xref: /linux/mm/page_alloc.c (revision e7d759f31ca295d589f7420719c311870bb3166f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/memory_hotplug.h>
36 #include <linux/nodemask.h>
37 #include <linux/vmstat.h>
38 #include <linux/fault-inject.h>
39 #include <linux/compaction.h>
40 #include <trace/events/kmem.h>
41 #include <trace/events/oom.h>
42 #include <linux/prefetch.h>
43 #include <linux/mm_inline.h>
44 #include <linux/mmu_notifier.h>
45 #include <linux/migrate.h>
46 #include <linux/sched/mm.h>
47 #include <linux/page_owner.h>
48 #include <linux/page_table_check.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/lockdep.h>
52 #include <linux/psi.h>
53 #include <linux/khugepaged.h>
54 #include <linux/delayacct.h>
55 #include <linux/cacheinfo.h>
56 #include <asm/div64.h>
57 #include "internal.h"
58 #include "shuffle.h"
59 #include "page_reporting.h"
60 
61 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
62 typedef int __bitwise fpi_t;
63 
64 /* No special request */
65 #define FPI_NONE		((__force fpi_t)0)
66 
67 /*
68  * Skip free page reporting notification for the (possibly merged) page.
69  * This does not hinder free page reporting from grabbing the page,
70  * reporting it and marking it "reported" -  it only skips notifying
71  * the free page reporting infrastructure about a newly freed page. For
72  * example, used when temporarily pulling a page from a freelist and
73  * putting it back unmodified.
74  */
75 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
76 
77 /*
78  * Place the (possibly merged) page to the tail of the freelist. Will ignore
79  * page shuffling (relevant code - e.g., memory onlining - is expected to
80  * shuffle the whole zone).
81  *
82  * Note: No code should rely on this flag for correctness - it's purely
83  *       to allow for optimizations when handing back either fresh pages
84  *       (memory onlining) or untouched pages (page isolation, free page
85  *       reporting).
86  */
87 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
88 
89 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
90 static DEFINE_MUTEX(pcp_batch_high_lock);
91 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
92 
93 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
94 /*
95  * On SMP, spin_trylock is sufficient protection.
96  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
97  */
98 #define pcp_trylock_prepare(flags)	do { } while (0)
99 #define pcp_trylock_finish(flag)	do { } while (0)
100 #else
101 
102 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
103 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
104 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
105 #endif
106 
107 /*
108  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
109  * a migration causing the wrong PCP to be locked and remote memory being
110  * potentially allocated, pin the task to the CPU for the lookup+lock.
111  * preempt_disable is used on !RT because it is faster than migrate_disable.
112  * migrate_disable is used on RT because otherwise RT spinlock usage is
113  * interfered with and a high priority task cannot preempt the allocator.
114  */
115 #ifndef CONFIG_PREEMPT_RT
116 #define pcpu_task_pin()		preempt_disable()
117 #define pcpu_task_unpin()	preempt_enable()
118 #else
119 #define pcpu_task_pin()		migrate_disable()
120 #define pcpu_task_unpin()	migrate_enable()
121 #endif
122 
123 /*
124  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
125  * Return value should be used with equivalent unlock helper.
126  */
127 #define pcpu_spin_lock(type, member, ptr)				\
128 ({									\
129 	type *_ret;							\
130 	pcpu_task_pin();						\
131 	_ret = this_cpu_ptr(ptr);					\
132 	spin_lock(&_ret->member);					\
133 	_ret;								\
134 })
135 
136 #define pcpu_spin_trylock(type, member, ptr)				\
137 ({									\
138 	type *_ret;							\
139 	pcpu_task_pin();						\
140 	_ret = this_cpu_ptr(ptr);					\
141 	if (!spin_trylock(&_ret->member)) {				\
142 		pcpu_task_unpin();					\
143 		_ret = NULL;						\
144 	}								\
145 	_ret;								\
146 })
147 
148 #define pcpu_spin_unlock(member, ptr)					\
149 ({									\
150 	spin_unlock(&ptr->member);					\
151 	pcpu_task_unpin();						\
152 })
153 
154 /* struct per_cpu_pages specific helpers. */
155 #define pcp_spin_lock(ptr)						\
156 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
157 
158 #define pcp_spin_trylock(ptr)						\
159 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
160 
161 #define pcp_spin_unlock(ptr)						\
162 	pcpu_spin_unlock(lock, ptr)
163 
164 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
165 DEFINE_PER_CPU(int, numa_node);
166 EXPORT_PER_CPU_SYMBOL(numa_node);
167 #endif
168 
169 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
170 
171 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
172 /*
173  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
174  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
175  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
176  * defined in <linux/topology.h>.
177  */
178 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
179 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
180 #endif
181 
182 static DEFINE_MUTEX(pcpu_drain_mutex);
183 
184 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
185 volatile unsigned long latent_entropy __latent_entropy;
186 EXPORT_SYMBOL(latent_entropy);
187 #endif
188 
189 /*
190  * Array of node states.
191  */
192 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
193 	[N_POSSIBLE] = NODE_MASK_ALL,
194 	[N_ONLINE] = { { [0] = 1UL } },
195 #ifndef CONFIG_NUMA
196 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
197 #ifdef CONFIG_HIGHMEM
198 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
199 #endif
200 	[N_MEMORY] = { { [0] = 1UL } },
201 	[N_CPU] = { { [0] = 1UL } },
202 #endif	/* NUMA */
203 };
204 EXPORT_SYMBOL(node_states);
205 
206 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
207 
208 /*
209  * A cached value of the page's pageblock's migratetype, used when the page is
210  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
211  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
212  * Also the migratetype set in the page does not necessarily match the pcplist
213  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
214  * other index - this ensures that it will be put on the correct CMA freelist.
215  */
216 static inline int get_pcppage_migratetype(struct page *page)
217 {
218 	return page->index;
219 }
220 
221 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
222 {
223 	page->index = migratetype;
224 }
225 
226 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
227 unsigned int pageblock_order __read_mostly;
228 #endif
229 
230 static void __free_pages_ok(struct page *page, unsigned int order,
231 			    fpi_t fpi_flags);
232 
233 /*
234  * results with 256, 32 in the lowmem_reserve sysctl:
235  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
236  *	1G machine -> (16M dma, 784M normal, 224M high)
237  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
238  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
239  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
240  *
241  * TBD: should special case ZONE_DMA32 machines here - in those we normally
242  * don't need any ZONE_NORMAL reservation
243  */
244 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
245 #ifdef CONFIG_ZONE_DMA
246 	[ZONE_DMA] = 256,
247 #endif
248 #ifdef CONFIG_ZONE_DMA32
249 	[ZONE_DMA32] = 256,
250 #endif
251 	[ZONE_NORMAL] = 32,
252 #ifdef CONFIG_HIGHMEM
253 	[ZONE_HIGHMEM] = 0,
254 #endif
255 	[ZONE_MOVABLE] = 0,
256 };
257 
258 char * const zone_names[MAX_NR_ZONES] = {
259 #ifdef CONFIG_ZONE_DMA
260 	 "DMA",
261 #endif
262 #ifdef CONFIG_ZONE_DMA32
263 	 "DMA32",
264 #endif
265 	 "Normal",
266 #ifdef CONFIG_HIGHMEM
267 	 "HighMem",
268 #endif
269 	 "Movable",
270 #ifdef CONFIG_ZONE_DEVICE
271 	 "Device",
272 #endif
273 };
274 
275 const char * const migratetype_names[MIGRATE_TYPES] = {
276 	"Unmovable",
277 	"Movable",
278 	"Reclaimable",
279 	"HighAtomic",
280 #ifdef CONFIG_CMA
281 	"CMA",
282 #endif
283 #ifdef CONFIG_MEMORY_ISOLATION
284 	"Isolate",
285 #endif
286 };
287 
288 int min_free_kbytes = 1024;
289 int user_min_free_kbytes = -1;
290 static int watermark_boost_factor __read_mostly = 15000;
291 static int watermark_scale_factor = 10;
292 
293 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
294 int movable_zone;
295 EXPORT_SYMBOL(movable_zone);
296 
297 #if MAX_NUMNODES > 1
298 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
299 unsigned int nr_online_nodes __read_mostly = 1;
300 EXPORT_SYMBOL(nr_node_ids);
301 EXPORT_SYMBOL(nr_online_nodes);
302 #endif
303 
304 static bool page_contains_unaccepted(struct page *page, unsigned int order);
305 static void accept_page(struct page *page, unsigned int order);
306 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
307 static inline bool has_unaccepted_memory(void);
308 static bool __free_unaccepted(struct page *page);
309 
310 int page_group_by_mobility_disabled __read_mostly;
311 
312 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
313 /*
314  * During boot we initialize deferred pages on-demand, as needed, but once
315  * page_alloc_init_late() has finished, the deferred pages are all initialized,
316  * and we can permanently disable that path.
317  */
318 DEFINE_STATIC_KEY_TRUE(deferred_pages);
319 
320 static inline bool deferred_pages_enabled(void)
321 {
322 	return static_branch_unlikely(&deferred_pages);
323 }
324 
325 /*
326  * deferred_grow_zone() is __init, but it is called from
327  * get_page_from_freelist() during early boot until deferred_pages permanently
328  * disables this call. This is why we have refdata wrapper to avoid warning,
329  * and to ensure that the function body gets unloaded.
330  */
331 static bool __ref
332 _deferred_grow_zone(struct zone *zone, unsigned int order)
333 {
334        return deferred_grow_zone(zone, order);
335 }
336 #else
337 static inline bool deferred_pages_enabled(void)
338 {
339 	return false;
340 }
341 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
342 
343 /* Return a pointer to the bitmap storing bits affecting a block of pages */
344 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
345 							unsigned long pfn)
346 {
347 #ifdef CONFIG_SPARSEMEM
348 	return section_to_usemap(__pfn_to_section(pfn));
349 #else
350 	return page_zone(page)->pageblock_flags;
351 #endif /* CONFIG_SPARSEMEM */
352 }
353 
354 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
355 {
356 #ifdef CONFIG_SPARSEMEM
357 	pfn &= (PAGES_PER_SECTION-1);
358 #else
359 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
360 #endif /* CONFIG_SPARSEMEM */
361 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
362 }
363 
364 /**
365  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
366  * @page: The page within the block of interest
367  * @pfn: The target page frame number
368  * @mask: mask of bits that the caller is interested in
369  *
370  * Return: pageblock_bits flags
371  */
372 unsigned long get_pfnblock_flags_mask(const struct page *page,
373 					unsigned long pfn, unsigned long mask)
374 {
375 	unsigned long *bitmap;
376 	unsigned long bitidx, word_bitidx;
377 	unsigned long word;
378 
379 	bitmap = get_pageblock_bitmap(page, pfn);
380 	bitidx = pfn_to_bitidx(page, pfn);
381 	word_bitidx = bitidx / BITS_PER_LONG;
382 	bitidx &= (BITS_PER_LONG-1);
383 	/*
384 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
385 	 * a consistent read of the memory array, so that results, even though
386 	 * racy, are not corrupted.
387 	 */
388 	word = READ_ONCE(bitmap[word_bitidx]);
389 	return (word >> bitidx) & mask;
390 }
391 
392 static __always_inline int get_pfnblock_migratetype(const struct page *page,
393 					unsigned long pfn)
394 {
395 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
396 }
397 
398 /**
399  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
400  * @page: The page within the block of interest
401  * @flags: The flags to set
402  * @pfn: The target page frame number
403  * @mask: mask of bits that the caller is interested in
404  */
405 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
406 					unsigned long pfn,
407 					unsigned long mask)
408 {
409 	unsigned long *bitmap;
410 	unsigned long bitidx, word_bitidx;
411 	unsigned long word;
412 
413 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
414 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
415 
416 	bitmap = get_pageblock_bitmap(page, pfn);
417 	bitidx = pfn_to_bitidx(page, pfn);
418 	word_bitidx = bitidx / BITS_PER_LONG;
419 	bitidx &= (BITS_PER_LONG-1);
420 
421 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
422 
423 	mask <<= bitidx;
424 	flags <<= bitidx;
425 
426 	word = READ_ONCE(bitmap[word_bitidx]);
427 	do {
428 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
429 }
430 
431 void set_pageblock_migratetype(struct page *page, int migratetype)
432 {
433 	if (unlikely(page_group_by_mobility_disabled &&
434 		     migratetype < MIGRATE_PCPTYPES))
435 		migratetype = MIGRATE_UNMOVABLE;
436 
437 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
438 				page_to_pfn(page), MIGRATETYPE_MASK);
439 }
440 
441 #ifdef CONFIG_DEBUG_VM
442 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
443 {
444 	int ret;
445 	unsigned seq;
446 	unsigned long pfn = page_to_pfn(page);
447 	unsigned long sp, start_pfn;
448 
449 	do {
450 		seq = zone_span_seqbegin(zone);
451 		start_pfn = zone->zone_start_pfn;
452 		sp = zone->spanned_pages;
453 		ret = !zone_spans_pfn(zone, pfn);
454 	} while (zone_span_seqretry(zone, seq));
455 
456 	if (ret)
457 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
458 			pfn, zone_to_nid(zone), zone->name,
459 			start_pfn, start_pfn + sp);
460 
461 	return ret;
462 }
463 
464 /*
465  * Temporary debugging check for pages not lying within a given zone.
466  */
467 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
468 {
469 	if (page_outside_zone_boundaries(zone, page))
470 		return 1;
471 	if (zone != page_zone(page))
472 		return 1;
473 
474 	return 0;
475 }
476 #else
477 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
478 {
479 	return 0;
480 }
481 #endif
482 
483 static void bad_page(struct page *page, const char *reason)
484 {
485 	static unsigned long resume;
486 	static unsigned long nr_shown;
487 	static unsigned long nr_unshown;
488 
489 	/*
490 	 * Allow a burst of 60 reports, then keep quiet for that minute;
491 	 * or allow a steady drip of one report per second.
492 	 */
493 	if (nr_shown == 60) {
494 		if (time_before(jiffies, resume)) {
495 			nr_unshown++;
496 			goto out;
497 		}
498 		if (nr_unshown) {
499 			pr_alert(
500 			      "BUG: Bad page state: %lu messages suppressed\n",
501 				nr_unshown);
502 			nr_unshown = 0;
503 		}
504 		nr_shown = 0;
505 	}
506 	if (nr_shown++ == 0)
507 		resume = jiffies + 60 * HZ;
508 
509 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
510 		current->comm, page_to_pfn(page));
511 	dump_page(page, reason);
512 
513 	print_modules();
514 	dump_stack();
515 out:
516 	/* Leave bad fields for debug, except PageBuddy could make trouble */
517 	page_mapcount_reset(page); /* remove PageBuddy */
518 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
519 }
520 
521 static inline unsigned int order_to_pindex(int migratetype, int order)
522 {
523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
525 		VM_BUG_ON(order != pageblock_order);
526 		return NR_LOWORDER_PCP_LISTS;
527 	}
528 #else
529 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
530 #endif
531 
532 	return (MIGRATE_PCPTYPES * order) + migratetype;
533 }
534 
535 static inline int pindex_to_order(unsigned int pindex)
536 {
537 	int order = pindex / MIGRATE_PCPTYPES;
538 
539 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
540 	if (pindex == NR_LOWORDER_PCP_LISTS)
541 		order = pageblock_order;
542 #else
543 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
544 #endif
545 
546 	return order;
547 }
548 
549 static inline bool pcp_allowed_order(unsigned int order)
550 {
551 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
552 		return true;
553 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
554 	if (order == pageblock_order)
555 		return true;
556 #endif
557 	return false;
558 }
559 
560 static inline void free_the_page(struct page *page, unsigned int order)
561 {
562 	if (pcp_allowed_order(order))		/* Via pcp? */
563 		free_unref_page(page, order);
564 	else
565 		__free_pages_ok(page, order, FPI_NONE);
566 }
567 
568 /*
569  * Higher-order pages are called "compound pages".  They are structured thusly:
570  *
571  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572  *
573  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575  *
576  * The first tail page's ->compound_order holds the order of allocation.
577  * This usage means that zero-order pages may not be compound.
578  */
579 
580 void prep_compound_page(struct page *page, unsigned int order)
581 {
582 	int i;
583 	int nr_pages = 1 << order;
584 
585 	__SetPageHead(page);
586 	for (i = 1; i < nr_pages; i++)
587 		prep_compound_tail(page, i);
588 
589 	prep_compound_head(page, order);
590 }
591 
592 void destroy_large_folio(struct folio *folio)
593 {
594 	if (folio_test_hugetlb(folio)) {
595 		free_huge_folio(folio);
596 		return;
597 	}
598 
599 	if (folio_test_large_rmappable(folio))
600 		folio_undo_large_rmappable(folio);
601 
602 	mem_cgroup_uncharge(folio);
603 	free_the_page(&folio->page, folio_order(folio));
604 }
605 
606 static inline void set_buddy_order(struct page *page, unsigned int order)
607 {
608 	set_page_private(page, order);
609 	__SetPageBuddy(page);
610 }
611 
612 #ifdef CONFIG_COMPACTION
613 static inline struct capture_control *task_capc(struct zone *zone)
614 {
615 	struct capture_control *capc = current->capture_control;
616 
617 	return unlikely(capc) &&
618 		!(current->flags & PF_KTHREAD) &&
619 		!capc->page &&
620 		capc->cc->zone == zone ? capc : NULL;
621 }
622 
623 static inline bool
624 compaction_capture(struct capture_control *capc, struct page *page,
625 		   int order, int migratetype)
626 {
627 	if (!capc || order != capc->cc->order)
628 		return false;
629 
630 	/* Do not accidentally pollute CMA or isolated regions*/
631 	if (is_migrate_cma(migratetype) ||
632 	    is_migrate_isolate(migratetype))
633 		return false;
634 
635 	/*
636 	 * Do not let lower order allocations pollute a movable pageblock.
637 	 * This might let an unmovable request use a reclaimable pageblock
638 	 * and vice-versa but no more than normal fallback logic which can
639 	 * have trouble finding a high-order free page.
640 	 */
641 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
642 		return false;
643 
644 	capc->page = page;
645 	return true;
646 }
647 
648 #else
649 static inline struct capture_control *task_capc(struct zone *zone)
650 {
651 	return NULL;
652 }
653 
654 static inline bool
655 compaction_capture(struct capture_control *capc, struct page *page,
656 		   int order, int migratetype)
657 {
658 	return false;
659 }
660 #endif /* CONFIG_COMPACTION */
661 
662 /* Used for pages not on another list */
663 static inline void add_to_free_list(struct page *page, struct zone *zone,
664 				    unsigned int order, int migratetype)
665 {
666 	struct free_area *area = &zone->free_area[order];
667 
668 	list_add(&page->buddy_list, &area->free_list[migratetype]);
669 	area->nr_free++;
670 }
671 
672 /* Used for pages not on another list */
673 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
674 					 unsigned int order, int migratetype)
675 {
676 	struct free_area *area = &zone->free_area[order];
677 
678 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
679 	area->nr_free++;
680 }
681 
682 /*
683  * Used for pages which are on another list. Move the pages to the tail
684  * of the list - so the moved pages won't immediately be considered for
685  * allocation again (e.g., optimization for memory onlining).
686  */
687 static inline void move_to_free_list(struct page *page, struct zone *zone,
688 				     unsigned int order, int migratetype)
689 {
690 	struct free_area *area = &zone->free_area[order];
691 
692 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
693 }
694 
695 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
696 					   unsigned int order)
697 {
698 	/* clear reported state and update reported page count */
699 	if (page_reported(page))
700 		__ClearPageReported(page);
701 
702 	list_del(&page->buddy_list);
703 	__ClearPageBuddy(page);
704 	set_page_private(page, 0);
705 	zone->free_area[order].nr_free--;
706 }
707 
708 static inline struct page *get_page_from_free_area(struct free_area *area,
709 					    int migratetype)
710 {
711 	return list_first_entry_or_null(&area->free_list[migratetype],
712 					struct page, buddy_list);
713 }
714 
715 /*
716  * If this is not the largest possible page, check if the buddy
717  * of the next-highest order is free. If it is, it's possible
718  * that pages are being freed that will coalesce soon. In case,
719  * that is happening, add the free page to the tail of the list
720  * so it's less likely to be used soon and more likely to be merged
721  * as a higher order page
722  */
723 static inline bool
724 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
725 		   struct page *page, unsigned int order)
726 {
727 	unsigned long higher_page_pfn;
728 	struct page *higher_page;
729 
730 	if (order >= MAX_PAGE_ORDER - 1)
731 		return false;
732 
733 	higher_page_pfn = buddy_pfn & pfn;
734 	higher_page = page + (higher_page_pfn - pfn);
735 
736 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
737 			NULL) != NULL;
738 }
739 
740 /*
741  * Freeing function for a buddy system allocator.
742  *
743  * The concept of a buddy system is to maintain direct-mapped table
744  * (containing bit values) for memory blocks of various "orders".
745  * The bottom level table contains the map for the smallest allocatable
746  * units of memory (here, pages), and each level above it describes
747  * pairs of units from the levels below, hence, "buddies".
748  * At a high level, all that happens here is marking the table entry
749  * at the bottom level available, and propagating the changes upward
750  * as necessary, plus some accounting needed to play nicely with other
751  * parts of the VM system.
752  * At each level, we keep a list of pages, which are heads of continuous
753  * free pages of length of (1 << order) and marked with PageBuddy.
754  * Page's order is recorded in page_private(page) field.
755  * So when we are allocating or freeing one, we can derive the state of the
756  * other.  That is, if we allocate a small block, and both were
757  * free, the remainder of the region must be split into blocks.
758  * If a block is freed, and its buddy is also free, then this
759  * triggers coalescing into a block of larger size.
760  *
761  * -- nyc
762  */
763 
764 static inline void __free_one_page(struct page *page,
765 		unsigned long pfn,
766 		struct zone *zone, unsigned int order,
767 		int migratetype, fpi_t fpi_flags)
768 {
769 	struct capture_control *capc = task_capc(zone);
770 	unsigned long buddy_pfn = 0;
771 	unsigned long combined_pfn;
772 	struct page *buddy;
773 	bool to_tail;
774 
775 	VM_BUG_ON(!zone_is_initialized(zone));
776 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
777 
778 	VM_BUG_ON(migratetype == -1);
779 	if (likely(!is_migrate_isolate(migratetype)))
780 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
781 
782 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
783 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
784 
785 	while (order < MAX_PAGE_ORDER) {
786 		if (compaction_capture(capc, page, order, migratetype)) {
787 			__mod_zone_freepage_state(zone, -(1 << order),
788 								migratetype);
789 			return;
790 		}
791 
792 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
793 		if (!buddy)
794 			goto done_merging;
795 
796 		if (unlikely(order >= pageblock_order)) {
797 			/*
798 			 * We want to prevent merge between freepages on pageblock
799 			 * without fallbacks and normal pageblock. Without this,
800 			 * pageblock isolation could cause incorrect freepage or CMA
801 			 * accounting or HIGHATOMIC accounting.
802 			 */
803 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
804 
805 			if (migratetype != buddy_mt
806 					&& (!migratetype_is_mergeable(migratetype) ||
807 						!migratetype_is_mergeable(buddy_mt)))
808 				goto done_merging;
809 		}
810 
811 		/*
812 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 		 * merge with it and move up one order.
814 		 */
815 		if (page_is_guard(buddy))
816 			clear_page_guard(zone, buddy, order, migratetype);
817 		else
818 			del_page_from_free_list(buddy, zone, order);
819 		combined_pfn = buddy_pfn & pfn;
820 		page = page + (combined_pfn - pfn);
821 		pfn = combined_pfn;
822 		order++;
823 	}
824 
825 done_merging:
826 	set_buddy_order(page, order);
827 
828 	if (fpi_flags & FPI_TO_TAIL)
829 		to_tail = true;
830 	else if (is_shuffle_order(order))
831 		to_tail = shuffle_pick_tail();
832 	else
833 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
834 
835 	if (to_tail)
836 		add_to_free_list_tail(page, zone, order, migratetype);
837 	else
838 		add_to_free_list(page, zone, order, migratetype);
839 
840 	/* Notify page reporting subsystem of freed page */
841 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
842 		page_reporting_notify_free(order);
843 }
844 
845 /**
846  * split_free_page() -- split a free page at split_pfn_offset
847  * @free_page:		the original free page
848  * @order:		the order of the page
849  * @split_pfn_offset:	split offset within the page
850  *
851  * Return -ENOENT if the free page is changed, otherwise 0
852  *
853  * It is used when the free page crosses two pageblocks with different migratetypes
854  * at split_pfn_offset within the page. The split free page will be put into
855  * separate migratetype lists afterwards. Otherwise, the function achieves
856  * nothing.
857  */
858 int split_free_page(struct page *free_page,
859 			unsigned int order, unsigned long split_pfn_offset)
860 {
861 	struct zone *zone = page_zone(free_page);
862 	unsigned long free_page_pfn = page_to_pfn(free_page);
863 	unsigned long pfn;
864 	unsigned long flags;
865 	int free_page_order;
866 	int mt;
867 	int ret = 0;
868 
869 	if (split_pfn_offset == 0)
870 		return ret;
871 
872 	spin_lock_irqsave(&zone->lock, flags);
873 
874 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
875 		ret = -ENOENT;
876 		goto out;
877 	}
878 
879 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
880 	if (likely(!is_migrate_isolate(mt)))
881 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
882 
883 	del_page_from_free_list(free_page, zone, order);
884 	for (pfn = free_page_pfn;
885 	     pfn < free_page_pfn + (1UL << order);) {
886 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
887 
888 		free_page_order = min_t(unsigned int,
889 					pfn ? __ffs(pfn) : order,
890 					__fls(split_pfn_offset));
891 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
892 				mt, FPI_NONE);
893 		pfn += 1UL << free_page_order;
894 		split_pfn_offset -= (1UL << free_page_order);
895 		/* we have done the first part, now switch to second part */
896 		if (split_pfn_offset == 0)
897 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
898 	}
899 out:
900 	spin_unlock_irqrestore(&zone->lock, flags);
901 	return ret;
902 }
903 /*
904  * A bad page could be due to a number of fields. Instead of multiple branches,
905  * try and check multiple fields with one check. The caller must do a detailed
906  * check if necessary.
