xref: /linux/mm/page_alloc.c (revision ea8d7647f9ddf1f81e2027ed305299797299aa03)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
59 #include "internal.h"
60 #include "shuffle.h"
61 #include "page_reporting.h"
62 
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t;
65 
66 /* No special request */
67 #define FPI_NONE		((__force fpi_t)0)
68 
69 /*
70  * Skip free page reporting notification for the (possibly merged) page.
71  * This does not hinder free page reporting from grabbing the page,
72  * reporting it and marking it "reported" -  it only skips notifying
73  * the free page reporting infrastructure about a newly freed page. For
74  * example, used when temporarily pulling a page from a freelist and
75  * putting it back unmodified.
76  */
77 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
78 
79 /*
80  * Place the (possibly merged) page to the tail of the freelist. Will ignore
81  * page shuffling (relevant code - e.g., memory onlining - is expected to
82  * shuffle the whole zone).
83  *
84  * Note: No code should rely on this flag for correctness - it's purely
85  *       to allow for optimizations when handing back either fresh pages
86  *       (memory onlining) or untouched pages (page isolation, free page
87  *       reporting).
88  */
89 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
90 
91 /* Free the page without taking locks. Rely on trylock only. */
92 #define FPI_TRYLOCK		((__force fpi_t)BIT(2))
93 
94 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
95 static DEFINE_MUTEX(pcp_batch_high_lock);
96 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
97 
98 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
99 /*
100  * On SMP, spin_trylock is sufficient protection.
101  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
102  */
103 #define pcp_trylock_prepare(flags)	do { } while (0)
104 #define pcp_trylock_finish(flag)	do { } while (0)
105 #else
106 
107 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
108 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
109 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
110 #endif
111 
112 /*
113  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
114  * a migration causing the wrong PCP to be locked and remote memory being
115  * potentially allocated, pin the task to the CPU for the lookup+lock.
116  * preempt_disable is used on !RT because it is faster than migrate_disable.
117  * migrate_disable is used on RT because otherwise RT spinlock usage is
118  * interfered with and a high priority task cannot preempt the allocator.
119  */
120 #ifndef CONFIG_PREEMPT_RT
121 #define pcpu_task_pin()		preempt_disable()
122 #define pcpu_task_unpin()	preempt_enable()
123 #else
124 #define pcpu_task_pin()		migrate_disable()
125 #define pcpu_task_unpin()	migrate_enable()
126 #endif
127 
128 /*
129  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
130  * Return value should be used with equivalent unlock helper.
131  */
132 #define pcpu_spin_lock(type, member, ptr)				\
133 ({									\
134 	type *_ret;							\
135 	pcpu_task_pin();						\
136 	_ret = this_cpu_ptr(ptr);					\
137 	spin_lock(&_ret->member);					\
138 	_ret;								\
139 })
140 
141 #define pcpu_spin_trylock(type, member, ptr)				\
142 ({									\
143 	type *_ret;							\
144 	pcpu_task_pin();						\
145 	_ret = this_cpu_ptr(ptr);					\
146 	if (!spin_trylock(&_ret->member)) {				\
147 		pcpu_task_unpin();					\
148 		_ret = NULL;						\
149 	}								\
150 	_ret;								\
151 })
152 
153 #define pcpu_spin_unlock(member, ptr)					\
154 ({									\
155 	spin_unlock(&ptr->member);					\
156 	pcpu_task_unpin();						\
157 })
158 
159 /* struct per_cpu_pages specific helpers. */
160 #define pcp_spin_lock(ptr)						\
161 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
162 
163 #define pcp_spin_trylock(ptr)						\
164 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
165 
166 #define pcp_spin_unlock(ptr)						\
167 	pcpu_spin_unlock(lock, ptr)
168 
169 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
170 DEFINE_PER_CPU(int, numa_node);
171 EXPORT_PER_CPU_SYMBOL(numa_node);
172 #endif
173 
174 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
175 
176 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
177 /*
178  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
179  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
180  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
181  * defined in <linux/topology.h>.
182  */
183 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
184 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
185 #endif
186 
187 static DEFINE_MUTEX(pcpu_drain_mutex);
188 
189 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
190 volatile unsigned long latent_entropy __latent_entropy;
191 EXPORT_SYMBOL(latent_entropy);
192 #endif
193 
194 /*
195  * Array of node states.
196  */
197 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
198 	[N_POSSIBLE] = NODE_MASK_ALL,
199 	[N_ONLINE] = { { [0] = 1UL } },
200 #ifndef CONFIG_NUMA
201 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
202 #ifdef CONFIG_HIGHMEM
203 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
204 #endif
205 	[N_MEMORY] = { { [0] = 1UL } },
206 	[N_CPU] = { { [0] = 1UL } },
207 #endif	/* NUMA */
208 };
209 EXPORT_SYMBOL(node_states);
210 
211 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
212 
213 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
214 unsigned int pageblock_order __read_mostly;
215 #endif
216 
217 static void __free_pages_ok(struct page *page, unsigned int order,
218 			    fpi_t fpi_flags);
219 
220 /*
221  * results with 256, 32 in the lowmem_reserve sysctl:
222  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
223  *	1G machine -> (16M dma, 784M normal, 224M high)
224  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
225  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
226  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
227  *
228  * TBD: should special case ZONE_DMA32 machines here - in those we normally
229  * don't need any ZONE_NORMAL reservation
230  */
231 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
232 #ifdef CONFIG_ZONE_DMA
233 	[ZONE_DMA] = 256,
234 #endif
235 #ifdef CONFIG_ZONE_DMA32
236 	[ZONE_DMA32] = 256,
237 #endif
238 	[ZONE_NORMAL] = 32,
239 #ifdef CONFIG_HIGHMEM
240 	[ZONE_HIGHMEM] = 0,
241 #endif
242 	[ZONE_MOVABLE] = 0,
243 };
244 
245 char * const zone_names[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	 "DMA",
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	 "DMA32",
251 #endif
252 	 "Normal",
253 #ifdef CONFIG_HIGHMEM
254 	 "HighMem",
255 #endif
256 	 "Movable",
257 #ifdef CONFIG_ZONE_DEVICE
258 	 "Device",
259 #endif
260 };
261 
262 const char * const migratetype_names[MIGRATE_TYPES] = {
263 	"Unmovable",
264 	"Movable",
265 	"Reclaimable",
266 	"HighAtomic",
267 #ifdef CONFIG_CMA
268 	"CMA",
269 #endif
270 #ifdef CONFIG_MEMORY_ISOLATION
271 	"Isolate",
272 #endif
273 };
274 
275 int min_free_kbytes = 1024;
276 int user_min_free_kbytes = -1;
277 static int watermark_boost_factor __read_mostly = 15000;
278 static int watermark_scale_factor = 10;
279 
280 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 int movable_zone;
282 EXPORT_SYMBOL(movable_zone);
283 
284 #if MAX_NUMNODES > 1
285 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
286 unsigned int nr_online_nodes __read_mostly = 1;
287 EXPORT_SYMBOL(nr_node_ids);
288 EXPORT_SYMBOL(nr_online_nodes);
289 #endif
290 
291 static bool page_contains_unaccepted(struct page *page, unsigned int order);
292 static bool cond_accept_memory(struct zone *zone, unsigned int order);
293 static bool __free_unaccepted(struct page *page);
294 
295 int page_group_by_mobility_disabled __read_mostly;
296 
297 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
298 /*
299  * During boot we initialize deferred pages on-demand, as needed, but once
300  * page_alloc_init_late() has finished, the deferred pages are all initialized,
301  * and we can permanently disable that path.
302  */
303 DEFINE_STATIC_KEY_TRUE(deferred_pages);
304 
305 static inline bool deferred_pages_enabled(void)
306 {
307 	return static_branch_unlikely(&deferred_pages);
308 }
309 
310 /*
311  * deferred_grow_zone() is __init, but it is called from
312  * get_page_from_freelist() during early boot until deferred_pages permanently
313  * disables this call. This is why we have refdata wrapper to avoid warning,
314  * and to ensure that the function body gets unloaded.
315  */
316 static bool __ref
317 _deferred_grow_zone(struct zone *zone, unsigned int order)
318 {
319 	return deferred_grow_zone(zone, order);
320 }
321 #else
322 static inline bool deferred_pages_enabled(void)
323 {
324 	return false;
325 }
326 
327 static inline bool _deferred_grow_zone(struct zone *zone, unsigned int order)
328 {
329 	return false;
330 }
331 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
332 
333 /* Return a pointer to the bitmap storing bits affecting a block of pages */
334 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
335 							unsigned long pfn)
336 {
337 #ifdef CONFIG_SPARSEMEM
338 	return section_to_usemap(__pfn_to_section(pfn));
339 #else
340 	return page_zone(page)->pageblock_flags;
341 #endif /* CONFIG_SPARSEMEM */
342 }
343 
344 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
345 {
346 #ifdef CONFIG_SPARSEMEM
347 	pfn &= (PAGES_PER_SECTION-1);
348 #else
349 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
350 #endif /* CONFIG_SPARSEMEM */
351 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
352 }
353 
354 /**
355  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
356  * @page: The page within the block of interest
357  * @pfn: The target page frame number
358  * @mask: mask of bits that the caller is interested in
359  *
360  * Return: pageblock_bits flags
361  */
362 unsigned long get_pfnblock_flags_mask(const struct page *page,
363 					unsigned long pfn, unsigned long mask)
364 {
365 	unsigned long *bitmap;
366 	unsigned long bitidx, word_bitidx;
367 	unsigned long word;
368 
369 	bitmap = get_pageblock_bitmap(page, pfn);
370 	bitidx = pfn_to_bitidx(page, pfn);
371 	word_bitidx = bitidx / BITS_PER_LONG;
372 	bitidx &= (BITS_PER_LONG-1);
373 	/*
374 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
375 	 * a consistent read of the memory array, so that results, even though
376 	 * racy, are not corrupted.
377 	 */
378 	word = READ_ONCE(bitmap[word_bitidx]);
379 	return (word >> bitidx) & mask;
380 }
381 
382 static __always_inline int get_pfnblock_migratetype(const struct page *page,
383 					unsigned long pfn)
384 {
385 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
386 }
387 
388 /**
389  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
390  * @page: The page within the block of interest
391  * @flags: The flags to set
392  * @pfn: The target page frame number
393  * @mask: mask of bits that the caller is interested in
394  */
395 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
396 					unsigned long pfn,
397 					unsigned long mask)
398 {
399 	unsigned long *bitmap;
400 	unsigned long bitidx, word_bitidx;
401 	unsigned long word;
402 
403 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
404 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
405 
406 	bitmap = get_pageblock_bitmap(page, pfn);
407 	bitidx = pfn_to_bitidx(page, pfn);
408 	word_bitidx = bitidx / BITS_PER_LONG;
409 	bitidx &= (BITS_PER_LONG-1);
410 
411 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
412 
413 	mask <<= bitidx;
414 	flags <<= bitidx;
415 
416 	word = READ_ONCE(bitmap[word_bitidx]);
417 	do {
418 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
419 }
420 
421 void set_pageblock_migratetype(struct page *page, int migratetype)
422 {
423 	if (unlikely(page_group_by_mobility_disabled &&
424 		     migratetype < MIGRATE_PCPTYPES))
425 		migratetype = MIGRATE_UNMOVABLE;
426 
427 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
428 				page_to_pfn(page), MIGRATETYPE_MASK);
429 }
430 
431 #ifdef CONFIG_DEBUG_VM
432 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
433 {
434 	int ret;
435 	unsigned seq;
436 	unsigned long pfn = page_to_pfn(page);
437 	unsigned long sp, start_pfn;
438 
439 	do {
440 		seq = zone_span_seqbegin(zone);
441 		start_pfn = zone->zone_start_pfn;
442 		sp = zone->spanned_pages;
443 		ret = !zone_spans_pfn(zone, pfn);
444 	} while (zone_span_seqretry(zone, seq));
445 
446 	if (ret)
447 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
448 			pfn, zone_to_nid(zone), zone->name,
449 			start_pfn, start_pfn + sp);
450 
451 	return ret;
452 }
453 
454 /*
455  * Temporary debugging check for pages not lying within a given zone.
456  */
457 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
458 {
459 	if (page_outside_zone_boundaries(zone, page))
460 		return true;
461 	if (zone != page_zone(page))
462 		return true;
463 
464 	return false;
465 }
466 #else
467 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
468 {
469 	return false;
470 }
471 #endif
472 
473 static void bad_page(struct page *page, const char *reason)
474 {
475 	static unsigned long resume;
476 	static unsigned long nr_shown;
477 	static unsigned long nr_unshown;
478 
479 	/*
480 	 * Allow a burst of 60 reports, then keep quiet for that minute;
481 	 * or allow a steady drip of one report per second.
482 	 */
483 	if (nr_shown == 60) {
484 		if (time_before(jiffies, resume)) {
485 			nr_unshown++;
486 			goto out;
487 		}
488 		if (nr_unshown) {
489 			pr_alert(
490 			      "BUG: Bad page state: %lu messages suppressed\n",
491 				nr_unshown);
492 			nr_unshown = 0;
493 		}
494 		nr_shown = 0;
495 	}
496 	if (nr_shown++ == 0)
497 		resume = jiffies + 60 * HZ;
498 
499 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
500 		current->comm, page_to_pfn(page));
501 	dump_page(page, reason);
502 
503 	print_modules();
504 	dump_stack();
505 out:
506 	/* Leave bad fields for debug, except PageBuddy could make trouble */
507 	if (PageBuddy(page))
508 		__ClearPageBuddy(page);
509 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
510 }
511 
512 static inline unsigned int order_to_pindex(int migratetype, int order)
513 {
514 	bool __maybe_unused movable;
515 
516 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
517 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
518 		VM_BUG_ON(order != HPAGE_PMD_ORDER);
519 
520 		movable = migratetype == MIGRATE_MOVABLE;
521 
522 		return NR_LOWORDER_PCP_LISTS + movable;
523 	}
524 #else
525 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
526 #endif
527 
528 	return (MIGRATE_PCPTYPES * order) + migratetype;
529 }
530 
531 static inline int pindex_to_order(unsigned int pindex)
532 {
533 	int order = pindex / MIGRATE_PCPTYPES;
534 
535 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
536 	if (pindex >= NR_LOWORDER_PCP_LISTS)
537 		order = HPAGE_PMD_ORDER;
538 #else
539 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
540 #endif
541 
542 	return order;
543 }
544 
545 static inline bool pcp_allowed_order(unsigned int order)
546 {
547 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
548 		return true;
549 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
550 	if (order == HPAGE_PMD_ORDER)
551 		return true;
552 #endif
553 	return false;
554 }
555 
556 /*
557  * Higher-order pages are called "compound pages".  They are structured thusly:
558  *
559  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
560  *
561  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
562  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
563  *
564  * The first tail page's ->compound_order holds the order of allocation.
565  * This usage means that zero-order pages may not be compound.
566  */
567 
568 void prep_compound_page(struct page *page, unsigned int order)
569 {
570 	int i;
571 	int nr_pages = 1 << order;
572 
573 	__SetPageHead(page);
574 	for (i = 1; i < nr_pages; i++)
575 		prep_compound_tail(page, i);
576 
577 	prep_compound_head(page, order);
578 }
579 
580 static inline void set_buddy_order(struct page *page, unsigned int order)
581 {
582 	set_page_private(page, order);
583 	__SetPageBuddy(page);
584 }
585 
586 #ifdef CONFIG_COMPACTION
587 static inline struct capture_control *task_capc(struct zone *zone)
588 {
589 	struct capture_control *capc = current->capture_control;
590 
591 	return unlikely(capc) &&
592 		!(current->flags & PF_KTHREAD) &&
593 		!capc->page &&
594 		capc->cc->zone == zone ? capc : NULL;
595 }
596 
597 static inline bool
598 compaction_capture(struct capture_control *capc, struct page *page,
599 		   int order, int migratetype)
600 {
601 	if (!capc || order != capc->cc->order)
602 		return false;
603 
604 	/* Do not accidentally pollute CMA or isolated regions*/
605 	if (is_migrate_cma(migratetype) ||
606 	    is_migrate_isolate(migratetype))
607 		return false;
608 
609 	/*
610 	 * Do not let lower order allocations pollute a movable pageblock
611 	 * unless compaction is also requesting movable pages.
612 	 * This might let an unmovable request use a reclaimable pageblock
613 	 * and vice-versa but no more than normal fallback logic which can
614 	 * have trouble finding a high-order free page.
615 	 */
616 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE &&
617 	    capc->cc->migratetype != MIGRATE_MOVABLE)
618 		return false;
619 
620 	capc->page = page;
621 	return true;
622 }
623 
624 #else
625 static inline struct capture_control *task_capc(struct zone *zone)
626 {
627 	return NULL;
628 }
629 
630 static inline bool
631 compaction_capture(struct capture_control *capc, struct page *page,
632 		   int order, int migratetype)
633 {
634 	return false;
635 }
636 #endif /* CONFIG_COMPACTION */
637 
638 static inline void account_freepages(struct zone *zone, int nr_pages,
639 				     int migratetype)
640 {
641 	lockdep_assert_held(&zone->lock);
642 
643 	if (is_migrate_isolate(migratetype))
644 		return;
645 
646 	__mod_zone_page_state(zone, NR_FREE_PAGES, nr_pages);
647 
648 	if (is_migrate_cma(migratetype))
649 		__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, nr_pages);
650 	else if (is_migrate_highatomic(migratetype))
651 		WRITE_ONCE(zone->nr_free_highatomic,
652 			   zone->nr_free_highatomic + nr_pages);
653 }
654 
655 /* Used for pages not on another list */
656 static inline void __add_to_free_list(struct page *page, struct zone *zone,
657 				      unsigned int order, int migratetype,
658 				      bool tail)
659 {
660 	struct free_area *area = &zone->free_area[order];
661 
662 	VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
663 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
664 		     get_pageblock_migratetype(page), migratetype, 1 << order);
665 
666 	if (tail)
667 		list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
668 	else
669 		list_add(&page->buddy_list, &area->free_list[migratetype]);
670 	area->nr_free++;
671 }
672 
673 /*
674  * Used for pages which are on another list. Move the pages to the tail
675  * of the list - so the moved pages won't immediately be considered for
676  * allocation again (e.g., optimization for memory onlining).
677  */
678 static inline void move_to_free_list(struct page *page, struct zone *zone,
679 				     unsigned int order, int old_mt, int new_mt)
680 {
681 	struct free_area *area = &zone->free_area[order];
682 
683 	/* Free page moving can fail, so it happens before the type update */
684 	VM_WARN_ONCE(get_pageblock_migratetype(page) != old_mt,
685 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
686 		     get_pageblock_migratetype(page), old_mt, 1 << order);
687 
688 	list_move_tail(&page->buddy_list, &area->free_list[new_mt]);
689 
690 	account_freepages(zone, -(1 << order), old_mt);
691 	account_freepages(zone, 1 << order, new_mt);
692 }
693 
694 static inline void __del_page_from_free_list(struct page *page, struct zone *zone,
695 					     unsigned int order, int migratetype)
696 {
697         VM_WARN_ONCE(get_pageblock_migratetype(page) != migratetype,
698 		     "page type is %lu, passed migratetype is %d (nr=%d)\n",
699 		     get_pageblock_migratetype(page), migratetype, 1 << order);
700 
701 	/* clear reported state and update reported page count */
702 	if (page_reported(page))
703 		__ClearPageReported(page);
704 
705 	list_del(&page->buddy_list);
706 	__ClearPageBuddy(page);
707 	set_page_private(page, 0);
708 	zone->free_area[order].nr_free--;
709 }
710 
711 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
712 					   unsigned int order, int migratetype)
713 {
714 	__del_page_from_free_list(page, zone, order, migratetype);
715 	account_freepages(zone, -(1 << order), migratetype);
716 }
717 
718 static inline struct page *get_page_from_free_area(struct free_area *area,
719 					    int migratetype)
720 {
721 	return list_first_entry_or_null(&area->free_list[migratetype],
722 					struct page, buddy_list);
723 }
724 
725 /*
726  * If this is less than the 2nd largest possible page, check if the buddy
727  * of the next-higher order is free. If it is, it's possible
728  * that pages are being freed that will coalesce soon. In case,
729  * that is happening, add the free page to the tail of the list
730  * so it's less likely to be used soon and more likely to be merged
731  * as a 2-level higher order page
732  */
733 static inline bool
734 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
735 		   struct page *page, unsigned int order)
736 {
737 	unsigned long higher_page_pfn;
738 	struct page *higher_page;
739 
740 	if (order >= MAX_PAGE_ORDER - 1)
741 		return false;
742 
743 	higher_page_pfn = buddy_pfn & pfn;
744 	higher_page = page + (higher_page_pfn - pfn);
745 
746 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
747 			NULL) != NULL;
748 }
749 
750 /*
751  * Freeing function for a buddy system allocator.
752  *
753  * The concept of a buddy system is to maintain direct-mapped table
754  * (containing bit values) for memory blocks of various "orders".
755  * The bottom level table contains the map for the smallest allocatable
756  * units of memory (here, pages), and each level above it describes
757  * pairs of units from the levels below, hence, "buddies".
758  * At a high level, all that happens here is marking the table entry
759  * at the bottom level available, and propagating the changes upward
760  * as necessary, plus some accounting needed to play nicely with other
761  * parts of the VM system.
762  * At each level, we keep a list of pages, which are heads of continuous
763  * free pages of length of (1 << order) and marked with PageBuddy.
764  * Page's order is recorded in page_private(page) field.
765  * So when we are allocating or freeing one, we can derive the state of the
766  * other.  That is, if we allocate a small block, and both were
767  * free, the remainder of the region must be split into blocks.
768  * If a block is freed, and its buddy is also free, then this
769  * triggers coalescing into a block of larger size.
770  *
771  * -- nyc
772  */
773 
774 static inline void __free_one_page(struct page *page,
775 		unsigned long pfn,
776 		struct zone *zone, unsigned int order,
777 		int migratetype, fpi_t fpi_flags)
778 {
779 	struct capture_control *capc = task_capc(zone);
780 	unsigned long buddy_pfn = 0;
781 	unsigned long combined_pfn;
782 	struct page *buddy;
783 	bool to_tail;
784 
785 	VM_BUG_ON(!zone_is_initialized(zone));
786 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
787 
788 	VM_BUG_ON(migratetype == -1);
789 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
790 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
791 
792 	account_freepages(zone, 1 << order, migratetype);
793 
794 	while (order < MAX_PAGE_ORDER) {
795 		int buddy_mt = migratetype;
796 
797 		if (compaction_capture(capc, page, order, migratetype)) {
798 			account_freepages(zone, -(1 << order), migratetype);
799 			return;
800 		}
801 
802 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
803 		if (!buddy)
804 			goto done_merging;
805 
806 		if (unlikely(order >= pageblock_order)) {
807 			/*
808 			 * We want to prevent merge between freepages on pageblock
809 			 * without fallbacks and normal pageblock. Without this,
810 			 * pageblock isolation could cause incorrect freepage or CMA
811 			 * accounting or HIGHATOMIC accounting.
812 			 */
813 			buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
814 
815 			if (migratetype != buddy_mt &&
816 			    (!migratetype_is_mergeable(migratetype) ||
817 			     !migratetype_is_mergeable(buddy_mt)))
818 				goto done_merging;
819 		}
820 
821 		/*
822 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
823 		 * merge with it and move up one order.
824 		 */
825 		if (page_is_guard(buddy))
826 			clear_page_guard(zone, buddy, order);
827 		else
828 			__del_page_from_free_list(buddy, zone, order, buddy_mt);
829 
830 		if (unlikely(buddy_mt != migratetype)) {
831 			/*
832 			 * Match buddy type. This ensures that an
833 			 * expand() down the line puts the sub-blocks
834 			 * on the right freelists.
835 			 */
836 			set_pageblock_migratetype(buddy, migratetype);
837 		}
838 
839 		combined_pfn = buddy_pfn & pfn;
840 		page = page + (combined_pfn - pfn);
841 		pfn = combined_pfn;
842 		order++;
843 	}
844 
845 done_merging:
846 	set_buddy_order(page, order);
847 
848 	if (fpi_flags & FPI_TO_TAIL)
849 		to_tail = true;
850 	else if (is_shuffle_order(order))
851 		to_tail = shuffle_pick_tail();
852 	else
853 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
854 
855 	__add_to_free_list(page, zone, order, migratetype, to_tail);
856 
857 	/* Notify page reporting subsystem of freed page */
858 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
859 		page_reporting_notify_free(order);
860 }
861 
862 /*
863  * A bad page could be due to a number of fields. Instead of multiple branches,
864  * try and check multiple fields with one check. The caller must do a detailed
865  * check if necessary.
866  */
867 static inline bool page_expected_state(struct page *page,
868 					unsigned long check_flags)
869 {
870 	if (unlikely(atomic_read(&page->_mapcount) != -1))
871 		return false;
872 
873 	if (unlikely((unsigned long)page->mapping |
874 			page_ref_count(page) |
875 #ifdef CONFIG_MEMCG
876 			page->memcg_data |
877 #endif
878 #ifdef CONFIG_PAGE_POOL
879 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
880 #endif
881 			(page->flags & check_flags)))
882 		return false;
883 
884 	return true;
885 }
886 
887 static const char *page_bad_reason(struct page *page, unsigned long flags)
888 {
889 	const char *bad_reason = NULL;
890 
891 	if (unlikely(atomic_read(&page->_mapcount) != -1))
892 		bad_reason = "nonzero mapcount";
893 	if (unlikely(page->mapping != NULL))
894 		bad_reason = "non-NULL mapping";
895 	if (unlikely(page_ref_count(page) != 0))
896 		bad_reason = "nonzero _refcount";
897 	if (unlikely(page->flags & flags)) {
898 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
899 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
900 		else
901 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
902 	}
903 #ifdef CONFIG_MEMCG
904 	if (unlikely(page->memcg_data))
905 		bad_reason = "page still charged to cgroup";
906 #endif
907 #ifdef CONFIG_PAGE_POOL
908 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
909 		bad_reason = "page_pool leak";
910 #endif
911 	return bad_reason;
912 }
913 
914 static void free_page_is_bad_report(struct page *page)
915 {
916 	bad_page(page,
917 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
918 }
919 
920 static inline bool free_page_is_bad(struct page *page)
921 {
922 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
923 		return false;
924 
925 	/* Something has gone sideways, find it */
926 	free_page_is_bad_report(page);
927 	return true;
928 }
929 
930 static inline bool is_check_pages_enabled(void)
931 {
932 	return static_branch_unlikely(&check_pages_enabled);
933 }
934 
935 static int free_tail_page_prepare(struct page *head_page, struct page *page)
936 {
937 	struct folio *folio = (struct folio *)head_page;
938 	int ret = 1;
939 
940 	/*
941 	 * We rely page->lru.next never has bit 0 set, unless the page
942 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
943 	 */
944 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
945 
946 	if (!is_check_pages_enabled()) {
947 		ret = 0;
948 		goto out;
949 	}
950 	switch (page - head_page) {
951 	case 1:
952 		/* the first tail page: these may be in place of ->mapping */
953 		if (unlikely(folio_entire_mapcount(folio))) {
954 			bad_page(page, "nonzero entire_mapcount");
955 			goto out;
956 		}
957 		if (unlikely(folio_large_mapcount(folio))) {
958 			bad_page(page, "nonzero large_mapcount");
959 			goto out;
960 		}
961 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
962 			bad_page(page, "nonzero nr_pages_mapped");
963 			goto out;
964 		}
965 		if (unlikely(atomic_read(&folio->_pincount))) {
966 			bad_page(page, "nonzero pincount");
967 			goto out;
968 		}
969 		break;
970 	case 2:
971 		/* the second tail page: deferred_list overlaps ->mapping */
972 		if (unlikely(!list_empty(&folio->_deferred_list))) {
973 			bad_page(page, "on deferred list");
974 			goto out;
975 		}
976 		break;
977 	default:
978 		if (page->mapping != TAIL_MAPPING) {
979 			bad_page(page, "corrupted mapping in tail page");
980 			goto out;
981 		}
982 		break;
983 	}
984 	if (unlikely(!PageTail(page))) {
985 		bad_page(page, "PageTail not set");
986 		goto out;
987 	}
988 	if (unlikely(compound_head(page) != head_page)) {
989 		bad_page(page, "compound_head not consistent");
990 		goto out;
991 	}
992 	ret = 0;
993 out:
994 	page->mapping = NULL;
995 	clear_compound_head(page);
996 	return ret;
997 }
998 
999 /*
1000  * Skip KASAN memory poisoning when either:
1001  *
1002  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1003  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1004  *    using page tags instead (see below).
1005  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1006  *    that error detection is disabled for accesses via the page address.
1007  *
1008  * Pages will have match-all tags in the following circumstances:
1009  *
1010  * 1. Pages are being initialized for the first time, including during deferred
1011  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1012  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1013  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1014  * 3. The allocation was excluded from being checked due to sampling,
1015  *    see the call to kasan_unpoison_pages.
1016  *
1017  * Poisoning pages during deferred memory init will greatly lengthen the
1018  * process and cause problem in large memory systems as the deferred pages
1019  * initialization is done with interrupt disabled.
