xref: /linux/mm/page_alloc.c (revision e6a901a00822659181c93c86d8bbc2a17779fddc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <asm/div64.h>
58 #include "internal.h"
59 #include "shuffle.h"
60 #include "page_reporting.h"
61 
62 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
63 typedef int __bitwise fpi_t;
64 
65 /* No special request */
66 #define FPI_NONE		((__force fpi_t)0)
67 
68 /*
69  * Skip free page reporting notification for the (possibly merged) page.
70  * This does not hinder free page reporting from grabbing the page,
71  * reporting it and marking it "reported" -  it only skips notifying
72  * the free page reporting infrastructure about a newly freed page. For
73  * example, used when temporarily pulling a page from a freelist and
74  * putting it back unmodified.
75  */
76 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
77 
78 /*
79  * Place the (possibly merged) page to the tail of the freelist. Will ignore
80  * page shuffling (relevant code - e.g., memory onlining - is expected to
81  * shuffle the whole zone).
82  *
83  * Note: No code should rely on this flag for correctness - it's purely
84  *       to allow for optimizations when handing back either fresh pages
85  *       (memory onlining) or untouched pages (page isolation, free page
86  *       reporting).
87  */
88 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
89 
90 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
91 static DEFINE_MUTEX(pcp_batch_high_lock);
92 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
93 
94 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
95 /*
96  * On SMP, spin_trylock is sufficient protection.
97  * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
98  */
99 #define pcp_trylock_prepare(flags)	do { } while (0)
100 #define pcp_trylock_finish(flag)	do { } while (0)
101 #else
102 
103 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
104 #define pcp_trylock_prepare(flags)	local_irq_save(flags)
105 #define pcp_trylock_finish(flags)	local_irq_restore(flags)
106 #endif
107 
108 /*
109  * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
110  * a migration causing the wrong PCP to be locked and remote memory being
111  * potentially allocated, pin the task to the CPU for the lookup+lock.
112  * preempt_disable is used on !RT because it is faster than migrate_disable.
113  * migrate_disable is used on RT because otherwise RT spinlock usage is
114  * interfered with and a high priority task cannot preempt the allocator.
115  */
116 #ifndef CONFIG_PREEMPT_RT
117 #define pcpu_task_pin()		preempt_disable()
118 #define pcpu_task_unpin()	preempt_enable()
119 #else
120 #define pcpu_task_pin()		migrate_disable()
121 #define pcpu_task_unpin()	migrate_enable()
122 #endif
123 
124 /*
125  * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
126  * Return value should be used with equivalent unlock helper.
127  */
128 #define pcpu_spin_lock(type, member, ptr)				\
129 ({									\
130 	type *_ret;							\
131 	pcpu_task_pin();						\
132 	_ret = this_cpu_ptr(ptr);					\
133 	spin_lock(&_ret->member);					\
134 	_ret;								\
135 })
136 
137 #define pcpu_spin_trylock(type, member, ptr)				\
138 ({									\
139 	type *_ret;							\
140 	pcpu_task_pin();						\
141 	_ret = this_cpu_ptr(ptr);					\
142 	if (!spin_trylock(&_ret->member)) {				\
143 		pcpu_task_unpin();					\
144 		_ret = NULL;						\
145 	}								\
146 	_ret;								\
147 })
148 
149 #define pcpu_spin_unlock(member, ptr)					\
150 ({									\
151 	spin_unlock(&ptr->member);					\
152 	pcpu_task_unpin();						\
153 })
154 
155 /* struct per_cpu_pages specific helpers. */
156 #define pcp_spin_lock(ptr)						\
157 	pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
158 
159 #define pcp_spin_trylock(ptr)						\
160 	pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
161 
162 #define pcp_spin_unlock(ptr)						\
163 	pcpu_spin_unlock(lock, ptr)
164 
165 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
166 DEFINE_PER_CPU(int, numa_node);
167 EXPORT_PER_CPU_SYMBOL(numa_node);
168 #endif
169 
170 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
171 
172 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
173 /*
174  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
175  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
176  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
177  * defined in <linux/topology.h>.
178  */
179 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
180 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
181 #endif
182 
183 static DEFINE_MUTEX(pcpu_drain_mutex);
184 
185 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
186 volatile unsigned long latent_entropy __latent_entropy;
187 EXPORT_SYMBOL(latent_entropy);
188 #endif
189 
190 /*
191  * Array of node states.
192  */
193 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
194 	[N_POSSIBLE] = NODE_MASK_ALL,
195 	[N_ONLINE] = { { [0] = 1UL } },
196 #ifndef CONFIG_NUMA
197 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
198 #ifdef CONFIG_HIGHMEM
199 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
200 #endif
201 	[N_MEMORY] = { { [0] = 1UL } },
202 	[N_CPU] = { { [0] = 1UL } },
203 #endif	/* NUMA */
204 };
205 EXPORT_SYMBOL(node_states);
206 
207 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
208 
209 /*
210  * A cached value of the page's pageblock's migratetype, used when the page is
211  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
212  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
213  * Also the migratetype set in the page does not necessarily match the pcplist
214  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
215  * other index - this ensures that it will be put on the correct CMA freelist.
216  */
217 static inline int get_pcppage_migratetype(struct page *page)
218 {
219 	return page->index;
220 }
221 
222 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
223 {
224 	page->index = migratetype;
225 }
226 
227 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
228 unsigned int pageblock_order __read_mostly;
229 #endif
230 
231 static void __free_pages_ok(struct page *page, unsigned int order,
232 			    fpi_t fpi_flags);
233 
234 /*
235  * results with 256, 32 in the lowmem_reserve sysctl:
236  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
237  *	1G machine -> (16M dma, 784M normal, 224M high)
238  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
239  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
240  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
241  *
242  * TBD: should special case ZONE_DMA32 machines here - in those we normally
243  * don't need any ZONE_NORMAL reservation
244  */
245 static int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
246 #ifdef CONFIG_ZONE_DMA
247 	[ZONE_DMA] = 256,
248 #endif
249 #ifdef CONFIG_ZONE_DMA32
250 	[ZONE_DMA32] = 256,
251 #endif
252 	[ZONE_NORMAL] = 32,
253 #ifdef CONFIG_HIGHMEM
254 	[ZONE_HIGHMEM] = 0,
255 #endif
256 	[ZONE_MOVABLE] = 0,
257 };
258 
259 char * const zone_names[MAX_NR_ZONES] = {
260 #ifdef CONFIG_ZONE_DMA
261 	 "DMA",
262 #endif
263 #ifdef CONFIG_ZONE_DMA32
264 	 "DMA32",
265 #endif
266 	 "Normal",
267 #ifdef CONFIG_HIGHMEM
268 	 "HighMem",
269 #endif
270 	 "Movable",
271 #ifdef CONFIG_ZONE_DEVICE
272 	 "Device",
273 #endif
274 };
275 
276 const char * const migratetype_names[MIGRATE_TYPES] = {
277 	"Unmovable",
278 	"Movable",
279 	"Reclaimable",
280 	"HighAtomic",
281 #ifdef CONFIG_CMA
282 	"CMA",
283 #endif
284 #ifdef CONFIG_MEMORY_ISOLATION
285 	"Isolate",
286 #endif
287 };
288 
289 int min_free_kbytes = 1024;
290 int user_min_free_kbytes = -1;
291 static int watermark_boost_factor __read_mostly = 15000;
292 static int watermark_scale_factor = 10;
293 
294 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
295 int movable_zone;
296 EXPORT_SYMBOL(movable_zone);
297 
298 #if MAX_NUMNODES > 1
299 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
300 unsigned int nr_online_nodes __read_mostly = 1;
301 EXPORT_SYMBOL(nr_node_ids);
302 EXPORT_SYMBOL(nr_online_nodes);
303 #endif
304 
305 static bool page_contains_unaccepted(struct page *page, unsigned int order);
306 static void accept_page(struct page *page, unsigned int order);
307 static bool try_to_accept_memory(struct zone *zone, unsigned int order);
308 static inline bool has_unaccepted_memory(void);
309 static bool __free_unaccepted(struct page *page);
310 
311 int page_group_by_mobility_disabled __read_mostly;
312 
313 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
314 /*
315  * During boot we initialize deferred pages on-demand, as needed, but once
316  * page_alloc_init_late() has finished, the deferred pages are all initialized,
317  * and we can permanently disable that path.
318  */
319 DEFINE_STATIC_KEY_TRUE(deferred_pages);
320 
321 static inline bool deferred_pages_enabled(void)
322 {
323 	return static_branch_unlikely(&deferred_pages);
324 }
325 
326 /*
327  * deferred_grow_zone() is __init, but it is called from
328  * get_page_from_freelist() during early boot until deferred_pages permanently
329  * disables this call. This is why we have refdata wrapper to avoid warning,
330  * and to ensure that the function body gets unloaded.
331  */
332 static bool __ref
333 _deferred_grow_zone(struct zone *zone, unsigned int order)
334 {
335        return deferred_grow_zone(zone, order);
336 }
337 #else
338 static inline bool deferred_pages_enabled(void)
339 {
340 	return false;
341 }
342 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
343 
344 /* Return a pointer to the bitmap storing bits affecting a block of pages */
345 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
346 							unsigned long pfn)
347 {
348 #ifdef CONFIG_SPARSEMEM
349 	return section_to_usemap(__pfn_to_section(pfn));
350 #else
351 	return page_zone(page)->pageblock_flags;
352 #endif /* CONFIG_SPARSEMEM */
353 }
354 
355 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
356 {
357 #ifdef CONFIG_SPARSEMEM
358 	pfn &= (PAGES_PER_SECTION-1);
359 #else
360 	pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn);
361 #endif /* CONFIG_SPARSEMEM */
362 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
363 }
364 
365 /**
366  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
367  * @page: The page within the block of interest
368  * @pfn: The target page frame number
369  * @mask: mask of bits that the caller is interested in
370  *
371  * Return: pageblock_bits flags
372  */
373 unsigned long get_pfnblock_flags_mask(const struct page *page,
374 					unsigned long pfn, unsigned long mask)
375 {
376 	unsigned long *bitmap;
377 	unsigned long bitidx, word_bitidx;
378 	unsigned long word;
379 
380 	bitmap = get_pageblock_bitmap(page, pfn);
381 	bitidx = pfn_to_bitidx(page, pfn);
382 	word_bitidx = bitidx / BITS_PER_LONG;
383 	bitidx &= (BITS_PER_LONG-1);
384 	/*
385 	 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
386 	 * a consistent read of the memory array, so that results, even though
387 	 * racy, are not corrupted.
388 	 */
389 	word = READ_ONCE(bitmap[word_bitidx]);
390 	return (word >> bitidx) & mask;
391 }
392 
393 static __always_inline int get_pfnblock_migratetype(const struct page *page,
394 					unsigned long pfn)
395 {
396 	return get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
397 }
398 
399 /**
400  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
401  * @page: The page within the block of interest
402  * @flags: The flags to set
403  * @pfn: The target page frame number
404  * @mask: mask of bits that the caller is interested in
405  */
406 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
407 					unsigned long pfn,
408 					unsigned long mask)
409 {
410 	unsigned long *bitmap;
411 	unsigned long bitidx, word_bitidx;
412 	unsigned long word;
413 
414 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
415 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
416 
417 	bitmap = get_pageblock_bitmap(page, pfn);
418 	bitidx = pfn_to_bitidx(page, pfn);
419 	word_bitidx = bitidx / BITS_PER_LONG;
420 	bitidx &= (BITS_PER_LONG-1);
421 
422 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
423 
424 	mask <<= bitidx;
425 	flags <<= bitidx;
426 
427 	word = READ_ONCE(bitmap[word_bitidx]);
428 	do {
429 	} while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags));
430 }
431 
432 void set_pageblock_migratetype(struct page *page, int migratetype)
433 {
434 	if (unlikely(page_group_by_mobility_disabled &&
435 		     migratetype < MIGRATE_PCPTYPES))
436 		migratetype = MIGRATE_UNMOVABLE;
437 
438 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
439 				page_to_pfn(page), MIGRATETYPE_MASK);
440 }
441 
442 #ifdef CONFIG_DEBUG_VM
443 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
444 {
445 	int ret;
446 	unsigned seq;
447 	unsigned long pfn = page_to_pfn(page);
448 	unsigned long sp, start_pfn;
449 
450 	do {
451 		seq = zone_span_seqbegin(zone);
452 		start_pfn = zone->zone_start_pfn;
453 		sp = zone->spanned_pages;
454 		ret = !zone_spans_pfn(zone, pfn);
455 	} while (zone_span_seqretry(zone, seq));
456 
457 	if (ret)
458 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
459 			pfn, zone_to_nid(zone), zone->name,
460 			start_pfn, start_pfn + sp);
461 
462 	return ret;
463 }
464 
465 /*
466  * Temporary debugging check for pages not lying within a given zone.
467  */
468 static bool __maybe_unused bad_range(struct zone *zone, struct page *page)
469 {
470 	if (page_outside_zone_boundaries(zone, page))
471 		return true;
472 	if (zone != page_zone(page))
473 		return true;
474 
475 	return false;
476 }
477 #else
478 static inline bool __maybe_unused bad_range(struct zone *zone, struct page *page)
479 {
480 	return false;
481 }
482 #endif
483 
484 static void bad_page(struct page *page, const char *reason)
485 {
486 	static unsigned long resume;
487 	static unsigned long nr_shown;
488 	static unsigned long nr_unshown;
489 
490 	/*
491 	 * Allow a burst of 60 reports, then keep quiet for that minute;
492 	 * or allow a steady drip of one report per second.
493 	 */
494 	if (nr_shown == 60) {
495 		if (time_before(jiffies, resume)) {
496 			nr_unshown++;
497 			goto out;
498 		}
499 		if (nr_unshown) {
500 			pr_alert(
501 			      "BUG: Bad page state: %lu messages suppressed\n",
502 				nr_unshown);
503 			nr_unshown = 0;
504 		}
505 		nr_shown = 0;
506 	}
507 	if (nr_shown++ == 0)
508 		resume = jiffies + 60 * HZ;
509 
510 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
511 		current->comm, page_to_pfn(page));
512 	dump_page(page, reason);
513 
514 	print_modules();
515 	dump_stack();
516 out:
517 	/* Leave bad fields for debug, except PageBuddy could make trouble */
518 	page_mapcount_reset(page); /* remove PageBuddy */
519 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
520 }
521 
522 static inline unsigned int order_to_pindex(int migratetype, int order)
523 {
524 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
525 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
526 		VM_BUG_ON(order != pageblock_order);
527 		return NR_LOWORDER_PCP_LISTS;
528 	}
529 #else
530 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
531 #endif
532 
533 	return (MIGRATE_PCPTYPES * order) + migratetype;
534 }
535 
536 static inline int pindex_to_order(unsigned int pindex)
537 {
538 	int order = pindex / MIGRATE_PCPTYPES;
539 
540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
541 	if (pindex == NR_LOWORDER_PCP_LISTS)
542 		order = pageblock_order;
543 #else
544 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
545 #endif
546 
547 	return order;
548 }
549 
550 static inline bool pcp_allowed_order(unsigned int order)
551 {
552 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
553 		return true;
554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
555 	if (order == pageblock_order)
556 		return true;
557 #endif
558 	return false;
559 }
560 
561 static inline void free_the_page(struct page *page, unsigned int order)
562 {
563 	if (pcp_allowed_order(order))		/* Via pcp? */
564 		free_unref_page(page, order);
565 	else
566 		__free_pages_ok(page, order, FPI_NONE);
567 }
568 
569 /*
570  * Higher-order pages are called "compound pages".  They are structured thusly:
571  *
572  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
573  *
574  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
575  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
576  *
577  * The first tail page's ->compound_order holds the order of allocation.
578  * This usage means that zero-order pages may not be compound.
579  */
580 
581 void prep_compound_page(struct page *page, unsigned int order)
582 {
583 	int i;
584 	int nr_pages = 1 << order;
585 
586 	__SetPageHead(page);
587 	for (i = 1; i < nr_pages; i++)
588 		prep_compound_tail(page, i);
589 
590 	prep_compound_head(page, order);
591 }
592 
593 void destroy_large_folio(struct folio *folio)
594 {
595 	if (folio_test_hugetlb(folio)) {
596 		free_huge_folio(folio);
597 		return;
598 	}
599 
600 	if (folio_test_large_rmappable(folio))
601 		folio_undo_large_rmappable(folio);
602 
603 	mem_cgroup_uncharge(folio);
604 	free_the_page(&folio->page, folio_order(folio));
605 }
606 
607 static inline void set_buddy_order(struct page *page, unsigned int order)
608 {
609 	set_page_private(page, order);
610 	__SetPageBuddy(page);
611 }
612 
613 #ifdef CONFIG_COMPACTION
614 static inline struct capture_control *task_capc(struct zone *zone)
615 {
616 	struct capture_control *capc = current->capture_control;
617 
618 	return unlikely(capc) &&
619 		!(current->flags & PF_KTHREAD) &&
620 		!capc->page &&
621 		capc->cc->zone == zone ? capc : NULL;
622 }
623 
624 static inline bool
625 compaction_capture(struct capture_control *capc, struct page *page,
626 		   int order, int migratetype)
627 {
628 	if (!capc || order != capc->cc->order)
629 		return false;
630 
631 	/* Do not accidentally pollute CMA or isolated regions*/
632 	if (is_migrate_cma(migratetype) ||
633 	    is_migrate_isolate(migratetype))
634 		return false;
635 
636 	/*
637 	 * Do not let lower order allocations pollute a movable pageblock.
638 	 * This might let an unmovable request use a reclaimable pageblock
639 	 * and vice-versa but no more than normal fallback logic which can
640 	 * have trouble finding a high-order free page.
641 	 */
642 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
643 		return false;
644 
645 	capc->page = page;
646 	return true;
647 }
648 
649 #else
650 static inline struct capture_control *task_capc(struct zone *zone)
651 {
652 	return NULL;
653 }
654 
655 static inline bool
656 compaction_capture(struct capture_control *capc, struct page *page,
657 		   int order, int migratetype)
658 {
659 	return false;
660 }
661 #endif /* CONFIG_COMPACTION */
662 
663 /* Used for pages not on another list */
664 static inline void add_to_free_list(struct page *page, struct zone *zone,
665 				    unsigned int order, int migratetype)
666 {
667 	struct free_area *area = &zone->free_area[order];
668 
669 	list_add(&page->buddy_list, &area->free_list[migratetype]);
670 	area->nr_free++;
671 }
672 
673 /* Used for pages not on another list */
674 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
675 					 unsigned int order, int migratetype)
676 {
677 	struct free_area *area = &zone->free_area[order];
678 
679 	list_add_tail(&page->buddy_list, &area->free_list[migratetype]);
680 	area->nr_free++;
681 }
682 
683 /*
684  * Used for pages which are on another list. Move the pages to the tail
685  * of the list - so the moved pages won't immediately be considered for
686  * allocation again (e.g., optimization for memory onlining).
687  */
688 static inline void move_to_free_list(struct page *page, struct zone *zone,
689 				     unsigned int order, int migratetype)
690 {
691 	struct free_area *area = &zone->free_area[order];
692 
693 	list_move_tail(&page->buddy_list, &area->free_list[migratetype]);
694 }
695 
696 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
697 					   unsigned int order)
698 {
699 	/* clear reported state and update reported page count */
700 	if (page_reported(page))
701 		__ClearPageReported(page);
702 
703 	list_del(&page->buddy_list);
704 	__ClearPageBuddy(page);
705 	set_page_private(page, 0);
706 	zone->free_area[order].nr_free--;
707 }
708 
709 static inline struct page *get_page_from_free_area(struct free_area *area,
710 					    int migratetype)
711 {
712 	return list_first_entry_or_null(&area->free_list[migratetype],
713 					struct page, buddy_list);
714 }
715 
716 /*
717  * If this is not the largest possible page, check if the buddy
718  * of the next-highest order is free. If it is, it's possible
719  * that pages are being freed that will coalesce soon. In case,
720  * that is happening, add the free page to the tail of the list
721  * so it's less likely to be used soon and more likely to be merged
722  * as a higher order page
723  */
724 static inline bool
725 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
726 		   struct page *page, unsigned int order)
727 {
728 	unsigned long higher_page_pfn;
729 	struct page *higher_page;
730 
731 	if (order >= MAX_PAGE_ORDER - 1)
732 		return false;
733 
734 	higher_page_pfn = buddy_pfn & pfn;
735 	higher_page = page + (higher_page_pfn - pfn);
736 
737 	return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1,
738 			NULL) != NULL;
739 }
740 
741 /*
742  * Freeing function for a buddy system allocator.
743  *
744  * The concept of a buddy system is to maintain direct-mapped table
745  * (containing bit values) for memory blocks of various "orders".
746  * The bottom level table contains the map for the smallest allocatable
747  * units of memory (here, pages), and each level above it describes
748  * pairs of units from the levels below, hence, "buddies".
749  * At a high level, all that happens here is marking the table entry
750  * at the bottom level available, and propagating the changes upward
751  * as necessary, plus some accounting needed to play nicely with other
752  * parts of the VM system.
753  * At each level, we keep a list of pages, which are heads of continuous
754  * free pages of length of (1 << order) and marked with PageBuddy.
755  * Page's order is recorded in page_private(page) field.
756  * So when we are allocating or freeing one, we can derive the state of the
757  * other.  That is, if we allocate a small block, and both were
758  * free, the remainder of the region must be split into blocks.
759  * If a block is freed, and its buddy is also free, then this
760  * triggers coalescing into a block of larger size.
761  *
762  * -- nyc
763  */
764 
765 static inline void __free_one_page(struct page *page,
766 		unsigned long pfn,
767 		struct zone *zone, unsigned int order,
768 		int migratetype, fpi_t fpi_flags)
769 {
770 	struct capture_control *capc = task_capc(zone);
771 	unsigned long buddy_pfn = 0;
772 	unsigned long combined_pfn;
773 	struct page *buddy;
774 	bool to_tail;
775 
776 	VM_BUG_ON(!zone_is_initialized(zone));
777 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
778 
779 	VM_BUG_ON(migratetype == -1);
780 	if (likely(!is_migrate_isolate(migratetype)))
781 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
782 
783 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
784 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
785 
786 	while (order < MAX_PAGE_ORDER) {
787 		if (compaction_capture(capc, page, order, migratetype)) {
788 			__mod_zone_freepage_state(zone, -(1 << order),
789 								migratetype);
790 			return;
791 		}
792 
793 		buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn);
794 		if (!buddy)
795 			goto done_merging;
796 
797 		if (unlikely(order >= pageblock_order)) {
798 			/*
799 			 * We want to prevent merge between freepages on pageblock
800 			 * without fallbacks and normal pageblock. Without this,
801 			 * pageblock isolation could cause incorrect freepage or CMA
802 			 * accounting or HIGHATOMIC accounting.
803 			 */
804 			int buddy_mt = get_pfnblock_migratetype(buddy, buddy_pfn);
805 
806 			if (migratetype != buddy_mt
807 					&& (!migratetype_is_mergeable(migratetype) ||
808 						!migratetype_is_mergeable(buddy_mt)))
809 				goto done_merging;
810 		}
811 
812 		/*
813 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
814 		 * merge with it and move up one order.
815 		 */
816 		if (page_is_guard(buddy))
817 			clear_page_guard(zone, buddy, order, migratetype);
818 		else
819 			del_page_from_free_list(buddy, zone, order);
820 		combined_pfn = buddy_pfn & pfn;
821 		page = page + (combined_pfn - pfn);
822 		pfn = combined_pfn;
823 		order++;
824 	}
825 
826 done_merging:
827 	set_buddy_order(page, order);
828 
829 	if (fpi_flags & FPI_TO_TAIL)
830 		to_tail = true;
831 	else if (is_shuffle_order(order))
832 		to_tail = shuffle_pick_tail();
833 	else
834 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
835 
836 	if (to_tail)
837 		add_to_free_list_tail(page, zone, order, migratetype);
838 	else
839 		add_to_free_list(page, zone, order, migratetype);
840 
841 	/* Notify page reporting subsystem of freed page */
842 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
843 		page_reporting_notify_free(order);
844 }
845 
846 /**
847  * split_free_page() -- split a free page at split_pfn_offset
848  * @free_page:		the original free page
849  * @order:		the order of the page
850  * @split_pfn_offset:	split offset within the page
851  *
852  * Return -ENOENT if the free page is changed, otherwise 0
853  *
854  * It is used when the free page crosses two pageblocks with different migratetypes
855  * at split_pfn_offset within the page. The split free page will be put into
856  * separate migratetype lists afterwards. Otherwise, the function achieves
857  * nothing.
858  */
859 int split_free_page(struct page *free_page,
860 			unsigned int order, unsigned long split_pfn_offset)
861 {
862 	struct zone *zone = page_zone(free_page);
863 	unsigned long free_page_pfn = page_to_pfn(free_page);
864 	unsigned long pfn;
865 	unsigned long flags;
866 	int free_page_order;
867 	int mt;
868 	int ret = 0;
869 
870 	if (split_pfn_offset == 0)
871 		return ret;
872 
873 	spin_lock_irqsave(&zone->lock, flags);
874 
875 	if (!PageBuddy(free_page) || buddy_order(free_page) != order) {
876 		ret = -ENOENT;
877 		goto out;
878 	}
879 
880 	mt = get_pfnblock_migratetype(free_page, free_page_pfn);
881 	if (likely(!is_migrate_isolate(mt)))
882 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
883 
884 	del_page_from_free_list(free_page, zone, order);
885 	for (pfn = free_page_pfn;
886 	     pfn < free_page_pfn + (1UL << order);) {
887 		int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn);
888 
889 		free_page_order = min_t(unsigned int,
890 					pfn ? __ffs(pfn) : order,
891 					__fls(split_pfn_offset));
892 		__free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order,
893 				mt, FPI_NONE);
894 		pfn += 1UL << free_page_order;
895 		split_pfn_offset -= (1UL << free_page_order);
896 		/* we have done the first part, now switch to second part */
897 		if (split_pfn_offset == 0)
898 			split_pfn_offset = (1UL << order) - (pfn - free_page_pfn);
899 	}
900 out:
901 	spin_unlock_irqrestore(&zone->lock, flags);
902 	return ret;
903 }
904 /*
905  * A bad page could be due to a number of fields. Instead of multiple branches,
906  * try and check multiple fields with one check. The caller must do a detailed
907  * check if necessary.
908  */
909 static inline bool page_expected_state(struct page *page,
910 					unsigned long check_flags)
911 {
912 	if (unlikely(atomic_read(&page->_mapcount) != -1))
913 		return false;
914 
915 	if (unlikely((unsigned long)page->mapping |
916 			page_ref_count(page) |
917 #ifdef CONFIG_MEMCG
918 			page->memcg_data |
919 #endif
920 #ifdef CONFIG_PAGE_POOL
921 			((page->pp_magic & ~0x3UL) == PP_SIGNATURE) |
922 #endif
923 			(page->flags & check_flags)))
924 		return false;
925 
926 	return true;
927 }
928 
929 static const char *page_bad_reason(struct page *page, unsigned long flags)
930 {
931 	const char *bad_reason = NULL;
932 
933 	if (unlikely(atomic_read(&page->_mapcount) != -1))
934 		bad_reason = "nonzero mapcount";
935 	if (unlikely(page->mapping != NULL))
936 		bad_reason = "non-NULL mapping";
937 	if (unlikely(page_ref_count(page) != 0))
938 		bad_reason = "nonzero _refcount";
939 	if (unlikely(page->flags & flags)) {
940 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
941 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
942 		else
943 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
944 	}
945 #ifdef CONFIG_MEMCG
946 	if (unlikely(page->memcg_data))
947 		bad_reason = "page still charged to cgroup";
948 #endif
949 #ifdef CONFIG_PAGE_POOL
950 	if (unlikely((page->pp_magic & ~0x3UL) == PP_SIGNATURE))
951 		bad_reason = "page_pool leak";
952 #endif
953 	return bad_reason;
954 }
955 
956 static void free_page_is_bad_report(struct page *page)
957 {
958 	bad_page(page,
959 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
960 }
961 
962 static inline bool free_page_is_bad(struct page *page)
963 {
964 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
965 		return false;
966 
967 	/* Something has gone sideways, find it */
968 	free_page_is_bad_report(page);
969 	return true;
970 }
971 
972 static inline bool is_check_pages_enabled(void)
973 {
974 	return static_branch_unlikely(&check_pages_enabled);
975 }
976 
977 static int free_tail_page_prepare(struct page *head_page, struct page *page)
978 {
979 	struct folio *folio = (struct folio *)head_page;
980 	int ret = 1;
981 
982 	/*
983 	 * We rely page->lru.next never has bit 0 set, unless the page
984 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
985 	 */
986 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
987 
988 	if (!is_check_pages_enabled()) {
989 		ret = 0;
990 		goto out;
991 	}
992 	switch (page - head_page) {
993 	case 1:
994 		/* the first tail page: these may be in place of ->mapping */
995 		if (unlikely(folio_entire_mapcount(folio))) {
996 			bad_page(page, "nonzero entire_mapcount");
997 			goto out;
998 		}
999 		if (unlikely(atomic_read(&folio->_nr_pages_mapped))) {
1000 			bad_page(page, "nonzero nr_pages_mapped");
1001 			goto out;
1002 		}
1003 		if (unlikely(atomic_read(&folio->_pincount))) {
1004 			bad_page(page, "nonzero pincount");
1005 			goto out;
1006 		}
1007 		break;
1008 	case 2:
1009 		/*
1010 		 * the second tail page: ->mapping is
1011 		 * deferred_list.next -- ignore value.