907  */
908 static inline bool page_expected_state(struct page *page,
909 					unsigned long check_flags)
910 {
911 	if (unlikely(atomic_read(&page->_mapcount) != -1))
912 		return false;
913 
914 	if (unlikely((unsigned long)page->mapping |
915 			page_ref_count(page) |
916 #ifdef CONFIG_MEMCG
917 			page->memcg_data |
918 #endif
919 #ifdef CONFIG_PAGE_POOL
920 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
921 #endif
922 			(page->flags & check_flags)))
923 		return false;
924 
925 	return true;
926 }
927 
928 static const char *page_bad_reason(struct page *page, unsigned long flags)
929 {
930 	const char *bad_reason = NULL;
931 
932 	if (unlikely(atomic_read(&page->_mapcount) != -1))
933 		bad_reason = "nonzero mapcount";
934 	if (unlikely(page->mapping != NULL))
935 		bad_reason = "non-NULL mapping";
936 	if (unlikely(page_ref_count(page) != 0))
937 		bad_reason = "nonzero _refcount";
938 	if (unlikely(page->flags & flags)) {
939 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
940 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
941 		else
942 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
943 	}
944 #ifdef CONFIG_MEMCG
945 	if (unlikely(page->memcg_data))
946 		bad_reason = "page still charged to cgroup";
947 #endif
948 #ifdef CONFIG_PAGE_POOL
949 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
950 		bad_reason = "page_pool leak";
951 #endif
952 	return bad_reason;
953 }
954 
955 static void free_page_is_bad_report(struct page *page)
956 {
957 	bad_page(page,
958 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
959 }
960 
961 static inline bool free_page_is_bad(struct page *page)
962 {
963 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
964 		return false;
965 
966 	/* Something has gone sideways, find it */
967 	free_page_is_bad_report(page);
968 	return true;
969 }
970 
971 static inline bool is_check_pages_enabled(void)
972 {
973 	return static_branch_unlikely(&check_pages_enabled);
974 }
975 
976 static int free_tail_page_prepare(struct page *head_page, struct page *page)
977 {
978 	struct folio *folio = (struct folio *)head_page;
979 	int ret = 1;
980 
981 	/*
982 	 * We rely page->lru.next never has bit 0 set, unless the page
983 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
984 	 */
985 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
986 
987 	if (!is_check_pages_enabled()) {
988 		ret = 0;
989 		goto out;
990 	}
991 	switch (page - head_page) {
992 	case 1:
993 		/* the first tail page: these may be in place of ->mapping */
994 		if (unlikely(folio_entire_mapcount(folio))) {
995 			bad_page(page, "nonzero entire_mapcount");
996 			goto out;
997 		}
998 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
999 			bad_page(page, "nonzero nr_pages_mapped");
1000 			goto out;
1001 		}
1002 		if (unlikely(atomic_read(&folio->_pincount))) {
1003 			bad_page(page, "nonzero pincount");
1004 			goto out;
1005 		}
1006 		break;
1007 	case 2:
1008 		/*
1009 		 * the second tail page: ->mapping is
1010 		 * deferred_list.next -- ignore value.
1011 		 */
1012 		break;
1013 	default:
1014 		if (page->mapping != TAIL_MAPPING) {
1015 			bad_page(page, "corrupted mapping in tail page");
1016 			goto out;
1017 		}
1018 		break;
1019 	}
1020 	if (unlikely(!PageTail(page))) {
1021 		bad_page(page, "PageTail not set");
1022 		goto out;
1023 	}
1024 	if (unlikely(compound_head(page) != head_page)) {
1025 		bad_page(page, "compound_head not consistent");
1026 		goto out;
1027 	}
1028 	ret = 0;
1029 out:
1030 	page->mapping = NULL;
1031 	clear_compound_head(page);
1032 	return ret;
1033 }
1034 
1035 /*
1036  * Skip KASAN memory poisoning when either:
1037  *
1038  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1039  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1040  *    using page tags instead (see below).
1041  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1042  *    that error detection is disabled for accesses via the page address.
1043  *
1044  * Pages will have match-all tags in the following circumstances:
1045  *
1046  * 1. Pages are being initialized for the first time, including during deferred
1047  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1048  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1049  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1050  * 3. The allocation was excluded from being checked due to sampling,
1051  *    see the call to kasan_unpoison_pages.
1052  *
1053  * Poisoning pages during deferred memory init will greatly lengthen the
1054  * process and cause problem in large memory systems as the deferred pages
1055  * initialization is done with interrupt disabled.
1056  *
1057  * Assuming that there will be no reference to those newly initialized
1058  * pages before they are ever allocated, this should have no effect on
1059  * KASAN memory tracking as the poison will be properly inserted at page
1060  * allocation time. The only corner case is when pages are allocated by
1061  * on-demand allocation and then freed again before the deferred pages
1062  * initialization is done, but this is not likely to happen.
1063  */
1064 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
1065 {
1066 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1067 		return deferred_pages_enabled();
1068 
1069 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1070 }
1071 
1072 static void kernel_init_pages(struct page *page, int numpages)
1073 {
1074 	int i;
1075 
1076 	/* s390's use of memset() could override KASAN redzones. */
1077 	kasan_disable_current();
1078 	for (i = 0; i < numpages; i++)
1079 		clear_highpage_kasan_tagged(page + i);
1080 	kasan_enable_current();
1081 }
1082 
1083 static __always_inline bool free_pages_prepare(struct page *page,
1084 			unsigned int order, fpi_t fpi_flags)
1085 {
1086 	int bad = 0;
1087 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1088 	bool init = want_init_on_free();
1089 	bool compound = PageCompound(page);
1090 
1091 	VM_BUG_ON_PAGE(PageTail(page), page);
1092 
1093 	trace_mm_page_free(page, order);
1094 	kmsan_free_page(page, order);
1095 
1096 	if (memcg_kmem_online() && PageMemcgKmem(page))
1097 		__memcg_kmem_uncharge_page(page, order);
1098 
1099 	if (unlikely(PageHWPoison(page)) && !order) {
1100 		/* Do not let hwpoison pages hit pcplists/buddy */
1101 		reset_page_owner(page, order);
1102 		page_table_check_free(page, order);
1103 		return false;
1104 	}
1105 
1106 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1107 
1108 	/*
1109 	 * Check tail pages before head page information is cleared to
1110 	 * avoid checking PageCompound for order-0 pages.
1111 	 */
1112 	if (unlikely(order)) {
1113 		int i;
1114 
1115 		if (compound)
1116 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1117 		for (i = 1; i < (1 << order); i++) {
1118 			if (compound)
1119 				bad += free_tail_page_prepare(page, page + i);
1120 			if (is_check_pages_enabled()) {
1121 				if (free_page_is_bad(page + i)) {
1122 					bad++;
1123 					continue;
1124 				}
1125 			}
1126 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1127 		}
1128 	}
1129 	if (PageMappingFlags(page))
1130 		page->mapping = NULL;
1131 	if (is_check_pages_enabled()) {
1132 		if (free_page_is_bad(page))
1133 			bad++;
1134 		if (bad)
1135 			return false;
1136 	}
1137 
1138 	page_cpupid_reset_last(page);
1139 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1140 	reset_page_owner(page, order);
1141 	page_table_check_free(page, order);
1142 
1143 	if (!PageHighMem(page)) {
1144 		debug_check_no_locks_freed(page_address(page),
1145 					   PAGE_SIZE << order);
1146 		debug_check_no_obj_freed(page_address(page),
1147 					   PAGE_SIZE << order);
1148 	}
1149 
1150 	kernel_poison_pages(page, 1 << order);
1151 
1152 	/*
1153 	 * As memory initialization might be integrated into KASAN,
1154 	 * KASAN poisoning and memory initialization code must be
1155 	 * kept together to avoid discrepancies in behavior.
1156 	 *
1157 	 * With hardware tag-based KASAN, memory tags must be set before the
1158 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1159 	 */
1160 	if (!skip_kasan_poison) {
1161 		kasan_poison_pages(page, order, init);
1162 
1163 		/* Memory is already initialized if KASAN did it internally. */
1164 		if (kasan_has_integrated_init())
1165 			init = false;
1166 	}
1167 	if (init)
1168 		kernel_init_pages(page, 1 << order);
1169 
1170 	/*
1171 	 * arch_free_page() can make the page's contents inaccessible.  s390
1172 	 * does this.  So nothing which can access the page's contents should
1173 	 * happen after this.
1174 	 */
1175 	arch_free_page(page, order);
1176 
1177 	debug_pagealloc_unmap_pages(page, 1 << order);
1178 
1179 	return true;
1180 }
1181 
1182 /*
1183  * Frees a number of pages from the PCP lists
1184  * Assumes all pages on list are in same zone.
1185  * count is the number of pages to free.
1186  */
1187 static void free_pcppages_bulk(struct zone *zone, int count,
1188 					struct per_cpu_pages *pcp,
1189 					int pindex)
1190 {
1191 	unsigned long flags;
1192 	unsigned int order;
1193 	bool isolated_pageblocks;
1194 	struct page *page;
1195 
1196 	/*
1197 	 * Ensure proper count is passed which otherwise would stuck in the
1198 	 * below while (list_empty(list)) loop.
1199 	 */
1200 	count = min(pcp->count, count);
1201 
1202 	/* Ensure requested pindex is drained first. */
1203 	pindex = pindex - 1;
1204 
1205 	spin_lock_irqsave(&zone->lock, flags);
1206 	isolated_pageblocks = has_isolate_pageblock(zone);
1207 
1208 	while (count > 0) {
1209 		struct list_head *list;
1210 		int nr_pages;
1211 
1212 		/* Remove pages from lists in a round-robin fashion. */
1213 		do {
1214 			if (++pindex > NR_PCP_LISTS - 1)
1215 				pindex = 0;
1216 			list = &pcp->lists[pindex];
1217 		} while (list_empty(list));
1218 
1219 		order = pindex_to_order(pindex);
1220 		nr_pages = 1 << order;
1221 		do {
1222 			int mt;
1223 
1224 			page = list_last_entry(list, struct page, pcp_list);
1225 			mt = get_pcppage_migratetype(page);
1226 
1227 			/* must delete to avoid corrupting pcp list */
1228 			list_del(&page->pcp_list);
1229 			count -= nr_pages;
1230 			pcp->count -= nr_pages;
1231 
1232 			/* MIGRATE_ISOLATE page should not go to pcplists */
1233 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1234 			/* Pageblock could have been isolated meanwhile */
1235 			if (unlikely(isolated_pageblocks))
1236 				mt = get_pageblock_migratetype(page);
1237 
1238 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1239 			trace_mm_page_pcpu_drain(page, order, mt);
1240 		} while (count > 0 && !list_empty(list));
1241 	}
1242 
1243 	spin_unlock_irqrestore(&zone->lock, flags);
1244 }
1245 
1246 static void free_one_page(struct zone *zone,
1247 				struct page *page, unsigned long pfn,
1248 				unsigned int order,
1249 				int migratetype, fpi_t fpi_flags)
1250 {
1251 	unsigned long flags;
1252 
1253 	spin_lock_irqsave(&zone->lock, flags);
1254 	if (unlikely(has_isolate_pageblock(zone) ||
1255 		is_migrate_isolate(migratetype))) {
1256 		migratetype = get_pfnblock_migratetype(page, pfn);
1257 	}
1258 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1259 	spin_unlock_irqrestore(&zone->lock, flags);
1260 }
1261 
1262 static void __free_pages_ok(struct page *page, unsigned int order,
1263 			    fpi_t fpi_flags)
1264 {
1265 	int migratetype;
1266 	unsigned long pfn = page_to_pfn(page);
1267 	struct zone *zone = page_zone(page);
1268 
1269 	if (!free_pages_prepare(page, order, fpi_flags))
1270 		return;
1271 
1272 	/*
1273 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1274 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1275 	 * This will reduce the lock holding time.
1276 	 */
1277 	migratetype = get_pfnblock_migratetype(page, pfn);
1278 
1279 	free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1280 
1281 	__count_vm_events(PGFREE, 1 << order);
1282 }
1283 
1284 void __free_pages_core(struct page *page, unsigned int order)
1285 {
1286 	unsigned int nr_pages = 1 << order;
1287 	struct page *p = page;
1288 	unsigned int loop;
1289 
1290 	/*
1291 	 * When initializing the memmap, __init_single_page() sets the refcount
1292 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1293 	 * refcount of all involved pages to 0.
1294 	 */
1295 	prefetchw(p);
1296 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1297 		prefetchw(p + 1);
1298 		__ClearPageReserved(p);
1299 		set_page_count(p, 0);
1300 	}
1301 	__ClearPageReserved(p);
1302 	set_page_count(p, 0);
1303 
1304 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1305 
1306 	if (page_contains_unaccepted(page, order)) {
1307 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1308 			return;
1309 
1310 		accept_page(page, order);
1311 	}
1312 
1313 	/*
1314 	 * Bypass PCP and place fresh pages right to the tail, primarily
1315 	 * relevant for memory onlining.
1316 	 */
1317 	__free_pages_ok(page, order, FPI_TO_TAIL);
1318 }
1319 
1320 /*
1321  * Check that the whole (or subset of) a pageblock given by the interval of
1322  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1323  * with the migration of free compaction scanner.
1324  *
1325  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1326  *
1327  * It's possible on some configurations to have a setup like node0 node1 node0
1328  * i.e. it's possible that all pages within a zones range of pages do not
1329  * belong to a single zone. We assume that a border between node0 and node1
1330  * can occur within a single pageblock, but not a node0 node1 node0
1331  * interleaving within a single pageblock. It is therefore sufficient to check
1332  * the first and last page of a pageblock and avoid checking each individual
1333  * page in a pageblock.
1334  *
1335  * Note: the function may return non-NULL struct page even for a page block
1336  * which contains a memory hole (i.e. there is no physical memory for a subset
1337  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1338  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1339  * even though the start pfn is online and valid. This should be safe most of
1340  * the time because struct pages are still initialized via init_unavailable_range()
1341  * and pfn walkers shouldn't touch any physical memory range for which they do
1342  * not recognize any specific metadata in struct pages.
1343  */
1344 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1345 				     unsigned long end_pfn, struct zone *zone)
1346 {
1347 	struct page *start_page;
1348 	struct page *end_page;
1349 
1350 	/* end_pfn is one past the range we are checking */
1351 	end_pfn--;
1352 
1353 	if (!pfn_valid(end_pfn))
1354 		return NULL;
1355 
1356 	start_page = pfn_to_online_page(start_pfn);
1357 	if (!start_page)
1358 		return NULL;
1359 
1360 	if (page_zone(start_page) != zone)
1361 		return NULL;
1362 
1363 	end_page = pfn_to_page(end_pfn);
1364 
1365 	/* This gives a shorter code than deriving page_zone(end_page) */
1366 	if (page_zone_id(start_page) != page_zone_id(end_page))
1367 		return NULL;
1368 
1369 	return start_page;
1370 }
1371 
1372 /*
1373  * The order of subdivision here is critical for the IO subsystem.
1374  * Please do not alter this order without good reasons and regression
1375  * testing. Specifically, as large blocks of memory are subdivided,
1376  * the order in which smaller blocks are delivered depends on the order
1377  * they're subdivided in this function. This is the primary factor
1378  * influencing the order in which pages are delivered to the IO
1379  * subsystem according to empirical testing, and this is also justified
1380  * by considering the behavior of a buddy system containing a single
1381  * large block of memory acted on by a series of small allocations.
1382  * This behavior is a critical factor in sglist merging's success.
1383  *
1384  * -- nyc
1385  */
1386 static inline void expand(struct zone *zone, struct page *page,
1387 	int low, int high, int migratetype)
1388 {
1389 	unsigned long size = 1 << high;
1390 
1391 	while (high > low) {
1392 		high--;
1393 		size >>= 1;
1394 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1395 
1396 		/*
1397 		 * Mark as guard pages (or page), that will allow to
1398 		 * merge back to allocator when buddy will be freed.
1399 		 * Corresponding page table entries will not be touched,
1400 		 * pages will stay not present in virtual address space
1401 		 */
1402 		if (set_page_guard(zone, &page[size], high, migratetype))
1403 			continue;
1404 
1405 		add_to_free_list(&page[size], zone, high, migratetype);
1406 		set_buddy_order(&page[size], high);
1407 	}
1408 }
1409 
1410 static void check_new_page_bad(struct page *page)
1411 {
1412 	if (unlikely(page->flags & __PG_HWPOISON)) {
1413 		/* Don't complain about hwpoisoned pages */
1414 		page_mapcount_reset(page); /* remove PageBuddy */
1415 		return;
1416 	}
1417 
1418 	bad_page(page,
1419 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1420 }
1421 
1422 /*
1423  * This page is about to be returned from the page allocator
1424  */
1425 static int check_new_page(struct page *page)
1426 {
1427 	if (likely(page_expected_state(page,
1428 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1429 		return 0;
1430 
1431 	check_new_page_bad(page);
1432 	return 1;
1433 }
1434 
1435 static inline bool check_new_pages(struct page *page, unsigned int order)
1436 {
1437 	if (is_check_pages_enabled()) {
1438 		for (int i = 0; i < (1 << order); i++) {
1439 			struct page *p = page + i;
1440 
1441 			if (check_new_page(p))
1442 				return true;
1443 		}
1444 	}
1445 
1446 	return false;
1447 }
1448 
1449 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1450 {
1451 	/* Don't skip if a software KASAN mode is enabled. */
1452 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1453 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1454 		return false;
1455 
1456 	/* Skip, if hardware tag-based KASAN is not enabled. */
1457 	if (!kasan_hw_tags_enabled())
1458 		return true;
1459 
1460 	/*
1461 	 * With hardware tag-based KASAN enabled, skip if this has been
1462 	 * requested via __GFP_SKIP_KASAN.
1463 	 */
1464 	return flags & __GFP_SKIP_KASAN;
1465 }
1466 
1467 static inline bool should_skip_init(gfp_t flags)
1468 {
1469 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1470 	if (!kasan_hw_tags_enabled())
1471 		return false;
1472 
1473 	/* For hardware tag-based KASAN, skip if requested. */
1474 	return (flags & __GFP_SKIP_ZERO);
1475 }
1476 
1477 inline void post_alloc_hook(struct page *page, unsigned int order,
1478 				gfp_t gfp_flags)
1479 {
1480 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1481 			!should_skip_init(gfp_flags);
1482 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1483 	int i;
1484 
1485 	set_page_private(page, 0);
1486 	set_page_refcounted(page);
1487 
1488 	arch_alloc_page(page, order);
1489 	debug_pagealloc_map_pages(page, 1 << order);
1490 
1491 	/*
1492 	 * Page unpoisoning must happen before memory initialization.
1493 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1494 	 * allocations and the page unpoisoning code will complain.
1495 	 */
1496 	kernel_unpoison_pages(page, 1 << order);
1497 
1498 	/*
1499 	 * As memory initialization might be integrated into KASAN,
1500 	 * KASAN unpoisoning and memory initializion code must be
1501 	 * kept together to avoid discrepancies in behavior.
1502 	 */
1503 
1504 	/*
1505 	 * If memory tags should be zeroed
1506 	 * (which happens only when memory should be initialized as well).
1507 	 */
1508 	if (zero_tags) {
1509 		/* Initialize both memory and memory tags. */
1510 		for (i = 0; i != 1 << order; ++i)
1511 			tag_clear_highpage(page + i);
1512 
1513 		/* Take note that memory was initialized by the loop above. */
1514 		init = false;
1515 	}
1516 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1517 	    kasan_unpoison_pages(page, order, init)) {
1518 		/* Take note that memory was initialized by KASAN. */
1519 		if (kasan_has_integrated_init())
1520 			init = false;
1521 	} else {
1522 		/*
1523 		 * If memory tags have not been set by KASAN, reset the page
1524 		 * tags to ensure page_address() dereferencing does not fault.
1525 		 */
1526 		for (i = 0; i != 1 << order; ++i)
1527 			page_kasan_tag_reset(page + i);
1528 	}
1529 	/* If memory is still not initialized, initialize it now. */
1530 	if (init)
1531 		kernel_init_pages(page, 1 << order);
1532 
1533 	set_page_owner(page, order, gfp_flags);
1534 	page_table_check_alloc(page, order);
1535 }
1536 
1537 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1538 							unsigned int alloc_flags)
1539 {
1540 	post_alloc_hook(page, order, gfp_flags);
1541 
1542 	if (order && (gfp_flags & __GFP_COMP))
1543 		prep_compound_page(page, order);
1544 
1545 	/*
1546 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1547 	 * allocate the page. The expectation is that the caller is taking
1548 	 * steps that will free more memory. The caller should avoid the page
1549 	 * being used for !PFMEMALLOC purposes.
1550 	 */
1551 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1552 		set_page_pfmemalloc(page);
1553 	else
1554 		clear_page_pfmemalloc(page);
1555 }
1556 
1557 /*
1558  * Go through the free lists for the given migratetype and remove
1559  * the smallest available page from the freelists
1560  */
1561 static __always_inline
1562 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1563 						int migratetype)
1564 {
1565 	unsigned int current_order;
1566 	struct free_area *area;
1567 	struct page *page;
1568 
1569 	/* Find a page of the appropriate size in the preferred list */
1570 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1571 		area = &(zone->free_area[current_order]);
1572 		page = get_page_from_free_area(area, migratetype);
1573 		if (!page)
1574 			continue;
1575 		del_page_from_free_list(page, zone, current_order);
1576 		expand(zone, page, order, current_order, migratetype);
1577 		set_pcppage_migratetype(page, migratetype);
1578 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1579 				pcp_allowed_order(order) &&
1580 				migratetype < MIGRATE_PCPTYPES);
1581 		return page;
1582 	}
1583 
1584 	return NULL;
1585 }
1586 
1587 
1588 /*
1589  * This array describes the order lists are fallen back to when
1590  * the free lists for the desirable migrate type are depleted
1591  *
1592  * The other migratetypes do not have fallbacks.
1593  */
1594 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1595 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1596 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1597 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1598 };
1599 
1600 #ifdef CONFIG_CMA
1601 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1602 					unsigned int order)
1603 {
1604 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1605 }
1606 #else
1607 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1608 					unsigned int order) { return NULL; }
1609 #endif
1610 
1611 /*
1612  * Move the free pages in a range to the freelist tail of the requested type.
1613  * Note that start_page and end_pages are not aligned on a pageblock
1614  * boundary. If alignment is required, use move_freepages_block()
1615  */
1616 static int move_freepages(struct zone *zone,
1617 			  unsigned long start_pfn, unsigned long end_pfn,
1618 			  int migratetype, int *num_movable)
1619 {
1620 	struct page *page;
1621 	unsigned long pfn;
1622 	unsigned int order;
1623 	int pages_moved = 0;
1624 
1625 	for (pfn = start_pfn; pfn <= end_pfn;) {
1626 		page = pfn_to_page(pfn);
1627 		if (!PageBuddy(page)) {
1628 			/*
1629 			 * We assume that pages that could be isolated for
1630 			 * migration are movable. But we don't actually try
1631 			 * isolating, as that would be expensive.
1632 			 */
1633 			if (num_movable &&
1634 					(PageLRU(page) || __PageMovable(page)))
1635 				(*num_movable)++;
1636 			pfn++;
1637 			continue;
1638 		}
1639 
1640 		/* Make sure we are not inadvertently changing nodes */
1641 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1642 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1643 
1644 		order = buddy_order(page);
1645 		move_to_free_list(page, zone, order, migratetype);
1646 		pfn += 1 << order;
1647 		pages_moved += 1 << order;
1648 	}
1649 
1650 	return pages_moved;
1651 }
1652 
1653 int move_freepages_block(struct zone *zone, struct page *page,
1654 				int migratetype, int *num_movable)
1655 {
1656 	unsigned long start_pfn, end_pfn, pfn;
1657 
1658 	if (num_movable)
1659 		*num_movable = 0;
1660 
1661 	pfn = page_to_pfn(page);
1662 	start_pfn = pageblock_start_pfn(pfn);
1663 	end_pfn = pageblock_end_pfn(pfn) - 1;
1664 
1665 	/* Do not cross zone boundaries */
1666 	if (!zone_spans_pfn(zone, start_pfn))
1667 		start_pfn = pfn;
1668 	if (!zone_spans_pfn(zone, end_pfn))
1669 		return 0;
1670 
1671 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1672 								num_movable);
1673 }
1674 
1675 static void change_pageblock_range(struct page *pageblock_page,
1676 					int start_order, int migratetype)
1677 {
1678 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1679 
1680 	while (nr_pageblocks--) {
1681 		set_pageblock_migratetype(pageblock_page, migratetype);
1682 		pageblock_page += pageblock_nr_pages;
1683 	}
1684 }
1685 
1686 /*
1687  * When we are falling back to another migratetype during allocation, try to
1688  * steal extra free pages from the same pageblocks to satisfy further
1689  * allocations, instead of polluting multiple pageblocks.
1690  *
1691  * If we are stealing a relatively large buddy page, it is likely there will
1692  * be more free pages in the pageblock, so try to steal them all. For
1693  * reclaimable and unmovable allocations, we steal regardless of page size,
1694  * as fragmentation caused by those allocations polluting movable pageblocks
1695  * is worse than movable allocations stealing from unmovable and reclaimable
1696  * pageblocks.
1697  */
1698 static bool can_steal_fallback(unsigned int order, int start_mt)
1699 {
1700 	/*
1701 	 * Leaving this order check is intended, although there is
1702 	 * relaxed order check in next check. The reason is that
1703 	 * we can actually steal whole pageblock if this condition met,
1704 	 * but, below check doesn't guarantee it and that is just heuristic
1705 	 * so could be changed anytime.
1706 	 */
1707 	if (order >= pageblock_order)
1708 		return true;
1709 
1710 	if (order >= pageblock_order / 2 ||
1711 		start_mt == MIGRATE_RECLAIMABLE ||
1712 		start_mt == MIGRATE_UNMOVABLE ||
1713 		page_group_by_mobility_disabled)
1714 		return true;
1715 
1716 	return false;
1717 }
1718 
1719 static inline bool boost_watermark(struct zone *zone)
1720 {
1721 	unsigned long max_boost;
1722 
1723 	if (!watermark_boost_factor)
1724 		return false;
1725 	/*
1726 	 * Don't bother in zones that are unlikely to produce results.
1727 	 * On small machines, including kdump capture kernels running
1728 	 * in a small area, boosting the watermark can cause an out of
1729 	 * memory situation immediately.
1730 	 */
1731 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1732 		return false;
1733 
1734 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1735 			watermark_boost_factor, 10000);
1736 
1737 	/*
1738 	 * high watermark may be uninitialised if fragmentation occurs
1739 	 * very early in boot so do not boost. We do not fall
1740 	 * through and boost by pageblock_nr_pages as failing
1741 	 * allocations that early means that reclaim is not going
1742 	 * to help and it may even be impossible to reclaim the
1743 	 * boosted watermark resulting in a hang.