1020  *
1021  * Assuming that there will be no reference to those newly initialized
1022  * pages before they are ever allocated, this should have no effect on
1023  * KASAN memory tracking as the poison will be properly inserted at page
1024  * allocation time. The only corner case is when pages are allocated by
1025  * on-demand allocation and then freed again before the deferred pages
1026  * initialization is done, but this is not likely to happen.
1027  */
1028 static inline bool should_skip_kasan_poison(struct page *page)
1029 {
1030 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1031 		return deferred_pages_enabled();
1032 
1033 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1034 }
1035 
1036 static void kernel_init_pages(struct page *page, int numpages)
1037 {
1038 	int i;
1039 
1040 	/* s390's use of memset() could override KASAN redzones. */
1041 	kasan_disable_current();
1042 	for (i = 0; i < numpages; i++)
1043 		clear_highpage_kasan_tagged(page + i);
1044 	kasan_enable_current();
1045 }
1046 
1047 __always_inline bool free_pages_prepare(struct page *page,
1048 			unsigned int order)
1049 {
1050 	int bad = 0;
1051 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1052 	bool init = want_init_on_free();
1053 	bool compound = PageCompound(page);
1054 	struct folio *folio = page_folio(page);
1055 
1056 	VM_BUG_ON_PAGE(PageTail(page), page);
1057 
1058 	trace_mm_page_free(page, order);
1059 	kmsan_free_page(page, order);
1060 
1061 	if (memcg_kmem_online() && PageMemcgKmem(page))
1062 		__memcg_kmem_uncharge_page(page, order);
1063 
1064 	/*
1065 	 * In rare cases, when truncation or holepunching raced with
1066 	 * munlock after VM_LOCKED was cleared, Mlocked may still be
1067 	 * found set here.  This does not indicate a problem, unless
1068 	 * "unevictable_pgs_cleared" appears worryingly large.
1069 	 */
1070 	if (unlikely(folio_test_mlocked(folio))) {
1071 		long nr_pages = folio_nr_pages(folio);
1072 
1073 		__folio_clear_mlocked(folio);
1074 		zone_stat_mod_folio(folio, NR_MLOCK, -nr_pages);
1075 		count_vm_events(UNEVICTABLE_PGCLEARED, nr_pages);
1076 	}
1077 
1078 	if (unlikely(PageHWPoison(page)) && !order) {
1079 		/* Do not let hwpoison pages hit pcplists/buddy */
1080 		reset_page_owner(page, order);
1081 		page_table_check_free(page, order);
1082 		pgalloc_tag_sub(page, 1 << order);
1083 
1084 		/*
1085 		 * The page is isolated and accounted for.
1086 		 * Mark the codetag as empty to avoid accounting error
1087 		 * when the page is freed by unpoison_memory().
1088 		 */
1089 		clear_page_tag_ref(page);
1090 		return false;
1091 	}
1092 
1093 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1094 
1095 	/*
1096 	 * Check tail pages before head page information is cleared to
1097 	 * avoid checking PageCompound for order-0 pages.
1098 	 */
1099 	if (unlikely(order)) {
1100 		int i;
1101 
1102 		if (compound)
1103 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1104 		for (i = 1; i < (1 << order); i++) {
1105 			if (compound)
1106 				bad += free_tail_page_prepare(page, page + i);
1107 			if (is_check_pages_enabled()) {
1108 				if (free_page_is_bad(page + i)) {
1109 					bad++;
1110 					continue;
1111 				}
1112 			}
1113 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1114 		}
1115 	}
1116 	if (PageMappingFlags(page)) {
1117 		if (PageAnon(page))
1118 			mod_mthp_stat(order, MTHP_STAT_NR_ANON, -1);
1119 		page->mapping = NULL;
1120 	}
1121 	if (is_check_pages_enabled()) {
1122 		if (free_page_is_bad(page))
1123 			bad++;
1124 		if (bad)
1125 			return false;
1126 	}
1127 
1128 	page_cpupid_reset_last(page);
1129 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1130 	reset_page_owner(page, order);
1131 	page_table_check_free(page, order);
1132 	pgalloc_tag_sub(page, 1 << order);
1133 
1134 	if (!PageHighMem(page)) {
1135 		debug_check_no_locks_freed(page_address(page),
1136 					   PAGE_SIZE << order);
1137 		debug_check_no_obj_freed(page_address(page),
1138 					   PAGE_SIZE << order);
1139 	}
1140 
1141 	kernel_poison_pages(page, 1 << order);
1142 
1143 	/*
1144 	 * As memory initialization might be integrated into KASAN,
1145 	 * KASAN poisoning and memory initialization code must be
1146 	 * kept together to avoid discrepancies in behavior.
1147 	 *
1148 	 * With hardware tag-based KASAN, memory tags must be set before the
1149 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1150 	 */
1151 	if (!skip_kasan_poison) {
1152 		kasan_poison_pages(page, order, init);
1153 
1154 		/* Memory is already initialized if KASAN did it internally. */
1155 		if (kasan_has_integrated_init())
1156 			init = false;
1157 	}
1158 	if (init)
1159 		kernel_init_pages(page, 1 << order);
1160 
1161 	/*
1162 	 * arch_free_page() can make the page's contents inaccessible.  s390
1163 	 * does this.  So nothing which can access the page's contents should
1164 	 * happen after this.
1165 	 */
1166 	arch_free_page(page, order);
1167 
1168 	debug_pagealloc_unmap_pages(page, 1 << order);
1169 
1170 	return true;
1171 }
1172 
1173 /*
1174  * Frees a number of pages from the PCP lists
1175  * Assumes all pages on list are in same zone.
1176  * count is the number of pages to free.
1177  */
1178 static void free_pcppages_bulk(struct zone *zone, int count,
1179 					struct per_cpu_pages *pcp,
1180 					int pindex)
1181 {
1182 	unsigned long flags;
1183 	unsigned int order;
1184 	struct page *page;
1185 
1186 	/*
1187 	 * Ensure proper count is passed which otherwise would stuck in the
1188 	 * below while (list_empty(list)) loop.
1189 	 */
1190 	count = min(pcp->count, count);
1191 
1192 	/* Ensure requested pindex is drained first. */
1193 	pindex = pindex - 1;
1194 
1195 	spin_lock_irqsave(&zone->lock, flags);
1196 
1197 	while (count > 0) {
1198 		struct list_head *list;
1199 		int nr_pages;
1200 
1201 		/* Remove pages from lists in a round-robin fashion. */
1202 		do {
1203 			if (++pindex > NR_PCP_LISTS - 1)
1204 				pindex = 0;
1205 			list = &pcp->lists[pindex];
1206 		} while (list_empty(list));
1207 
1208 		order = pindex_to_order(pindex);
1209 		nr_pages = 1 << order;
1210 		do {
1211 			unsigned long pfn;
1212 			int mt;
1213 
1214 			page = list_last_entry(list, struct page, pcp_list);
1215 			pfn = page_to_pfn(page);
1216 			mt = get_pfnblock_migratetype(page, pfn);
1217 
1218 			/* must delete to avoid corrupting pcp list */
1219 			list_del(&page->pcp_list);
1220 			count -= nr_pages;
1221 			pcp->count -= nr_pages;
1222 
1223 			__free_one_page(page, pfn, zone, order, mt, FPI_NONE);
1224 			trace_mm_page_pcpu_drain(page, order, mt);
1225 		} while (count > 0 && !list_empty(list));
1226 	}
1227 
1228 	spin_unlock_irqrestore(&zone->lock, flags);
1229 }
1230 
1231 /* Split a multi-block free page into its individual pageblocks. */
1232 static void split_large_buddy(struct zone *zone, struct page *page,
1233 			      unsigned long pfn, int order, fpi_t fpi)
1234 {
1235 	unsigned long end = pfn + (1 << order);
1236 
1237 	VM_WARN_ON_ONCE(!IS_ALIGNED(pfn, 1 << order));
1238 	/* Caller removed page from freelist, buddy info cleared! */
1239 	VM_WARN_ON_ONCE(PageBuddy(page));
1240 
1241 	if (order > pageblock_order)
1242 		order = pageblock_order;
1243 
1244 	do {
1245 		int mt = get_pfnblock_migratetype(page, pfn);
1246 
1247 		__free_one_page(page, pfn, zone, order, mt, fpi);
1248 		pfn += 1 << order;
1249 		if (pfn == end)
1250 			break;
1251 		page = pfn_to_page(pfn);
1252 	} while (1);
1253 }
1254 
1255 static void add_page_to_zone_llist(struct zone *zone, struct page *page,
1256 				   unsigned int order)
1257 {
1258 	/* Remember the order */
1259 	page->order = order;
1260 	/* Add the page to the free list */
1261 	llist_add(&page->pcp_llist, &zone->trylock_free_pages);
1262 }
1263 
1264 static void free_one_page(struct zone *zone, struct page *page,
1265 			  unsigned long pfn, unsigned int order,
1266 			  fpi_t fpi_flags)
1267 {
1268 	struct llist_head *llhead;
1269 	unsigned long flags;
1270 
1271 	if (!spin_trylock_irqsave(&zone->lock, flags)) {
1272 		if (unlikely(fpi_flags & FPI_TRYLOCK)) {
1273 			add_page_to_zone_llist(zone, page, order);
1274 			return;
1275 		}
1276 		spin_lock_irqsave(&zone->lock, flags);
1277 	}
1278 
1279 	/* The lock succeeded. Process deferred pages. */
1280 	llhead = &zone->trylock_free_pages;
1281 	if (unlikely(!llist_empty(llhead) && !(fpi_flags & FPI_TRYLOCK))) {
1282 		struct llist_node *llnode;
1283 		struct page *p, *tmp;
1284 
1285 		llnode = llist_del_all(llhead);
1286 		llist_for_each_entry_safe(p, tmp, llnode, pcp_llist) {
1287 			unsigned int p_order = p->order;
1288 
1289 			split_large_buddy(zone, p, page_to_pfn(p), p_order, fpi_flags);
1290 			__count_vm_events(PGFREE, 1 << p_order);
1291 		}
1292 	}
1293 	split_large_buddy(zone, page, pfn, order, fpi_flags);
1294 	spin_unlock_irqrestore(&zone->lock, flags);
1295 
1296 	__count_vm_events(PGFREE, 1 << order);
1297 }
1298 
1299 static void __free_pages_ok(struct page *page, unsigned int order,
1300 			    fpi_t fpi_flags)
1301 {
1302 	unsigned long pfn = page_to_pfn(page);
1303 	struct zone *zone = page_zone(page);
1304 
1305 	if (free_pages_prepare(page, order))
1306 		free_one_page(zone, page, pfn, order, fpi_flags);
1307 }
1308 
1309 void __meminit __free_pages_core(struct page *page, unsigned int order,
1310 		enum meminit_context context)
1311 {
1312 	unsigned int nr_pages = 1 << order;
1313 	struct page *p = page;
1314 	unsigned int loop;
1315 
1316 	/*
1317 	 * When initializing the memmap, __init_single_page() sets the refcount
1318 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1319 	 * refcount of all involved pages to 0.
1320 	 *
1321 	 * Note that hotplugged memory pages are initialized to PageOffline().
1322 	 * Pages freed from memblock might be marked as reserved.
1323 	 */
1324 	if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG) &&
1325 	    unlikely(context == MEMINIT_HOTPLUG)) {
1326 		for (loop = 0; loop < nr_pages; loop++, p++) {
1327 			VM_WARN_ON_ONCE(PageReserved(p));
1328 			__ClearPageOffline(p);
1329 			set_page_count(p, 0);
1330 		}
1331 
1332 		adjust_managed_page_count(page, nr_pages);
1333 	} else {
1334 		for (loop = 0; loop < nr_pages; loop++, p++) {
1335 			__ClearPageReserved(p);
1336 			set_page_count(p, 0);
1337 		}
1338 
1339 		/* memblock adjusts totalram_pages() manually. */
1340 		atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1341 	}
1342 
1343 	if (page_contains_unaccepted(page, order)) {
1344 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1345 			return;
1346 
1347 		accept_memory(page_to_phys(page), PAGE_SIZE << order);
1348 	}
1349 
1350 	/*
1351 	 * Bypass PCP and place fresh pages right to the tail, primarily
1352 	 * relevant for memory onlining.
1353 	 */
1354 	__free_pages_ok(page, order, FPI_TO_TAIL);
1355 }
1356 
1357 /*
1358  * Check that the whole (or subset of) a pageblock given by the interval of
1359  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1360  * with the migration of free compaction scanner.
1361  *
1362  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1363  *
1364  * It's possible on some configurations to have a setup like node0 node1 node0
1365  * i.e. it's possible that all pages within a zones range of pages do not
1366  * belong to a single zone. We assume that a border between node0 and node1
1367  * can occur within a single pageblock, but not a node0 node1 node0
1368  * interleaving within a single pageblock. It is therefore sufficient to check
1369  * the first and last page of a pageblock and avoid checking each individual
1370  * page in a pageblock.
1371  *
1372  * Note: the function may return non-NULL struct page even for a page block
1373  * which contains a memory hole (i.e. there is no physical memory for a subset
1374  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1375  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1376  * even though the start pfn is online and valid. This should be safe most of
1377  * the time because struct pages are still initialized via init_unavailable_range()
1378  * and pfn walkers shouldn't touch any physical memory range for which they do
1379  * not recognize any specific metadata in struct pages.
1380  */
1381 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1382 				     unsigned long end_pfn, struct zone *zone)
1383 {
1384 	struct page *start_page;
1385 	struct page *end_page;
1386 
1387 	/* end_pfn is one past the range we are checking */
1388 	end_pfn--;
1389 
1390 	if (!pfn_valid(end_pfn))
1391 		return NULL;
1392 
1393 	start_page = pfn_to_online_page(start_pfn);
1394 	if (!start_page)
1395 		return NULL;
1396 
1397 	if (page_zone(start_page) != zone)
1398 		return NULL;
1399 
1400 	end_page = pfn_to_page(end_pfn);
1401 
1402 	/* This gives a shorter code than deriving page_zone(end_page) */
1403 	if (page_zone_id(start_page) != page_zone_id(end_page))
1404 		return NULL;
1405 
1406 	return start_page;
1407 }
1408 
1409 /*
1410  * The order of subdivision here is critical for the IO subsystem.
1411  * Please do not alter this order without good reasons and regression
1412  * testing. Specifically, as large blocks of memory are subdivided,
1413  * the order in which smaller blocks are delivered depends on the order
1414  * they're subdivided in this function. This is the primary factor
1415  * influencing the order in which pages are delivered to the IO
1416  * subsystem according to empirical testing, and this is also justified
1417  * by considering the behavior of a buddy system containing a single
1418  * large block of memory acted on by a series of small allocations.
1419  * This behavior is a critical factor in sglist merging's success.
1420  *
1421  * -- nyc
1422  */
1423 static inline unsigned int expand(struct zone *zone, struct page *page, int low,
1424 				  int high, int migratetype)
1425 {
1426 	unsigned int size = 1 << high;
1427 	unsigned int nr_added = 0;
1428 
1429 	while (high > low) {
1430 		high--;
1431 		size >>= 1;
1432 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1433 
1434 		/*
1435 		 * Mark as guard pages (or page), that will allow to
1436 		 * merge back to allocator when buddy will be freed.
1437 		 * Corresponding page table entries will not be touched,
1438 		 * pages will stay not present in virtual address space
1439 		 */
1440 		if (set_page_guard(zone, &page[size], high))
1441 			continue;
1442 
1443 		__add_to_free_list(&page[size], zone, high, migratetype, false);
1444 		set_buddy_order(&page[size], high);
1445 		nr_added += size;
1446 	}
1447 
1448 	return nr_added;
1449 }
1450 
1451 static __always_inline void page_del_and_expand(struct zone *zone,
1452 						struct page *page, int low,
1453 						int high, int migratetype)
1454 {
1455 	int nr_pages = 1 << high;
1456 
1457 	__del_page_from_free_list(page, zone, high, migratetype);
1458 	nr_pages -= expand(zone, page, low, high, migratetype);
1459 	account_freepages(zone, -nr_pages, migratetype);
1460 }
1461 
1462 static void check_new_page_bad(struct page *page)
1463 {
1464 	if (unlikely(page->flags & __PG_HWPOISON)) {
1465 		/* Don't complain about hwpoisoned pages */
1466 		if (PageBuddy(page))
1467 			__ClearPageBuddy(page);
1468 		return;
1469 	}
1470 
1471 	bad_page(page,
1472 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1473 }
1474 
1475 /*
1476  * This page is about to be returned from the page allocator
1477  */
1478 static bool check_new_page(struct page *page)
1479 {
1480 	if (likely(page_expected_state(page,
1481 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1482 		return false;
1483 
1484 	check_new_page_bad(page);
1485 	return true;
1486 }
1487 
1488 static inline bool check_new_pages(struct page *page, unsigned int order)
1489 {
1490 	if (is_check_pages_enabled()) {
1491 		for (int i = 0; i < (1 << order); i++) {
1492 			struct page *p = page + i;
1493 
1494 			if (check_new_page(p))
1495 				return true;
1496 		}
1497 	}
1498 
1499 	return false;
1500 }
1501 
1502 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1503 {
1504 	/* Don't skip if a software KASAN mode is enabled. */
1505 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1506 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1507 		return false;
1508 
1509 	/* Skip, if hardware tag-based KASAN is not enabled. */
1510 	if (!kasan_hw_tags_enabled())
1511 		return true;
1512 
1513 	/*
1514 	 * With hardware tag-based KASAN enabled, skip if this has been
1515 	 * requested via __GFP_SKIP_KASAN.
1516 	 */
1517 	return flags & __GFP_SKIP_KASAN;
1518 }
1519 
1520 static inline bool should_skip_init(gfp_t flags)
1521 {
1522 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1523 	if (!kasan_hw_tags_enabled())
1524 		return false;
1525 
1526 	/* For hardware tag-based KASAN, skip if requested. */
1527 	return (flags & __GFP_SKIP_ZERO);
1528 }
1529 
1530 inline void post_alloc_hook(struct page *page, unsigned int order,
1531 				gfp_t gfp_flags)
1532 {
1533 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1534 			!should_skip_init(gfp_flags);
1535 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1536 	int i;
1537 
1538 	set_page_private(page, 0);
1539 
1540 	arch_alloc_page(page, order);
1541 	debug_pagealloc_map_pages(page, 1 << order);
1542 
1543 	/*
1544 	 * Page unpoisoning must happen before memory initialization.
1545 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1546 	 * allocations and the page unpoisoning code will complain.
1547 	 */
1548 	kernel_unpoison_pages(page, 1 << order);
1549 
1550 	/*
1551 	 * As memory initialization might be integrated into KASAN,
1552 	 * KASAN unpoisoning and memory initializion code must be
1553 	 * kept together to avoid discrepancies in behavior.
1554 	 */
1555 
1556 	/*
1557 	 * If memory tags should be zeroed
1558 	 * (which happens only when memory should be initialized as well).
1559 	 */
1560 	if (zero_tags) {
1561 		/* Initialize both memory and memory tags. */
1562 		for (i = 0; i != 1 << order; ++i)
1563 			tag_clear_highpage(page + i);
1564 
1565 		/* Take note that memory was initialized by the loop above. */
1566 		init = false;
1567 	}
1568 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1569 	    kasan_unpoison_pages(page, order, init)) {
1570 		/* Take note that memory was initialized by KASAN. */
1571 		if (kasan_has_integrated_init())
1572 			init = false;
1573 	} else {
1574 		/*
1575 		 * If memory tags have not been set by KASAN, reset the page
1576 		 * tags to ensure page_address() dereferencing does not fault.
1577 		 */
1578 		for (i = 0; i != 1 << order; ++i)
1579 			page_kasan_tag_reset(page + i);
1580 	}
1581 	/* If memory is still not initialized, initialize it now. */
1582 	if (init)
1583 		kernel_init_pages(page, 1 << order);
1584 
1585 	set_page_owner(page, order, gfp_flags);
1586 	page_table_check_alloc(page, order);
1587 	pgalloc_tag_add(page, current, 1 << order);
1588 }
1589 
1590 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1591 							unsigned int alloc_flags)
1592 {
1593 	post_alloc_hook(page, order, gfp_flags);
1594 
1595 	if (order && (gfp_flags & __GFP_COMP))
1596 		prep_compound_page(page, order);
1597 
1598 	/*
1599 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1600 	 * allocate the page. The expectation is that the caller is taking
1601 	 * steps that will free more memory. The caller should avoid the page
1602 	 * being used for !PFMEMALLOC purposes.
1603 	 */
1604 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1605 		set_page_pfmemalloc(page);
1606 	else
1607 		clear_page_pfmemalloc(page);
1608 }
1609 
1610 /*
1611  * Go through the free lists for the given migratetype and remove
1612  * the smallest available page from the freelists
1613  */
1614 static __always_inline
1615 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1616 						int migratetype)
1617 {
1618 	unsigned int current_order;
1619 	struct free_area *area;
1620 	struct page *page;
1621 
1622 	/* Find a page of the appropriate size in the preferred list */
1623 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1624 		area = &(zone->free_area[current_order]);
1625 		page = get_page_from_free_area(area, migratetype);
1626 		if (!page)
1627 			continue;
1628 
1629 		page_del_and_expand(zone, page, order, current_order,
1630 				    migratetype);
1631 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1632 				pcp_allowed_order(order) &&
1633 				migratetype < MIGRATE_PCPTYPES);
1634 		return page;
1635 	}
1636 
1637 	return NULL;
1638 }
1639 
1640 
1641 /*
1642  * This array describes the order lists are fallen back to when
1643  * the free lists for the desirable migrate type are depleted
1644  *
1645  * The other migratetypes do not have fallbacks.
1646  */
1647 static int fallbacks[MIGRATE_PCPTYPES][MIGRATE_PCPTYPES - 1] = {
1648 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1649 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1650 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1651 };
1652 
1653 #ifdef CONFIG_CMA
1654 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1655 					unsigned int order)
1656 {
1657 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1658 }
1659 #else
1660 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1661 					unsigned int order) { return NULL; }
1662 #endif
1663 
1664 /*
1665  * Change the type of a block and move all its free pages to that
1666  * type's freelist.
1667  */
1668 static int __move_freepages_block(struct zone *zone, unsigned long start_pfn,
1669 				  int old_mt, int new_mt)
1670 {
1671 	struct page *page;
1672 	unsigned long pfn, end_pfn;
1673 	unsigned int order;
1674 	int pages_moved = 0;
1675 
1676 	VM_WARN_ON(start_pfn & (pageblock_nr_pages - 1));
1677 	end_pfn = pageblock_end_pfn(start_pfn);
1678 
1679 	for (pfn = start_pfn; pfn < end_pfn;) {
1680 		page = pfn_to_page(pfn);
1681 		if (!PageBuddy(page)) {
1682 			pfn++;
1683 			continue;
1684 		}
1685 
1686 		/* Make sure we are not inadvertently changing nodes */
1687 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1688 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1689 
1690 		order = buddy_order(page);
1691 
1692 		move_to_free_list(page, zone, order, old_mt, new_mt);
1693 
1694 		pfn += 1 << order;
1695 		pages_moved += 1 << order;
1696 	}
1697 
1698 	set_pageblock_migratetype(pfn_to_page(start_pfn), new_mt);
1699 
1700 	return pages_moved;
1701 }
1702 
1703 static bool prep_move_freepages_block(struct zone *zone, struct page *page,
1704 				      unsigned long *start_pfn,
1705 				      int *num_free, int *num_movable)
1706 {
1707 	unsigned long pfn, start, end;
1708 
1709 	pfn = page_to_pfn(page);
1710 	start = pageblock_start_pfn(pfn);
1711 	end = pageblock_end_pfn(pfn);
1712 
1713 	/*
1714 	 * The caller only has the lock for @zone, don't touch ranges
1715 	 * that straddle into other zones. While we could move part of
1716 	 * the range that's inside the zone, this call is usually
1717 	 * accompanied by other operations such as migratetype updates
1718 	 * which also should be locked.
1719 	 */
1720 	if (!zone_spans_pfn(zone, start))
1721 		return false;
1722 	if (!zone_spans_pfn(zone, end - 1))
1723 		return false;
1724 
1725 	*start_pfn = start;
1726 
1727 	if (num_free) {
1728 		*num_free = 0;
1729 		*num_movable = 0;
1730 		for (pfn = start; pfn < end;) {
1731 			page = pfn_to_page(pfn);
1732 			if (PageBuddy(page)) {
1733 				int nr = 1 << buddy_order(page);
1734 
1735 				*num_free += nr;
1736 				pfn += nr;
1737 				continue;
1738 			}
1739 			/*
1740 			 * We assume that pages that could be isolated for
1741 			 * migration are movable. But we don't actually try
1742 			 * isolating, as that would be expensive.
1743 			 */
1744 			if (PageLRU(page) || __PageMovable(page))
1745 				(*num_movable)++;
1746 			pfn++;
1747 		}
1748 	}
1749 
1750 	return true;
1751 }
1752 
1753 static int move_freepages_block(struct zone *zone, struct page *page,
1754 				int old_mt, int new_mt)
1755 {
1756 	unsigned long start_pfn;
1757 
1758 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1759 		return -1;
1760 
1761 	return __move_freepages_block(zone, start_pfn, old_mt, new_mt);
1762 }
1763 
1764 #ifdef CONFIG_MEMORY_ISOLATION
1765 /* Look for a buddy that straddles start_pfn */
1766 static unsigned long find_large_buddy(unsigned long start_pfn)
1767 {
1768 	int order = 0;
1769 	struct page *page;
1770 	unsigned long pfn = start_pfn;
1771 
1772 	while (!PageBuddy(page = pfn_to_page(pfn))) {
1773 		/* Nothing found */
1774 		if (++order > MAX_PAGE_ORDER)
1775 			return start_pfn;
1776 		pfn &= ~0UL << order;
1777 	}
1778 
1779 	/*
1780 	 * Found a preceding buddy, but does it straddle?
1781 	 */
1782 	if (pfn + (1 << buddy_order(page)) > start_pfn)
1783 		return pfn;
1784 
1785 	/* Nothing found */
1786 	return start_pfn;
1787 }
1788 
1789 /**
1790  * move_freepages_block_isolate - move free pages in block for page isolation
1791  * @zone: the zone
1792  * @page: the pageblock page
1793  * @migratetype: migratetype to set on the pageblock
1794  *
1795  * This is similar to move_freepages_block(), but handles the special
1796  * case encountered in page isolation, where the block of interest
1797  * might be part of a larger buddy spanning multiple pageblocks.
1798  *
1799  * Unlike the regular page allocator path, which moves pages while
1800  * stealing buddies off the freelist, page isolation is interested in
1801  * arbitrary pfn ranges that may have overlapping buddies on both ends.
1802  *
1803  * This function handles that. Straddling buddies are split into
1804  * individual pageblocks. Only the block of interest is moved.
1805  *
1806  * Returns %true if pages could be moved, %false otherwise.
1807  */
1808 bool move_freepages_block_isolate(struct zone *zone, struct page *page,
1809 				  int migratetype)
1810 {
1811 	unsigned long start_pfn, pfn;
1812 
1813 	if (!prep_move_freepages_block(zone, page, &start_pfn, NULL, NULL))
1814 		return false;
1815 
1816 	/* No splits needed if buddies can't span multiple blocks */
1817 	if (pageblock_order == MAX_PAGE_ORDER)
1818 		goto move;
1819 
1820 	/* We're a tail block in a larger buddy */
1821 	pfn = find_large_buddy(start_pfn);
1822 	if (pfn != start_pfn) {
1823 		struct page *buddy = pfn_to_page(pfn);
1824 		int order = buddy_order(buddy);
1825 
1826 		del_page_from_free_list(buddy, zone, order,
1827 					get_pfnblock_migratetype(buddy, pfn));
1828 		set_pageblock_migratetype(page, migratetype);
1829 		split_large_buddy(zone, buddy, pfn, order, FPI_NONE);
1830 		return true;
1831 	}
1832 
1833 	/* We're the starting block of a larger buddy */
1834 	if (PageBuddy(page) && buddy_order(page) > pageblock_order) {
1835 		int order = buddy_order(page);
1836 
1837 		del_page_from_free_list(page, zone, order,
1838 					get_pfnblock_migratetype(page, pfn));
1839 		set_pageblock_migratetype(page, migratetype);
1840 		split_large_buddy(zone, page, pfn, order, FPI_NONE);
1841 		return true;
1842 	}
1843 move:
1844 	__move_freepages_block(zone, start_pfn,
1845 			       get_pfnblock_migratetype(page, start_pfn),
1846 			       migratetype);
1847 	return true;
1848 }
1849 #endif /* CONFIG_MEMORY_ISOLATION */
1850 
1851 static void change_pageblock_range(struct page *pageblock_page,
1852 					int start_order, int migratetype)
1853 {
1854 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1855 
1856 	while (nr_pageblocks--) {
1857 		set_pageblock_migratetype(pageblock_page, migratetype);
1858 		pageblock_page += pageblock_nr_pages;
1859 	}
1860 }
1861 
1862 /*
1863  * When we are falling back to another migratetype during allocation, try to
1864  * steal extra free pages from the same pageblocks to satisfy further
1865  * allocations, instead of polluting multiple pageblocks.
1866  *
1867  * If we are stealing a relatively large buddy page, it is likely there will
1868  * be more free pages in the pageblock, so try to steal them all. For
1869  * reclaimable and unmovable allocations, we steal regardless of page size,
1870  * as fragmentation caused by those allocations polluting movable pageblocks
1871  * is worse than movable allocations stealing from unmovable and reclaimable
1872  * pageblocks.