1012 		 */
1013 		break;
1014 	default:
1015 		if (page->mapping != TAIL_MAPPING) {
1016 			bad_page(page, "corrupted mapping in tail page");
1017 			goto out;
1018 		}
1019 		break;
1020 	}
1021 	if (unlikely(!PageTail(page))) {
1022 		bad_page(page, "PageTail not set");
1023 		goto out;
1024 	}
1025 	if (unlikely(compound_head(page) != head_page)) {
1026 		bad_page(page, "compound_head not consistent");
1027 		goto out;
1028 	}
1029 	ret = 0;
1030 out:
1031 	page->mapping = NULL;
1032 	clear_compound_head(page);
1033 	return ret;
1034 }
1035 
1036 /*
1037  * Skip KASAN memory poisoning when either:
1038  *
1039  * 1. For generic KASAN: deferred memory initialization has not yet completed.
1040  *    Tag-based KASAN modes skip pages freed via deferred memory initialization
1041  *    using page tags instead (see below).
1042  * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1043  *    that error detection is disabled for accesses via the page address.
1044  *
1045  * Pages will have match-all tags in the following circumstances:
1046  *
1047  * 1. Pages are being initialized for the first time, including during deferred
1048  *    memory init; see the call to page_kasan_tag_reset in __init_single_page.
1049  * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1050  *    exception of pages unpoisoned by kasan_unpoison_vmalloc.
1051  * 3. The allocation was excluded from being checked due to sampling,
1052  *    see the call to kasan_unpoison_pages.
1053  *
1054  * Poisoning pages during deferred memory init will greatly lengthen the
1055  * process and cause problem in large memory systems as the deferred pages
1056  * initialization is done with interrupt disabled.
1057  *
1058  * Assuming that there will be no reference to those newly initialized
1059  * pages before they are ever allocated, this should have no effect on
1060  * KASAN memory tracking as the poison will be properly inserted at page
1061  * allocation time. The only corner case is when pages are allocated by
1062  * on-demand allocation and then freed again before the deferred pages
1063  * initialization is done, but this is not likely to happen.
1064  */
1065 static inline bool should_skip_kasan_poison(struct page *page)
1066 {
1067 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
1068 		return deferred_pages_enabled();
1069 
1070 	return page_kasan_tag(page) == KASAN_TAG_KERNEL;
1071 }
1072 
1073 static void kernel_init_pages(struct page *page, int numpages)
1074 {
1075 	int i;
1076 
1077 	/* s390's use of memset() could override KASAN redzones. */
1078 	kasan_disable_current();
1079 	for (i = 0; i < numpages; i++)
1080 		clear_highpage_kasan_tagged(page + i);
1081 	kasan_enable_current();
1082 }
1083 
1084 __always_inline bool free_pages_prepare(struct page *page,
1085 			unsigned int order)
1086 {
1087 	int bad = 0;
1088 	bool skip_kasan_poison = should_skip_kasan_poison(page);
1089 	bool init = want_init_on_free();
1090 	bool compound = PageCompound(page);
1091 
1092 	VM_BUG_ON_PAGE(PageTail(page), page);
1093 
1094 	trace_mm_page_free(page, order);
1095 	kmsan_free_page(page, order);
1096 
1097 	if (memcg_kmem_online() && PageMemcgKmem(page))
1098 		__memcg_kmem_uncharge_page(page, order);
1099 
1100 	if (unlikely(PageHWPoison(page)) && !order) {
1101 		/* Do not let hwpoison pages hit pcplists/buddy */
1102 		reset_page_owner(page, order);
1103 		page_table_check_free(page, order);
1104 		return false;
1105 	}
1106 
1107 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1108 
1109 	/*
1110 	 * Check tail pages before head page information is cleared to
1111 	 * avoid checking PageCompound for order-0 pages.
1112 	 */
1113 	if (unlikely(order)) {
1114 		int i;
1115 
1116 		if (compound)
1117 			page[1].flags &= ~PAGE_FLAGS_SECOND;
1118 		for (i = 1; i < (1 << order); i++) {
1119 			if (compound)
1120 				bad += free_tail_page_prepare(page, page + i);
1121 			if (is_check_pages_enabled()) {
1122 				if (free_page_is_bad(page + i)) {
1123 					bad++;
1124 					continue;
1125 				}
1126 			}
1127 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1128 		}
1129 	}
1130 	if (PageMappingFlags(page))
1131 		page->mapping = NULL;
1132 	if (is_check_pages_enabled()) {
1133 		if (free_page_is_bad(page))
1134 			bad++;
1135 		if (bad)
1136 			return false;
1137 	}
1138 
1139 	page_cpupid_reset_last(page);
1140 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1141 	reset_page_owner(page, order);
1142 	page_table_check_free(page, order);
1143 
1144 	if (!PageHighMem(page)) {
1145 		debug_check_no_locks_freed(page_address(page),
1146 					   PAGE_SIZE << order);
1147 		debug_check_no_obj_freed(page_address(page),
1148 					   PAGE_SIZE << order);
1149 	}
1150 
1151 	kernel_poison_pages(page, 1 << order);
1152 
1153 	/*
1154 	 * As memory initialization might be integrated into KASAN,
1155 	 * KASAN poisoning and memory initialization code must be
1156 	 * kept together to avoid discrepancies in behavior.
1157 	 *
1158 	 * With hardware tag-based KASAN, memory tags must be set before the
1159 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1160 	 */
1161 	if (!skip_kasan_poison) {
1162 		kasan_poison_pages(page, order, init);
1163 
1164 		/* Memory is already initialized if KASAN did it internally. */
1165 		if (kasan_has_integrated_init())
1166 			init = false;
1167 	}
1168 	if (init)
1169 		kernel_init_pages(page, 1 << order);
1170 
1171 	/*
1172 	 * arch_free_page() can make the page's contents inaccessible.  s390
1173 	 * does this.  So nothing which can access the page's contents should
1174 	 * happen after this.
1175 	 */
1176 	arch_free_page(page, order);
1177 
1178 	debug_pagealloc_unmap_pages(page, 1 << order);
1179 
1180 	return true;
1181 }
1182 
1183 /*
1184  * Frees a number of pages from the PCP lists
1185  * Assumes all pages on list are in same zone.
1186  * count is the number of pages to free.
1187  */
1188 static void free_pcppages_bulk(struct zone *zone, int count,
1189 					struct per_cpu_pages *pcp,
1190 					int pindex)
1191 {
1192 	unsigned long flags;
1193 	unsigned int order;
1194 	bool isolated_pageblocks;
1195 	struct page *page;
1196 
1197 	/*
1198 	 * Ensure proper count is passed which otherwise would stuck in the
1199 	 * below while (list_empty(list)) loop.
1200 	 */
1201 	count = min(pcp->count, count);
1202 
1203 	/* Ensure requested pindex is drained first. */
1204 	pindex = pindex - 1;
1205 
1206 	spin_lock_irqsave(&zone->lock, flags);
1207 	isolated_pageblocks = has_isolate_pageblock(zone);
1208 
1209 	while (count > 0) {
1210 		struct list_head *list;
1211 		int nr_pages;
1212 
1213 		/* Remove pages from lists in a round-robin fashion. */
1214 		do {
1215 			if (++pindex > NR_PCP_LISTS - 1)
1216 				pindex = 0;
1217 			list = &pcp->lists[pindex];
1218 		} while (list_empty(list));
1219 
1220 		order = pindex_to_order(pindex);
1221 		nr_pages = 1 << order;
1222 		do {
1223 			int mt;
1224 
1225 			page = list_last_entry(list, struct page, pcp_list);
1226 			mt = get_pcppage_migratetype(page);
1227 
1228 			/* must delete to avoid corrupting pcp list */
1229 			list_del(&page->pcp_list);
1230 			count -= nr_pages;
1231 			pcp->count -= nr_pages;
1232 
1233 			/* MIGRATE_ISOLATE page should not go to pcplists */
1234 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1235 			/* Pageblock could have been isolated meanwhile */
1236 			if (unlikely(isolated_pageblocks))
1237 				mt = get_pageblock_migratetype(page);
1238 
1239 			__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1240 			trace_mm_page_pcpu_drain(page, order, mt);
1241 		} while (count > 0 && !list_empty(list));
1242 	}
1243 
1244 	spin_unlock_irqrestore(&zone->lock, flags);
1245 }
1246 
1247 static void free_one_page(struct zone *zone,
1248 				struct page *page, unsigned long pfn,
1249 				unsigned int order,
1250 				int migratetype, fpi_t fpi_flags)
1251 {
1252 	unsigned long flags;
1253 
1254 	spin_lock_irqsave(&zone->lock, flags);
1255 	if (unlikely(has_isolate_pageblock(zone) ||
1256 		is_migrate_isolate(migratetype))) {
1257 		migratetype = get_pfnblock_migratetype(page, pfn);
1258 	}
1259 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1260 	spin_unlock_irqrestore(&zone->lock, flags);
1261 }
1262 
1263 static void __free_pages_ok(struct page *page, unsigned int order,
1264 			    fpi_t fpi_flags)
1265 {
1266 	int migratetype;
1267 	unsigned long pfn = page_to_pfn(page);
1268 	struct zone *zone = page_zone(page);
1269 
1270 	if (!free_pages_prepare(page, order))
1271 		return;
1272 
1273 	/*
1274 	 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here
1275 	 * is used to avoid calling get_pfnblock_migratetype() under the lock.
1276 	 * This will reduce the lock holding time.
1277 	 */
1278 	migratetype = get_pfnblock_migratetype(page, pfn);
1279 
1280 	free_one_page(zone, page, pfn, order, migratetype, fpi_flags);
1281 
1282 	__count_vm_events(PGFREE, 1 << order);
1283 }
1284 
1285 void __free_pages_core(struct page *page, unsigned int order)
1286 {
1287 	unsigned int nr_pages = 1 << order;
1288 	struct page *p = page;
1289 	unsigned int loop;
1290 
1291 	/*
1292 	 * When initializing the memmap, __init_single_page() sets the refcount
1293 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1294 	 * refcount of all involved pages to 0.
1295 	 */
1296 	prefetchw(p);
1297 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1298 		prefetchw(p + 1);
1299 		__ClearPageReserved(p);
1300 		set_page_count(p, 0);
1301 	}
1302 	__ClearPageReserved(p);
1303 	set_page_count(p, 0);
1304 
1305 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1306 
1307 	if (page_contains_unaccepted(page, order)) {
1308 		if (order == MAX_PAGE_ORDER && __free_unaccepted(page))
1309 			return;
1310 
1311 		accept_page(page, order);
1312 	}
1313 
1314 	/*
1315 	 * Bypass PCP and place fresh pages right to the tail, primarily
1316 	 * relevant for memory onlining.
1317 	 */
1318 	__free_pages_ok(page, order, FPI_TO_TAIL);
1319 }
1320 
1321 /*
1322  * Check that the whole (or subset of) a pageblock given by the interval of
1323  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1324  * with the migration of free compaction scanner.
1325  *
1326  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1327  *
1328  * It's possible on some configurations to have a setup like node0 node1 node0
1329  * i.e. it's possible that all pages within a zones range of pages do not
1330  * belong to a single zone. We assume that a border between node0 and node1
1331  * can occur within a single pageblock, but not a node0 node1 node0
1332  * interleaving within a single pageblock. It is therefore sufficient to check
1333  * the first and last page of a pageblock and avoid checking each individual
1334  * page in a pageblock.
1335  *
1336  * Note: the function may return non-NULL struct page even for a page block
1337  * which contains a memory hole (i.e. there is no physical memory for a subset
1338  * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1339  * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1340  * even though the start pfn is online and valid. This should be safe most of
1341  * the time because struct pages are still initialized via init_unavailable_range()
1342  * and pfn walkers shouldn't touch any physical memory range for which they do
1343  * not recognize any specific metadata in struct pages.
1344  */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 				     unsigned long end_pfn, struct zone *zone)
1347 {
1348 	struct page *start_page;
1349 	struct page *end_page;
1350 
1351 	/* end_pfn is one past the range we are checking */
1352 	end_pfn--;
1353 
1354 	if (!pfn_valid(end_pfn))
1355 		return NULL;
1356 
1357 	start_page = pfn_to_online_page(start_pfn);
1358 	if (!start_page)
1359 		return NULL;
1360 
1361 	if (page_zone(start_page) != zone)
1362 		return NULL;
1363 
1364 	end_page = pfn_to_page(end_pfn);
1365 
1366 	/* This gives a shorter code than deriving page_zone(end_page) */
1367 	if (page_zone_id(start_page) != page_zone_id(end_page))
1368 		return NULL;
1369 
1370 	return start_page;
1371 }
1372 
1373 /*
1374  * The order of subdivision here is critical for the IO subsystem.
1375  * Please do not alter this order without good reasons and regression
1376  * testing. Specifically, as large blocks of memory are subdivided,
1377  * the order in which smaller blocks are delivered depends on the order
1378  * they're subdivided in this function. This is the primary factor
1379  * influencing the order in which pages are delivered to the IO
1380  * subsystem according to empirical testing, and this is also justified
1381  * by considering the behavior of a buddy system containing a single
1382  * large block of memory acted on by a series of small allocations.
1383  * This behavior is a critical factor in sglist merging's success.
1384  *
1385  * -- nyc
1386  */
1387 static inline void expand(struct zone *zone, struct page *page,
1388 	int low, int high, int migratetype)
1389 {
1390 	unsigned long size = 1 << high;
1391 
1392 	while (high > low) {
1393 		high--;
1394 		size >>= 1;
1395 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1396 
1397 		/*
1398 		 * Mark as guard pages (or page), that will allow to
1399 		 * merge back to allocator when buddy will be freed.
1400 		 * Corresponding page table entries will not be touched,
1401 		 * pages will stay not present in virtual address space
1402 		 */
1403 		if (set_page_guard(zone, &page[size], high, migratetype))
1404 			continue;
1405 
1406 		add_to_free_list(&page[size], zone, high, migratetype);
1407 		set_buddy_order(&page[size], high);
1408 	}
1409 }
1410 
1411 static void check_new_page_bad(struct page *page)
1412 {
1413 	if (unlikely(page->flags & __PG_HWPOISON)) {
1414 		/* Don't complain about hwpoisoned pages */
1415 		page_mapcount_reset(page); /* remove PageBuddy */
1416 		return;
1417 	}
1418 
1419 	bad_page(page,
1420 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
1421 }
1422 
1423 /*
1424  * This page is about to be returned from the page allocator
1425  */
1426 static bool check_new_page(struct page *page)
1427 {
1428 	if (likely(page_expected_state(page,
1429 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1430 		return false;
1431 
1432 	check_new_page_bad(page);
1433 	return true;
1434 }
1435 
1436 static inline bool check_new_pages(struct page *page, unsigned int order)
1437 {
1438 	if (is_check_pages_enabled()) {
1439 		for (int i = 0; i < (1 << order); i++) {
1440 			struct page *p = page + i;
1441 
1442 			if (check_new_page(p))
1443 				return true;
1444 		}
1445 	}
1446 
1447 	return false;
1448 }
1449 
1450 static inline bool should_skip_kasan_unpoison(gfp_t flags)
1451 {
1452 	/* Don't skip if a software KASAN mode is enabled. */
1453 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) ||
1454 	    IS_ENABLED(CONFIG_KASAN_SW_TAGS))
1455 		return false;
1456 
1457 	/* Skip, if hardware tag-based KASAN is not enabled. */
1458 	if (!kasan_hw_tags_enabled())
1459 		return true;
1460 
1461 	/*
1462 	 * With hardware tag-based KASAN enabled, skip if this has been
1463 	 * requested via __GFP_SKIP_KASAN.
1464 	 */
1465 	return flags & __GFP_SKIP_KASAN;
1466 }
1467 
1468 static inline bool should_skip_init(gfp_t flags)
1469 {
1470 	/* Don't skip, if hardware tag-based KASAN is not enabled. */
1471 	if (!kasan_hw_tags_enabled())
1472 		return false;
1473 
1474 	/* For hardware tag-based KASAN, skip if requested. */
1475 	return (flags & __GFP_SKIP_ZERO);
1476 }
1477 
1478 inline void post_alloc_hook(struct page *page, unsigned int order,
1479 				gfp_t gfp_flags)
1480 {
1481 	bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) &&
1482 			!should_skip_init(gfp_flags);
1483 	bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS);
1484 	int i;
1485 
1486 	set_page_private(page, 0);
1487 	set_page_refcounted(page);
1488 
1489 	arch_alloc_page(page, order);
1490 	debug_pagealloc_map_pages(page, 1 << order);
1491 
1492 	/*
1493 	 * Page unpoisoning must happen before memory initialization.
1494 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1495 	 * allocations and the page unpoisoning code will complain.
1496 	 */
1497 	kernel_unpoison_pages(page, 1 << order);
1498 
1499 	/*
1500 	 * As memory initialization might be integrated into KASAN,
1501 	 * KASAN unpoisoning and memory initializion code must be
1502 	 * kept together to avoid discrepancies in behavior.
1503 	 */
1504 
1505 	/*
1506 	 * If memory tags should be zeroed
1507 	 * (which happens only when memory should be initialized as well).
1508 	 */
1509 	if (zero_tags) {
1510 		/* Initialize both memory and memory tags. */
1511 		for (i = 0; i != 1 << order; ++i)
1512 			tag_clear_highpage(page + i);
1513 
1514 		/* Take note that memory was initialized by the loop above. */
1515 		init = false;
1516 	}
1517 	if (!should_skip_kasan_unpoison(gfp_flags) &&
1518 	    kasan_unpoison_pages(page, order, init)) {
1519 		/* Take note that memory was initialized by KASAN. */
1520 		if (kasan_has_integrated_init())
1521 			init = false;
1522 	} else {
1523 		/*
1524 		 * If memory tags have not been set by KASAN, reset the page
1525 		 * tags to ensure page_address() dereferencing does not fault.
1526 		 */
1527 		for (i = 0; i != 1 << order; ++i)
1528 			page_kasan_tag_reset(page + i);
1529 	}
1530 	/* If memory is still not initialized, initialize it now. */
1531 	if (init)
1532 		kernel_init_pages(page, 1 << order);
1533 
1534 	set_page_owner(page, order, gfp_flags);
1535 	page_table_check_alloc(page, order);
1536 }
1537 
1538 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1539 							unsigned int alloc_flags)
1540 {
1541 	post_alloc_hook(page, order, gfp_flags);
1542 
1543 	if (order && (gfp_flags & __GFP_COMP))
1544 		prep_compound_page(page, order);
1545 
1546 	/*
1547 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1548 	 * allocate the page. The expectation is that the caller is taking
1549 	 * steps that will free more memory. The caller should avoid the page
1550 	 * being used for !PFMEMALLOC purposes.
1551 	 */
1552 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1553 		set_page_pfmemalloc(page);
1554 	else
1555 		clear_page_pfmemalloc(page);
1556 }
1557 
1558 /*
1559  * Go through the free lists for the given migratetype and remove
1560  * the smallest available page from the freelists
1561  */
1562 static __always_inline
1563 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1564 						int migratetype)
1565 {
1566 	unsigned int current_order;
1567 	struct free_area *area;
1568 	struct page *page;
1569 
1570 	/* Find a page of the appropriate size in the preferred list */
1571 	for (current_order = order; current_order < NR_PAGE_ORDERS; ++current_order) {
1572 		area = &(zone->free_area[current_order]);
1573 		page = get_page_from_free_area(area, migratetype);
1574 		if (!page)
1575 			continue;
1576 		del_page_from_free_list(page, zone, current_order);
1577 		expand(zone, page, order, current_order, migratetype);
1578 		set_pcppage_migratetype(page, migratetype);
1579 		trace_mm_page_alloc_zone_locked(page, order, migratetype,
1580 				pcp_allowed_order(order) &&
1581 				migratetype < MIGRATE_PCPTYPES);
1582 		return page;
1583 	}
1584 
1585 	return NULL;
1586 }
1587 
1588 
1589 /*
1590  * This array describes the order lists are fallen back to when
1591  * the free lists for the desirable migrate type are depleted
1592  *
1593  * The other migratetypes do not have fallbacks.
1594  */
1595 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = {
1596 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE   },
1597 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE },
1598 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE   },
1599 };
1600 
1601 #ifdef CONFIG_CMA
1602 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1603 					unsigned int order)
1604 {
1605 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1606 }
1607 #else
1608 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1609 					unsigned int order) { return NULL; }
1610 #endif
1611 
1612 /*
1613  * Move the free pages in a range to the freelist tail of the requested type.
1614  * Note that start_page and end_pages are not aligned on a pageblock
1615  * boundary. If alignment is required, use move_freepages_block()
1616  */
1617 static int move_freepages(struct zone *zone,
1618 			  unsigned long start_pfn, unsigned long end_pfn,
1619 			  int migratetype, int *num_movable)
1620 {
1621 	struct page *page;
1622 	unsigned long pfn;
1623 	unsigned int order;
1624 	int pages_moved = 0;
1625 
1626 	for (pfn = start_pfn; pfn <= end_pfn;) {
1627 		page = pfn_to_page(pfn);
1628 		if (!PageBuddy(page)) {
1629 			/*
1630 			 * We assume that pages that could be isolated for
1631 			 * migration are movable. But we don't actually try
1632 			 * isolating, as that would be expensive.
1633 			 */
1634 			if (num_movable &&
1635 					(PageLRU(page) || __PageMovable(page)))
1636 				(*num_movable)++;
1637 			pfn++;
1638 			continue;
1639 		}
1640 
1641 		/* Make sure we are not inadvertently changing nodes */
1642 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1643 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
1644 
1645 		order = buddy_order(page);
1646 		move_to_free_list(page, zone, order, migratetype);
1647 		pfn += 1 << order;
1648 		pages_moved += 1 << order;
1649 	}
1650 
1651 	return pages_moved;
1652 }
1653 
1654 int move_freepages_block(struct zone *zone, struct page *page,
1655 				int migratetype, int *num_movable)
1656 {
1657 	unsigned long start_pfn, end_pfn, pfn;
1658 
1659 	if (num_movable)
1660 		*num_movable = 0;
1661 
1662 	pfn = page_to_pfn(page);
1663 	start_pfn = pageblock_start_pfn(pfn);
1664 	end_pfn = pageblock_end_pfn(pfn) - 1;
1665 
1666 	/* Do not cross zone boundaries */
1667 	if (!zone_spans_pfn(zone, start_pfn))
1668 		start_pfn = pfn;
1669 	if (!zone_spans_pfn(zone, end_pfn))
1670 		return 0;
1671 
1672 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
1673 								num_movable);
1674 }
1675 
1676 static void change_pageblock_range(struct page *pageblock_page,
1677 					int start_order, int migratetype)
1678 {
1679 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1680 
1681 	while (nr_pageblocks--) {
1682 		set_pageblock_migratetype(pageblock_page, migratetype);
1683 		pageblock_page += pageblock_nr_pages;
1684 	}
1685 }
1686 
1687 /*
1688  * When we are falling back to another migratetype during allocation, try to
1689  * steal extra free pages from the same pageblocks to satisfy further
1690  * allocations, instead of polluting multiple pageblocks.
1691  *
1692  * If we are stealing a relatively large buddy page, it is likely there will
1693  * be more free pages in the pageblock, so try to steal them all. For
1694  * reclaimable and unmovable allocations, we steal regardless of page size,
1695  * as fragmentation caused by those allocations polluting movable pageblocks
1696  * is worse than movable allocations stealing from unmovable and reclaimable
1697  * pageblocks.
1698  */
1699 static bool can_steal_fallback(unsigned int order, int start_mt)
1700 {
1701 	/*
1702 	 * Leaving this order check is intended, although there is
1703 	 * relaxed order check in next check. The reason is that
1704 	 * we can actually steal whole pageblock if this condition met,
1705 	 * but, below check doesn't guarantee it and that is just heuristic
1706 	 * so could be changed anytime.
1707 	 */
1708 	if (order >= pageblock_order)
1709 		return true;
1710 
1711 	if (order >= pageblock_order / 2 ||
1712 		start_mt == MIGRATE_RECLAIMABLE ||
1713 		start_mt == MIGRATE_UNMOVABLE ||
1714 		page_group_by_mobility_disabled)
1715 		return true;
1716 
1717 	return false;
1718 }
1719 
1720 static inline bool boost_watermark(struct zone *zone)
1721 {
1722 	unsigned long max_boost;
1723 
1724 	if (!watermark_boost_factor)
1725 		return false;
1726 	/*
1727 	 * Don't bother in zones that are unlikely to produce results.
1728 	 * On small machines, including kdump capture kernels running
1729 	 * in a small area, boosting the watermark can cause an out of
1730 	 * memory situation immediately.
1731 	 */
1732 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
1733 		return false;
1734 
1735 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
1736 			watermark_boost_factor, 10000);
1737 
1738 	/*
1739 	 * high watermark may be uninitialised if fragmentation occurs
1740 	 * very early in boot so do not boost. We do not fall
1741 	 * through and boost by pageblock_nr_pages as failing
1742 	 * allocations that early means that reclaim is not going
1743 	 * to help and it may even be impossible to reclaim the
1744 	 * boosted watermark resulting in a hang.
1745 	 */
1746 	if (!max_boost)
1747 		return false;
1748 
1749 	max_boost = max(pageblock_nr_pages, max_boost);
1750 
1751 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
1752 		max_boost);
1753 
1754 	return true;
1755 }
1756 
1757 /*
1758  * This function implements actual steal behaviour. If order is large enough,
1759  * we can steal whole pageblock. If not, we first move freepages in this
1760  * pageblock to our migratetype and determine how many already-allocated pages
1761  * are there in the pageblock with a compatible migratetype. If at least half
1762  * of pages are free or compatible, we can change migratetype of the pageblock
1763  * itself, so pages freed in the future will be put on the correct free list.
1764  */
1765 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1766 		unsigned int alloc_flags, int start_type, bool whole_block)
1767 {
1768 	unsigned int current_order = buddy_order(page);
1769 	int free_pages, movable_pages, alike_pages;
1770 	int old_block_type;
1771 
1772 	old_block_type = get_pageblock_migratetype(page);
1773 
1774 	/*
1775 	 * This can happen due to races and we want to prevent broken
1776 	 * highatomic accounting.
1777 	 */
1778 	if (is_migrate_highatomic(old_block_type))
1779 		goto single_page;
1780 
1781 	/* Take ownership for orders >= pageblock_order */
1782 	if (current_order >= pageblock_order) {
1783 		change_pageblock_range(page, current_order, start_type);
1784 		goto single_page;
1785 	}
1786 
1787 	/*
1788 	 * Boost watermarks to increase reclaim pressure to reduce the
1789 	 * likelihood of future fallbacks. Wake kswapd now as the node
1790 	 * may be balanced overall and kswapd will not wake naturally.