1744 	 */
1745 	if (!max_boost)
1746 		return false;
1747 
1748 	max_boost = max(pageblock_nr_pages, max_boost);
1749 
1750 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1751 		max_boost);
1752 
1753 	return true;
1754 }
1755 
1756 /*
1757  * This function implements actual steal behaviour. If order is large enough,
1758  * we can steal whole pageblock. If not, we first move freepages in this
1759  * pageblock to our migratetype and determine how many already-allocated pages
1760  * are there in the pageblock with a compatible migratetype. If at least half
1761  * of pages are free or compatible, we can change migratetype of the pageblock
1762  * itself, so pages freed in the future will be put on the correct free list.
1763  */
1764 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1765 		unsigned int alloc_flags, int start_type, bool whole_block)
1766 {
1767 	unsigned int current_order = buddy_order(page);
1768 	int free_pages, movable_pages, alike_pages;
1769 	int old_block_type;
1770 
1771 	old_block_type = get_pageblock_migratetype(page);
1772 
1773 	/*
1774 	 * This can happen due to races and we want to prevent broken
1775 	 * highatomic accounting.
1776 	 */
1777 	if (is_migrate_highatomic(old_block_type))
1778 		goto single_page;
1779 
1780 	/* Take ownership for orders >= pageblock_order */
1781 	if (current_order >= pageblock_order) {
1782 		change_pageblock_range(page, current_order, start_type);
1783 		goto single_page;
1784 	}
1785 
1786 	/*
1787 	 * Boost watermarks to increase reclaim pressure to reduce the
1788 	 * likelihood of future fallbacks. Wake kswapd now as the node
1789 	 * may be balanced overall and kswapd will not wake naturally.
1790 	 */
1791 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1792 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1793 
1794 	/* We are not allowed to try stealing from the whole block */
1795 	if (!whole_block)
1796 		goto single_page;
1797 
1798 	free_pages = move_freepages_block(zone, page, start_type,
1799 						&movable_pages);
1800 	/* moving whole block can fail due to zone boundary conditions */
1801 	if (!free_pages)
1802 		goto single_page;
1803 
1804 	/*
1805 	 * Determine how many pages are compatible with our allocation.
1806 	 * For movable allocation, it's the number of movable pages which
1807 	 * we just obtained. For other types it's a bit more tricky.
1808 	 */
1809 	if (start_type == MIGRATE_MOVABLE) {
1810 		alike_pages = movable_pages;
1811 	} else {
1812 		/*
1813 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1814 		 * to MOVABLE pageblock, consider all non-movable pages as
1815 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1816 		 * vice versa, be conservative since we can't distinguish the
1817 		 * exact migratetype of non-movable pages.
1818 		 */
1819 		if (old_block_type == MIGRATE_MOVABLE)
1820 			alike_pages = pageblock_nr_pages
1821 						- (free_pages + movable_pages);
1822 		else
1823 			alike_pages = 0;
1824 	}
1825 	/*
1826 	 * If a sufficient number of pages in the block are either free or of
1827 	 * compatible migratability as our allocation, claim the whole block.
1828 	 */
1829 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1830 			page_group_by_mobility_disabled)
1831 		set_pageblock_migratetype(page, start_type);
1832 
1833 	return;
1834 
1835 single_page:
1836 	move_to_free_list(page, zone, current_order, start_type);
1837 }
1838 
1839 /*
1840  * Check whether there is a suitable fallback freepage with requested order.
1841  * If only_stealable is true, this function returns fallback_mt only if
1842  * we can steal other freepages all together. This would help to reduce
1843  * fragmentation due to mixed migratetype pages in one pageblock.
1844  */
1845 int find_suitable_fallback(struct free_area *area, unsigned int order,
1846 			int migratetype, bool only_stealable, bool *can_steal)
1847 {
1848 	int i;
1849 	int fallback_mt;
1850 
1851 	if (area->nr_free == 0)
1852 		return -1;
1853 
1854 	*can_steal = false;
1855 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1856 		fallback_mt = fallbacks[migratetype][i];
1857 		if (free_area_empty(area, fallback_mt))
1858 			continue;
1859 
1860 		if (can_steal_fallback(order, migratetype))
1861 			*can_steal = true;
1862 
1863 		if (!only_stealable)
1864 			return fallback_mt;
1865 
1866 		if (*can_steal)
1867 			return fallback_mt;
1868 	}
1869 
1870 	return -1;
1871 }
1872 
1873 /*
1874  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1875  * there are no empty page blocks that contain a page with a suitable order
1876  */
1877 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1878 {
1879 	int mt;
1880 	unsigned long max_managed, flags;
1881 
1882 	/*
1883 	 * The number reserved as: minimum is 1 pageblock, maximum is
1884 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1885 	 * pageblock size, then don't reserve any pageblocks.
1886 	 * Check is race-prone but harmless.
1887 	 */
1888 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1889 		return;
1890 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1891 	if (zone->nr_reserved_highatomic >= max_managed)
1892 		return;
1893 
1894 	spin_lock_irqsave(&zone->lock, flags);
1895 
1896 	/* Recheck the nr_reserved_highatomic limit under the lock */
1897 	if (zone->nr_reserved_highatomic >= max_managed)
1898 		goto out_unlock;
1899 
1900 	/* Yoink! */
1901 	mt = get_pageblock_migratetype(page);
1902 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1903 	if (migratetype_is_mergeable(mt)) {
1904 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1905 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1906 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1907 	}
1908 
1909 out_unlock:
1910 	spin_unlock_irqrestore(&zone->lock, flags);
1911 }
1912 
1913 /*
1914  * Used when an allocation is about to fail under memory pressure. This
1915  * potentially hurts the reliability of high-order allocations when under
1916  * intense memory pressure but failed atomic allocations should be easier
1917  * to recover from than an OOM.
1918  *
1919  * If @force is true, try to unreserve a pageblock even though highatomic
1920  * pageblock is exhausted.
1921  */
1922 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1923 						bool force)
1924 {
1925 	struct zonelist *zonelist = ac->zonelist;
1926 	unsigned long flags;
1927 	struct zoneref *z;
1928 	struct zone *zone;
1929 	struct page *page;
1930 	int order;
1931 	bool ret;
1932 
1933 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1934 								ac->nodemask) {
1935 		/*
1936 		 * Preserve at least one pageblock unless memory pressure
1937 		 * is really high.
1938 		 */
1939 		if (!force && zone->nr_reserved_highatomic <=
1940 					pageblock_nr_pages)
1941 			continue;
1942 
1943 		spin_lock_irqsave(&zone->lock, flags);
1944 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1945 			struct free_area *area = &(zone->free_area[order]);
1946 
1947 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1948 			if (!page)
1949 				continue;
1950 
1951 			/*
1952 			 * In page freeing path, migratetype change is racy so
1953 			 * we can counter several free pages in a pageblock
1954 			 * in this loop although we changed the pageblock type
1955 			 * from highatomic to ac->migratetype. So we should
1956 			 * adjust the count once.
1957 			 */
1958 			if (is_migrate_highatomic_page(page)) {
1959 				/*
1960 				 * It should never happen but changes to
1961 				 * locking could inadvertently allow a per-cpu
1962 				 * drain to add pages to MIGRATE_HIGHATOMIC
1963 				 * while unreserving so be safe and watch for
1964 				 * underflows.
1965 				 */
1966 				zone->nr_reserved_highatomic -= min(
1967 						pageblock_nr_pages,
1968 						zone->nr_reserved_highatomic);
1969 			}
1970 
1971 			/*
1972 			 * Convert to ac->migratetype and avoid the normal
1973 			 * pageblock stealing heuristics. Minimally, the caller
1974 			 * is doing the work and needs the pages. More
1975 			 * importantly, if the block was always converted to
1976 			 * MIGRATE_UNMOVABLE or another type then the number
1977 			 * of pageblocks that cannot be completely freed
1978 			 * may increase.
1979 			 */
1980 			set_pageblock_migratetype(page, ac->migratetype);
1981 			ret = move_freepages_block(zone, page, ac->migratetype,
1982 									NULL);
1983 			if (ret) {
1984 				spin_unlock_irqrestore(&zone->lock, flags);
1985 				return ret;
1986 			}
1987 		}
1988 		spin_unlock_irqrestore(&zone->lock, flags);
1989 	}
1990 
1991 	return false;
1992 }
1993 
1994 /*
1995  * Try finding a free buddy page on the fallback list and put it on the free
1996  * list of requested migratetype, possibly along with other pages from the same
1997  * block, depending on fragmentation avoidance heuristics. Returns true if
1998  * fallback was found so that __rmqueue_smallest() can grab it.
1999  *
2000  * The use of signed ints for order and current_order is a deliberate
2001  * deviation from the rest of this file, to make the for loop
2002  * condition simpler.
2003  */
2004 static __always_inline bool
2005 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2006 						unsigned int alloc_flags)
2007 {
2008 	struct free_area *area;
2009 	int current_order;
2010 	int min_order = order;
2011 	struct page *page;
2012 	int fallback_mt;
2013 	bool can_steal;
2014 
2015 	/*
2016 	 * Do not steal pages from freelists belonging to other pageblocks
2017 	 * i.e. orders < pageblock_order. If there are no local zones free,
2018 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2019 	 */
2020 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2021 		min_order = pageblock_order;
2022 
2023 	/*
2024 	 * Find the largest available free page in the other list. This roughly
2025 	 * approximates finding the pageblock with the most free pages, which
2026 	 * would be too costly to do exactly.
2027 	 */
2028 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2029 				--current_order) {
2030 		area = &(zone->free_area[current_order]);
2031 		fallback_mt = find_suitable_fallback(area, current_order,
2032 				start_migratetype, false, &can_steal);
2033 		if (fallback_mt == -1)
2034 			continue;
2035 
2036 		/*
2037 		 * We cannot steal all free pages from the pageblock and the
2038 		 * requested migratetype is movable. In that case it's better to
2039 		 * steal and split the smallest available page instead of the
2040 		 * largest available page, because even if the next movable
2041 		 * allocation falls back into a different pageblock than this
2042 		 * one, it won't cause permanent fragmentation.
2043 		 */
2044 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2045 					&& current_order > order)
2046 			goto find_smallest;
2047 
2048 		goto do_steal;
2049 	}
2050 
2051 	return false;
2052 
2053 find_smallest:
2054 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2055 		area = &(zone->free_area[current_order]);
2056 		fallback_mt = find_suitable_fallback(area, current_order,
2057 				start_migratetype, false, &can_steal);
2058 		if (fallback_mt != -1)
2059 			break;
2060 	}
2061 
2062 	/*
2063 	 * This should not happen - we already found a suitable fallback
2064 	 * when looking for the largest page.
2065 	 */
2066 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2067 
2068 do_steal:
2069 	page = get_page_from_free_area(area, fallback_mt);
2070 
2071 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2072 								can_steal);
2073 
2074 	trace_mm_page_alloc_extfrag(page, order, current_order,
2075 		start_migratetype, fallback_mt);
2076 
2077 	return true;
2078 
2079 }
2080 
2081 /*
2082  * Do the hard work of removing an element from the buddy allocator.
2083  * Call me with the zone->lock already held.
2084  */
2085 static __always_inline struct page *
2086 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2087 						unsigned int alloc_flags)
2088 {
2089 	struct page *page;
2090 
2091 	if (IS_ENABLED(CONFIG_CMA)) {
2092 		/*
2093 		 * Balance movable allocations between regular and CMA areas by
2094 		 * allocating from CMA when over half of the zone's free memory
2095 		 * is in the CMA area.
2096 		 */
2097 		if (alloc_flags & ALLOC_CMA &&
2098 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2099 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2100 			page = __rmqueue_cma_fallback(zone, order);
2101 			if (page)
2102 				return page;
2103 		}
2104 	}
2105 retry:
2106 	page = __rmqueue_smallest(zone, order, migratetype);
2107 	if (unlikely(!page)) {
2108 		if (alloc_flags & ALLOC_CMA)
2109 			page = __rmqueue_cma_fallback(zone, order);
2110 
2111 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2112 								alloc_flags))
2113 			goto retry;
2114 	}
2115 	return page;
2116 }
2117 
2118 /*
2119  * Obtain a specified number of elements from the buddy allocator, all under
2120  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2121  * Returns the number of new pages which were placed at *list.
2122  */
2123 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2124 			unsigned long count, struct list_head *list,
2125 			int migratetype, unsigned int alloc_flags)
2126 {
2127 	unsigned long flags;
2128 	int i;
2129 
2130 	spin_lock_irqsave(&zone->lock, flags);
2131 	for (i = 0; i < count; ++i) {
2132 		struct page *page = __rmqueue(zone, order, migratetype,
2133 								alloc_flags);
2134 		if (unlikely(page == NULL))
2135 			break;
2136 
2137 		/*
2138 		 * Split buddy pages returned by expand() are received here in
2139 		 * physical page order. The page is added to the tail of
2140 		 * caller's list. From the callers perspective, the linked list
2141 		 * is ordered by page number under some conditions. This is
2142 		 * useful for IO devices that can forward direction from the
2143 		 * head, thus also in the physical page order. This is useful
2144 		 * for IO devices that can merge IO requests if the physical
2145 		 * pages are ordered properly.
2146 		 */
2147 		list_add_tail(&page->pcp_list, list);
2148 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2149 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2150 					      -(1 << order));
2151 	}
2152 
2153 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2154 	spin_unlock_irqrestore(&zone->lock, flags);
2155 
2156 	return i;
2157 }
2158 
2159 /*
2160  * Called from the vmstat counter updater to decay the PCP high.
2161  * Return whether there are addition works to do.
2162  */
2163 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2164 {
2165 	int high_min, to_drain, batch;
2166 	int todo = 0;
2167 
2168 	high_min = READ_ONCE(pcp->high_min);
2169 	batch = READ_ONCE(pcp->batch);
2170 	/*
2171 	 * Decrease pcp->high periodically to try to free possible
2172 	 * idle PCP pages.  And, avoid to free too many pages to
2173 	 * control latency.  This caps pcp->high decrement too.
2174 	 */
2175 	if (pcp->high > high_min) {
2176 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2177 				 pcp->high - (pcp->high >> 3), high_min);
2178 		if (pcp->high > high_min)
2179 			todo++;
2180 	}
2181 
2182 	to_drain = pcp->count - pcp->high;
2183 	if (to_drain > 0) {
2184 		spin_lock(&pcp->lock);
2185 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2186 		spin_unlock(&pcp->lock);
2187 		todo++;
2188 	}
2189 
2190 	return todo;
2191 }
2192 
2193 #ifdef CONFIG_NUMA
2194 /*
2195  * Called from the vmstat counter updater to drain pagesets of this
2196  * currently executing processor on remote nodes after they have
2197  * expired.
2198  */
2199 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2200 {
2201 	int to_drain, batch;
2202 
2203 	batch = READ_ONCE(pcp->batch);
2204 	to_drain = min(pcp->count, batch);
2205 	if (to_drain > 0) {
2206 		spin_lock(&pcp->lock);
2207 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2208 		spin_unlock(&pcp->lock);
2209 	}
2210 }
2211 #endif
2212 
2213 /*
2214  * Drain pcplists of the indicated processor and zone.
2215  */
2216 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2217 {
2218 	struct per_cpu_pages *pcp;
2219 
2220 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2221 	if (pcp->count) {
2222 		spin_lock(&pcp->lock);
2223 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2224 		spin_unlock(&pcp->lock);
2225 	}
2226 }
2227 
2228 /*
2229  * Drain pcplists of all zones on the indicated processor.
2230  */
2231 static void drain_pages(unsigned int cpu)
2232 {
2233 	struct zone *zone;
2234 
2235 	for_each_populated_zone(zone) {
2236 		drain_pages_zone(cpu, zone);
2237 	}
2238 }
2239 
2240 /*
2241  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2242  */
2243 void drain_local_pages(struct zone *zone)
2244 {
2245 	int cpu = smp_processor_id();
2246 
2247 	if (zone)
2248 		drain_pages_zone(cpu, zone);
2249 	else
2250 		drain_pages(cpu);
2251 }
2252 
2253 /*
2254  * The implementation of drain_all_pages(), exposing an extra parameter to
2255  * drain on all cpus.
2256  *
2257  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2258  * not empty. The check for non-emptiness can however race with a free to
2259  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2260  * that need the guarantee that every CPU has drained can disable the
2261  * optimizing racy check.
2262  */
2263 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2264 {
2265 	int cpu;
2266 
2267 	/*
2268 	 * Allocate in the BSS so we won't require allocation in
2269 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2270 	 */
2271 	static cpumask_t cpus_with_pcps;
2272 
2273 	/*
2274 	 * Do not drain if one is already in progress unless it's specific to
2275 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2276 	 * the drain to be complete when the call returns.
2277 	 */
2278 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2279 		if (!zone)
2280 			return;
2281 		mutex_lock(&pcpu_drain_mutex);
2282 	}
2283 
2284 	/*
2285 	 * We don't care about racing with CPU hotplug event
2286 	 * as offline notification will cause the notified
2287 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2288 	 * disables preemption as part of its processing
2289 	 */
2290 	for_each_online_cpu(cpu) {
2291 		struct per_cpu_pages *pcp;
2292 		struct zone *z;
2293 		bool has_pcps = false;
2294 
2295 		if (force_all_cpus) {
2296 			/*
2297 			 * The pcp.count check is racy, some callers need a
2298 			 * guarantee that no cpu is missed.
2299 			 */
2300 			has_pcps = true;
2301 		} else if (zone) {
2302 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2303 			if (pcp->count)
2304 				has_pcps = true;
2305 		} else {
2306 			for_each_populated_zone(z) {
2307 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2308 				if (pcp->count) {
2309 					has_pcps = true;
2310 					break;
2311 				}
2312 			}
2313 		}
2314 
2315 		if (has_pcps)
2316 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2317 		else
2318 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2319 	}
2320 
2321 	for_each_cpu(cpu, &cpus_with_pcps) {
2322 		if (zone)
2323 			drain_pages_zone(cpu, zone);
2324 		else
2325 			drain_pages(cpu);
2326 	}
2327 
2328 	mutex_unlock(&pcpu_drain_mutex);
2329 }
2330 
2331 /*
2332  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2333  *
2334  * When zone parameter is non-NULL, spill just the single zone's pages.
2335  */
2336 void drain_all_pages(struct zone *zone)
2337 {
2338 	__drain_all_pages(zone, false);
2339 }
2340 
2341 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2342 							unsigned int order)
2343 {
2344 	int migratetype;
2345 
2346 	if (!free_pages_prepare(page, order, FPI_NONE))
2347 		return false;
2348 
2349 	migratetype = get_pfnblock_migratetype(page, pfn);
2350 	set_pcppage_migratetype(page, migratetype);
2351 	return true;
2352 }
2353 
2354 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2355 {
2356 	int min_nr_free, max_nr_free;
2357 
2358 	/* Free as much as possible if batch freeing high-order pages. */
2359 	if (unlikely(free_high))
2360 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2361 
2362 	/* Check for PCP disabled or boot pageset */
2363 	if (unlikely(high < batch))
2364 		return 1;
2365 
2366 	/* Leave at least pcp->batch pages on the list */
2367 	min_nr_free = batch;
2368 	max_nr_free = high - batch;
2369 
2370 	/*
2371 	 * Increase the batch number to the number of the consecutive
2372 	 * freed pages to reduce zone lock contention.
2373 	 */
2374 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2375 
2376 	return batch;
2377 }
2378 
2379 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2380 		       int batch, bool free_high)
2381 {
2382 	int high, high_min, high_max;
2383 
2384 	high_min = READ_ONCE(pcp->high_min);
2385 	high_max = READ_ONCE(pcp->high_max);
2386 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2387 
2388 	if (unlikely(!high))
2389 		return 0;
2390 
2391 	if (unlikely(free_high)) {
2392 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2393 				high_min);
2394 		return 0;
2395 	}
2396 
2397 	/*
2398 	 * If reclaim is active, limit the number of pages that can be
2399 	 * stored on pcp lists
2400 	 */
2401 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2402 		int free_count = max_t(int, pcp->free_count, batch);
2403 
2404 		pcp->high = max(high - free_count, high_min);
2405 		return min(batch << 2, pcp->high);
2406 	}
2407 
2408 	if (high_min == high_max)
2409 		return high;
2410 
2411 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2412 		int free_count = max_t(int, pcp->free_count, batch);
2413 
2414 		pcp->high = max(high - free_count, high_min);
2415 		high = max(pcp->count, high_min);
2416 	} else if (pcp->count >= high) {
2417 		int need_high = pcp->free_count + batch;
2418 
2419 		/* pcp->high should be large enough to hold batch freed pages */
2420 		if (pcp->high < need_high)
2421 			pcp->high = clamp(need_high, high_min, high_max);
2422 	}
2423 
2424 	return high;
2425 }
2426 
2427 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2428 				   struct page *page, int migratetype,
2429 				   unsigned int order)
2430 {
2431 	int high, batch;
2432 	int pindex;
2433 	bool free_high = false;
2434 
2435 	/*
2436 	 * On freeing, reduce the number of pages that are batch allocated.
2437 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2438 	 * allocations.
2439 	 */
2440 	pcp->alloc_factor >>= 1;
2441 	__count_vm_events(PGFREE, 1 << order);
2442 	pindex = order_to_pindex(migratetype, order);
2443 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2444 	pcp->count += 1 << order;
2445 
2446 	batch = READ_ONCE(pcp->batch);
2447 	/*
2448 	 * As high-order pages other than THP's stored on PCP can contribute
2449 	 * to fragmentation, limit the number stored when PCP is heavily
2450 	 * freeing without allocation. The remainder after bulk freeing
2451 	 * stops will be drained from vmstat refresh context.
2452 	 */
2453 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2454 		free_high = (pcp->free_count >= batch &&
2455 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2456 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2457 			      pcp->count >= READ_ONCE(batch)));
2458 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2459 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2460 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2461 	}
2462 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2463 		pcp->free_count += (1 << order);
2464 	high = nr_pcp_high(pcp, zone, batch, free_high);
2465 	if (pcp->count >= high) {
2466 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2467 				   pcp, pindex);
2468 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2469 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2470 				      ZONE_MOVABLE, 0))
2471 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2472 	}
2473 }
2474 
2475 /*
2476  * Free a pcp page
2477  */
2478 void free_unref_page(struct page *page, unsigned int order)
2479 {
2480 	unsigned long __maybe_unused UP_flags;
2481 	struct per_cpu_pages *pcp;
2482 	struct zone *zone;
2483 	unsigned long pfn = page_to_pfn(page);
2484 	int migratetype, pcpmigratetype;
2485 
2486 	if (!free_unref_page_prepare(page, pfn, order))
2487 		return;
2488 
2489 	/*
2490 	 * We only track unmovable, reclaimable and movable on pcp lists.
2491 	 * Place ISOLATE pages on the isolated list because they are being
2492 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2493 	 * get those areas back if necessary. Otherwise, we may have to free
2494 	 * excessively into the page allocator
2495 	 */
2496 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2497 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2498 		if (unlikely(is_migrate_isolate(migratetype))) {
2499 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2500 			return;
2501 		}
2502 		pcpmigratetype = MIGRATE_MOVABLE;
2503 	}
2504 
2505 	zone = page_zone(page);
2506 	pcp_trylock_prepare(UP_flags);
2507 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2508 	if (pcp) {
2509 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2510 		pcp_spin_unlock(pcp);
2511 	} else {
2512 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2513 	}
2514 	pcp_trylock_finish(UP_flags);
2515 }
2516 
2517 /*
2518  * Free a list of 0-order pages
2519  */
2520 void free_unref_page_list(struct list_head *list)
2521 {
2522 	unsigned long __maybe_unused UP_flags;
2523 	struct page *page, *next;
2524 	struct per_cpu_pages *pcp = NULL;
2525 	struct zone *locked_zone = NULL;
2526 	int batch_count = 0;
2527 	int migratetype;
2528 
2529 	/* Prepare pages for freeing */
2530 	list_for_each_entry_safe(page, next, list, lru) {
2531 		unsigned long pfn = page_to_pfn(page);
2532 		if (!free_unref_page_prepare(page, pfn, 0)) {
2533 			list_del(&page->lru);
2534 			continue;
2535 		}
2536 
2537 		/*
2538 		 * Free isolated pages directly to the allocator, see
2539 		 * comment in free_unref_page.
2540 		 */
2541 		migratetype = get_pcppage_migratetype(page);
2542 		if (unlikely(is_migrate_isolate(migratetype))) {
2543 			list_del(&page->lru);
2544 			free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
2545 			continue;
2546 		}
2547 	}
2548 
2549 	list_for_each_entry_safe(page, next, list, lru) {
2550 		struct zone *zone = page_zone(page);
2551 
2552 		list_del(&page->lru);
2553 		migratetype = get_pcppage_migratetype(page);
2554 
2555 		/*
2556 		 * Either different zone requiring a different pcp lock or
2557 		 * excessive lock hold times when freeing a large list of
2558 		 * pages.
2559 		 */
2560 		if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) {
2561 			if (pcp) {
2562 				pcp_spin_unlock(pcp);
2563 				pcp_trylock_finish(UP_flags);
2564 			}
2565 
2566 			batch_count = 0;
2567 
2568 			/*
2569 			 * trylock is necessary as pages may be getting freed
2570 			 * from IRQ or SoftIRQ context after an IO completion.
2571 			 */
2572 			pcp_trylock_prepare(UP_flags);
2573 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2574 			if (unlikely(!pcp)) {
2575 				pcp_trylock_finish(UP_flags);
2576 				free_one_page(zone, page, page_to_pfn(page),
2577 					      0, migratetype, FPI_NONE);
2578 				locked_zone = NULL;
2579 				continue;
2580 			}
2581 			locked_zone = zone;
2582 		}
2583 
2584 		/*
2585 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2586 		 * to the MIGRATE_MOVABLE pcp list.
2587 		 */
2588 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2589 			migratetype = MIGRATE_MOVABLE;
2590 
2591 		trace_mm_page_free_batched(page);
2592 		free_unref_page_commit(zone, pcp, page, migratetype, 0);
2593 		batch_count++;
2594 	}
2595 
2596 	if (pcp) {
2597 		pcp_spin_unlock(pcp);
2598 		pcp_trylock_finish(UP_flags);
2599 	}
2600 }
2601 
2602 /*
2603  * split_page takes a non-compound higher-order page, and splits it into
2604  * n (1<<order) sub-pages: page[0..n]
2605  * Each sub-page must be freed individually.
2606  *
2607  * Note: this is probably too low level an operation for use in drivers.
2608  * Please consult with lkml before using this in your driver.
