i = 0; i < MAX_NR_ZONES; i++)
2959 		printk("  %-8s %8lu -> %8lu\n",
2960 				zone_names[i],
2961 				arch_zone_lowest_possible_pfn[i],
2962 				arch_zone_highest_possible_pfn[i]);
2963 
2964 	/* Print out the early_node_map[] */
2965 	printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
2966 	for (i = 0; i < nr_nodemap_entries; i++)
2967 		printk("  %3d: %8lu -> %8lu\n", early_node_map[i].nid,
2968 						early_node_map[i].start_pfn,
2969 						early_node_map[i].end_pfn);
2970 
2971 	/* Initialise every node */
2972 	setup_nr_node_ids();
2973 	for_each_online_node(nid) {
2974 		pg_data_t *pgdat = NODE_DATA(nid);
2975 		free_area_init_node(nid, pgdat, NULL,
2976 				find_min_pfn_for_node(nid), NULL);
2977 	}
2978 }
2979 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
2980 
2981 /**
2982  * set_dma_reserve - set the specified number of pages reserved in the first zone
2983  * @new_dma_reserve: The number of pages to mark reserved
2984  *
2985  * The per-cpu batchsize and zone watermarks are determined by present_pages.
2986  * In the DMA zone, a significant percentage may be consumed by kernel image
2987  * and other unfreeable allocations which can skew the watermarks badly. This
2988  * function may optionally be used to account for unfreeable pages in the
2989  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
2990  * smaller per-cpu batchsize.
2991  */
2992 void __init set_dma_reserve(unsigned long new_dma_reserve)
2993 {
2994 	dma_reserve = new_dma_reserve;
2995 }
2996 
2997 #ifndef CONFIG_NEED_MULTIPLE_NODES
2998 static bootmem_data_t contig_bootmem_data;
2999 struct pglist_data contig_page_data = { .bdata = &contig_bootmem_data };
3000 
3001 EXPORT_SYMBOL(contig_page_data);
3002 #endif
3003 
3004 void __init free_area_init(unsigned long *zones_size)
3005 {
3006 	free_area_init_node(0, NODE_DATA(0), zones_size,
3007 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
3008 }
3009 
3010 static int page_alloc_cpu_notify(struct notifier_block *self,
3011 				 unsigned long action, void *hcpu)
3012 {
3013 	int cpu = (unsigned long)hcpu;
3014 
3015 	if (action == CPU_DEAD) {
3016 		local_irq_disable();
3017 		__drain_pages(cpu);
3018 		vm_events_fold_cpu(cpu);
3019 		local_irq_enable();
3020 		refresh_cpu_vm_stats(cpu);
3021 	}
3022 	return NOTIFY_OK;
3023 }
3024 
3025 void __init page_alloc_init(void)
3026 {
3027 	hotcpu_notifier(page_alloc_cpu_notify, 0);
3028 }
3029 
3030 /*
3031  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
3032  *	or min_free_kbytes changes.
3033  */
3034 static void calculate_totalreserve_pages(void)
3035 {
3036 	struct pglist_data *pgdat;
3037 	unsigned long reserve_pages = 0;
3038 	enum zone_type i, j;
3039 
3040 	for_each_online_pgdat(pgdat) {
3041 		for (i = 0; i < MAX_NR_ZONES; i++) {
3042 			struct zone *zone = pgdat->node_zones + i;
3043 			unsigned long max = 0;
3044 
3045 			/* Find valid and maximum lowmem_reserve in the zone */
3046 			for (j = i; j < MAX_NR_ZONES; j++) {
3047 				if (zone->lowmem_reserve[j] > max)
3048 					max = zone->lowmem_reserve[j];
3049 			}
3050 
3051 			/* we treat pages_high as reserved pages. */
3052 			max += zone->pages_high;
3053 
3054 			if (max > zone->present_pages)
3055 				max = zone->present_pages;
3056 			reserve_pages += max;
3057 		}
3058 	}
3059 	totalreserve_pages = reserve_pages;
3060 }
3061 
3062 /*
3063  * setup_per_zone_lowmem_reserve - called whenever
3064  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
3065  *	has a correct pages reserved value, so an adequate number of
3066  *	pages are left in the zone after a successful __alloc_pages().
3067  */
3068 static void setup_per_zone_lowmem_reserve(void)
3069 {
3070 	struct pglist_data *pgdat;
3071 	enum zone_type j, idx;
3072 
3073 	for_each_online_pgdat(pgdat) {
3074 		for (j = 0; j < MAX_NR_ZONES; j++) {
3075 			struct zone *zone = pgdat->node_zones + j;
3076 			unsigned long present_pages = zone->present_pages;
3077 
3078 			zone->lowmem_reserve[j] = 0;
3079 
3080 			idx = j;
3081 			while (idx) {
3082 				struct zone *lower_zone;
3083 
3084 				idx--;
3085 
3086 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
3087 					sysctl_lowmem_reserve_ratio[idx] = 1;
3088 
3089 				lower_zone = pgdat->node_zones + idx;
3090 				lower_zone->lowmem_reserve[j] = present_pages /
3091 					sysctl_lowmem_reserve_ratio[idx];
3092 				present_pages += lower_zone->present_pages;
3093 			}
3094 		}
3095 	}
3096 
3097 	/* update totalreserve_pages */
3098 	calculate_totalreserve_pages();
3099 }
3100 
3101 /**
3102  * setup_per_zone_pages_min - called when min_free_kbytes changes.