1791 	 */
1792 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
1793 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
1794 
1795 	/* We are not allowed to try stealing from the whole block */
1796 	if (!whole_block)
1797 		goto single_page;
1798 
1799 	free_pages = move_freepages_block(zone, page, start_type,
1800 						&movable_pages);
1801 	/* moving whole block can fail due to zone boundary conditions */
1802 	if (!free_pages)
1803 		goto single_page;
1804 
1805 	/*
1806 	 * Determine how many pages are compatible with our allocation.
1807 	 * For movable allocation, it's the number of movable pages which
1808 	 * we just obtained. For other types it's a bit more tricky.
1809 	 */
1810 	if (start_type == MIGRATE_MOVABLE) {
1811 		alike_pages = movable_pages;
1812 	} else {
1813 		/*
1814 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1815 		 * to MOVABLE pageblock, consider all non-movable pages as
1816 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1817 		 * vice versa, be conservative since we can't distinguish the
1818 		 * exact migratetype of non-movable pages.
1819 		 */
1820 		if (old_block_type == MIGRATE_MOVABLE)
1821 			alike_pages = pageblock_nr_pages
1822 						- (free_pages + movable_pages);
1823 		else
1824 			alike_pages = 0;
1825 	}
1826 	/*
1827 	 * If a sufficient number of pages in the block are either free or of
1828 	 * compatible migratability as our allocation, claim the whole block.
1829 	 */
1830 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
1831 			page_group_by_mobility_disabled)
1832 		set_pageblock_migratetype(page, start_type);
1833 
1834 	return;
1835 
1836 single_page:
1837 	move_to_free_list(page, zone, current_order, start_type);
1838 }
1839 
1840 /*
1841  * Check whether there is a suitable fallback freepage with requested order.
1842  * If only_stealable is true, this function returns fallback_mt only if
1843  * we can steal other freepages all together. This would help to reduce
1844  * fragmentation due to mixed migratetype pages in one pageblock.
1845  */
1846 int find_suitable_fallback(struct free_area *area, unsigned int order,
1847 			int migratetype, bool only_stealable, bool *can_steal)
1848 {
1849 	int i;
1850 	int fallback_mt;
1851 
1852 	if (area->nr_free == 0)
1853 		return -1;
1854 
1855 	*can_steal = false;
1856 	for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) {
1857 		fallback_mt = fallbacks[migratetype][i];
1858 		if (free_area_empty(area, fallback_mt))
1859 			continue;
1860 
1861 		if (can_steal_fallback(order, migratetype))
1862 			*can_steal = true;
1863 
1864 		if (!only_stealable)
1865 			return fallback_mt;
1866 
1867 		if (*can_steal)
1868 			return fallback_mt;
1869 	}
1870 
1871 	return -1;
1872 }
1873 
1874 /*
1875  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1876  * there are no empty page blocks that contain a page with a suitable order
1877  */
1878 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone)
1879 {
1880 	int mt;
1881 	unsigned long max_managed, flags;
1882 
1883 	/*
1884 	 * The number reserved as: minimum is 1 pageblock, maximum is
1885 	 * roughly 1% of a zone. But if 1% of a zone falls below a
1886 	 * pageblock size, then don't reserve any pageblocks.
1887 	 * Check is race-prone but harmless.
1888 	 */
1889 	if ((zone_managed_pages(zone) / 100) < pageblock_nr_pages)
1890 		return;
1891 	max_managed = ALIGN((zone_managed_pages(zone) / 100), pageblock_nr_pages);
1892 	if (zone->nr_reserved_highatomic >= max_managed)
1893 		return;
1894 
1895 	spin_lock_irqsave(&zone->lock, flags);
1896 
1897 	/* Recheck the nr_reserved_highatomic limit under the lock */
1898 	if (zone->nr_reserved_highatomic >= max_managed)
1899 		goto out_unlock;
1900 
1901 	/* Yoink! */
1902 	mt = get_pageblock_migratetype(page);
1903 	/* Only reserve normal pageblocks (i.e., they can merge with others) */
1904 	if (migratetype_is_mergeable(mt)) {
1905 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1906 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1907 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
1908 	}
1909 
1910 out_unlock:
1911 	spin_unlock_irqrestore(&zone->lock, flags);
1912 }
1913 
1914 /*
1915  * Used when an allocation is about to fail under memory pressure. This
1916  * potentially hurts the reliability of high-order allocations when under
1917  * intense memory pressure but failed atomic allocations should be easier
1918  * to recover from than an OOM.
1919  *
1920  * If @force is true, try to unreserve a pageblock even though highatomic
1921  * pageblock is exhausted.
1922  */
1923 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
1924 						bool force)
1925 {
1926 	struct zonelist *zonelist = ac->zonelist;
1927 	unsigned long flags;
1928 	struct zoneref *z;
1929 	struct zone *zone;
1930 	struct page *page;
1931 	int order;
1932 	bool ret;
1933 
1934 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
1935 								ac->nodemask) {
1936 		/*
1937 		 * Preserve at least one pageblock unless memory pressure
1938 		 * is really high.
1939 		 */
1940 		if (!force && zone->nr_reserved_highatomic <=
1941 					pageblock_nr_pages)
1942 			continue;
1943 
1944 		spin_lock_irqsave(&zone->lock, flags);
1945 		for (order = 0; order < NR_PAGE_ORDERS; order++) {
1946 			struct free_area *area = &(zone->free_area[order]);
1947 
1948 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
1949 			if (!page)
1950 				continue;
1951 
1952 			/*
1953 			 * In page freeing path, migratetype change is racy so
1954 			 * we can counter several free pages in a pageblock
1955 			 * in this loop although we changed the pageblock type
1956 			 * from highatomic to ac->migratetype. So we should
1957 			 * adjust the count once.
1958 			 */
1959 			if (is_migrate_highatomic_page(page)) {
1960 				/*
1961 				 * It should never happen but changes to
1962 				 * locking could inadvertently allow a per-cpu
1963 				 * drain to add pages to MIGRATE_HIGHATOMIC
1964 				 * while unreserving so be safe and watch for
1965 				 * underflows.
1966 				 */
1967 				zone->nr_reserved_highatomic -= min(
1968 						pageblock_nr_pages,
1969 						zone->nr_reserved_highatomic);
1970 			}
1971 
1972 			/*
1973 			 * Convert to ac->migratetype and avoid the normal
1974 			 * pageblock stealing heuristics. Minimally, the caller
1975 			 * is doing the work and needs the pages. More
1976 			 * importantly, if the block was always converted to
1977 			 * MIGRATE_UNMOVABLE or another type then the number
1978 			 * of pageblocks that cannot be completely freed
1979 			 * may increase.
1980 			 */
1981 			set_pageblock_migratetype(page, ac->migratetype);
1982 			ret = move_freepages_block(zone, page, ac->migratetype,
1983 									NULL);
1984 			if (ret) {
1985 				spin_unlock_irqrestore(&zone->lock, flags);
1986 				return ret;
1987 			}
1988 		}
1989 		spin_unlock_irqrestore(&zone->lock, flags);
1990 	}
1991 
1992 	return false;
1993 }
1994 
1995 /*
1996  * Try finding a free buddy page on the fallback list and put it on the free
1997  * list of requested migratetype, possibly along with other pages from the same
1998  * block, depending on fragmentation avoidance heuristics. Returns true if
1999  * fallback was found so that __rmqueue_smallest() can grab it.
2000  *
2001  * The use of signed ints for order and current_order is a deliberate
2002  * deviation from the rest of this file, to make the for loop
2003  * condition simpler.
2004  */
2005 static __always_inline bool
2006 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2007 						unsigned int alloc_flags)
2008 {
2009 	struct free_area *area;
2010 	int current_order;
2011 	int min_order = order;
2012 	struct page *page;
2013 	int fallback_mt;
2014 	bool can_steal;
2015 
2016 	/*
2017 	 * Do not steal pages from freelists belonging to other pageblocks
2018 	 * i.e. orders < pageblock_order. If there are no local zones free,
2019 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2020 	 */
2021 	if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT)
2022 		min_order = pageblock_order;
2023 
2024 	/*
2025 	 * Find the largest available free page in the other list. This roughly
2026 	 * approximates finding the pageblock with the most free pages, which
2027 	 * would be too costly to do exactly.
2028 	 */
2029 	for (current_order = MAX_PAGE_ORDER; current_order >= min_order;
2030 				--current_order) {
2031 		area = &(zone->free_area[current_order]);
2032 		fallback_mt = find_suitable_fallback(area, current_order,
2033 				start_migratetype, false, &can_steal);
2034 		if (fallback_mt == -1)
2035 			continue;
2036 
2037 		/*
2038 		 * We cannot steal all free pages from the pageblock and the
2039 		 * requested migratetype is movable. In that case it's better to
2040 		 * steal and split the smallest available page instead of the
2041 		 * largest available page, because even if the next movable
2042 		 * allocation falls back into a different pageblock than this
2043 		 * one, it won't cause permanent fragmentation.
2044 		 */
2045 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2046 					&& current_order > order)
2047 			goto find_smallest;
2048 
2049 		goto do_steal;
2050 	}
2051 
2052 	return false;
2053 
2054 find_smallest:
2055 	for (current_order = order; current_order < NR_PAGE_ORDERS; current_order++) {
2056 		area = &(zone->free_area[current_order]);
2057 		fallback_mt = find_suitable_fallback(area, current_order,
2058 				start_migratetype, false, &can_steal);
2059 		if (fallback_mt != -1)
2060 			break;
2061 	}
2062 
2063 	/*
2064 	 * This should not happen - we already found a suitable fallback
2065 	 * when looking for the largest page.
2066 	 */
2067 	VM_BUG_ON(current_order > MAX_PAGE_ORDER);
2068 
2069 do_steal:
2070 	page = get_page_from_free_area(area, fallback_mt);
2071 
2072 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2073 								can_steal);
2074 
2075 	trace_mm_page_alloc_extfrag(page, order, current_order,
2076 		start_migratetype, fallback_mt);
2077 
2078 	return true;
2079 
2080 }
2081 
2082 /*
2083  * Do the hard work of removing an element from the buddy allocator.
2084  * Call me with the zone->lock already held.
2085  */
2086 static __always_inline struct page *
2087 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2088 						unsigned int alloc_flags)
2089 {
2090 	struct page *page;
2091 
2092 	if (IS_ENABLED(CONFIG_CMA)) {
2093 		/*
2094 		 * Balance movable allocations between regular and CMA areas by
2095 		 * allocating from CMA when over half of the zone's free memory
2096 		 * is in the CMA area.
2097 		 */
2098 		if (alloc_flags & ALLOC_CMA &&
2099 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2100 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2101 			page = __rmqueue_cma_fallback(zone, order);
2102 			if (page)
2103 				return page;
2104 		}
2105 	}
2106 retry:
2107 	page = __rmqueue_smallest(zone, order, migratetype);
2108 	if (unlikely(!page)) {
2109 		if (alloc_flags & ALLOC_CMA)
2110 			page = __rmqueue_cma_fallback(zone, order);
2111 
2112 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2113 								alloc_flags))
2114 			goto retry;
2115 	}
2116 	return page;
2117 }
2118 
2119 /*
2120  * Obtain a specified number of elements from the buddy allocator, all under
2121  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2122  * Returns the number of new pages which were placed at *list.
2123  */
2124 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2125 			unsigned long count, struct list_head *list,
2126 			int migratetype, unsigned int alloc_flags)
2127 {
2128 	unsigned long flags;
2129 	int i;
2130 
2131 	spin_lock_irqsave(&zone->lock, flags);
2132 	for (i = 0; i < count; ++i) {
2133 		struct page *page = __rmqueue(zone, order, migratetype,
2134 								alloc_flags);
2135 		if (unlikely(page == NULL))
2136 			break;
2137 
2138 		/*
2139 		 * Split buddy pages returned by expand() are received here in
2140 		 * physical page order. The page is added to the tail of
2141 		 * caller's list. From the callers perspective, the linked list
2142 		 * is ordered by page number under some conditions. This is
2143 		 * useful for IO devices that can forward direction from the
2144 		 * head, thus also in the physical page order. This is useful
2145 		 * for IO devices that can merge IO requests if the physical
2146 		 * pages are ordered properly.
2147 		 */
2148 		list_add_tail(&page->pcp_list, list);
2149 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2150 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2151 					      -(1 << order));
2152 	}
2153 
2154 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2155 	spin_unlock_irqrestore(&zone->lock, flags);
2156 
2157 	return i;
2158 }
2159 
2160 /*
2161  * Called from the vmstat counter updater to decay the PCP high.
2162  * Return whether there are addition works to do.
2163  */
2164 int decay_pcp_high(struct zone *zone, struct per_cpu_pages *pcp)
2165 {
2166 	int high_min, to_drain, batch;
2167 	int todo = 0;
2168 
2169 	high_min = READ_ONCE(pcp->high_min);
2170 	batch = READ_ONCE(pcp->batch);
2171 	/*
2172 	 * Decrease pcp->high periodically to try to free possible
2173 	 * idle PCP pages.  And, avoid to free too many pages to
2174 	 * control latency.  This caps pcp->high decrement too.
2175 	 */
2176 	if (pcp->high > high_min) {
2177 		pcp->high = max3(pcp->count - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2178 				 pcp->high - (pcp->high >> 3), high_min);
2179 		if (pcp->high > high_min)
2180 			todo++;
2181 	}
2182 
2183 	to_drain = pcp->count - pcp->high;
2184 	if (to_drain > 0) {
2185 		spin_lock(&pcp->lock);
2186 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2187 		spin_unlock(&pcp->lock);
2188 		todo++;
2189 	}
2190 
2191 	return todo;
2192 }
2193 
2194 #ifdef CONFIG_NUMA
2195 /*
2196  * Called from the vmstat counter updater to drain pagesets of this
2197  * currently executing processor on remote nodes after they have
2198  * expired.
2199  */
2200 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2201 {
2202 	int to_drain, batch;
2203 
2204 	batch = READ_ONCE(pcp->batch);
2205 	to_drain = min(pcp->count, batch);
2206 	if (to_drain > 0) {
2207 		spin_lock(&pcp->lock);
2208 		free_pcppages_bulk(zone, to_drain, pcp, 0);
2209 		spin_unlock(&pcp->lock);
2210 	}
2211 }
2212 #endif
2213 
2214 /*
2215  * Drain pcplists of the indicated processor and zone.
2216  */
2217 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2218 {
2219 	struct per_cpu_pages *pcp;
2220 
2221 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2222 	if (pcp->count) {
2223 		spin_lock(&pcp->lock);
2224 		free_pcppages_bulk(zone, pcp->count, pcp, 0);
2225 		spin_unlock(&pcp->lock);
2226 	}
2227 }
2228 
2229 /*
2230  * Drain pcplists of all zones on the indicated processor.
2231  */
2232 static void drain_pages(unsigned int cpu)
2233 {
2234 	struct zone *zone;
2235 
2236 	for_each_populated_zone(zone) {
2237 		drain_pages_zone(cpu, zone);
2238 	}
2239 }
2240 
2241 /*
2242  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2243  */
2244 void drain_local_pages(struct zone *zone)
2245 {
2246 	int cpu = smp_processor_id();
2247 
2248 	if (zone)
2249 		drain_pages_zone(cpu, zone);
2250 	else
2251 		drain_pages(cpu);
2252 }
2253 
2254 /*
2255  * The implementation of drain_all_pages(), exposing an extra parameter to
2256  * drain on all cpus.
2257  *
2258  * drain_all_pages() is optimized to only execute on cpus where pcplists are
2259  * not empty. The check for non-emptiness can however race with a free to
2260  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2261  * that need the guarantee that every CPU has drained can disable the
2262  * optimizing racy check.
2263  */
2264 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
2265 {
2266 	int cpu;
2267 
2268 	/*
2269 	 * Allocate in the BSS so we won't require allocation in
2270 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2271 	 */
2272 	static cpumask_t cpus_with_pcps;
2273 
2274 	/*
2275 	 * Do not drain if one is already in progress unless it's specific to
2276 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2277 	 * the drain to be complete when the call returns.
2278 	 */
2279 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2280 		if (!zone)
2281 			return;
2282 		mutex_lock(&pcpu_drain_mutex);
2283 	}
2284 
2285 	/*
2286 	 * We don't care about racing with CPU hotplug event
2287 	 * as offline notification will cause the notified
2288 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2289 	 * disables preemption as part of its processing
2290 	 */
2291 	for_each_online_cpu(cpu) {
2292 		struct per_cpu_pages *pcp;
2293 		struct zone *z;
2294 		bool has_pcps = false;
2295 
2296 		if (force_all_cpus) {
2297 			/*
2298 			 * The pcp.count check is racy, some callers need a
2299 			 * guarantee that no cpu is missed.
2300 			 */
2301 			has_pcps = true;
2302 		} else if (zone) {
2303 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
2304 			if (pcp->count)
2305 				has_pcps = true;
2306 		} else {
2307 			for_each_populated_zone(z) {
2308 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
2309 				if (pcp->count) {
2310 					has_pcps = true;
2311 					break;
2312 				}
2313 			}
2314 		}
2315 
2316 		if (has_pcps)
2317 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2318 		else
2319 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2320 	}
2321 
2322 	for_each_cpu(cpu, &cpus_with_pcps) {
2323 		if (zone)
2324 			drain_pages_zone(cpu, zone);
2325 		else
2326 			drain_pages(cpu);
2327 	}
2328 
2329 	mutex_unlock(&pcpu_drain_mutex);
2330 }
2331 
2332 /*
2333  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2334  *
2335  * When zone parameter is non-NULL, spill just the single zone's pages.
2336  */
2337 void drain_all_pages(struct zone *zone)
2338 {
2339 	__drain_all_pages(zone, false);
2340 }
2341 
2342 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
2343 							unsigned int order)
2344 {
2345 	int migratetype;
2346 
2347 	if (!free_pages_prepare(page, order))
2348 		return false;
2349 
2350 	migratetype = get_pfnblock_migratetype(page, pfn);
2351 	set_pcppage_migratetype(page, migratetype);
2352 	return true;
2353 }
2354 
2355 static int nr_pcp_free(struct per_cpu_pages *pcp, int batch, int high, bool free_high)
2356 {
2357 	int min_nr_free, max_nr_free;
2358 
2359 	/* Free as much as possible if batch freeing high-order pages. */
2360 	if (unlikely(free_high))
2361 		return min(pcp->count, batch << CONFIG_PCP_BATCH_SCALE_MAX);
2362 
2363 	/* Check for PCP disabled or boot pageset */
2364 	if (unlikely(high < batch))
2365 		return 1;
2366 
2367 	/* Leave at least pcp->batch pages on the list */
2368 	min_nr_free = batch;
2369 	max_nr_free = high - batch;
2370 
2371 	/*
2372 	 * Increase the batch number to the number of the consecutive
2373 	 * freed pages to reduce zone lock contention.
2374 	 */
2375 	batch = clamp_t(int, pcp->free_count, min_nr_free, max_nr_free);
2376 
2377 	return batch;
2378 }
2379 
2380 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone,
2381 		       int batch, bool free_high)
2382 {
2383 	int high, high_min, high_max;
2384 
2385 	high_min = READ_ONCE(pcp->high_min);
2386 	high_max = READ_ONCE(pcp->high_max);
2387 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2388 
2389 	if (unlikely(!high))
2390 		return 0;
2391 
2392 	if (unlikely(free_high)) {
2393 		pcp->high = max(high - (batch << CONFIG_PCP_BATCH_SCALE_MAX),
2394 				high_min);
2395 		return 0;
2396 	}
2397 
2398 	/*
2399 	 * If reclaim is active, limit the number of pages that can be
2400 	 * stored on pcp lists
2401 	 */
2402 	if (test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) {
2403 		int free_count = max_t(int, pcp->free_count, batch);
2404 
2405 		pcp->high = max(high - free_count, high_min);
2406 		return min(batch << 2, pcp->high);
2407 	}
2408 
2409 	if (high_min == high_max)
2410 		return high;
2411 
2412 	if (test_bit(ZONE_BELOW_HIGH, &zone->flags)) {
2413 		int free_count = max_t(int, pcp->free_count, batch);
2414 
2415 		pcp->high = max(high - free_count, high_min);
2416 		high = max(pcp->count, high_min);
2417 	} else if (pcp->count >= high) {
2418 		int need_high = pcp->free_count + batch;
2419 
2420 		/* pcp->high should be large enough to hold batch freed pages */
2421 		if (pcp->high < need_high)
2422 			pcp->high = clamp(need_high, high_min, high_max);
2423 	}
2424 
2425 	return high;
2426 }
2427 
2428 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp,
2429 				   struct page *page, int migratetype,
2430 				   unsigned int order)
2431 {
2432 	int high, batch;
2433 	int pindex;
2434 	bool free_high = false;
2435 
2436 	/*
2437 	 * On freeing, reduce the number of pages that are batch allocated.
2438 	 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2439 	 * allocations.
2440 	 */
2441 	pcp->alloc_factor >>= 1;
2442 	__count_vm_events(PGFREE, 1 << order);
2443 	pindex = order_to_pindex(migratetype, order);
2444 	list_add(&page->pcp_list, &pcp->lists[pindex]);
2445 	pcp->count += 1 << order;
2446 
2447 	batch = READ_ONCE(pcp->batch);
2448 	/*
2449 	 * As high-order pages other than THP's stored on PCP can contribute
2450 	 * to fragmentation, limit the number stored when PCP is heavily
2451 	 * freeing without allocation. The remainder after bulk freeing
2452 	 * stops will be drained from vmstat refresh context.
2453 	 */
2454 	if (order && order <= PAGE_ALLOC_COSTLY_ORDER) {
2455 		free_high = (pcp->free_count >= batch &&
2456 			     (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) &&
2457 			     (!(pcp->flags & PCPF_FREE_HIGH_BATCH) ||
2458 			      pcp->count >= READ_ONCE(batch)));
2459 		pcp->flags |= PCPF_PREV_FREE_HIGH_ORDER;
2460 	} else if (pcp->flags & PCPF_PREV_FREE_HIGH_ORDER) {
2461 		pcp->flags &= ~PCPF_PREV_FREE_HIGH_ORDER;
2462 	}
2463 	if (pcp->free_count < (batch << CONFIG_PCP_BATCH_SCALE_MAX))
2464 		pcp->free_count += (1 << order);
2465 	high = nr_pcp_high(pcp, zone, batch, free_high);
2466 	if (pcp->count >= high) {
2467 		free_pcppages_bulk(zone, nr_pcp_free(pcp, batch, high, free_high),
2468 				   pcp, pindex);
2469 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags) &&
2470 		    zone_watermark_ok(zone, 0, high_wmark_pages(zone),
2471 				      ZONE_MOVABLE, 0))
2472 			clear_bit(ZONE_BELOW_HIGH, &zone->flags);
2473 	}
2474 }
2475 
2476 /*
2477  * Free a pcp page
2478  */
2479 void free_unref_page(struct page *page, unsigned int order)
2480 {
2481 	unsigned long __maybe_unused UP_flags;
2482 	struct per_cpu_pages *pcp;
2483 	struct zone *zone;
2484 	unsigned long pfn = page_to_pfn(page);
2485 	int migratetype, pcpmigratetype;
2486 
2487 	if (!free_unref_page_prepare(page, pfn, order))
2488 		return;
2489 
2490 	/*
2491 	 * We only track unmovable, reclaimable and movable on pcp lists.
2492 	 * Place ISOLATE pages on the isolated list because they are being
2493 	 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2494 	 * get those areas back if necessary. Otherwise, we may have to free
2495 	 * excessively into the page allocator
2496 	 */
2497 	migratetype = pcpmigratetype = get_pcppage_migratetype(page);
2498 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
2499 		if (unlikely(is_migrate_isolate(migratetype))) {
2500 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
2501 			return;
2502 		}
2503 		pcpmigratetype = MIGRATE_MOVABLE;
2504 	}
2505 
2506 	zone = page_zone(page);
2507 	pcp_trylock_prepare(UP_flags);
2508 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2509 	if (pcp) {
2510 		free_unref_page_commit(zone, pcp, page, pcpmigratetype, order);
2511 		pcp_spin_unlock(pcp);
2512 	} else {
2513 		free_one_page(zone, page, pfn, order, migratetype, FPI_NONE);
2514 	}
2515 	pcp_trylock_finish(UP_flags);
2516 }
2517 
2518 /*
2519  * Free a batch of folios
2520  */
2521 void free_unref_folios(struct folio_batch *folios)
2522 {
2523 	unsigned long __maybe_unused UP_flags;
2524 	struct per_cpu_pages *pcp = NULL;
2525 	struct zone *locked_zone = NULL;
2526 	int i, j, migratetype;
2527 
2528 	/* Prepare folios for freeing */
2529 	for (i = 0, j = 0; i < folios->nr; i++) {
2530 		struct folio *folio = folios->folios[i];
2531 		unsigned long pfn = folio_pfn(folio);
2532 		unsigned int order = folio_order(folio);
2533 
2534 		if (order > 0 && folio_test_large_rmappable(folio))
2535 			folio_undo_large_rmappable(folio);
2536 		if (!free_unref_page_prepare(&folio->page, pfn, order))
2537 			continue;
2538 
2539 		/*
2540 		 * Free isolated folios and orders not handled on the PCP
2541 		 * directly to the allocator, see comment in free_unref_page.
2542 		 */
2543 		migratetype = get_pcppage_migratetype(&folio->page);
2544 		if (!pcp_allowed_order(order) ||
2545 		    is_migrate_isolate(migratetype)) {
2546 			free_one_page(folio_zone(folio), &folio->page, pfn,
2547 					order, migratetype, FPI_NONE);
2548 			continue;
2549 		}
2550 		folio->private = (void *)(unsigned long)order;
2551 		if (j != i)
2552 			folios->folios[j] = folio;
2553 		j++;
2554 	}
2555 	folios->nr = j;
2556 
2557 	for (i = 0; i < folios->nr; i++) {
2558 		struct folio *folio = folios->folios[i];
2559 		struct zone *zone = folio_zone(folio);
2560 		unsigned int order = (unsigned long)folio->private;
2561 
2562 		folio->private = NULL;
2563 		migratetype = get_pcppage_migratetype(&folio->page);
2564 
2565 		/* Different zone requires a different pcp lock */
2566 		if (zone != locked_zone) {
2567 			if (pcp) {
2568 				pcp_spin_unlock(pcp);
2569 				pcp_trylock_finish(UP_flags);
2570 			}
2571 
2572 			/*
2573 			 * trylock is necessary as folios may be getting freed
2574 			 * from IRQ or SoftIRQ context after an IO completion.
2575 			 */
2576 			pcp_trylock_prepare(UP_flags);
2577 			pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2578 			if (unlikely(!pcp)) {
2579 				pcp_trylock_finish(UP_flags);
2580 				free_one_page(zone, &folio->page,
2581 						folio_pfn(folio), order,
2582 						migratetype, FPI_NONE);
2583 				locked_zone = NULL;
2584 				continue;
2585 			}
2586 			locked_zone = zone;
2587 		}
2588 
2589 		/*
2590 		 * Non-isolated types over MIGRATE_PCPTYPES get added
2591 		 * to the MIGRATE_MOVABLE pcp list.
2592 		 */
2593 		if (unlikely(migratetype >= MIGRATE_PCPTYPES))
2594 			migratetype = MIGRATE_MOVABLE;
2595 
2596 		trace_mm_page_free_batched(&folio->page);
2597 		free_unref_page_commit(zone, pcp, &folio->page, migratetype,
2598 				order);
2599 	}
2600 
2601 	if (pcp) {
2602 		pcp_spin_unlock(pcp);
2603 		pcp_trylock_finish(UP_flags);
2604 	}
2605 	folio_batch_reinit(folios);
2606 }
2607 
2608 /*
2609  * split_page takes a non-compound higher-order page, and splits it into
2610  * n (1<<order) sub-pages: page[0..n]
2611  * Each sub-page must be freed individually.
2612  *
2613  * Note: this is probably too low level an operation for use in drivers.
2614  * Please consult with lkml before using this in your driver.