1873  */
1874 static bool can_steal_fallback(unsigned int order, int start_mt)
1875 {
1876 	/*
1877 	 * Leaving this order check is intended, although there is
1878 	 * relaxed order check in next check. The reason is that
1879 	 * we can actually steal whole pageblock if this condition met,
1880 	 * but, below check doesn't guarantee it and that is just heuristic
1881 	 * so could be changed anytime.
1882 	 */
1883 	if (order >= pageblock_order)
1884 		return true;
1885 
1886 	/*
1887 	 * Movable pages won't cause permanent fragmentation, so when you alloc
1888 	 * small pages, you just need to temporarily steal unmovable or
1889 	 * reclaimable pages that are closest to the request size.  After a
1890 	 * while, memory compaction may occur to form large contiguous pages,
1891 	 * and the next movable allocation may not need to steal.  Unmovable and
1892 	 * reclaimable allocations need to actually steal pages.
1893 	 */
1894 	if (order >= pageblock_order / 2 ||
1895 		start_mt == MIGRATE_RECLAIMABLE ||
1896 		start_mt == MIGRATE_UNMOVABLE ||
1897 		page_group_by_mobility_disabled)
1898 		return true;
1899 
1900 	return false;
1901 }
1902 
1903 static inline bool boost_watermark(struct zone *zone)
1904 {
1905 	unsigned long max_boost;
1906 
1907 	if (!watermark_boost_factor)
1908 		return false;
1909 	/*
1910 	 * Don't bother in zones that are unlikely to produce results.
1911 	 * On small machines, including kdump capture kernels running
1912 	 * in a small area, boosting the watermark can cause an out of
1913 	 * memory situation immediately.
1914 	 */
1915 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1916 		return false;
1917 
1918 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1919 			watermark_boost_factor, 10000);
1920 
1921 	/*
1922 	 * high watermark may be uninitialised if fragmentation occurs
1923 	 * very early in boot so do not boost. We do not fall
1924 	 * through and boost by pageblock_nr_pages as failing
1925 	 * allocations that early means that reclaim is not going
1926 	 * to help and it may even be impossible to reclaim the
1927 	 * boosted watermark resulting in a hang.
1928 	 */
1929 	if (!max_boost)
1930 		return false;
1931 
1932 	max_boost = max(pageblock_nr_pages, max_boost);
1933 
1934 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1935 		max_boost);
1936 
1937 	return true;
1938 }
1939 
1940 /*
1941  * This function implements actual steal behaviour. If order is large enough, we
1942  * can claim the whole pageblock for the requested migratetype. If not, we check
1943  * the pageblock for constituent pages; if at least half of the pages are free
1944  * or compatible, we can still claim the whole block, so pages freed in the
1945  * future will be put on the correct free list. Otherwise, we isolate exactly
1946  * the order we need from the fallback block and leave its migratetype alone.
1947  */
1948 static struct page *
1949 steal_suitable_fallback(struct zone *zone, struct page *page,
1950 			int current_order, int order, int start_type,
1951 			unsigned int alloc_flags, bool whole_block)
1952 {
1953 	int free_pages, movable_pages, alike_pages;
1954 	unsigned long start_pfn;
1955 	int block_type;
1956 
1957 	block_type = get_pageblock_migratetype(page);
1958 
1959 	/*
1960 	 * This can happen due to races and we want to prevent broken
1961 	 * highatomic accounting.
1962 	 */
1963 	if (is_migrate_highatomic(block_type))
1964 		goto single_page;
1965 
1966 	/* Take ownership for orders >= pageblock_order */
1967 	if (current_order >= pageblock_order) {
1968 		unsigned int nr_added;
1969 
1970 		del_page_from_free_list(page, zone, current_order, block_type);
1971 		change_pageblock_range(page, current_order, start_type);
1972 		nr_added = expand(zone, page, order, current_order, start_type);
1973 		account_freepages(zone, nr_added, start_type);
1974 		return page;
1975 	}
1976 
1977 	/*
1978 	 * Boost watermarks to increase reclaim pressure to reduce the
1979 	 * likelihood of future fallbacks. Wake kswapd now as the node
1980 	 * may be balanced overall and kswapd will not wake naturally.
1981 	 */
1982 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1983 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1984 
1985 	/* We are not allowed to try stealing from the whole block */
1986 	if (!whole_block)
1987 		goto single_page;
1988 
1989 	/* moving whole block can fail due to zone boundary conditions */
1990 	if (!prep_move_freepages_block(zone, page, &start_pfn, &free_pages,
1991 				       &movable_pages))
1992 		goto single_page;
1993 
1994 	/*
1995 	 * Determine how many pages are compatible with our allocation.
1996 	 * For movable allocation, it's the number of movable pages which
1997 	 * we just obtained. For other types it's a bit more tricky.
1998 	 */
1999 	if (start_type == MIGRATE_MOVABLE) {
2000 		alike_pages = movable_pages;
2001 	} else {
2002 		/*
2003 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2004 		 * to MOVABLE pageblock, consider all non-movable pages as
2005 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2006 		 * vice versa, be conservative since we can't distinguish the
2007 		 * exact migratetype of non-movable pages.
2008 		 */
2009 		if (block_type == MIGRATE_MOVABLE)
2010 			alike_pages = pageblock_nr_pages
2011 						- (free_pages + movable_pages);
2012 		else
2013 			alike_pages = 0;
2014 	}
2015 	/*
2016 	 * If a sufficient number of pages in the block are either free or of
2017 	 * compatible migratability as our allocation, claim the whole block.
2018 	 */
2019 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2020 			page_group_by_mobility_disabled) {
2021 		__move_freepages_block(zone, start_pfn, block_type, start_type);
2022 		return __rmqueue_smallest(zone, order, start_type);
2023 	}
2024 
2025 single_page:
2026 	page_del_and_expand(zone, page, order, current_order, block_type);
2027 	return page;
2028 }
2029 
2030 /*
2031  * Check whether there is a suitable fallback freepage with requested order.
2032  * If only_stealable is true, this function returns fallback_mt only if
2033  * we can steal other freepages all together. This would help to reduce
2034  * fragmentation due to mixed migratetype pages in one pageblock.
2035  */
2036 int find_suitable_fallback(struct free_area *area, unsigned int order,
2037 			int migratetype, bool only_stealable, bool *can_steal)
2038 {
2039 	int i;
2040 	int fallback_mt;
2041 
2042 	if (area->nr_free == 0)
2043 		return -1;
2044 
2045 	*can_steal = false;
2046 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
2047 		fallback_mt = fallbacks[migratetype][i];
2048 		if (free_area_empty(area, fallback_mt))
2049 			continue;
2050 
2051 		if (can_steal_fallback(order, migratetype))
2052 			*can_steal = true;
2053 
2054 		if (!only_stealable)
2055 			return fallback_mt;
2056 
2057 		if (*can_steal)
2058 			return fallback_mt;
2059 	}
2060 
2061 	return -1;
2062 }
2063 
2064 /*
2065  * Reserve the pageblock(s) surrounding an allocation request for
2066  * exclusive use of high-order atomic allocations if there are no
2067  * empty page blocks that contain a page with a suitable order
2068  */
2069 static void reserve_highatomic_pageblock(struct page *page, int order,
2070 					 struct zone *zone)
2071 {
2072 	int mt;
2073 	unsigned long max_managed, flags;
2074 
2075 	/*
2076 	 * The number reserved as: minimum is 1 pageblock, maximum is
2077 	 * roughly 1% of a zone. But if 1% of a zone falls below a
2078 	 * pageblock size, then don't reserve any pageblocks.
2079 	 * Check is race-prone but harmless.
2080 	 */
2081 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
2082 		return;
2083 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
2084 	if (zone->nr_reserved_highatomic >= max_managed)
2085 		return;
2086 
2087 	spin_lock_irqsave(&zone->lock, flags);
2088 
2089 	/* Recheck the nr_reserved_highatomic limit under the lock */
2090 	if (zone->nr_reserved_highatomic >= max_managed)
2091 		goto out_unlock;
2092 
2093 	/* Yoink! */
2094 	mt = get_pageblock_migratetype(page);
2095 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
2096 	if (!migratetype_is_mergeable(mt))
2097 		goto out_unlock;
2098 
2099 	if (order < pageblock_order) {
2100 		if (move_freepages_block(zone, page, mt, MIGRATE_HIGHATOMIC) == -1)
2101 			goto out_unlock;
2102 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2103 	} else {
2104 		change_pageblock_range(page, order, MIGRATE_HIGHATOMIC);
2105 		zone->nr_reserved_highatomic += 1 << order;
2106 	}
2107 
2108 out_unlock:
2109 	spin_unlock_irqrestore(&zone->lock, flags);
2110 }
2111 
2112 /*
2113  * Used when an allocation is about to fail under memory pressure. This
2114  * potentially hurts the reliability of high-order allocations when under
2115  * intense memory pressure but failed atomic allocations should be easier
2116  * to recover from than an OOM.
2117  *
2118  * If @force is true, try to unreserve pageblocks even though highatomic
2119  * pageblock is exhausted.
2120  */
2121 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2122 						bool force)
2123 {
2124 	struct zonelist *zonelist = ac->zonelist;
2125 	unsigned long flags;
2126 	struct zoneref *z;
2127 	struct zone *zone;
2128 	struct page *page;
2129 	int order;
2130 	int ret;
2131 
2132 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2133 								ac->nodemask) {
2134 		/*
2135 		 * Preserve at least one pageblock unless memory pressure
2136 		 * is really high.
2137 		 */
2138 		if (!force && zone->nr_reserved_highatomic <=
2139 					pageblock_nr_pages)
2140 			continue;
2141 
2142 		spin_lock_irqsave(&zone->lock, flags);
2143 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
2144 			struct free_area *area = &(zone->free_area[order]);
2145 			int mt;
2146 
2147 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2148 			if (!page)
2149 				continue;
2150 
2151 			mt = get_pageblock_migratetype(page);
2152 			/*
2153 			 * In page freeing path, migratetype change is racy so
2154 			 * we can counter several free pages in a pageblock
2155 			 * in this loop although we changed the pageblock type
2156 			 * from highatomic to ac->migratetype. So we should
2157 			 * adjust the count once.
2158 			 */
2159 			if (is_migrate_highatomic(mt)) {
2160 				unsigned long size;
2161 				/*
2162 				 * It should never happen but changes to
2163 				 * locking could inadvertently allow a per-cpu
2164 				 * drain to add pages to MIGRATE_HIGHATOMIC
2165 				 * while unreserving so be safe and watch for
2166 				 * underflows.
2167 				 */
2168 				size = max(pageblock_nr_pages, 1UL << order);
2169 				size = min(size, zone->nr_reserved_highatomic);
2170 				zone->nr_reserved_highatomic -= size;
2171 			}
2172 
2173 			/*
2174 			 * Convert to ac->migratetype and avoid the normal
2175 			 * pageblock stealing heuristics. Minimally, the caller
2176 			 * is doing the work and needs the pages. More
2177 			 * importantly, if the block was always converted to
2178 			 * MIGRATE_UNMOVABLE or another type then the number
2179 			 * of pageblocks that cannot be completely freed
2180 			 * may increase.
2181 			 */
2182 			if (order < pageblock_order)
2183 				ret = move_freepages_block(zone, page, mt,
2184 							   ac->migratetype);
2185 			else {
2186 				move_to_free_list(page, zone, order, mt,
2187 						  ac->migratetype);
2188 				change_pageblock_range(page, order,
2189 						       ac->migratetype);
2190 				ret = 1;
2191 			}
2192 			/*
2193 			 * Reserving the block(s) already succeeded,
2194 			 * so this should not fail on zone boundaries.
2195 			 */
2196 			WARN_ON_ONCE(ret == -1);
2197 			if (ret > 0) {
2198 				spin_unlock_irqrestore(&zone->lock, flags);
2199 				return ret;
2200 			}
2201 		}
2202 		spin_unlock_irqrestore(&zone->lock, flags);
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 /*
2209  * Try finding a free buddy page on the fallback list and put it on the free
2210  * list of requested migratetype, possibly along with other pages from the same
2211  * block, depending on fragmentation avoidance heuristics. Returns true if
2212  * fallback was found so that __rmqueue_smallest() can grab it.
2213  *
2214  * The use of signed ints for order and current_order is a deliberate
2215  * deviation from the rest of this file, to make the for loop
2216  * condition simpler.
2217  */
2218 static __always_inline struct page *
2219 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2220 						unsigned int alloc_flags)
2221 {
2222 	struct free_area *area;
2223 	int current_order;
2224 	int min_order = order;
2225 	struct page *page;
2226 	int fallback_mt;
2227 	bool can_steal;
2228 
2229 	/*
2230 	 * Do not steal pages from freelists belonging to other pageblocks
2231 	 * i.e. orders < pageblock_order. If there are no local zones free,
2232 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2233 	 */
2234 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2235 		min_order = pageblock_order;
2236 
2237 	/*
2238 	 * Find the largest available free page in the other list. This roughly
2239 	 * approximates finding the pageblock with the most free pages, which
2240 	 * would be too costly to do exactly.
2241 	 */
2242 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2243 				--current_order) {
2244 		area = &(zone->free_area[current_order]);
2245 		fallback_mt = find_suitable_fallback(area, current_order,
2246 				start_migratetype, false, &can_steal);
2247 		if (fallback_mt == -1)
2248 			continue;
2249 
2250 		/*
2251 		 * We cannot steal all free pages from the pageblock and the
2252 		 * requested migratetype is movable. In that case it's better to
2253 		 * steal and split the smallest available page instead of the
2254 		 * largest available page, because even if the next movable
2255 		 * allocation falls back into a different pageblock than this
2256 		 * one, it won't cause permanent fragmentation.
2257 		 */
2258 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2259 					&& current_order > order)
2260 			goto find_smallest;
2261 
2262 		goto do_steal;
2263 	}
2264 
2265 	return NULL;
2266 
2267 find_smallest:
2268 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2269 		area = &(zone->free_area[current_order]);
2270 		fallback_mt = find_suitable_fallback(area, current_order,
2271 				start_migratetype, false, &can_steal);
2272 		if (fallback_mt != -1)
2273 			break;
2274 	}
2275 
2276 	/*
2277 	 * This should not happen - we already found a suitable fallback
2278 	 * when looking for the largest page.
2279 	 */
2280 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2281 
2282 do_steal:
2283 	page = get_page_from_free_area(area, fallback_mt);
2284 
2285 	/* take off list, maybe claim block, expand remainder */
2286 	page = steal_suitable_fallback(zone, page, current_order, order,
2287 				       start_migratetype, alloc_flags, can_steal);
2288 
2289 	trace_mm_page_alloc_extfrag(page, order, current_order,
2290 		start_migratetype, fallback_mt);
2291 
2292 	return page;
2293 }
2294 
2295 /*
2296  * Do the hard work of removing an element from the buddy allocator.
2297  * Call me with the zone->lock already held.
2298  */
2299 static __always_inline struct page *
2300 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2301 						unsigned int alloc_flags)
2302 {
2303 	struct page *page;
2304 
2305 	if (IS_ENABLED(CONFIG_CMA)) {
2306 		/*
2307 		 * Balance movable allocations between regular and CMA areas by
2308 		 * allocating from CMA when over half of the zone's free memory
2309 		 * is in the CMA area.
2310 		 */
2311 		if (alloc_flags & ALLOC_CMA &&
2312 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2313 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2314 			page = __rmqueue_cma_fallback(zone, order);
2315 			if (page)
2316 				return page;
2317 		}
2318 	}
2319 
2320 	page = __rmqueue_smallest(zone, order, migratetype);
2321 	if (unlikely(!page)) {
2322 		if (alloc_flags & ALLOC_CMA)
2323 			page = __rmqueue_cma_fallback(zone, order);
2324 
2325 		if (!page)
2326 			page = __rmqueue_fallback(zone, order, migratetype,
2327 						  alloc_flags);
2328 	}
2329 	return page;
2330 }
2331 
2332 /*
2333  * Obtain a specified number of elements from the buddy allocator, all under
2334  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2335  * Returns the number of new pages which were placed at *list.
2336  */
2337 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2338 			unsigned long count, struct list_head *list,
2339 			int migratetype, unsigned int alloc_flags)
2340 {
2341 	unsigned long flags;
2342 	int i;
2343 
2344 	if (!spin_trylock_irqsave(&zone->lock, flags)) {
2345 		if (unlikely(alloc_flags & ALLOC_TRYLOCK))
2346 			return 0;
2347 		spin_lock_irqsave(&zone->lock, flags);
2348 	}
2349 	for (i = 0; i < count; ++i) {
2350 		struct page *page = __rmqueue(zone, order, migratetype,
2351 								alloc_flags);
2352 		if (unlikely(page == NULL))
2353 			break;
2354 
2355 		/*
2356 		 * Split buddy pages returned by expand() are received here in
2357 		 * physical page order. The page is added to the tail of
2358 		 * caller's list. From the callers perspective, the linked list
2359 		 * is ordered by page number under some conditions. This is
2360 		 * useful for IO devices that can forward direction from the
2361 		 * head, thus also in the physical page order. This is useful
2362 		 * for IO devices that can merge IO requests if the physical
2363 		 * pages are ordered properly.
2364 		 */
2365 		list_add_tail(&page->pcp_list, list);
2366 	}
2367 	spin_unlock_irqrestore(&zone->lock, flags);
2368 
2369 	return i;
2370 }
2371 
2372 /*
2373  * Called from the vmstat counter updater to decay the PCP high.
2374  * Return whether there are addition works to do.
2375  */
2376 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2377 {
2378 	int high_min, to_drain, batch;
2379 	int todo = 0;
2380 
2381 	high_min = READ_ONCE(pcp->high_min);
2382 	batch = READ_ONCE(pcp->batch);
2383 	/*
2384 	 * Decrease pcp->high periodically to try to free possible
2385 	 * idle PCP pages.  And, avoid to free too many pages to
2386 	 * control latency.  This caps pcp->high decrement too.
2387 	 */
2388 	if (pcp->high > high_min) {
2389 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2390 				 pcp->high - (pcp->high >> 3), high_min);
2391 		if (pcp->high > high_min)
2392 			todo++;
2393 	}
2394 
2395 	to_drain = pcp->count - pcp->high;
2396 	if (to_drain > 0) {
2397 		spin_lock(&pcp->lock);
2398 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2399 		spin_unlock(&pcp->lock);
2400 		todo++;
2401 	}
2402 
2403 	return todo;
2404 }
2405 
2406 #ifdef CONFIG_NUMA
2407 /*
2408  * Called from the vmstat counter updater to drain pagesets of this
2409  * currently executing processor on remote nodes after they have
2410  * expired.
2411  */
2412 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2413 {
2414 	int to_drain, batch;
2415 
2416 	batch = READ_ONCE(pcp->batch);
2417 	to_drain = min(pcp->count, batch);
2418 	if (to_drain > 0) {
2419 		spin_lock(&pcp->lock);
2420 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2421 		spin_unlock(&pcp->lock);
2422 	}
2423 }
2424 #endif
2425 
2426 /*
2427  * Drain pcplists of the indicated processor and zone.
2428  */
2429 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2430 {
2431 	struct per_cpu_pages *pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2432 	int count;
2433 
2434 	do {
2435 		spin_lock(&pcp->lock);
2436 		count = pcp->count;
2437 		if (count) {
2438 			int to_drain = min(count,
2439 				pcp->batch << CONFIG_PCP_BATCH_SCALE_MAX);
2440 
2441 			free_pcppages_bulk(zone, to_drain, pcp, 0);
2442 			count -= to_drain;
2443 		}
2444 		spin_unlock(&pcp->lock);
2445 	} while (count);
2446 }
2447 
2448 /*
2449  * Drain pcplists of all zones on the indicated processor.
2450  */
2451 static void drain_pages(unsigned int cpu)
2452 {
2453 	struct zone *zone;
2454 
2455 	for_each_populated_zone(zone) {
2456 		drain_pages_zone(cpu, zone);
2457 	}
2458 }
2459 
2460 /*
2461  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2462  */
2463 void drain_local_pages(struct zone *zone)
2464 {
2465 	int cpu = smp_processor_id();
2466 
2467 	if (zone)
2468 		drain_pages_zone(cpu, zone);
2469 	else
2470 		drain_pages(cpu);
2471 }
2472 
2473 /*
2474  * The implementation of drain_all_pages(), exposing an extra parameter to
2475  * drain on all cpus.
2476  *
2477  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2478  * not empty. The check for non-emptiness can however race with a free to
2479  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2480  * that need the guarantee that every CPU has drained can disable the
2481  * optimizing racy check.
2482  */
2483 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2484 {
2485 	int cpu;
2486 
2487 	/*
2488 	 * Allocate in the BSS so we won't require allocation in
2489 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2490 	 */
2491 	static cpumask_t cpus_with_pcps;
2492 
2493 	/*
2494 	 * Do not drain if one is already in progress unless it's specific to
2495 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2496 	 * the drain to be complete when the call returns.
2497 	 */
2498 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2499 		if (!zone)
2500 			return;
2501 		mutex_lock(&pcpu_drain_mutex);
2502 	}
2503 
2504 	/*
2505 	 * We don't care about racing with CPU hotplug event
2506 	 * as offline notification will cause the notified
2507 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2508 	 * disables preemption as part of its processing
2509 	 */
2510 	for_each_online_cpu(cpu) {
2511 		struct per_cpu_pages *pcp;
2512 		struct zone *z;
2513 		bool has_pcps = false;
2514 
2515 		if (force_all_cpus) {
2516 			/*
2517 			 * The pcp.count check is racy, some callers need a
2518 			 * guarantee that no cpu is missed.
2519 			 */
2520 			has_pcps = true;
2521 		} else if (zone) {
2522 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2523 			if (pcp->count)
2524 				has_pcps = true;
2525 		} else {
2526 			for_each_populated_zone(z) {
2527 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2528 				if (pcp->count) {
2529 					has_pcps = true;
2530 					break;
2531 				}
2532 			}
2533 		}
2534 
2535 		if (has_pcps)
2536 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2537 		else
2538 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2539 	}
2540 
2541 	for_each_cpu(cpu, &cpus_with_pcps) {
2542 		if (zone)
2543 			drain_pages_zone(cpu, zone);
2544 		else
2545 			drain_pages(cpu);
2546 	}
2547 
2548 	mutex_unlock(&pcpu_drain_mutex);
2549 }
2550 
2551 /*
2552  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2553  *
2554  * When zone parameter is non-NULL, spill just the single zone's pages.
2555  */
2556 void drain_all_pages(struct zone *zone)
2557 {
2558 	__drain_all_pages(zone, false);
2559 }
2560 
2561 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2562 {
2563 	int min_nr_free, max_nr_free;
2564 
2565 	/* Free as much as possible if batch freeing high-order pages. */
2566 	if (unlikely(free_high))
2567 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2568 
2569 	/* Check for PCP disabled or boot pageset */
2570 	if (unlikely(high < batch))
2571 		return 1;
2572 
2573 	/* Leave at least pcp->batch pages on the list */
2574 	min_nr_free = batch;
2575 	max_nr_free = high - batch;
2576 
2577 	/*
2578 	 * Increase the batch number to the number of the consecutive
2579 	 * freed pages to reduce zone lock contention.
2580 	 */
2581 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2582 
2583 	return batch;
2584 }
2585 
2586 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2587 		       int batch, bool free_high)
2588 {
2589 	int high, high_min, high_max;
2590 
2591 	high_min = READ_ONCE(pcp->high_min);
2592 	high_max = READ_ONCE(pcp->high_max);
2593 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2594 
2595 	if (unlikely(!high))
2596 		return 0;
2597 
2598 	if (unlikely(free_high)) {
2599 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2600 				high_min);
2601 		return 0;
2602 	}
2603 
2604 	/*
2605 	 * If reclaim is active, limit the number of pages that can be
2606 	 * stored on pcp lists
2607 	 */
2608 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2609 		int free_count = max_t(int, pcp->free_count, batch);
2610 
2611 		pcp->high = max(high - free_count, high_min);
2612 		return min(batch << 2, pcp->high);
2613 	}
2614 
2615 	if (high_min == high_max)
2616 		return high;
2617 
2618 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2619 		int free_count = max_t(int, pcp->free_count, batch);
2620 
2621 		pcp->high = max(high - free_count, high_min);
2622 		high = max(pcp->count, high_min);
2623 	} else if (pcp->count >= high) {
2624 		int need_high = pcp->free_count + batch;
2625 
2626 		/* pcp->high should be large enough to hold batch freed pages */
2627 		if (pcp->high < need_high)
2628 			pcp->high = clamp(need_high, high_min, high_max);
2629 	}
2630 
2631 	return high;
2632 }
2633 
2634 static void free_frozen_page_commit(struct zone *zone,
2635 		struct per_cpu_pages *pcp, struct page *page, int migratetype,
2636 		unsigned int order, fpi_t fpi_flags)
2637 {
2638 	int high, batch;
2639 	int pindex;
2640 	bool free_high = false;
2641 
2642 	/*
2643 	 * On freeing, reduce the number of pages that are batch allocated.
2644 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2645 	 * allocations.
2646 	 */
2647 	pcp->alloc_factor >>= 1;
2648 	__count_vm_events(PGFREE, 1 << order);
2649 	pindex = order_to_pindex(migratetype, order);
2650 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2651 	pcp->count += 1 << order;
2652 
2653 	batch = READ_ONCE(pcp->batch);
2654 	/*
2655 	 * As high-order pages other than THP's stored on PCP can contribute
2656 	 * to fragmentation, limit the number stored when PCP is heavily
2657 	 * freeing without allocation. The remainder after bulk freeing
2658 	 * stops will be drained from vmstat refresh context.
2659 	 */
2660 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2661 		free_high = (pcp->free_count >= batch &&
2662 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2663 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2664 			      pcp->count >= READ_ONCE(batch)));
2665 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2666 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2667 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2668 	}
2669 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2670 		pcp->free_count += (1 << order);
2671 
2672 	if (unlikely(fpi_flags & FPI_TRYLOCK)) {
2673 		/*
2674 		 * Do not attempt to take a zone lock. Let pcp->count get
2675 		 * over high mark temporarily.
2676 		 */
2677 		return;
2678 	}
2679 	high = nr_pcp_high(pcp, zone, batch, free_high);
2680 	if (pcp->count >= high) {
2681 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2682 				   pcp, pindex);
2683 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2684 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2685 				      ZONE_MOVABLE, 0))
2686 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2687 	}
2688 }
2689 
2690 /*
2691  * Free a pcp page
2692  */
2693 static void __free_frozen_pages(struct page *page, unsigned int order,
2694 				fpi_t fpi_flags)
2695 {
2696 	unsigned long __maybe_unused UP_flags;
2697 	struct per_cpu_pages *pcp;
2698 	struct zone *zone;
2699 	unsigned long pfn = page_to_pfn(page);
2700 	int migratetype;
2701 
2702 	if (!pcp_allowed_order(order)) {
2703 		__free_pages_ok(page, order, fpi_flags);
2704 		return;
2705 	}
2706 
2707 	if (!free_pages_prepare(page, order))
2708 		return;
2709 
2710 	/*
2711 	 * We only track unmovable, reclaimable and movable on pcp lists.
2712 	 * Place ISOLATE pages on the isolated list because they are being
2713 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2714 	 * get those areas back if necessary. Otherwise, we may have to free
2715 	 * excessively into the page allocator
2716 	 */
2717 	zone = page_zone(page);
2718 	migratetype = get_pfnblock_migratetype(page, pfn);
2719 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2720 		if (unlikely(is_migrate_isolate(migratetype))) {
2721 			free_one_page(zone, page, pfn, order, fpi_flags);
2722 			return;
2723 		}
2724 		migratetype = MIGRATE_MOVABLE;
2725 	}
2726 
2727 	if (unlikely((fpi_flags & FPI_TRYLOCK) && IS_ENABLED(CONFIG_PREEMPT_RT)
2728 		     && (in_nmi() || in_hardirq()))) {
2729 		add_page_to_zone_llist(zone, page, order);
2730 		return;
2731 	}
2732 	pcp_trylock_prepare(UP_flags);
2733 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2734 	if (pcp) {
2735 		free_frozen_page_commit(zone, pcp, page, migratetype, order, fpi_flags);
2736 		pcp_spin_unlock(pcp);
2737 	} else {
2738 		free_one_page(zone, page, pfn, order, fpi_flags);
2739 	}
2740 	pcp_trylock_finish(UP_flags);
2741 }
2742 
2743 void free_frozen_pages(struct page *page, unsigned int order)
2744 {
2745 	__free_frozen_pages(page, order, FPI_NONE);
2746 }
2747 
2748 /*
2749  * Free a batch of folios
2750  */
2751 void free_unref_folios(struct folio_batch *folios)
2752 {
2753 	unsigned long __maybe_unused UP_flags;
2754 	struct per_cpu_pages *pcp = NULL;
2755 	struct zone *locked_zone = NULL;
2756 	int i, j;
2757 
2758 	/* Prepare folios for freeing */
2759 	for (i = 0, j = 0; i < folios->nr; i++) {
2760 		struct folio *folio = folios->folios[i];
2761 		unsigned long pfn = folio_pfn(folio);
2762 		unsigned int order = folio_order(folio);
2763 
2764 		if (!free_pages_prepare(&folio->page, order))
2765 			continue;
2766 		/*
2767 		 * Free orders not handled on the PCP directly to the
2768 		 * allocator.