2609  */
2610 void split_page(struct page *page, unsigned int order)
2611 {
2612 	int i;
2613 
2614 	VM_BUG_ON_PAGE(PageCompound(page), page);
2615 	VM_BUG_ON_PAGE(!page_count(page), page);
2616 
2617 	for (i = 1; i < (1 << order); i++)
2618 		set_page_refcounted(page + i);
2619 	split_page_owner(page, 1 << order);
2620 	split_page_memcg(page, 1 << order);
2621 }
2622 EXPORT_SYMBOL_GPL(split_page);
2623 
2624 int __isolate_free_page(struct page *page, unsigned int order)
2625 {
2626 	struct zone *zone = page_zone(page);
2627 	int mt = get_pageblock_migratetype(page);
2628 
2629 	if (!is_migrate_isolate(mt)) {
2630 		unsigned long watermark;
2631 		/*
2632 		 * Obey watermarks as if the page was being allocated. We can
2633 		 * emulate a high-order watermark check with a raised order-0
2634 		 * watermark, because we already know our high-order page
2635 		 * exists.
2636 		 */
2637 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2638 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2639 			return 0;
2640 
2641 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2642 	}
2643 
2644 	del_page_from_free_list(page, zone, order);
2645 
2646 	/*
2647 	 * Set the pageblock if the isolated page is at least half of a
2648 	 * pageblock
2649 	 */
2650 	if (order >= pageblock_order - 1) {
2651 		struct page *endpage = page + (1 << order) - 1;
2652 		for (; page < endpage; page += pageblock_nr_pages) {
2653 			int mt = get_pageblock_migratetype(page);
2654 			/*
2655 			 * Only change normal pageblocks (i.e., they can merge
2656 			 * with others)
2657 			 */
2658 			if (migratetype_is_mergeable(mt))
2659 				set_pageblock_migratetype(page,
2660 							  MIGRATE_MOVABLE);
2661 		}
2662 	}
2663 
2664 	return 1UL << order;
2665 }
2666 
2667 /**
2668  * __putback_isolated_page - Return a now-isolated page back where we got it
2669  * @page: Page that was isolated
2670  * @order: Order of the isolated page
2671  * @mt: The page's pageblock's migratetype
2672  *
2673  * This function is meant to return a page pulled from the free lists via
2674  * __isolate_free_page back to the free lists they were pulled from.
2675  */
2676 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2677 {
2678 	struct zone *zone = page_zone(page);
2679 
2680 	/* zone lock should be held when this function is called */
2681 	lockdep_assert_held(&zone->lock);
2682 
2683 	/* Return isolated page to tail of freelist. */
2684 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2685 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2686 }
2687 
2688 /*
2689  * Update NUMA hit/miss statistics
2690  */
2691 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2692 				   long nr_account)
2693 {
2694 #ifdef CONFIG_NUMA
2695 	enum numa_stat_item local_stat = NUMA_LOCAL;
2696 
2697 	/* skip numa counters update if numa stats is disabled */
2698 	if (!static_branch_likely(&vm_numa_stat_key))
2699 		return;
2700 
2701 	if (zone_to_nid(z) != numa_node_id())
2702 		local_stat = NUMA_OTHER;
2703 
2704 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2705 		__count_numa_events(z, NUMA_HIT, nr_account);
2706 	else {
2707 		__count_numa_events(z, NUMA_MISS, nr_account);
2708 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2709 	}
2710 	__count_numa_events(z, local_stat, nr_account);
2711 #endif
2712 }
2713 
2714 static __always_inline
2715 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2716 			   unsigned int order, unsigned int alloc_flags,
2717 			   int migratetype)
2718 {
2719 	struct page *page;
2720 	unsigned long flags;
2721 
2722 	do {
2723 		page = NULL;
2724 		spin_lock_irqsave(&zone->lock, flags);
2725 		if (alloc_flags & ALLOC_HIGHATOMIC)
2726 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2727 		if (!page) {
2728 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2729 
2730 			/*
2731 			 * If the allocation fails, allow OOM handling access
2732 			 * to HIGHATOMIC reserves as failing now is worse than
2733 			 * failing a high-order atomic allocation in the
2734 			 * future.
2735 			 */
2736 			if (!page && (alloc_flags & ALLOC_OOM))
2737 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2738 
2739 			if (!page) {
2740 				spin_unlock_irqrestore(&zone->lock, flags);
2741 				return NULL;
2742 			}
2743 		}
2744 		__mod_zone_freepage_state(zone, -(1 << order),
2745 					  get_pcppage_migratetype(page));
2746 		spin_unlock_irqrestore(&zone->lock, flags);
2747 	} while (check_new_pages(page, order));
2748 
2749 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2750 	zone_statistics(preferred_zone, zone, 1);
2751 
2752 	return page;
2753 }
2754 
2755 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2756 {
2757 	int high, base_batch, batch, max_nr_alloc;
2758 	int high_max, high_min;
2759 
2760 	base_batch = READ_ONCE(pcp->batch);
2761 	high_min = READ_ONCE(pcp->high_min);
2762 	high_max = READ_ONCE(pcp->high_max);
2763 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2764 
2765 	/* Check for PCP disabled or boot pageset */
2766 	if (unlikely(high < base_batch))
2767 		return 1;
2768 
2769 	if (order)
2770 		batch = base_batch;
2771 	else
2772 		batch = (base_batch << pcp->alloc_factor);
2773 
2774 	/*
2775 	 * If we had larger pcp->high, we could avoid to allocate from
2776 	 * zone.
2777 	 */
2778 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2779 		high = pcp->high = min(high + batch, high_max);
2780 
2781 	if (!order) {
2782 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2783 		/*
2784 		 * Double the number of pages allocated each time there is
2785 		 * subsequent allocation of order-0 pages without any freeing.
2786 		 */
2787 		if (batch <= max_nr_alloc &&
2788 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2789 			pcp->alloc_factor++;
2790 		batch = min(batch, max_nr_alloc);
2791 	}
2792 
2793 	/*
2794 	 * Scale batch relative to order if batch implies free pages
2795 	 * can be stored on the PCP. Batch can be 1 for small zones or
2796 	 * for boot pagesets which should never store free pages as
2797 	 * the pages may belong to arbitrary zones.
2798 	 */
2799 	if (batch > 1)
2800 		batch = max(batch >> order, 2);
2801 
2802 	return batch;
2803 }
2804 
2805 /* Remove page from the per-cpu list, caller must protect the list */
2806 static inline
2807 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2808 			int migratetype,
2809 			unsigned int alloc_flags,
2810 			struct per_cpu_pages *pcp,
2811 			struct list_head *list)
2812 {
2813 	struct page *page;
2814 
2815 	do {
2816 		if (list_empty(list)) {
2817 			int batch = nr_pcp_alloc(pcp, zone, order);
2818 			int alloced;
2819 
2820 			alloced = rmqueue_bulk(zone, order,
2821 					batch, list,
2822 					migratetype, alloc_flags);
2823 
2824 			pcp->count += alloced << order;
2825 			if (unlikely(list_empty(list)))
2826 				return NULL;
2827 		}
2828 
2829 		page = list_first_entry(list, struct page, pcp_list);
2830 		list_del(&page->pcp_list);
2831 		pcp->count -= 1 << order;
2832 	} while (check_new_pages(page, order));
2833 
2834 	return page;
2835 }
2836 
2837 /* Lock and remove page from the per-cpu list */
2838 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2839 			struct zone *zone, unsigned int order,
2840 			int migratetype, unsigned int alloc_flags)
2841 {
2842 	struct per_cpu_pages *pcp;
2843 	struct list_head *list;
2844 	struct page *page;
2845 	unsigned long __maybe_unused UP_flags;
2846 
2847 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2848 	pcp_trylock_prepare(UP_flags);
2849 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2850 	if (!pcp) {
2851 		pcp_trylock_finish(UP_flags);
2852 		return NULL;
2853 	}
2854 
2855 	/*
2856 	 * On allocation, reduce the number of pages that are batch freed.
2857 	 * See nr_pcp_free() where free_factor is increased for subsequent
2858 	 * frees.
2859 	 */
2860 	pcp->free_count >>= 1;
2861 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2862 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2863 	pcp_spin_unlock(pcp);
2864 	pcp_trylock_finish(UP_flags);
2865 	if (page) {
2866 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2867 		zone_statistics(preferred_zone, zone, 1);
2868 	}
2869 	return page;
2870 }
2871 
2872 /*
2873  * Allocate a page from the given zone.
2874  * Use pcplists for THP or "cheap" high-order allocations.
2875  */
2876 
2877 /*
2878  * Do not instrument rmqueue() with KMSAN. This function may call
2879  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2880  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2881  * may call rmqueue() again, which will result in a deadlock.
2882  */
2883 __no_sanitize_memory
2884 static inline
2885 struct page *rmqueue(struct zone *preferred_zone,
2886 			struct zone *zone, unsigned int order,
2887 			gfp_t gfp_flags, unsigned int alloc_flags,
2888 			int migratetype)
2889 {
2890 	struct page *page;
2891 
2892 	/*
2893 	 * We most definitely don't want callers attempting to
2894 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2895 	 */
2896 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2897 
2898 	if (likely(pcp_allowed_order(order))) {
2899 		page = rmqueue_pcplist(preferred_zone, zone, order,
2900 				       migratetype, alloc_flags);
2901 		if (likely(page))
2902 			goto out;
2903 	}
2904 
2905 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2906 							migratetype);
2907 
2908 out:
2909 	/* Separate test+clear to avoid unnecessary atomics */
2910 	if ((alloc_flags & ALLOC_KSWAPD) &&
2911 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2912 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2913 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2914 	}
2915 
2916 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2917 	return page;
2918 }
2919 
2920 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2921 {
2922 	return __should_fail_alloc_page(gfp_mask, order);
2923 }
2924 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2925 
2926 static inline long __zone_watermark_unusable_free(struct zone *z,
2927 				unsigned int order, unsigned int alloc_flags)
2928 {
2929 	long unusable_free = (1 << order) - 1;
2930 
2931 	/*
2932 	 * If the caller does not have rights to reserves below the min
2933 	 * watermark then subtract the high-atomic reserves. This will
2934 	 * over-estimate the size of the atomic reserve but it avoids a search.
2935 	 */
2936 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2937 		unusable_free += z->nr_reserved_highatomic;
2938 
2939 #ifdef CONFIG_CMA
2940 	/* If allocation can't use CMA areas don't use free CMA pages */
2941 	if (!(alloc_flags & ALLOC_CMA))
2942 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2943 #endif
2944 #ifdef CONFIG_UNACCEPTED_MEMORY
2945 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2946 #endif
2947 
2948 	return unusable_free;
2949 }
2950 
2951 /*
2952  * Return true if free base pages are above 'mark'. For high-order checks it
2953  * will return true of the order-0 watermark is reached and there is at least
2954  * one free page of a suitable size. Checking now avoids taking the zone lock
2955  * to check in the allocation paths if no pages are free.
2956  */
2957 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2958 			 int highest_zoneidx, unsigned int alloc_flags,
2959 			 long free_pages)
2960 {
2961 	long min = mark;
2962 	int o;
2963 
2964 	/* free_pages may go negative - that's OK */
2965 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2966 
2967 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2968 		/*
2969 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2970 		 * as OOM.
2971 		 */
2972 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2973 			min -= min / 2;
2974 
2975 			/*
2976 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2977 			 * access more reserves than just __GFP_HIGH. Other
2978 			 * non-blocking allocations requests such as GFP_NOWAIT
2979 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2980 			 * access to the min reserve.
2981 			 */
2982 			if (alloc_flags & ALLOC_NON_BLOCK)
2983 				min -= min / 4;
2984 		}
2985 
2986 		/*
2987 		 * OOM victims can try even harder than the normal reserve
2988 		 * users on the grounds that it's definitely going to be in
2989 		 * the exit path shortly and free memory. Any allocation it
2990 		 * makes during the free path will be small and short-lived.
2991 		 */
2992 		if (alloc_flags & ALLOC_OOM)
2993 			min -= min / 2;
2994 	}
2995 
2996 	/*
2997 	 * Check watermarks for an order-0 allocation request. If these
2998 	 * are not met, then a high-order request also cannot go ahead
2999 	 * even if a suitable page happened to be free.
3000 	 */
3001 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3002 		return false;
3003 
3004 	/* If this is an order-0 request then the watermark is fine */
3005 	if (!order)
3006 		return true;
3007 
3008 	/* For a high-order request, check at least one suitable page is free */
3009 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3010 		struct free_area *area = &z->free_area[o];
3011 		int mt;
3012 
3013 		if (!area->nr_free)
3014 			continue;
3015 
3016 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3017 			if (!free_area_empty(area, mt))
3018 				return true;
3019 		}
3020 
3021 #ifdef CONFIG_CMA
3022 		if ((alloc_flags & ALLOC_CMA) &&
3023 		    !free_area_empty(area, MIGRATE_CMA)) {
3024 			return true;
3025 		}
3026 #endif
3027 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3028 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3029 			return true;
3030 		}
3031 	}
3032 	return false;
3033 }
3034 
3035 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3036 		      int highest_zoneidx, unsigned int alloc_flags)
3037 {
3038 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3039 					zone_page_state(z, NR_FREE_PAGES));
3040 }
3041 
3042 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3043 				unsigned long mark, int highest_zoneidx,
3044 				unsigned int alloc_flags, gfp_t gfp_mask)
3045 {
3046 	long free_pages;
3047 
3048 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3049 
3050 	/*
3051 	 * Fast check for order-0 only. If this fails then the reserves
3052 	 * need to be calculated.
3053 	 */
3054 	if (!order) {
3055 		long usable_free;
3056 		long reserved;
3057 
3058 		usable_free = free_pages;
3059 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3060 
3061 		/* reserved may over estimate high-atomic reserves. */
3062 		usable_free -= min(usable_free, reserved);
3063 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3064 			return true;
3065 	}
3066 
3067 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3068 					free_pages))
3069 		return true;
3070 
3071 	/*
3072 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3073 	 * when checking the min watermark. The min watermark is the
3074 	 * point where boosting is ignored so that kswapd is woken up
3075 	 * when below the low watermark.
3076 	 */
3077 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3078 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3079 		mark = z->_watermark[WMARK_MIN];
3080 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3081 					alloc_flags, free_pages);
3082 	}
3083 
3084 	return false;
3085 }
3086 
3087 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3088 			unsigned long mark, int highest_zoneidx)
3089 {
3090 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3091 
3092 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3093 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3094 
3095 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3096 								free_pages);
3097 }
3098 
3099 #ifdef CONFIG_NUMA
3100 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3101 
3102 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3103 {
3104 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3105 				node_reclaim_distance;
3106 }
3107 #else	/* CONFIG_NUMA */
3108 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109 {
3110 	return true;
3111 }
3112 #endif	/* CONFIG_NUMA */
3113 
3114 /*
3115  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3116  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3117  * premature use of a lower zone may cause lowmem pressure problems that
3118  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3119  * probably too small. It only makes sense to spread allocations to avoid
3120  * fragmentation between the Normal and DMA32 zones.
3121  */
3122 static inline unsigned int
3123 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3124 {
3125 	unsigned int alloc_flags;
3126 
3127 	/*
3128 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3129 	 * to save a branch.
3130 	 */
3131 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3132 
3133 #ifdef CONFIG_ZONE_DMA32
3134 	if (!zone)
3135 		return alloc_flags;
3136 
3137 	if (zone_idx(zone) != ZONE_NORMAL)
3138 		return alloc_flags;
3139 
3140 	/*
3141 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3142 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3143 	 * on UMA that if Normal is populated then so is DMA32.
3144 	 */
3145 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3146 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3147 		return alloc_flags;
3148 
3149 	alloc_flags |= ALLOC_NOFRAGMENT;
3150 #endif /* CONFIG_ZONE_DMA32 */
3151 	return alloc_flags;
3152 }
3153 
3154 /* Must be called after current_gfp_context() which can change gfp_mask */
3155 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3156 						  unsigned int alloc_flags)
3157 {
3158 #ifdef CONFIG_CMA
3159 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3160 		alloc_flags |= ALLOC_CMA;
3161 #endif
3162 	return alloc_flags;
3163 }
3164 
3165 /*
3166  * get_page_from_freelist goes through the zonelist trying to allocate
3167  * a page.
3168  */
3169 static struct page *
3170 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3171 						const struct alloc_context *ac)
3172 {
3173 	struct zoneref *z;
3174 	struct zone *zone;
3175 	struct pglist_data *last_pgdat = NULL;
3176 	bool last_pgdat_dirty_ok = false;
3177 	bool no_fallback;
3178 
3179 retry:
3180 	/*
3181 	 * Scan zonelist, looking for a zone with enough free.
3182 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3183 	 */
3184 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3185 	z = ac->preferred_zoneref;
3186 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3187 					ac->nodemask) {
3188 		struct page *page;
3189 		unsigned long mark;
3190 
3191 		if (cpusets_enabled() &&
3192 			(alloc_flags & ALLOC_CPUSET) &&
3193 			!__cpuset_zone_allowed(zone, gfp_mask))
3194 				continue;
3195 		/*
3196 		 * When allocating a page cache page for writing, we
3197 		 * want to get it from a node that is within its dirty
3198 		 * limit, such that no single node holds more than its
3199 		 * proportional share of globally allowed dirty pages.
3200 		 * The dirty limits take into account the node's
3201 		 * lowmem reserves and high watermark so that kswapd
3202 		 * should be able to balance it without having to
3203 		 * write pages from its LRU list.
3204 		 *
3205 		 * XXX: For now, allow allocations to potentially
3206 		 * exceed the per-node dirty limit in the slowpath
3207 		 * (spread_dirty_pages unset) before going into reclaim,
3208 		 * which is important when on a NUMA setup the allowed
3209 		 * nodes are together not big enough to reach the
3210 		 * global limit.  The proper fix for these situations
3211 		 * will require awareness of nodes in the
3212 		 * dirty-throttling and the flusher threads.
3213 		 */
3214 		if (ac->spread_dirty_pages) {
3215 			if (last_pgdat != zone->zone_pgdat) {
3216 				last_pgdat = zone->zone_pgdat;
3217 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3218 			}
3219 
3220 			if (!last_pgdat_dirty_ok)
3221 				continue;
3222 		}
3223 
3224 		if (no_fallback && nr_online_nodes > 1 &&
3225 		    zone != ac->preferred_zoneref->zone) {
3226 			int local_nid;
3227 
3228 			/*
3229 			 * If moving to a remote node, retry but allow
3230 			 * fragmenting fallbacks. Locality is more important
3231 			 * than fragmentation avoidance.
3232 			 */
3233 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3234 			if (zone_to_nid(zone) != local_nid) {
3235 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3236 				goto retry;
3237 			}
3238 		}
3239 
3240 		/*
3241 		 * Detect whether the number of free pages is below high
3242 		 * watermark.  If so, we will decrease pcp->high and free
3243 		 * PCP pages in free path to reduce the possibility of
3244 		 * premature page reclaiming.  Detection is done here to
3245 		 * avoid to do that in hotter free path.
3246 		 */
3247 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3248 			goto check_alloc_wmark;
3249 
3250 		mark = high_wmark_pages(zone);
3251 		if (zone_watermark_fast(zone, order, mark,
3252 					ac->highest_zoneidx, alloc_flags,
3253 					gfp_mask))
3254 			goto try_this_zone;
3255 		else
3256 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3257 
3258 check_alloc_wmark:
3259 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3260 		if (!zone_watermark_fast(zone, order, mark,
3261 				       ac->highest_zoneidx, alloc_flags,
3262 				       gfp_mask)) {
3263 			int ret;
3264 
3265 			if (has_unaccepted_memory()) {
3266 				if (try_to_accept_memory(zone, order))
3267 					goto try_this_zone;
3268 			}
3269 
3270 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3271 			/*
3272 			 * Watermark failed for this zone, but see if we can
3273 			 * grow this zone if it contains deferred pages.
3274 			 */
3275 			if (deferred_pages_enabled()) {
3276 				if (_deferred_grow_zone(zone, order))
3277 					goto try_this_zone;
3278 			}
3279 #endif
3280 			/* Checked here to keep the fast path fast */
3281 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3282 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3283 				goto try_this_zone;
3284 
3285 			if (!node_reclaim_enabled() ||
3286 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3287 				continue;
3288 
3289 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3290 			switch (ret) {
3291 			case NODE_RECLAIM_NOSCAN:
3292 				/* did not scan */
3293 				continue;
3294 			case NODE_RECLAIM_FULL:
3295 				/* scanned but unreclaimable */
3296 				continue;
3297 			default:
3298 				/* did we reclaim enough */
3299 				if (zone_watermark_ok(zone, order, mark,
3300 					ac->highest_zoneidx, alloc_flags))
3301 					goto try_this_zone;
3302 
3303 				continue;
3304 			}
3305 		}
3306 
3307 try_this_zone:
3308 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3309 				gfp_mask, alloc_flags, ac->migratetype);
3310 		if (page) {
3311 			prep_new_page(page, order, gfp_mask, alloc_flags);
3312 
3313 			/*
3314 			 * If this is a high-order atomic allocation then check
3315 			 * if the pageblock should be reserved for the future
3316 			 */
3317 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3318 				reserve_highatomic_pageblock(page, zone);
3319 
3320 			return page;
3321 		} else {
3322 			if (has_unaccepted_memory()) {
3323 				if (try_to_accept_memory(zone, order))
3324 					goto try_this_zone;
3325 			}
3326 
3327 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3328 			/* Try again if zone has deferred pages */
3329 			if (deferred_pages_enabled()) {
3330 				if (_deferred_grow_zone(zone, order))
3331 					goto try_this_zone;
3332 			}
3333 #endif
3334 		}
3335 	}
3336 
3337 	/*
3338 	 * It's possible on a UMA machine to get through all zones that are
3339 	 * fragmented. If avoiding fragmentation, reset and try again.
3340 	 */
3341 	if (no_fallback) {
3342 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3343 		goto retry;
3344 	}
3345 
3346 	return NULL;
3347 }
3348 
3349 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3350 {
3351 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3352 
3353 	/*
3354 	 * This documents exceptions given to allocations in certain
3355 	 * contexts that are allowed to allocate outside current's set
3356 	 * of allowed nodes.
3357 	 */
3358 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3359 		if (tsk_is_oom_victim(current) ||
3360 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3361 			filter &= ~SHOW_MEM_FILTER_NODES;
3362 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3363 		filter &= ~SHOW_MEM_FILTER_NODES;
3364 
3365 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3366 }
3367 
3368 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3369 {
3370 	struct va_format vaf;
3371 	va_list args;
3372 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3373 
3374 	if ((gfp_mask & __GFP_NOWARN) ||
3375 	     !__ratelimit(&nopage_rs) ||
3376 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3377 		return;
3378 
3379 	va_start(args, fmt);
3380 	vaf.fmt = fmt;
3381 	vaf.va = &args;
3382 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3383 			current->comm, &vaf, gfp_mask, &gfp_mask,
3384 			nodemask_pr_args(nodemask));
3385 	va_end(args);
3386 
3387 	cpuset_print_current_mems_allowed();
3388 	pr_cont("\n");
3389 	dump_stack();
3390 	warn_alloc_show_mem(gfp_mask, nodemask);
3391 }
3392 
3393 static inline struct page *
3394 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3395 			      unsigned int alloc_flags,
3396 			      const struct alloc_context *ac)
3397 {
3398 	struct page *page;
3399 
3400 	page = get_page_from_freelist(gfp_mask, order,
3401 			alloc_flags|ALLOC_CPUSET, ac);
3402 	/*
3403 	 * fallback to ignore cpuset restriction if our nodes
3404 	 * are depleted
3405 	 */
3406 	if (!page)
3407 		page = get_page_from_freelist(gfp_mask, order,
3408 				alloc_flags, ac);
3409 
3410 	return page;
3411 }
3412 
3413 static inline struct page *
3414 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3415 	const struct alloc_context *ac, unsigned long *did_some_progress)
3416 {
3417 	struct oom_control oc = {
3418 		.zonelist = ac->zonelist,
3419 		.nodemask = ac->nodemask,
3420 		.memcg = NULL,
3421 		.gfp_mask = gfp_mask,
3422 		.order = order,
3423 	};
3424 	struct page *page;
3425 
3426 	*did_some_progress = 0;
3427 
3428 	/*
3429 	 * Acquire the oom lock.  If that fails, somebody else is
3430 	 * making progress for us.
3431 	 */
3432 	if (!mutex_trylock(&oom_lock)) {
3433 		*did_some_progress = 1;
3434 		schedule_timeout_uninterruptible(1);
3435 		return NULL;
3436 	}
3437 
3438 	/*
3439 	 * Go through the zonelist yet one more time, keep very high watermark
3440 	 * here, this is only to catch a parallel oom killing, we must fail if
3441 	 * we're still under heavy pressure. But make sure that this reclaim
3442 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3443 	 * allocation which will never fail due to oom_lock already held.
3444 	 */
3445 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3446 				      ~__GFP_DIRECT_RECLAIM, order,
3447 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3448 	if (page)
3449 		goto out;
3450 
3451 	/* Coredumps can quickly deplete all memory reserves */
3452 	if (current->flags & PF_DUMPCORE)
3453 		goto out;
3454 	/* The OOM killer will not help higher order allocs */
3455 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3456 		goto out;
3457 	/*
3458 	 * We have already exhausted all our reclaim opportunities without any
3459 	 * success so it is time to admit defeat. We will skip the OOM killer
3460 	 * because it is very likely that the caller has a more reasonable
3461 	 * fallback than shooting a random task.
3462 	 *
3463 	 * The OOM killer may not free memory on a specific node.
3464 	 */
3465 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3466 		goto out;
3467 	/* The OOM killer does not needlessly kill tasks for lowmem */
3468 	if (ac->highest_zoneidx < ZONE_NORMAL)
3469 		goto out;
3470 	if (pm_suspended_storage())
3471 		goto out;
3472 	/*
3473 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3474 	 * other request to make a forward progress.
3475 	 * We are in an unfortunate situation where out_of_memory cannot
3476 	 * do much for this context but let's try it to at least get
3477 	 * access to memory reserved if the current task is killed (see
3478 	 * out_of_memory). Once filesystems are ready to handle allocation
3479 	 * failures more gracefully we should just bail out here.
3480 	 */
3481 
3482 	/* Exhausted what can be done so it's blame time */
3483 	if (out_of_memory(&oc) ||
3484 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3485 		*did_some_progress = 1;
3486 
3487 		/*
3488 		 * Help non-failing allocations by giving them access to memory
3489 		 * reserves
3490 		 */
3491 		if (gfp_mask & __GFP_NOFAIL)
3492 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3493 					ALLOC_NO_WATERMARKS, ac);
3494 	}
3495 out:
3496 	mutex_unlock(&oom_lock);
3497 	return page;
3498 }
3499 
3500 /*
3501  * Maximum number of compaction retries with a progress before OOM
3502  * killer is consider as the only way to move forward.