2615  */
2616 void split_page(struct page *page, unsigned int order)
2617 {
2618 	int i;
2619 
2620 	VM_BUG_ON_PAGE(PageCompound(page), page);
2621 	VM_BUG_ON_PAGE(!page_count(page), page);
2622 
2623 	for (i = 1; i < (1 << order); i++)
2624 		set_page_refcounted(page + i);
2625 	split_page_owner(page, order, 0);
2626 	split_page_memcg(page, order, 0);
2627 }
2628 EXPORT_SYMBOL_GPL(split_page);
2629 
2630 int __isolate_free_page(struct page *page, unsigned int order)
2631 {
2632 	struct zone *zone = page_zone(page);
2633 	int mt = get_pageblock_migratetype(page);
2634 
2635 	if (!is_migrate_isolate(mt)) {
2636 		unsigned long watermark;
2637 		/*
2638 		 * Obey watermarks as if the page was being allocated. We can
2639 		 * emulate a high-order watermark check with a raised order-0
2640 		 * watermark, because we already know our high-order page
2641 		 * exists.
2642 		 */
2643 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
2644 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2645 			return 0;
2646 
2647 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2648 	}
2649 
2650 	del_page_from_free_list(page, zone, order);
2651 
2652 	/*
2653 	 * Set the pageblock if the isolated page is at least half of a
2654 	 * pageblock
2655 	 */
2656 	if (order >= pageblock_order - 1) {
2657 		struct page *endpage = page + (1 << order) - 1;
2658 		for (; page < endpage; page += pageblock_nr_pages) {
2659 			int mt = get_pageblock_migratetype(page);
2660 			/*
2661 			 * Only change normal pageblocks (i.e., they can merge
2662 			 * with others)
2663 			 */
2664 			if (migratetype_is_mergeable(mt))
2665 				set_pageblock_migratetype(page,
2666 							  MIGRATE_MOVABLE);
2667 		}
2668 	}
2669 
2670 	return 1UL << order;
2671 }
2672 
2673 /**
2674  * __putback_isolated_page - Return a now-isolated page back where we got it
2675  * @page: Page that was isolated
2676  * @order: Order of the isolated page
2677  * @mt: The page's pageblock's migratetype
2678  *
2679  * This function is meant to return a page pulled from the free lists via
2680  * __isolate_free_page back to the free lists they were pulled from.
2681  */
2682 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
2683 {
2684 	struct zone *zone = page_zone(page);
2685 
2686 	/* zone lock should be held when this function is called */
2687 	lockdep_assert_held(&zone->lock);
2688 
2689 	/* Return isolated page to tail of freelist. */
2690 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
2691 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
2692 }
2693 
2694 /*
2695  * Update NUMA hit/miss statistics
2696  */
2697 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2698 				   long nr_account)
2699 {
2700 #ifdef CONFIG_NUMA
2701 	enum numa_stat_item local_stat = NUMA_LOCAL;
2702 
2703 	/* skip numa counters update if numa stats is disabled */
2704 	if (!static_branch_likely(&vm_numa_stat_key))
2705 		return;
2706 
2707 	if (zone_to_nid(z) != numa_node_id())
2708 		local_stat = NUMA_OTHER;
2709 
2710 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2711 		__count_numa_events(z, NUMA_HIT, nr_account);
2712 	else {
2713 		__count_numa_events(z, NUMA_MISS, nr_account);
2714 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
2715 	}
2716 	__count_numa_events(z, local_stat, nr_account);
2717 #endif
2718 }
2719 
2720 static __always_inline
2721 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone,
2722 			   unsigned int order, unsigned int alloc_flags,
2723 			   int migratetype)
2724 {
2725 	struct page *page;
2726 	unsigned long flags;
2727 
2728 	do {
2729 		page = NULL;
2730 		spin_lock_irqsave(&zone->lock, flags);
2731 		if (alloc_flags & ALLOC_HIGHATOMIC)
2732 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2733 		if (!page) {
2734 			page = __rmqueue(zone, order, migratetype, alloc_flags);
2735 
2736 			/*
2737 			 * If the allocation fails, allow OOM handling access
2738 			 * to HIGHATOMIC reserves as failing now is worse than
2739 			 * failing a high-order atomic allocation in the
2740 			 * future.
2741 			 */
2742 			if (!page && (alloc_flags & ALLOC_OOM))
2743 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2744 
2745 			if (!page) {
2746 				spin_unlock_irqrestore(&zone->lock, flags);
2747 				return NULL;
2748 			}
2749 		}
2750 		__mod_zone_freepage_state(zone, -(1 << order),
2751 					  get_pcppage_migratetype(page));
2752 		spin_unlock_irqrestore(&zone->lock, flags);
2753 	} while (check_new_pages(page, order));
2754 
2755 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2756 	zone_statistics(preferred_zone, zone, 1);
2757 
2758 	return page;
2759 }
2760 
2761 static int nr_pcp_alloc(struct per_cpu_pages *pcp, struct zone *zone, int order)
2762 {
2763 	int high, base_batch, batch, max_nr_alloc;
2764 	int high_max, high_min;
2765 
2766 	base_batch = READ_ONCE(pcp->batch);
2767 	high_min = READ_ONCE(pcp->high_min);
2768 	high_max = READ_ONCE(pcp->high_max);
2769 	high = pcp->high = clamp(pcp->high, high_min, high_max);
2770 
2771 	/* Check for PCP disabled or boot pageset */
2772 	if (unlikely(high < base_batch))
2773 		return 1;
2774 
2775 	if (order)
2776 		batch = base_batch;
2777 	else
2778 		batch = (base_batch << pcp->alloc_factor);
2779 
2780 	/*
2781 	 * If we had larger pcp->high, we could avoid to allocate from
2782 	 * zone.
2783 	 */
2784 	if (high_min != high_max && !test_bit(ZONE_BELOW_HIGH, &zone->flags))
2785 		high = pcp->high = min(high + batch, high_max);
2786 
2787 	if (!order) {
2788 		max_nr_alloc = max(high - pcp->count - base_batch, base_batch);
2789 		/*
2790 		 * Double the number of pages allocated each time there is
2791 		 * subsequent allocation of order-0 pages without any freeing.
2792 		 */
2793 		if (batch <= max_nr_alloc &&
2794 		    pcp->alloc_factor < CONFIG_PCP_BATCH_SCALE_MAX)
2795 			pcp->alloc_factor++;
2796 		batch = min(batch, max_nr_alloc);
2797 	}
2798 
2799 	/*
2800 	 * Scale batch relative to order if batch implies free pages
2801 	 * can be stored on the PCP. Batch can be 1 for small zones or
2802 	 * for boot pagesets which should never store free pages as
2803 	 * the pages may belong to arbitrary zones.
2804 	 */
2805 	if (batch > 1)
2806 		batch = max(batch >> order, 2);
2807 
2808 	return batch;
2809 }
2810 
2811 /* Remove page from the per-cpu list, caller must protect the list */
2812 static inline
2813 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
2814 			int migratetype,
2815 			unsigned int alloc_flags,
2816 			struct per_cpu_pages *pcp,
2817 			struct list_head *list)
2818 {
2819 	struct page *page;
2820 
2821 	do {
2822 		if (list_empty(list)) {
2823 			int batch = nr_pcp_alloc(pcp, zone, order);
2824 			int alloced;
2825 
2826 			alloced = rmqueue_bulk(zone, order,
2827 					batch, list,
2828 					migratetype, alloc_flags);
2829 
2830 			pcp->count += alloced << order;
2831 			if (unlikely(list_empty(list)))
2832 				return NULL;
2833 		}
2834 
2835 		page = list_first_entry(list, struct page, pcp_list);
2836 		list_del(&page->pcp_list);
2837 		pcp->count -= 1 << order;
2838 	} while (check_new_pages(page, order));
2839 
2840 	return page;
2841 }
2842 
2843 /* Lock and remove page from the per-cpu list */
2844 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2845 			struct zone *zone, unsigned int order,
2846 			int migratetype, unsigned int alloc_flags)
2847 {
2848 	struct per_cpu_pages *pcp;
2849 	struct list_head *list;
2850 	struct page *page;
2851 	unsigned long __maybe_unused UP_flags;
2852 
2853 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
2854 	pcp_trylock_prepare(UP_flags);
2855 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
2856 	if (!pcp) {
2857 		pcp_trylock_finish(UP_flags);
2858 		return NULL;
2859 	}
2860 
2861 	/*
2862 	 * On allocation, reduce the number of pages that are batch freed.
2863 	 * See nr_pcp_free() where free_factor is increased for subsequent
2864 	 * frees.
2865 	 */
2866 	pcp->free_count >>= 1;
2867 	list = &pcp->lists[order_to_pindex(migratetype, order)];
2868 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
2869 	pcp_spin_unlock(pcp);
2870 	pcp_trylock_finish(UP_flags);
2871 	if (page) {
2872 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2873 		zone_statistics(preferred_zone, zone, 1);
2874 	}
2875 	return page;
2876 }
2877 
2878 /*
2879  * Allocate a page from the given zone.
2880  * Use pcplists for THP or "cheap" high-order allocations.
2881  */
2882 
2883 /*
2884  * Do not instrument rmqueue() with KMSAN. This function may call
2885  * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
2886  * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
2887  * may call rmqueue() again, which will result in a deadlock.
2888  */
2889 __no_sanitize_memory
2890 static inline
2891 struct page *rmqueue(struct zone *preferred_zone,
2892 			struct zone *zone, unsigned int order,
2893 			gfp_t gfp_flags, unsigned int alloc_flags,
2894 			int migratetype)
2895 {
2896 	struct page *page;
2897 
2898 	/*
2899 	 * We most definitely don't want callers attempting to
2900 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2901 	 */
2902 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2903 
2904 	if (likely(pcp_allowed_order(order))) {
2905 		page = rmqueue_pcplist(preferred_zone, zone, order,
2906 				       migratetype, alloc_flags);
2907 		if (likely(page))
2908 			goto out;
2909 	}
2910 
2911 	page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags,
2912 							migratetype);
2913 
2914 out:
2915 	/* Separate test+clear to avoid unnecessary atomics */
2916 	if ((alloc_flags & ALLOC_KSWAPD) &&
2917 	    unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) {
2918 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2919 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
2920 	}
2921 
2922 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2923 	return page;
2924 }
2925 
2926 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2927 {
2928 	return __should_fail_alloc_page(gfp_mask, order);
2929 }
2930 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
2931 
2932 static inline long __zone_watermark_unusable_free(struct zone *z,
2933 				unsigned int order, unsigned int alloc_flags)
2934 {
2935 	long unusable_free = (1 << order) - 1;
2936 
2937 	/*
2938 	 * If the caller does not have rights to reserves below the min
2939 	 * watermark then subtract the high-atomic reserves. This will
2940 	 * over-estimate the size of the atomic reserve but it avoids a search.
2941 	 */
2942 	if (likely(!(alloc_flags & ALLOC_RESERVES)))
2943 		unusable_free += z->nr_reserved_highatomic;
2944 
2945 #ifdef CONFIG_CMA
2946 	/* If allocation can't use CMA areas don't use free CMA pages */
2947 	if (!(alloc_flags & ALLOC_CMA))
2948 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
2949 #endif
2950 #ifdef CONFIG_UNACCEPTED_MEMORY
2951 	unusable_free += zone_page_state(z, NR_UNACCEPTED);
2952 #endif
2953 
2954 	return unusable_free;
2955 }
2956 
2957 /*
2958  * Return true if free base pages are above 'mark'. For high-order checks it
2959  * will return true of the order-0 watermark is reached and there is at least
2960  * one free page of a suitable size. Checking now avoids taking the zone lock
2961  * to check in the allocation paths if no pages are free.
2962  */
2963 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2964 			 int highest_zoneidx, unsigned int alloc_flags,
2965 			 long free_pages)
2966 {
2967 	long min = mark;
2968 	int o;
2969 
2970 	/* free_pages may go negative - that's OK */
2971 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
2972 
2973 	if (unlikely(alloc_flags & ALLOC_RESERVES)) {
2974 		/*
2975 		 * __GFP_HIGH allows access to 50% of the min reserve as well
2976 		 * as OOM.
2977 		 */
2978 		if (alloc_flags & ALLOC_MIN_RESERVE) {
2979 			min -= min / 2;
2980 
2981 			/*
2982 			 * Non-blocking allocations (e.g. GFP_ATOMIC) can
2983 			 * access more reserves than just __GFP_HIGH. Other
2984 			 * non-blocking allocations requests such as GFP_NOWAIT
2985 			 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
2986 			 * access to the min reserve.
2987 			 */
2988 			if (alloc_flags & ALLOC_NON_BLOCK)
2989 				min -= min / 4;
2990 		}
2991 
2992 		/*
2993 		 * OOM victims can try even harder than the normal reserve
2994 		 * users on the grounds that it's definitely going to be in
2995 		 * the exit path shortly and free memory. Any allocation it
2996 		 * makes during the free path will be small and short-lived.
2997 		 */
2998 		if (alloc_flags & ALLOC_OOM)
2999 			min -= min / 2;
3000 	}
3001 
3002 	/*
3003 	 * Check watermarks for an order-0 allocation request. If these
3004 	 * are not met, then a high-order request also cannot go ahead
3005 	 * even if a suitable page happened to be free.
3006 	 */
3007 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3008 		return false;
3009 
3010 	/* If this is an order-0 request then the watermark is fine */
3011 	if (!order)
3012 		return true;
3013 
3014 	/* For a high-order request, check at least one suitable page is free */
3015 	for (o = order; o < NR_PAGE_ORDERS; o++) {
3016 		struct free_area *area = &z->free_area[o];
3017 		int mt;
3018 
3019 		if (!area->nr_free)
3020 			continue;
3021 
3022 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3023 			if (!free_area_empty(area, mt))
3024 				return true;
3025 		}
3026 
3027 #ifdef CONFIG_CMA
3028 		if ((alloc_flags & ALLOC_CMA) &&
3029 		    !free_area_empty(area, MIGRATE_CMA)) {
3030 			return true;
3031 		}
3032 #endif
3033 		if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) &&
3034 		    !free_area_empty(area, MIGRATE_HIGHATOMIC)) {
3035 			return true;
3036 		}
3037 	}
3038 	return false;
3039 }
3040 
3041 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3042 		      int highest_zoneidx, unsigned int alloc_flags)
3043 {
3044 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3045 					zone_page_state(z, NR_FREE_PAGES));
3046 }
3047 
3048 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3049 				unsigned long mark, int highest_zoneidx,
3050 				unsigned int alloc_flags, gfp_t gfp_mask)
3051 {
3052 	long free_pages;
3053 
3054 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3055 
3056 	/*
3057 	 * Fast check for order-0 only. If this fails then the reserves
3058 	 * need to be calculated.
3059 	 */
3060 	if (!order) {
3061 		long usable_free;
3062 		long reserved;
3063 
3064 		usable_free = free_pages;
3065 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3066 
3067 		/* reserved may over estimate high-atomic reserves. */
3068 		usable_free -= min(usable_free, reserved);
3069 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3070 			return true;
3071 	}
3072 
3073 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3074 					free_pages))
3075 		return true;
3076 
3077 	/*
3078 	 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3079 	 * when checking the min watermark. The min watermark is the
3080 	 * point where boosting is ignored so that kswapd is woken up
3081 	 * when below the low watermark.
3082 	 */
3083 	if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost
3084 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3085 		mark = z->_watermark[WMARK_MIN];
3086 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3087 					alloc_flags, free_pages);
3088 	}
3089 
3090 	return false;
3091 }
3092 
3093 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3094 			unsigned long mark, int highest_zoneidx)
3095 {
3096 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3097 
3098 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3099 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3100 
3101 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3102 								free_pages);
3103 }
3104 
3105 #ifdef CONFIG_NUMA
3106 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE;
3107 
3108 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3109 {
3110 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3111 				node_reclaim_distance;
3112 }
3113 #else	/* CONFIG_NUMA */
3114 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3115 {
3116 	return true;
3117 }
3118 #endif	/* CONFIG_NUMA */
3119 
3120 /*
3121  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3122  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3123  * premature use of a lower zone may cause lowmem pressure problems that
3124  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3125  * probably too small. It only makes sense to spread allocations to avoid
3126  * fragmentation between the Normal and DMA32 zones.
3127  */
3128 static inline unsigned int
3129 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3130 {
3131 	unsigned int alloc_flags;
3132 
3133 	/*
3134 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3135 	 * to save a branch.
3136 	 */
3137 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3138 
3139 #ifdef CONFIG_ZONE_DMA32
3140 	if (!zone)
3141 		return alloc_flags;
3142 
3143 	if (zone_idx(zone) != ZONE_NORMAL)
3144 		return alloc_flags;
3145 
3146 	/*
3147 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3148 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3149 	 * on UMA that if Normal is populated then so is DMA32.
3150 	 */
3151 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3152 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3153 		return alloc_flags;
3154 
3155 	alloc_flags |= ALLOC_NOFRAGMENT;
3156 #endif /* CONFIG_ZONE_DMA32 */
3157 	return alloc_flags;
3158 }
3159 
3160 /* Must be called after current_gfp_context() which can change gfp_mask */
3161 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
3162 						  unsigned int alloc_flags)
3163 {
3164 #ifdef CONFIG_CMA
3165 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3166 		alloc_flags |= ALLOC_CMA;
3167 #endif
3168 	return alloc_flags;
3169 }
3170 
3171 /*
3172  * get_page_from_freelist goes through the zonelist trying to allocate
3173  * a page.
3174  */
3175 static struct page *
3176 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3177 						const struct alloc_context *ac)
3178 {
3179 	struct zoneref *z;
3180 	struct zone *zone;
3181 	struct pglist_data *last_pgdat = NULL;
3182 	bool last_pgdat_dirty_ok = false;
3183 	bool no_fallback;
3184 
3185 retry:
3186 	/*
3187 	 * Scan zonelist, looking for a zone with enough free.
3188 	 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3189 	 */
3190 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3191 	z = ac->preferred_zoneref;
3192 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3193 					ac->nodemask) {
3194 		struct page *page;
3195 		unsigned long mark;
3196 
3197 		if (cpusets_enabled() &&
3198 			(alloc_flags & ALLOC_CPUSET) &&
3199 			!__cpuset_zone_allowed(zone, gfp_mask))
3200 				continue;
3201 		/*
3202 		 * When allocating a page cache page for writing, we
3203 		 * want to get it from a node that is within its dirty
3204 		 * limit, such that no single node holds more than its
3205 		 * proportional share of globally allowed dirty pages.
3206 		 * The dirty limits take into account the node's
3207 		 * lowmem reserves and high watermark so that kswapd
3208 		 * should be able to balance it without having to
3209 		 * write pages from its LRU list.
3210 		 *
3211 		 * XXX: For now, allow allocations to potentially
3212 		 * exceed the per-node dirty limit in the slowpath
3213 		 * (spread_dirty_pages unset) before going into reclaim,
3214 		 * which is important when on a NUMA setup the allowed
3215 		 * nodes are together not big enough to reach the
3216 		 * global limit.  The proper fix for these situations
3217 		 * will require awareness of nodes in the
3218 		 * dirty-throttling and the flusher threads.
3219 		 */
3220 		if (ac->spread_dirty_pages) {
3221 			if (last_pgdat != zone->zone_pgdat) {
3222 				last_pgdat = zone->zone_pgdat;
3223 				last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat);
3224 			}
3225 
3226 			if (!last_pgdat_dirty_ok)
3227 				continue;
3228 		}
3229 
3230 		if (no_fallback && nr_online_nodes > 1 &&
3231 		    zone != ac->preferred_zoneref->zone) {
3232 			int local_nid;
3233 
3234 			/*
3235 			 * If moving to a remote node, retry but allow
3236 			 * fragmenting fallbacks. Locality is more important
3237 			 * than fragmentation avoidance.
3238 			 */
3239 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3240 			if (zone_to_nid(zone) != local_nid) {
3241 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3242 				goto retry;
3243 			}
3244 		}
3245 
3246 		/*
3247 		 * Detect whether the number of free pages is below high
3248 		 * watermark.  If so, we will decrease pcp->high and free
3249 		 * PCP pages in free path to reduce the possibility of
3250 		 * premature page reclaiming.  Detection is done here to
3251 		 * avoid to do that in hotter free path.
3252 		 */
3253 		if (test_bit(ZONE_BELOW_HIGH, &zone->flags))
3254 			goto check_alloc_wmark;
3255 
3256 		mark = high_wmark_pages(zone);
3257 		if (zone_watermark_fast(zone, order, mark,
3258 					ac->highest_zoneidx, alloc_flags,
3259 					gfp_mask))
3260 			goto try_this_zone;
3261 		else
3262 			set_bit(ZONE_BELOW_HIGH, &zone->flags);
3263 
3264 check_alloc_wmark:
3265 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3266 		if (!zone_watermark_fast(zone, order, mark,
3267 				       ac->highest_zoneidx, alloc_flags,
3268 				       gfp_mask)) {
3269 			int ret;
3270 
3271 			if (has_unaccepted_memory()) {
3272 				if (try_to_accept_memory(zone, order))
3273 					goto try_this_zone;
3274 			}
3275 
3276 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3277 			/*
3278 			 * Watermark failed for this zone, but see if we can
3279 			 * grow this zone if it contains deferred pages.
3280 			 */
3281 			if (deferred_pages_enabled()) {
3282 				if (_deferred_grow_zone(zone, order))
3283 					goto try_this_zone;
3284 			}
3285 #endif
3286 			/* Checked here to keep the fast path fast */
3287 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3288 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3289 				goto try_this_zone;
3290 
3291 			if (!node_reclaim_enabled() ||
3292 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3293 				continue;
3294 
3295 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3296 			switch (ret) {
3297 			case NODE_RECLAIM_NOSCAN:
3298 				/* did not scan */
3299 				continue;
3300 			case NODE_RECLAIM_FULL:
3301 				/* scanned but unreclaimable */
3302 				continue;
3303 			default:
3304 				/* did we reclaim enough */
3305 				if (zone_watermark_ok(zone, order, mark,
3306 					ac->highest_zoneidx, alloc_flags))
3307 					goto try_this_zone;
3308 
3309 				continue;
3310 			}
3311 		}
3312 
3313 try_this_zone:
3314 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3315 				gfp_mask, alloc_flags, ac->migratetype);
3316 		if (page) {
3317 			prep_new_page(page, order, gfp_mask, alloc_flags);
3318 
3319 			/*
3320 			 * If this is a high-order atomic allocation then check
3321 			 * if the pageblock should be reserved for the future
3322 			 */
3323 			if (unlikely(alloc_flags & ALLOC_HIGHATOMIC))
3324 				reserve_highatomic_pageblock(page, zone);
3325 
3326 			return page;
3327 		} else {
3328 			if (has_unaccepted_memory()) {
3329 				if (try_to_accept_memory(zone, order))
3330 					goto try_this_zone;
3331 			}
3332 
3333 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3334 			/* Try again if zone has deferred pages */
3335 			if (deferred_pages_enabled()) {
3336 				if (_deferred_grow_zone(zone, order))
3337 					goto try_this_zone;
3338 			}
3339 #endif
3340 		}
3341 	}
3342 
3343 	/*
3344 	 * It's possible on a UMA machine to get through all zones that are
3345 	 * fragmented. If avoiding fragmentation, reset and try again.
3346 	 */
3347 	if (no_fallback) {
3348 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3349 		goto retry;
3350 	}
3351 
3352 	return NULL;
3353 }
3354 
3355 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3356 {
3357 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3358 
3359 	/*
3360 	 * This documents exceptions given to allocations in certain
3361 	 * contexts that are allowed to allocate outside current's set
3362 	 * of allowed nodes.
3363 	 */
3364 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3365 		if (tsk_is_oom_victim(current) ||
3366 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3367 			filter &= ~SHOW_MEM_FILTER_NODES;
3368 	if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3369 		filter &= ~SHOW_MEM_FILTER_NODES;
3370 
3371 	__show_mem(filter, nodemask, gfp_zone(gfp_mask));
3372 }
3373 
3374 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3375 {
3376 	struct va_format vaf;
3377 	va_list args;
3378 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3379 
3380 	if ((gfp_mask & __GFP_NOWARN) ||
3381 	     !__ratelimit(&nopage_rs) ||
3382 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
3383 		return;
3384 
3385 	va_start(args, fmt);
3386 	vaf.fmt = fmt;
3387 	vaf.va = &args;
3388 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3389 			current->comm, &vaf, gfp_mask, &gfp_mask,
3390 			nodemask_pr_args(nodemask));
3391 	va_end(args);
3392 
3393 	cpuset_print_current_mems_allowed();
3394 	pr_cont("\n");
3395 	dump_stack();
3396 	warn_alloc_show_mem(gfp_mask, nodemask);
3397 }
3398 
3399 static inline struct page *
3400 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3401 			      unsigned int alloc_flags,
3402 			      const struct alloc_context *ac)
3403 {
3404 	struct page *page;
3405 
3406 	page = get_page_from_freelist(gfp_mask, order,
3407 			alloc_flags|ALLOC_CPUSET, ac);
3408 	/*
3409 	 * fallback to ignore cpuset restriction if our nodes
3410 	 * are depleted
3411 	 */
3412 	if (!page)
3413 		page = get_page_from_freelist(gfp_mask, order,
3414 				alloc_flags, ac);
3415 
3416 	return page;
3417 }
3418 
3419 static inline struct page *
3420 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3421 	const struct alloc_context *ac, unsigned long *did_some_progress)
3422 {
3423 	struct oom_control oc = {
3424 		.zonelist = ac->zonelist,
3425 		.nodemask = ac->nodemask,
3426 		.memcg = NULL,
3427 		.gfp_mask = gfp_mask,
3428 		.order = order,
3429 	};
3430 	struct page *page;
3431 
3432 	*did_some_progress = 0;
3433 
3434 	/*
3435 	 * Acquire the oom lock.  If that fails, somebody else is
3436 	 * making progress for us.
3437 	 */
3438 	if (!mutex_trylock(&oom_lock)) {
3439 		*did_some_progress = 1;
3440 		schedule_timeout_uninterruptible(1);
3441 		return NULL;
3442 	}
3443 
3444 	/*
3445 	 * Go through the zonelist yet one more time, keep very high watermark
3446 	 * here, this is only to catch a parallel oom killing, we must fail if
3447 	 * we're still under heavy pressure. But make sure that this reclaim
3448 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3449 	 * allocation which will never fail due to oom_lock already held.
3450 	 */
3451 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3452 				      ~__GFP_DIRECT_RECLAIM, order,
3453 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3454 	if (page)
3455 		goto out;
3456 
3457 	/* Coredumps can quickly deplete all memory reserves */
3458 	if (current->flags & PF_DUMPCORE)
3459 		goto out;
3460 	/* The OOM killer will not help higher order allocs */
3461 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3462 		goto out;
3463 	/*
3464 	 * We have already exhausted all our reclaim opportunities without any
3465 	 * success so it is time to admit defeat. We will skip the OOM killer
3466 	 * because it is very likely that the caller has a more reasonable
3467 	 * fallback than shooting a random task.
3468 	 *
3469 	 * The OOM killer may not free memory on a specific node.
3470 	 */
3471 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
3472 		goto out;
3473 	/* The OOM killer does not needlessly kill tasks for lowmem */
3474 	if (ac->highest_zoneidx < ZONE_NORMAL)
3475 		goto out;
3476 	if (pm_suspended_storage())
3477 		goto out;
3478 	/*
3479 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3480 	 * other request to make a forward progress.
3481 	 * We are in an unfortunate situation where out_of_memory cannot
3482 	 * do much for this context but let's try it to at least get
3483 	 * access to memory reserved if the current task is killed (see
3484 	 * out_of_memory). Once filesystems are ready to handle allocation
3485 	 * failures more gracefully we should just bail out here.
3486 	 */
3487 
3488 	/* Exhausted what can be done so it's blame time */
3489 	if (out_of_memory(&oc) ||
3490 	    WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) {
3491 		*did_some_progress = 1;
3492 
3493 		/*
3494 		 * Help non-failing allocations by giving them access to memory
3495 		 * reserves
3496 		 */
3497 		if (gfp_mask & __GFP_NOFAIL)
3498 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3499 					ALLOC_NO_WATERMARKS, ac);
3500 	}
3501 out:
3502 	mutex_unlock(&oom_lock);
3503 	return page;
3504 }
3505 
3506 /*
3507  * Maximum number of compaction retries with a progress before OOM
3508  * killer is consider as the only way to move forward.