2769 		 */
2770 		if (!pcp_allowed_order(order)) {
2771 			free_one_page(folio_zone(folio), &folio->page,
2772 				      pfn, order, FPI_NONE);
2773 			continue;
2774 		}
2775 		folio->private = (void *)(unsigned long)order;
2776 		if (j != i)
2777 			folios->folios[j] = folio;
2778 		j++;
2779 	}
2780 	folios->nr = j;
2781 
2782 	for (i = 0; i < folios->nr; i++) {
2783 		struct folio *folio = folios->folios[i];
2784 		struct zone *zone = folio_zone(folio);
2785 		unsigned long pfn = folio_pfn(folio);
2786 		unsigned int order = (unsigned long)folio->private;
2787 		int migratetype;
2788 
2789 		folio->private = NULL;
2790 		migratetype = get_pfnblock_migratetype(&folio->page, pfn);
2791 
2792 		/* Different zone requires a different pcp lock */
2793 		if (zone != locked_zone ||
2794 		    is_migrate_isolate(migratetype)) {
2795 			if (pcp) {
2796 				pcp_spin_unlock(pcp);
2797 				pcp_trylock_finish(UP_flags);
2798 				locked_zone = NULL;
2799 				pcp = NULL;
2800 			}
2801 
2802 			/*
2803 			 * Free isolated pages directly to the
2804 			 * allocator, see comment in free_frozen_pages.
2805 			 */
2806 			if (is_migrate_isolate(migratetype)) {
2807 				free_one_page(zone, &folio->page, pfn,
2808 					      order, FPI_NONE);
2809 				continue;
2810 			}
2811 
2812 			/*
2813 			 * trylock is necessary as folios may be getting freed
2814 			 * from IRQ or SoftIRQ context after an IO completion.
2815 			 */
2816 			pcp_trylock_prepare(UP_flags);
2817 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2818 			if (unlikely(!pcp)) {
2819 				pcp_trylock_finish(UP_flags);
2820 				free_one_page(zone, &folio->page, pfn,
2821 					      order, FPI_NONE);
2822 				continue;
2823 			}
2824 			locked_zone = zone;
2825 		}
2826 
2827 		/*
2828 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2829 		 * to the MIGRATE_MOVABLE pcp list.
2830 		 */
2831 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2832 			migratetype = MIGRATE_MOVABLE;
2833 
2834 		trace_mm_page_free_batched(&folio->page);
2835 		free_frozen_page_commit(zone, pcp, &folio->page, migratetype,
2836 					order, FPI_NONE);
2837 	}
2838 
2839 	if (pcp) {
2840 		pcp_spin_unlock(pcp);
2841 		pcp_trylock_finish(UP_flags);
2842 	}
2843 	folio_batch_reinit(folios);
2844 }
2845 
2846 /*
2847  * split_page takes a non-compound higher-order page, and splits it into
2848  * n (1<<order) sub-pages: page[0..n]
2849  * Each sub-page must be freed individually.
2850  *
2851  * Note: this is probably too low level an operation for use in drivers.
2852  * Please consult with lkml before using this in your driver.
2853  */
2854 void split_page(struct page *page, unsigned int order)
2855 {
2856 	int i;
2857 
2858 	VM_BUG_ON_PAGE(PageCompound(page), page);
2859 	VM_BUG_ON_PAGE(!page_count(page), page);
2860 
2861 	for (i = 1; i < (1 << order); i++)
2862 		set_page_refcounted(page + i);
2863 	split_page_owner(page, order, 0);
2864 	pgalloc_tag_split(page_folio(page), order, 0);
2865 	split_page_memcg(page, order, 0);
2866 }
2867 EXPORT_SYMBOL_GPL(split_page);
2868 
2869 int __isolate_free_page(struct page *page, unsigned int order)
2870 {
2871 	struct zone *zone = page_zone(page);
2872 	int mt = get_pageblock_migratetype(page);
2873 
2874 	if (!is_migrate_isolate(mt)) {
2875 		unsigned long watermark;
2876 		/*
2877 		 * Obey watermarks as if the page was being allocated. We can
2878 		 * emulate a high-order watermark check with a raised order-0
2879 		 * watermark, because we already know our high-order page
2880 		 * exists.
2881 		 */
2882 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2883 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2884 			return 0;
2885 	}
2886 
2887 	del_page_from_free_list(page, zone, order, mt);
2888 
2889 	/*
2890 	 * Set the pageblock if the isolated page is at least half of a
2891 	 * pageblock
2892 	 */
2893 	if (order >= pageblock_order - 1) {
2894 		struct page *endpage = page + (1 << order) - 1;
2895 		for (; page < endpage; page += pageblock_nr_pages) {
2896 			int mt = get_pageblock_migratetype(page);
2897 			/*
2898 			 * Only change normal pageblocks (i.e., they can merge
2899 			 * with others)
2900 			 */
2901 			if (migratetype_is_mergeable(mt))
2902 				move_freepages_block(zone, page, mt,
2903 						     MIGRATE_MOVABLE);
2904 		}
2905 	}
2906 
2907 	return 1UL << order;
2908 }
2909 
2910 /**
2911  * __putback_isolated_page - Return a now-isolated page back where we got it
2912  * @page: Page that was isolated
2913  * @order: Order of the isolated page
2914  * @mt: The page's pageblock's migratetype
2915  *
2916  * This function is meant to return a page pulled from the free lists via
2917  * __isolate_free_page back to the free lists they were pulled from.
2918  */
2919 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2920 {
2921 	struct zone *zone = page_zone(page);
2922 
2923 	/* zone lock should be held when this function is called */
2924 	lockdep_assert_held(&zone->lock);
2925 
2926 	/* Return isolated page to tail of freelist. */
2927 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2928 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2929 }
2930 
2931 /*
2932  * Update NUMA hit/miss statistics
2933  */
2934 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2935 				   long nr_account)
2936 {
2937 #ifdef CONFIG_NUMA
2938 	enum numa_stat_item local_stat = NUMA_LOCAL;
2939 
2940 	/* skip numa counters update if numa stats is disabled */
2941 	if (!static_branch_likely(&vm_numa_stat_key))
2942 		return;
2943 
2944 	if (zone_to_nid(z) != numa_node_id())
2945 		local_stat = NUMA_OTHER;
2946 
2947 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2948 		__count_numa_events(z, NUMA_HIT, nr_account);
2949 	else {
2950 		__count_numa_events(z, NUMA_MISS, nr_account);
2951 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2952 	}
2953 	__count_numa_events(z, local_stat, nr_account);
2954 #endif
2955 }
2956 
2957 static __always_inline
2958 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2959 			   unsigned int order, unsigned int alloc_flags,
2960 			   int migratetype)
2961 {
2962 	struct page *page;
2963 	unsigned long flags;
2964 
2965 	do {
2966 		page = NULL;
2967 		if (!spin_trylock_irqsave(&zone->lock, flags)) {
2968 			if (unlikely(alloc_flags & ALLOC_TRYLOCK))
2969 				return NULL;
2970 			spin_lock_irqsave(&zone->lock, flags);
2971 		}
2972 		if (alloc_flags & ALLOC_HIGHATOMIC)
2973 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2974 		if (!page) {
2975 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2976 
2977 			/*
2978 			 * If the allocation fails, allow OOM handling and
2979 			 * order-0 (atomic) allocs access to HIGHATOMIC
2980 			 * reserves as failing now is worse than failing a
2981 			 * high-order atomic allocation in the future.
2982 			 */
2983 			if (!page && (alloc_flags & (ALLOC_OOM|ALLOC_NON_BLOCK)))
2984 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2985 
2986 			if (!page) {
2987 				spin_unlock_irqrestore(&zone->lock, flags);
2988 				return NULL;
2989 			}
2990 		}
2991 		spin_unlock_irqrestore(&zone->lock, flags);
2992 	} while (check_new_pages(page, order));
2993 
2994 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2995 	zone_statistics(preferred_zone, zone, 1);
2996 
2997 	return page;
2998 }
2999 
3000 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
3001 {
3002 	int high, base_batch, batch, max_nr_alloc;
3003 	int high_max, high_min;
3004 
3005 	base_batch = READ_ONCE(pcp->batch);
3006 	high_min = READ_ONCE(pcp->high_min);
3007 	high_max = READ_ONCE(pcp->high_max);
3008 	high = pcp->high = clamp(pcp->high, high_min, high_max);
3009 
3010 	/* Check for PCP disabled or boot pageset */
3011 	if (unlikely(high < base_batch))
3012 		return 1;
3013 
3014 	if (order)
3015 		batch = base_batch;
3016 	else
3017 		batch = (base_batch << pcp->alloc_factor);
3018 
3019 	/*
3020 	 * If we had larger pcp->high, we could avoid to allocate from
3021 	 * zone.
3022 	 */
3023 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
3024 		high = pcp->high = min(high + batch, high_max);
3025 
3026 	if (!order) {
3027 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
3028 		/*
3029 		 * Double the number of pages allocated each time there is
3030 		 * subsequent allocation of order-0 pages without any freeing.
3031 		 */
3032 		if (batch <= max_nr_alloc &&
3033 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
3034 			pcp->alloc_factor++;
3035 		batch = min(batch, max_nr_alloc);
3036 	}
3037 
3038 	/*
3039 	 * Scale batch relative to order if batch implies free pages
3040 	 * can be stored on the PCP. Batch can be 1 for small zones or
3041 	 * for boot pagesets which should never store free pages as
3042 	 * the pages may belong to arbitrary zones.
3043 	 */
3044 	if (batch > 1)
3045 		batch = max(batch >> order, 2);
3046 
3047 	return batch;
3048 }
3049 
3050 /* Remove page from the per-cpu list, caller must protect the list */
3051 static inline
3052 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3053 			int migratetype,
3054 			unsigned int alloc_flags,
3055 			struct per_cpu_pages *pcp,
3056 			struct list_head *list)
3057 {
3058 	struct page *page;
3059 
3060 	do {
3061 		if (list_empty(list)) {
3062 			int batch = nr_pcp_alloc(pcp, zone, order);
3063 			int alloced;
3064 
3065 			alloced = rmqueue_bulk(zone, order,
3066 					batch, list,
3067 					migratetype, alloc_flags);
3068 
3069 			pcp->count += alloced << order;
3070 			if (unlikely(list_empty(list)))
3071 				return NULL;
3072 		}
3073 
3074 		page = list_first_entry(list, struct page, pcp_list);
3075 		list_del(&page->pcp_list);
3076 		pcp->count -= 1 << order;
3077 	} while (check_new_pages(page, order));
3078 
3079 	return page;
3080 }
3081 
3082 /* Lock and remove page from the per-cpu list */
3083 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3084 			struct zone *zone, unsigned int order,
3085 			int migratetype, unsigned int alloc_flags)
3086 {
3087 	struct per_cpu_pages *pcp;
3088 	struct list_head *list;
3089 	struct page *page;
3090 	unsigned long __maybe_unused UP_flags;
3091 
3092 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3093 	pcp_trylock_prepare(UP_flags);
3094 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
3095 	if (!pcp) {
3096 		pcp_trylock_finish(UP_flags);
3097 		return NULL;
3098 	}
3099 
3100 	/*
3101 	 * On allocation, reduce the number of pages that are batch freed.
3102 	 * See nr_pcp_free() where free_factor is increased for subsequent
3103 	 * frees.
3104 	 */
3105 	pcp->free_count >>= 1;
3106 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3107 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3108 	pcp_spin_unlock(pcp);
3109 	pcp_trylock_finish(UP_flags);
3110 	if (page) {
3111 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3112 		zone_statistics(preferred_zone, zone, 1);
3113 	}
3114 	return page;
3115 }
3116 
3117 /*
3118  * Allocate a page from the given zone.
3119  * Use pcplists for THP or "cheap" high-order allocations.
3120  */
3121 
3122 /*
3123  * Do not instrument rmqueue() with KMSAN. This function may call
3124  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3125  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3126  * may call rmqueue() again, which will result in a deadlock.
3127  */
3128 __no_sanitize_memory
3129 static inline
3130 struct page *rmqueue(struct zone *preferred_zone,
3131 			struct zone *zone, unsigned int order,
3132 			gfp_t gfp_flags, unsigned int alloc_flags,
3133 			int migratetype)
3134 {
3135 	struct page *page;
3136 
3137 	if (likely(pcp_allowed_order(order))) {
3138 		page = rmqueue_pcplist(preferred_zone, zone, order,
3139 				       migratetype, alloc_flags);
3140 		if (likely(page))
3141 			goto out;
3142 	}
3143 
3144 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
3145 							migratetype);
3146 
3147 out:
3148 	/* Separate test+clear to avoid unnecessary atomics */
3149 	if ((alloc_flags & ALLOC_KSWAPD) &&
3150 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
3151 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3152 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3153 	}
3154 
3155 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3156 	return page;
3157 }
3158 
3159 static inline long __zone_watermark_unusable_free(struct zone *z,
3160 				unsigned int order, unsigned int alloc_flags)
3161 {
3162 	long unusable_free = (1 << order) - 1;
3163 
3164 	/*
3165 	 * If the caller does not have rights to reserves below the min
3166 	 * watermark then subtract the free pages reserved for highatomic.
3167 	 */
3168 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
3169 		unusable_free += READ_ONCE(z->nr_free_highatomic);
3170 
3171 #ifdef CONFIG_CMA
3172 	/* If allocation can't use CMA areas don't use free CMA pages */
3173 	if (!(alloc_flags & ALLOC_CMA))
3174 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3175 #endif
3176 
3177 	return unusable_free;
3178 }
3179 
3180 /*
3181  * Return true if free base pages are above 'mark'. For high-order checks it
3182  * will return true of the order-0 watermark is reached and there is at least
3183  * one free page of a suitable size. Checking now avoids taking the zone lock
3184  * to check in the allocation paths if no pages are free.
3185  */
3186 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3187 			 int highest_zoneidx, unsigned int alloc_flags,
3188 			 long free_pages)
3189 {
3190 	long min = mark;
3191 	int o;
3192 
3193 	/* free_pages may go negative - that's OK */
3194 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3195 
3196 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
3197 		/*
3198 		 * __GFP_HIGH allows access to 50% of the min reserve as well
3199 		 * as OOM.
3200 		 */
3201 		if (alloc_flags & ALLOC_MIN_RESERVE) {
3202 			min -= min / 2;
3203 
3204 			/*
3205 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3206 			 * access more reserves than just __GFP_HIGH. Other
3207 			 * non-blocking allocations requests such as GFP_NOWAIT
3208 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3209 			 * access to the min reserve.
3210 			 */
3211 			if (alloc_flags & ALLOC_NON_BLOCK)
3212 				min -= min / 4;
3213 		}
3214 
3215 		/*
3216 		 * OOM victims can try even harder than the normal reserve
3217 		 * users on the grounds that it's definitely going to be in
3218 		 * the exit path shortly and free memory. Any allocation it
3219 		 * makes during the free path will be small and short-lived.
3220 		 */
3221 		if (alloc_flags & ALLOC_OOM)
3222 			min -= min / 2;
3223 	}
3224 
3225 	/*
3226 	 * Check watermarks for an order-0 allocation request. If these
3227 	 * are not met, then a high-order request also cannot go ahead
3228 	 * even if a suitable page happened to be free.
3229 	 */
3230 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3231 		return false;
3232 
3233 	/* If this is an order-0 request then the watermark is fine */
3234 	if (!order)
3235 		return true;
3236 
3237 	/* For a high-order request, check at least one suitable page is free */
3238 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3239 		struct free_area *area = &z->free_area[o];
3240 		int mt;
3241 
3242 		if (!area->nr_free)
3243 			continue;
3244 
3245 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3246 			if (!free_area_empty(area, mt))
3247 				return true;
3248 		}
3249 
3250 #ifdef CONFIG_CMA
3251 		if ((alloc_flags & ALLOC_CMA) &&
3252 		    !free_area_empty(area, MIGRATE_CMA)) {
3253 			return true;
3254 		}
3255 #endif
3256 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3257 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3258 			return true;
3259 		}
3260 	}
3261 	return false;
3262 }
3263 
3264 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3265 		      int highest_zoneidx, unsigned int alloc_flags)
3266 {
3267 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3268 					zone_page_state(z, NR_FREE_PAGES));
3269 }
3270 
3271 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3272 				unsigned long mark, int highest_zoneidx,
3273 				unsigned int alloc_flags, gfp_t gfp_mask)
3274 {
3275 	long free_pages;
3276 
3277 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3278 
3279 	/*
3280 	 * Fast check for order-0 only. If this fails then the reserves
3281 	 * need to be calculated.
3282 	 */
3283 	if (!order) {
3284 		long usable_free;
3285 		long reserved;
3286 
3287 		usable_free = free_pages;
3288 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3289 
3290 		/* reserved may over estimate high-atomic reserves. */
3291 		usable_free -= min(usable_free, reserved);
3292 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3293 			return true;
3294 	}
3295 
3296 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3297 					free_pages))
3298 		return true;
3299 
3300 	/*
3301 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3302 	 * when checking the min watermark. The min watermark is the
3303 	 * point where boosting is ignored so that kswapd is woken up
3304 	 * when below the low watermark.
3305 	 */
3306 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3307 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3308 		mark = z->_watermark[WMARK_MIN];
3309 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3310 					alloc_flags, free_pages);
3311 	}
3312 
3313 	return false;
3314 }
3315 
3316 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3317 			unsigned long mark, int highest_zoneidx)
3318 {
3319 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3320 
3321 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3322 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3323 
3324 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3325 								free_pages);
3326 }
3327 
3328 #ifdef CONFIG_NUMA
3329 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3330 
3331 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3332 {
3333 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3334 				node_reclaim_distance;
3335 }
3336 #else	/* CONFIG_NUMA */
3337 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3338 {
3339 	return true;
3340 }
3341 #endif	/* CONFIG_NUMA */
3342 
3343 /*
3344  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3345  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3346  * premature use of a lower zone may cause lowmem pressure problems that
3347  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3348  * probably too small. It only makes sense to spread allocations to avoid
3349  * fragmentation between the Normal and DMA32 zones.
3350  */
3351 static inline unsigned int
3352 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3353 {
3354 	unsigned int alloc_flags;
3355 
3356 	/*
3357 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3358 	 * to save a branch.
3359 	 */
3360 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3361 
3362 #ifdef CONFIG_ZONE_DMA32
3363 	if (!zone)
3364 		return alloc_flags;
3365 
3366 	if (zone_idx(zone) != ZONE_NORMAL)
3367 		return alloc_flags;
3368 
3369 	/*
3370 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3371 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3372 	 * on UMA that if Normal is populated then so is DMA32.
3373 	 */
3374 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3375 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3376 		return alloc_flags;
3377 
3378 	alloc_flags |= ALLOC_NOFRAGMENT;
3379 #endif /* CONFIG_ZONE_DMA32 */
3380 	return alloc_flags;
3381 }
3382 
3383 /* Must be called after current_gfp_context() which can change gfp_mask */
3384 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3385 						  unsigned int alloc_flags)
3386 {
3387 #ifdef CONFIG_CMA
3388 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3389 		alloc_flags |= ALLOC_CMA;
3390 #endif
3391 	return alloc_flags;
3392 }
3393 
3394 /*
3395  * get_page_from_freelist goes through the zonelist trying to allocate
3396  * a page.
3397  */
3398 static struct page *
3399 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3400 						const struct alloc_context *ac)
3401 {
3402 	struct zoneref *z;
3403 	struct zone *zone;
3404 	struct pglist_data *last_pgdat = NULL;
3405 	bool last_pgdat_dirty_ok = false;
3406 	bool no_fallback;
3407 
3408 retry:
3409 	/*
3410 	 * Scan zonelist, looking for a zone with enough free.
3411 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3412 	 */
3413 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3414 	z = ac->preferred_zoneref;
3415 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3416 					ac->nodemask) {
3417 		struct page *page;
3418 		unsigned long mark;
3419 
3420 		if (cpusets_enabled() &&
3421 			(alloc_flags & ALLOC_CPUSET) &&
3422 			!__cpuset_zone_allowed(zone, gfp_mask))
3423 				continue;
3424 		/*
3425 		 * When allocating a page cache page for writing, we
3426 		 * want to get it from a node that is within its dirty
3427 		 * limit, such that no single node holds more than its
3428 		 * proportional share of globally allowed dirty pages.
3429 		 * The dirty limits take into account the node's
3430 		 * lowmem reserves and high watermark so that kswapd
3431 		 * should be able to balance it without having to
3432 		 * write pages from its LRU list.
3433 		 *
3434 		 * XXX: For now, allow allocations to potentially
3435 		 * exceed the per-node dirty limit in the slowpath
3436 		 * (spread_dirty_pages unset) before going into reclaim,
3437 		 * which is important when on a NUMA setup the allowed
3438 		 * nodes are together not big enough to reach the
3439 		 * global limit.  The proper fix for these situations
3440 		 * will require awareness of nodes in the
3441 		 * dirty-throttling and the flusher threads.
3442 		 */
3443 		if (ac->spread_dirty_pages) {
3444 			if (last_pgdat != zone->zone_pgdat) {
3445 				last_pgdat = zone->zone_pgdat;
3446 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3447 			}
3448 
3449 			if (!last_pgdat_dirty_ok)
3450 				continue;
3451 		}
3452 
3453 		if (no_fallback && nr_online_nodes > 1 &&
3454 		    zone != zonelist_zone(ac->preferred_zoneref)) {
3455 			int local_nid;
3456 
3457 			/*
3458 			 * If moving to a remote node, retry but allow
3459 			 * fragmenting fallbacks. Locality is more important
3460 			 * than fragmentation avoidance.
3461 			 */
3462 			local_nid = zonelist_node_idx(ac->preferred_zoneref);
3463 			if (zone_to_nid(zone) != local_nid) {
3464 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3465 				goto retry;
3466 			}
3467 		}
3468 
3469 		cond_accept_memory(zone, order);
3470 
3471 		/*
3472 		 * Detect whether the number of free pages is below high
3473 		 * watermark.  If so, we will decrease pcp->high and free
3474 		 * PCP pages in free path to reduce the possibility of
3475 		 * premature page reclaiming.  Detection is done here to
3476 		 * avoid to do that in hotter free path.
3477 		 */
3478 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3479 			goto check_alloc_wmark;
3480 
3481 		mark = high_wmark_pages(zone);
3482 		if (zone_watermark_fast(zone, order, mark,
3483 					ac->highest_zoneidx, alloc_flags,
3484 					gfp_mask))
3485 			goto try_this_zone;
3486 		else
3487 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3488 
3489 check_alloc_wmark:
3490 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3491 		if (!zone_watermark_fast(zone, order, mark,
3492 				       ac->highest_zoneidx, alloc_flags,
3493 				       gfp_mask)) {
3494 			int ret;
3495 
3496 			if (cond_accept_memory(zone, order))
3497 				goto try_this_zone;
3498 
3499 			/*
3500 			 * Watermark failed for this zone, but see if we can
3501 			 * grow this zone if it contains deferred pages.
3502 			 */
3503 			if (deferred_pages_enabled()) {
3504 				if (_deferred_grow_zone(zone, order))
3505 					goto try_this_zone;
3506 			}
3507 			/* Checked here to keep the fast path fast */
3508 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3509 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3510 				goto try_this_zone;
3511 
3512 			if (!node_reclaim_enabled() ||
3513 			    !zone_allows_reclaim(zonelist_zone(ac->preferred_zoneref), zone))
3514 				continue;
3515 
3516 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3517 			switch (ret) {
3518 			case NODE_RECLAIM_NOSCAN:
3519 				/* did not scan */
3520 				continue;
3521 			case NODE_RECLAIM_FULL:
3522 				/* scanned but unreclaimable */
3523 				continue;
3524 			default:
3525 				/* did we reclaim enough */
3526 				if (zone_watermark_ok(zone, order, mark,
3527 					ac->highest_zoneidx, alloc_flags))
3528 					goto try_this_zone;
3529 
3530 				continue;
3531 			}
3532 		}
3533 
3534 try_this_zone:
3535 		page = rmqueue(zonelist_zone(ac->preferred_zoneref), zone, order,
3536 				gfp_mask, alloc_flags, ac->migratetype);
3537 		if (page) {
3538 			prep_new_page(page, order, gfp_mask, alloc_flags);
3539 
3540 			/*
3541 			 * If this is a high-order atomic allocation then check
3542 			 * if the pageblock should be reserved for the future
3543 			 */
3544 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3545 				reserve_highatomic_pageblock(page, order, zone);
3546 
3547 			return page;
3548 		} else {
3549 			if (cond_accept_memory(zone, order))
3550 				goto try_this_zone;
3551 
3552 			/* Try again if zone has deferred pages */
3553 			if (deferred_pages_enabled()) {
3554 				if (_deferred_grow_zone(zone, order))
3555 					goto try_this_zone;
3556 			}
3557 		}
3558 	}
3559 
3560 	/*
3561 	 * It's possible on a UMA machine to get through all zones that are
3562 	 * fragmented. If avoiding fragmentation, reset and try again.
3563 	 */
3564 	if (no_fallback) {
3565 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3566 		goto retry;
3567 	}
3568 
3569 	return NULL;
3570 }
3571 
3572 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3573 {
3574 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3575 
3576 	/*
3577 	 * This documents exceptions given to allocations in certain
3578 	 * contexts that are allowed to allocate outside current's set
3579 	 * of allowed nodes.
3580 	 */
3581 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3582 		if (tsk_is_oom_victim(current) ||
3583 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3584 			filter &= ~SHOW_MEM_FILTER_NODES;
3585 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3586 		filter &= ~SHOW_MEM_FILTER_NODES;
3587 
3588 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3589 }
3590 
3591 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3592 {
3593 	struct va_format vaf;
3594 	va_list args;
3595 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3596 
3597 	if ((gfp_mask & __GFP_NOWARN) ||
3598 	     !__ratelimit(&nopage_rs) ||
3599 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3600 		return;
3601 
3602 	va_start(args, fmt);
3603 	vaf.fmt = fmt;
3604 	vaf.va = &args;
3605 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3606 			current->comm, &vaf, gfp_mask, &gfp_mask,
3607 			nodemask_pr_args(nodemask));
3608 	va_end(args);
3609 
3610 	cpuset_print_current_mems_allowed();
3611 	pr_cont("\n");
3612 	dump_stack();
3613 	warn_alloc_show_mem(gfp_mask, nodemask);
3614 }
3615 
3616 static inline struct page *
3617 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3618 			      unsigned int alloc_flags,
3619 			      const struct alloc_context *ac)
3620 {
3621 	struct page *page;
3622 
3623 	page = get_page_from_freelist(gfp_mask, order,
3624 			alloc_flags|ALLOC_CPUSET, ac);
3625 	/*
3626 	 * fallback to ignore cpuset restriction if our nodes
3627 	 * are depleted
3628 	 */
3629 	if (!page)
3630 		page = get_page_from_freelist(gfp_mask, order,
3631 				alloc_flags, ac);
3632 	return page;
3633 }
3634 
3635 static inline struct page *
3636 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3637 	const struct alloc_context *ac, unsigned long *did_some_progress)
3638 {
3639 	struct oom_control oc = {
3640 		.zonelist = ac->zonelist,
3641 		.nodemask = ac->nodemask,
3642 		.memcg = NULL,
3643 		.gfp_mask = gfp_mask,
3644 		.order = order,
3645 	};
3646 	struct page *page;
3647 
3648 	*did_some_progress = 0;
3649 
3650 	/*
3651 	 * Acquire the oom lock.  If that fails, somebody else is
3652 	 * making progress for us.
3653 	 */
3654 	if (!mutex_trylock(&oom_lock)) {
3655 		*did_some_progress = 1;
3656 		schedule_timeout_uninterruptible(1);
3657 		return NULL;
3658 	}
3659 
3660 	/*
3661 	 * Go through the zonelist yet one more time, keep very high watermark
3662 	 * here, this is only to catch a parallel oom killing, we must fail if
3663 	 * we're still under heavy pressure. But make sure that this reclaim
3664 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3665 	 * allocation which will never fail due to oom_lock already held.
3666 	 */
3667 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3668 				      ~__GFP_DIRECT_RECLAIM, order,
3669 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3670 	if (page)
3671 		goto out;
3672 
3673 	/* Coredumps can quickly deplete all memory reserves */
3674 	if (current->flags & PF_DUMPCORE)
3675 		goto out;
3676 	/* The OOM killer will not help higher order allocs */
3677 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3678 		goto out;
3679 	/*
3680 	 * We have already exhausted all our reclaim opportunities without any
3681 	 * success so it is time to admit defeat. We will skip the OOM killer
3682 	 * because it is very likely that the caller has a more reasonable
3683 	 * fallback than shooting a random task.
3684 	 *
3685 	 * The OOM killer may not free memory on a specific node.
3686 	 */
3687 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3688 		goto out;
3689 	/* The OOM killer does not needlessly kill tasks for lowmem */
3690 	if (ac->highest_zoneidx < ZONE_NORMAL)
3691 		goto out;
3692 	if (pm_suspended_storage())
3693 		goto out;
3694 	/*
3695 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3696 	 * other request to make a forward progress.