3503  */
3504 #define MAX_COMPACT_RETRIES 16
3505 
3506 #ifdef CONFIG_COMPACTION
3507 /* Try memory compaction for high-order allocations before reclaim */
3508 static struct page *
3509 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3510 		unsigned int alloc_flags, const struct alloc_context *ac,
3511 		enum compact_priority prio, enum compact_result *compact_result)
3512 {
3513 	struct page *page = NULL;
3514 	unsigned long pflags;
3515 	unsigned int noreclaim_flag;
3516 
3517 	if (!order)
3518 		return NULL;
3519 
3520 	psi_memstall_enter(&pflags);
3521 	delayacct_compact_start();
3522 	noreclaim_flag = memalloc_noreclaim_save();
3523 
3524 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3525 								prio, &page);
3526 
3527 	memalloc_noreclaim_restore(noreclaim_flag);
3528 	psi_memstall_leave(&pflags);
3529 	delayacct_compact_end();
3530 
3531 	if (*compact_result == COMPACT_SKIPPED)
3532 		return NULL;
3533 	/*
3534 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3535 	 * count a compaction stall
3536 	 */
3537 	count_vm_event(COMPACTSTALL);
3538 
3539 	/* Prep a captured page if available */
3540 	if (page)
3541 		prep_new_page(page, order, gfp_mask, alloc_flags);
3542 
3543 	/* Try get a page from the freelist if available */
3544 	if (!page)
3545 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3546 
3547 	if (page) {
3548 		struct zone *zone = page_zone(page);
3549 
3550 		zone->compact_blockskip_flush = false;
3551 		compaction_defer_reset(zone, order, true);
3552 		count_vm_event(COMPACTSUCCESS);
3553 		return page;
3554 	}
3555 
3556 	/*
3557 	 * It's bad if compaction run occurs and fails. The most likely reason
3558 	 * is that pages exist, but not enough to satisfy watermarks.
3559 	 */
3560 	count_vm_event(COMPACTFAIL);
3561 
3562 	cond_resched();
3563 
3564 	return NULL;
3565 }
3566 
3567 static inline bool
3568 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3569 		     enum compact_result compact_result,
3570 		     enum compact_priority *compact_priority,
3571 		     int *compaction_retries)
3572 {
3573 	int max_retries = MAX_COMPACT_RETRIES;
3574 	int min_priority;
3575 	bool ret = false;
3576 	int retries = *compaction_retries;
3577 	enum compact_priority priority = *compact_priority;
3578 
3579 	if (!order)
3580 		return false;
3581 
3582 	if (fatal_signal_pending(current))
3583 		return false;
3584 
3585 	/*
3586 	 * Compaction was skipped due to a lack of free order-0
3587 	 * migration targets. Continue if reclaim can help.
3588 	 */
3589 	if (compact_result == COMPACT_SKIPPED) {
3590 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3591 		goto out;
3592 	}
3593 
3594 	/*
3595 	 * Compaction managed to coalesce some page blocks, but the
3596 	 * allocation failed presumably due to a race. Retry some.
3597 	 */
3598 	if (compact_result == COMPACT_SUCCESS) {
3599 		/*
3600 		 * !costly requests are much more important than
3601 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3602 		 * facto nofail and invoke OOM killer to move on while
3603 		 * costly can fail and users are ready to cope with
3604 		 * that. 1/4 retries is rather arbitrary but we would
3605 		 * need much more detailed feedback from compaction to
3606 		 * make a better decision.
3607 		 */
3608 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3609 			max_retries /= 4;
3610 
3611 		if (++(*compaction_retries) <= max_retries) {
3612 			ret = true;
3613 			goto out;
3614 		}
3615 	}
3616 
3617 	/*
3618 	 * Compaction failed. Retry with increasing priority.
3619 	 */
3620 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3621 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3622 
3623 	if (*compact_priority > min_priority) {
3624 		(*compact_priority)--;
3625 		*compaction_retries = 0;
3626 		ret = true;
3627 	}
3628 out:
3629 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3630 	return ret;
3631 }
3632 #else
3633 static inline struct page *
3634 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3635 		unsigned int alloc_flags, const struct alloc_context *ac,
3636 		enum compact_priority prio, enum compact_result *compact_result)
3637 {
3638 	*compact_result = COMPACT_SKIPPED;
3639 	return NULL;
3640 }
3641 
3642 static inline bool
3643 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3644 		     enum compact_result compact_result,
3645 		     enum compact_priority *compact_priority,
3646 		     int *compaction_retries)
3647 {
3648 	struct zone *zone;
3649 	struct zoneref *z;
3650 
3651 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3652 		return false;
3653 
3654 	/*
3655 	 * There are setups with compaction disabled which would prefer to loop
3656 	 * inside the allocator rather than hit the oom killer prematurely.
3657 	 * Let's give them a good hope and keep retrying while the order-0
3658 	 * watermarks are OK.
3659 	 */
3660 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3661 				ac->highest_zoneidx, ac->nodemask) {
3662 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3663 					ac->highest_zoneidx, alloc_flags))
3664 			return true;
3665 	}
3666 	return false;
3667 }
3668 #endif /* CONFIG_COMPACTION */
3669 
3670 #ifdef CONFIG_LOCKDEP
3671 static struct lockdep_map __fs_reclaim_map =
3672 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3673 
3674 static bool __need_reclaim(gfp_t gfp_mask)
3675 {
3676 	/* no reclaim without waiting on it */
3677 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3678 		return false;
3679 
3680 	/* this guy won't enter reclaim */
3681 	if (current->flags & PF_MEMALLOC)
3682 		return false;
3683 
3684 	if (gfp_mask & __GFP_NOLOCKDEP)
3685 		return false;
3686 
3687 	return true;
3688 }
3689 
3690 void __fs_reclaim_acquire(unsigned long ip)
3691 {
3692 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3693 }
3694 
3695 void __fs_reclaim_release(unsigned long ip)
3696 {
3697 	lock_release(&__fs_reclaim_map, ip);
3698 }
3699 
3700 void fs_reclaim_acquire(gfp_t gfp_mask)
3701 {
3702 	gfp_mask = current_gfp_context(gfp_mask);
3703 
3704 	if (__need_reclaim(gfp_mask)) {
3705 		if (gfp_mask & __GFP_FS)
3706 			__fs_reclaim_acquire(_RET_IP_);
3707 
3708 #ifdef CONFIG_MMU_NOTIFIER
3709 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3710 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3711 #endif
3712 
3713 	}
3714 }
3715 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3716 
3717 void fs_reclaim_release(gfp_t gfp_mask)
3718 {
3719 	gfp_mask = current_gfp_context(gfp_mask);
3720 
3721 	if (__need_reclaim(gfp_mask)) {
3722 		if (gfp_mask & __GFP_FS)
3723 			__fs_reclaim_release(_RET_IP_);
3724 	}
3725 }
3726 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3727 #endif
3728 
3729 /*
3730  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3731  * have been rebuilt so allocation retries. Reader side does not lock and
3732  * retries the allocation if zonelist changes. Writer side is protected by the
3733  * embedded spin_lock.
3734  */
3735 static DEFINE_SEQLOCK(zonelist_update_seq);
3736 
3737 static unsigned int zonelist_iter_begin(void)
3738 {
3739 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3740 		return read_seqbegin(&zonelist_update_seq);
3741 
3742 	return 0;
3743 }
3744 
3745 static unsigned int check_retry_zonelist(unsigned int seq)
3746 {
3747 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3748 		return read_seqretry(&zonelist_update_seq, seq);
3749 
3750 	return seq;
3751 }
3752 
3753 /* Perform direct synchronous page reclaim */
3754 static unsigned long
3755 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3756 					const struct alloc_context *ac)
3757 {
3758 	unsigned int noreclaim_flag;
3759 	unsigned long progress;
3760 
3761 	cond_resched();
3762 
3763 	/* We now go into synchronous reclaim */
3764 	cpuset_memory_pressure_bump();
3765 	fs_reclaim_acquire(gfp_mask);
3766 	noreclaim_flag = memalloc_noreclaim_save();
3767 
3768 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3769 								ac->nodemask);
3770 
3771 	memalloc_noreclaim_restore(noreclaim_flag);
3772 	fs_reclaim_release(gfp_mask);
3773 
3774 	cond_resched();
3775 
3776 	return progress;
3777 }
3778 
3779 /* The really slow allocator path where we enter direct reclaim */
3780 static inline struct page *
3781 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3782 		unsigned int alloc_flags, const struct alloc_context *ac,
3783 		unsigned long *did_some_progress)
3784 {
3785 	struct page *page = NULL;
3786 	unsigned long pflags;
3787 	bool drained = false;
3788 
3789 	psi_memstall_enter(&pflags);
3790 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791 	if (unlikely(!(*did_some_progress)))
3792 		goto out;
3793 
3794 retry:
3795 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796 
3797 	/*
3798 	 * If an allocation failed after direct reclaim, it could be because
3799 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3800 	 * Shrink them and try again
3801 	 */
3802 	if (!page && !drained) {
3803 		unreserve_highatomic_pageblock(ac, false);
3804 		drain_all_pages(NULL);
3805 		drained = true;
3806 		goto retry;
3807 	}
3808 out:
3809 	psi_memstall_leave(&pflags);
3810 
3811 	return page;
3812 }
3813 
3814 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3815 			     const struct alloc_context *ac)
3816 {
3817 	struct zoneref *z;
3818 	struct zone *zone;
3819 	pg_data_t *last_pgdat = NULL;
3820 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3821 
3822 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3823 					ac->nodemask) {
3824 		if (!managed_zone(zone))
3825 			continue;
3826 		if (last_pgdat != zone->zone_pgdat) {
3827 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3828 			last_pgdat = zone->zone_pgdat;
3829 		}
3830 	}
3831 }
3832 
3833 static inline unsigned int
3834 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3835 {
3836 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3837 
3838 	/*
3839 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3840 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3841 	 * to save two branches.
3842 	 */
3843 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3844 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3845 
3846 	/*
3847 	 * The caller may dip into page reserves a bit more if the caller
3848 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3849 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3850 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3851 	 */
3852 	alloc_flags |= (__force int)
3853 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3854 
3855 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3856 		/*
3857 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3858 		 * if it can't schedule.
3859 		 */
3860 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3861 			alloc_flags |= ALLOC_NON_BLOCK;
3862 
3863 			if (order > 0)
3864 				alloc_flags |= ALLOC_HIGHATOMIC;
3865 		}
3866 
3867 		/*
3868 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3869 		 * GFP_ATOMIC) rather than fail, see the comment for
3870 		 * cpuset_node_allowed().
3871 		 */
3872 		if (alloc_flags & ALLOC_MIN_RESERVE)
3873 			alloc_flags &= ~ALLOC_CPUSET;
3874 	} else if (unlikely(rt_task(current)) && in_task())
3875 		alloc_flags |= ALLOC_MIN_RESERVE;
3876 
3877 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3878 
3879 	return alloc_flags;
3880 }
3881 
3882 static bool oom_reserves_allowed(struct task_struct *tsk)
3883 {
3884 	if (!tsk_is_oom_victim(tsk))
3885 		return false;
3886 
3887 	/*
3888 	 * !MMU doesn't have oom reaper so give access to memory reserves
3889 	 * only to the thread with TIF_MEMDIE set
3890 	 */
3891 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3892 		return false;
3893 
3894 	return true;
3895 }
3896 
3897 /*
3898  * Distinguish requests which really need access to full memory
3899  * reserves from oom victims which can live with a portion of it
3900  */
3901 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3902 {
3903 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3904 		return 0;
3905 	if (gfp_mask & __GFP_MEMALLOC)
3906 		return ALLOC_NO_WATERMARKS;
3907 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3908 		return ALLOC_NO_WATERMARKS;
3909 	if (!in_interrupt()) {
3910 		if (current->flags & PF_MEMALLOC)
3911 			return ALLOC_NO_WATERMARKS;
3912 		else if (oom_reserves_allowed(current))
3913 			return ALLOC_OOM;
3914 	}
3915 
3916 	return 0;
3917 }
3918 
3919 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3920 {
3921 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3922 }
3923 
3924 /*
3925  * Checks whether it makes sense to retry the reclaim to make a forward progress
3926  * for the given allocation request.
3927  *
3928  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3929  * without success, or when we couldn't even meet the watermark if we
3930  * reclaimed all remaining pages on the LRU lists.
3931  *
3932  * Returns true if a retry is viable or false to enter the oom path.
3933  */
3934 static inline bool
3935 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3936 		     struct alloc_context *ac, int alloc_flags,
3937 		     bool did_some_progress, int *no_progress_loops)
3938 {
3939 	struct zone *zone;
3940 	struct zoneref *z;
3941 	bool ret = false;
3942 
3943 	/*
3944 	 * Costly allocations might have made a progress but this doesn't mean
3945 	 * their order will become available due to high fragmentation so
3946 	 * always increment the no progress counter for them
3947 	 */
3948 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3949 		*no_progress_loops = 0;
3950 	else
3951 		(*no_progress_loops)++;
3952 
3953 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3954 		goto out;
3955 
3956 
3957 	/*
3958 	 * Keep reclaiming pages while there is a chance this will lead
3959 	 * somewhere.  If none of the target zones can satisfy our allocation
3960 	 * request even if all reclaimable pages are considered then we are
3961 	 * screwed and have to go OOM.
3962 	 */
3963 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3964 				ac->highest_zoneidx, ac->nodemask) {
3965 		unsigned long available;
3966 		unsigned long reclaimable;
3967 		unsigned long min_wmark = min_wmark_pages(zone);
3968 		bool wmark;
3969 
3970 		available = reclaimable = zone_reclaimable_pages(zone);
3971 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3972 
3973 		/*
3974 		 * Would the allocation succeed if we reclaimed all
3975 		 * reclaimable pages?
3976 		 */
3977 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3978 				ac->highest_zoneidx, alloc_flags, available);
3979 		trace_reclaim_retry_zone(z, order, reclaimable,
3980 				available, min_wmark, *no_progress_loops, wmark);
3981 		if (wmark) {
3982 			ret = true;
3983 			break;
3984 		}
3985 	}
3986 
3987 	/*
3988 	 * Memory allocation/reclaim might be called from a WQ context and the
3989 	 * current implementation of the WQ concurrency control doesn't
3990 	 * recognize that a particular WQ is congested if the worker thread is
3991 	 * looping without ever sleeping. Therefore we have to do a short sleep
3992 	 * here rather than calling cond_resched().
3993 	 */
3994 	if (current->flags & PF_WQ_WORKER)
3995 		schedule_timeout_uninterruptible(1);
3996 	else
3997 		cond_resched();
3998 out:
3999 	/* Before OOM, exhaust highatomic_reserve */
4000 	if (!ret)
4001 		return unreserve_highatomic_pageblock(ac, true);
4002 
4003 	return ret;
4004 }
4005 
4006 static inline bool
4007 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4008 {
4009 	/*
4010 	 * It's possible that cpuset's mems_allowed and the nodemask from
4011 	 * mempolicy don't intersect. This should be normally dealt with by
4012 	 * policy_nodemask(), but it's possible to race with cpuset update in
4013 	 * such a way the check therein was true, and then it became false
4014 	 * before we got our cpuset_mems_cookie here.
4015 	 * This assumes that for all allocations, ac->nodemask can come only
4016 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4017 	 * when it does not intersect with the cpuset restrictions) or the
4018 	 * caller can deal with a violated nodemask.
4019 	 */
4020 	if (cpusets_enabled() && ac->nodemask &&
4021 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4022 		ac->nodemask = NULL;
4023 		return true;
4024 	}
4025 
4026 	/*
4027 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4028 	 * possible to race with parallel threads in such a way that our
4029 	 * allocation can fail while the mask is being updated. If we are about
4030 	 * to fail, check if the cpuset changed during allocation and if so,
4031 	 * retry.
4032 	 */
4033 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4034 		return true;
4035 
4036 	return false;
4037 }
4038 
4039 static inline struct page *
4040 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4041 						struct alloc_context *ac)
4042 {
4043 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4044 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4045 	struct page *page = NULL;
4046 	unsigned int alloc_flags;
4047 	unsigned long did_some_progress;
4048 	enum compact_priority compact_priority;
4049 	enum compact_result compact_result;
4050 	int compaction_retries;
4051 	int no_progress_loops;
4052 	unsigned int cpuset_mems_cookie;
4053 	unsigned int zonelist_iter_cookie;
4054 	int reserve_flags;
4055 
4056 restart:
4057 	compaction_retries = 0;
4058 	no_progress_loops = 0;
4059 	compact_priority = DEF_COMPACT_PRIORITY;
4060 	cpuset_mems_cookie = read_mems_allowed_begin();
4061 	zonelist_iter_cookie = zonelist_iter_begin();
4062 
4063 	/*
4064 	 * The fast path uses conservative alloc_flags to succeed only until
4065 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4066 	 * alloc_flags precisely. So we do that now.
4067 	 */
4068 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4069 
4070 	/*
4071 	 * We need to recalculate the starting point for the zonelist iterator
4072 	 * because we might have used different nodemask in the fast path, or
4073 	 * there was a cpuset modification and we are retrying - otherwise we
4074 	 * could end up iterating over non-eligible zones endlessly.
4075 	 */
4076 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4077 					ac->highest_zoneidx, ac->nodemask);
4078 	if (!ac->preferred_zoneref->zone)
4079 		goto nopage;
4080 
4081 	/*
4082 	 * Check for insane configurations where the cpuset doesn't contain
4083 	 * any suitable zone to satisfy the request - e.g. non-movable
4084 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4085 	 */
4086 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4087 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4088 					ac->highest_zoneidx,
4089 					&cpuset_current_mems_allowed);
4090 		if (!z->zone)
4091 			goto nopage;
4092 	}
4093 
4094 	if (alloc_flags & ALLOC_KSWAPD)
4095 		wake_all_kswapds(order, gfp_mask, ac);
4096 
4097 	/*
4098 	 * The adjusted alloc_flags might result in immediate success, so try
4099 	 * that first
4100 	 */
4101 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4102 	if (page)
4103 		goto got_pg;
4104 
4105 	/*
4106 	 * For costly allocations, try direct compaction first, as it's likely
4107 	 * that we have enough base pages and don't need to reclaim. For non-
4108 	 * movable high-order allocations, do that as well, as compaction will
4109 	 * try prevent permanent fragmentation by migrating from blocks of the
4110 	 * same migratetype.
4111 	 * Don't try this for allocations that are allowed to ignore
4112 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4113 	 */
4114 	if (can_direct_reclaim &&
4115 			(costly_order ||
4116 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4117 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4118 		page = __alloc_pages_direct_compact(gfp_mask, order,
4119 						alloc_flags, ac,
4120 						INIT_COMPACT_PRIORITY,
4121 						&compact_result);
4122 		if (page)
4123 			goto got_pg;
4124 
4125 		/*
4126 		 * Checks for costly allocations with __GFP_NORETRY, which
4127 		 * includes some THP page fault allocations
4128 		 */
4129 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4130 			/*
4131 			 * If allocating entire pageblock(s) and compaction
4132 			 * failed because all zones are below low watermarks
4133 			 * or is prohibited because it recently failed at this
4134 			 * order, fail immediately unless the allocator has
4135 			 * requested compaction and reclaim retry.
4136 			 *
4137 			 * Reclaim is
4138 			 *  - potentially very expensive because zones are far
4139 			 *    below their low watermarks or this is part of very
4140 			 *    bursty high order allocations,
4141 			 *  - not guaranteed to help because isolate_freepages()
4142 			 *    may not iterate over freed pages as part of its
4143 			 *    linear scan, and
4144 			 *  - unlikely to make entire pageblocks free on its
4145 			 *    own.
4146 			 */
4147 			if (compact_result == COMPACT_SKIPPED ||
4148 			    compact_result == COMPACT_DEFERRED)
4149 				goto nopage;
4150 
4151 			/*
4152 			 * Looks like reclaim/compaction is worth trying, but
4153 			 * sync compaction could be very expensive, so keep
4154 			 * using async compaction.
4155 			 */
4156 			compact_priority = INIT_COMPACT_PRIORITY;
4157 		}
4158 	}
4159 
4160 retry:
4161 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4162 	if (alloc_flags & ALLOC_KSWAPD)
4163 		wake_all_kswapds(order, gfp_mask, ac);
4164 
4165 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4166 	if (reserve_flags)
4167 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4168 					  (alloc_flags & ALLOC_KSWAPD);
4169 
4170 	/*
4171 	 * Reset the nodemask and zonelist iterators if memory policies can be
4172 	 * ignored. These allocations are high priority and system rather than
4173 	 * user oriented.
4174 	 */
4175 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4176 		ac->nodemask = NULL;
4177 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4178 					ac->highest_zoneidx, ac->nodemask);
4179 	}
4180 
4181 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4182 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4183 	if (page)
4184 		goto got_pg;
4185 
4186 	/* Caller is not willing to reclaim, we can't balance anything */
4187 	if (!can_direct_reclaim)
4188 		goto nopage;
4189 
4190 	/* Avoid recursion of direct reclaim */
4191 	if (current->flags & PF_MEMALLOC)
4192 		goto nopage;
4193 
4194 	/* Try direct reclaim and then allocating */
4195 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4196 							&did_some_progress);
4197 	if (page)
4198 		goto got_pg;
4199 
4200 	/* Try direct compaction and then allocating */
4201 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4202 					compact_priority, &compact_result);
4203 	if (page)
4204 		goto got_pg;
4205 
4206 	/* Do not loop if specifically requested */
4207 	if (gfp_mask & __GFP_NORETRY)
4208 		goto nopage;
4209 
4210 	/*
4211 	 * Do not retry costly high order allocations unless they are
4212 	 * __GFP_RETRY_MAYFAIL
4213 	 */
4214 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4215 		goto nopage;
4216 
4217 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4218 				 did_some_progress > 0, &no_progress_loops))
4219 		goto retry;
4220 
4221 	/*
4222 	 * It doesn't make any sense to retry for the compaction if the order-0
4223 	 * reclaim is not able to make any progress because the current
4224 	 * implementation of the compaction depends on the sufficient amount
4225 	 * of free memory (see __compaction_suitable)
4226 	 */
4227 	if (did_some_progress > 0 &&
4228 			should_compact_retry(ac, order, alloc_flags,
4229 				compact_result, &compact_priority,
4230 				&compaction_retries))
4231 		goto retry;
4232 
4233 
4234 	/*
4235 	 * Deal with possible cpuset update races or zonelist updates to avoid
4236 	 * a unnecessary OOM kill.
4237 	 */
4238 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4239 	    check_retry_zonelist(zonelist_iter_cookie))
4240 		goto restart;
4241 
4242 	/* Reclaim has failed us, start killing things */
4243 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4244 	if (page)
4245 		goto got_pg;
4246 
4247 	/* Avoid allocations with no watermarks from looping endlessly */
4248 	if (tsk_is_oom_victim(current) &&
4249 	    (alloc_flags & ALLOC_OOM ||
4250 	     (gfp_mask & __GFP_NOMEMALLOC)))
4251 		goto nopage;
4252 
4253 	/* Retry as long as the OOM killer is making progress */
4254 	if (did_some_progress) {
4255 		no_progress_loops = 0;
4256 		goto retry;
4257 	}
4258 
4259 nopage:
4260 	/*
4261 	 * Deal with possible cpuset update races or zonelist updates to avoid
4262 	 * a unnecessary OOM kill.
4263 	 */
4264 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4265 	    check_retry_zonelist(zonelist_iter_cookie))
4266 		goto restart;
4267 
4268 	/*
4269 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4270 	 * we always retry
4271 	 */
4272 	if (gfp_mask & __GFP_NOFAIL) {
4273 		/*
4274 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4275 		 * of any new users that actually require GFP_NOWAIT
4276 		 */
4277 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4278 			goto fail;
4279 
4280 		/*
4281 		 * PF_MEMALLOC request from this context is rather bizarre
4282 		 * because we cannot reclaim anything and only can loop waiting
4283 		 * for somebody to do a work for us
4284 		 */
4285 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4286 
4287 		/*
4288 		 * non failing costly orders are a hard requirement which we
4289 		 * are not prepared for much so let's warn about these users
4290 		 * so that we can identify them and convert them to something
4291 		 * else.
4292 		 */
4293 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4294 
4295 		/*
4296 		 * Help non-failing allocations by giving some access to memory
4297 		 * reserves normally used for high priority non-blocking
4298 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4299 		 * could deplete whole memory reserves which would just make
4300 		 * the situation worse.
4301 		 */
4302 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4303 		if (page)
4304 			goto got_pg;
4305 
4306 		cond_resched();
4307 		goto retry;
4308 	}
4309 fail:
4310 	warn_alloc(gfp_mask, ac->nodemask,
4311 			"page allocation failure: order:%u", order);
4312 got_pg:
4313 	return page;
4314 }
4315 
4316 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4317 		int preferred_nid, nodemask_t *nodemask,
4318 		struct alloc_context *ac, gfp_t *alloc_gfp,
4319 		unsigned int *alloc_flags)
4320 {
4321 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4322 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4323 	ac->nodemask = nodemask;
4324 	ac->migratetype = gfp_migratetype(gfp_mask);
4325 
4326 	if (cpusets_enabled()) {
4327 		*alloc_gfp |= __GFP_HARDWALL;
4328 		/*
4329 		 * When we are in the interrupt context, it is irrelevant
4330 		 * to the current task context. It means that any node ok.
4331 		 */
4332 		if (in_task() && !ac->nodemask)
4333 			ac->nodemask = &cpuset_current_mems_allowed;
4334 		else
4335 			*alloc_flags |= ALLOC_CPUSET;
4336 	}
4337 
4338 	might_alloc(gfp_mask);
4339 
4340 	if (should_fail_alloc_page(gfp_mask, order))
4341 		return false;
4342 
4343 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4344 
4345 	/* Dirty zone balancing only done in the fast path */
4346 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4347 
4348 	/*
4349 	 * The preferred zone is used for statistics but crucially it is
4350 	 * also used as the starting point for the zonelist iterator. It
4351 	 * may get reset for allocations that ignore memory policies.