3103  *
3104  * Ensures that the pages_{min,low,high} values for each zone are set correctly
3105  * with respect to min_free_kbytes.
3106  */
3107 void setup_per_zone_pages_min(void)
3108 {
3109 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
3110 	unsigned long lowmem_pages = 0;
3111 	struct zone *zone;
3112 	unsigned long flags;
3113 
3114 	/* Calculate total number of !ZONE_HIGHMEM pages */
3115 	for_each_zone(zone) {
3116 		if (!is_highmem(zone))
3117 			lowmem_pages += zone->present_pages;
3118 	}
3119 
3120 	for_each_zone(zone) {
3121 		u64 tmp;
3122 
3123 		spin_lock_irqsave(&zone->lru_lock, flags);
3124 		tmp = (u64)pages_min * zone->present_pages;
3125 		do_div(tmp, lowmem_pages);
3126 		if (is_highmem(zone)) {
3127 			/*
3128 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
3129 			 * need highmem pages, so cap pages_min to a small
3130 			 * value here.
3131 			 *
3132 			 * The (pages_high-pages_low) and (pages_low-pages_min)
3133 			 * deltas controls asynch page reclaim, and so should
3134 			 * not be capped for highmem.
3135 			 */
3136 			int min_pages;
3137 
3138 			min_pages = zone->present_pages / 1024;
3139 			if (min_pages < SWAP_CLUSTER_MAX)
3140 				min_pages = SWAP_CLUSTER_MAX;
3141 			if (min_pages > 128)
3142 				min_pages = 128;
3143 			zone->pages_min = min_pages;
3144 		} else {
3145 			/*
3146 			 * If it's a lowmem zone, reserve a number of pages
3147 			 * proportionate to the zone's size.
3148 			 */
3149 			zone->pages_min = tmp;
3150 		}
3151 
3152 		zone->pages_low   = zone->pages_min + (tmp >> 2);
3153 		zone->pages_high  = zone->pages_min + (tmp >> 1);
3154 		spin_unlock_irqrestore(&zone->lru_lock, flags);
3155 	}
3156 
3157 	/* update totalreserve_pages */
3158 	calculate_totalreserve_pages();
3159 }
3160 
3161 /*
3162  * Initialise min_free_kbytes.
3163  *
3164  * For small machines we want it small (128k min).  For large machines
3165  * we want it large (64MB max).  But it is not linear, because network
3166  * bandwidth does not increase linearly with machine size.  We use
3167  *
3168  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
3169  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
3170  *
3171  * which yields
3172  *
3173  * 16MB:	512k
3174  * 32MB:	724k
3175  * 64MB:	1024k
3176  * 128MB:	1448k
3177  * 256MB:	2048k
3178  * 512MB:	2896k
3179  * 1024MB:	4096k
3180  * 2048MB:	5792k
3181  * 4096MB:	8192k
3182  * 8192MB:	11584k
3183  * 16384MB:	16384k
3184  */
3185 static int __init init_per_zone_pages_min(void)
3186 {
3187 	unsigned long lowmem_kbytes;
3188 
3189 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
3190 
3191 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
3192 	if (min_free_kbytes < 128)
3193 		min_free_kbytes = 128;
3194 	if (min_free_kbytes > 65536)
3195 		min_free_kbytes = 65536;
3196 	setup_per_zone_pages_min();
3197 	setup_per_zone_lowmem_reserve();
3198 	return 0;
3199 }
3200 module_init(init_per_zone_pages_min)
3201 
3202 /*
3203  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
3204  *	that we can call two helper functions whenever min_free_kbytes
3205  *	changes.
3206  */
3207 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
3208 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3209 {
3210 	proc_dointvec(table, write, file, buffer, length, ppos);
3211 	if (write)
3212 		setup_per_zone_pages_min();
3213 	return 0;
3214 }
3215 
3216 #ifdef CONFIG_NUMA
3217 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
3218 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3219 {
3220 	struct zone *zone;
3221 	int rc;
3222 
3223 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3224 	if (rc)
3225 		return rc;
3226 
3227 	for_each_zone(zone)
3228 		zone->min_unmapped_pages = (zone->present_pages *
3229 				sysctl_min_unmapped_ratio) / 100;
3230 	return 0;
3231 }
3232 
3233 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
3234 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3235 {
3236 	struct zone *zone;
3237 	int rc;
3238 
3239 	rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3240 	if (rc)
3241 		return rc;
3242 
3243 	for_each_zone(zone)
3244 		zone->min_slab_pages = (zone->present_pages *
3245 				sysctl_min_slab_ratio) / 100;
3246 	return 0;
3247 }
3248 #endif
3249 
3250 /*
3251  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
3252  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
3253  *	whenever sysctl_lowmem_reserve_ratio changes.