3697 	 * We are in an unfortunate situation where out_of_memory cannot
3698 	 * do much for this context but let's try it to at least get
3699 	 * access to memory reserved if the current task is killed (see
3700 	 * out_of_memory). Once filesystems are ready to handle allocation
3701 	 * failures more gracefully we should just bail out here.
3702 	 */
3703 
3704 	/* Exhausted what can be done so it's blame time */
3705 	if (out_of_memory(&oc) ||
3706 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3707 		*did_some_progress = 1;
3708 
3709 		/*
3710 		 * Help non-failing allocations by giving them access to memory
3711 		 * reserves
3712 		 */
3713 		if (gfp_mask & __GFP_NOFAIL)
3714 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3715 					ALLOC_NO_WATERMARKS, ac);
3716 	}
3717 out:
3718 	mutex_unlock(&oom_lock);
3719 	return page;
3720 }
3721 
3722 /*
3723  * Maximum number of compaction retries with a progress before OOM
3724  * killer is consider as the only way to move forward.
3725  */
3726 #define MAX_COMPACT_RETRIES 16
3727 
3728 #ifdef CONFIG_COMPACTION
3729 /* Try memory compaction for high-order allocations before reclaim */
3730 static struct page *
3731 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3732 		unsigned int alloc_flags, const struct alloc_context *ac,
3733 		enum compact_priority prio, enum compact_result *compact_result)
3734 {
3735 	struct page *page = NULL;
3736 	unsigned long pflags;
3737 	unsigned int noreclaim_flag;
3738 
3739 	if (!order)
3740 		return NULL;
3741 
3742 	psi_memstall_enter(&pflags);
3743 	delayacct_compact_start();
3744 	noreclaim_flag = memalloc_noreclaim_save();
3745 
3746 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3747 								prio, &page);
3748 
3749 	memalloc_noreclaim_restore(noreclaim_flag);
3750 	psi_memstall_leave(&pflags);
3751 	delayacct_compact_end();
3752 
3753 	if (*compact_result == COMPACT_SKIPPED)
3754 		return NULL;
3755 	/*
3756 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3757 	 * count a compaction stall
3758 	 */
3759 	count_vm_event(COMPACTSTALL);
3760 
3761 	/* Prep a captured page if available */
3762 	if (page)
3763 		prep_new_page(page, order, gfp_mask, alloc_flags);
3764 
3765 	/* Try get a page from the freelist if available */
3766 	if (!page)
3767 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3768 
3769 	if (page) {
3770 		struct zone *zone = page_zone(page);
3771 
3772 		zone->compact_blockskip_flush = false;
3773 		compaction_defer_reset(zone, order, true);
3774 		count_vm_event(COMPACTSUCCESS);
3775 		return page;
3776 	}
3777 
3778 	/*
3779 	 * It's bad if compaction run occurs and fails. The most likely reason
3780 	 * is that pages exist, but not enough to satisfy watermarks.
3781 	 */
3782 	count_vm_event(COMPACTFAIL);
3783 
3784 	cond_resched();
3785 
3786 	return NULL;
3787 }
3788 
3789 static inline bool
3790 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3791 		     enum compact_result compact_result,
3792 		     enum compact_priority *compact_priority,
3793 		     int *compaction_retries)
3794 {
3795 	int max_retries = MAX_COMPACT_RETRIES;
3796 	int min_priority;
3797 	bool ret = false;
3798 	int retries = *compaction_retries;
3799 	enum compact_priority priority = *compact_priority;
3800 
3801 	if (!order)
3802 		return false;
3803 
3804 	if (fatal_signal_pending(current))
3805 		return false;
3806 
3807 	/*
3808 	 * Compaction was skipped due to a lack of free order-0
3809 	 * migration targets. Continue if reclaim can help.
3810 	 */
3811 	if (compact_result == COMPACT_SKIPPED) {
3812 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3813 		goto out;
3814 	}
3815 
3816 	/*
3817 	 * Compaction managed to coalesce some page blocks, but the
3818 	 * allocation failed presumably due to a race. Retry some.
3819 	 */
3820 	if (compact_result == COMPACT_SUCCESS) {
3821 		/*
3822 		 * !costly requests are much more important than
3823 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3824 		 * facto nofail and invoke OOM killer to move on while
3825 		 * costly can fail and users are ready to cope with
3826 		 * that. 1/4 retries is rather arbitrary but we would
3827 		 * need much more detailed feedback from compaction to
3828 		 * make a better decision.
3829 		 */
3830 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3831 			max_retries /= 4;
3832 
3833 		if (++(*compaction_retries) <= max_retries) {
3834 			ret = true;
3835 			goto out;
3836 		}
3837 	}
3838 
3839 	/*
3840 	 * Compaction failed. Retry with increasing priority.
3841 	 */
3842 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3843 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3844 
3845 	if (*compact_priority > min_priority) {
3846 		(*compact_priority)--;
3847 		*compaction_retries = 0;
3848 		ret = true;
3849 	}
3850 out:
3851 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3852 	return ret;
3853 }
3854 #else
3855 static inline struct page *
3856 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3857 		unsigned int alloc_flags, const struct alloc_context *ac,
3858 		enum compact_priority prio, enum compact_result *compact_result)
3859 {
3860 	*compact_result = COMPACT_SKIPPED;
3861 	return NULL;
3862 }
3863 
3864 static inline bool
3865 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3866 		     enum compact_result compact_result,
3867 		     enum compact_priority *compact_priority,
3868 		     int *compaction_retries)
3869 {
3870 	struct zone *zone;
3871 	struct zoneref *z;
3872 
3873 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3874 		return false;
3875 
3876 	/*
3877 	 * There are setups with compaction disabled which would prefer to loop
3878 	 * inside the allocator rather than hit the oom killer prematurely.
3879 	 * Let's give them a good hope and keep retrying while the order-0
3880 	 * watermarks are OK.
3881 	 */
3882 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3883 				ac->highest_zoneidx, ac->nodemask) {
3884 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3885 					ac->highest_zoneidx, alloc_flags))
3886 			return true;
3887 	}
3888 	return false;
3889 }
3890 #endif /* CONFIG_COMPACTION */
3891 
3892 #ifdef CONFIG_LOCKDEP
3893 static struct lockdep_map __fs_reclaim_map =
3894 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3895 
3896 static bool __need_reclaim(gfp_t gfp_mask)
3897 {
3898 	/* no reclaim without waiting on it */
3899 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3900 		return false;
3901 
3902 	/* this guy won't enter reclaim */
3903 	if (current->flags & PF_MEMALLOC)
3904 		return false;
3905 
3906 	if (gfp_mask & __GFP_NOLOCKDEP)
3907 		return false;
3908 
3909 	return true;
3910 }
3911 
3912 void __fs_reclaim_acquire(unsigned long ip)
3913 {
3914 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3915 }
3916 
3917 void __fs_reclaim_release(unsigned long ip)
3918 {
3919 	lock_release(&__fs_reclaim_map, ip);
3920 }
3921 
3922 void fs_reclaim_acquire(gfp_t gfp_mask)
3923 {
3924 	gfp_mask = current_gfp_context(gfp_mask);
3925 
3926 	if (__need_reclaim(gfp_mask)) {
3927 		if (gfp_mask & __GFP_FS)
3928 			__fs_reclaim_acquire(_RET_IP_);
3929 
3930 #ifdef CONFIG_MMU_NOTIFIER
3931 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3932 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3933 #endif
3934 
3935 	}
3936 }
3937 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3938 
3939 void fs_reclaim_release(gfp_t gfp_mask)
3940 {
3941 	gfp_mask = current_gfp_context(gfp_mask);
3942 
3943 	if (__need_reclaim(gfp_mask)) {
3944 		if (gfp_mask & __GFP_FS)
3945 			__fs_reclaim_release(_RET_IP_);
3946 	}
3947 }
3948 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3949 #endif
3950 
3951 /*
3952  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3953  * have been rebuilt so allocation retries. Reader side does not lock and
3954  * retries the allocation if zonelist changes. Writer side is protected by the
3955  * embedded spin_lock.
3956  */
3957 static DEFINE_SEQLOCK(zonelist_update_seq);
3958 
3959 static unsigned int zonelist_iter_begin(void)
3960 {
3961 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3962 		return read_seqbegin(&zonelist_update_seq);
3963 
3964 	return 0;
3965 }
3966 
3967 static unsigned int check_retry_zonelist(unsigned int seq)
3968 {
3969 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3970 		return read_seqretry(&zonelist_update_seq, seq);
3971 
3972 	return seq;
3973 }
3974 
3975 /* Perform direct synchronous page reclaim */
3976 static unsigned long
3977 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3978 					const struct alloc_context *ac)
3979 {
3980 	unsigned int noreclaim_flag;
3981 	unsigned long progress;
3982 
3983 	cond_resched();
3984 
3985 	/* We now go into synchronous reclaim */
3986 	cpuset_memory_pressure_bump();
3987 	fs_reclaim_acquire(gfp_mask);
3988 	noreclaim_flag = memalloc_noreclaim_save();
3989 
3990 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3991 								ac->nodemask);
3992 
3993 	memalloc_noreclaim_restore(noreclaim_flag);
3994 	fs_reclaim_release(gfp_mask);
3995 
3996 	cond_resched();
3997 
3998 	return progress;
3999 }
4000 
4001 /* The really slow allocator path where we enter direct reclaim */
4002 static inline struct page *
4003 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4004 		unsigned int alloc_flags, const struct alloc_context *ac,
4005 		unsigned long *did_some_progress)
4006 {
4007 	struct page *page = NULL;
4008 	unsigned long pflags;
4009 	bool drained = false;
4010 
4011 	psi_memstall_enter(&pflags);
4012 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4013 	if (unlikely(!(*did_some_progress)))
4014 		goto out;
4015 
4016 retry:
4017 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4018 
4019 	/*
4020 	 * If an allocation failed after direct reclaim, it could be because
4021 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4022 	 * Shrink them and try again
4023 	 */
4024 	if (!page && !drained) {
4025 		unreserve_highatomic_pageblock(ac, false);
4026 		drain_all_pages(NULL);
4027 		drained = true;
4028 		goto retry;
4029 	}
4030 out:
4031 	psi_memstall_leave(&pflags);
4032 
4033 	return page;
4034 }
4035 
4036 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4037 			     const struct alloc_context *ac)
4038 {
4039 	struct zoneref *z;
4040 	struct zone *zone;
4041 	pg_data_t *last_pgdat = NULL;
4042 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4043 
4044 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4045 					ac->nodemask) {
4046 		if (!managed_zone(zone))
4047 			continue;
4048 		if (last_pgdat != zone->zone_pgdat) {
4049 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4050 			last_pgdat = zone->zone_pgdat;
4051 		}
4052 	}
4053 }
4054 
4055 static inline unsigned int
4056 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
4057 {
4058 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4059 
4060 	/*
4061 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
4062 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4063 	 * to save two branches.
4064 	 */
4065 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
4066 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4067 
4068 	/*
4069 	 * The caller may dip into page reserves a bit more if the caller
4070 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4071 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4072 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4073 	 */
4074 	alloc_flags |= (__force int)
4075 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4076 
4077 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
4078 		/*
4079 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4080 		 * if it can't schedule.
4081 		 */
4082 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
4083 			alloc_flags |= ALLOC_NON_BLOCK;
4084 
4085 			if (order > 0)
4086 				alloc_flags |= ALLOC_HIGHATOMIC;
4087 		}
4088 
4089 		/*
4090 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4091 		 * GFP_ATOMIC) rather than fail, see the comment for
4092 		 * cpuset_node_allowed().
4093 		 */
4094 		if (alloc_flags & ALLOC_MIN_RESERVE)
4095 			alloc_flags &= ~ALLOC_CPUSET;
4096 	} else if (unlikely(rt_or_dl_task(current)) && in_task())
4097 		alloc_flags |= ALLOC_MIN_RESERVE;
4098 
4099 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4100 
4101 	return alloc_flags;
4102 }
4103 
4104 static bool oom_reserves_allowed(struct task_struct *tsk)
4105 {
4106 	if (!tsk_is_oom_victim(tsk))
4107 		return false;
4108 
4109 	/*
4110 	 * !MMU doesn't have oom reaper so give access to memory reserves
4111 	 * only to the thread with TIF_MEMDIE set
4112 	 */
4113 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4114 		return false;
4115 
4116 	return true;
4117 }
4118 
4119 /*
4120  * Distinguish requests which really need access to full memory
4121  * reserves from oom victims which can live with a portion of it
4122  */
4123 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4124 {
4125 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4126 		return 0;
4127 	if (gfp_mask & __GFP_MEMALLOC)
4128 		return ALLOC_NO_WATERMARKS;
4129 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4130 		return ALLOC_NO_WATERMARKS;
4131 	if (!in_interrupt()) {
4132 		if (current->flags & PF_MEMALLOC)
4133 			return ALLOC_NO_WATERMARKS;
4134 		else if (oom_reserves_allowed(current))
4135 			return ALLOC_OOM;
4136 	}
4137 
4138 	return 0;
4139 }
4140 
4141 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4142 {
4143 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4144 }
4145 
4146 /*
4147  * Checks whether it makes sense to retry the reclaim to make a forward progress
4148  * for the given allocation request.
4149  *
4150  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4151  * without success, or when we couldn't even meet the watermark if we
4152  * reclaimed all remaining pages on the LRU lists.
4153  *
4154  * Returns true if a retry is viable or false to enter the oom path.
4155  */
4156 static inline bool
4157 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4158 		     struct alloc_context *ac, int alloc_flags,
4159 		     bool did_some_progress, int *no_progress_loops)
4160 {
4161 	struct zone *zone;
4162 	struct zoneref *z;
4163 	bool ret = false;
4164 
4165 	/*
4166 	 * Costly allocations might have made a progress but this doesn't mean
4167 	 * their order will become available due to high fragmentation so
4168 	 * always increment the no progress counter for them
4169 	 */
4170 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4171 		*no_progress_loops = 0;
4172 	else
4173 		(*no_progress_loops)++;
4174 
4175 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
4176 		goto out;
4177 
4178 
4179 	/*
4180 	 * Keep reclaiming pages while there is a chance this will lead
4181 	 * somewhere.  If none of the target zones can satisfy our allocation
4182 	 * request even if all reclaimable pages are considered then we are
4183 	 * screwed and have to go OOM.
4184 	 */
4185 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4186 				ac->highest_zoneidx, ac->nodemask) {
4187 		unsigned long available;
4188 		unsigned long reclaimable;
4189 		unsigned long min_wmark = min_wmark_pages(zone);
4190 		bool wmark;
4191 
4192 		if (cpusets_enabled() &&
4193 			(alloc_flags & ALLOC_CPUSET) &&
4194 			!__cpuset_zone_allowed(zone, gfp_mask))
4195 				continue;
4196 
4197 		available = reclaimable = zone_reclaimable_pages(zone);
4198 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4199 
4200 		/*
4201 		 * Would the allocation succeed if we reclaimed all
4202 		 * reclaimable pages?
4203 		 */
4204 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4205 				ac->highest_zoneidx, alloc_flags, available);
4206 		trace_reclaim_retry_zone(z, order, reclaimable,
4207 				available, min_wmark, *no_progress_loops, wmark);
4208 		if (wmark) {
4209 			ret = true;
4210 			break;
4211 		}
4212 	}
4213 
4214 	/*
4215 	 * Memory allocation/reclaim might be called from a WQ context and the
4216 	 * current implementation of the WQ concurrency control doesn't
4217 	 * recognize that a particular WQ is congested if the worker thread is
4218 	 * looping without ever sleeping. Therefore we have to do a short sleep
4219 	 * here rather than calling cond_resched().
4220 	 */
4221 	if (current->flags & PF_WQ_WORKER)
4222 		schedule_timeout_uninterruptible(1);
4223 	else
4224 		cond_resched();
4225 out:
4226 	/* Before OOM, exhaust highatomic_reserve */
4227 	if (!ret)
4228 		return unreserve_highatomic_pageblock(ac, true);
4229 
4230 	return ret;
4231 }
4232 
4233 static inline bool
4234 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4235 {
4236 	/*
4237 	 * It's possible that cpuset's mems_allowed and the nodemask from
4238 	 * mempolicy don't intersect. This should be normally dealt with by
4239 	 * policy_nodemask(), but it's possible to race with cpuset update in
4240 	 * such a way the check therein was true, and then it became false
4241 	 * before we got our cpuset_mems_cookie here.
4242 	 * This assumes that for all allocations, ac->nodemask can come only
4243 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4244 	 * when it does not intersect with the cpuset restrictions) or the
4245 	 * caller can deal with a violated nodemask.
4246 	 */
4247 	if (cpusets_enabled() && ac->nodemask &&
4248 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4249 		ac->nodemask = NULL;
4250 		return true;
4251 	}
4252 
4253 	/*
4254 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4255 	 * possible to race with parallel threads in such a way that our
4256 	 * allocation can fail while the mask is being updated. If we are about
4257 	 * to fail, check if the cpuset changed during allocation and if so,
4258 	 * retry.
4259 	 */
4260 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4261 		return true;
4262 
4263 	return false;
4264 }
4265 
4266 static inline struct page *
4267 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4268 						struct alloc_context *ac)
4269 {
4270 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4271 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4272 	bool nofail = gfp_mask & __GFP_NOFAIL;
4273 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4274 	struct page *page = NULL;
4275 	unsigned int alloc_flags;
4276 	unsigned long did_some_progress;
4277 	enum compact_priority compact_priority;
4278 	enum compact_result compact_result;
4279 	int compaction_retries;
4280 	int no_progress_loops;
4281 	unsigned int cpuset_mems_cookie;
4282 	unsigned int zonelist_iter_cookie;
4283 	int reserve_flags;
4284 
4285 	if (unlikely(nofail)) {
4286 		/*
4287 		 * We most definitely don't want callers attempting to
4288 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
4289 		 */
4290 		WARN_ON_ONCE(order > 1);
4291 		/*
4292 		 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4293 		 * otherwise, we may result in lockup.
4294 		 */
4295 		WARN_ON_ONCE(!can_direct_reclaim);
4296 		/*
4297 		 * PF_MEMALLOC request from this context is rather bizarre
4298 		 * because we cannot reclaim anything and only can loop waiting
4299 		 * for somebody to do a work for us.
4300 		 */
4301 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4302 	}
4303 
4304 restart:
4305 	compaction_retries = 0;
4306 	no_progress_loops = 0;
4307 	compact_result = COMPACT_SKIPPED;
4308 	compact_priority = DEF_COMPACT_PRIORITY;
4309 	cpuset_mems_cookie = read_mems_allowed_begin();
4310 	zonelist_iter_cookie = zonelist_iter_begin();
4311 
4312 	/*
4313 	 * The fast path uses conservative alloc_flags to succeed only until
4314 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4315 	 * alloc_flags precisely. So we do that now.
4316 	 */
4317 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4318 
4319 	/*
4320 	 * We need to recalculate the starting point for the zonelist iterator
4321 	 * because we might have used different nodemask in the fast path, or
4322 	 * there was a cpuset modification and we are retrying - otherwise we
4323 	 * could end up iterating over non-eligible zones endlessly.
4324 	 */
4325 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4326 					ac->highest_zoneidx, ac->nodemask);
4327 	if (!zonelist_zone(ac->preferred_zoneref))
4328 		goto nopage;
4329 
4330 	/*
4331 	 * Check for insane configurations where the cpuset doesn't contain
4332 	 * any suitable zone to satisfy the request - e.g. non-movable
4333 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4334 	 */
4335 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4336 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4337 					ac->highest_zoneidx,
4338 					&cpuset_current_mems_allowed);
4339 		if (!zonelist_zone(z))
4340 			goto nopage;
4341 	}
4342 
4343 	if (alloc_flags & ALLOC_KSWAPD)
4344 		wake_all_kswapds(order, gfp_mask, ac);
4345 
4346 	/*
4347 	 * The adjusted alloc_flags might result in immediate success, so try
4348 	 * that first
4349 	 */
4350 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4351 	if (page)
4352 		goto got_pg;
4353 
4354 	/*
4355 	 * For costly allocations, try direct compaction first, as it's likely
4356 	 * that we have enough base pages and don't need to reclaim. For non-
4357 	 * movable high-order allocations, do that as well, as compaction will
4358 	 * try prevent permanent fragmentation by migrating from blocks of the
4359 	 * same migratetype.
4360 	 * Don't try this for allocations that are allowed to ignore
4361 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4362 	 */
4363 	if (can_direct_reclaim && can_compact &&
4364 			(costly_order ||
4365 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4366 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4367 		page = __alloc_pages_direct_compact(gfp_mask, order,
4368 						alloc_flags, ac,
4369 						INIT_COMPACT_PRIORITY,
4370 						&compact_result);
4371 		if (page)
4372 			goto got_pg;
4373 
4374 		/*
4375 		 * Checks for costly allocations with __GFP_NORETRY, which
4376 		 * includes some THP page fault allocations
4377 		 */
4378 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4379 			/*
4380 			 * If allocating entire pageblock(s) and compaction
4381 			 * failed because all zones are below low watermarks
4382 			 * or is prohibited because it recently failed at this
4383 			 * order, fail immediately unless the allocator has
4384 			 * requested compaction and reclaim retry.
4385 			 *
4386 			 * Reclaim is
4387 			 *  - potentially very expensive because zones are far
4388 			 *    below their low watermarks or this is part of very
4389 			 *    bursty high order allocations,
4390 			 *  - not guaranteed to help because isolate_freepages()
4391 			 *    may not iterate over freed pages as part of its
4392 			 *    linear scan, and
4393 			 *  - unlikely to make entire pageblocks free on its
4394 			 *    own.
4395 			 */
4396 			if (compact_result == COMPACT_SKIPPED ||
4397 			    compact_result == COMPACT_DEFERRED)
4398 				goto nopage;
4399 
4400 			/*
4401 			 * Looks like reclaim/compaction is worth trying, but
4402 			 * sync compaction could be very expensive, so keep
4403 			 * using async compaction.
4404 			 */
4405 			compact_priority = INIT_COMPACT_PRIORITY;
4406 		}
4407 	}
4408 
4409 retry:
4410 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4411 	if (alloc_flags & ALLOC_KSWAPD)
4412 		wake_all_kswapds(order, gfp_mask, ac);
4413 
4414 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4415 	if (reserve_flags)
4416 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4417 					  (alloc_flags & ALLOC_KSWAPD);
4418 
4419 	/*
4420 	 * Reset the nodemask and zonelist iterators if memory policies can be
4421 	 * ignored. These allocations are high priority and system rather than
4422 	 * user oriented.
4423 	 */
4424 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4425 		ac->nodemask = NULL;
4426 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4427 					ac->highest_zoneidx, ac->nodemask);
4428 	}
4429 
4430 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4431 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4432 	if (page)
4433 		goto got_pg;
4434 
4435 	/* Caller is not willing to reclaim, we can't balance anything */
4436 	if (!can_direct_reclaim)
4437 		goto nopage;
4438 
4439 	/* Avoid recursion of direct reclaim */
4440 	if (current->flags & PF_MEMALLOC)
4441 		goto nopage;
4442 
4443 	/* Try direct reclaim and then allocating */
4444 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4445 							&did_some_progress);
4446 	if (page)
4447 		goto got_pg;
4448 
4449 	/* Try direct compaction and then allocating */
4450 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4451 					compact_priority, &compact_result);
4452 	if (page)
4453 		goto got_pg;
4454 
4455 	/* Do not loop if specifically requested */
4456 	if (gfp_mask & __GFP_NORETRY)
4457 		goto nopage;
4458 
4459 	/*
4460 	 * Do not retry costly high order allocations unless they are
4461 	 * __GFP_RETRY_MAYFAIL and we can compact
4462 	 */
4463 	if (costly_order && (!can_compact ||
4464 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4465 		goto nopage;
4466 
4467 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4468 				 did_some_progress > 0, &no_progress_loops))
4469 		goto retry;
4470 
4471 	/*
4472 	 * It doesn't make any sense to retry for the compaction if the order-0
4473 	 * reclaim is not able to make any progress because the current
4474 	 * implementation of the compaction depends on the sufficient amount
4475 	 * of free memory (see __compaction_suitable)
4476 	 */
4477 	if (did_some_progress > 0 && can_compact &&
4478 			should_compact_retry(ac, order, alloc_flags,
4479 				compact_result, &compact_priority,
4480 				&compaction_retries))
4481 		goto retry;
4482 
4483 
4484 	/*
4485 	 * Deal with possible cpuset update races or zonelist updates to avoid
4486 	 * a unnecessary OOM kill.
4487 	 */
4488 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4489 	    check_retry_zonelist(zonelist_iter_cookie))
4490 		goto restart;
4491 
4492 	/* Reclaim has failed us, start killing things */
4493 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4494 	if (page)
4495 		goto got_pg;
4496 
4497 	/* Avoid allocations with no watermarks from looping endlessly */
4498 	if (tsk_is_oom_victim(current) &&
4499 	    (alloc_flags & ALLOC_OOM ||
4500 	     (gfp_mask & __GFP_NOMEMALLOC)))
4501 		goto nopage;
4502 
4503 	/* Retry as long as the OOM killer is making progress */
4504 	if (did_some_progress) {
4505 		no_progress_loops = 0;
4506 		goto retry;
4507 	}
4508 
4509 nopage:
4510 	/*
4511 	 * Deal with possible cpuset update races or zonelist updates to avoid
4512 	 * a unnecessary OOM kill.
4513 	 */
4514 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4515 	    check_retry_zonelist(zonelist_iter_cookie))
4516 		goto restart;
4517 
4518 	/*
4519 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4520 	 * we always retry
4521 	 */
4522 	if (unlikely(nofail)) {
4523 		/*
4524 		 * Lacking direct_reclaim we can't do anything to reclaim memory,
4525 		 * we disregard these unreasonable nofail requests and still
4526 		 * return NULL
4527 		 */
4528 		if (!can_direct_reclaim)
4529 			goto fail;
4530 
4531 		/*
4532 		 * Help non-failing allocations by giving some access to memory
4533 		 * reserves normally used for high priority non-blocking
4534 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4535 		 * could deplete whole memory reserves which would just make
4536 		 * the situation worse.
4537 		 */
4538 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4539 		if (page)
4540 			goto got_pg;
4541 
4542 		cond_resched();
4543 		goto retry;
4544 	}
4545 fail:
4546 	warn_alloc(gfp_mask, ac->nodemask,
4547 			"page allocation failure: order:%u", order);
4548 got_pg:
4549 	return page;
4550 }
4551 
4552 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4553 		int preferred_nid, nodemask_t *nodemask,
4554 		struct alloc_context *ac, gfp_t *alloc_gfp,
4555 		unsigned int *alloc_flags)
4556 {
4557 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4558 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4559 	ac->nodemask = nodemask;
4560 	ac->migratetype = gfp_migratetype(gfp_mask);
4561 
4562 	if (cpusets_enabled()) {
4563 		*alloc_gfp |= __GFP_HARDWALL;
4564 		/*
4565 		 * When we are in the interrupt context, it is irrelevant
4566 		 * to the current task context. It means that any node ok.
4567 		 */
4568 		if (in_task() && !ac->nodemask)
4569 			ac->nodemask = &cpuset_current_mems_allowed;
4570 		else
4571 			*alloc_flags |= ALLOC_CPUSET;
4572 	}
4573 
4574 	might_alloc(gfp_mask);
4575 
4576 	/*
4577 	 * Don't invoke should_fail logic, since it may call
4578 	 * get_random_u32() and printk() which need to spin_lock.
4579 	 */
4580 	if (!(*alloc_flags & ALLOC_TRYLOCK) &&
4581 	    should_fail_alloc_page(gfp_mask, order))
4582 		return false;
4583 
4584 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4585 
4586 	/* Dirty zone balancing only done in the fast path */
4587 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4588 
4589 	/*
4590 	 * The preferred zone is used for statistics but crucially it is
4591 	 * also used as the starting point for the zonelist iterator. It
4592 	 * may get reset for allocations that ignore memory policies.
4593 	 */
4594 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4595 					ac->highest_zoneidx, ac->nodemask);
4596 
4597 	return true;
4598 }
4599 
4600 /*
4601  * __alloc_pages_bulk - Allocate a number of order-0 pages to an array
4602  * @gfp: GFP flags for the allocation
4603  * @preferred_nid: The preferred NUMA node ID to allocate from
4604  * @nodemask: Set of nodes to allocate from, may be NULL
4605  * @nr_pages: The number of pages desired in the array
4606  * @page_array: Array to store the pages
4607  *
4608  * This is a batched version of the page allocator that attempts to
4609  * allocate nr_pages quickly. Pages are added to the page_array.
4610  *
4611  * Note that only NULL elements are populated with pages and nr_pages
4612  * is the maximum number of pages that will be stored in the array.
4613  *
4614  * Returns the number of pages in the array.
4615  */
4616 unsigned long alloc_pages_bulk_noprof(gfp_t gfp, int preferred_nid,
4617 			nodemask_t *nodemask, int nr_pages,
4618 			struct page **page_array)
4619 {
4620 	struct page *page;
4621 	unsigned long __maybe_unused UP_flags;
4622 	struct zone *zone;
4623 	struct zoneref *z;
4624 	struct per_cpu_pages *pcp;
4625 	struct list_head *pcp_list;
4626 	struct alloc_context ac;
4627 	gfp_t alloc_gfp;
4628 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4629 	int nr_populated = 0, nr_account = 0;
4630 
4631 	/*
4632 	 * Skip populated array elements to determine if any pages need
4633 	 * to be allocated before disabling IRQs.