4352 	 */
4353 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4354 					ac->highest_zoneidx, ac->nodemask);
4355 
4356 	return true;
4357 }
4358 
4359 /*
4360  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4361  * @gfp: GFP flags for the allocation
4362  * @preferred_nid: The preferred NUMA node ID to allocate from
4363  * @nodemask: Set of nodes to allocate from, may be NULL
4364  * @nr_pages: The number of pages desired on the list or array
4365  * @page_list: Optional list to store the allocated pages
4366  * @page_array: Optional array to store the pages
4367  *
4368  * This is a batched version of the page allocator that attempts to
4369  * allocate nr_pages quickly. Pages are added to page_list if page_list
4370  * is not NULL, otherwise it is assumed that the page_array is valid.
4371  *
4372  * For lists, nr_pages is the number of pages that should be allocated.
4373  *
4374  * For arrays, only NULL elements are populated with pages and nr_pages
4375  * is the maximum number of pages that will be stored in the array.
4376  *
4377  * Returns the number of pages on the list or array.
4378  */
4379 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4380 			nodemask_t *nodemask, int nr_pages,
4381 			struct list_head *page_list,
4382 			struct page **page_array)
4383 {
4384 	struct page *page;
4385 	unsigned long __maybe_unused UP_flags;
4386 	struct zone *zone;
4387 	struct zoneref *z;
4388 	struct per_cpu_pages *pcp;
4389 	struct list_head *pcp_list;
4390 	struct alloc_context ac;
4391 	gfp_t alloc_gfp;
4392 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4393 	int nr_populated = 0, nr_account = 0;
4394 
4395 	/*
4396 	 * Skip populated array elements to determine if any pages need
4397 	 * to be allocated before disabling IRQs.
4398 	 */
4399 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4400 		nr_populated++;
4401 
4402 	/* No pages requested? */
4403 	if (unlikely(nr_pages <= 0))
4404 		goto out;
4405 
4406 	/* Already populated array? */
4407 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4408 		goto out;
4409 
4410 	/* Bulk allocator does not support memcg accounting. */
4411 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4412 		goto failed;
4413 
4414 	/* Use the single page allocator for one page. */
4415 	if (nr_pages - nr_populated == 1)
4416 		goto failed;
4417 
4418 #ifdef CONFIG_PAGE_OWNER
4419 	/*
4420 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4421 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4422 	 * removes much of the performance benefit of bulk allocation so
4423 	 * force the caller to allocate one page at a time as it'll have
4424 	 * similar performance to added complexity to the bulk allocator.
4425 	 */
4426 	if (static_branch_unlikely(&page_owner_inited))
4427 		goto failed;
4428 #endif
4429 
4430 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4431 	gfp &= gfp_allowed_mask;
4432 	alloc_gfp = gfp;
4433 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4434 		goto out;
4435 	gfp = alloc_gfp;
4436 
4437 	/* Find an allowed local zone that meets the low watermark. */
4438 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4439 		unsigned long mark;
4440 
4441 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4442 		    !__cpuset_zone_allowed(zone, gfp)) {
4443 			continue;
4444 		}
4445 
4446 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4447 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4448 			goto failed;
4449 		}
4450 
4451 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4452 		if (zone_watermark_fast(zone, 0,  mark,
4453 				zonelist_zone_idx(ac.preferred_zoneref),
4454 				alloc_flags, gfp)) {
4455 			break;
4456 		}
4457 	}
4458 
4459 	/*
4460 	 * If there are no allowed local zones that meets the watermarks then
4461 	 * try to allocate a single page and reclaim if necessary.
4462 	 */
4463 	if (unlikely(!zone))
4464 		goto failed;
4465 
4466 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4467 	pcp_trylock_prepare(UP_flags);
4468 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4469 	if (!pcp)
4470 		goto failed_irq;
4471 
4472 	/* Attempt the batch allocation */
4473 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4474 	while (nr_populated < nr_pages) {
4475 
4476 		/* Skip existing pages */
4477 		if (page_array && page_array[nr_populated]) {
4478 			nr_populated++;
4479 			continue;
4480 		}
4481 
4482 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4483 								pcp, pcp_list);
4484 		if (unlikely(!page)) {
4485 			/* Try and allocate at least one page */
4486 			if (!nr_account) {
4487 				pcp_spin_unlock(pcp);
4488 				goto failed_irq;
4489 			}
4490 			break;
4491 		}
4492 		nr_account++;
4493 
4494 		prep_new_page(page, 0, gfp, 0);
4495 		if (page_list)
4496 			list_add(&page->lru, page_list);
4497 		else
4498 			page_array[nr_populated] = page;
4499 		nr_populated++;
4500 	}
4501 
4502 	pcp_spin_unlock(pcp);
4503 	pcp_trylock_finish(UP_flags);
4504 
4505 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4506 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4507 
4508 out:
4509 	return nr_populated;
4510 
4511 failed_irq:
4512 	pcp_trylock_finish(UP_flags);
4513 
4514 failed:
4515 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4516 	if (page) {
4517 		if (page_list)
4518 			list_add(&page->lru, page_list);
4519 		else
4520 			page_array[nr_populated] = page;
4521 		nr_populated++;
4522 	}
4523 
4524 	goto out;
4525 }
4526 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4527 
4528 /*
4529  * This is the 'heart' of the zoned buddy allocator.
4530  */
4531 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4532 							nodemask_t *nodemask)
4533 {
4534 	struct page *page;
4535 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4536 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4537 	struct alloc_context ac = { };
4538 
4539 	/*
4540 	 * There are several places where we assume that the order value is sane
4541 	 * so bail out early if the request is out of bound.
4542 	 */
4543 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4544 		return NULL;
4545 
4546 	gfp &= gfp_allowed_mask;
4547 	/*
4548 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4549 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4550 	 * from a particular context which has been marked by
4551 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4552 	 * movable zones are not used during allocation.
4553 	 */
4554 	gfp = current_gfp_context(gfp);
4555 	alloc_gfp = gfp;
4556 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4557 			&alloc_gfp, &alloc_flags))
4558 		return NULL;
4559 
4560 	/*
4561 	 * Forbid the first pass from falling back to types that fragment
4562 	 * memory until all local zones are considered.
4563 	 */
4564 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4565 
4566 	/* First allocation attempt */
4567 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4568 	if (likely(page))
4569 		goto out;
4570 
4571 	alloc_gfp = gfp;
4572 	ac.spread_dirty_pages = false;
4573 
4574 	/*
4575 	 * Restore the original nodemask if it was potentially replaced with
4576 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4577 	 */
4578 	ac.nodemask = nodemask;
4579 
4580 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4581 
4582 out:
4583 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4584 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4585 		__free_pages(page, order);
4586 		page = NULL;
4587 	}
4588 
4589 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4590 	kmsan_alloc_page(page, order, alloc_gfp);
4591 
4592 	return page;
4593 }
4594 EXPORT_SYMBOL(__alloc_pages);
4595 
4596 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4597 		nodemask_t *nodemask)
4598 {
4599 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4600 					preferred_nid, nodemask);
4601 	return page_rmappable_folio(page);
4602 }
4603 EXPORT_SYMBOL(__folio_alloc);
4604 
4605 /*
4606  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4607  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4608  * you need to access high mem.
4609  */
4610 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4611 {
4612 	struct page *page;
4613 
4614 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4615 	if (!page)
4616 		return 0;
4617 	return (unsigned long) page_address(page);
4618 }
4619 EXPORT_SYMBOL(__get_free_pages);
4620 
4621 unsigned long get_zeroed_page(gfp_t gfp_mask)
4622 {
4623 	return __get_free_page(gfp_mask | __GFP_ZERO);
4624 }
4625 EXPORT_SYMBOL(get_zeroed_page);
4626 
4627 /**
4628  * __free_pages - Free pages allocated with alloc_pages().
4629  * @page: The page pointer returned from alloc_pages().
4630  * @order: The order of the allocation.
4631  *
4632  * This function can free multi-page allocations that are not compound
4633  * pages.  It does not check that the @order passed in matches that of
4634  * the allocation, so it is easy to leak memory.  Freeing more memory
4635  * than was allocated will probably emit a warning.
4636  *
4637  * If the last reference to this page is speculative, it will be released
4638  * by put_page() which only frees the first page of a non-compound
4639  * allocation.  To prevent the remaining pages from being leaked, we free
4640  * the subsequent pages here.  If you want to use the page's reference
4641  * count to decide when to free the allocation, you should allocate a
4642  * compound page, and use put_page() instead of __free_pages().
4643  *
4644  * Context: May be called in interrupt context or while holding a normal
4645  * spinlock, but not in NMI context or while holding a raw spinlock.
4646  */
4647 void __free_pages(struct page *page, unsigned int order)
4648 {
4649 	/* get PageHead before we drop reference */
4650 	int head = PageHead(page);
4651 
4652 	if (put_page_testzero(page))
4653 		free_the_page(page, order);
4654 	else if (!head)
4655 		while (order-- > 0)
4656 			free_the_page(page + (1 << order), order);
4657 }
4658 EXPORT_SYMBOL(__free_pages);
4659 
4660 void free_pages(unsigned long addr, unsigned int order)
4661 {
4662 	if (addr != 0) {
4663 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4664 		__free_pages(virt_to_page((void *)addr), order);
4665 	}
4666 }
4667 
4668 EXPORT_SYMBOL(free_pages);
4669 
4670 /*
4671  * Page Fragment:
4672  *  An arbitrary-length arbitrary-offset area of memory which resides
4673  *  within a 0 or higher order page.  Multiple fragments within that page
4674  *  are individually refcounted, in the page's reference counter.
4675  *
4676  * The page_frag functions below provide a simple allocation framework for
4677  * page fragments.  This is used by the network stack and network device
4678  * drivers to provide a backing region of memory for use as either an
4679  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4680  */
4681 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4682 					     gfp_t gfp_mask)
4683 {
4684 	struct page *page = NULL;
4685 	gfp_t gfp = gfp_mask;
4686 
4687 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4688 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4689 		    __GFP_NOMEMALLOC;
4690 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4691 				PAGE_FRAG_CACHE_MAX_ORDER);
4692 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4693 #endif
4694 	if (unlikely(!page))
4695 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4696 
4697 	nc->va = page ? page_address(page) : NULL;
4698 
4699 	return page;
4700 }
4701 
4702 void __page_frag_cache_drain(struct page *page, unsigned int count)
4703 {
4704 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4705 
4706 	if (page_ref_sub_and_test(page, count))
4707 		free_the_page(page, compound_order(page));
4708 }
4709 EXPORT_SYMBOL(__page_frag_cache_drain);
4710 
4711 void *page_frag_alloc_align(struct page_frag_cache *nc,
4712 		      unsigned int fragsz, gfp_t gfp_mask,
4713 		      unsigned int align_mask)
4714 {
4715 	unsigned int size = PAGE_SIZE;
4716 	struct page *page;
4717 	int offset;
4718 
4719 	if (unlikely(!nc->va)) {
4720 refill:
4721 		page = __page_frag_cache_refill(nc, gfp_mask);
4722 		if (!page)
4723 			return NULL;
4724 
4725 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4726 		/* if size can vary use size else just use PAGE_SIZE */
4727 		size = nc->size;
4728 #endif
4729 		/* Even if we own the page, we do not use atomic_set().
4730 		 * This would break get_page_unless_zero() users.
4731 		 */
4732 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4733 
4734 		/* reset page count bias and offset to start of new frag */
4735 		nc->pfmemalloc = page_is_pfmemalloc(page);
4736 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4737 		nc->offset = size;
4738 	}
4739 
4740 	offset = nc->offset - fragsz;
4741 	if (unlikely(offset < 0)) {
4742 		page = virt_to_page(nc->va);
4743 
4744 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4745 			goto refill;
4746 
4747 		if (unlikely(nc->pfmemalloc)) {
4748 			free_the_page(page, compound_order(page));
4749 			goto refill;
4750 		}
4751 
4752 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4753 		/* if size can vary use size else just use PAGE_SIZE */
4754 		size = nc->size;
4755 #endif
4756 		/* OK, page count is 0, we can safely set it */
4757 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4758 
4759 		/* reset page count bias and offset to start of new frag */
4760 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4761 		offset = size - fragsz;
4762 		if (unlikely(offset < 0)) {
4763 			/*
4764 			 * The caller is trying to allocate a fragment
4765 			 * with fragsz > PAGE_SIZE but the cache isn't big
4766 			 * enough to satisfy the request, this may
4767 			 * happen in low memory conditions.
4768 			 * We don't release the cache page because
4769 			 * it could make memory pressure worse
4770 			 * so we simply return NULL here.
4771 			 */
4772 			return NULL;
4773 		}
4774 	}
4775 
4776 	nc->pagecnt_bias--;
4777 	offset &= align_mask;
4778 	nc->offset = offset;
4779 
4780 	return nc->va + offset;
4781 }
4782 EXPORT_SYMBOL(page_frag_alloc_align);
4783 
4784 /*
4785  * Frees a page fragment allocated out of either a compound or order 0 page.
4786  */
4787 void page_frag_free(void *addr)
4788 {
4789 	struct page *page = virt_to_head_page(addr);
4790 
4791 	if (unlikely(put_page_testzero(page)))
4792 		free_the_page(page, compound_order(page));
4793 }
4794 EXPORT_SYMBOL(page_frag_free);
4795 
4796 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4797 		size_t size)
4798 {
4799 	if (addr) {
4800 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4801 		struct page *page = virt_to_page((void *)addr);
4802 		struct page *last = page + nr;
4803 
4804 		split_page_owner(page, 1 << order);
4805 		split_page_memcg(page, 1 << order);
4806 		while (page < --last)
4807 			set_page_refcounted(last);
4808 
4809 		last = page + (1UL << order);
4810 		for (page += nr; page < last; page++)
4811 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4812 	}
4813 	return (void *)addr;
4814 }
4815 
4816 /**
4817  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4818  * @size: the number of bytes to allocate
4819  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4820  *
4821  * This function is similar to alloc_pages(), except that it allocates the
4822  * minimum number of pages to satisfy the request.  alloc_pages() can only
4823  * allocate memory in power-of-two pages.
4824  *
4825  * This function is also limited by MAX_PAGE_ORDER.
4826  *
4827  * Memory allocated by this function must be released by free_pages_exact().
4828  *
4829  * Return: pointer to the allocated area or %NULL in case of error.
4830  */
4831 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4832 {
4833 	unsigned int order = get_order(size);
4834 	unsigned long addr;
4835 
4836 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4837 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4838 
4839 	addr = __get_free_pages(gfp_mask, order);
4840 	return make_alloc_exact(addr, order, size);
4841 }
4842 EXPORT_SYMBOL(alloc_pages_exact);
4843 
4844 /**
4845  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4846  *			   pages on a node.
4847  * @nid: the preferred node ID where memory should be allocated
4848  * @size: the number of bytes to allocate
4849  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4850  *
4851  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4852  * back.
4853  *
4854  * Return: pointer to the allocated area or %NULL in case of error.
4855  */
4856 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4857 {
4858 	unsigned int order = get_order(size);
4859 	struct page *p;
4860 
4861 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4862 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4863 
4864 	p = alloc_pages_node(nid, gfp_mask, order);
4865 	if (!p)
4866 		return NULL;
4867 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4868 }
4869 
4870 /**
4871  * free_pages_exact - release memory allocated via alloc_pages_exact()
4872  * @virt: the value returned by alloc_pages_exact.
4873  * @size: size of allocation, same value as passed to alloc_pages_exact().
4874  *
4875  * Release the memory allocated by a previous call to alloc_pages_exact.
4876  */
4877 void free_pages_exact(void *virt, size_t size)
4878 {
4879 	unsigned long addr = (unsigned long)virt;
4880 	unsigned long end = addr + PAGE_ALIGN(size);
4881 
4882 	while (addr < end) {
4883 		free_page(addr);
4884 		addr += PAGE_SIZE;
4885 	}
4886 }
4887 EXPORT_SYMBOL(free_pages_exact);
4888 
4889 /**
4890  * nr_free_zone_pages - count number of pages beyond high watermark
4891  * @offset: The zone index of the highest zone
4892  *
4893  * nr_free_zone_pages() counts the number of pages which are beyond the
4894  * high watermark within all zones at or below a given zone index.  For each
4895  * zone, the number of pages is calculated as:
4896  *
4897  *     nr_free_zone_pages = managed_pages - high_pages
4898  *
4899  * Return: number of pages beyond high watermark.
4900  */
4901 static unsigned long nr_free_zone_pages(int offset)
4902 {
4903 	struct zoneref *z;
4904 	struct zone *zone;
4905 
4906 	/* Just pick one node, since fallback list is circular */
4907 	unsigned long sum = 0;
4908 
4909 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4910 
4911 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4912 		unsigned long size = zone_managed_pages(zone);
4913 		unsigned long high = high_wmark_pages(zone);
4914 		if (size > high)
4915 			sum += size - high;
4916 	}
4917 
4918 	return sum;
4919 }
4920 
4921 /**
4922  * nr_free_buffer_pages - count number of pages beyond high watermark
4923  *
4924  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4925  * watermark within ZONE_DMA and ZONE_NORMAL.
4926  *
4927  * Return: number of pages beyond high watermark within ZONE_DMA and
4928  * ZONE_NORMAL.
4929  */
4930 unsigned long nr_free_buffer_pages(void)
4931 {
4932 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4933 }
4934 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4935 
4936 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4937 {
4938 	zoneref->zone = zone;
4939 	zoneref->zone_idx = zone_idx(zone);
4940 }
4941 
4942 /*
4943  * Builds allocation fallback zone lists.
4944  *
4945  * Add all populated zones of a node to the zonelist.
4946  */
4947 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4948 {
4949 	struct zone *zone;
4950 	enum zone_type zone_type = MAX_NR_ZONES;
4951 	int nr_zones = 0;
4952 
4953 	do {
4954 		zone_type--;
4955 		zone = pgdat->node_zones + zone_type;
4956 		if (populated_zone(zone)) {
4957 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4958 			check_highest_zone(zone_type);
4959 		}
4960 	} while (zone_type);
4961 
4962 	return nr_zones;
4963 }
4964 
4965 #ifdef CONFIG_NUMA
4966 
4967 static int __parse_numa_zonelist_order(char *s)
4968 {
4969 	/*
4970 	 * We used to support different zonelists modes but they turned
4971 	 * out to be just not useful. Let's keep the warning in place
4972 	 * if somebody still use the cmd line parameter so that we do
4973 	 * not fail it silently
4974 	 */
4975 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4976 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4977 		return -EINVAL;
4978 	}
4979 	return 0;
4980 }
4981 
4982 static char numa_zonelist_order[] = "Node";
4983 #define NUMA_ZONELIST_ORDER_LEN	16
4984 /*
4985  * sysctl handler for numa_zonelist_order
4986  */
4987 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
4988 		void *buffer, size_t *length, loff_t *ppos)
4989 {
4990 	if (write)
4991 		return __parse_numa_zonelist_order(buffer);
4992 	return proc_dostring(table, write, buffer, length, ppos);
4993 }
4994 
4995 static int node_load[MAX_NUMNODES];
4996 
4997 /**
4998  * find_next_best_node - find the next node that should appear in a given node's fallback list
4999  * @node: node whose fallback list we're appending
5000  * @used_node_mask: nodemask_t of already used nodes
5001  *
5002  * We use a number of factors to determine which is the next node that should
5003  * appear on a given node's fallback list.  The node should not have appeared
5004  * already in @node's fallback list, and it should be the next closest node
5005  * according to the distance array (which contains arbitrary distance values
5006  * from each node to each node in the system), and should also prefer nodes
5007  * with no CPUs, since presumably they'll have very little allocation pressure
5008  * on them otherwise.
5009  *
5010  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5011  */
5012 int find_next_best_node(int node, nodemask_t *used_node_mask)
5013 {
5014 	int n, val;
5015 	int min_val = INT_MAX;
5016 	int best_node = NUMA_NO_NODE;
5017 
5018 	/*
5019 	 * Use the local node if we haven't already, but for memoryless local
5020 	 * node, we should skip it and fall back to other nodes.
5021 	 */
5022 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5023 		node_set(node, *used_node_mask);
5024 		return node;
5025 	}
5026 
5027 	for_each_node_state(n, N_MEMORY) {
5028 
5029 		/* Don't want a node to appear more than once */
5030 		if (node_isset(n, *used_node_mask))
5031 			continue;
5032 
5033 		/* Use the distance array to find the distance */
5034 		val = node_distance(node, n);
5035 
5036 		/* Penalize nodes under us ("prefer the next node") */
5037 		val += (n < node);
5038 
5039 		/* Give preference to headless and unused nodes */
5040 		if (!cpumask_empty(cpumask_of_node(n)))
5041 			val += PENALTY_FOR_NODE_WITH_CPUS;
5042 
5043 		/* Slight preference for less loaded node */
5044 		val *= MAX_NUMNODES;
5045 		val += node_load[n];
5046 
5047 		if (val < min_val) {
5048 			min_val = val;
5049 			best_node = n;
5050 		}
5051 	}
5052 
5053 	if (best_node >= 0)
5054 		node_set(best_node, *used_node_mask);
5055 
5056 	return best_node;
5057 }
5058 
5059 
5060 /*
5061  * Build zonelists ordered by node and zones within node.
5062  * This results in maximum locality--normal zone overflows into local
5063  * DMA zone, if any--but risks exhausting DMA zone.
5064  */
5065 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5066 		unsigned nr_nodes)
5067 {
5068 	struct zoneref *zonerefs;
5069 	int i;
5070 
5071 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5072 
5073 	for (i = 0; i < nr_nodes; i++) {
5074 		int nr_zones;
5075 
5076 		pg_data_t *node = NODE_DATA(node_order[i]);
5077 
5078 		nr_zones = build_zonerefs_node(node, zonerefs);
5079 		zonerefs += nr_zones;
5080 	}
5081 	zonerefs->zone = NULL;
5082 	zonerefs->zone_idx = 0;
5083 }
5084 
5085 /*
5086  * Build gfp_thisnode zonelists
5087  */
5088 static void build_thisnode_zonelists(pg_data_t *pgdat)
5089 {
5090 	struct zoneref *zonerefs;
5091 	int nr_zones;
5092 
5093 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5094 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5095 	zonerefs += nr_zones;
5096 	zonerefs->zone = NULL;
5097 	zonerefs->zone_idx = 0;
5098 }
5099 
5100 /*
5101  * Build zonelists ordered by zone and nodes within zones.
5102  * This results in conserving DMA zone[s] until all Normal memory is
5103  * exhausted, but results in overflowing to remote node while memory
5104  * may still exist in local DMA zone.
5105  */
5106 
5107 static void build_zonelists(pg_data_t *pgdat)
5108 {
5109 	static int node_order[MAX_NUMNODES];
5110 	int node, nr_nodes = 0;
5111 	nodemask_t used_mask = NODE_MASK_NONE;
5112 	int local_node, prev_node;
5113 
5114 	/* NUMA-aware ordering of nodes */
5115 	local_node = pgdat->node_id;
5116 	prev_node = local_node;
5117 
5118 	memset(node_order, 0, sizeof(node_order));
5119 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5120 		/*
5121 		 * We don't want to pressure a particular node.
5122 		 * So adding penalty to the first node in same
5123 		 * distance group to make it round-robin.
5124 		 */
5125 		if (node_distance(local_node, node) !=
5126 		    node_distance(local_node, prev_node))
5127 			node_load[node] += 1;
5128 
5129 		node_order[nr_nodes++] = node;
5130 		prev_node = node;
5131 	}
5132 
5133 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5134 	build_thisnode_zonelists(pgdat);
5135 	pr_info("Fallback order for Node %d: ", local_node);
5136 	for (node = 0; node < nr_nodes; node++)
5137 		pr_cont("%d ", node_order[node]);
5138 	pr_cont("\n");
5139 }
5140 
5141 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5142 /*
5143  * Return node id of node used for "local" allocations.
5144  * I.e., first node id of first zone in arg node's generic zonelist.
5145  * Used for initializing percpu 'numa_mem', which is used primarily
5146  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5147  */
5148 int local_memory_node(int node)
5149 {
5150 	struct zoneref *z;
5151 
5152 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5153 				   gfp_zone(GFP_KERNEL),
5154 				   NULL);
5155 	return zone_to_nid(z->zone);
5156 }
5157 #endif
5158 
5159 static void setup_min_unmapped_ratio(void);
5160 static void setup_min_slab_ratio(void);
5161 #else	/* CONFIG_NUMA */
5162 
5163 static void build_zonelists(pg_data_t *pgdat)
5164 {
5165 	int node, local_node;
5166 	struct zoneref *zonerefs;
5167 	int nr_zones;
5168 
5169 	local_node = pgdat->node_id;
5170 
5171 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5172 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5173 	zonerefs += nr_zones;
5174 
5175 	/*
5176 	 * Now we build the zonelist so that it contains the zones
5177 	 * of all the other nodes.
5178 	 * We don't want to pressure a particular node, so when
5179 	 * building the zones for node N, we make sure that the
5180 	 * zones coming right after the local ones are those from
5181 	 * node N+1 (modulo N)
5182 	 */
5183 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5184 		if (!node_online(node))
5185 			continue;
5186 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5187 		zonerefs += nr_zones;
5188 	}
5189 	for (node = 0; node < local_node; node++) {
5190 		if (!node_online(node))
5191 			continue;
5192 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5193 		zonerefs += nr_zones;
5194 	}
5195 
5196 	zonerefs->zone = NULL;
5197 	zonerefs->zone_idx = 0;
5198 }
5199 
5200 #endif	/* CONFIG_NUMA */
5201 
5202 /*
5203  * Boot pageset table. One per cpu which is going to be used for all
5204  * zones and all nodes. The parameters will be set in such a way
5205  * that an item put on a list will immediately be handed over to
5206  * the buddy list. This is safe since pageset manipulation is done
5207  * with interrupts disabled.
5208  *
5209  * The boot_pagesets must be kept even after bootup is complete for
5210  * unused processors and/or zones. They do play a role for bootstrapping
5211  * hotplugged processors.
5212  *
5213  * zoneinfo_show() and maybe other functions do
5214  * not check if the processor is online before following the pageset pointer.
5215  * Other parts of the kernel may not check if the zone is available.
5216  */
5217 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5218 /* These effectively disable the pcplists in the boot pageset completely */
5219 #define BOOT_PAGESET_HIGH	0
5220 #define BOOT_PAGESET_BATCH	1
5221 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5222 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5223 
5224 static void __build_all_zonelists(void *data)
5225 {
5226 	int nid;
5227 	int __maybe_unused cpu;
5228 	pg_data_t *self = data;
5229 	unsigned long flags;
5230 
5231 	/*
5232 	 * The zonelist_update_seq must be acquired with irqsave because the
5233 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5234 	 */
5235 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5236 	/*
5237 	 * Also disable synchronous printk() to prevent any printk() from
5238 	 * trying to hold port->lock, for
5239 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5240 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5241 	 */
5242 	printk_deferred_enter();
5243 
5244 #ifdef CONFIG_NUMA
5245 	memset(node_load, 0, sizeof(node_load));
5246 #endif
5247 
5248 	/*
5249 	 * This node is hotadded and no memory is yet present.   So just
5250 	 * building zonelists is fine - no need to touch other nodes.