3509  */
3510 #define MAX_COMPACT_RETRIES 16
3511 
3512 #ifdef CONFIG_COMPACTION
3513 /* Try memory compaction for high-order allocations before reclaim */
3514 static struct page *
3515 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3516 		unsigned int alloc_flags, const struct alloc_context *ac,
3517 		enum compact_priority prio, enum compact_result *compact_result)
3518 {
3519 	struct page *page = NULL;
3520 	unsigned long pflags;
3521 	unsigned int noreclaim_flag;
3522 
3523 	if (!order)
3524 		return NULL;
3525 
3526 	psi_memstall_enter(&pflags);
3527 	delayacct_compact_start();
3528 	noreclaim_flag = memalloc_noreclaim_save();
3529 
3530 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3531 								prio, &page);
3532 
3533 	memalloc_noreclaim_restore(noreclaim_flag);
3534 	psi_memstall_leave(&pflags);
3535 	delayacct_compact_end();
3536 
3537 	if (*compact_result == COMPACT_SKIPPED)
3538 		return NULL;
3539 	/*
3540 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3541 	 * count a compaction stall
3542 	 */
3543 	count_vm_event(COMPACTSTALL);
3544 
3545 	/* Prep a captured page if available */
3546 	if (page)
3547 		prep_new_page(page, order, gfp_mask, alloc_flags);
3548 
3549 	/* Try get a page from the freelist if available */
3550 	if (!page)
3551 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3552 
3553 	if (page) {
3554 		struct zone *zone = page_zone(page);
3555 
3556 		zone->compact_blockskip_flush = false;
3557 		compaction_defer_reset(zone, order, true);
3558 		count_vm_event(COMPACTSUCCESS);
3559 		return page;
3560 	}
3561 
3562 	/*
3563 	 * It's bad if compaction run occurs and fails. The most likely reason
3564 	 * is that pages exist, but not enough to satisfy watermarks.
3565 	 */
3566 	count_vm_event(COMPACTFAIL);
3567 
3568 	cond_resched();
3569 
3570 	return NULL;
3571 }
3572 
3573 static inline bool
3574 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3575 		     enum compact_result compact_result,
3576 		     enum compact_priority *compact_priority,
3577 		     int *compaction_retries)
3578 {
3579 	int max_retries = MAX_COMPACT_RETRIES;
3580 	int min_priority;
3581 	bool ret = false;
3582 	int retries = *compaction_retries;
3583 	enum compact_priority priority = *compact_priority;
3584 
3585 	if (!order)
3586 		return false;
3587 
3588 	if (fatal_signal_pending(current))
3589 		return false;
3590 
3591 	/*
3592 	 * Compaction was skipped due to a lack of free order-0
3593 	 * migration targets. Continue if reclaim can help.
3594 	 */
3595 	if (compact_result == COMPACT_SKIPPED) {
3596 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3597 		goto out;
3598 	}
3599 
3600 	/*
3601 	 * Compaction managed to coalesce some page blocks, but the
3602 	 * allocation failed presumably due to a race. Retry some.
3603 	 */
3604 	if (compact_result == COMPACT_SUCCESS) {
3605 		/*
3606 		 * !costly requests are much more important than
3607 		 * __GFP_RETRY_MAYFAIL costly ones because they are de
3608 		 * facto nofail and invoke OOM killer to move on while
3609 		 * costly can fail and users are ready to cope with
3610 		 * that. 1/4 retries is rather arbitrary but we would
3611 		 * need much more detailed feedback from compaction to
3612 		 * make a better decision.
3613 		 */
3614 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3615 			max_retries /= 4;
3616 
3617 		if (++(*compaction_retries) <= max_retries) {
3618 			ret = true;
3619 			goto out;
3620 		}
3621 	}
3622 
3623 	/*
3624 	 * Compaction failed. Retry with increasing priority.
3625 	 */
3626 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3627 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3628 
3629 	if (*compact_priority > min_priority) {
3630 		(*compact_priority)--;
3631 		*compaction_retries = 0;
3632 		ret = true;
3633 	}
3634 out:
3635 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3636 	return ret;
3637 }
3638 #else
3639 static inline struct page *
3640 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3641 		unsigned int alloc_flags, const struct alloc_context *ac,
3642 		enum compact_priority prio, enum compact_result *compact_result)
3643 {
3644 	*compact_result = COMPACT_SKIPPED;
3645 	return NULL;
3646 }
3647 
3648 static inline bool
3649 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3650 		     enum compact_result compact_result,
3651 		     enum compact_priority *compact_priority,
3652 		     int *compaction_retries)
3653 {
3654 	struct zone *zone;
3655 	struct zoneref *z;
3656 
3657 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3658 		return false;
3659 
3660 	/*
3661 	 * There are setups with compaction disabled which would prefer to loop
3662 	 * inside the allocator rather than hit the oom killer prematurely.
3663 	 * Let's give them a good hope and keep retrying while the order-0
3664 	 * watermarks are OK.
3665 	 */
3666 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3667 				ac->highest_zoneidx, ac->nodemask) {
3668 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3669 					ac->highest_zoneidx, alloc_flags))
3670 			return true;
3671 	}
3672 	return false;
3673 }
3674 #endif /* CONFIG_COMPACTION */
3675 
3676 #ifdef CONFIG_LOCKDEP
3677 static struct lockdep_map __fs_reclaim_map =
3678 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3679 
3680 static bool __need_reclaim(gfp_t gfp_mask)
3681 {
3682 	/* no reclaim without waiting on it */
3683 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3684 		return false;
3685 
3686 	/* this guy won't enter reclaim */
3687 	if (current->flags & PF_MEMALLOC)
3688 		return false;
3689 
3690 	if (gfp_mask & __GFP_NOLOCKDEP)
3691 		return false;
3692 
3693 	return true;
3694 }
3695 
3696 void __fs_reclaim_acquire(unsigned long ip)
3697 {
3698 	lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
3699 }
3700 
3701 void __fs_reclaim_release(unsigned long ip)
3702 {
3703 	lock_release(&__fs_reclaim_map, ip);
3704 }
3705 
3706 void fs_reclaim_acquire(gfp_t gfp_mask)
3707 {
3708 	gfp_mask = current_gfp_context(gfp_mask);
3709 
3710 	if (__need_reclaim(gfp_mask)) {
3711 		if (gfp_mask & __GFP_FS)
3712 			__fs_reclaim_acquire(_RET_IP_);
3713 
3714 #ifdef CONFIG_MMU_NOTIFIER
3715 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
3716 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
3717 #endif
3718 
3719 	}
3720 }
3721 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3722 
3723 void fs_reclaim_release(gfp_t gfp_mask)
3724 {
3725 	gfp_mask = current_gfp_context(gfp_mask);
3726 
3727 	if (__need_reclaim(gfp_mask)) {
3728 		if (gfp_mask & __GFP_FS)
3729 			__fs_reclaim_release(_RET_IP_);
3730 	}
3731 }
3732 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3733 #endif
3734 
3735 /*
3736  * Zonelists may change due to hotplug during allocation. Detect when zonelists
3737  * have been rebuilt so allocation retries. Reader side does not lock and
3738  * retries the allocation if zonelist changes. Writer side is protected by the
3739  * embedded spin_lock.
3740  */
3741 static DEFINE_SEQLOCK(zonelist_update_seq);
3742 
3743 static unsigned int zonelist_iter_begin(void)
3744 {
3745 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3746 		return read_seqbegin(&zonelist_update_seq);
3747 
3748 	return 0;
3749 }
3750 
3751 static unsigned int check_retry_zonelist(unsigned int seq)
3752 {
3753 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
3754 		return read_seqretry(&zonelist_update_seq, seq);
3755 
3756 	return seq;
3757 }
3758 
3759 /* Perform direct synchronous page reclaim */
3760 static unsigned long
3761 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3762 					const struct alloc_context *ac)
3763 {
3764 	unsigned int noreclaim_flag;
3765 	unsigned long progress;
3766 
3767 	cond_resched();
3768 
3769 	/* We now go into synchronous reclaim */
3770 	cpuset_memory_pressure_bump();
3771 	fs_reclaim_acquire(gfp_mask);
3772 	noreclaim_flag = memalloc_noreclaim_save();
3773 
3774 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3775 								ac->nodemask);
3776 
3777 	memalloc_noreclaim_restore(noreclaim_flag);
3778 	fs_reclaim_release(gfp_mask);
3779 
3780 	cond_resched();
3781 
3782 	return progress;
3783 }
3784 
3785 /* The really slow allocator path where we enter direct reclaim */
3786 static inline struct page *
3787 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3788 		unsigned int alloc_flags, const struct alloc_context *ac,
3789 		unsigned long *did_some_progress)
3790 {
3791 	struct page *page = NULL;
3792 	unsigned long pflags;
3793 	bool drained = false;
3794 
3795 	psi_memstall_enter(&pflags);
3796 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3797 	if (unlikely(!(*did_some_progress)))
3798 		goto out;
3799 
3800 retry:
3801 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3802 
3803 	/*
3804 	 * If an allocation failed after direct reclaim, it could be because
3805 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3806 	 * Shrink them and try again
3807 	 */
3808 	if (!page && !drained) {
3809 		unreserve_highatomic_pageblock(ac, false);
3810 		drain_all_pages(NULL);
3811 		drained = true;
3812 		goto retry;
3813 	}
3814 out:
3815 	psi_memstall_leave(&pflags);
3816 
3817 	return page;
3818 }
3819 
3820 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3821 			     const struct alloc_context *ac)
3822 {
3823 	struct zoneref *z;
3824 	struct zone *zone;
3825 	pg_data_t *last_pgdat = NULL;
3826 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
3827 
3828 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
3829 					ac->nodemask) {
3830 		if (!managed_zone(zone))
3831 			continue;
3832 		if (last_pgdat != zone->zone_pgdat) {
3833 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
3834 			last_pgdat = zone->zone_pgdat;
3835 		}
3836 	}
3837 }
3838 
3839 static inline unsigned int
3840 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order)
3841 {
3842 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3843 
3844 	/*
3845 	 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3846 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3847 	 * to save two branches.
3848 	 */
3849 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE);
3850 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
3851 
3852 	/*
3853 	 * The caller may dip into page reserves a bit more if the caller
3854 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3855 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3856 	 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
3857 	 */
3858 	alloc_flags |= (__force int)
3859 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
3860 
3861 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) {
3862 		/*
3863 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3864 		 * if it can't schedule.
3865 		 */
3866 		if (!(gfp_mask & __GFP_NOMEMALLOC)) {
3867 			alloc_flags |= ALLOC_NON_BLOCK;
3868 
3869 			if (order > 0)
3870 				alloc_flags |= ALLOC_HIGHATOMIC;
3871 		}
3872 
3873 		/*
3874 		 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
3875 		 * GFP_ATOMIC) rather than fail, see the comment for
3876 		 * cpuset_node_allowed().
3877 		 */
3878 		if (alloc_flags & ALLOC_MIN_RESERVE)
3879 			alloc_flags &= ~ALLOC_CPUSET;
3880 	} else if (unlikely(rt_task(current)) && in_task())
3881 		alloc_flags |= ALLOC_MIN_RESERVE;
3882 
3883 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
3884 
3885 	return alloc_flags;
3886 }
3887 
3888 static bool oom_reserves_allowed(struct task_struct *tsk)
3889 {
3890 	if (!tsk_is_oom_victim(tsk))
3891 		return false;
3892 
3893 	/*
3894 	 * !MMU doesn't have oom reaper so give access to memory reserves
3895 	 * only to the thread with TIF_MEMDIE set
3896 	 */
3897 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3898 		return false;
3899 
3900 	return true;
3901 }
3902 
3903 /*
3904  * Distinguish requests which really need access to full memory
3905  * reserves from oom victims which can live with a portion of it
3906  */
3907 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3908 {
3909 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3910 		return 0;
3911 	if (gfp_mask & __GFP_MEMALLOC)
3912 		return ALLOC_NO_WATERMARKS;
3913 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3914 		return ALLOC_NO_WATERMARKS;
3915 	if (!in_interrupt()) {
3916 		if (current->flags & PF_MEMALLOC)
3917 			return ALLOC_NO_WATERMARKS;
3918 		else if (oom_reserves_allowed(current))
3919 			return ALLOC_OOM;
3920 	}
3921 
3922 	return 0;
3923 }
3924 
3925 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3926 {
3927 	return !!__gfp_pfmemalloc_flags(gfp_mask);
3928 }
3929 
3930 /*
3931  * Checks whether it makes sense to retry the reclaim to make a forward progress
3932  * for the given allocation request.
3933  *
3934  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3935  * without success, or when we couldn't even meet the watermark if we
3936  * reclaimed all remaining pages on the LRU lists.
3937  *
3938  * Returns true if a retry is viable or false to enter the oom path.
3939  */
3940 static inline bool
3941 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3942 		     struct alloc_context *ac, int alloc_flags,
3943 		     bool did_some_progress, int *no_progress_loops)
3944 {
3945 	struct zone *zone;
3946 	struct zoneref *z;
3947 	bool ret = false;
3948 
3949 	/*
3950 	 * Costly allocations might have made a progress but this doesn't mean
3951 	 * their order will become available due to high fragmentation so
3952 	 * always increment the no progress counter for them
3953 	 */
3954 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3955 		*no_progress_loops = 0;
3956 	else
3957 		(*no_progress_loops)++;
3958 
3959 	if (*no_progress_loops > MAX_RECLAIM_RETRIES)
3960 		goto out;
3961 
3962 
3963 	/*
3964 	 * Keep reclaiming pages while there is a chance this will lead
3965 	 * somewhere.  If none of the target zones can satisfy our allocation
3966 	 * request even if all reclaimable pages are considered then we are
3967 	 * screwed and have to go OOM.
3968 	 */
3969 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3970 				ac->highest_zoneidx, ac->nodemask) {
3971 		unsigned long available;
3972 		unsigned long reclaimable;
3973 		unsigned long min_wmark = min_wmark_pages(zone);
3974 		bool wmark;
3975 
3976 		available = reclaimable = zone_reclaimable_pages(zone);
3977 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3978 
3979 		/*
3980 		 * Would the allocation succeed if we reclaimed all
3981 		 * reclaimable pages?
3982 		 */
3983 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3984 				ac->highest_zoneidx, alloc_flags, available);
3985 		trace_reclaim_retry_zone(z, order, reclaimable,
3986 				available, min_wmark, *no_progress_loops, wmark);
3987 		if (wmark) {
3988 			ret = true;
3989 			break;
3990 		}
3991 	}
3992 
3993 	/*
3994 	 * Memory allocation/reclaim might be called from a WQ context and the
3995 	 * current implementation of the WQ concurrency control doesn't
3996 	 * recognize that a particular WQ is congested if the worker thread is
3997 	 * looping without ever sleeping. Therefore we have to do a short sleep
3998 	 * here rather than calling cond_resched().
3999 	 */
4000 	if (current->flags & PF_WQ_WORKER)
4001 		schedule_timeout_uninterruptible(1);
4002 	else
4003 		cond_resched();
4004 out:
4005 	/* Before OOM, exhaust highatomic_reserve */
4006 	if (!ret)
4007 		return unreserve_highatomic_pageblock(ac, true);
4008 
4009 	return ret;
4010 }
4011 
4012 static inline bool
4013 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4014 {
4015 	/*
4016 	 * It's possible that cpuset's mems_allowed and the nodemask from
4017 	 * mempolicy don't intersect. This should be normally dealt with by
4018 	 * policy_nodemask(), but it's possible to race with cpuset update in
4019 	 * such a way the check therein was true, and then it became false
4020 	 * before we got our cpuset_mems_cookie here.
4021 	 * This assumes that for all allocations, ac->nodemask can come only
4022 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4023 	 * when it does not intersect with the cpuset restrictions) or the
4024 	 * caller can deal with a violated nodemask.
4025 	 */
4026 	if (cpusets_enabled() && ac->nodemask &&
4027 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4028 		ac->nodemask = NULL;
4029 		return true;
4030 	}
4031 
4032 	/*
4033 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4034 	 * possible to race with parallel threads in such a way that our
4035 	 * allocation can fail while the mask is being updated. If we are about
4036 	 * to fail, check if the cpuset changed during allocation and if so,
4037 	 * retry.
4038 	 */
4039 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4040 		return true;
4041 
4042 	return false;
4043 }
4044 
4045 static inline struct page *
4046 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4047 						struct alloc_context *ac)
4048 {
4049 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4050 	bool can_compact = gfp_compaction_allowed(gfp_mask);
4051 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4052 	struct page *page = NULL;
4053 	unsigned int alloc_flags;
4054 	unsigned long did_some_progress;
4055 	enum compact_priority compact_priority;
4056 	enum compact_result compact_result;
4057 	int compaction_retries;
4058 	int no_progress_loops;
4059 	unsigned int cpuset_mems_cookie;
4060 	unsigned int zonelist_iter_cookie;
4061 	int reserve_flags;
4062 
4063 restart:
4064 	compaction_retries = 0;
4065 	no_progress_loops = 0;
4066 	compact_priority = DEF_COMPACT_PRIORITY;
4067 	cpuset_mems_cookie = read_mems_allowed_begin();
4068 	zonelist_iter_cookie = zonelist_iter_begin();
4069 
4070 	/*
4071 	 * The fast path uses conservative alloc_flags to succeed only until
4072 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4073 	 * alloc_flags precisely. So we do that now.
4074 	 */
4075 	alloc_flags = gfp_to_alloc_flags(gfp_mask, order);
4076 
4077 	/*
4078 	 * We need to recalculate the starting point for the zonelist iterator
4079 	 * because we might have used different nodemask in the fast path, or
4080 	 * there was a cpuset modification and we are retrying - otherwise we
4081 	 * could end up iterating over non-eligible zones endlessly.
4082 	 */
4083 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4084 					ac->highest_zoneidx, ac->nodemask);
4085 	if (!ac->preferred_zoneref->zone)
4086 		goto nopage;
4087 
4088 	/*
4089 	 * Check for insane configurations where the cpuset doesn't contain
4090 	 * any suitable zone to satisfy the request - e.g. non-movable
4091 	 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4092 	 */
4093 	if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) {
4094 		struct zoneref *z = first_zones_zonelist(ac->zonelist,
4095 					ac->highest_zoneidx,
4096 					&cpuset_current_mems_allowed);
4097 		if (!z->zone)
4098 			goto nopage;
4099 	}
4100 
4101 	if (alloc_flags & ALLOC_KSWAPD)
4102 		wake_all_kswapds(order, gfp_mask, ac);
4103 
4104 	/*
4105 	 * The adjusted alloc_flags might result in immediate success, so try
4106 	 * that first
4107 	 */
4108 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109 	if (page)
4110 		goto got_pg;
4111 
4112 	/*
4113 	 * For costly allocations, try direct compaction first, as it's likely
4114 	 * that we have enough base pages and don't need to reclaim. For non-
4115 	 * movable high-order allocations, do that as well, as compaction will
4116 	 * try prevent permanent fragmentation by migrating from blocks of the
4117 	 * same migratetype.
4118 	 * Don't try this for allocations that are allowed to ignore
4119 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4120 	 */
4121 	if (can_direct_reclaim && can_compact &&
4122 			(costly_order ||
4123 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4125 		page = __alloc_pages_direct_compact(gfp_mask, order,
4126 						alloc_flags, ac,
4127 						INIT_COMPACT_PRIORITY,
4128 						&compact_result);
4129 		if (page)
4130 			goto got_pg;
4131 
4132 		/*
4133 		 * Checks for costly allocations with __GFP_NORETRY, which
4134 		 * includes some THP page fault allocations
4135 		 */
4136 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4137 			/*
4138 			 * If allocating entire pageblock(s) and compaction
4139 			 * failed because all zones are below low watermarks
4140 			 * or is prohibited because it recently failed at this
4141 			 * order, fail immediately unless the allocator has
4142 			 * requested compaction and reclaim retry.
4143 			 *
4144 			 * Reclaim is
4145 			 *  - potentially very expensive because zones are far
4146 			 *    below their low watermarks or this is part of very
4147 			 *    bursty high order allocations,
4148 			 *  - not guaranteed to help because isolate_freepages()
4149 			 *    may not iterate over freed pages as part of its
4150 			 *    linear scan, and
4151 			 *  - unlikely to make entire pageblocks free on its
4152 			 *    own.
4153 			 */
4154 			if (compact_result == COMPACT_SKIPPED ||
4155 			    compact_result == COMPACT_DEFERRED)
4156 				goto nopage;
4157 
4158 			/*
4159 			 * Looks like reclaim/compaction is worth trying, but
4160 			 * sync compaction could be very expensive, so keep
4161 			 * using async compaction.
4162 			 */
4163 			compact_priority = INIT_COMPACT_PRIORITY;
4164 		}
4165 	}
4166 
4167 retry:
4168 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4169 	if (alloc_flags & ALLOC_KSWAPD)
4170 		wake_all_kswapds(order, gfp_mask, ac);
4171 
4172 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4173 	if (reserve_flags)
4174 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) |
4175 					  (alloc_flags & ALLOC_KSWAPD);
4176 
4177 	/*
4178 	 * Reset the nodemask and zonelist iterators if memory policies can be
4179 	 * ignored. These allocations are high priority and system rather than
4180 	 * user oriented.
4181 	 */
4182 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4183 		ac->nodemask = NULL;
4184 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4185 					ac->highest_zoneidx, ac->nodemask);
4186 	}
4187 
4188 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4189 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4190 	if (page)
4191 		goto got_pg;
4192 
4193 	/* Caller is not willing to reclaim, we can't balance anything */
4194 	if (!can_direct_reclaim)
4195 		goto nopage;
4196 
4197 	/* Avoid recursion of direct reclaim */
4198 	if (current->flags & PF_MEMALLOC)
4199 		goto nopage;
4200 
4201 	/* Try direct reclaim and then allocating */
4202 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4203 							&did_some_progress);
4204 	if (page)
4205 		goto got_pg;
4206 
4207 	/* Try direct compaction and then allocating */
4208 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4209 					compact_priority, &compact_result);
4210 	if (page)
4211 		goto got_pg;
4212 
4213 	/* Do not loop if specifically requested */
4214 	if (gfp_mask & __GFP_NORETRY)
4215 		goto nopage;
4216 
4217 	/*
4218 	 * Do not retry costly high order allocations unless they are
4219 	 * __GFP_RETRY_MAYFAIL and we can compact
4220 	 */
4221 	if (costly_order && (!can_compact ||
4222 			     !(gfp_mask & __GFP_RETRY_MAYFAIL)))
4223 		goto nopage;
4224 
4225 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4226 				 did_some_progress > 0, &no_progress_loops))
4227 		goto retry;
4228 
4229 	/*
4230 	 * It doesn't make any sense to retry for the compaction if the order-0
4231 	 * reclaim is not able to make any progress because the current
4232 	 * implementation of the compaction depends on the sufficient amount
4233 	 * of free memory (see __compaction_suitable)
4234 	 */
4235 	if (did_some_progress > 0 && can_compact &&
4236 			should_compact_retry(ac, order, alloc_flags,
4237 				compact_result, &compact_priority,
4238 				&compaction_retries))
4239 		goto retry;
4240 
4241 
4242 	/*
4243 	 * Deal with possible cpuset update races or zonelist updates to avoid
4244 	 * a unnecessary OOM kill.
4245 	 */
4246 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4247 	    check_retry_zonelist(zonelist_iter_cookie))
4248 		goto restart;
4249 
4250 	/* Reclaim has failed us, start killing things */
4251 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4252 	if (page)
4253 		goto got_pg;
4254 
4255 	/* Avoid allocations with no watermarks from looping endlessly */
4256 	if (tsk_is_oom_victim(current) &&
4257 	    (alloc_flags & ALLOC_OOM ||
4258 	     (gfp_mask & __GFP_NOMEMALLOC)))
4259 		goto nopage;
4260 
4261 	/* Retry as long as the OOM killer is making progress */
4262 	if (did_some_progress) {
4263 		no_progress_loops = 0;
4264 		goto retry;
4265 	}
4266 
4267 nopage:
4268 	/*
4269 	 * Deal with possible cpuset update races or zonelist updates to avoid
4270 	 * a unnecessary OOM kill.
4271 	 */
4272 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4273 	    check_retry_zonelist(zonelist_iter_cookie))
4274 		goto restart;
4275 
4276 	/*
4277 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4278 	 * we always retry
4279 	 */
4280 	if (gfp_mask & __GFP_NOFAIL) {
4281 		/*
4282 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4283 		 * of any new users that actually require GFP_NOWAIT
4284 		 */
4285 		if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask))
4286 			goto fail;
4287 
4288 		/*
4289 		 * PF_MEMALLOC request from this context is rather bizarre
4290 		 * because we cannot reclaim anything and only can loop waiting
4291 		 * for somebody to do a work for us
4292 		 */
4293 		WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask);
4294 
4295 		/*
4296 		 * non failing costly orders are a hard requirement which we
4297 		 * are not prepared for much so let's warn about these users
4298 		 * so that we can identify them and convert them to something
4299 		 * else.
4300 		 */
4301 		WARN_ON_ONCE_GFP(costly_order, gfp_mask);
4302 
4303 		/*
4304 		 * Help non-failing allocations by giving some access to memory
4305 		 * reserves normally used for high priority non-blocking
4306 		 * allocations but do not use ALLOC_NO_WATERMARKS because this
4307 		 * could deplete whole memory reserves which would just make
4308 		 * the situation worse.
4309 		 */
4310 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac);
4311 		if (page)
4312 			goto got_pg;
4313 
4314 		cond_resched();
4315 		goto retry;
4316 	}
4317 fail:
4318 	warn_alloc(gfp_mask, ac->nodemask,
4319 			"page allocation failure: order:%u", order);
4320 got_pg:
4321 	return page;
4322 }
4323 
4324 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4325 		int preferred_nid, nodemask_t *nodemask,
4326 		struct alloc_context *ac, gfp_t *alloc_gfp,
4327 		unsigned int *alloc_flags)
4328 {
4329 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4330 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4331 	ac->nodemask = nodemask;
4332 	ac->migratetype = gfp_migratetype(gfp_mask);
4333 
4334 	if (cpusets_enabled()) {
4335 		*alloc_gfp |= __GFP_HARDWALL;
4336 		/*
4337 		 * When we are in the interrupt context, it is irrelevant
4338 		 * to the current task context. It means that any node ok.
4339 		 */
4340 		if (in_task() && !ac->nodemask)
4341 			ac->nodemask = &cpuset_current_mems_allowed;
4342 		else
4343 			*alloc_flags |= ALLOC_CPUSET;
4344 	}
4345 
4346 	might_alloc(gfp_mask);
4347 
4348 	if (should_fail_alloc_page(gfp_mask, order))
4349 		return false;
4350 
4351 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
4352 
4353 	/* Dirty zone balancing only done in the fast path */
4354 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4355 
4356 	/*
4357 	 * The preferred zone is used for statistics but crucially it is
4358 	 * also used as the starting point for the zonelist iterator. It
4359 	 * may get reset for allocations that ignore memory policies.
4360 	 */
4361 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4362 					ac->highest_zoneidx, ac->nodemask);
4363 
4364 	return true;
4365 }
4366 
4367 /*
4368  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4369  * @gfp: GFP flags for the allocation
4370  * @preferred_nid: The preferred NUMA node ID to allocate from
4371  * @nodemask: Set of nodes to allocate from, may be NULL
4372  * @nr_pages: The number of pages desired on the list or array
4373  * @page_list: Optional list to store the allocated pages
4374  * @page_array: Optional array to store the pages
4375  *
4376  * This is a batched version of the page allocator that attempts to
4377  * allocate nr_pages quickly. Pages are added to page_list if page_list
4378  * is not NULL, otherwise it is assumed that the page_array is valid.
4379  *
4380  * For lists, nr_pages is the number of pages that should be allocated.
4381  *
4382  * For arrays, only NULL elements are populated with pages and nr_pages
4383  * is the maximum number of pages that will be stored in the array.
4384  *
4385  * Returns the number of pages on the list or array.
4386  */
4387 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
4388 			nodemask_t *nodemask, int nr_pages,
4389 			struct list_head *page_list,
4390 			struct page **page_array)
4391 {
4392 	struct page *page;
4393 	unsigned long __maybe_unused UP_flags;
4394 	struct zone *zone;
4395 	struct zoneref *z;
4396 	struct per_cpu_pages *pcp;
4397 	struct list_head *pcp_list;
4398 	struct alloc_context ac;
4399 	gfp_t alloc_gfp;
4400 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4401 	int nr_populated = 0, nr_account = 0;
4402 
4403 	/*
4404 	 * Skip populated array elements to determine if any pages need
4405 	 * to be allocated before disabling IRQs.