4634 	 */
4635 	while (nr_populated < nr_pages && page_array[nr_populated])
4636 		nr_populated++;
4637 
4638 	/* No pages requested? */
4639 	if (unlikely(nr_pages <= 0))
4640 		goto out;
4641 
4642 	/* Already populated array? */
4643 	if (unlikely(nr_pages - nr_populated == 0))
4644 		goto out;
4645 
4646 	/* Bulk allocator does not support memcg accounting. */
4647 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4648 		goto failed;
4649 
4650 	/* Use the single page allocator for one page. */
4651 	if (nr_pages - nr_populated == 1)
4652 		goto failed;
4653 
4654 #ifdef CONFIG_PAGE_OWNER
4655 	/*
4656 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4657 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4658 	 * removes much of the performance benefit of bulk allocation so
4659 	 * force the caller to allocate one page at a time as it'll have
4660 	 * similar performance to added complexity to the bulk allocator.
4661 	 */
4662 	if (static_branch_unlikely(&page_owner_inited))
4663 		goto failed;
4664 #endif
4665 
4666 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4667 	gfp &= gfp_allowed_mask;
4668 	alloc_gfp = gfp;
4669 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4670 		goto out;
4671 	gfp = alloc_gfp;
4672 
4673 	/* Find an allowed local zone that meets the low watermark. */
4674 	z = ac.preferred_zoneref;
4675 	for_next_zone_zonelist_nodemask(zone, z, ac.highest_zoneidx, ac.nodemask) {
4676 		unsigned long mark;
4677 
4678 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4679 		    !__cpuset_zone_allowed(zone, gfp)) {
4680 			continue;
4681 		}
4682 
4683 		if (nr_online_nodes > 1 && zone != zonelist_zone(ac.preferred_zoneref) &&
4684 		    zone_to_nid(zone) != zonelist_node_idx(ac.preferred_zoneref)) {
4685 			goto failed;
4686 		}
4687 
4688 		cond_accept_memory(zone, 0);
4689 retry_this_zone:
4690 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4691 		if (zone_watermark_fast(zone, 0,  mark,
4692 				zonelist_zone_idx(ac.preferred_zoneref),
4693 				alloc_flags, gfp)) {
4694 			break;
4695 		}
4696 
4697 		if (cond_accept_memory(zone, 0))
4698 			goto retry_this_zone;
4699 
4700 		/* Try again if zone has deferred pages */
4701 		if (deferred_pages_enabled()) {
4702 			if (_deferred_grow_zone(zone, 0))
4703 				goto retry_this_zone;
4704 		}
4705 	}
4706 
4707 	/*
4708 	 * If there are no allowed local zones that meets the watermarks then
4709 	 * try to allocate a single page and reclaim if necessary.
4710 	 */
4711 	if (unlikely(!zone))
4712 		goto failed;
4713 
4714 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4715 	pcp_trylock_prepare(UP_flags);
4716 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4717 	if (!pcp)
4718 		goto failed_irq;
4719 
4720 	/* Attempt the batch allocation */
4721 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4722 	while (nr_populated < nr_pages) {
4723 
4724 		/* Skip existing pages */
4725 		if (page_array[nr_populated]) {
4726 			nr_populated++;
4727 			continue;
4728 		}
4729 
4730 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4731 								pcp, pcp_list);
4732 		if (unlikely(!page)) {
4733 			/* Try and allocate at least one page */
4734 			if (!nr_account) {
4735 				pcp_spin_unlock(pcp);
4736 				goto failed_irq;
4737 			}
4738 			break;
4739 		}
4740 		nr_account++;
4741 
4742 		prep_new_page(page, 0, gfp, 0);
4743 		set_page_refcounted(page);
4744 		page_array[nr_populated++] = page;
4745 	}
4746 
4747 	pcp_spin_unlock(pcp);
4748 	pcp_trylock_finish(UP_flags);
4749 
4750 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4751 	zone_statistics(zonelist_zone(ac.preferred_zoneref), zone, nr_account);
4752 
4753 out:
4754 	return nr_populated;
4755 
4756 failed_irq:
4757 	pcp_trylock_finish(UP_flags);
4758 
4759 failed:
4760 	page = __alloc_pages_noprof(gfp, 0, preferred_nid, nodemask);
4761 	if (page)
4762 		page_array[nr_populated++] = page;
4763 	goto out;
4764 }
4765 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof);
4766 
4767 /*
4768  * This is the 'heart' of the zoned buddy allocator.
4769  */
4770 struct page *__alloc_frozen_pages_noprof(gfp_t gfp, unsigned int order,
4771 		int preferred_nid, nodemask_t *nodemask)
4772 {
4773 	struct page *page;
4774 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4775 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4776 	struct alloc_context ac = { };
4777 
4778 	/*
4779 	 * There are several places where we assume that the order value is sane
4780 	 * so bail out early if the request is out of bound.
4781 	 */
4782 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4783 		return NULL;
4784 
4785 	gfp &= gfp_allowed_mask;
4786 	/*
4787 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4788 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4789 	 * from a particular context which has been marked by
4790 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4791 	 * movable zones are not used during allocation.
4792 	 */
4793 	gfp = current_gfp_context(gfp);
4794 	alloc_gfp = gfp;
4795 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4796 			&alloc_gfp, &alloc_flags))
4797 		return NULL;
4798 
4799 	/*
4800 	 * Forbid the first pass from falling back to types that fragment
4801 	 * memory until all local zones are considered.
4802 	 */
4803 	alloc_flags |= alloc_flags_nofragment(zonelist_zone(ac.preferred_zoneref), gfp);
4804 
4805 	/* First allocation attempt */
4806 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4807 	if (likely(page))
4808 		goto out;
4809 
4810 	alloc_gfp = gfp;
4811 	ac.spread_dirty_pages = false;
4812 
4813 	/*
4814 	 * Restore the original nodemask if it was potentially replaced with
4815 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4816 	 */
4817 	ac.nodemask = nodemask;
4818 
4819 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4820 
4821 out:
4822 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4823 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4824 		free_frozen_pages(page, order);
4825 		page = NULL;
4826 	}
4827 
4828 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4829 	kmsan_alloc_page(page, order, alloc_gfp);
4830 
4831 	return page;
4832 }
4833 EXPORT_SYMBOL(__alloc_frozen_pages_noprof);
4834 
4835 struct page *__alloc_pages_noprof(gfp_t gfp, unsigned int order,
4836 		int preferred_nid, nodemask_t *nodemask)
4837 {
4838 	struct page *page;
4839 
4840 	page = __alloc_frozen_pages_noprof(gfp, order, preferred_nid, nodemask);
4841 	if (page)
4842 		set_page_refcounted(page);
4843 	return page;
4844 }
4845 EXPORT_SYMBOL(__alloc_pages_noprof);
4846 
4847 struct folio *__folio_alloc_noprof(gfp_t gfp, unsigned int order, int preferred_nid,
4848 		nodemask_t *nodemask)
4849 {
4850 	struct page *page = __alloc_pages_noprof(gfp | __GFP_COMP, order,
4851 					preferred_nid, nodemask);
4852 	return page_rmappable_folio(page);
4853 }
4854 EXPORT_SYMBOL(__folio_alloc_noprof);
4855 
4856 /*
4857  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4858  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4859  * you need to access high mem.
4860  */
4861 unsigned long get_free_pages_noprof(gfp_t gfp_mask, unsigned int order)
4862 {
4863 	struct page *page;
4864 
4865 	page = alloc_pages_noprof(gfp_mask & ~__GFP_HIGHMEM, order);
4866 	if (!page)
4867 		return 0;
4868 	return (unsigned long) page_address(page);
4869 }
4870 EXPORT_SYMBOL(get_free_pages_noprof);
4871 
4872 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask)
4873 {
4874 	return get_free_pages_noprof(gfp_mask | __GFP_ZERO, 0);
4875 }
4876 EXPORT_SYMBOL(get_zeroed_page_noprof);
4877 
4878 /**
4879  * ___free_pages - Free pages allocated with alloc_pages().
4880  * @page: The page pointer returned from alloc_pages().
4881  * @order: The order of the allocation.
4882  * @fpi_flags: Free Page Internal flags.
4883  *
4884  * This function can free multi-page allocations that are not compound
4885  * pages.  It does not check that the @order passed in matches that of
4886  * the allocation, so it is easy to leak memory.  Freeing more memory
4887  * than was allocated will probably emit a warning.
4888  *
4889  * If the last reference to this page is speculative, it will be released
4890  * by put_page() which only frees the first page of a non-compound
4891  * allocation.  To prevent the remaining pages from being leaked, we free
4892  * the subsequent pages here.  If you want to use the page's reference
4893  * count to decide when to free the allocation, you should allocate a
4894  * compound page, and use put_page() instead of __free_pages().
4895  *
4896  * Context: May be called in interrupt context or while holding a normal
4897  * spinlock, but not in NMI context or while holding a raw spinlock.
4898  */
4899 static void ___free_pages(struct page *page, unsigned int order,
4900 			  fpi_t fpi_flags)
4901 {
4902 	/* get PageHead before we drop reference */
4903 	int head = PageHead(page);
4904 	struct alloc_tag *tag = pgalloc_tag_get(page);
4905 
4906 	if (put_page_testzero(page))
4907 		__free_frozen_pages(page, order, fpi_flags);
4908 	else if (!head) {
4909 		pgalloc_tag_sub_pages(tag, (1 << order) - 1);
4910 		while (order-- > 0)
4911 			__free_frozen_pages(page + (1 << order), order,
4912 					    fpi_flags);
4913 	}
4914 }
4915 void __free_pages(struct page *page, unsigned int order)
4916 {
4917 	___free_pages(page, order, FPI_NONE);
4918 }
4919 EXPORT_SYMBOL(__free_pages);
4920 
4921 /*
4922  * Can be called while holding raw_spin_lock or from IRQ and NMI for any
4923  * page type (not only those that came from try_alloc_pages)
4924  */
4925 void free_pages_nolock(struct page *page, unsigned int order)
4926 {
4927 	___free_pages(page, order, FPI_TRYLOCK);
4928 }
4929 
4930 void free_pages(unsigned long addr, unsigned int order)
4931 {
4932 	if (addr != 0) {
4933 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4934 		__free_pages(virt_to_page((void *)addr), order);
4935 	}
4936 }
4937 
4938 EXPORT_SYMBOL(free_pages);
4939 
4940 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4941 		size_t size)
4942 {
4943 	if (addr) {
4944 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4945 		struct page *page = virt_to_page((void *)addr);
4946 		struct page *last = page + nr;
4947 
4948 		split_page_owner(page, order, 0);
4949 		pgalloc_tag_split(page_folio(page), order, 0);
4950 		split_page_memcg(page, order, 0);
4951 		while (page < --last)
4952 			set_page_refcounted(last);
4953 
4954 		last = page + (1UL << order);
4955 		for (page += nr; page < last; page++)
4956 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4957 	}
4958 	return (void *)addr;
4959 }
4960 
4961 /**
4962  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4963  * @size: the number of bytes to allocate
4964  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4965  *
4966  * This function is similar to alloc_pages(), except that it allocates the
4967  * minimum number of pages to satisfy the request.  alloc_pages() can only
4968  * allocate memory in power-of-two pages.
4969  *
4970  * This function is also limited by MAX_PAGE_ORDER.
4971  *
4972  * Memory allocated by this function must be released by free_pages_exact().
4973  *
4974  * Return: pointer to the allocated area or %NULL in case of error.
4975  */
4976 void *alloc_pages_exact_noprof(size_t size, gfp_t gfp_mask)
4977 {
4978 	unsigned int order = get_order(size);
4979 	unsigned long addr;
4980 
4981 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4982 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4983 
4984 	addr = get_free_pages_noprof(gfp_mask, order);
4985 	return make_alloc_exact(addr, order, size);
4986 }
4987 EXPORT_SYMBOL(alloc_pages_exact_noprof);
4988 
4989 /**
4990  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4991  *			   pages on a node.
4992  * @nid: the preferred node ID where memory should be allocated
4993  * @size: the number of bytes to allocate
4994  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4995  *
4996  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4997  * back.
4998  *
4999  * Return: pointer to the allocated area or %NULL in case of error.
5000  */
5001 void * __meminit alloc_pages_exact_nid_noprof(int nid, size_t size, gfp_t gfp_mask)
5002 {
5003 	unsigned int order = get_order(size);
5004 	struct page *p;
5005 
5006 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
5007 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
5008 
5009 	p = alloc_pages_node_noprof(nid, gfp_mask, order);
5010 	if (!p)
5011 		return NULL;
5012 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5013 }
5014 
5015 /**
5016  * free_pages_exact - release memory allocated via alloc_pages_exact()
5017  * @virt: the value returned by alloc_pages_exact.
5018  * @size: size of allocation, same value as passed to alloc_pages_exact().
5019  *
5020  * Release the memory allocated by a previous call to alloc_pages_exact.
5021  */
5022 void free_pages_exact(void *virt, size_t size)
5023 {
5024 	unsigned long addr = (unsigned long)virt;
5025 	unsigned long end = addr + PAGE_ALIGN(size);
5026 
5027 	while (addr < end) {
5028 		free_page(addr);
5029 		addr += PAGE_SIZE;
5030 	}
5031 }
5032 EXPORT_SYMBOL(free_pages_exact);
5033 
5034 /**
5035  * nr_free_zone_pages - count number of pages beyond high watermark
5036  * @offset: The zone index of the highest zone
5037  *
5038  * nr_free_zone_pages() counts the number of pages which are beyond the
5039  * high watermark within all zones at or below a given zone index.  For each
5040  * zone, the number of pages is calculated as:
5041  *
5042  *     nr_free_zone_pages = managed_pages - high_pages
5043  *
5044  * Return: number of pages beyond high watermark.
5045  */
5046 static unsigned long nr_free_zone_pages(int offset)
5047 {
5048 	struct zoneref *z;
5049 	struct zone *zone;
5050 
5051 	/* Just pick one node, since fallback list is circular */
5052 	unsigned long sum = 0;
5053 
5054 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5055 
5056 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5057 		unsigned long size = zone_managed_pages(zone);
5058 		unsigned long high = high_wmark_pages(zone);
5059 		if (size > high)
5060 			sum += size - high;
5061 	}
5062 
5063 	return sum;
5064 }
5065 
5066 /**
5067  * nr_free_buffer_pages - count number of pages beyond high watermark
5068  *
5069  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5070  * watermark within ZONE_DMA and ZONE_NORMAL.
5071  *
5072  * Return: number of pages beyond high watermark within ZONE_DMA and
5073  * ZONE_NORMAL.
5074  */
5075 unsigned long nr_free_buffer_pages(void)
5076 {
5077 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5078 }
5079 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5080 
5081 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5082 {
5083 	zoneref->zone = zone;
5084 	zoneref->zone_idx = zone_idx(zone);
5085 }
5086 
5087 /*
5088  * Builds allocation fallback zone lists.
5089  *
5090  * Add all populated zones of a node to the zonelist.
5091  */
5092 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5093 {
5094 	struct zone *zone;
5095 	enum zone_type zone_type = MAX_NR_ZONES;
5096 	int nr_zones = 0;
5097 
5098 	do {
5099 		zone_type--;
5100 		zone = pgdat->node_zones + zone_type;
5101 		if (populated_zone(zone)) {
5102 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5103 			check_highest_zone(zone_type);
5104 		}
5105 	} while (zone_type);
5106 
5107 	return nr_zones;
5108 }
5109 
5110 #ifdef CONFIG_NUMA
5111 
5112 static int __parse_numa_zonelist_order(char *s)
5113 {
5114 	/*
5115 	 * We used to support different zonelists modes but they turned
5116 	 * out to be just not useful. Let's keep the warning in place
5117 	 * if somebody still use the cmd line parameter so that we do
5118 	 * not fail it silently
5119 	 */
5120 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5121 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5122 		return -EINVAL;
5123 	}
5124 	return 0;
5125 }
5126 
5127 static char numa_zonelist_order[] = "Node";
5128 #define NUMA_ZONELIST_ORDER_LEN	16
5129 /*
5130  * sysctl handler for numa_zonelist_order
5131  */
5132 static int numa_zonelist_order_handler(const struct ctl_table *table, int write,
5133 		void *buffer, size_t *length, loff_t *ppos)
5134 {
5135 	if (write)
5136 		return __parse_numa_zonelist_order(buffer);
5137 	return proc_dostring(table, write, buffer, length, ppos);
5138 }
5139 
5140 static int node_load[MAX_NUMNODES];
5141 
5142 /**
5143  * find_next_best_node - find the next node that should appear in a given node's fallback list
5144  * @node: node whose fallback list we're appending
5145  * @used_node_mask: nodemask_t of already used nodes
5146  *
5147  * We use a number of factors to determine which is the next node that should
5148  * appear on a given node's fallback list.  The node should not have appeared
5149  * already in @node's fallback list, and it should be the next closest node
5150  * according to the distance array (which contains arbitrary distance values
5151  * from each node to each node in the system), and should also prefer nodes
5152  * with no CPUs, since presumably they'll have very little allocation pressure
5153  * on them otherwise.
5154  *
5155  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5156  */
5157 int find_next_best_node(int node, nodemask_t *used_node_mask)
5158 {
5159 	int n, val;
5160 	int min_val = INT_MAX;
5161 	int best_node = NUMA_NO_NODE;
5162 
5163 	/*
5164 	 * Use the local node if we haven't already, but for memoryless local
5165 	 * node, we should skip it and fall back to other nodes.
5166 	 */
5167 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5168 		node_set(node, *used_node_mask);
5169 		return node;
5170 	}
5171 
5172 	for_each_node_state(n, N_MEMORY) {
5173 
5174 		/* Don't want a node to appear more than once */
5175 		if (node_isset(n, *used_node_mask))
5176 			continue;
5177 
5178 		/* Use the distance array to find the distance */
5179 		val = node_distance(node, n);
5180 
5181 		/* Penalize nodes under us ("prefer the next node") */
5182 		val += (n < node);
5183 
5184 		/* Give preference to headless and unused nodes */
5185 		if (!cpumask_empty(cpumask_of_node(n)))
5186 			val += PENALTY_FOR_NODE_WITH_CPUS;
5187 
5188 		/* Slight preference for less loaded node */
5189 		val *= MAX_NUMNODES;
5190 		val += node_load[n];
5191 
5192 		if (val < min_val) {
5193 			min_val = val;
5194 			best_node = n;
5195 		}
5196 	}
5197 
5198 	if (best_node >= 0)
5199 		node_set(best_node, *used_node_mask);
5200 
5201 	return best_node;
5202 }
5203 
5204 
5205 /*
5206  * Build zonelists ordered by node and zones within node.
5207  * This results in maximum locality--normal zone overflows into local
5208  * DMA zone, if any--but risks exhausting DMA zone.
5209  */
5210 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5211 		unsigned nr_nodes)
5212 {
5213 	struct zoneref *zonerefs;
5214 	int i;
5215 
5216 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5217 
5218 	for (i = 0; i < nr_nodes; i++) {
5219 		int nr_zones;
5220 
5221 		pg_data_t *node = NODE_DATA(node_order[i]);
5222 
5223 		nr_zones = build_zonerefs_node(node, zonerefs);
5224 		zonerefs += nr_zones;
5225 	}
5226 	zonerefs->zone = NULL;
5227 	zonerefs->zone_idx = 0;
5228 }
5229 
5230 /*
5231  * Build __GFP_THISNODE zonelists
5232  */
5233 static void build_thisnode_zonelists(pg_data_t *pgdat)
5234 {
5235 	struct zoneref *zonerefs;
5236 	int nr_zones;
5237 
5238 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5239 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5240 	zonerefs += nr_zones;
5241 	zonerefs->zone = NULL;
5242 	zonerefs->zone_idx = 0;
5243 }
5244 
5245 static void build_zonelists(pg_data_t *pgdat)
5246 {
5247 	static int node_order[MAX_NUMNODES];
5248 	int node, nr_nodes = 0;
5249 	nodemask_t used_mask = NODE_MASK_NONE;
5250 	int local_node, prev_node;
5251 
5252 	/* NUMA-aware ordering of nodes */
5253 	local_node = pgdat->node_id;
5254 	prev_node = local_node;
5255 
5256 	memset(node_order, 0, sizeof(node_order));
5257 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5258 		/*
5259 		 * We don't want to pressure a particular node.
5260 		 * So adding penalty to the first node in same
5261 		 * distance group to make it round-robin.
5262 		 */
5263 		if (node_distance(local_node, node) !=
5264 		    node_distance(local_node, prev_node))
5265 			node_load[node] += 1;
5266 
5267 		node_order[nr_nodes++] = node;
5268 		prev_node = node;
5269 	}
5270 
5271 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5272 	build_thisnode_zonelists(pgdat);
5273 	pr_info("Fallback order for Node %d: ", local_node);
5274 	for (node = 0; node < nr_nodes; node++)
5275 		pr_cont("%d ", node_order[node]);
5276 	pr_cont("\n");
5277 }
5278 
5279 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5280 /*
5281  * Return node id of node used for "local" allocations.
5282  * I.e., first node id of first zone in arg node's generic zonelist.
5283  * Used for initializing percpu 'numa_mem', which is used primarily
5284  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5285  */
5286 int local_memory_node(int node)
5287 {
5288 	struct zoneref *z;
5289 
5290 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5291 				   gfp_zone(GFP_KERNEL),
5292 				   NULL);
5293 	return zonelist_node_idx(z);
5294 }
5295 #endif
5296 
5297 static void setup_min_unmapped_ratio(void);
5298 static void setup_min_slab_ratio(void);
5299 #else	/* CONFIG_NUMA */
5300 
5301 static void build_zonelists(pg_data_t *pgdat)
5302 {
5303 	struct zoneref *zonerefs;
5304 	int nr_zones;
5305 
5306 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5307 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5308 	zonerefs += nr_zones;
5309 
5310 	zonerefs->zone = NULL;
5311 	zonerefs->zone_idx = 0;
5312 }
5313 
5314 #endif	/* CONFIG_NUMA */
5315 
5316 /*
5317  * Boot pageset table. One per cpu which is going to be used for all
5318  * zones and all nodes. The parameters will be set in such a way
5319  * that an item put on a list will immediately be handed over to
5320  * the buddy list. This is safe since pageset manipulation is done
5321  * with interrupts disabled.
5322  *
5323  * The boot_pagesets must be kept even after bootup is complete for
5324  * unused processors and/or zones. They do play a role for bootstrapping
5325  * hotplugged processors.
5326  *
5327  * zoneinfo_show() and maybe other functions do
5328  * not check if the processor is online before following the pageset pointer.
5329  * Other parts of the kernel may not check if the zone is available.
5330  */
5331 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5332 /* These effectively disable the pcplists in the boot pageset completely */
5333 #define BOOT_PAGESET_HIGH	0
5334 #define BOOT_PAGESET_BATCH	1
5335 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5336 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5337 
5338 static void __build_all_zonelists(void *data)
5339 {
5340 	int nid;
5341 	int __maybe_unused cpu;
5342 	pg_data_t *self = data;
5343 	unsigned long flags;
5344 
5345 	/*
5346 	 * The zonelist_update_seq must be acquired with irqsave because the
5347 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5348 	 */
5349 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5350 	/*
5351 	 * Also disable synchronous printk() to prevent any printk() from
5352 	 * trying to hold port->lock, for
5353 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5354 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5355 	 */
5356 	printk_deferred_enter();
5357 
5358 #ifdef CONFIG_NUMA
5359 	memset(node_load, 0, sizeof(node_load));
5360 #endif
5361 
5362 	/*
5363 	 * This node is hotadded and no memory is yet present.   So just
5364 	 * building zonelists is fine - no need to touch other nodes.
5365 	 */
5366 	if (self && !node_online(self->node_id)) {
5367 		build_zonelists(self);
5368 	} else {
5369 		/*
5370 		 * All possible nodes have pgdat preallocated
5371 		 * in free_area_init
5372 		 */
5373 		for_each_node(nid) {
5374 			pg_data_t *pgdat = NODE_DATA(nid);
5375 
5376 			build_zonelists(pgdat);
5377 		}
5378 
5379 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5380 		/*
5381 		 * We now know the "local memory node" for each node--
5382 		 * i.e., the node of the first zone in the generic zonelist.
5383 		 * Set up numa_mem percpu variable for on-line cpus.  During
5384 		 * boot, only the boot cpu should be on-line;  we'll init the
5385 		 * secondary cpus' numa_mem as they come on-line.  During
5386 		 * node/memory hotplug, we'll fixup all on-line cpus.
5387 		 */
5388 		for_each_online_cpu(cpu)
5389 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5390 #endif
5391 	}
5392 
5393 	printk_deferred_exit();
5394 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5395 }
5396 
5397 static noinline void __init
5398 build_all_zonelists_init(void)
5399 {
5400 	int cpu;
5401 
5402 	__build_all_zonelists(NULL);
5403 
5404 	/*
5405 	 * Initialize the boot_pagesets that are going to be used
5406 	 * for bootstrapping processors. The real pagesets for
5407 	 * each zone will be allocated later when the per cpu
5408 	 * allocator is available.
5409 	 *
5410 	 * boot_pagesets are used also for bootstrapping offline
5411 	 * cpus if the system is already booted because the pagesets
5412 	 * are needed to initialize allocators on a specific cpu too.
5413 	 * F.e. the percpu allocator needs the page allocator which
5414 	 * needs the percpu allocator in order to allocate its pagesets
5415 	 * (a chicken-egg dilemma).
5416 	 */
5417 	for_each_possible_cpu(cpu)
5418 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5419 
5420 	mminit_verify_zonelist();
5421 	cpuset_init_current_mems_allowed();
5422 }
5423 
5424 /*
5425  * unless system_state == SYSTEM_BOOTING.
5426  *
5427  * __ref due to call of __init annotated helper build_all_zonelists_init
5428  * [protected by SYSTEM_BOOTING].
5429  */
5430 void __ref build_all_zonelists(pg_data_t *pgdat)
5431 {
5432 	unsigned long vm_total_pages;
5433 
5434 	if (system_state == SYSTEM_BOOTING) {
5435 		build_all_zonelists_init();
5436 	} else {
5437 		__build_all_zonelists(pgdat);
5438 		/* cpuset refresh routine should be here */
5439 	}
5440 	/* Get the number of free pages beyond high watermark in all zones. */
5441 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5442 	/*
5443 	 * Disable grouping by mobility if the number of pages in the
5444 	 * system is too low to allow the mechanism to work. It would be
5445 	 * more accurate, but expensive to check per-zone. This check is
5446 	 * made on memory-hotadd so a system can start with mobility
5447 	 * disabled and enable it later
5448 	 */
5449 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5450 		page_group_by_mobility_disabled = 1;
5451 	else
5452 		page_group_by_mobility_disabled = 0;
5453 
5454 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5455 		nr_online_nodes,
5456 		str_off_on(page_group_by_mobility_disabled),
5457 		vm_total_pages);
5458 #ifdef CONFIG_NUMA
5459 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5460 #endif
5461 }
5462 
5463 static int zone_batchsize(struct zone *zone)
5464 {
5465 #ifdef CONFIG_MMU
5466 	int batch;
5467 
5468 	/*
5469 	 * The number of pages to batch allocate is either ~0.1%
5470 	 * of the zone or 1MB, whichever is smaller. The batch
5471 	 * size is striking a balance between allocation latency
5472 	 * and zone lock contention.
5473 	 */
5474 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5475 	batch /= 4;		/* We effectively *= 4 below */
5476 	if (batch < 1)
5477 		batch = 1;
5478 
5479 	/*
5480 	 * Clamp the batch to a 2^n - 1 value. Having a power
5481 	 * of 2 value was found to be more likely to have
5482 	 * suboptimal cache aliasing properties in some cases.
5483 	 *
5484 	 * For example if 2 tasks are alternately allocating
5485 	 * batches of pages, one task can end up with a lot
5486 	 * of pages of one half of the possible page colors
5487 	 * and the other with pages of the other colors.
5488 	 */
5489 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5490 
5491 	return batch;
5492 
5493 #else
5494 	/* The deferral and batching of frees should be suppressed under NOMMU
5495 	 * conditions.
5496 	 *
5497 	 * The problem is that NOMMU needs to be able to allocate large chunks
5498 	 * of contiguous memory as there's no hardware page translation to
5499 	 * assemble apparent contiguous memory from discontiguous pages.
5500 	 *
5501 	 * Queueing large contiguous runs of pages for batching, however,
5502 	 * causes the pages to actually be freed in smaller chunks.  As there
5503 	 * can be a significant delay between the individual batches being
5504 	 * recycled, this leads to the once large chunks of space being
5505 	 * fragmented and becoming unavailable for high-order allocations.
5506 	 */
5507 	return 0;
5508 #endif
5509 }
5510 
5511 static int percpu_pagelist_high_fraction;
5512 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5513 			 int high_fraction)
5514 {
5515 #ifdef CONFIG_MMU
5516 	int high;
5517 	int nr_split_cpus;
5518 	unsigned long total_pages;
5519 
5520 	if (!high_fraction) {
5521 		/*
5522 		 * By default, the high value of the pcp is based on the zone
5523 		 * low watermark so that if they are full then background
5524 		 * reclaim will not be started prematurely.