5251 	 */
5252 	if (self && !node_online(self->node_id)) {
5253 		build_zonelists(self);
5254 	} else {
5255 		/*
5256 		 * All possible nodes have pgdat preallocated
5257 		 * in free_area_init
5258 		 */
5259 		for_each_node(nid) {
5260 			pg_data_t *pgdat = NODE_DATA(nid);
5261 
5262 			build_zonelists(pgdat);
5263 		}
5264 
5265 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5266 		/*
5267 		 * We now know the "local memory node" for each node--
5268 		 * i.e., the node of the first zone in the generic zonelist.
5269 		 * Set up numa_mem percpu variable for on-line cpus.  During
5270 		 * boot, only the boot cpu should be on-line;  we'll init the
5271 		 * secondary cpus' numa_mem as they come on-line.  During
5272 		 * node/memory hotplug, we'll fixup all on-line cpus.
5273 		 */
5274 		for_each_online_cpu(cpu)
5275 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5276 #endif
5277 	}
5278 
5279 	printk_deferred_exit();
5280 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5281 }
5282 
5283 static noinline void __init
5284 build_all_zonelists_init(void)
5285 {
5286 	int cpu;
5287 
5288 	__build_all_zonelists(NULL);
5289 
5290 	/*
5291 	 * Initialize the boot_pagesets that are going to be used
5292 	 * for bootstrapping processors. The real pagesets for
5293 	 * each zone will be allocated later when the per cpu
5294 	 * allocator is available.
5295 	 *
5296 	 * boot_pagesets are used also for bootstrapping offline
5297 	 * cpus if the system is already booted because the pagesets
5298 	 * are needed to initialize allocators on a specific cpu too.
5299 	 * F.e. the percpu allocator needs the page allocator which
5300 	 * needs the percpu allocator in order to allocate its pagesets
5301 	 * (a chicken-egg dilemma).
5302 	 */
5303 	for_each_possible_cpu(cpu)
5304 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5305 
5306 	mminit_verify_zonelist();
5307 	cpuset_init_current_mems_allowed();
5308 }
5309 
5310 /*
5311  * unless system_state == SYSTEM_BOOTING.
5312  *
5313  * __ref due to call of __init annotated helper build_all_zonelists_init
5314  * [protected by SYSTEM_BOOTING].
5315  */
5316 void __ref build_all_zonelists(pg_data_t *pgdat)
5317 {
5318 	unsigned long vm_total_pages;
5319 
5320 	if (system_state == SYSTEM_BOOTING) {
5321 		build_all_zonelists_init();
5322 	} else {
5323 		__build_all_zonelists(pgdat);
5324 		/* cpuset refresh routine should be here */
5325 	}
5326 	/* Get the number of free pages beyond high watermark in all zones. */
5327 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5328 	/*
5329 	 * Disable grouping by mobility if the number of pages in the
5330 	 * system is too low to allow the mechanism to work. It would be
5331 	 * more accurate, but expensive to check per-zone. This check is
5332 	 * made on memory-hotadd so a system can start with mobility
5333 	 * disabled and enable it later
5334 	 */
5335 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5336 		page_group_by_mobility_disabled = 1;
5337 	else
5338 		page_group_by_mobility_disabled = 0;
5339 
5340 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5341 		nr_online_nodes,
5342 		page_group_by_mobility_disabled ? "off" : "on",
5343 		vm_total_pages);
5344 #ifdef CONFIG_NUMA
5345 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5346 #endif
5347 }
5348 
5349 static int zone_batchsize(struct zone *zone)
5350 {
5351 #ifdef CONFIG_MMU
5352 	int batch;
5353 
5354 	/*
5355 	 * The number of pages to batch allocate is either ~0.1%
5356 	 * of the zone or 1MB, whichever is smaller. The batch
5357 	 * size is striking a balance between allocation latency
5358 	 * and zone lock contention.
5359 	 */
5360 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5361 	batch /= 4;		/* We effectively *= 4 below */
5362 	if (batch < 1)
5363 		batch = 1;
5364 
5365 	/*
5366 	 * Clamp the batch to a 2^n - 1 value. Having a power
5367 	 * of 2 value was found to be more likely to have
5368 	 * suboptimal cache aliasing properties in some cases.
5369 	 *
5370 	 * For example if 2 tasks are alternately allocating
5371 	 * batches of pages, one task can end up with a lot
5372 	 * of pages of one half of the possible page colors
5373 	 * and the other with pages of the other colors.
5374 	 */
5375 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5376 
5377 	return batch;
5378 
5379 #else
5380 	/* The deferral and batching of frees should be suppressed under NOMMU
5381 	 * conditions.
5382 	 *
5383 	 * The problem is that NOMMU needs to be able to allocate large chunks
5384 	 * of contiguous memory as there's no hardware page translation to
5385 	 * assemble apparent contiguous memory from discontiguous pages.
5386 	 *
5387 	 * Queueing large contiguous runs of pages for batching, however,
5388 	 * causes the pages to actually be freed in smaller chunks.  As there
5389 	 * can be a significant delay between the individual batches being
5390 	 * recycled, this leads to the once large chunks of space being
5391 	 * fragmented and becoming unavailable for high-order allocations.
5392 	 */
5393 	return 0;
5394 #endif
5395 }
5396 
5397 static int percpu_pagelist_high_fraction;
5398 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5399 			 int high_fraction)
5400 {
5401 #ifdef CONFIG_MMU
5402 	int high;
5403 	int nr_split_cpus;
5404 	unsigned long total_pages;
5405 
5406 	if (!high_fraction) {
5407 		/*
5408 		 * By default, the high value of the pcp is based on the zone
5409 		 * low watermark so that if they are full then background
5410 		 * reclaim will not be started prematurely.
5411 		 */
5412 		total_pages = low_wmark_pages(zone);
5413 	} else {
5414 		/*
5415 		 * If percpu_pagelist_high_fraction is configured, the high
5416 		 * value is based on a fraction of the managed pages in the
5417 		 * zone.
5418 		 */
5419 		total_pages = zone_managed_pages(zone) / high_fraction;
5420 	}
5421 
5422 	/*
5423 	 * Split the high value across all online CPUs local to the zone. Note
5424 	 * that early in boot that CPUs may not be online yet and that during
5425 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5426 	 * onlined. For memory nodes that have no CPUs, split the high value
5427 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5428 	 * prematurely due to pages stored on pcp lists.
5429 	 */
5430 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5431 	if (!nr_split_cpus)
5432 		nr_split_cpus = num_online_cpus();
5433 	high = total_pages / nr_split_cpus;
5434 
5435 	/*
5436 	 * Ensure high is at least batch*4. The multiple is based on the
5437 	 * historical relationship between high and batch.
5438 	 */
5439 	high = max(high, batch << 2);
5440 
5441 	return high;
5442 #else
5443 	return 0;
5444 #endif
5445 }
5446 
5447 /*
5448  * pcp->high and pcp->batch values are related and generally batch is lower
5449  * than high. They are also related to pcp->count such that count is lower
5450  * than high, and as soon as it reaches high, the pcplist is flushed.
5451  *
5452  * However, guaranteeing these relations at all times would require e.g. write
5453  * barriers here but also careful usage of read barriers at the read side, and
5454  * thus be prone to error and bad for performance. Thus the update only prevents
5455  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5456  * should ensure they can cope with those fields changing asynchronously, and
5457  * fully trust only the pcp->count field on the local CPU with interrupts
5458  * disabled.
5459  *
5460  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5461  * outside of boot time (or some other assurance that no concurrent updaters
5462  * exist).
5463  */
5464 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5465 			   unsigned long high_max, unsigned long batch)
5466 {
5467 	WRITE_ONCE(pcp->batch, batch);
5468 	WRITE_ONCE(pcp->high_min, high_min);
5469 	WRITE_ONCE(pcp->high_max, high_max);
5470 }
5471 
5472 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5473 {
5474 	int pindex;
5475 
5476 	memset(pcp, 0, sizeof(*pcp));
5477 	memset(pzstats, 0, sizeof(*pzstats));
5478 
5479 	spin_lock_init(&pcp->lock);
5480 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5481 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5482 
5483 	/*
5484 	 * Set batch and high values safe for a boot pageset. A true percpu
5485 	 * pageset's initialization will update them subsequently. Here we don't
5486 	 * need to be as careful as pageset_update() as nobody can access the
5487 	 * pageset yet.
5488 	 */
5489 	pcp->high_min = BOOT_PAGESET_HIGH;
5490 	pcp->high_max = BOOT_PAGESET_HIGH;
5491 	pcp->batch = BOOT_PAGESET_BATCH;
5492 	pcp->free_count = 0;
5493 }
5494 
5495 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5496 					      unsigned long high_max, unsigned long batch)
5497 {
5498 	struct per_cpu_pages *pcp;
5499 	int cpu;
5500 
5501 	for_each_possible_cpu(cpu) {
5502 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5503 		pageset_update(pcp, high_min, high_max, batch);
5504 	}
5505 }
5506 
5507 /*
5508  * Calculate and set new high and batch values for all per-cpu pagesets of a
5509  * zone based on the zone's size.
5510  */
5511 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5512 {
5513 	int new_high_min, new_high_max, new_batch;
5514 
5515 	new_batch = max(1, zone_batchsize(zone));
5516 	if (percpu_pagelist_high_fraction) {
5517 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5518 					     percpu_pagelist_high_fraction);
5519 		/*
5520 		 * PCP high is tuned manually, disable auto-tuning via
5521 		 * setting high_min and high_max to the manual value.
5522 		 */
5523 		new_high_max = new_high_min;
5524 	} else {
5525 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5526 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5527 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5528 	}
5529 
5530 	if (zone->pageset_high_min == new_high_min &&
5531 	    zone->pageset_high_max == new_high_max &&
5532 	    zone->pageset_batch == new_batch)
5533 		return;
5534 
5535 	zone->pageset_high_min = new_high_min;
5536 	zone->pageset_high_max = new_high_max;
5537 	zone->pageset_batch = new_batch;
5538 
5539 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5540 					  new_batch);
5541 }
5542 
5543 void __meminit setup_zone_pageset(struct zone *zone)
5544 {
5545 	int cpu;
5546 
5547 	/* Size may be 0 on !SMP && !NUMA */
5548 	if (sizeof(struct per_cpu_zonestat) > 0)
5549 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5550 
5551 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5552 	for_each_possible_cpu(cpu) {
5553 		struct per_cpu_pages *pcp;
5554 		struct per_cpu_zonestat *pzstats;
5555 
5556 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5557 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5558 		per_cpu_pages_init(pcp, pzstats);
5559 	}
5560 
5561 	zone_set_pageset_high_and_batch(zone, 0);
5562 }
5563 
5564 /*
5565  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5566  * page high values need to be recalculated.
5567  */
5568 static void zone_pcp_update(struct zone *zone, int cpu_online)
5569 {
5570 	mutex_lock(&pcp_batch_high_lock);
5571 	zone_set_pageset_high_and_batch(zone, cpu_online);
5572 	mutex_unlock(&pcp_batch_high_lock);
5573 }
5574 
5575 static void zone_pcp_update_cacheinfo(struct zone *zone)
5576 {
5577 	int cpu;
5578 	struct per_cpu_pages *pcp;
5579 	struct cpu_cacheinfo *cci;
5580 
5581 	for_each_online_cpu(cpu) {
5582 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5583 		cci = get_cpu_cacheinfo(cpu);
5584 		/*
5585 		 * If data cache slice of CPU is large enough, "pcp->batch"
5586 		 * pages can be preserved in PCP before draining PCP for
5587 		 * consecutive high-order pages freeing without allocation.
5588 		 * This can reduce zone lock contention without hurting
5589 		 * cache-hot pages sharing.
5590 		 */
5591 		spin_lock(&pcp->lock);
5592 		if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5593 			pcp->flags |= PCPF_FREE_HIGH_BATCH;
5594 		else
5595 			pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5596 		spin_unlock(&pcp->lock);
5597 	}
5598 }
5599 
5600 void setup_pcp_cacheinfo(void)
5601 {
5602 	struct zone *zone;
5603 
5604 	for_each_populated_zone(zone)
5605 		zone_pcp_update_cacheinfo(zone);
5606 }
5607 
5608 /*
5609  * Allocate per cpu pagesets and initialize them.
5610  * Before this call only boot pagesets were available.
5611  */
5612 void __init setup_per_cpu_pageset(void)
5613 {
5614 	struct pglist_data *pgdat;
5615 	struct zone *zone;
5616 	int __maybe_unused cpu;
5617 
5618 	for_each_populated_zone(zone)
5619 		setup_zone_pageset(zone);
5620 
5621 #ifdef CONFIG_NUMA
5622 	/*
5623 	 * Unpopulated zones continue using the boot pagesets.
5624 	 * The numa stats for these pagesets need to be reset.
5625 	 * Otherwise, they will end up skewing the stats of
5626 	 * the nodes these zones are associated with.
5627 	 */
5628 	for_each_possible_cpu(cpu) {
5629 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5630 		memset(pzstats->vm_numa_event, 0,
5631 		       sizeof(pzstats->vm_numa_event));
5632 	}
5633 #endif
5634 
5635 	for_each_online_pgdat(pgdat)
5636 		pgdat->per_cpu_nodestats =
5637 			alloc_percpu(struct per_cpu_nodestat);
5638 }
5639 
5640 __meminit void zone_pcp_init(struct zone *zone)
5641 {
5642 	/*
5643 	 * per cpu subsystem is not up at this point. The following code
5644 	 * relies on the ability of the linker to provide the
5645 	 * offset of a (static) per cpu variable into the per cpu area.
5646 	 */
5647 	zone->per_cpu_pageset = &boot_pageset;
5648 	zone->per_cpu_zonestats = &boot_zonestats;
5649 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5650 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5651 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5652 
5653 	if (populated_zone(zone))
5654 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5655 			 zone->present_pages, zone_batchsize(zone));
5656 }
5657 
5658 void adjust_managed_page_count(struct page *page, long count)
5659 {
5660 	atomic_long_add(count, &page_zone(page)->managed_pages);
5661 	totalram_pages_add(count);
5662 #ifdef CONFIG_HIGHMEM
5663 	if (PageHighMem(page))
5664 		totalhigh_pages_add(count);
5665 #endif
5666 }
5667 EXPORT_SYMBOL(adjust_managed_page_count);
5668 
5669 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5670 {
5671 	void *pos;
5672 	unsigned long pages = 0;
5673 
5674 	start = (void *)PAGE_ALIGN((unsigned long)start);
5675 	end = (void *)((unsigned long)end & PAGE_MASK);
5676 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5677 		struct page *page = virt_to_page(pos);
5678 		void *direct_map_addr;
5679 
5680 		/*
5681 		 * 'direct_map_addr' might be different from 'pos'
5682 		 * because some architectures' virt_to_page()
5683 		 * work with aliases.  Getting the direct map
5684 		 * address ensures that we get a _writeable_
5685 		 * alias for the memset().
5686 		 */
5687 		direct_map_addr = page_address(page);
5688 		/*
5689 		 * Perform a kasan-unchecked memset() since this memory
5690 		 * has not been initialized.
5691 		 */
5692 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5693 		if ((unsigned int)poison <= 0xFF)
5694 			memset(direct_map_addr, poison, PAGE_SIZE);
5695 
5696 		free_reserved_page(page);
5697 	}
5698 
5699 	if (pages && s)
5700 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5701 
5702 	return pages;
5703 }
5704 
5705 static int page_alloc_cpu_dead(unsigned int cpu)
5706 {
5707 	struct zone *zone;
5708 
5709 	lru_add_drain_cpu(cpu);
5710 	mlock_drain_remote(cpu);
5711 	drain_pages(cpu);
5712 
5713 	/*
5714 	 * Spill the event counters of the dead processor
5715 	 * into the current processors event counters.
5716 	 * This artificially elevates the count of the current
5717 	 * processor.
5718 	 */
5719 	vm_events_fold_cpu(cpu);
5720 
5721 	/*
5722 	 * Zero the differential counters of the dead processor
5723 	 * so that the vm statistics are consistent.
5724 	 *
5725 	 * This is only okay since the processor is dead and cannot
5726 	 * race with what we are doing.
5727 	 */
5728 	cpu_vm_stats_fold(cpu);
5729 
5730 	for_each_populated_zone(zone)
5731 		zone_pcp_update(zone, 0);
5732 
5733 	return 0;
5734 }
5735 
5736 static int page_alloc_cpu_online(unsigned int cpu)
5737 {
5738 	struct zone *zone;
5739 
5740 	for_each_populated_zone(zone)
5741 		zone_pcp_update(zone, 1);
5742 	return 0;
5743 }
5744 
5745 void __init page_alloc_init_cpuhp(void)
5746 {
5747 	int ret;
5748 
5749 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5750 					"mm/page_alloc:pcp",
5751 					page_alloc_cpu_online,
5752 					page_alloc_cpu_dead);
5753 	WARN_ON(ret < 0);
5754 }
5755 
5756 /*
5757  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5758  *	or min_free_kbytes changes.
5759  */
5760 static void calculate_totalreserve_pages(void)
5761 {
5762 	struct pglist_data *pgdat;
5763 	unsigned long reserve_pages = 0;
5764 	enum zone_type i, j;
5765 
5766 	for_each_online_pgdat(pgdat) {
5767 
5768 		pgdat->totalreserve_pages = 0;
5769 
5770 		for (i = 0; i < MAX_NR_ZONES; i++) {
5771 			struct zone *zone = pgdat->node_zones + i;
5772 			long max = 0;
5773 			unsigned long managed_pages = zone_managed_pages(zone);
5774 
5775 			/* Find valid and maximum lowmem_reserve in the zone */
5776 			for (j = i; j < MAX_NR_ZONES; j++) {
5777 				if (zone->lowmem_reserve[j] > max)
5778 					max = zone->lowmem_reserve[j];
5779 			}
5780 
5781 			/* we treat the high watermark as reserved pages. */
5782 			max += high_wmark_pages(zone);
5783 
5784 			if (max > managed_pages)
5785 				max = managed_pages;
5786 
5787 			pgdat->totalreserve_pages += max;
5788 
5789 			reserve_pages += max;
5790 		}
5791 	}
5792 	totalreserve_pages = reserve_pages;
5793 }
5794 
5795 /*
5796  * setup_per_zone_lowmem_reserve - called whenever
5797  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5798  *	has a correct pages reserved value, so an adequate number of
5799  *	pages are left in the zone after a successful __alloc_pages().
5800  */
5801 static void setup_per_zone_lowmem_reserve(void)
5802 {
5803 	struct pglist_data *pgdat;
5804 	enum zone_type i, j;
5805 
5806 	for_each_online_pgdat(pgdat) {
5807 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5808 			struct zone *zone = &pgdat->node_zones[i];
5809 			int ratio = sysctl_lowmem_reserve_ratio[i];
5810 			bool clear = !ratio || !zone_managed_pages(zone);
5811 			unsigned long managed_pages = 0;
5812 
5813 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5814 				struct zone *upper_zone = &pgdat->node_zones[j];
5815 
5816 				managed_pages += zone_managed_pages(upper_zone);
5817 
5818 				if (clear)
5819 					zone->lowmem_reserve[j] = 0;
5820 				else
5821 					zone->lowmem_reserve[j] = managed_pages / ratio;
5822 			}
5823 		}
5824 	}
5825 
5826 	/* update totalreserve_pages */
5827 	calculate_totalreserve_pages();
5828 }
5829 
5830 static void __setup_per_zone_wmarks(void)
5831 {
5832 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5833 	unsigned long lowmem_pages = 0;
5834 	struct zone *zone;
5835 	unsigned long flags;
5836 
5837 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5838 	for_each_zone(zone) {
5839 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5840 			lowmem_pages += zone_managed_pages(zone);
5841 	}
5842 
5843 	for_each_zone(zone) {
5844 		u64 tmp;
5845 
5846 		spin_lock_irqsave(&zone->lock, flags);
5847 		tmp = (u64)pages_min * zone_managed_pages(zone);
5848 		do_div(tmp, lowmem_pages);
5849 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5850 			/*
5851 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5852 			 * need highmem and movable zones pages, so cap pages_min
5853 			 * to a small  value here.
5854 			 *
5855 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5856 			 * deltas control async page reclaim, and so should
5857 			 * not be capped for highmem and movable zones.
5858 			 */
5859 			unsigned long min_pages;
5860 
5861 			min_pages = zone_managed_pages(zone) / 1024;
5862 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5863 			zone->_watermark[WMARK_MIN] = min_pages;
5864 		} else {
5865 			/*
5866 			 * If it's a lowmem zone, reserve a number of pages
5867 			 * proportionate to the zone's size.
5868 			 */
5869 			zone->_watermark[WMARK_MIN] = tmp;
5870 		}
5871 
5872 		/*
5873 		 * Set the kswapd watermarks distance according to the
5874 		 * scale factor in proportion to available memory, but
5875 		 * ensure a minimum size on small systems.
5876 		 */
5877 		tmp = max_t(u64, tmp >> 2,
5878 			    mult_frac(zone_managed_pages(zone),
5879 				      watermark_scale_factor, 10000));
5880 
5881 		zone->watermark_boost = 0;
5882 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5883 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5884 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5885 
5886 		spin_unlock_irqrestore(&zone->lock, flags);
5887 	}
5888 
5889 	/* update totalreserve_pages */
5890 	calculate_totalreserve_pages();
5891 }
5892 
5893 /**
5894  * setup_per_zone_wmarks - called when min_free_kbytes changes
5895  * or when memory is hot-{added|removed}
5896  *
5897  * Ensures that the watermark[min,low,high] values for each zone are set
5898  * correctly with respect to min_free_kbytes.
5899  */
5900 void setup_per_zone_wmarks(void)
5901 {
5902 	struct zone *zone;
5903 	static DEFINE_SPINLOCK(lock);
5904 
5905 	spin_lock(&lock);
5906 	__setup_per_zone_wmarks();
5907 	spin_unlock(&lock);
5908 
5909 	/*
5910 	 * The watermark size have changed so update the pcpu batch
5911 	 * and high limits or the limits may be inappropriate.
5912 	 */
5913 	for_each_zone(zone)
5914 		zone_pcp_update(zone, 0);
5915 }
5916 
5917 /*
5918  * Initialise min_free_kbytes.
5919  *
5920  * For small machines we want it small (128k min).  For large machines
5921  * we want it large (256MB max).  But it is not linear, because network
5922  * bandwidth does not increase linearly with machine size.  We use
5923  *
5924  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5925  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5926  *
5927  * which yields
5928  *
5929  * 16MB:	512k
5930  * 32MB:	724k
5931  * 64MB:	1024k
5932  * 128MB:	1448k
5933  * 256MB:	2048k
5934  * 512MB:	2896k
5935  * 1024MB:	4096k
5936  * 2048MB:	5792k
5937  * 4096MB:	8192k
5938  * 8192MB:	11584k
5939  * 16384MB:	16384k
5940  */
5941 void calculate_min_free_kbytes(void)
5942 {
5943 	unsigned long lowmem_kbytes;
5944 	int new_min_free_kbytes;
5945 
5946 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5947 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5948 
5949 	if (new_min_free_kbytes > user_min_free_kbytes)
5950 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5951 	else
5952 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5953 				new_min_free_kbytes, user_min_free_kbytes);
5954 
5955 }
5956 
5957 int __meminit init_per_zone_wmark_min(void)
5958 {
5959 	calculate_min_free_kbytes();
5960 	setup_per_zone_wmarks();
5961 	refresh_zone_stat_thresholds();
5962 	setup_per_zone_lowmem_reserve();
5963 
5964 #ifdef CONFIG_NUMA
5965 	setup_min_unmapped_ratio();
5966 	setup_min_slab_ratio();
5967 #endif
5968 
5969 	khugepaged_min_free_kbytes_update();
5970 
5971 	return 0;
5972 }
5973 postcore_initcall(init_per_zone_wmark_min)
5974 
5975 /*
5976  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5977  *	that we can call two helper functions whenever min_free_kbytes
5978  *	changes.
5979  */
5980 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5981 		void *buffer, size_t *length, loff_t *ppos)
5982 {
5983 	int rc;
5984 
5985 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5986 	if (rc)
5987 		return rc;
5988 
5989 	if (write) {
5990 		user_min_free_kbytes = min_free_kbytes;
5991 		setup_per_zone_wmarks();
5992 	}
5993 	return 0;
5994 }
5995 
5996 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
5997 		void *buffer, size_t *length, loff_t *ppos)
5998 {
5999 	int rc;
6000 
6001 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6002 	if (rc)
6003 		return rc;
6004 
6005 	if (write)
6006 		setup_per_zone_wmarks();
6007 
6008 	return 0;
6009 }
6010 
6011 #ifdef CONFIG_NUMA
6012 static void setup_min_unmapped_ratio(void)
6013 {
6014 	pg_data_t *pgdat;
6015 	struct zone *zone;
6016 
6017 	for_each_online_pgdat(pgdat)
6018 		pgdat->min_unmapped_pages = 0;
6019 
6020 	for_each_zone(zone)
6021 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6022 						         sysctl_min_unmapped_ratio) / 100;
6023 }
6024 
6025 
6026 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6027 		void *buffer, size_t *length, loff_t *ppos)
6028 {
6029 	int rc;
6030 
6031 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6032 	if (rc)
6033 		return rc;
6034 
6035 	setup_min_unmapped_ratio();
6036 
6037 	return 0;
6038 }
6039 
6040 static void setup_min_slab_ratio(void)
6041 {
6042 	pg_data_t *pgdat;
6043 	struct zone *zone;
6044 
6045 	for_each_online_pgdat(pgdat)
6046 		pgdat->min_slab_pages = 0;
6047 
6048 	for_each_zone(zone)
6049 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6050 						     sysctl_min_slab_ratio) / 100;
6051 }
6052 
6053 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6054 		void *buffer, size_t *length, loff_t *ppos)
6055 {
6056 	int rc;
6057 
6058 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6059 	if (rc)
6060 		return rc;
6061 
6062 	setup_min_slab_ratio();
6063 
6064 	return 0;
6065 }
6066 #endif
6067 
6068 /*
6069  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6070  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6071  *	whenever sysctl_lowmem_reserve_ratio changes.
6072  *
6073  * The reserve ratio obviously has absolutely no relation with the
6074  * minimum watermarks. The lowmem reserve ratio can only make sense
6075  * if in function of the boot time zone sizes.