4406 	 */
4407 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
4408 		nr_populated++;
4409 
4410 	/* No pages requested? */
4411 	if (unlikely(nr_pages <= 0))
4412 		goto out;
4413 
4414 	/* Already populated array? */
4415 	if (unlikely(page_array && nr_pages - nr_populated == 0))
4416 		goto out;
4417 
4418 	/* Bulk allocator does not support memcg accounting. */
4419 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT))
4420 		goto failed;
4421 
4422 	/* Use the single page allocator for one page. */
4423 	if (nr_pages - nr_populated == 1)
4424 		goto failed;
4425 
4426 #ifdef CONFIG_PAGE_OWNER
4427 	/*
4428 	 * PAGE_OWNER may recurse into the allocator to allocate space to
4429 	 * save the stack with pagesets.lock held. Releasing/reacquiring
4430 	 * removes much of the performance benefit of bulk allocation so
4431 	 * force the caller to allocate one page at a time as it'll have
4432 	 * similar performance to added complexity to the bulk allocator.
4433 	 */
4434 	if (static_branch_unlikely(&page_owner_inited))
4435 		goto failed;
4436 #endif
4437 
4438 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4439 	gfp &= gfp_allowed_mask;
4440 	alloc_gfp = gfp;
4441 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
4442 		goto out;
4443 	gfp = alloc_gfp;
4444 
4445 	/* Find an allowed local zone that meets the low watermark. */
4446 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
4447 		unsigned long mark;
4448 
4449 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
4450 		    !__cpuset_zone_allowed(zone, gfp)) {
4451 			continue;
4452 		}
4453 
4454 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
4455 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
4456 			goto failed;
4457 		}
4458 
4459 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
4460 		if (zone_watermark_fast(zone, 0,  mark,
4461 				zonelist_zone_idx(ac.preferred_zoneref),
4462 				alloc_flags, gfp)) {
4463 			break;
4464 		}
4465 	}
4466 
4467 	/*
4468 	 * If there are no allowed local zones that meets the watermarks then
4469 	 * try to allocate a single page and reclaim if necessary.
4470 	 */
4471 	if (unlikely(!zone))
4472 		goto failed;
4473 
4474 	/* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4475 	pcp_trylock_prepare(UP_flags);
4476 	pcp = pcp_spin_trylock(zone->per_cpu_pageset);
4477 	if (!pcp)
4478 		goto failed_irq;
4479 
4480 	/* Attempt the batch allocation */
4481 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
4482 	while (nr_populated < nr_pages) {
4483 
4484 		/* Skip existing pages */
4485 		if (page_array && page_array[nr_populated]) {
4486 			nr_populated++;
4487 			continue;
4488 		}
4489 
4490 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
4491 								pcp, pcp_list);
4492 		if (unlikely(!page)) {
4493 			/* Try and allocate at least one page */
4494 			if (!nr_account) {
4495 				pcp_spin_unlock(pcp);
4496 				goto failed_irq;
4497 			}
4498 			break;
4499 		}
4500 		nr_account++;
4501 
4502 		prep_new_page(page, 0, gfp, 0);
4503 		if (page_list)
4504 			list_add(&page->lru, page_list);
4505 		else
4506 			page_array[nr_populated] = page;
4507 		nr_populated++;
4508 	}
4509 
4510 	pcp_spin_unlock(pcp);
4511 	pcp_trylock_finish(UP_flags);
4512 
4513 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
4514 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
4515 
4516 out:
4517 	return nr_populated;
4518 
4519 failed_irq:
4520 	pcp_trylock_finish(UP_flags);
4521 
4522 failed:
4523 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
4524 	if (page) {
4525 		if (page_list)
4526 			list_add(&page->lru, page_list);
4527 		else
4528 			page_array[nr_populated] = page;
4529 		nr_populated++;
4530 	}
4531 
4532 	goto out;
4533 }
4534 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
4535 
4536 /*
4537  * This is the 'heart' of the zoned buddy allocator.
4538  */
4539 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
4540 							nodemask_t *nodemask)
4541 {
4542 	struct page *page;
4543 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4544 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
4545 	struct alloc_context ac = { };
4546 
4547 	/*
4548 	 * There are several places where we assume that the order value is sane
4549 	 * so bail out early if the request is out of bound.
4550 	 */
4551 	if (WARN_ON_ONCE_GFP(order > MAX_PAGE_ORDER, gfp))
4552 		return NULL;
4553 
4554 	gfp &= gfp_allowed_mask;
4555 	/*
4556 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4557 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4558 	 * from a particular context which has been marked by
4559 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4560 	 * movable zones are not used during allocation.
4561 	 */
4562 	gfp = current_gfp_context(gfp);
4563 	alloc_gfp = gfp;
4564 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
4565 			&alloc_gfp, &alloc_flags))
4566 		return NULL;
4567 
4568 	/*
4569 	 * Forbid the first pass from falling back to types that fragment
4570 	 * memory until all local zones are considered.
4571 	 */
4572 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
4573 
4574 	/* First allocation attempt */
4575 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
4576 	if (likely(page))
4577 		goto out;
4578 
4579 	alloc_gfp = gfp;
4580 	ac.spread_dirty_pages = false;
4581 
4582 	/*
4583 	 * Restore the original nodemask if it was potentially replaced with
4584 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4585 	 */
4586 	ac.nodemask = nodemask;
4587 
4588 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
4589 
4590 out:
4591 	if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page &&
4592 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
4593 		__free_pages(page, order);
4594 		page = NULL;
4595 	}
4596 
4597 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
4598 	kmsan_alloc_page(page, order, alloc_gfp);
4599 
4600 	return page;
4601 }
4602 EXPORT_SYMBOL(__alloc_pages);
4603 
4604 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
4605 		nodemask_t *nodemask)
4606 {
4607 	struct page *page = __alloc_pages(gfp | __GFP_COMP, order,
4608 					preferred_nid, nodemask);
4609 	return page_rmappable_folio(page);
4610 }
4611 EXPORT_SYMBOL(__folio_alloc);
4612 
4613 /*
4614  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4615  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4616  * you need to access high mem.
4617  */
4618 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4619 {
4620 	struct page *page;
4621 
4622 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4623 	if (!page)
4624 		return 0;
4625 	return (unsigned long) page_address(page);
4626 }
4627 EXPORT_SYMBOL(__get_free_pages);
4628 
4629 unsigned long get_zeroed_page(gfp_t gfp_mask)
4630 {
4631 	return __get_free_page(gfp_mask | __GFP_ZERO);
4632 }
4633 EXPORT_SYMBOL(get_zeroed_page);
4634 
4635 /**
4636  * __free_pages - Free pages allocated with alloc_pages().
4637  * @page: The page pointer returned from alloc_pages().
4638  * @order: The order of the allocation.
4639  *
4640  * This function can free multi-page allocations that are not compound
4641  * pages.  It does not check that the @order passed in matches that of
4642  * the allocation, so it is easy to leak memory.  Freeing more memory
4643  * than was allocated will probably emit a warning.
4644  *
4645  * If the last reference to this page is speculative, it will be released
4646  * by put_page() which only frees the first page of a non-compound
4647  * allocation.  To prevent the remaining pages from being leaked, we free
4648  * the subsequent pages here.  If you want to use the page's reference
4649  * count to decide when to free the allocation, you should allocate a
4650  * compound page, and use put_page() instead of __free_pages().
4651  *
4652  * Context: May be called in interrupt context or while holding a normal
4653  * spinlock, but not in NMI context or while holding a raw spinlock.
4654  */
4655 void __free_pages(struct page *page, unsigned int order)
4656 {
4657 	/* get PageHead before we drop reference */
4658 	int head = PageHead(page);
4659 
4660 	if (put_page_testzero(page))
4661 		free_the_page(page, order);
4662 	else if (!head)
4663 		while (order-- > 0)
4664 			free_the_page(page + (1 << order), order);
4665 }
4666 EXPORT_SYMBOL(__free_pages);
4667 
4668 void free_pages(unsigned long addr, unsigned int order)
4669 {
4670 	if (addr != 0) {
4671 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4672 		__free_pages(virt_to_page((void *)addr), order);
4673 	}
4674 }
4675 
4676 EXPORT_SYMBOL(free_pages);
4677 
4678 /*
4679  * Page Fragment:
4680  *  An arbitrary-length arbitrary-offset area of memory which resides
4681  *  within a 0 or higher order page.  Multiple fragments within that page
4682  *  are individually refcounted, in the page's reference counter.
4683  *
4684  * The page_frag functions below provide a simple allocation framework for
4685  * page fragments.  This is used by the network stack and network device
4686  * drivers to provide a backing region of memory for use as either an
4687  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4688  */
4689 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4690 					     gfp_t gfp_mask)
4691 {
4692 	struct page *page = NULL;
4693 	gfp_t gfp = gfp_mask;
4694 
4695 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4696 	gfp_mask = (gfp_mask & ~__GFP_DIRECT_RECLAIM) |  __GFP_COMP |
4697 		   __GFP_NOWARN | __GFP_NORETRY | __GFP_NOMEMALLOC;
4698 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4699 				PAGE_FRAG_CACHE_MAX_ORDER);
4700 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4701 #endif
4702 	if (unlikely(!page))
4703 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4704 
4705 	nc->va = page ? page_address(page) : NULL;
4706 
4707 	return page;
4708 }
4709 
4710 void page_frag_cache_drain(struct page_frag_cache *nc)
4711 {
4712 	if (!nc->va)
4713 		return;
4714 
4715 	__page_frag_cache_drain(virt_to_head_page(nc->va), nc->pagecnt_bias);
4716 	nc->va = NULL;
4717 }
4718 EXPORT_SYMBOL(page_frag_cache_drain);
4719 
4720 void __page_frag_cache_drain(struct page *page, unsigned int count)
4721 {
4722 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4723 
4724 	if (page_ref_sub_and_test(page, count))
4725 		free_the_page(page, compound_order(page));
4726 }
4727 EXPORT_SYMBOL(__page_frag_cache_drain);
4728 
4729 void *__page_frag_alloc_align(struct page_frag_cache *nc,
4730 			      unsigned int fragsz, gfp_t gfp_mask,
4731 			      unsigned int align_mask)
4732 {
4733 	unsigned int size = PAGE_SIZE;
4734 	struct page *page;
4735 	int offset;
4736 
4737 	if (unlikely(!nc->va)) {
4738 refill:
4739 		page = __page_frag_cache_refill(nc, gfp_mask);
4740 		if (!page)
4741 			return NULL;
4742 
4743 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4744 		/* if size can vary use size else just use PAGE_SIZE */
4745 		size = nc->size;
4746 #endif
4747 		/* Even if we own the page, we do not use atomic_set().
4748 		 * This would break get_page_unless_zero() users.
4749 		 */
4750 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4751 
4752 		/* reset page count bias and offset to start of new frag */
4753 		nc->pfmemalloc = page_is_pfmemalloc(page);
4754 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4755 		nc->offset = size;
4756 	}
4757 
4758 	offset = nc->offset - fragsz;
4759 	if (unlikely(offset < 0)) {
4760 		page = virt_to_page(nc->va);
4761 
4762 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4763 			goto refill;
4764 
4765 		if (unlikely(nc->pfmemalloc)) {
4766 			free_the_page(page, compound_order(page));
4767 			goto refill;
4768 		}
4769 
4770 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4771 		/* if size can vary use size else just use PAGE_SIZE */
4772 		size = nc->size;
4773 #endif
4774 		/* OK, page count is 0, we can safely set it */
4775 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4776 
4777 		/* reset page count bias and offset to start of new frag */
4778 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4779 		offset = size - fragsz;
4780 		if (unlikely(offset < 0)) {
4781 			/*
4782 			 * The caller is trying to allocate a fragment
4783 			 * with fragsz > PAGE_SIZE but the cache isn't big
4784 			 * enough to satisfy the request, this may
4785 			 * happen in low memory conditions.
4786 			 * We don't release the cache page because
4787 			 * it could make memory pressure worse
4788 			 * so we simply return NULL here.
4789 			 */
4790 			return NULL;
4791 		}
4792 	}
4793 
4794 	nc->pagecnt_bias--;
4795 	offset &= align_mask;
4796 	nc->offset = offset;
4797 
4798 	return nc->va + offset;
4799 }
4800 EXPORT_SYMBOL(__page_frag_alloc_align);
4801 
4802 /*
4803  * Frees a page fragment allocated out of either a compound or order 0 page.
4804  */
4805 void page_frag_free(void *addr)
4806 {
4807 	struct page *page = virt_to_head_page(addr);
4808 
4809 	if (unlikely(put_page_testzero(page)))
4810 		free_the_page(page, compound_order(page));
4811 }
4812 EXPORT_SYMBOL(page_frag_free);
4813 
4814 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4815 		size_t size)
4816 {
4817 	if (addr) {
4818 		unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE);
4819 		struct page *page = virt_to_page((void *)addr);
4820 		struct page *last = page + nr;
4821 
4822 		split_page_owner(page, order, 0);
4823 		split_page_memcg(page, order, 0);
4824 		while (page < --last)
4825 			set_page_refcounted(last);
4826 
4827 		last = page + (1UL << order);
4828 		for (page += nr; page < last; page++)
4829 			__free_pages_ok(page, 0, FPI_TO_TAIL);
4830 	}
4831 	return (void *)addr;
4832 }
4833 
4834 /**
4835  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4836  * @size: the number of bytes to allocate
4837  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4838  *
4839  * This function is similar to alloc_pages(), except that it allocates the
4840  * minimum number of pages to satisfy the request.  alloc_pages() can only
4841  * allocate memory in power-of-two pages.
4842  *
4843  * This function is also limited by MAX_PAGE_ORDER.
4844  *
4845  * Memory allocated by this function must be released by free_pages_exact().
4846  *
4847  * Return: pointer to the allocated area or %NULL in case of error.
4848  */
4849 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4850 {
4851 	unsigned int order = get_order(size);
4852 	unsigned long addr;
4853 
4854 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4855 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4856 
4857 	addr = __get_free_pages(gfp_mask, order);
4858 	return make_alloc_exact(addr, order, size);
4859 }
4860 EXPORT_SYMBOL(alloc_pages_exact);
4861 
4862 /**
4863  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4864  *			   pages on a node.
4865  * @nid: the preferred node ID where memory should be allocated
4866  * @size: the number of bytes to allocate
4867  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4868  *
4869  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4870  * back.
4871  *
4872  * Return: pointer to the allocated area or %NULL in case of error.
4873  */
4874 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4875 {
4876 	unsigned int order = get_order(size);
4877 	struct page *p;
4878 
4879 	if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM)))
4880 		gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM);
4881 
4882 	p = alloc_pages_node(nid, gfp_mask, order);
4883 	if (!p)
4884 		return NULL;
4885 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4886 }
4887 
4888 /**
4889  * free_pages_exact - release memory allocated via alloc_pages_exact()
4890  * @virt: the value returned by alloc_pages_exact.
4891  * @size: size of allocation, same value as passed to alloc_pages_exact().
4892  *
4893  * Release the memory allocated by a previous call to alloc_pages_exact.
4894  */
4895 void free_pages_exact(void *virt, size_t size)
4896 {
4897 	unsigned long addr = (unsigned long)virt;
4898 	unsigned long end = addr + PAGE_ALIGN(size);
4899 
4900 	while (addr < end) {
4901 		free_page(addr);
4902 		addr += PAGE_SIZE;
4903 	}
4904 }
4905 EXPORT_SYMBOL(free_pages_exact);
4906 
4907 /**
4908  * nr_free_zone_pages - count number of pages beyond high watermark
4909  * @offset: The zone index of the highest zone
4910  *
4911  * nr_free_zone_pages() counts the number of pages which are beyond the
4912  * high watermark within all zones at or below a given zone index.  For each
4913  * zone, the number of pages is calculated as:
4914  *
4915  *     nr_free_zone_pages = managed_pages - high_pages
4916  *
4917  * Return: number of pages beyond high watermark.
4918  */
4919 static unsigned long nr_free_zone_pages(int offset)
4920 {
4921 	struct zoneref *z;
4922 	struct zone *zone;
4923 
4924 	/* Just pick one node, since fallback list is circular */
4925 	unsigned long sum = 0;
4926 
4927 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4928 
4929 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4930 		unsigned long size = zone_managed_pages(zone);
4931 		unsigned long high = high_wmark_pages(zone);
4932 		if (size > high)
4933 			sum += size - high;
4934 	}
4935 
4936 	return sum;
4937 }
4938 
4939 /**
4940  * nr_free_buffer_pages - count number of pages beyond high watermark
4941  *
4942  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4943  * watermark within ZONE_DMA and ZONE_NORMAL.
4944  *
4945  * Return: number of pages beyond high watermark within ZONE_DMA and
4946  * ZONE_NORMAL.
4947  */
4948 unsigned long nr_free_buffer_pages(void)
4949 {
4950 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4951 }
4952 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4953 
4954 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4955 {
4956 	zoneref->zone = zone;
4957 	zoneref->zone_idx = zone_idx(zone);
4958 }
4959 
4960 /*
4961  * Builds allocation fallback zone lists.
4962  *
4963  * Add all populated zones of a node to the zonelist.
4964  */
4965 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4966 {
4967 	struct zone *zone;
4968 	enum zone_type zone_type = MAX_NR_ZONES;
4969 	int nr_zones = 0;
4970 
4971 	do {
4972 		zone_type--;
4973 		zone = pgdat->node_zones + zone_type;
4974 		if (populated_zone(zone)) {
4975 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4976 			check_highest_zone(zone_type);
4977 		}
4978 	} while (zone_type);
4979 
4980 	return nr_zones;
4981 }
4982 
4983 #ifdef CONFIG_NUMA
4984 
4985 static int __parse_numa_zonelist_order(char *s)
4986 {
4987 	/*
4988 	 * We used to support different zonelists modes but they turned
4989 	 * out to be just not useful. Let's keep the warning in place
4990 	 * if somebody still use the cmd line parameter so that we do
4991 	 * not fail it silently
4992 	 */
4993 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4994 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
4995 		return -EINVAL;
4996 	}
4997 	return 0;
4998 }
4999 
5000 static char numa_zonelist_order[] = "Node";
5001 #define NUMA_ZONELIST_ORDER_LEN	16
5002 /*
5003  * sysctl handler for numa_zonelist_order
5004  */
5005 static int numa_zonelist_order_handler(struct ctl_table *table, int write,
5006 		void *buffer, size_t *length, loff_t *ppos)
5007 {
5008 	if (write)
5009 		return __parse_numa_zonelist_order(buffer);
5010 	return proc_dostring(table, write, buffer, length, ppos);
5011 }
5012 
5013 static int node_load[MAX_NUMNODES];
5014 
5015 /**
5016  * find_next_best_node - find the next node that should appear in a given node's fallback list
5017  * @node: node whose fallback list we're appending
5018  * @used_node_mask: nodemask_t of already used nodes
5019  *
5020  * We use a number of factors to determine which is the next node that should
5021  * appear on a given node's fallback list.  The node should not have appeared
5022  * already in @node's fallback list, and it should be the next closest node
5023  * according to the distance array (which contains arbitrary distance values
5024  * from each node to each node in the system), and should also prefer nodes
5025  * with no CPUs, since presumably they'll have very little allocation pressure
5026  * on them otherwise.
5027  *
5028  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5029  */
5030 int find_next_best_node(int node, nodemask_t *used_node_mask)
5031 {
5032 	int n, val;
5033 	int min_val = INT_MAX;
5034 	int best_node = NUMA_NO_NODE;
5035 
5036 	/*
5037 	 * Use the local node if we haven't already, but for memoryless local
5038 	 * node, we should skip it and fall back to other nodes.
5039 	 */
5040 	if (!node_isset(node, *used_node_mask) && node_state(node, N_MEMORY)) {
5041 		node_set(node, *used_node_mask);
5042 		return node;
5043 	}
5044 
5045 	for_each_node_state(n, N_MEMORY) {
5046 
5047 		/* Don't want a node to appear more than once */
5048 		if (node_isset(n, *used_node_mask))
5049 			continue;
5050 
5051 		/* Use the distance array to find the distance */
5052 		val = node_distance(node, n);
5053 
5054 		/* Penalize nodes under us ("prefer the next node") */
5055 		val += (n < node);
5056 
5057 		/* Give preference to headless and unused nodes */
5058 		if (!cpumask_empty(cpumask_of_node(n)))
5059 			val += PENALTY_FOR_NODE_WITH_CPUS;
5060 
5061 		/* Slight preference for less loaded node */
5062 		val *= MAX_NUMNODES;
5063 		val += node_load[n];
5064 
5065 		if (val < min_val) {
5066 			min_val = val;
5067 			best_node = n;
5068 		}
5069 	}
5070 
5071 	if (best_node >= 0)
5072 		node_set(best_node, *used_node_mask);
5073 
5074 	return best_node;
5075 }
5076 
5077 
5078 /*
5079  * Build zonelists ordered by node and zones within node.
5080  * This results in maximum locality--normal zone overflows into local
5081  * DMA zone, if any--but risks exhausting DMA zone.
5082  */
5083 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5084 		unsigned nr_nodes)
5085 {
5086 	struct zoneref *zonerefs;
5087 	int i;
5088 
5089 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5090 
5091 	for (i = 0; i < nr_nodes; i++) {
5092 		int nr_zones;
5093 
5094 		pg_data_t *node = NODE_DATA(node_order[i]);
5095 
5096 		nr_zones = build_zonerefs_node(node, zonerefs);
5097 		zonerefs += nr_zones;
5098 	}
5099 	zonerefs->zone = NULL;
5100 	zonerefs->zone_idx = 0;
5101 }
5102 
5103 /*
5104  * Build gfp_thisnode zonelists
5105  */
5106 static void build_thisnode_zonelists(pg_data_t *pgdat)
5107 {
5108 	struct zoneref *zonerefs;
5109 	int nr_zones;
5110 
5111 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5112 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5113 	zonerefs += nr_zones;
5114 	zonerefs->zone = NULL;
5115 	zonerefs->zone_idx = 0;
5116 }
5117 
5118 /*
5119  * Build zonelists ordered by zone and nodes within zones.
5120  * This results in conserving DMA zone[s] until all Normal memory is
5121  * exhausted, but results in overflowing to remote node while memory
5122  * may still exist in local DMA zone.
5123  */
5124 
5125 static void build_zonelists(pg_data_t *pgdat)
5126 {
5127 	static int node_order[MAX_NUMNODES];
5128 	int node, nr_nodes = 0;
5129 	nodemask_t used_mask = NODE_MASK_NONE;
5130 	int local_node, prev_node;
5131 
5132 	/* NUMA-aware ordering of nodes */
5133 	local_node = pgdat->node_id;
5134 	prev_node = local_node;
5135 
5136 	memset(node_order, 0, sizeof(node_order));
5137 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5138 		/*
5139 		 * We don't want to pressure a particular node.
5140 		 * So adding penalty to the first node in same
5141 		 * distance group to make it round-robin.
5142 		 */
5143 		if (node_distance(local_node, node) !=
5144 		    node_distance(local_node, prev_node))
5145 			node_load[node] += 1;
5146 
5147 		node_order[nr_nodes++] = node;
5148 		prev_node = node;
5149 	}
5150 
5151 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5152 	build_thisnode_zonelists(pgdat);
5153 	pr_info("Fallback order for Node %d: ", local_node);
5154 	for (node = 0; node < nr_nodes; node++)
5155 		pr_cont("%d ", node_order[node]);
5156 	pr_cont("\n");
5157 }
5158 
5159 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5160 /*
5161  * Return node id of node used for "local" allocations.
5162  * I.e., first node id of first zone in arg node's generic zonelist.
5163  * Used for initializing percpu 'numa_mem', which is used primarily
5164  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5165  */
5166 int local_memory_node(int node)
5167 {
5168 	struct zoneref *z;
5169 
5170 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5171 				   gfp_zone(GFP_KERNEL),
5172 				   NULL);
5173 	return zone_to_nid(z->zone);
5174 }
5175 #endif
5176 
5177 static void setup_min_unmapped_ratio(void);
5178 static void setup_min_slab_ratio(void);
5179 #else	/* CONFIG_NUMA */
5180 
5181 static void build_zonelists(pg_data_t *pgdat)
5182 {
5183 	int node, local_node;
5184 	struct zoneref *zonerefs;
5185 	int nr_zones;
5186 
5187 	local_node = pgdat->node_id;
5188 
5189 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5190 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5191 	zonerefs += nr_zones;
5192 
5193 	/*
5194 	 * Now we build the zonelist so that it contains the zones
5195 	 * of all the other nodes.
5196 	 * We don't want to pressure a particular node, so when
5197 	 * building the zones for node N, we make sure that the
5198 	 * zones coming right after the local ones are those from
5199 	 * node N+1 (modulo N)
5200 	 */
5201 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5202 		if (!node_online(node))
5203 			continue;
5204 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5205 		zonerefs += nr_zones;
5206 	}
5207 	for (node = 0; node < local_node; node++) {
5208 		if (!node_online(node))
5209 			continue;
5210 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5211 		zonerefs += nr_zones;
5212 	}
5213 
5214 	zonerefs->zone = NULL;
5215 	zonerefs->zone_idx = 0;
5216 }
5217 
5218 #endif	/* CONFIG_NUMA */
5219 
5220 /*
5221  * Boot pageset table. One per cpu which is going to be used for all
5222  * zones and all nodes. The parameters will be set in such a way
5223  * that an item put on a list will immediately be handed over to
5224  * the buddy list. This is safe since pageset manipulation is done
5225  * with interrupts disabled.
5226  *
5227  * The boot_pagesets must be kept even after bootup is complete for
5228  * unused processors and/or zones. They do play a role for bootstrapping
5229  * hotplugged processors.
5230  *
5231  * zoneinfo_show() and maybe other functions do
5232  * not check if the processor is online before following the pageset pointer.
5233  * Other parts of the kernel may not check if the zone is available.
5234  */
5235 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
5236 /* These effectively disable the pcplists in the boot pageset completely */
5237 #define BOOT_PAGESET_HIGH	0
5238 #define BOOT_PAGESET_BATCH	1
5239 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
5240 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
5241 
5242 static void __build_all_zonelists(void *data)
5243 {
5244 	int nid;
5245 	int __maybe_unused cpu;
5246 	pg_data_t *self = data;
5247 	unsigned long flags;
5248 
5249 	/*
5250 	 * The zonelist_update_seq must be acquired with irqsave because the
5251 	 * reader can be invoked from IRQ with GFP_ATOMIC.
5252 	 */
5253 	write_seqlock_irqsave(&zonelist_update_seq, flags);
5254 	/*
5255 	 * Also disable synchronous printk() to prevent any printk() from
5256 	 * trying to hold port->lock, for
5257 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5258 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5259 	 */
5260 	printk_deferred_enter();
5261 
5262 #ifdef CONFIG_NUMA
5263 	memset(node_load, 0, sizeof(node_load));
5264 #endif
5265 
5266 	/*
5267 	 * This node is hotadded and no memory is yet present.   So just
5268 	 * building zonelists is fine - no need to touch other nodes.
5269 	 */
5270 	if (self && !node_online(self->node_id)) {
5271 		build_zonelists(self);
5272 	} else {
5273 		/*
5274 		 * All possible nodes have pgdat preallocated
5275 		 * in free_area_init
5276 		 */
5277 		for_each_node(nid) {
5278 			pg_data_t *pgdat = NODE_DATA(nid);
5279 
5280 			build_zonelists(pgdat);
5281 		}
5282 
5283 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5284 		/*
5285 		 * We now know the "local memory node" for each node--
5286 		 * i.e., the node of the first zone in the generic zonelist.
5287 		 * Set up numa_mem percpu variable for on-line cpus.  During
5288 		 * boot, only the boot cpu should be on-line;  we'll init the
5289 		 * secondary cpus' numa_mem as they come on-line.  During
5290 		 * node/memory hotplug, we'll fixup all on-line cpus.