5525 		 */
5526 		total_pages = low_wmark_pages(zone);
5527 	} else {
5528 		/*
5529 		 * If percpu_pagelist_high_fraction is configured, the high
5530 		 * value is based on a fraction of the managed pages in the
5531 		 * zone.
5532 		 */
5533 		total_pages = zone_managed_pages(zone) / high_fraction;
5534 	}
5535 
5536 	/*
5537 	 * Split the high value across all online CPUs local to the zone. Note
5538 	 * that early in boot that CPUs may not be online yet and that during
5539 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5540 	 * onlined. For memory nodes that have no CPUs, split the high value
5541 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5542 	 * prematurely due to pages stored on pcp lists.
5543 	 */
5544 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5545 	if (!nr_split_cpus)
5546 		nr_split_cpus = num_online_cpus();
5547 	high = total_pages / nr_split_cpus;
5548 
5549 	/*
5550 	 * Ensure high is at least batch*4. The multiple is based on the
5551 	 * historical relationship between high and batch.
5552 	 */
5553 	high = max(high, batch << 2);
5554 
5555 	return high;
5556 #else
5557 	return 0;
5558 #endif
5559 }
5560 
5561 /*
5562  * pcp->high and pcp->batch values are related and generally batch is lower
5563  * than high. They are also related to pcp->count such that count is lower
5564  * than high, and as soon as it reaches high, the pcplist is flushed.
5565  *
5566  * However, guaranteeing these relations at all times would require e.g. write
5567  * barriers here but also careful usage of read barriers at the read side, and
5568  * thus be prone to error and bad for performance. Thus the update only prevents
5569  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5570  * should ensure they can cope with those fields changing asynchronously, and
5571  * fully trust only the pcp->count field on the local CPU with interrupts
5572  * disabled.
5573  *
5574  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5575  * outside of boot time (or some other assurance that no concurrent updaters
5576  * exist).
5577  */
5578 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5579 			   unsigned long high_max, unsigned long batch)
5580 {
5581 	WRITE_ONCE(pcp->batch, batch);
5582 	WRITE_ONCE(pcp->high_min, high_min);
5583 	WRITE_ONCE(pcp->high_max, high_max);
5584 }
5585 
5586 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5587 {
5588 	int pindex;
5589 
5590 	memset(pcp, 0, sizeof(*pcp));
5591 	memset(pzstats, 0, sizeof(*pzstats));
5592 
5593 	spin_lock_init(&pcp->lock);
5594 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5595 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5596 
5597 	/*
5598 	 * Set batch and high values safe for a boot pageset. A true percpu
5599 	 * pageset's initialization will update them subsequently. Here we don't
5600 	 * need to be as careful as pageset_update() as nobody can access the
5601 	 * pageset yet.
5602 	 */
5603 	pcp->high_min = BOOT_PAGESET_HIGH;
5604 	pcp->high_max = BOOT_PAGESET_HIGH;
5605 	pcp->batch = BOOT_PAGESET_BATCH;
5606 	pcp->free_count = 0;
5607 }
5608 
5609 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5610 					      unsigned long high_max, unsigned long batch)
5611 {
5612 	struct per_cpu_pages *pcp;
5613 	int cpu;
5614 
5615 	for_each_possible_cpu(cpu) {
5616 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5617 		pageset_update(pcp, high_min, high_max, batch);
5618 	}
5619 }
5620 
5621 /*
5622  * Calculate and set new high and batch values for all per-cpu pagesets of a
5623  * zone based on the zone's size.
5624  */
5625 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5626 {
5627 	int new_high_min, new_high_max, new_batch;
5628 
5629 	new_batch = max(1, zone_batchsize(zone));
5630 	if (percpu_pagelist_high_fraction) {
5631 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5632 					     percpu_pagelist_high_fraction);
5633 		/*
5634 		 * PCP high is tuned manually, disable auto-tuning via
5635 		 * setting high_min and high_max to the manual value.
5636 		 */
5637 		new_high_max = new_high_min;
5638 	} else {
5639 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5640 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5641 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5642 	}
5643 
5644 	if (zone->pageset_high_min == new_high_min &&
5645 	    zone->pageset_high_max == new_high_max &&
5646 	    zone->pageset_batch == new_batch)
5647 		return;
5648 
5649 	zone->pageset_high_min = new_high_min;
5650 	zone->pageset_high_max = new_high_max;
5651 	zone->pageset_batch = new_batch;
5652 
5653 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5654 					  new_batch);
5655 }
5656 
5657 void __meminit setup_zone_pageset(struct zone *zone)
5658 {
5659 	int cpu;
5660 
5661 	/* Size may be 0 on !SMP && !NUMA */
5662 	if (sizeof(struct per_cpu_zonestat) > 0)
5663 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5664 
5665 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5666 	for_each_possible_cpu(cpu) {
5667 		struct per_cpu_pages *pcp;
5668 		struct per_cpu_zonestat *pzstats;
5669 
5670 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5671 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5672 		per_cpu_pages_init(pcp, pzstats);
5673 	}
5674 
5675 	zone_set_pageset_high_and_batch(zone, 0);
5676 }
5677 
5678 /*
5679  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5680  * page high values need to be recalculated.
5681  */
5682 static void zone_pcp_update(struct zone *zone, int cpu_online)
5683 {
5684 	mutex_lock(&pcp_batch_high_lock);
5685 	zone_set_pageset_high_and_batch(zone, cpu_online);
5686 	mutex_unlock(&pcp_batch_high_lock);
5687 }
5688 
5689 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5690 {
5691 	struct per_cpu_pages *pcp;
5692 	struct cpu_cacheinfo *cci;
5693 
5694 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5695 	cci = get_cpu_cacheinfo(cpu);
5696 	/*
5697 	 * If data cache slice of CPU is large enough, "pcp->batch"
5698 	 * pages can be preserved in PCP before draining PCP for
5699 	 * consecutive high-order pages freeing without allocation.
5700 	 * This can reduce zone lock contention without hurting
5701 	 * cache-hot pages sharing.
5702 	 */
5703 	spin_lock(&pcp->lock);
5704 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5705 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5706 	else
5707 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5708 	spin_unlock(&pcp->lock);
5709 }
5710 
5711 void setup_pcp_cacheinfo(unsigned int cpu)
5712 {
5713 	struct zone *zone;
5714 
5715 	for_each_populated_zone(zone)
5716 		zone_pcp_update_cacheinfo(zone, cpu);
5717 }
5718 
5719 /*
5720  * Allocate per cpu pagesets and initialize them.
5721  * Before this call only boot pagesets were available.
5722  */
5723 void __init setup_per_cpu_pageset(void)
5724 {
5725 	struct pglist_data *pgdat;
5726 	struct zone *zone;
5727 	int __maybe_unused cpu;
5728 
5729 	for_each_populated_zone(zone)
5730 		setup_zone_pageset(zone);
5731 
5732 #ifdef CONFIG_NUMA
5733 	/*
5734 	 * Unpopulated zones continue using the boot pagesets.
5735 	 * The numa stats for these pagesets need to be reset.
5736 	 * Otherwise, they will end up skewing the stats of
5737 	 * the nodes these zones are associated with.
5738 	 */
5739 	for_each_possible_cpu(cpu) {
5740 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5741 		memset(pzstats->vm_numa_event, 0,
5742 		       sizeof(pzstats->vm_numa_event));
5743 	}
5744 #endif
5745 
5746 	for_each_online_pgdat(pgdat)
5747 		pgdat->per_cpu_nodestats =
5748 			alloc_percpu(struct per_cpu_nodestat);
5749 }
5750 
5751 __meminit void zone_pcp_init(struct zone *zone)
5752 {
5753 	/*
5754 	 * per cpu subsystem is not up at this point. The following code
5755 	 * relies on the ability of the linker to provide the
5756 	 * offset of a (static) per cpu variable into the per cpu area.
5757 	 */
5758 	zone->per_cpu_pageset = &boot_pageset;
5759 	zone->per_cpu_zonestats = &boot_zonestats;
5760 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5761 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5762 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5763 
5764 	if (populated_zone(zone))
5765 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5766 			 zone->present_pages, zone_batchsize(zone));
5767 }
5768 
5769 static void setup_per_zone_lowmem_reserve(void);
5770 
5771 void adjust_managed_page_count(struct page *page, long count)
5772 {
5773 	atomic_long_add(count, &page_zone(page)->managed_pages);
5774 	totalram_pages_add(count);
5775 	setup_per_zone_lowmem_reserve();
5776 }
5777 EXPORT_SYMBOL(adjust_managed_page_count);
5778 
5779 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5780 {
5781 	void *pos;
5782 	unsigned long pages = 0;
5783 
5784 	start = (void *)PAGE_ALIGN((unsigned long)start);
5785 	end = (void *)((unsigned long)end & PAGE_MASK);
5786 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5787 		struct page *page = virt_to_page(pos);
5788 		void *direct_map_addr;
5789 
5790 		/*
5791 		 * 'direct_map_addr' might be different from 'pos'
5792 		 * because some architectures' virt_to_page()
5793 		 * work with aliases.  Getting the direct map
5794 		 * address ensures that we get a _writeable_
5795 		 * alias for the memset().
5796 		 */
5797 		direct_map_addr = page_address(page);
5798 		/*
5799 		 * Perform a kasan-unchecked memset() since this memory
5800 		 * has not been initialized.
5801 		 */
5802 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5803 		if ((unsigned int)poison <= 0xFF)
5804 			memset(direct_map_addr, poison, PAGE_SIZE);
5805 
5806 		free_reserved_page(page);
5807 	}
5808 
5809 	if (pages && s)
5810 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5811 
5812 	return pages;
5813 }
5814 
5815 void free_reserved_page(struct page *page)
5816 {
5817 	clear_page_tag_ref(page);
5818 	ClearPageReserved(page);
5819 	init_page_count(page);
5820 	__free_page(page);
5821 	adjust_managed_page_count(page, 1);
5822 }
5823 EXPORT_SYMBOL(free_reserved_page);
5824 
5825 static int page_alloc_cpu_dead(unsigned int cpu)
5826 {
5827 	struct zone *zone;
5828 
5829 	lru_add_drain_cpu(cpu);
5830 	mlock_drain_remote(cpu);
5831 	drain_pages(cpu);
5832 
5833 	/*
5834 	 * Spill the event counters of the dead processor
5835 	 * into the current processors event counters.
5836 	 * This artificially elevates the count of the current
5837 	 * processor.
5838 	 */
5839 	vm_events_fold_cpu(cpu);
5840 
5841 	/*
5842 	 * Zero the differential counters of the dead processor
5843 	 * so that the vm statistics are consistent.
5844 	 *
5845 	 * This is only okay since the processor is dead and cannot
5846 	 * race with what we are doing.
5847 	 */
5848 	cpu_vm_stats_fold(cpu);
5849 
5850 	for_each_populated_zone(zone)
5851 		zone_pcp_update(zone, 0);
5852 
5853 	return 0;
5854 }
5855 
5856 static int page_alloc_cpu_online(unsigned int cpu)
5857 {
5858 	struct zone *zone;
5859 
5860 	for_each_populated_zone(zone)
5861 		zone_pcp_update(zone, 1);
5862 	return 0;
5863 }
5864 
5865 void __init page_alloc_init_cpuhp(void)
5866 {
5867 	int ret;
5868 
5869 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5870 					"mm/page_alloc:pcp",
5871 					page_alloc_cpu_online,
5872 					page_alloc_cpu_dead);
5873 	WARN_ON(ret < 0);
5874 }
5875 
5876 /*
5877  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5878  *	or min_free_kbytes changes.
5879  */
5880 static void calculate_totalreserve_pages(void)
5881 {
5882 	struct pglist_data *pgdat;
5883 	unsigned long reserve_pages = 0;
5884 	enum zone_type i, j;
5885 
5886 	for_each_online_pgdat(pgdat) {
5887 
5888 		pgdat->totalreserve_pages = 0;
5889 
5890 		for (i = 0; i < MAX_NR_ZONES; i++) {
5891 			struct zone *zone = pgdat->node_zones + i;
5892 			long max = 0;
5893 			unsigned long managed_pages = zone_managed_pages(zone);
5894 
5895 			/* Find valid and maximum lowmem_reserve in the zone */
5896 			for (j = i; j < MAX_NR_ZONES; j++) {
5897 				if (zone->lowmem_reserve[j] > max)
5898 					max = zone->lowmem_reserve[j];
5899 			}
5900 
5901 			/* we treat the high watermark as reserved pages. */
5902 			max += high_wmark_pages(zone);
5903 
5904 			if (max > managed_pages)
5905 				max = managed_pages;
5906 
5907 			pgdat->totalreserve_pages += max;
5908 
5909 			reserve_pages += max;
5910 		}
5911 	}
5912 	totalreserve_pages = reserve_pages;
5913 }
5914 
5915 /*
5916  * setup_per_zone_lowmem_reserve - called whenever
5917  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5918  *	has a correct pages reserved value, so an adequate number of
5919  *	pages are left in the zone after a successful __alloc_pages().
5920  */
5921 static void setup_per_zone_lowmem_reserve(void)
5922 {
5923 	struct pglist_data *pgdat;
5924 	enum zone_type i, j;
5925 
5926 	for_each_online_pgdat(pgdat) {
5927 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5928 			struct zone *zone = &pgdat->node_zones[i];
5929 			int ratio = sysctl_lowmem_reserve_ratio[i];
5930 			bool clear = !ratio || !zone_managed_pages(zone);
5931 			unsigned long managed_pages = 0;
5932 
5933 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5934 				struct zone *upper_zone = &pgdat->node_zones[j];
5935 
5936 				managed_pages += zone_managed_pages(upper_zone);
5937 
5938 				if (clear)
5939 					zone->lowmem_reserve[j] = 0;
5940 				else
5941 					zone->lowmem_reserve[j] = managed_pages / ratio;
5942 			}
5943 		}
5944 	}
5945 
5946 	/* update totalreserve_pages */
5947 	calculate_totalreserve_pages();
5948 }
5949 
5950 static void __setup_per_zone_wmarks(void)
5951 {
5952 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5953 	unsigned long lowmem_pages = 0;
5954 	struct zone *zone;
5955 	unsigned long flags;
5956 
5957 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5958 	for_each_zone(zone) {
5959 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5960 			lowmem_pages += zone_managed_pages(zone);
5961 	}
5962 
5963 	for_each_zone(zone) {
5964 		u64 tmp;
5965 
5966 		spin_lock_irqsave(&zone->lock, flags);
5967 		tmp = (u64)pages_min * zone_managed_pages(zone);
5968 		tmp = div64_ul(tmp, lowmem_pages);
5969 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5970 			/*
5971 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5972 			 * need highmem and movable zones pages, so cap pages_min
5973 			 * to a small  value here.
5974 			 *
5975 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5976 			 * deltas control async page reclaim, and so should
5977 			 * not be capped for highmem and movable zones.
5978 			 */
5979 			unsigned long min_pages;
5980 
5981 			min_pages = zone_managed_pages(zone) / 1024;
5982 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5983 			zone->_watermark[WMARK_MIN] = min_pages;
5984 		} else {
5985 			/*
5986 			 * If it's a lowmem zone, reserve a number of pages
5987 			 * proportionate to the zone's size.
5988 			 */
5989 			zone->_watermark[WMARK_MIN] = tmp;
5990 		}
5991 
5992 		/*
5993 		 * Set the kswapd watermarks distance according to the
5994 		 * scale factor in proportion to available memory, but
5995 		 * ensure a minimum size on small systems.
5996 		 */
5997 		tmp = max_t(u64, tmp >> 2,
5998 			    mult_frac(zone_managed_pages(zone),
5999 				      watermark_scale_factor, 10000));
6000 
6001 		zone->watermark_boost = 0;
6002 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6003 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
6004 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
6005 
6006 		spin_unlock_irqrestore(&zone->lock, flags);
6007 	}
6008 
6009 	/* update totalreserve_pages */
6010 	calculate_totalreserve_pages();
6011 }
6012 
6013 /**
6014  * setup_per_zone_wmarks - called when min_free_kbytes changes
6015  * or when memory is hot-{added|removed}
6016  *
6017  * Ensures that the watermark[min,low,high] values for each zone are set
6018  * correctly with respect to min_free_kbytes.
6019  */
6020 void setup_per_zone_wmarks(void)
6021 {
6022 	struct zone *zone;
6023 	static DEFINE_SPINLOCK(lock);
6024 
6025 	spin_lock(&lock);
6026 	__setup_per_zone_wmarks();
6027 	spin_unlock(&lock);
6028 
6029 	/*
6030 	 * The watermark size have changed so update the pcpu batch
6031 	 * and high limits or the limits may be inappropriate.
6032 	 */
6033 	for_each_zone(zone)
6034 		zone_pcp_update(zone, 0);
6035 }
6036 
6037 /*
6038  * Initialise min_free_kbytes.
6039  *
6040  * For small machines we want it small (128k min).  For large machines
6041  * we want it large (256MB max).  But it is not linear, because network
6042  * bandwidth does not increase linearly with machine size.  We use
6043  *
6044  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6045  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6046  *
6047  * which yields
6048  *
6049  * 16MB:	512k
6050  * 32MB:	724k
6051  * 64MB:	1024k
6052  * 128MB:	1448k
6053  * 256MB:	2048k
6054  * 512MB:	2896k
6055  * 1024MB:	4096k
6056  * 2048MB:	5792k
6057  * 4096MB:	8192k
6058  * 8192MB:	11584k
6059  * 16384MB:	16384k
6060  */
6061 void calculate_min_free_kbytes(void)
6062 {
6063 	unsigned long lowmem_kbytes;
6064 	int new_min_free_kbytes;
6065 
6066 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6067 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6068 
6069 	if (new_min_free_kbytes > user_min_free_kbytes)
6070 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
6071 	else
6072 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6073 				new_min_free_kbytes, user_min_free_kbytes);
6074 
6075 }
6076 
6077 int __meminit init_per_zone_wmark_min(void)
6078 {
6079 	calculate_min_free_kbytes();
6080 	setup_per_zone_wmarks();
6081 	refresh_zone_stat_thresholds();
6082 	setup_per_zone_lowmem_reserve();
6083 
6084 #ifdef CONFIG_NUMA
6085 	setup_min_unmapped_ratio();
6086 	setup_min_slab_ratio();
6087 #endif
6088 
6089 	khugepaged_min_free_kbytes_update();
6090 
6091 	return 0;
6092 }
6093 postcore_initcall(init_per_zone_wmark_min)
6094 
6095 /*
6096  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6097  *	that we can call two helper functions whenever min_free_kbytes
6098  *	changes.
6099  */
6100 static int min_free_kbytes_sysctl_handler(const struct ctl_table *table, int write,
6101 		void *buffer, size_t *length, loff_t *ppos)
6102 {
6103 	int rc;
6104 
6105 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6106 	if (rc)
6107 		return rc;
6108 
6109 	if (write) {
6110 		user_min_free_kbytes = min_free_kbytes;
6111 		setup_per_zone_wmarks();
6112 	}
6113 	return 0;
6114 }
6115 
6116 static int watermark_scale_factor_sysctl_handler(const struct ctl_table *table, int write,
6117 		void *buffer, size_t *length, loff_t *ppos)
6118 {
6119 	int rc;
6120 
6121 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6122 	if (rc)
6123 		return rc;
6124 
6125 	if (write)
6126 		setup_per_zone_wmarks();
6127 
6128 	return 0;
6129 }
6130 
6131 #ifdef CONFIG_NUMA
6132 static void setup_min_unmapped_ratio(void)
6133 {
6134 	pg_data_t *pgdat;
6135 	struct zone *zone;
6136 
6137 	for_each_online_pgdat(pgdat)
6138 		pgdat->min_unmapped_pages = 0;
6139 
6140 	for_each_zone(zone)
6141 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6142 						         sysctl_min_unmapped_ratio) / 100;
6143 }
6144 
6145 
6146 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table *table, int write,
6147 		void *buffer, size_t *length, loff_t *ppos)
6148 {
6149 	int rc;
6150 
6151 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6152 	if (rc)
6153 		return rc;
6154 
6155 	setup_min_unmapped_ratio();
6156 
6157 	return 0;
6158 }
6159 
6160 static void setup_min_slab_ratio(void)
6161 {
6162 	pg_data_t *pgdat;
6163 	struct zone *zone;
6164 
6165 	for_each_online_pgdat(pgdat)
6166 		pgdat->min_slab_pages = 0;
6167 
6168 	for_each_zone(zone)
6169 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6170 						     sysctl_min_slab_ratio) / 100;
6171 }
6172 
6173 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table *table, int write,
6174 		void *buffer, size_t *length, loff_t *ppos)
6175 {
6176 	int rc;
6177 
6178 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6179 	if (rc)
6180 		return rc;
6181 
6182 	setup_min_slab_ratio();
6183 
6184 	return 0;
6185 }
6186 #endif
6187 
6188 /*
6189  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6190  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6191  *	whenever sysctl_lowmem_reserve_ratio changes.
6192  *
6193  * The reserve ratio obviously has absolutely no relation with the
6194  * minimum watermarks. The lowmem reserve ratio can only make sense
6195  * if in function of the boot time zone sizes.
6196  */
6197 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table *table,
6198 		int write, void *buffer, size_t *length, loff_t *ppos)
6199 {
6200 	int i;
6201 
6202 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6203 
6204 	for (i = 0; i < MAX_NR_ZONES; i++) {
6205 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6206 			sysctl_lowmem_reserve_ratio[i] = 0;
6207 	}
6208 
6209 	setup_per_zone_lowmem_reserve();
6210 	return 0;
6211 }
6212 
6213 /*
6214  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6215  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6216  * pagelist can have before it gets flushed back to buddy allocator.
6217  */
6218 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table *table,
6219 		int write, void *buffer, size_t *length, loff_t *ppos)
6220 {
6221 	struct zone *zone;
6222 	int old_percpu_pagelist_high_fraction;
6223 	int ret;
6224 
6225 	mutex_lock(&pcp_batch_high_lock);
6226 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6227 
6228 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6229 	if (!write || ret < 0)
6230 		goto out;
6231 
6232 	/* Sanity checking to avoid pcp imbalance */
6233 	if (percpu_pagelist_high_fraction &&
6234 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6235 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6236 		ret = -EINVAL;
6237 		goto out;
6238 	}
6239 
6240 	/* No change? */
6241 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6242 		goto out;
6243 
6244 	for_each_populated_zone(zone)
6245 		zone_set_pageset_high_and_batch(zone, 0);
6246 out:
6247 	mutex_unlock(&pcp_batch_high_lock);
6248 	return ret;
6249 }
6250 
6251 static const struct ctl_table page_alloc_sysctl_table[] = {
6252 	{
6253 		.procname	= "min_free_kbytes",
6254 		.data		= &min_free_kbytes,
6255 		.maxlen		= sizeof(min_free_kbytes),
6256 		.mode		= 0644,
6257 		.proc_handler	= min_free_kbytes_sysctl_handler,
6258 		.extra1		= SYSCTL_ZERO,
6259 	},
6260 	{
6261 		.procname	= "watermark_boost_factor",
6262 		.data		= &watermark_boost_factor,
6263 		.maxlen		= sizeof(watermark_boost_factor),
6264 		.mode		= 0644,
6265 		.proc_handler	= proc_dointvec_minmax,
6266 		.extra1		= SYSCTL_ZERO,
6267 	},
6268 	{
6269 		.procname	= "watermark_scale_factor",
6270 		.data		= &watermark_scale_factor,
6271 		.maxlen		= sizeof(watermark_scale_factor),
6272 		.mode		= 0644,
6273 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6274 		.extra1		= SYSCTL_ONE,
6275 		.extra2		= SYSCTL_THREE_THOUSAND,
6276 	},
6277 	{
6278 		.procname	= "percpu_pagelist_high_fraction",
6279 		.data		= &percpu_pagelist_high_fraction,
6280 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6281 		.mode		= 0644,
6282 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6283 		.extra1		= SYSCTL_ZERO,
6284 	},
6285 	{
6286 		.procname	= "lowmem_reserve_ratio",
6287 		.data		= &sysctl_lowmem_reserve_ratio,
6288 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6289 		.mode		= 0644,
6290 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6291 	},
6292 #ifdef CONFIG_NUMA
6293 	{
6294 		.procname	= "numa_zonelist_order",
6295 		.data		= &numa_zonelist_order,
6296 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6297 		.mode		= 0644,
6298 		.proc_handler	= numa_zonelist_order_handler,
6299 	},
6300 	{
6301 		.procname	= "min_unmapped_ratio",
6302 		.data		= &sysctl_min_unmapped_ratio,
6303 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6304 		.mode		= 0644,
6305 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6306 		.extra1		= SYSCTL_ZERO,
6307 		.extra2		= SYSCTL_ONE_HUNDRED,
6308 	},
6309 	{
6310 		.procname	= "min_slab_ratio",
6311 		.data		= &sysctl_min_slab_ratio,
6312 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6313 		.mode		= 0644,
6314 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6315 		.extra1		= SYSCTL_ZERO,
6316 		.extra2		= SYSCTL_ONE_HUNDRED,
6317 	},
6318 #endif
6319 };
6320 
6321 void __init page_alloc_sysctl_init(void)
6322 {
6323 	register_sysctl_init("vm", page_alloc_sysctl_table);
6324 }
6325 
6326 #ifdef CONFIG_CONTIG_ALLOC
6327 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6328 static void alloc_contig_dump_pages(struct list_head *page_list)
6329 {
6330 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6331 
6332 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6333 		struct page *page;
6334 
6335 		dump_stack();
6336 		list_for_each_entry(page, page_list, lru)
6337 			dump_page(page, "migration failure");
6338 	}
6339 }
6340 
6341 /*
6342  * [start, end) must belong to a single zone.
6343  * @migratetype: using migratetype to filter the type of migration in
6344  *		trace_mm_alloc_contig_migrate_range_info.
6345  */
6346 static int __alloc_contig_migrate_range(struct compact_control *cc,
6347 		unsigned long start, unsigned long end, int migratetype)
6348 {
6349 	/* This function is based on compact_zone() from compaction.c. */
6350 	unsigned int nr_reclaimed;
6351 	unsigned long pfn = start;
6352 	unsigned int tries = 0;
6353 	int ret = 0;
6354 	struct migration_target_control mtc = {
6355 		.nid = zone_to_nid(cc->zone),
6356 		.gfp_mask = cc->gfp_mask,
6357 		.reason = MR_CONTIG_RANGE,
6358 	};
6359 	struct page *page;
6360 	unsigned long total_mapped = 0;
6361 	unsigned long total_migrated = 0;
6362 	unsigned long total_reclaimed = 0;
6363 
6364 	lru_cache_disable();
6365 
6366 	while (pfn < end || !list_empty(&cc->migratepages)) {
6367 		if (fatal_signal_pending(current)) {
6368 			ret = -EINTR;
6369 			break;
6370 		}
6371 
6372 		if (list_empty(&cc->migratepages)) {
6373 			cc->nr_migratepages = 0;
6374 			ret = isolate_migratepages_range(cc, pfn, end);
6375 			if (ret && ret != -EAGAIN)
6376 				break;
6377 			pfn = cc->migrate_pfn;
6378 			tries = 0;
6379 		} else if (++tries == 5) {
6380 			ret = -EBUSY;
6381 			break;
6382 		}
6383 
6384 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6385 							&cc->migratepages);
6386 		cc->nr_migratepages -= nr_reclaimed;
6387 
6388 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6389 			total_reclaimed += nr_reclaimed;
6390 			list_for_each_entry(page, &cc->migratepages, lru) {
6391 				struct folio *folio = page_folio(page);
6392 
6393 				total_mapped += folio_mapped(folio) *
6394 						folio_nr_pages(folio);
6395 			}
6396 		}
6397 
6398 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6399 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6400 
6401 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6402 			total_migrated += cc->nr_migratepages;
6403 
6404 		/*
6405 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6406 		 * to retry again over this error, so do the same here.
6407 		 */
6408 		if (ret == -ENOMEM)
6409 			break;
6410 	}
6411 
6412 	lru_cache_enable();
6413 	if (ret < 0) {
6414 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6415 			alloc_contig_dump_pages(&cc->migratepages);
6416 		putback_movable_pages(&cc->migratepages);
6417 	}
6418 
6419 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6420 						 total_migrated,
6421 						 total_reclaimed,
6422 						 total_mapped);
6423 	return (ret < 0) ? ret : 0;
6424 }
6425 
6426 static void split_free_pages(struct list_head *list, gfp_t gfp_mask)
6427 {
6428 	int order;
6429 
6430 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6431 		struct page *page, *next;
6432 		int nr_pages = 1 << order;
6433 
6434 		list_for_each_entry_safe(page, next, &list[order], lru) {
6435 			int i;
6436 
6437 			post_alloc_hook(page, order, gfp_mask);
6438 			set_page_refcounted(page);
6439 			if (!order)
6440 				continue;
6441 
6442 			split_page(page, order);
6443 
6444 			/* Add all subpages to the order-0 head, in sequence. */
6445 			list_del(&page->lru);
6446 			for (i = 0; i < nr_pages; i++)
6447 				list_add_tail(&page[i].lru, &list[0]);
6448 		}
6449 	}
6450 }
6451 
6452 static int __alloc_contig_verify_gfp_mask(gfp_t gfp_mask, gfp_t *gfp_cc_mask)
6453 {
6454 	const gfp_t reclaim_mask = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
6455 	const gfp_t action_mask = __GFP_COMP | __GFP_RETRY_MAYFAIL | __GFP_NOWARN |
6456 				  __GFP_ZERO | __GFP_ZEROTAGS | __GFP_SKIP_ZERO;
6457 	const gfp_t cc_action_mask = __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
6458 
6459 	/*
6460 	 * We are given the range to allocate; node, mobility and placement
6461 	 * hints are irrelevant at this point. We'll simply ignore them.