3254  *
3255  * The reserve ratio obviously has absolutely no relation with the
3256  * pages_min watermarks. The lowmem reserve ratio can only make sense
3257  * if in function of the boot time zone sizes.
3258  */
3259 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
3260 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3261 {
3262 	proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3263 	setup_per_zone_lowmem_reserve();
3264 	return 0;
3265 }
3266 
3267 /*
3268  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
3269  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
3270  * can have before it gets flushed back to buddy allocator.
3271  */
3272 
3273 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
3274 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
3275 {
3276 	struct zone *zone;
3277 	unsigned int cpu;
3278 	int ret;
3279 
3280 	ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
3281 	if (!write || (ret == -EINVAL))
3282 		return ret;
3283 	for_each_zone(zone) {
3284 		for_each_online_cpu(cpu) {
3285 			unsigned long  high;
3286 			high = zone->present_pages / percpu_pagelist_fraction;
3287 			setup_pagelist_highmark(zone_pcp(zone, cpu), high);
3288 		}
3289 	}
3290 	return 0;
3291 }
3292 
3293 int hashdist = HASHDIST_DEFAULT;
3294 
3295 #ifdef CONFIG_NUMA
3296 static int __init set_hashdist(char *str)
3297 {
3298 	if (!str)
3299 		return 0;
3300 	hashdist = simple_strtoul(str, &str, 0);
3301 	return 1;
3302 }
3303 __setup("hashdist=", set_hashdist);
3304 #endif
3305 
3306 /*
3307  * allocate a large system hash table from bootmem
3308  * - it is assumed that the hash table must contain an exact power-of-2
3309  *   quantity of entries
3310  * - limit is the number of hash buckets, not the total allocation size
3311  */
3312 void *__init alloc_large_system_hash(const char *tablename,
3313 				     unsigned long bucketsize,
3314 				     unsigned long numentries,
3315 				     int scale,
3316 				     int flags,
3317 				     unsigned int *_hash_shift,
3318 				     unsigned int *_hash_mask,
3319 				     unsigned long limit)
3320 {
3321 	unsigned long long max = limit;
3322 	unsigned long log2qty, size;
3323 	void *table = NULL;
3324 
3325 	/* allow the kernel cmdline to have a say */
3326 	if (!numentries) {
3327 		/* round applicable memory size up to nearest megabyte */
3328 		numentries = nr_kernel_pages;
3329 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
3330 		numentries >>= 20 - PAGE_SHIFT;
3331 		numentries <<= 20 - PAGE_SHIFT;
3332 
3333 		/* limit to 1 bucket per 2^scale bytes of low memory */
3334 		if (scale > PAGE_SHIFT)
3335 			numentries >>= (scale - PAGE_SHIFT);
3336 		else
3337 			numentries <<= (PAGE_SHIFT - scale);
3338 
3339 		/* Make sure we've got at least a 0-order allocation.. */
3340 		if (unlikely((numentries * bucketsize) < PAGE_SIZE))
3341 			numentries = PAGE_SIZE / bucketsize;
3342 	}
3343 	numentries = roundup_pow_of_two(numentries);
3344 
3345 	/* limit allocation size to 1/16 total memory by default */
3346 	if (max == 0) {
3347 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
3348 		do_div(max, bucketsize);
3349 	}
3350 
3351 	if (numentries > max)
3352 		numentries = max;
3353 
3354 	log2qty = ilog2(numentries);
3355 
3356 	do {
3357 		size = bucketsize << log2qty;
3358 		if (flags & HASH_EARLY)
3359 			table = alloc_bootmem(size);
3360 		else if (hashdist)
3361 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
3362 		else {
3363 			unsigned long order;
3364 			for (order = 0; ((1UL << order) << PAGE_SHIFT) < size; order++)
3365 				;
3366 			table = (void*) __get_free_pages(GFP_ATOMIC, order);
3367 		}
3368 	} while (!table && size > PAGE_SIZE && --log2qty);
3369 
3370 	if (!table)
3371 		panic("Failed to allocate %s hash table\n", tablename);
3372 
3373 	printk("%s hash table entries: %d (order: %d, %lu bytes)\n",
3374 	       tablename,
3375 	       (1U << log2qty),
3376 	       ilog2(size) - PAGE_SHIFT,
3377 	       size);
3378 
3379 	if (_hash_shift)
3380 		*_hash_shift = log2qty;
3381 	if (_hash_mask)
3382 		*_hash_mask = (1 << log2qty) - 1;
3383 
3384 	return table;
3385 }
3386 
3387 #ifdef CONFIG_OUT_OF_LINE_PFN_TO_PAGE
3388 struct page *pfn_to_page(unsigned long pfn)
3389 {
3390 	return __pfn_to_page(pfn);
3391 }
3392 unsigned long page_to_pfn(struct page *page)
3393 {
3394 	return __page_to_pfn(page);
3395 }
3396 EXPORT_SYMBOL(pfn_to_page);
3397 EXPORT_SYMBOL(page_to_pfn);
3398 #endif /* CONFIG_OUT_OF_LINE_PFN_TO_PAGE */
3399 
3400 
3401