5291 		 */
5292 		for_each_online_cpu(cpu)
5293 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5294 #endif
5295 	}
5296 
5297 	printk_deferred_exit();
5298 	write_sequnlock_irqrestore(&zonelist_update_seq, flags);
5299 }
5300 
5301 static noinline void __init
5302 build_all_zonelists_init(void)
5303 {
5304 	int cpu;
5305 
5306 	__build_all_zonelists(NULL);
5307 
5308 	/*
5309 	 * Initialize the boot_pagesets that are going to be used
5310 	 * for bootstrapping processors. The real pagesets for
5311 	 * each zone will be allocated later when the per cpu
5312 	 * allocator is available.
5313 	 *
5314 	 * boot_pagesets are used also for bootstrapping offline
5315 	 * cpus if the system is already booted because the pagesets
5316 	 * are needed to initialize allocators on a specific cpu too.
5317 	 * F.e. the percpu allocator needs the page allocator which
5318 	 * needs the percpu allocator in order to allocate its pagesets
5319 	 * (a chicken-egg dilemma).
5320 	 */
5321 	for_each_possible_cpu(cpu)
5322 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
5323 
5324 	mminit_verify_zonelist();
5325 	cpuset_init_current_mems_allowed();
5326 }
5327 
5328 /*
5329  * unless system_state == SYSTEM_BOOTING.
5330  *
5331  * __ref due to call of __init annotated helper build_all_zonelists_init
5332  * [protected by SYSTEM_BOOTING].
5333  */
5334 void __ref build_all_zonelists(pg_data_t *pgdat)
5335 {
5336 	unsigned long vm_total_pages;
5337 
5338 	if (system_state == SYSTEM_BOOTING) {
5339 		build_all_zonelists_init();
5340 	} else {
5341 		__build_all_zonelists(pgdat);
5342 		/* cpuset refresh routine should be here */
5343 	}
5344 	/* Get the number of free pages beyond high watermark in all zones. */
5345 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5346 	/*
5347 	 * Disable grouping by mobility if the number of pages in the
5348 	 * system is too low to allow the mechanism to work. It would be
5349 	 * more accurate, but expensive to check per-zone. This check is
5350 	 * made on memory-hotadd so a system can start with mobility
5351 	 * disabled and enable it later
5352 	 */
5353 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5354 		page_group_by_mobility_disabled = 1;
5355 	else
5356 		page_group_by_mobility_disabled = 0;
5357 
5358 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5359 		nr_online_nodes,
5360 		page_group_by_mobility_disabled ? "off" : "on",
5361 		vm_total_pages);
5362 #ifdef CONFIG_NUMA
5363 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5364 #endif
5365 }
5366 
5367 static int zone_batchsize(struct zone *zone)
5368 {
5369 #ifdef CONFIG_MMU
5370 	int batch;
5371 
5372 	/*
5373 	 * The number of pages to batch allocate is either ~0.1%
5374 	 * of the zone or 1MB, whichever is smaller. The batch
5375 	 * size is striking a balance between allocation latency
5376 	 * and zone lock contention.
5377 	 */
5378 	batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE);
5379 	batch /= 4;		/* We effectively *= 4 below */
5380 	if (batch < 1)
5381 		batch = 1;
5382 
5383 	/*
5384 	 * Clamp the batch to a 2^n - 1 value. Having a power
5385 	 * of 2 value was found to be more likely to have
5386 	 * suboptimal cache aliasing properties in some cases.
5387 	 *
5388 	 * For example if 2 tasks are alternately allocating
5389 	 * batches of pages, one task can end up with a lot
5390 	 * of pages of one half of the possible page colors
5391 	 * and the other with pages of the other colors.
5392 	 */
5393 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5394 
5395 	return batch;
5396 
5397 #else
5398 	/* The deferral and batching of frees should be suppressed under NOMMU
5399 	 * conditions.
5400 	 *
5401 	 * The problem is that NOMMU needs to be able to allocate large chunks
5402 	 * of contiguous memory as there's no hardware page translation to
5403 	 * assemble apparent contiguous memory from discontiguous pages.
5404 	 *
5405 	 * Queueing large contiguous runs of pages for batching, however,
5406 	 * causes the pages to actually be freed in smaller chunks.  As there
5407 	 * can be a significant delay between the individual batches being
5408 	 * recycled, this leads to the once large chunks of space being
5409 	 * fragmented and becoming unavailable for high-order allocations.
5410 	 */
5411 	return 0;
5412 #endif
5413 }
5414 
5415 static int percpu_pagelist_high_fraction;
5416 static int zone_highsize(struct zone *zone, int batch, int cpu_online,
5417 			 int high_fraction)
5418 {
5419 #ifdef CONFIG_MMU
5420 	int high;
5421 	int nr_split_cpus;
5422 	unsigned long total_pages;
5423 
5424 	if (!high_fraction) {
5425 		/*
5426 		 * By default, the high value of the pcp is based on the zone
5427 		 * low watermark so that if they are full then background
5428 		 * reclaim will not be started prematurely.
5429 		 */
5430 		total_pages = low_wmark_pages(zone);
5431 	} else {
5432 		/*
5433 		 * If percpu_pagelist_high_fraction is configured, the high
5434 		 * value is based on a fraction of the managed pages in the
5435 		 * zone.
5436 		 */
5437 		total_pages = zone_managed_pages(zone) / high_fraction;
5438 	}
5439 
5440 	/*
5441 	 * Split the high value across all online CPUs local to the zone. Note
5442 	 * that early in boot that CPUs may not be online yet and that during
5443 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5444 	 * onlined. For memory nodes that have no CPUs, split the high value
5445 	 * across all online CPUs to mitigate the risk that reclaim is triggered
5446 	 * prematurely due to pages stored on pcp lists.
5447 	 */
5448 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
5449 	if (!nr_split_cpus)
5450 		nr_split_cpus = num_online_cpus();
5451 	high = total_pages / nr_split_cpus;
5452 
5453 	/*
5454 	 * Ensure high is at least batch*4. The multiple is based on the
5455 	 * historical relationship between high and batch.
5456 	 */
5457 	high = max(high, batch << 2);
5458 
5459 	return high;
5460 #else
5461 	return 0;
5462 #endif
5463 }
5464 
5465 /*
5466  * pcp->high and pcp->batch values are related and generally batch is lower
5467  * than high. They are also related to pcp->count such that count is lower
5468  * than high, and as soon as it reaches high, the pcplist is flushed.
5469  *
5470  * However, guaranteeing these relations at all times would require e.g. write
5471  * barriers here but also careful usage of read barriers at the read side, and
5472  * thus be prone to error and bad for performance. Thus the update only prevents
5473  * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5474  * should ensure they can cope with those fields changing asynchronously, and
5475  * fully trust only the pcp->count field on the local CPU with interrupts
5476  * disabled.
5477  *
5478  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5479  * outside of boot time (or some other assurance that no concurrent updaters
5480  * exist).
5481  */
5482 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high_min,
5483 			   unsigned long high_max, unsigned long batch)
5484 {
5485 	WRITE_ONCE(pcp->batch, batch);
5486 	WRITE_ONCE(pcp->high_min, high_min);
5487 	WRITE_ONCE(pcp->high_max, high_max);
5488 }
5489 
5490 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
5491 {
5492 	int pindex;
5493 
5494 	memset(pcp, 0, sizeof(*pcp));
5495 	memset(pzstats, 0, sizeof(*pzstats));
5496 
5497 	spin_lock_init(&pcp->lock);
5498 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
5499 		INIT_LIST_HEAD(&pcp->lists[pindex]);
5500 
5501 	/*
5502 	 * Set batch and high values safe for a boot pageset. A true percpu
5503 	 * pageset's initialization will update them subsequently. Here we don't
5504 	 * need to be as careful as pageset_update() as nobody can access the
5505 	 * pageset yet.
5506 	 */
5507 	pcp->high_min = BOOT_PAGESET_HIGH;
5508 	pcp->high_max = BOOT_PAGESET_HIGH;
5509 	pcp->batch = BOOT_PAGESET_BATCH;
5510 	pcp->free_count = 0;
5511 }
5512 
5513 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high_min,
5514 					      unsigned long high_max, unsigned long batch)
5515 {
5516 	struct per_cpu_pages *pcp;
5517 	int cpu;
5518 
5519 	for_each_possible_cpu(cpu) {
5520 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5521 		pageset_update(pcp, high_min, high_max, batch);
5522 	}
5523 }
5524 
5525 /*
5526  * Calculate and set new high and batch values for all per-cpu pagesets of a
5527  * zone based on the zone's size.
5528  */
5529 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
5530 {
5531 	int new_high_min, new_high_max, new_batch;
5532 
5533 	new_batch = max(1, zone_batchsize(zone));
5534 	if (percpu_pagelist_high_fraction) {
5535 		new_high_min = zone_highsize(zone, new_batch, cpu_online,
5536 					     percpu_pagelist_high_fraction);
5537 		/*
5538 		 * PCP high is tuned manually, disable auto-tuning via
5539 		 * setting high_min and high_max to the manual value.
5540 		 */
5541 		new_high_max = new_high_min;
5542 	} else {
5543 		new_high_min = zone_highsize(zone, new_batch, cpu_online, 0);
5544 		new_high_max = zone_highsize(zone, new_batch, cpu_online,
5545 					     MIN_PERCPU_PAGELIST_HIGH_FRACTION);
5546 	}
5547 
5548 	if (zone->pageset_high_min == new_high_min &&
5549 	    zone->pageset_high_max == new_high_max &&
5550 	    zone->pageset_batch == new_batch)
5551 		return;
5552 
5553 	zone->pageset_high_min = new_high_min;
5554 	zone->pageset_high_max = new_high_max;
5555 	zone->pageset_batch = new_batch;
5556 
5557 	__zone_set_pageset_high_and_batch(zone, new_high_min, new_high_max,
5558 					  new_batch);
5559 }
5560 
5561 void __meminit setup_zone_pageset(struct zone *zone)
5562 {
5563 	int cpu;
5564 
5565 	/* Size may be 0 on !SMP && !NUMA */
5566 	if (sizeof(struct per_cpu_zonestat) > 0)
5567 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
5568 
5569 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
5570 	for_each_possible_cpu(cpu) {
5571 		struct per_cpu_pages *pcp;
5572 		struct per_cpu_zonestat *pzstats;
5573 
5574 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5575 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
5576 		per_cpu_pages_init(pcp, pzstats);
5577 	}
5578 
5579 	zone_set_pageset_high_and_batch(zone, 0);
5580 }
5581 
5582 /*
5583  * The zone indicated has a new number of managed_pages; batch sizes and percpu
5584  * page high values need to be recalculated.
5585  */
5586 static void zone_pcp_update(struct zone *zone, int cpu_online)
5587 {
5588 	mutex_lock(&pcp_batch_high_lock);
5589 	zone_set_pageset_high_and_batch(zone, cpu_online);
5590 	mutex_unlock(&pcp_batch_high_lock);
5591 }
5592 
5593 static void zone_pcp_update_cacheinfo(struct zone *zone, unsigned int cpu)
5594 {
5595 	struct per_cpu_pages *pcp;
5596 	struct cpu_cacheinfo *cci;
5597 
5598 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
5599 	cci = get_cpu_cacheinfo(cpu);
5600 	/*
5601 	 * If data cache slice of CPU is large enough, "pcp->batch"
5602 	 * pages can be preserved in PCP before draining PCP for
5603 	 * consecutive high-order pages freeing without allocation.
5604 	 * This can reduce zone lock contention without hurting
5605 	 * cache-hot pages sharing.
5606 	 */
5607 	spin_lock(&pcp->lock);
5608 	if ((cci->per_cpu_data_slice_size >> PAGE_SHIFT) > 3 * pcp->batch)
5609 		pcp->flags |= PCPF_FREE_HIGH_BATCH;
5610 	else
5611 		pcp->flags &= ~PCPF_FREE_HIGH_BATCH;
5612 	spin_unlock(&pcp->lock);
5613 }
5614 
5615 void setup_pcp_cacheinfo(unsigned int cpu)
5616 {
5617 	struct zone *zone;
5618 
5619 	for_each_populated_zone(zone)
5620 		zone_pcp_update_cacheinfo(zone, cpu);
5621 }
5622 
5623 /*
5624  * Allocate per cpu pagesets and initialize them.
5625  * Before this call only boot pagesets were available.
5626  */
5627 void __init setup_per_cpu_pageset(void)
5628 {
5629 	struct pglist_data *pgdat;
5630 	struct zone *zone;
5631 	int __maybe_unused cpu;
5632 
5633 	for_each_populated_zone(zone)
5634 		setup_zone_pageset(zone);
5635 
5636 #ifdef CONFIG_NUMA
5637 	/*
5638 	 * Unpopulated zones continue using the boot pagesets.
5639 	 * The numa stats for these pagesets need to be reset.
5640 	 * Otherwise, they will end up skewing the stats of
5641 	 * the nodes these zones are associated with.
5642 	 */
5643 	for_each_possible_cpu(cpu) {
5644 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
5645 		memset(pzstats->vm_numa_event, 0,
5646 		       sizeof(pzstats->vm_numa_event));
5647 	}
5648 #endif
5649 
5650 	for_each_online_pgdat(pgdat)
5651 		pgdat->per_cpu_nodestats =
5652 			alloc_percpu(struct per_cpu_nodestat);
5653 }
5654 
5655 __meminit void zone_pcp_init(struct zone *zone)
5656 {
5657 	/*
5658 	 * per cpu subsystem is not up at this point. The following code
5659 	 * relies on the ability of the linker to provide the
5660 	 * offset of a (static) per cpu variable into the per cpu area.
5661 	 */
5662 	zone->per_cpu_pageset = &boot_pageset;
5663 	zone->per_cpu_zonestats = &boot_zonestats;
5664 	zone->pageset_high_min = BOOT_PAGESET_HIGH;
5665 	zone->pageset_high_max = BOOT_PAGESET_HIGH;
5666 	zone->pageset_batch = BOOT_PAGESET_BATCH;
5667 
5668 	if (populated_zone(zone))
5669 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
5670 			 zone->present_pages, zone_batchsize(zone));
5671 }
5672 
5673 void adjust_managed_page_count(struct page *page, long count)
5674 {
5675 	atomic_long_add(count, &page_zone(page)->managed_pages);
5676 	totalram_pages_add(count);
5677 #ifdef CONFIG_HIGHMEM
5678 	if (PageHighMem(page))
5679 		totalhigh_pages_add(count);
5680 #endif
5681 }
5682 EXPORT_SYMBOL(adjust_managed_page_count);
5683 
5684 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
5685 {
5686 	void *pos;
5687 	unsigned long pages = 0;
5688 
5689 	start = (void *)PAGE_ALIGN((unsigned long)start);
5690 	end = (void *)((unsigned long)end & PAGE_MASK);
5691 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5692 		struct page *page = virt_to_page(pos);
5693 		void *direct_map_addr;
5694 
5695 		/*
5696 		 * 'direct_map_addr' might be different from 'pos'
5697 		 * because some architectures' virt_to_page()
5698 		 * work with aliases.  Getting the direct map
5699 		 * address ensures that we get a _writeable_
5700 		 * alias for the memset().
5701 		 */
5702 		direct_map_addr = page_address(page);
5703 		/*
5704 		 * Perform a kasan-unchecked memset() since this memory
5705 		 * has not been initialized.
5706 		 */
5707 		direct_map_addr = kasan_reset_tag(direct_map_addr);
5708 		if ((unsigned int)poison <= 0xFF)
5709 			memset(direct_map_addr, poison, PAGE_SIZE);
5710 
5711 		free_reserved_page(page);
5712 	}
5713 
5714 	if (pages && s)
5715 		pr_info("Freeing %s memory: %ldK\n", s, K(pages));
5716 
5717 	return pages;
5718 }
5719 
5720 static int page_alloc_cpu_dead(unsigned int cpu)
5721 {
5722 	struct zone *zone;
5723 
5724 	lru_add_drain_cpu(cpu);
5725 	mlock_drain_remote(cpu);
5726 	drain_pages(cpu);
5727 
5728 	/*
5729 	 * Spill the event counters of the dead processor
5730 	 * into the current processors event counters.
5731 	 * This artificially elevates the count of the current
5732 	 * processor.
5733 	 */
5734 	vm_events_fold_cpu(cpu);
5735 
5736 	/*
5737 	 * Zero the differential counters of the dead processor
5738 	 * so that the vm statistics are consistent.
5739 	 *
5740 	 * This is only okay since the processor is dead and cannot
5741 	 * race with what we are doing.
5742 	 */
5743 	cpu_vm_stats_fold(cpu);
5744 
5745 	for_each_populated_zone(zone)
5746 		zone_pcp_update(zone, 0);
5747 
5748 	return 0;
5749 }
5750 
5751 static int page_alloc_cpu_online(unsigned int cpu)
5752 {
5753 	struct zone *zone;
5754 
5755 	for_each_populated_zone(zone)
5756 		zone_pcp_update(zone, 1);
5757 	return 0;
5758 }
5759 
5760 void __init page_alloc_init_cpuhp(void)
5761 {
5762 	int ret;
5763 
5764 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
5765 					"mm/page_alloc:pcp",
5766 					page_alloc_cpu_online,
5767 					page_alloc_cpu_dead);
5768 	WARN_ON(ret < 0);
5769 }
5770 
5771 /*
5772  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5773  *	or min_free_kbytes changes.
5774  */
5775 static void calculate_totalreserve_pages(void)
5776 {
5777 	struct pglist_data *pgdat;
5778 	unsigned long reserve_pages = 0;
5779 	enum zone_type i, j;
5780 
5781 	for_each_online_pgdat(pgdat) {
5782 
5783 		pgdat->totalreserve_pages = 0;
5784 
5785 		for (i = 0; i < MAX_NR_ZONES; i++) {
5786 			struct zone *zone = pgdat->node_zones + i;
5787 			long max = 0;
5788 			unsigned long managed_pages = zone_managed_pages(zone);
5789 
5790 			/* Find valid and maximum lowmem_reserve in the zone */
5791 			for (j = i; j < MAX_NR_ZONES; j++) {
5792 				if (zone->lowmem_reserve[j] > max)
5793 					max = zone->lowmem_reserve[j];
5794 			}
5795 
5796 			/* we treat the high watermark as reserved pages. */
5797 			max += high_wmark_pages(zone);
5798 
5799 			if (max > managed_pages)
5800 				max = managed_pages;
5801 
5802 			pgdat->totalreserve_pages += max;
5803 
5804 			reserve_pages += max;
5805 		}
5806 	}
5807 	totalreserve_pages = reserve_pages;
5808 }
5809 
5810 /*
5811  * setup_per_zone_lowmem_reserve - called whenever
5812  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
5813  *	has a correct pages reserved value, so an adequate number of
5814  *	pages are left in the zone after a successful __alloc_pages().
5815  */
5816 static void setup_per_zone_lowmem_reserve(void)
5817 {
5818 	struct pglist_data *pgdat;
5819 	enum zone_type i, j;
5820 
5821 	for_each_online_pgdat(pgdat) {
5822 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
5823 			struct zone *zone = &pgdat->node_zones[i];
5824 			int ratio = sysctl_lowmem_reserve_ratio[i];
5825 			bool clear = !ratio || !zone_managed_pages(zone);
5826 			unsigned long managed_pages = 0;
5827 
5828 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
5829 				struct zone *upper_zone = &pgdat->node_zones[j];
5830 
5831 				managed_pages += zone_managed_pages(upper_zone);
5832 
5833 				if (clear)
5834 					zone->lowmem_reserve[j] = 0;
5835 				else
5836 					zone->lowmem_reserve[j] = managed_pages / ratio;
5837 			}
5838 		}
5839 	}
5840 
5841 	/* update totalreserve_pages */
5842 	calculate_totalreserve_pages();
5843 }
5844 
5845 static void __setup_per_zone_wmarks(void)
5846 {
5847 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5848 	unsigned long lowmem_pages = 0;
5849 	struct zone *zone;
5850 	unsigned long flags;
5851 
5852 	/* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5853 	for_each_zone(zone) {
5854 		if (!is_highmem(zone) && zone_idx(zone) != ZONE_MOVABLE)
5855 			lowmem_pages += zone_managed_pages(zone);
5856 	}
5857 
5858 	for_each_zone(zone) {
5859 		u64 tmp;
5860 
5861 		spin_lock_irqsave(&zone->lock, flags);
5862 		tmp = (u64)pages_min * zone_managed_pages(zone);
5863 		tmp = div64_ul(tmp, lowmem_pages);
5864 		if (is_highmem(zone) || zone_idx(zone) == ZONE_MOVABLE) {
5865 			/*
5866 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5867 			 * need highmem and movable zones pages, so cap pages_min
5868 			 * to a small  value here.
5869 			 *
5870 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5871 			 * deltas control async page reclaim, and so should
5872 			 * not be capped for highmem and movable zones.
5873 			 */
5874 			unsigned long min_pages;
5875 
5876 			min_pages = zone_managed_pages(zone) / 1024;
5877 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5878 			zone->_watermark[WMARK_MIN] = min_pages;
5879 		} else {
5880 			/*
5881 			 * If it's a lowmem zone, reserve a number of pages
5882 			 * proportionate to the zone's size.
5883 			 */
5884 			zone->_watermark[WMARK_MIN] = tmp;
5885 		}
5886 
5887 		/*
5888 		 * Set the kswapd watermarks distance according to the
5889 		 * scale factor in proportion to available memory, but
5890 		 * ensure a minimum size on small systems.
5891 		 */
5892 		tmp = max_t(u64, tmp >> 2,
5893 			    mult_frac(zone_managed_pages(zone),
5894 				      watermark_scale_factor, 10000));
5895 
5896 		zone->watermark_boost = 0;
5897 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
5898 		zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp;
5899 		zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp;
5900 
5901 		spin_unlock_irqrestore(&zone->lock, flags);
5902 	}
5903 
5904 	/* update totalreserve_pages */
5905 	calculate_totalreserve_pages();
5906 }
5907 
5908 /**
5909  * setup_per_zone_wmarks - called when min_free_kbytes changes
5910  * or when memory is hot-{added|removed}
5911  *
5912  * Ensures that the watermark[min,low,high] values for each zone are set
5913  * correctly with respect to min_free_kbytes.
5914  */
5915 void setup_per_zone_wmarks(void)
5916 {
5917 	struct zone *zone;
5918 	static DEFINE_SPINLOCK(lock);
5919 
5920 	spin_lock(&lock);
5921 	__setup_per_zone_wmarks();
5922 	spin_unlock(&lock);
5923 
5924 	/*
5925 	 * The watermark size have changed so update the pcpu batch
5926 	 * and high limits or the limits may be inappropriate.
5927 	 */
5928 	for_each_zone(zone)
5929 		zone_pcp_update(zone, 0);
5930 }
5931 
5932 /*
5933  * Initialise min_free_kbytes.
5934  *
5935  * For small machines we want it small (128k min).  For large machines
5936  * we want it large (256MB max).  But it is not linear, because network
5937  * bandwidth does not increase linearly with machine size.  We use
5938  *
5939  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5940  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5941  *
5942  * which yields
5943  *
5944  * 16MB:	512k
5945  * 32MB:	724k
5946  * 64MB:	1024k
5947  * 128MB:	1448k
5948  * 256MB:	2048k
5949  * 512MB:	2896k
5950  * 1024MB:	4096k
5951  * 2048MB:	5792k
5952  * 4096MB:	8192k
5953  * 8192MB:	11584k
5954  * 16384MB:	16384k
5955  */
5956 void calculate_min_free_kbytes(void)
5957 {
5958 	unsigned long lowmem_kbytes;
5959 	int new_min_free_kbytes;
5960 
5961 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5962 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5963 
5964 	if (new_min_free_kbytes > user_min_free_kbytes)
5965 		min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144);
5966 	else
5967 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5968 				new_min_free_kbytes, user_min_free_kbytes);
5969 
5970 }
5971 
5972 int __meminit init_per_zone_wmark_min(void)
5973 {
5974 	calculate_min_free_kbytes();
5975 	setup_per_zone_wmarks();
5976 	refresh_zone_stat_thresholds();
5977 	setup_per_zone_lowmem_reserve();
5978 
5979 #ifdef CONFIG_NUMA
5980 	setup_min_unmapped_ratio();
5981 	setup_min_slab_ratio();
5982 #endif
5983 
5984 	khugepaged_min_free_kbytes_update();
5985 
5986 	return 0;
5987 }
5988 postcore_initcall(init_per_zone_wmark_min)
5989 
5990 /*
5991  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5992  *	that we can call two helper functions whenever min_free_kbytes
5993  *	changes.
5994  */
5995 static int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5996 		void *buffer, size_t *length, loff_t *ppos)
5997 {
5998 	int rc;
5999 
6000 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6001 	if (rc)
6002 		return rc;
6003 
6004 	if (write) {
6005 		user_min_free_kbytes = min_free_kbytes;
6006 		setup_per_zone_wmarks();
6007 	}
6008 	return 0;
6009 }
6010 
6011 static int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6012 		void *buffer, size_t *length, loff_t *ppos)
6013 {
6014 	int rc;
6015 
6016 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6017 	if (rc)
6018 		return rc;
6019 
6020 	if (write)
6021 		setup_per_zone_wmarks();
6022 
6023 	return 0;
6024 }
6025 
6026 #ifdef CONFIG_NUMA
6027 static void setup_min_unmapped_ratio(void)
6028 {
6029 	pg_data_t *pgdat;
6030 	struct zone *zone;
6031 
6032 	for_each_online_pgdat(pgdat)
6033 		pgdat->min_unmapped_pages = 0;
6034 
6035 	for_each_zone(zone)
6036 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
6037 						         sysctl_min_unmapped_ratio) / 100;
6038 }
6039 
6040 
6041 static int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6042 		void *buffer, size_t *length, loff_t *ppos)
6043 {
6044 	int rc;
6045 
6046 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6047 	if (rc)
6048 		return rc;
6049 
6050 	setup_min_unmapped_ratio();
6051 
6052 	return 0;
6053 }
6054 
6055 static void setup_min_slab_ratio(void)
6056 {
6057 	pg_data_t *pgdat;
6058 	struct zone *zone;
6059 
6060 	for_each_online_pgdat(pgdat)
6061 		pgdat->min_slab_pages = 0;
6062 
6063 	for_each_zone(zone)
6064 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
6065 						     sysctl_min_slab_ratio) / 100;
6066 }
6067 
6068 static int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6069 		void *buffer, size_t *length, loff_t *ppos)
6070 {
6071 	int rc;
6072 
6073 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6074 	if (rc)
6075 		return rc;
6076 
6077 	setup_min_slab_ratio();
6078 
6079 	return 0;
6080 }
6081 #endif
6082 
6083 /*
6084  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6085  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6086  *	whenever sysctl_lowmem_reserve_ratio changes.
6087  *
6088  * The reserve ratio obviously has absolutely no relation with the
6089  * minimum watermarks. The lowmem reserve ratio can only make sense
6090  * if in function of the boot time zone sizes.
6091  */
6092 static int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table,
6093 		int write, void *buffer, size_t *length, loff_t *ppos)
6094 {
6095 	int i;
6096 
6097 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6098 
6099 	for (i = 0; i < MAX_NR_ZONES; i++) {
6100 		if (sysctl_lowmem_reserve_ratio[i] < 1)
6101 			sysctl_lowmem_reserve_ratio[i] = 0;
6102 	}
6103 
6104 	setup_per_zone_lowmem_reserve();
6105 	return 0;
6106 }
6107 
6108 /*
6109  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6110  * cpu. It is the fraction of total pages in each zone that a hot per cpu
6111  * pagelist can have before it gets flushed back to buddy allocator.