6462 	 */
6463 	gfp_mask &= ~(GFP_ZONEMASK | __GFP_RECLAIMABLE | __GFP_WRITE |
6464 		      __GFP_HARDWALL | __GFP_THISNODE | __GFP_MOVABLE);
6465 
6466 	/*
6467 	 * We only support most reclaim flags (but not NOFAIL/NORETRY), and
6468 	 * selected action flags.
6469 	 */
6470 	if (gfp_mask & ~(reclaim_mask | action_mask))
6471 		return -EINVAL;
6472 
6473 	/*
6474 	 * Flags to control page compaction/migration/reclaim, to free up our
6475 	 * page range. Migratable pages are movable, __GFP_MOVABLE is implied
6476 	 * for them.
6477 	 *
6478 	 * Traditionally we always had __GFP_RETRY_MAYFAIL set, keep doing that
6479 	 * to not degrade callers.
6480 	 */
6481 	*gfp_cc_mask = (gfp_mask & (reclaim_mask | cc_action_mask)) |
6482 			__GFP_MOVABLE | __GFP_RETRY_MAYFAIL;
6483 	return 0;
6484 }
6485 
6486 /**
6487  * alloc_contig_range() -- tries to allocate given range of pages
6488  * @start:	start PFN to allocate
6489  * @end:	one-past-the-last PFN to allocate
6490  * @migratetype:	migratetype of the underlying pageblocks (either
6491  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6492  *			in range must have the same migratetype and it must
6493  *			be either of the two.
6494  * @gfp_mask:	GFP mask. Node/zone/placement hints are ignored; only some
6495  *		action and reclaim modifiers are supported. Reclaim modifiers
6496  *		control allocation behavior during compaction/migration/reclaim.
6497  *
6498  * The PFN range does not have to be pageblock aligned. The PFN range must
6499  * belong to a single zone.
6500  *
6501  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6502  * pageblocks in the range.  Once isolated, the pageblocks should not
6503  * be modified by others.
6504  *
6505  * Return: zero on success or negative error code.  On success all
6506  * pages which PFN is in [start, end) are allocated for the caller and
6507  * need to be freed with free_contig_range().
6508  */
6509 int alloc_contig_range_noprof(unsigned long start, unsigned long end,
6510 		       unsigned migratetype, gfp_t gfp_mask)
6511 {
6512 	unsigned long outer_start, outer_end;
6513 	int ret = 0;
6514 
6515 	struct compact_control cc = {
6516 		.nr_migratepages = 0,
6517 		.order = -1,
6518 		.zone = page_zone(pfn_to_page(start)),
6519 		.mode = MIGRATE_SYNC,
6520 		.ignore_skip_hint = true,
6521 		.no_set_skip_hint = true,
6522 		.alloc_contig = true,
6523 	};
6524 	INIT_LIST_HEAD(&cc.migratepages);
6525 
6526 	gfp_mask = current_gfp_context(gfp_mask);
6527 	if (__alloc_contig_verify_gfp_mask(gfp_mask, (gfp_t *)&cc.gfp_mask))
6528 		return -EINVAL;
6529 
6530 	/*
6531 	 * What we do here is we mark all pageblocks in range as
6532 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6533 	 * have different sizes, and due to the way page allocator
6534 	 * work, start_isolate_page_range() has special handlings for this.
6535 	 *
6536 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6537 	 * migrate the pages from an unaligned range (ie. pages that
6538 	 * we are interested in). This will put all the pages in
6539 	 * range back to page allocator as MIGRATE_ISOLATE.
6540 	 *
6541 	 * When this is done, we take the pages in range from page
6542 	 * allocator removing them from the buddy system.  This way
6543 	 * page allocator will never consider using them.
6544 	 *
6545 	 * This lets us mark the pageblocks back as
6546 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6547 	 * aligned range but not in the unaligned, original range are
6548 	 * put back to page allocator so that buddy can use them.
6549 	 */
6550 
6551 	ret = start_isolate_page_range(start, end, migratetype, 0);
6552 	if (ret)
6553 		goto done;
6554 
6555 	drain_all_pages(cc.zone);
6556 
6557 	/*
6558 	 * In case of -EBUSY, we'd like to know which page causes problem.
6559 	 * So, just fall through. test_pages_isolated() has a tracepoint
6560 	 * which will report the busy page.
6561 	 *
6562 	 * It is possible that busy pages could become available before
6563 	 * the call to test_pages_isolated, and the range will actually be
6564 	 * allocated.  So, if we fall through be sure to clear ret so that
6565 	 * -EBUSY is not accidentally used or returned to caller.
6566 	 */
6567 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6568 	if (ret && ret != -EBUSY)
6569 		goto done;
6570 
6571 	/*
6572 	 * When in-use hugetlb pages are migrated, they may simply be released
6573 	 * back into the free hugepage pool instead of being returned to the
6574 	 * buddy system.  After the migration of in-use huge pages is completed,
6575 	 * we will invoke replace_free_hugepage_folios() to ensure that these
6576 	 * hugepages are properly released to the buddy system.
6577 	 */
6578 	ret = replace_free_hugepage_folios(start, end);
6579 	if (ret)
6580 		goto done;
6581 
6582 	/*
6583 	 * Pages from [start, end) are within a pageblock_nr_pages
6584 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6585 	 * more, all pages in [start, end) are free in page allocator.
6586 	 * What we are going to do is to allocate all pages from
6587 	 * [start, end) (that is remove them from page allocator).
6588 	 *
6589 	 * The only problem is that pages at the beginning and at the
6590 	 * end of interesting range may be not aligned with pages that
6591 	 * page allocator holds, ie. they can be part of higher order
6592 	 * pages.  Because of this, we reserve the bigger range and
6593 	 * once this is done free the pages we are not interested in.
6594 	 *
6595 	 * We don't have to hold zone->lock here because the pages are
6596 	 * isolated thus they won't get removed from buddy.
6597 	 */
6598 	outer_start = find_large_buddy(start);
6599 
6600 	/* Make sure the range is really isolated. */
6601 	if (test_pages_isolated(outer_start, end, 0)) {
6602 		ret = -EBUSY;
6603 		goto done;
6604 	}
6605 
6606 	/* Grab isolated pages from freelists. */
6607 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6608 	if (!outer_end) {
6609 		ret = -EBUSY;
6610 		goto done;
6611 	}
6612 
6613 	if (!(gfp_mask & __GFP_COMP)) {
6614 		split_free_pages(cc.freepages, gfp_mask);
6615 
6616 		/* Free head and tail (if any) */
6617 		if (start != outer_start)
6618 			free_contig_range(outer_start, start - outer_start);
6619 		if (end != outer_end)
6620 			free_contig_range(end, outer_end - end);
6621 	} else if (start == outer_start && end == outer_end && is_power_of_2(end - start)) {
6622 		struct page *head = pfn_to_page(start);
6623 		int order = ilog2(end - start);
6624 
6625 		check_new_pages(head, order);
6626 		prep_new_page(head, order, gfp_mask, 0);
6627 		set_page_refcounted(head);
6628 	} else {
6629 		ret = -EINVAL;
6630 		WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6631 		     start, end, outer_start, outer_end);
6632 	}
6633 done:
6634 	undo_isolate_page_range(start, end, migratetype);
6635 	return ret;
6636 }
6637 EXPORT_SYMBOL(alloc_contig_range_noprof);
6638 
6639 static int __alloc_contig_pages(unsigned long start_pfn,
6640 				unsigned long nr_pages, gfp_t gfp_mask)
6641 {
6642 	unsigned long end_pfn = start_pfn + nr_pages;
6643 
6644 	return alloc_contig_range_noprof(start_pfn, end_pfn, MIGRATE_MOVABLE,
6645 				   gfp_mask);
6646 }
6647 
6648 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6649 				   unsigned long nr_pages)
6650 {
6651 	unsigned long i, end_pfn = start_pfn + nr_pages;
6652 	struct page *page;
6653 
6654 	for (i = start_pfn; i < end_pfn; i++) {
6655 		page = pfn_to_online_page(i);
6656 		if (!page)
6657 			return false;
6658 
6659 		if (page_zone(page) != z)
6660 			return false;
6661 
6662 		if (PageReserved(page))
6663 			return false;
6664 
6665 		if (PageHuge(page))
6666 			return false;
6667 	}
6668 	return true;
6669 }
6670 
6671 static bool zone_spans_last_pfn(const struct zone *zone,
6672 				unsigned long start_pfn, unsigned long nr_pages)
6673 {
6674 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6675 
6676 	return zone_spans_pfn(zone, last_pfn);
6677 }
6678 
6679 /**
6680  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6681  * @nr_pages:	Number of contiguous pages to allocate
6682  * @gfp_mask:	GFP mask. Node/zone/placement hints limit the search; only some
6683  *		action and reclaim modifiers are supported. Reclaim modifiers
6684  *		control allocation behavior during compaction/migration/reclaim.
6685  * @nid:	Target node
6686  * @nodemask:	Mask for other possible nodes
6687  *
6688  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6689  * on an applicable zonelist to find a contiguous pfn range which can then be
6690  * tried for allocation with alloc_contig_range(). This routine is intended
6691  * for allocation requests which can not be fulfilled with the buddy allocator.
6692  *
6693  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6694  * power of two, then allocated range is also guaranteed to be aligned to same
6695  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6696  *
6697  * Allocated pages can be freed with free_contig_range() or by manually calling
6698  * __free_page() on each allocated page.
6699  *
6700  * Return: pointer to contiguous pages on success, or NULL if not successful.
6701  */
6702 struct page *alloc_contig_pages_noprof(unsigned long nr_pages, gfp_t gfp_mask,
6703 				 int nid, nodemask_t *nodemask)
6704 {
6705 	unsigned long ret, pfn, flags;
6706 	struct zonelist *zonelist;
6707 	struct zone *zone;
6708 	struct zoneref *z;
6709 
6710 	zonelist = node_zonelist(nid, gfp_mask);
6711 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6712 					gfp_zone(gfp_mask), nodemask) {
6713 		spin_lock_irqsave(&zone->lock, flags);
6714 
6715 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6716 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6717 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6718 				/*
6719 				 * We release the zone lock here because
6720 				 * alloc_contig_range() will also lock the zone
6721 				 * at some point. If there's an allocation
6722 				 * spinning on this lock, it may win the race
6723 				 * and cause alloc_contig_range() to fail...
6724 				 */
6725 				spin_unlock_irqrestore(&zone->lock, flags);
6726 				ret = __alloc_contig_pages(pfn, nr_pages,
6727 							gfp_mask);
6728 				if (!ret)
6729 					return pfn_to_page(pfn);
6730 				spin_lock_irqsave(&zone->lock, flags);
6731 			}
6732 			pfn += nr_pages;
6733 		}
6734 		spin_unlock_irqrestore(&zone->lock, flags);
6735 	}
6736 	return NULL;
6737 }
6738 #endif /* CONFIG_CONTIG_ALLOC */
6739 
6740 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6741 {
6742 	unsigned long count = 0;
6743 	struct folio *folio = pfn_folio(pfn);
6744 
6745 	if (folio_test_large(folio)) {
6746 		int expected = folio_nr_pages(folio);
6747 
6748 		if (nr_pages == expected)
6749 			folio_put(folio);
6750 		else
6751 			WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6752 			     pfn, nr_pages, expected);
6753 		return;
6754 	}
6755 
6756 	for (; nr_pages--; pfn++) {
6757 		struct page *page = pfn_to_page(pfn);
6758 
6759 		count += page_count(page) != 1;
6760 		__free_page(page);
6761 	}
6762 	WARN(count != 0, "%lu pages are still in use!\n", count);
6763 }
6764 EXPORT_SYMBOL(free_contig_range);
6765 
6766 /*
6767  * Effectively disable pcplists for the zone by setting the high limit to 0
6768  * and draining all cpus. A concurrent page freeing on another CPU that's about
6769  * to put the page on pcplist will either finish before the drain and the page
6770  * will be drained, or observe the new high limit and skip the pcplist.
6771  *
6772  * Must be paired with a call to zone_pcp_enable().
6773  */
6774 void zone_pcp_disable(struct zone *zone)
6775 {
6776 	mutex_lock(&pcp_batch_high_lock);
6777 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6778 	__drain_all_pages(zone, true);
6779 }
6780 
6781 void zone_pcp_enable(struct zone *zone)
6782 {
6783 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6784 		zone->pageset_high_max, zone->pageset_batch);
6785 	mutex_unlock(&pcp_batch_high_lock);
6786 }
6787 
6788 void zone_pcp_reset(struct zone *zone)
6789 {
6790 	int cpu;
6791 	struct per_cpu_zonestat *pzstats;
6792 
6793 	if (zone->per_cpu_pageset != &boot_pageset) {
6794 		for_each_online_cpu(cpu) {
6795 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6796 			drain_zonestat(zone, pzstats);
6797 		}
6798 		free_percpu(zone->per_cpu_pageset);
6799 		zone->per_cpu_pageset = &boot_pageset;
6800 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6801 			free_percpu(zone->per_cpu_zonestats);
6802 			zone->per_cpu_zonestats = &boot_zonestats;
6803 		}
6804 	}
6805 }
6806 
6807 #ifdef CONFIG_MEMORY_HOTREMOVE
6808 /*
6809  * All pages in the range must be in a single zone, must not contain holes,
6810  * must span full sections, and must be isolated before calling this function.
6811  *
6812  * Returns the number of managed (non-PageOffline()) pages in the range: the
6813  * number of pages for which memory offlining code must adjust managed page
6814  * counters using adjust_managed_page_count().
6815  */
6816 unsigned long __offline_isolated_pages(unsigned long start_pfn,
6817 		unsigned long end_pfn)
6818 {
6819 	unsigned long already_offline = 0, flags;
6820 	unsigned long pfn = start_pfn;
6821 	struct page *page;
6822 	struct zone *zone;
6823 	unsigned int order;
6824 
6825 	offline_mem_sections(pfn, end_pfn);
6826 	zone = page_zone(pfn_to_page(pfn));
6827 	spin_lock_irqsave(&zone->lock, flags);
6828 	while (pfn < end_pfn) {
6829 		page = pfn_to_page(pfn);
6830 		/*
6831 		 * The HWPoisoned page may be not in buddy system, and
6832 		 * page_count() is not 0.
6833 		 */
6834 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6835 			pfn++;
6836 			continue;
6837 		}
6838 		/*
6839 		 * At this point all remaining PageOffline() pages have a
6840 		 * reference count of 0 and can simply be skipped.
6841 		 */
6842 		if (PageOffline(page)) {
6843 			BUG_ON(page_count(page));
6844 			BUG_ON(PageBuddy(page));
6845 			already_offline++;
6846 			pfn++;
6847 			continue;
6848 		}
6849 
6850 		BUG_ON(page_count(page));
6851 		BUG_ON(!PageBuddy(page));
6852 		VM_WARN_ON(get_pageblock_migratetype(page) != MIGRATE_ISOLATE);
6853 		order = buddy_order(page);
6854 		del_page_from_free_list(page, zone, order, MIGRATE_ISOLATE);
6855 		pfn += (1 << order);
6856 	}
6857 	spin_unlock_irqrestore(&zone->lock, flags);
6858 
6859 	return end_pfn - start_pfn - already_offline;
6860 }
6861 #endif
6862 
6863 /*
6864  * This function returns a stable result only if called under zone lock.
6865  */
6866 bool is_free_buddy_page(const struct page *page)
6867 {
6868 	unsigned long pfn = page_to_pfn(page);
6869 	unsigned int order;
6870 
6871 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6872 		const struct page *head = page - (pfn & ((1 << order) - 1));
6873 
6874 		if (PageBuddy(head) &&
6875 		    buddy_order_unsafe(head) >= order)
6876 			break;
6877 	}
6878 
6879 	return order <= MAX_PAGE_ORDER;
6880 }
6881 EXPORT_SYMBOL(is_free_buddy_page);
6882 
6883 #ifdef CONFIG_MEMORY_FAILURE
6884 static inline void add_to_free_list(struct page *page, struct zone *zone,
6885 				    unsigned int order, int migratetype,
6886 				    bool tail)
6887 {
6888 	__add_to_free_list(page, zone, order, migratetype, tail);
6889 	account_freepages(zone, 1 << order, migratetype);
6890 }
6891 
6892 /*
6893  * Break down a higher-order page in sub-pages, and keep our target out of
6894  * buddy allocator.
6895  */
6896 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6897 				   struct page *target, int low, int high,
6898 				   int migratetype)
6899 {
6900 	unsigned long size = 1 << high;
6901 	struct page *current_buddy;
6902 
6903 	while (high > low) {
6904 		high--;
6905 		size >>= 1;
6906 
6907 		if (target >= &page[size]) {
6908 			current_buddy = page;
6909 			page = page + size;
6910 		} else {
6911 			current_buddy = page + size;
6912 		}
6913 
6914 		if (set_page_guard(zone, current_buddy, high))
6915 			continue;
6916 
6917 		add_to_free_list(current_buddy, zone, high, migratetype, false);
6918 		set_buddy_order(current_buddy, high);
6919 	}
6920 }
6921 
6922 /*
6923  * Take a page that will be marked as poisoned off the buddy allocator.
6924  */
6925 bool take_page_off_buddy(struct page *page)
6926 {
6927 	struct zone *zone = page_zone(page);
6928 	unsigned long pfn = page_to_pfn(page);
6929 	unsigned long flags;
6930 	unsigned int order;
6931 	bool ret = false;
6932 
6933 	spin_lock_irqsave(&zone->lock, flags);
6934 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6935 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6936 		int page_order = buddy_order(page_head);
6937 
6938 		if (PageBuddy(page_head) && page_order >= order) {
6939 			unsigned long pfn_head = page_to_pfn(page_head);
6940 			int migratetype = get_pfnblock_migratetype(page_head,
6941 								   pfn_head);
6942 
6943 			del_page_from_free_list(page_head, zone, page_order,
6944 						migratetype);
6945 			break_down_buddy_pages(zone, page_head, page, 0,
6946 						page_order, migratetype);
6947 			SetPageHWPoisonTakenOff(page);
6948 			ret = true;
6949 			break;
6950 		}
6951 		if (page_count(page_head) > 0)
6952 			break;
6953 	}
6954 	spin_unlock_irqrestore(&zone->lock, flags);
6955 	return ret;
6956 }
6957 
6958 /*
6959  * Cancel takeoff done by take_page_off_buddy().
6960  */
6961 bool put_page_back_buddy(struct page *page)
6962 {
6963 	struct zone *zone = page_zone(page);
6964 	unsigned long flags;
6965 	bool ret = false;
6966 
6967 	spin_lock_irqsave(&zone->lock, flags);
6968 	if (put_page_testzero(page)) {
6969 		unsigned long pfn = page_to_pfn(page);
6970 		int migratetype = get_pfnblock_migratetype(page, pfn);
6971 
6972 		ClearPageHWPoisonTakenOff(page);
6973 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6974 		if (TestClearPageHWPoison(page)) {
6975 			ret = true;
6976 		}
6977 	}
6978 	spin_unlock_irqrestore(&zone->lock, flags);
6979 
6980 	return ret;
6981 }
6982 #endif
6983 
6984 #ifdef CONFIG_ZONE_DMA
6985 bool has_managed_dma(void)
6986 {
6987 	struct pglist_data *pgdat;
6988 
6989 	for_each_online_pgdat(pgdat) {
6990 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6991 
6992 		if (managed_zone(zone))
6993 			return true;
6994 	}
6995 	return false;
6996 }
6997 #endif /* CONFIG_ZONE_DMA */
6998 
6999 #ifdef CONFIG_UNACCEPTED_MEMORY
7000 
7001 /* Counts number of zones with unaccepted pages. */
7002 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
7003 
7004 static bool lazy_accept = true;
7005 
7006 static int __init accept_memory_parse(char *p)
7007 {
7008 	if (!strcmp(p, "lazy")) {
7009 		lazy_accept = true;
7010 		return 0;
7011 	} else if (!strcmp(p, "eager")) {
7012 		lazy_accept = false;
7013 		return 0;
7014 	} else {
7015 		return -EINVAL;
7016 	}
7017 }
7018 early_param("accept_memory", accept_memory_parse);
7019 
7020 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7021 {
7022 	phys_addr_t start = page_to_phys(page);
7023 
7024 	return range_contains_unaccepted_memory(start, PAGE_SIZE << order);
7025 }
7026 
7027 static void __accept_page(struct zone *zone, unsigned long *flags,
7028 			  struct page *page)
7029 {
7030 	bool last;
7031 
7032 	list_del(&page->lru);
7033 	last = list_empty(&zone->unaccepted_pages);
7034 
7035 	account_freepages(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7036 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
7037 	__ClearPageUnaccepted(page);
7038 	spin_unlock_irqrestore(&zone->lock, *flags);
7039 
7040 	accept_memory(page_to_phys(page), PAGE_SIZE << MAX_PAGE_ORDER);
7041 
7042 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
7043 
7044 	if (last)
7045 		static_branch_dec(&zones_with_unaccepted_pages);
7046 }
7047 
7048 void accept_page(struct page *page)
7049 {
7050 	struct zone *zone = page_zone(page);
7051 	unsigned long flags;
7052 
7053 	spin_lock_irqsave(&zone->lock, flags);
7054 	if (!PageUnaccepted(page)) {
7055 		spin_unlock_irqrestore(&zone->lock, flags);
7056 		return;
7057 	}
7058 
7059 	/* Unlocks zone->lock */
7060 	__accept_page(zone, &flags, page);
7061 }
7062 
7063 static bool try_to_accept_memory_one(struct zone *zone)
7064 {
7065 	unsigned long flags;
7066 	struct page *page;
7067 
7068 	spin_lock_irqsave(&zone->lock, flags);
7069 	page = list_first_entry_or_null(&zone->unaccepted_pages,
7070 					struct page, lru);
7071 	if (!page) {
7072 		spin_unlock_irqrestore(&zone->lock, flags);
7073 		return false;
7074 	}
7075 
7076 	/* Unlocks zone->lock */
7077 	__accept_page(zone, &flags, page);
7078 
7079 	return true;
7080 }
7081 
7082 static inline bool has_unaccepted_memory(void)
7083 {
7084 	return static_branch_unlikely(&zones_with_unaccepted_pages);
7085 }
7086 
7087 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7088 {
7089 	long to_accept, wmark;
7090 	bool ret = false;
7091 
7092 	if (!has_unaccepted_memory())
7093 		return false;
7094 
7095 	if (list_empty(&zone->unaccepted_pages))
7096 		return false;
7097 
7098 	wmark = promo_wmark_pages(zone);
7099 
7100 	/*
7101 	 * Watermarks have not been initialized yet.
7102 	 *
7103 	 * Accepting one MAX_ORDER page to ensure progress.
7104 	 */
7105 	if (!wmark)
7106 		return try_to_accept_memory_one(zone);
7107 
7108 	/* How much to accept to get to promo watermark? */
7109 	to_accept = wmark -
7110 		    (zone_page_state(zone, NR_FREE_PAGES) -
7111 		    __zone_watermark_unusable_free(zone, order, 0) -
7112 		    zone_page_state(zone, NR_UNACCEPTED));
7113 
7114 	while (to_accept > 0) {
7115 		if (!try_to_accept_memory_one(zone))
7116 			break;
7117 		ret = true;
7118 		to_accept -= MAX_ORDER_NR_PAGES;
7119 	}
7120 
7121 	return ret;
7122 }
7123 
7124 static bool __free_unaccepted(struct page *page)
7125 {
7126 	struct zone *zone = page_zone(page);
7127 	unsigned long flags;
7128 	bool first = false;
7129 
7130 	if (!lazy_accept)
7131 		return false;
7132 
7133 	spin_lock_irqsave(&zone->lock, flags);
7134 	first = list_empty(&zone->unaccepted_pages);
7135 	list_add_tail(&page->lru, &zone->unaccepted_pages);
7136 	account_freepages(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
7137 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
7138 	__SetPageUnaccepted(page);
7139 	spin_unlock_irqrestore(&zone->lock, flags);
7140 
7141 	if (first)
7142 		static_branch_inc(&zones_with_unaccepted_pages);
7143 
7144 	return true;
7145 }
7146 
7147 #else
7148 
7149 static bool page_contains_unaccepted(struct page *page, unsigned int order)
7150 {
7151 	return false;
7152 }
7153 
7154 static bool cond_accept_memory(struct zone *zone, unsigned int order)
7155 {
7156 	return false;
7157 }
7158 
7159 static bool __free_unaccepted(struct page *page)
7160 {
7161 	BUILD_BUG();
7162 	return false;
7163 }
7164 
7165 #endif /* CONFIG_UNACCEPTED_MEMORY */
7166 
7167 /**
7168  * try_alloc_pages - opportunistic reentrant allocation from any context
7169  * @nid: node to allocate from
7170  * @order: allocation order size
7171  *
7172  * Allocates pages of a given order from the given node. This is safe to
7173  * call from any context (from atomic, NMI, and also reentrant
7174  * allocator -> tracepoint -> try_alloc_pages_noprof).
7175  * Allocation is best effort and to be expected to fail easily so nobody should
7176  * rely on the success. Failures are not reported via warn_alloc().
7177  * See always fail conditions below.
7178  *
7179  * Return: allocated page or NULL on failure.
7180  */
7181 struct page *try_alloc_pages_noprof(int nid, unsigned int order)
7182 {
7183 	/*
7184 	 * Do not specify __GFP_DIRECT_RECLAIM, since direct claim is not allowed.
7185 	 * Do not specify __GFP_KSWAPD_RECLAIM either, since wake up of kswapd
7186 	 * is not safe in arbitrary context.
7187 	 *
7188 	 * These two are the conditions for gfpflags_allow_spinning() being true.
7189 	 *
7190 	 * Specify __GFP_NOWARN since failing try_alloc_pages() is not a reason
7191 	 * to warn. Also warn would trigger printk() which is unsafe from
7192 	 * various contexts. We cannot use printk_deferred_enter() to mitigate,
7193 	 * since the running context is unknown.
7194 	 *
7195 	 * Specify __GFP_ZERO to make sure that call to kmsan_alloc_page() below
7196 	 * is safe in any context. Also zeroing the page is mandatory for
7197 	 * BPF use cases.
7198 	 *
7199 	 * Though __GFP_NOMEMALLOC is not checked in the code path below,
7200 	 * specify it here to highlight that try_alloc_pages()
7201 	 * doesn't want to deplete reserves.
7202 	 */
7203 	gfp_t alloc_gfp = __GFP_NOWARN | __GFP_ZERO | __GFP_NOMEMALLOC
7204 			| __GFP_ACCOUNT;
7205 	unsigned int alloc_flags = ALLOC_TRYLOCK;
7206 	struct alloc_context ac = { };
7207 	struct page *page;
7208 
7209 	/*
7210 	 * In PREEMPT_RT spin_trylock() will call raw_spin_lock() which is
7211 	 * unsafe in NMI. If spin_trylock() is called from hard IRQ the current
7212 	 * task may be waiting for one rt_spin_lock, but rt_spin_trylock() will
7213 	 * mark the task as the owner of another rt_spin_lock which will
7214 	 * confuse PI logic, so return immediately if called form hard IRQ or
7215 	 * NMI.
7216 	 *
7217 	 * Note, irqs_disabled() case is ok. This function can be called
7218 	 * from raw_spin_lock_irqsave region.
7219 	 */
7220 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && (in_nmi() || in_hardirq()))
7221 		return NULL;
7222 	if (!pcp_allowed_order(order))
7223 		return NULL;
7224 
7225 #ifdef CONFIG_UNACCEPTED_MEMORY
7226 	/* Bailout, since try_to_accept_memory_one() needs to take a lock */
7227 	if (has_unaccepted_memory())
7228 		return NULL;
7229 #endif
7230 	/* Bailout, since _deferred_grow_zone() needs to take a lock */
7231 	if (deferred_pages_enabled())
7232 		return NULL;
7233 
7234 	if (nid == NUMA_NO_NODE)
7235 		nid = numa_node_id();
7236 
7237 	prepare_alloc_pages(alloc_gfp, order, nid, NULL, &ac,
7238 			    &alloc_gfp, &alloc_flags);
7239 
7240 	/*
7241 	 * Best effort allocation from percpu free list.
7242 	 * If it's empty attempt to spin_trylock zone->lock.
7243 	 */
7244 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
7245 
7246 	/* Unlike regular alloc_pages() there is no __alloc_pages_slowpath(). */
7247 
7248 	if (memcg_kmem_online() && page &&
7249 	    unlikely(__memcg_kmem_charge_page(page, alloc_gfp, order) != 0)) {
7250 		free_pages_nolock(page, order);
7251 		page = NULL;
7252 	}
7253 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
7254 	kmsan_alloc_page(page, order, alloc_gfp);
7255 	return page;
7256 }
7257