6076  */
6077 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6078 		int write, void *buffer, size_t *length, loff_t *ppos)
6079 {
6080 	int i;
6081 
6082 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6083 
6084 	for (i = 0; i < MAX_NR_ZONES; i++) {
6085 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6086 			sysctl_lowmem_reserve_ratio[i] = 0;
6087 	}
6088 
6089 	setup_per_zone_lowmem_reserve();
6090 	return 0;
6091 }
6092 
6093 /*
6094  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6095  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6096  * pagelist can have before it gets flushed back to buddy allocator.
6097  */
6098 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6099 		int write, void *buffer, size_t *length, loff_t *ppos)
6100 {
6101 	struct zone *zone;
6102 	int old_percpu_pagelist_high_fraction;
6103 	int ret;
6104 
6105 	mutex_lock(&pcp_batch_high_lock);
6106 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6107 
6108 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6109 	if (!write || ret < 0)
6110 		goto out;
6111 
6112 	/* Sanity checking to avoid pcp imbalance */
6113 	if (percpu_pagelist_high_fraction &&
6114 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6115 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6116 		ret = -EINVAL;
6117 		goto out;
6118 	}
6119 
6120 	/* No change? */
6121 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6122 		goto out;
6123 
6124 	for_each_populated_zone(zone)
6125 		zone_set_pageset_high_and_batch(zone, 0);
6126 out:
6127 	mutex_unlock(&pcp_batch_high_lock);
6128 	return ret;
6129 }
6130 
6131 static struct ctl_table page_alloc_sysctl_table[] = {
6132 	{
6133 		.procname	= "min_free_kbytes",
6134 		.data		= &min_free_kbytes,
6135 		.maxlen		= sizeof(min_free_kbytes),
6136 		.mode		= 0644,
6137 		.proc_handler	= min_free_kbytes_sysctl_handler,
6138 		.extra1		= SYSCTL_ZERO,
6139 	},
6140 	{
6141 		.procname	= "watermark_boost_factor",
6142 		.data		= &watermark_boost_factor,
6143 		.maxlen		= sizeof(watermark_boost_factor),
6144 		.mode		= 0644,
6145 		.proc_handler	= proc_dointvec_minmax,
6146 		.extra1		= SYSCTL_ZERO,
6147 	},
6148 	{
6149 		.procname	= "watermark_scale_factor",
6150 		.data		= &watermark_scale_factor,
6151 		.maxlen		= sizeof(watermark_scale_factor),
6152 		.mode		= 0644,
6153 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6154 		.extra1		= SYSCTL_ONE,
6155 		.extra2		= SYSCTL_THREE_THOUSAND,
6156 	},
6157 	{
6158 		.procname	= "percpu_pagelist_high_fraction",
6159 		.data		= &percpu_pagelist_high_fraction,
6160 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6161 		.mode		= 0644,
6162 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6163 		.extra1		= SYSCTL_ZERO,
6164 	},
6165 	{
6166 		.procname	= "lowmem_reserve_ratio",
6167 		.data		= &sysctl_lowmem_reserve_ratio,
6168 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6169 		.mode		= 0644,
6170 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6171 	},
6172 #ifdef CONFIG_NUMA
6173 	{
6174 		.procname	= "numa_zonelist_order",
6175 		.data		= &numa_zonelist_order,
6176 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6177 		.mode		= 0644,
6178 		.proc_handler	= numa_zonelist_order_handler,
6179 	},
6180 	{
6181 		.procname	= "min_unmapped_ratio",
6182 		.data		= &sysctl_min_unmapped_ratio,
6183 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6184 		.mode		= 0644,
6185 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6186 		.extra1		= SYSCTL_ZERO,
6187 		.extra2		= SYSCTL_ONE_HUNDRED,
6188 	},
6189 	{
6190 		.procname	= "min_slab_ratio",
6191 		.data		= &sysctl_min_slab_ratio,
6192 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6193 		.mode		= 0644,
6194 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6195 		.extra1		= SYSCTL_ZERO,
6196 		.extra2		= SYSCTL_ONE_HUNDRED,
6197 	},
6198 #endif
6199 	{}
6200 };
6201 
6202 void __init page_alloc_sysctl_init(void)
6203 {
6204 	register_sysctl_init("vm", page_alloc_sysctl_table);
6205 }
6206 
6207 #ifdef CONFIG_CONTIG_ALLOC
6208 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6209 static void alloc_contig_dump_pages(struct list_head *page_list)
6210 {
6211 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6212 
6213 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6214 		struct page *page;
6215 
6216 		dump_stack();
6217 		list_for_each_entry(page, page_list, lru)
6218 			dump_page(page, "migration failure");
6219 	}
6220 }
6221 
6222 /* [start, end) must belong to a single zone. */
6223 int __alloc_contig_migrate_range(struct compact_control *cc,
6224 					unsigned long start, unsigned long end)
6225 {
6226 	/* This function is based on compact_zone() from compaction.c. */
6227 	unsigned int nr_reclaimed;
6228 	unsigned long pfn = start;
6229 	unsigned int tries = 0;
6230 	int ret = 0;
6231 	struct migration_target_control mtc = {
6232 		.nid = zone_to_nid(cc->zone),
6233 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6234 	};
6235 
6236 	lru_cache_disable();
6237 
6238 	while (pfn < end || !list_empty(&cc->migratepages)) {
6239 		if (fatal_signal_pending(current)) {
6240 			ret = -EINTR;
6241 			break;
6242 		}
6243 
6244 		if (list_empty(&cc->migratepages)) {
6245 			cc->nr_migratepages = 0;
6246 			ret = isolate_migratepages_range(cc, pfn, end);
6247 			if (ret && ret != -EAGAIN)
6248 				break;
6249 			pfn = cc->migrate_pfn;
6250 			tries = 0;
6251 		} else if (++tries == 5) {
6252 			ret = -EBUSY;
6253 			break;
6254 		}
6255 
6256 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6257 							&cc->migratepages);
6258 		cc->nr_migratepages -= nr_reclaimed;
6259 
6260 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6261 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6262 
6263 		/*
6264 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6265 		 * to retry again over this error, so do the same here.
6266 		 */
6267 		if (ret == -ENOMEM)
6268 			break;
6269 	}
6270 
6271 	lru_cache_enable();
6272 	if (ret < 0) {
6273 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6274 			alloc_contig_dump_pages(&cc->migratepages);
6275 		putback_movable_pages(&cc->migratepages);
6276 		return ret;
6277 	}
6278 	return 0;
6279 }
6280 
6281 /**
6282  * alloc_contig_range() -- tries to allocate given range of pages
6283  * @start:	start PFN to allocate
6284  * @end:	one-past-the-last PFN to allocate
6285  * @migratetype:	migratetype of the underlying pageblocks (either
6286  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6287  *			in range must have the same migratetype and it must
6288  *			be either of the two.
6289  * @gfp_mask:	GFP mask to use during compaction
6290  *
6291  * The PFN range does not have to be pageblock aligned. The PFN range must
6292  * belong to a single zone.
6293  *
6294  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6295  * pageblocks in the range.  Once isolated, the pageblocks should not
6296  * be modified by others.
6297  *
6298  * Return: zero on success or negative error code.  On success all
6299  * pages which PFN is in [start, end) are allocated for the caller and
6300  * need to be freed with free_contig_range().
6301  */
6302 int alloc_contig_range(unsigned long start, unsigned long end,
6303 		       unsigned migratetype, gfp_t gfp_mask)
6304 {
6305 	unsigned long outer_start, outer_end;
6306 	int order;
6307 	int ret = 0;
6308 
6309 	struct compact_control cc = {
6310 		.nr_migratepages = 0,
6311 		.order = -1,
6312 		.zone = page_zone(pfn_to_page(start)),
6313 		.mode = MIGRATE_SYNC,
6314 		.ignore_skip_hint = true,
6315 		.no_set_skip_hint = true,
6316 		.gfp_mask = current_gfp_context(gfp_mask),
6317 		.alloc_contig = true,
6318 	};
6319 	INIT_LIST_HEAD(&cc.migratepages);
6320 
6321 	/*
6322 	 * What we do here is we mark all pageblocks in range as
6323 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6324 	 * have different sizes, and due to the way page allocator
6325 	 * work, start_isolate_page_range() has special handlings for this.
6326 	 *
6327 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6328 	 * migrate the pages from an unaligned range (ie. pages that
6329 	 * we are interested in). This will put all the pages in
6330 	 * range back to page allocator as MIGRATE_ISOLATE.
6331 	 *
6332 	 * When this is done, we take the pages in range from page
6333 	 * allocator removing them from the buddy system.  This way
6334 	 * page allocator will never consider using them.
6335 	 *
6336 	 * This lets us mark the pageblocks back as
6337 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6338 	 * aligned range but not in the unaligned, original range are
6339 	 * put back to page allocator so that buddy can use them.
6340 	 */
6341 
6342 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6343 	if (ret)
6344 		goto done;
6345 
6346 	drain_all_pages(cc.zone);
6347 
6348 	/*
6349 	 * In case of -EBUSY, we'd like to know which page causes problem.
6350 	 * So, just fall through. test_pages_isolated() has a tracepoint
6351 	 * which will report the busy page.
6352 	 *
6353 	 * It is possible that busy pages could become available before
6354 	 * the call to test_pages_isolated, and the range will actually be
6355 	 * allocated.  So, if we fall through be sure to clear ret so that
6356 	 * -EBUSY is not accidentally used or returned to caller.
6357 	 */
6358 	ret = __alloc_contig_migrate_range(&cc, start, end);
6359 	if (ret && ret != -EBUSY)
6360 		goto done;
6361 	ret = 0;
6362 
6363 	/*
6364 	 * Pages from [start, end) are within a pageblock_nr_pages
6365 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6366 	 * more, all pages in [start, end) are free in page allocator.
6367 	 * What we are going to do is to allocate all pages from
6368 	 * [start, end) (that is remove them from page allocator).
6369 	 *
6370 	 * The only problem is that pages at the beginning and at the
6371 	 * end of interesting range may be not aligned with pages that
6372 	 * page allocator holds, ie. they can be part of higher order
6373 	 * pages.  Because of this, we reserve the bigger range and
6374 	 * once this is done free the pages we are not interested in.
6375 	 *
6376 	 * We don't have to hold zone->lock here because the pages are
6377 	 * isolated thus they won't get removed from buddy.
6378 	 */
6379 
6380 	order = 0;
6381 	outer_start = start;
6382 	while (!PageBuddy(pfn_to_page(outer_start))) {
6383 		if (++order > MAX_PAGE_ORDER) {
6384 			outer_start = start;
6385 			break;
6386 		}
6387 		outer_start &= ~0UL << order;
6388 	}
6389 
6390 	if (outer_start != start) {
6391 		order = buddy_order(pfn_to_page(outer_start));
6392 
6393 		/*
6394 		 * outer_start page could be small order buddy page and
6395 		 * it doesn't include start page. Adjust outer_start
6396 		 * in this case to report failed page properly
6397 		 * on tracepoint in test_pages_isolated()
6398 		 */
6399 		if (outer_start + (1UL << order) <= start)
6400 			outer_start = start;
6401 	}
6402 
6403 	/* Make sure the range is really isolated. */
6404 	if (test_pages_isolated(outer_start, end, 0)) {
6405 		ret = -EBUSY;
6406 		goto done;
6407 	}
6408 
6409 	/* Grab isolated pages from freelists. */
6410 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6411 	if (!outer_end) {
6412 		ret = -EBUSY;
6413 		goto done;
6414 	}
6415 
6416 	/* Free head and tail (if any) */
6417 	if (start != outer_start)
6418 		free_contig_range(outer_start, start - outer_start);
6419 	if (end != outer_end)
6420 		free_contig_range(end, outer_end - end);
6421 
6422 done:
6423 	undo_isolate_page_range(start, end, migratetype);
6424 	return ret;
6425 }
6426 EXPORT_SYMBOL(alloc_contig_range);
6427 
6428 static int __alloc_contig_pages(unsigned long start_pfn,
6429 				unsigned long nr_pages, gfp_t gfp_mask)
6430 {
6431 	unsigned long end_pfn = start_pfn + nr_pages;
6432 
6433 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6434 				  gfp_mask);
6435 }
6436 
6437 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6438 				   unsigned long nr_pages)
6439 {
6440 	unsigned long i, end_pfn = start_pfn + nr_pages;
6441 	struct page *page;
6442 
6443 	for (i = start_pfn; i < end_pfn; i++) {
6444 		page = pfn_to_online_page(i);
6445 		if (!page)
6446 			return false;
6447 
6448 		if (page_zone(page) != z)
6449 			return false;
6450 
6451 		if (PageReserved(page))
6452 			return false;
6453 
6454 		if (PageHuge(page))
6455 			return false;
6456 	}
6457 	return true;
6458 }
6459 
6460 static bool zone_spans_last_pfn(const struct zone *zone,
6461 				unsigned long start_pfn, unsigned long nr_pages)
6462 {
6463 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6464 
6465 	return zone_spans_pfn(zone, last_pfn);
6466 }
6467 
6468 /**
6469  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6470  * @nr_pages:	Number of contiguous pages to allocate
6471  * @gfp_mask:	GFP mask to limit search and used during compaction
6472  * @nid:	Target node
6473  * @nodemask:	Mask for other possible nodes
6474  *
6475  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6476  * on an applicable zonelist to find a contiguous pfn range which can then be
6477  * tried for allocation with alloc_contig_range(). This routine is intended
6478  * for allocation requests which can not be fulfilled with the buddy allocator.
6479  *
6480  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6481  * power of two, then allocated range is also guaranteed to be aligned to same
6482  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6483  *
6484  * Allocated pages can be freed with free_contig_range() or by manually calling
6485  * __free_page() on each allocated page.
6486  *
6487  * Return: pointer to contiguous pages on success, or NULL if not successful.
6488  */
6489 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6490 				int nid, nodemask_t *nodemask)
6491 {
6492 	unsigned long ret, pfn, flags;
6493 	struct zonelist *zonelist;
6494 	struct zone *zone;
6495 	struct zoneref *z;
6496 
6497 	zonelist = node_zonelist(nid, gfp_mask);
6498 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6499 					gfp_zone(gfp_mask), nodemask) {
6500 		spin_lock_irqsave(&zone->lock, flags);
6501 
6502 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6503 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6504 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6505 				/*
6506 				 * We release the zone lock here because
6507 				 * alloc_contig_range() will also lock the zone
6508 				 * at some point. If there's an allocation
6509 				 * spinning on this lock, it may win the race
6510 				 * and cause alloc_contig_range() to fail...
6511 				 */
6512 				spin_unlock_irqrestore(&zone->lock, flags);
6513 				ret = __alloc_contig_pages(pfn, nr_pages,
6514 							gfp_mask);
6515 				if (!ret)
6516 					return pfn_to_page(pfn);
6517 				spin_lock_irqsave(&zone->lock, flags);
6518 			}
6519 			pfn += nr_pages;
6520 		}
6521 		spin_unlock_irqrestore(&zone->lock, flags);
6522 	}
6523 	return NULL;
6524 }
6525 #endif /* CONFIG_CONTIG_ALLOC */
6526 
6527 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6528 {
6529 	unsigned long count = 0;
6530 
6531 	for (; nr_pages--; pfn++) {
6532 		struct page *page = pfn_to_page(pfn);
6533 
6534 		count += page_count(page) != 1;
6535 		__free_page(page);
6536 	}
6537 	WARN(count != 0, "%lu pages are still in use!\n", count);
6538 }
6539 EXPORT_SYMBOL(free_contig_range);
6540 
6541 /*
6542  * Effectively disable pcplists for the zone by setting the high limit to 0
6543  * and draining all cpus. A concurrent page freeing on another CPU that's about
6544  * to put the page on pcplist will either finish before the drain and the page
6545  * will be drained, or observe the new high limit and skip the pcplist.
6546  *
6547  * Must be paired with a call to zone_pcp_enable().
6548  */
6549 void zone_pcp_disable(struct zone *zone)
6550 {
6551 	mutex_lock(&pcp_batch_high_lock);
6552 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6553 	__drain_all_pages(zone, true);
6554 }
6555 
6556 void zone_pcp_enable(struct zone *zone)
6557 {
6558 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6559 		zone->pageset_high_max, zone->pageset_batch);
6560 	mutex_unlock(&pcp_batch_high_lock);
6561 }
6562 
6563 void zone_pcp_reset(struct zone *zone)
6564 {
6565 	int cpu;
6566 	struct per_cpu_zonestat *pzstats;
6567 
6568 	if (zone->per_cpu_pageset != &boot_pageset) {
6569 		for_each_online_cpu(cpu) {
6570 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6571 			drain_zonestat(zone, pzstats);
6572 		}
6573 		free_percpu(zone->per_cpu_pageset);
6574 		zone->per_cpu_pageset = &boot_pageset;
6575 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6576 			free_percpu(zone->per_cpu_zonestats);
6577 			zone->per_cpu_zonestats = &boot_zonestats;
6578 		}
6579 	}
6580 }
6581 
6582 #ifdef CONFIG_MEMORY_HOTREMOVE
6583 /*
6584  * All pages in the range must be in a single zone, must not contain holes,
6585  * must span full sections, and must be isolated before calling this function.
6586  */
6587 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6588 {
6589 	unsigned long pfn = start_pfn;
6590 	struct page *page;
6591 	struct zone *zone;
6592 	unsigned int order;
6593 	unsigned long flags;
6594 
6595 	offline_mem_sections(pfn, end_pfn);
6596 	zone = page_zone(pfn_to_page(pfn));
6597 	spin_lock_irqsave(&zone->lock, flags);
6598 	while (pfn < end_pfn) {
6599 		page = pfn_to_page(pfn);
6600 		/*
6601 		 * The HWPoisoned page may be not in buddy system, and
6602 		 * page_count() is not 0.
6603 		 */
6604 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6605 			pfn++;
6606 			continue;
6607 		}
6608 		/*
6609 		 * At this point all remaining PageOffline() pages have a
6610 		 * reference count of 0 and can simply be skipped.
6611 		 */
6612 		if (PageOffline(page)) {
6613 			BUG_ON(page_count(page));
6614 			BUG_ON(PageBuddy(page));
6615 			pfn++;
6616 			continue;
6617 		}
6618 
6619 		BUG_ON(page_count(page));
6620 		BUG_ON(!PageBuddy(page));
6621 		order = buddy_order(page);
6622 		del_page_from_free_list(page, zone, order);
6623 		pfn += (1 << order);
6624 	}
6625 	spin_unlock_irqrestore(&zone->lock, flags);
6626 }
6627 #endif
6628 
6629 /*
6630  * This function returns a stable result only if called under zone lock.
6631  */
6632 bool is_free_buddy_page(struct page *page)
6633 {
6634 	unsigned long pfn = page_to_pfn(page);
6635 	unsigned int order;
6636 
6637 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6638 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6639 
6640 		if (PageBuddy(page_head) &&
6641 		    buddy_order_unsafe(page_head) >= order)
6642 			break;
6643 	}
6644 
6645 	return order <= MAX_PAGE_ORDER;
6646 }
6647 EXPORT_SYMBOL(is_free_buddy_page);
6648 
6649 #ifdef CONFIG_MEMORY_FAILURE
6650 /*
6651  * Break down a higher-order page in sub-pages, and keep our target out of
6652  * buddy allocator.
6653  */
6654 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6655 				   struct page *target, int low, int high,
6656 				   int migratetype)
6657 {
6658 	unsigned long size = 1 << high;
6659 	struct page *current_buddy;
6660 
6661 	while (high > low) {
6662 		high--;
6663 		size >>= 1;
6664 
6665 		if (target >= &page[size]) {
6666 			current_buddy = page;
6667 			page = page + size;
6668 		} else {
6669 			current_buddy = page + size;
6670 		}
6671 
6672 		if (set_page_guard(zone, current_buddy, high, migratetype))
6673 			continue;
6674 
6675 		add_to_free_list(current_buddy, zone, high, migratetype);
6676 		set_buddy_order(current_buddy, high);
6677 	}
6678 }
6679 
6680 /*
6681  * Take a page that will be marked as poisoned off the buddy allocator.
6682  */
6683 bool take_page_off_buddy(struct page *page)
6684 {
6685 	struct zone *zone = page_zone(page);
6686 	unsigned long pfn = page_to_pfn(page);
6687 	unsigned long flags;
6688 	unsigned int order;
6689 	bool ret = false;
6690 
6691 	spin_lock_irqsave(&zone->lock, flags);
6692 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6693 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6694 		int page_order = buddy_order(page_head);
6695 
6696 		if (PageBuddy(page_head) && page_order >= order) {
6697 			unsigned long pfn_head = page_to_pfn(page_head);
6698 			int migratetype = get_pfnblock_migratetype(page_head,
6699 								   pfn_head);
6700 
6701 			del_page_from_free_list(page_head, zone, page_order);
6702 			break_down_buddy_pages(zone, page_head, page, 0,
6703 						page_order, migratetype);
6704 			SetPageHWPoisonTakenOff(page);
6705 			if (!is_migrate_isolate(migratetype))
6706 				__mod_zone_freepage_state(zone, -1, migratetype);
6707 			ret = true;
6708 			break;
6709 		}
6710 		if (page_count(page_head) > 0)
6711 			break;
6712 	}
6713 	spin_unlock_irqrestore(&zone->lock, flags);
6714 	return ret;
6715 }
6716 
6717 /*
6718  * Cancel takeoff done by take_page_off_buddy().
6719  */
6720 bool put_page_back_buddy(struct page *page)
6721 {
6722 	struct zone *zone = page_zone(page);
6723 	unsigned long pfn = page_to_pfn(page);
6724 	unsigned long flags;
6725 	int migratetype = get_pfnblock_migratetype(page, pfn);
6726 	bool ret = false;
6727 
6728 	spin_lock_irqsave(&zone->lock, flags);
6729 	if (put_page_testzero(page)) {
6730 		ClearPageHWPoisonTakenOff(page);
6731 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6732 		if (TestClearPageHWPoison(page)) {
6733 			ret = true;
6734 		}
6735 	}
6736 	spin_unlock_irqrestore(&zone->lock, flags);
6737 
6738 	return ret;
6739 }
6740 #endif
6741 
6742 #ifdef CONFIG_ZONE_DMA
6743 bool has_managed_dma(void)
6744 {
6745 	struct pglist_data *pgdat;
6746 
6747 	for_each_online_pgdat(pgdat) {
6748 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6749 
6750 		if (managed_zone(zone))
6751 			return true;
6752 	}
6753 	return false;
6754 }
6755 #endif /* CONFIG_ZONE_DMA */
6756 
6757 #ifdef CONFIG_UNACCEPTED_MEMORY
6758 
6759 /* Counts number of zones with unaccepted pages. */
6760 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6761 
6762 static bool lazy_accept = true;
6763 
6764 static int __init accept_memory_parse(char *p)
6765 {
6766 	if (!strcmp(p, "lazy")) {
6767 		lazy_accept = true;
6768 		return 0;
6769 	} else if (!strcmp(p, "eager")) {
6770 		lazy_accept = false;
6771 		return 0;
6772 	} else {
6773 		return -EINVAL;
6774 	}
6775 }
6776 early_param("accept_memory", accept_memory_parse);
6777 
6778 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6779 {
6780 	phys_addr_t start = page_to_phys(page);
6781 	phys_addr_t end = start + (PAGE_SIZE << order);
6782 
6783 	return range_contains_unaccepted_memory(start, end);
6784 }
6785 
6786 static void accept_page(struct page *page, unsigned int order)
6787 {
6788 	phys_addr_t start = page_to_phys(page);
6789 
6790 	accept_memory(start, start + (PAGE_SIZE << order));
6791 }
6792 
6793 static bool try_to_accept_memory_one(struct zone *zone)
6794 {
6795 	unsigned long flags;
6796 	struct page *page;
6797 	bool last;
6798 
6799 	if (list_empty(&zone->unaccepted_pages))
6800 		return false;
6801 
6802 	spin_lock_irqsave(&zone->lock, flags);
6803 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6804 					struct page, lru);
6805 	if (!page) {
6806 		spin_unlock_irqrestore(&zone->lock, flags);
6807 		return false;
6808 	}
6809 
6810 	list_del(&page->lru);
6811 	last = list_empty(&zone->unaccepted_pages);
6812 
6813 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6814 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6815 	spin_unlock_irqrestore(&zone->lock, flags);
6816 
6817 	accept_page(page, MAX_PAGE_ORDER);
6818 
6819 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6820 
6821 	if (last)
6822 		static_branch_dec(&zones_with_unaccepted_pages);
6823 
6824 	return true;
6825 }
6826 
6827 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6828 {
6829 	long to_accept;
6830 	int ret = false;
6831 
6832 	/* How much to accept to get to high watermark? */
6833 	to_accept = high_wmark_pages(zone) -
6834 		    (zone_page_state(zone, NR_FREE_PAGES) -
6835 		    __zone_watermark_unusable_free(zone, order, 0));
6836 
6837 	/* Accept at least one page */
6838 	do {
6839 		if (!try_to_accept_memory_one(zone))
6840 			break;
6841 		ret = true;
6842 		to_accept -= MAX_ORDER_NR_PAGES;
6843 	} while (to_accept > 0);
6844 
6845 	return ret;
6846 }
6847 
6848 static inline bool has_unaccepted_memory(void)
6849 {
6850 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6851 }
6852 
6853 static bool __free_unaccepted(struct page *page)
6854 {
6855 	struct zone *zone = page_zone(page);
6856 	unsigned long flags;
6857 	bool first = false;
6858 
6859 	if (!lazy_accept)
6860 		return false;
6861 
6862 	spin_lock_irqsave(&zone->lock, flags);
6863 	first = list_empty(&zone->unaccepted_pages);
6864 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6865 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6866 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6867 	spin_unlock_irqrestore(&zone->lock, flags);
6868 
6869 	if (first)
6870 		static_branch_inc(&zones_with_unaccepted_pages);
6871 
6872 	return true;
6873 }
6874 
6875 #else
6876 
6877 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6878 {
6879 	return false;
6880 }
6881 
6882 static void accept_page(struct page *page, unsigned int order)
6883 {
6884 }
6885 
6886 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6887 {
6888 	return false;
6889 }
6890 
6891 static inline bool has_unaccepted_memory(void)
6892 {
6893 	return false;
6894 }
6895 
6896 static bool __free_unaccepted(struct page *page)
6897 {
6898 	BUILD_BUG();
6899 	return false;
6900 }
6901 
6902 #endif /* CONFIG_UNACCEPTED_MEMORY */
6903