6112  */
6113 static int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
6114 		int write, void *buffer, size_t *length, loff_t *ppos)
6115 {
6116 	struct zone *zone;
6117 	int old_percpu_pagelist_high_fraction;
6118 	int ret;
6119 
6120 	mutex_lock(&pcp_batch_high_lock);
6121 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
6122 
6123 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6124 	if (!write || ret < 0)
6125 		goto out;
6126 
6127 	/* Sanity checking to avoid pcp imbalance */
6128 	if (percpu_pagelist_high_fraction &&
6129 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
6130 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
6131 		ret = -EINVAL;
6132 		goto out;
6133 	}
6134 
6135 	/* No change? */
6136 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
6137 		goto out;
6138 
6139 	for_each_populated_zone(zone)
6140 		zone_set_pageset_high_and_batch(zone, 0);
6141 out:
6142 	mutex_unlock(&pcp_batch_high_lock);
6143 	return ret;
6144 }
6145 
6146 static struct ctl_table page_alloc_sysctl_table[] = {
6147 	{
6148 		.procname	= "min_free_kbytes",
6149 		.data		= &min_free_kbytes,
6150 		.maxlen		= sizeof(min_free_kbytes),
6151 		.mode		= 0644,
6152 		.proc_handler	= min_free_kbytes_sysctl_handler,
6153 		.extra1		= SYSCTL_ZERO,
6154 	},
6155 	{
6156 		.procname	= "watermark_boost_factor",
6157 		.data		= &watermark_boost_factor,
6158 		.maxlen		= sizeof(watermark_boost_factor),
6159 		.mode		= 0644,
6160 		.proc_handler	= proc_dointvec_minmax,
6161 		.extra1		= SYSCTL_ZERO,
6162 	},
6163 	{
6164 		.procname	= "watermark_scale_factor",
6165 		.data		= &watermark_scale_factor,
6166 		.maxlen		= sizeof(watermark_scale_factor),
6167 		.mode		= 0644,
6168 		.proc_handler	= watermark_scale_factor_sysctl_handler,
6169 		.extra1		= SYSCTL_ONE,
6170 		.extra2		= SYSCTL_THREE_THOUSAND,
6171 	},
6172 	{
6173 		.procname	= "percpu_pagelist_high_fraction",
6174 		.data		= &percpu_pagelist_high_fraction,
6175 		.maxlen		= sizeof(percpu_pagelist_high_fraction),
6176 		.mode		= 0644,
6177 		.proc_handler	= percpu_pagelist_high_fraction_sysctl_handler,
6178 		.extra1		= SYSCTL_ZERO,
6179 	},
6180 	{
6181 		.procname	= "lowmem_reserve_ratio",
6182 		.data		= &sysctl_lowmem_reserve_ratio,
6183 		.maxlen		= sizeof(sysctl_lowmem_reserve_ratio),
6184 		.mode		= 0644,
6185 		.proc_handler	= lowmem_reserve_ratio_sysctl_handler,
6186 	},
6187 #ifdef CONFIG_NUMA
6188 	{
6189 		.procname	= "numa_zonelist_order",
6190 		.data		= &numa_zonelist_order,
6191 		.maxlen		= NUMA_ZONELIST_ORDER_LEN,
6192 		.mode		= 0644,
6193 		.proc_handler	= numa_zonelist_order_handler,
6194 	},
6195 	{
6196 		.procname	= "min_unmapped_ratio",
6197 		.data		= &sysctl_min_unmapped_ratio,
6198 		.maxlen		= sizeof(sysctl_min_unmapped_ratio),
6199 		.mode		= 0644,
6200 		.proc_handler	= sysctl_min_unmapped_ratio_sysctl_handler,
6201 		.extra1		= SYSCTL_ZERO,
6202 		.extra2		= SYSCTL_ONE_HUNDRED,
6203 	},
6204 	{
6205 		.procname	= "min_slab_ratio",
6206 		.data		= &sysctl_min_slab_ratio,
6207 		.maxlen		= sizeof(sysctl_min_slab_ratio),
6208 		.mode		= 0644,
6209 		.proc_handler	= sysctl_min_slab_ratio_sysctl_handler,
6210 		.extra1		= SYSCTL_ZERO,
6211 		.extra2		= SYSCTL_ONE_HUNDRED,
6212 	},
6213 #endif
6214 	{}
6215 };
6216 
6217 void __init page_alloc_sysctl_init(void)
6218 {
6219 	register_sysctl_init("vm", page_alloc_sysctl_table);
6220 }
6221 
6222 #ifdef CONFIG_CONTIG_ALLOC
6223 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6224 static void alloc_contig_dump_pages(struct list_head *page_list)
6225 {
6226 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
6227 
6228 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
6229 		struct page *page;
6230 
6231 		dump_stack();
6232 		list_for_each_entry(page, page_list, lru)
6233 			dump_page(page, "migration failure");
6234 	}
6235 }
6236 
6237 /*
6238  * [start, end) must belong to a single zone.
6239  * @migratetype: using migratetype to filter the type of migration in
6240  *		trace_mm_alloc_contig_migrate_range_info.
6241  */
6242 int __alloc_contig_migrate_range(struct compact_control *cc,
6243 					unsigned long start, unsigned long end,
6244 					int migratetype)
6245 {
6246 	/* This function is based on compact_zone() from compaction.c. */
6247 	unsigned int nr_reclaimed;
6248 	unsigned long pfn = start;
6249 	unsigned int tries = 0;
6250 	int ret = 0;
6251 	struct migration_target_control mtc = {
6252 		.nid = zone_to_nid(cc->zone),
6253 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
6254 	};
6255 	struct page *page;
6256 	unsigned long total_mapped = 0;
6257 	unsigned long total_migrated = 0;
6258 	unsigned long total_reclaimed = 0;
6259 
6260 	lru_cache_disable();
6261 
6262 	while (pfn < end || !list_empty(&cc->migratepages)) {
6263 		if (fatal_signal_pending(current)) {
6264 			ret = -EINTR;
6265 			break;
6266 		}
6267 
6268 		if (list_empty(&cc->migratepages)) {
6269 			cc->nr_migratepages = 0;
6270 			ret = isolate_migratepages_range(cc, pfn, end);
6271 			if (ret && ret != -EAGAIN)
6272 				break;
6273 			pfn = cc->migrate_pfn;
6274 			tries = 0;
6275 		} else if (++tries == 5) {
6276 			ret = -EBUSY;
6277 			break;
6278 		}
6279 
6280 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6281 							&cc->migratepages);
6282 		cc->nr_migratepages -= nr_reclaimed;
6283 
6284 		if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6285 			total_reclaimed += nr_reclaimed;
6286 			list_for_each_entry(page, &cc->migratepages, lru)
6287 				total_mapped += page_mapcount(page);
6288 		}
6289 
6290 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
6291 			NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
6292 
6293 		if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret)
6294 			total_migrated += cc->nr_migratepages;
6295 
6296 		/*
6297 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6298 		 * to retry again over this error, so do the same here.
6299 		 */
6300 		if (ret == -ENOMEM)
6301 			break;
6302 	}
6303 
6304 	lru_cache_enable();
6305 	if (ret < 0) {
6306 		if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY)
6307 			alloc_contig_dump_pages(&cc->migratepages);
6308 		putback_movable_pages(&cc->migratepages);
6309 	}
6310 
6311 	trace_mm_alloc_contig_migrate_range_info(start, end, migratetype,
6312 						 total_migrated,
6313 						 total_reclaimed,
6314 						 total_mapped);
6315 	return (ret < 0) ? ret : 0;
6316 }
6317 
6318 /**
6319  * alloc_contig_range() -- tries to allocate given range of pages
6320  * @start:	start PFN to allocate
6321  * @end:	one-past-the-last PFN to allocate
6322  * @migratetype:	migratetype of the underlying pageblocks (either
6323  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6324  *			in range must have the same migratetype and it must
6325  *			be either of the two.
6326  * @gfp_mask:	GFP mask to use during compaction
6327  *
6328  * The PFN range does not have to be pageblock aligned. The PFN range must
6329  * belong to a single zone.
6330  *
6331  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6332  * pageblocks in the range.  Once isolated, the pageblocks should not
6333  * be modified by others.
6334  *
6335  * Return: zero on success or negative error code.  On success all
6336  * pages which PFN is in [start, end) are allocated for the caller and
6337  * need to be freed with free_contig_range().
6338  */
6339 int alloc_contig_range(unsigned long start, unsigned long end,
6340 		       unsigned migratetype, gfp_t gfp_mask)
6341 {
6342 	unsigned long outer_start, outer_end;
6343 	int order;
6344 	int ret = 0;
6345 
6346 	struct compact_control cc = {
6347 		.nr_migratepages = 0,
6348 		.order = -1,
6349 		.zone = page_zone(pfn_to_page(start)),
6350 		.mode = MIGRATE_SYNC,
6351 		.ignore_skip_hint = true,
6352 		.no_set_skip_hint = true,
6353 		.gfp_mask = current_gfp_context(gfp_mask),
6354 		.alloc_contig = true,
6355 	};
6356 	INIT_LIST_HEAD(&cc.migratepages);
6357 
6358 	/*
6359 	 * What we do here is we mark all pageblocks in range as
6360 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
6361 	 * have different sizes, and due to the way page allocator
6362 	 * work, start_isolate_page_range() has special handlings for this.
6363 	 *
6364 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6365 	 * migrate the pages from an unaligned range (ie. pages that
6366 	 * we are interested in). This will put all the pages in
6367 	 * range back to page allocator as MIGRATE_ISOLATE.
6368 	 *
6369 	 * When this is done, we take the pages in range from page
6370 	 * allocator removing them from the buddy system.  This way
6371 	 * page allocator will never consider using them.
6372 	 *
6373 	 * This lets us mark the pageblocks back as
6374 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6375 	 * aligned range but not in the unaligned, original range are
6376 	 * put back to page allocator so that buddy can use them.
6377 	 */
6378 
6379 	ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask);
6380 	if (ret)
6381 		goto done;
6382 
6383 	drain_all_pages(cc.zone);
6384 
6385 	/*
6386 	 * In case of -EBUSY, we'd like to know which page causes problem.
6387 	 * So, just fall through. test_pages_isolated() has a tracepoint
6388 	 * which will report the busy page.
6389 	 *
6390 	 * It is possible that busy pages could become available before
6391 	 * the call to test_pages_isolated, and the range will actually be
6392 	 * allocated.  So, if we fall through be sure to clear ret so that
6393 	 * -EBUSY is not accidentally used or returned to caller.
6394 	 */
6395 	ret = __alloc_contig_migrate_range(&cc, start, end, migratetype);
6396 	if (ret && ret != -EBUSY)
6397 		goto done;
6398 	ret = 0;
6399 
6400 	/*
6401 	 * Pages from [start, end) are within a pageblock_nr_pages
6402 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
6403 	 * more, all pages in [start, end) are free in page allocator.
6404 	 * What we are going to do is to allocate all pages from
6405 	 * [start, end) (that is remove them from page allocator).
6406 	 *
6407 	 * The only problem is that pages at the beginning and at the
6408 	 * end of interesting range may be not aligned with pages that
6409 	 * page allocator holds, ie. they can be part of higher order
6410 	 * pages.  Because of this, we reserve the bigger range and
6411 	 * once this is done free the pages we are not interested in.
6412 	 *
6413 	 * We don't have to hold zone->lock here because the pages are
6414 	 * isolated thus they won't get removed from buddy.
6415 	 */
6416 
6417 	order = 0;
6418 	outer_start = start;
6419 	while (!PageBuddy(pfn_to_page(outer_start))) {
6420 		if (++order > MAX_PAGE_ORDER) {
6421 			outer_start = start;
6422 			break;
6423 		}
6424 		outer_start &= ~0UL << order;
6425 	}
6426 
6427 	if (outer_start != start) {
6428 		order = buddy_order(pfn_to_page(outer_start));
6429 
6430 		/*
6431 		 * outer_start page could be small order buddy page and
6432 		 * it doesn't include start page. Adjust outer_start
6433 		 * in this case to report failed page properly
6434 		 * on tracepoint in test_pages_isolated()
6435 		 */
6436 		if (outer_start + (1UL << order) <= start)
6437 			outer_start = start;
6438 	}
6439 
6440 	/* Make sure the range is really isolated. */
6441 	if (test_pages_isolated(outer_start, end, 0)) {
6442 		ret = -EBUSY;
6443 		goto done;
6444 	}
6445 
6446 	/* Grab isolated pages from freelists. */
6447 	outer_end = isolate_freepages_range(&cc, outer_start, end);
6448 	if (!outer_end) {
6449 		ret = -EBUSY;
6450 		goto done;
6451 	}
6452 
6453 	/* Free head and tail (if any) */
6454 	if (start != outer_start)
6455 		free_contig_range(outer_start, start - outer_start);
6456 	if (end != outer_end)
6457 		free_contig_range(end, outer_end - end);
6458 
6459 done:
6460 	undo_isolate_page_range(start, end, migratetype);
6461 	return ret;
6462 }
6463 EXPORT_SYMBOL(alloc_contig_range);
6464 
6465 static int __alloc_contig_pages(unsigned long start_pfn,
6466 				unsigned long nr_pages, gfp_t gfp_mask)
6467 {
6468 	unsigned long end_pfn = start_pfn + nr_pages;
6469 
6470 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
6471 				  gfp_mask);
6472 }
6473 
6474 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
6475 				   unsigned long nr_pages)
6476 {
6477 	unsigned long i, end_pfn = start_pfn + nr_pages;
6478 	struct page *page;
6479 
6480 	for (i = start_pfn; i < end_pfn; i++) {
6481 		page = pfn_to_online_page(i);
6482 		if (!page)
6483 			return false;
6484 
6485 		if (page_zone(page) != z)
6486 			return false;
6487 
6488 		if (PageReserved(page))
6489 			return false;
6490 
6491 		if (PageHuge(page))
6492 			return false;
6493 	}
6494 	return true;
6495 }
6496 
6497 static bool zone_spans_last_pfn(const struct zone *zone,
6498 				unsigned long start_pfn, unsigned long nr_pages)
6499 {
6500 	unsigned long last_pfn = start_pfn + nr_pages - 1;
6501 
6502 	return zone_spans_pfn(zone, last_pfn);
6503 }
6504 
6505 /**
6506  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6507  * @nr_pages:	Number of contiguous pages to allocate
6508  * @gfp_mask:	GFP mask to limit search and used during compaction
6509  * @nid:	Target node
6510  * @nodemask:	Mask for other possible nodes
6511  *
6512  * This routine is a wrapper around alloc_contig_range(). It scans over zones
6513  * on an applicable zonelist to find a contiguous pfn range which can then be
6514  * tried for allocation with alloc_contig_range(). This routine is intended
6515  * for allocation requests which can not be fulfilled with the buddy allocator.
6516  *
6517  * The allocated memory is always aligned to a page boundary. If nr_pages is a
6518  * power of two, then allocated range is also guaranteed to be aligned to same
6519  * nr_pages (e.g. 1GB request would be aligned to 1GB).
6520  *
6521  * Allocated pages can be freed with free_contig_range() or by manually calling
6522  * __free_page() on each allocated page.
6523  *
6524  * Return: pointer to contiguous pages on success, or NULL if not successful.
6525  */
6526 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
6527 				int nid, nodemask_t *nodemask)
6528 {
6529 	unsigned long ret, pfn, flags;
6530 	struct zonelist *zonelist;
6531 	struct zone *zone;
6532 	struct zoneref *z;
6533 
6534 	zonelist = node_zonelist(nid, gfp_mask);
6535 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
6536 					gfp_zone(gfp_mask), nodemask) {
6537 		spin_lock_irqsave(&zone->lock, flags);
6538 
6539 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
6540 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
6541 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
6542 				/*
6543 				 * We release the zone lock here because
6544 				 * alloc_contig_range() will also lock the zone
6545 				 * at some point. If there's an allocation
6546 				 * spinning on this lock, it may win the race
6547 				 * and cause alloc_contig_range() to fail...
6548 				 */
6549 				spin_unlock_irqrestore(&zone->lock, flags);
6550 				ret = __alloc_contig_pages(pfn, nr_pages,
6551 							gfp_mask);
6552 				if (!ret)
6553 					return pfn_to_page(pfn);
6554 				spin_lock_irqsave(&zone->lock, flags);
6555 			}
6556 			pfn += nr_pages;
6557 		}
6558 		spin_unlock_irqrestore(&zone->lock, flags);
6559 	}
6560 	return NULL;
6561 }
6562 #endif /* CONFIG_CONTIG_ALLOC */
6563 
6564 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
6565 {
6566 	unsigned long count = 0;
6567 
6568 	for (; nr_pages--; pfn++) {
6569 		struct page *page = pfn_to_page(pfn);
6570 
6571 		count += page_count(page) != 1;
6572 		__free_page(page);
6573 	}
6574 	WARN(count != 0, "%lu pages are still in use!\n", count);
6575 }
6576 EXPORT_SYMBOL(free_contig_range);
6577 
6578 /*
6579  * Effectively disable pcplists for the zone by setting the high limit to 0
6580  * and draining all cpus. A concurrent page freeing on another CPU that's about
6581  * to put the page on pcplist will either finish before the drain and the page
6582  * will be drained, or observe the new high limit and skip the pcplist.
6583  *
6584  * Must be paired with a call to zone_pcp_enable().
6585  */
6586 void zone_pcp_disable(struct zone *zone)
6587 {
6588 	mutex_lock(&pcp_batch_high_lock);
6589 	__zone_set_pageset_high_and_batch(zone, 0, 0, 1);
6590 	__drain_all_pages(zone, true);
6591 }
6592 
6593 void zone_pcp_enable(struct zone *zone)
6594 {
6595 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high_min,
6596 		zone->pageset_high_max, zone->pageset_batch);
6597 	mutex_unlock(&pcp_batch_high_lock);
6598 }
6599 
6600 void zone_pcp_reset(struct zone *zone)
6601 {
6602 	int cpu;
6603 	struct per_cpu_zonestat *pzstats;
6604 
6605 	if (zone->per_cpu_pageset != &boot_pageset) {
6606 		for_each_online_cpu(cpu) {
6607 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6608 			drain_zonestat(zone, pzstats);
6609 		}
6610 		free_percpu(zone->per_cpu_pageset);
6611 		zone->per_cpu_pageset = &boot_pageset;
6612 		if (zone->per_cpu_zonestats != &boot_zonestats) {
6613 			free_percpu(zone->per_cpu_zonestats);
6614 			zone->per_cpu_zonestats = &boot_zonestats;
6615 		}
6616 	}
6617 }
6618 
6619 #ifdef CONFIG_MEMORY_HOTREMOVE
6620 /*
6621  * All pages in the range must be in a single zone, must not contain holes,
6622  * must span full sections, and must be isolated before calling this function.
6623  */
6624 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6625 {
6626 	unsigned long pfn = start_pfn;
6627 	struct page *page;
6628 	struct zone *zone;
6629 	unsigned int order;
6630 	unsigned long flags;
6631 
6632 	offline_mem_sections(pfn, end_pfn);
6633 	zone = page_zone(pfn_to_page(pfn));
6634 	spin_lock_irqsave(&zone->lock, flags);
6635 	while (pfn < end_pfn) {
6636 		page = pfn_to_page(pfn);
6637 		/*
6638 		 * The HWPoisoned page may be not in buddy system, and
6639 		 * page_count() is not 0.
6640 		 */
6641 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6642 			pfn++;
6643 			continue;
6644 		}
6645 		/*
6646 		 * At this point all remaining PageOffline() pages have a
6647 		 * reference count of 0 and can simply be skipped.
6648 		 */
6649 		if (PageOffline(page)) {
6650 			BUG_ON(page_count(page));
6651 			BUG_ON(PageBuddy(page));
6652 			pfn++;
6653 			continue;
6654 		}
6655 
6656 		BUG_ON(page_count(page));
6657 		BUG_ON(!PageBuddy(page));
6658 		order = buddy_order(page);
6659 		del_page_from_free_list(page, zone, order);
6660 		pfn += (1 << order);
6661 	}
6662 	spin_unlock_irqrestore(&zone->lock, flags);
6663 }
6664 #endif
6665 
6666 /*
6667  * This function returns a stable result only if called under zone lock.
6668  */
6669 bool is_free_buddy_page(struct page *page)
6670 {
6671 	unsigned long pfn = page_to_pfn(page);
6672 	unsigned int order;
6673 
6674 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6675 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6676 
6677 		if (PageBuddy(page_head) &&
6678 		    buddy_order_unsafe(page_head) >= order)
6679 			break;
6680 	}
6681 
6682 	return order <= MAX_PAGE_ORDER;
6683 }
6684 EXPORT_SYMBOL(is_free_buddy_page);
6685 
6686 #ifdef CONFIG_MEMORY_FAILURE
6687 /*
6688  * Break down a higher-order page in sub-pages, and keep our target out of
6689  * buddy allocator.
6690  */
6691 static void break_down_buddy_pages(struct zone *zone, struct page *page,
6692 				   struct page *target, int low, int high,
6693 				   int migratetype)
6694 {
6695 	unsigned long size = 1 << high;
6696 	struct page *current_buddy;
6697 
6698 	while (high > low) {
6699 		high--;
6700 		size >>= 1;
6701 
6702 		if (target >= &page[size]) {
6703 			current_buddy = page;
6704 			page = page + size;
6705 		} else {
6706 			current_buddy = page + size;
6707 		}
6708 
6709 		if (set_page_guard(zone, current_buddy, high, migratetype))
6710 			continue;
6711 
6712 		add_to_free_list(current_buddy, zone, high, migratetype);
6713 		set_buddy_order(current_buddy, high);
6714 	}
6715 }
6716 
6717 /*
6718  * Take a page that will be marked as poisoned off the buddy allocator.
6719  */
6720 bool take_page_off_buddy(struct page *page)
6721 {
6722 	struct zone *zone = page_zone(page);
6723 	unsigned long pfn = page_to_pfn(page);
6724 	unsigned long flags;
6725 	unsigned int order;
6726 	bool ret = false;
6727 
6728 	spin_lock_irqsave(&zone->lock, flags);
6729 	for (order = 0; order < NR_PAGE_ORDERS; order++) {
6730 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6731 		int page_order = buddy_order(page_head);
6732 
6733 		if (PageBuddy(page_head) && page_order >= order) {
6734 			unsigned long pfn_head = page_to_pfn(page_head);
6735 			int migratetype = get_pfnblock_migratetype(page_head,
6736 								   pfn_head);
6737 
6738 			del_page_from_free_list(page_head, zone, page_order);
6739 			break_down_buddy_pages(zone, page_head, page, 0,
6740 						page_order, migratetype);
6741 			SetPageHWPoisonTakenOff(page);
6742 			if (!is_migrate_isolate(migratetype))
6743 				__mod_zone_freepage_state(zone, -1, migratetype);
6744 			ret = true;
6745 			break;
6746 		}
6747 		if (page_count(page_head) > 0)
6748 			break;
6749 	}
6750 	spin_unlock_irqrestore(&zone->lock, flags);
6751 	return ret;
6752 }
6753 
6754 /*
6755  * Cancel takeoff done by take_page_off_buddy().
6756  */
6757 bool put_page_back_buddy(struct page *page)
6758 {
6759 	struct zone *zone = page_zone(page);
6760 	unsigned long pfn = page_to_pfn(page);
6761 	unsigned long flags;
6762 	int migratetype = get_pfnblock_migratetype(page, pfn);
6763 	bool ret = false;
6764 
6765 	spin_lock_irqsave(&zone->lock, flags);
6766 	if (put_page_testzero(page)) {
6767 		ClearPageHWPoisonTakenOff(page);
6768 		__free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE);
6769 		if (TestClearPageHWPoison(page)) {
6770 			ret = true;
6771 		}
6772 	}
6773 	spin_unlock_irqrestore(&zone->lock, flags);
6774 
6775 	return ret;
6776 }
6777 #endif
6778 
6779 #ifdef CONFIG_ZONE_DMA
6780 bool has_managed_dma(void)
6781 {
6782 	struct pglist_data *pgdat;
6783 
6784 	for_each_online_pgdat(pgdat) {
6785 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
6786 
6787 		if (managed_zone(zone))
6788 			return true;
6789 	}
6790 	return false;
6791 }
6792 #endif /* CONFIG_ZONE_DMA */
6793 
6794 #ifdef CONFIG_UNACCEPTED_MEMORY
6795 
6796 /* Counts number of zones with unaccepted pages. */
6797 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages);
6798 
6799 static bool lazy_accept = true;
6800 
6801 static int __init accept_memory_parse(char *p)
6802 {
6803 	if (!strcmp(p, "lazy")) {
6804 		lazy_accept = true;
6805 		return 0;
6806 	} else if (!strcmp(p, "eager")) {
6807 		lazy_accept = false;
6808 		return 0;
6809 	} else {
6810 		return -EINVAL;
6811 	}
6812 }
6813 early_param("accept_memory", accept_memory_parse);
6814 
6815 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6816 {
6817 	phys_addr_t start = page_to_phys(page);
6818 	phys_addr_t end = start + (PAGE_SIZE << order);
6819 
6820 	return range_contains_unaccepted_memory(start, end);
6821 }
6822 
6823 static void accept_page(struct page *page, unsigned int order)
6824 {
6825 	phys_addr_t start = page_to_phys(page);
6826 
6827 	accept_memory(start, start + (PAGE_SIZE << order));
6828 }
6829 
6830 static bool try_to_accept_memory_one(struct zone *zone)
6831 {
6832 	unsigned long flags;
6833 	struct page *page;
6834 	bool last;
6835 
6836 	if (list_empty(&zone->unaccepted_pages))
6837 		return false;
6838 
6839 	spin_lock_irqsave(&zone->lock, flags);
6840 	page = list_first_entry_or_null(&zone->unaccepted_pages,
6841 					struct page, lru);
6842 	if (!page) {
6843 		spin_unlock_irqrestore(&zone->lock, flags);
6844 		return false;
6845 	}
6846 
6847 	list_del(&page->lru);
6848 	last = list_empty(&zone->unaccepted_pages);
6849 
6850 	__mod_zone_freepage_state(zone, -MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6851 	__mod_zone_page_state(zone, NR_UNACCEPTED, -MAX_ORDER_NR_PAGES);
6852 	spin_unlock_irqrestore(&zone->lock, flags);
6853 
6854 	accept_page(page, MAX_PAGE_ORDER);
6855 
6856 	__free_pages_ok(page, MAX_PAGE_ORDER, FPI_TO_TAIL);
6857 
6858 	if (last)
6859 		static_branch_dec(&zones_with_unaccepted_pages);
6860 
6861 	return true;
6862 }
6863 
6864 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6865 {
6866 	long to_accept;
6867 	int ret = false;
6868 
6869 	/* How much to accept to get to high watermark? */
6870 	to_accept = high_wmark_pages(zone) -
6871 		    (zone_page_state(zone, NR_FREE_PAGES) -
6872 		    __zone_watermark_unusable_free(zone, order, 0));
6873 
6874 	/* Accept at least one page */
6875 	do {
6876 		if (!try_to_accept_memory_one(zone))
6877 			break;
6878 		ret = true;
6879 		to_accept -= MAX_ORDER_NR_PAGES;
6880 	} while (to_accept > 0);
6881 
6882 	return ret;
6883 }
6884 
6885 static inline bool has_unaccepted_memory(void)
6886 {
6887 	return static_branch_unlikely(&zones_with_unaccepted_pages);
6888 }
6889 
6890 static bool __free_unaccepted(struct page *page)
6891 {
6892 	struct zone *zone = page_zone(page);
6893 	unsigned long flags;
6894 	bool first = false;
6895 
6896 	if (!lazy_accept)
6897 		return false;
6898 
6899 	spin_lock_irqsave(&zone->lock, flags);
6900 	first = list_empty(&zone->unaccepted_pages);
6901 	list_add_tail(&page->lru, &zone->unaccepted_pages);
6902 	__mod_zone_freepage_state(zone, MAX_ORDER_NR_PAGES, MIGRATE_MOVABLE);
6903 	__mod_zone_page_state(zone, NR_UNACCEPTED, MAX_ORDER_NR_PAGES);
6904 	spin_unlock_irqrestore(&zone->lock, flags);
6905 
6906 	if (first)
6907 		static_branch_inc(&zones_with_unaccepted_pages);
6908 
6909 	return true;
6910 }
6911 
6912 #else
6913 
6914 static bool page_contains_unaccepted(struct page *page, unsigned int order)
6915 {
6916 	return false;
6917 }
6918 
6919 static void accept_page(struct page *page, unsigned int order)
6920 {
6921 }
6922 
6923 static bool try_to_accept_memory(struct zone *zone, unsigned int order)
6924 {
6925 	return false;
6926 }
6927 
6928 static inline bool has_unaccepted_memory(void)
6929 {
6930 	return false;
6931 }
6932 
6933 static bool __free_unaccepted(struct page *page)
6934 {
6935 	BUILD_BUG();
6936 	return false;
6937 }
6938 
6939 #endif /* CONFIG_UNACCEPTED_MEMORY */
6940